Sample records for visar wave profiles

  1. Non-Doppler shift related experimental shock wave measurements using velocity interferometer systems for any reflector.

    PubMed

    Forsman, A C; Kyrala, G A

    2001-05-01

    Velocity interferometer system for any reflectors (VISARs), are becoming increasingly popular in the measurement of shock waves in solids and liquids. VISAR techniques are used in measurements of transit time, speed of shock waves in flight in transparent media [L. C. Chhabildas and J. L. Wise, in Proceedings of the 4th APS Topical Conference on Shock Waves in Condensed Matter, Spokane, Washington, 1985, edited by Y. M. Gupta (Plenum, New York, 1986); P. M. Celliers et al., Appl. Phys. Lett. 73, 1320 (1998)], and in measurements of particle velocity. However, in cases where shock compression or release may change the index of refraction n+ik of the material being studied, the VISAR technique must be applied with care. Changes in n and k introduce phase shifts into the VISAR results that are not associated with changes in velocity. This paper presents a derivation of the theoretical output of a line VISAR that includes the effects of changing n and k and an experimental observation of a non-Doppler shift related effect.

  2. Shock-Wave Pulse Compression and Stretching of Dodecane and Mineral Oils

    NASA Astrophysics Data System (ADS)

    Bannikova, I. A.; Zubareva, A. N.; Utkin, A. V.

    2018-04-01

    The behavior of dodecane, vacuum, and transformer oils under shock-wave pulse compression and stretching are studied experimentally. The wave profiles are registered using a VISAR laser interferometer. The shock adiabats, the dependence of the sound velocity on the pressure, and the maximum negative pressures developed in the studied liquids are determined. It is shown that the negative pressure value does not depend on the deformation rate in the case of oils and is a strong function of the compression pulse amplitude in the case of dodecane.

  3. Portable fiber optic coupled Doppler interferometer system for detonation and shock wave diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, Kevin J.

    1993-01-01

    Testing and analysis of shock wave characteristics such as detonators and ground shock propagation frequently require a method of measuring velocity and displacement of the surface of interest. One method of measurement is Doppler interferometry. The VISAR (Velocity Interferometer System for Any Reflector) uses Doppler interferometry and has gained wide acceptance as the preferred tool for shock measurement. An important asset of VISAR is that it measures velocity and displacement nonintrusively.

  4. Explosively Driven Shock Induced Damage in OFHC Copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koller, D. D.; Hixson, R. S.; Gray, G. T. III

    OFHC Cu samples were subjected to shock loading using plane wave HE lenses to produce a uniaxial Taylor wave profile (shock followed by immediate release). Upon arrival of the shock wave at the free surface of the sample, the wave is reflected and propagates back into the sample as a release wave. It is the interaction of initial and reflected release waves that place the material in a localized state of tension which can ultimately result in damage and possibly complete failure of the material. The peak tensile stress and its location in the material are determined by the wavemore » shape. Damage evolution processes and localized behavior are discussed based on results from time-resolved free surface velocity (VISAR) interferometry and post shock metallurgical analysis of the soft recovered samples.« less

  5. The stabilization of unstable detonation waves for the mixture of nitromethane/methanol

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Koldunov, S. A.; Mochalova, V. M.; Torunov, S. I.; Lapin, S. M.

    2015-11-01

    Using a laser interferometer VISAR the measurements of the particle velocity profiles in detonation waves for nitromethane/methanol mixtures with additions of a sensitizer diethylenetriamine were conducted. It is shown that the detonation front in a mixture of nitromethane/methanol is unstable and sensitizer is an effective method for the flow stabilization. If the diluent concentration is less than 10%, the detonation front is stabilized by adding of 1% diethylenetriamine. At higher concentrations of methanol, the sensitizer does not reject instability, but the amplitude of oscillations decreases in several times. An increase of the limit concentration of methanol at the addition of diethylenetriamine to the mixture was found.

  6. Thermodynamic and Optical Response of Multiply Shocked Liquid Nitromethane

    NASA Astrophysics Data System (ADS)

    Flanders, B. M.; Winey, J. M.; Gupta, Y. M.

    2015-06-01

    To investigate the thermodynamic and optical response of multiply shocked liquids, particle velocity profiles were measured for liquid nitromethane (NM) subjected to stepwise loading to a peak pressure of 10 GPa. Using a multi-point velocity interferometer (VISAR), wave profiles were obtained at both the front and rear interfaces of the thin (200 μm) liquid sample to obtain data regarding the thermodynamic response and the refractive index at the intermediate stepwise loading states, in addition to the peak state. Changes in the apparent velocity at the front sample interface were well accounted for by using a Gladstone-Dale relationship to describe the NM index of refraction. The thermodynamic states of multiply shocked NM were examined by comparing the measured wave profiles to those calculated using a published NM equation of state. Although the calculated and measured particle velocity states are in good overall agreement, comparison of the calculated shock wave reverberation times at the front and rear sample interfaces with the measured values suggests that the published NM equation of state can be improved. Work supported by DOE/NNSA.

  7. Tension of Liquids by Shockwaves

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Sosikov, V. A.

    2009-12-01

    Experimental investigations of dynamic tension of liquids (water, ethanol, glycerol, hexane, hexadecane, pentadecane, and transformer oil) under shock waves have been made. The method of spall strength measurements was applied and wave profiles were registered by laser interferometer VISAR. It was found that negative pressures in liquids were almost independent from the value of stain rate when the temperature was far from melting point. But near the melting point the spall strength of water, hexadecane, pentadecane, and glycerol is a strong function of strain rate and shock-wave amplitude. The process of cavitation in hexadecane and methanol is double-staged. At the first stage formation of cavities starts, and a kinked of free velocity profile is observed. At the second stage the cavity growth rate increases and the spall-pulse occurs. The theory of homogeneous bubble nucleation was used to explain the experimental results. It was observed for water that spall-pulse amplitude may be higher than the shock wave amplitude. To explain this phenomenon the model of failure kinetics, taking into account the inertial bubbles growth, has been proposed.

  8. Dynamic Electromechanical Characterization of the Ferroelectric Ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1997-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in a number of pulsed power applications. The dynamic behavior of the poled ceramic is complex, with nonlinear coupling between mechanical and electrical variables. Recent efforts to improve numerical simulations of this process have been limited by the scarcity of relevant experimental studies within the last twenty years. Consequently, we have initiated an extensive experimental study of the dynamic electromechanical behavior of this material. Samples of the poled ceramic are shocked to axial stresses from 0.5 to 5 GPa in planar impact experiments and observed with laser interferometry (VISAR) to obtain transmitted wave profiles. Current generation due to shock-induced depoling is observed using different external loads to vary electric field strengths within the samples. Experimental configurations either have the remanent polarization parallel to the direction of shock motion (axially poled) or perpendicular (normally poled). Initial experiments on unpoled samples utilized PVDF stress gauges as well as VISAR, and extended prior data on shock loading and release behavior. (Supported by the U. S. Department of Energy under contract DE-AC04-94AL85000). abstract.

  9. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia; Brundage, Aaron; Dudley, Evan

    2009-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.5 GPa. Dynamic compaction measurements using low-density pressings (62-70% theoretical maximum density) were obtained in a single-stage gas gun at impact velocities between 0.17-0.70 km/s. Experiments were conducted in a reverse ballistic arrangement in which the CL-20 ladened projectile impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 0.9 GPa. The powder compaction behavior is found to be stiffer under dynamic loading than under quasi-static loading. Additional gas gun tests were conducted in which the low-density CL-20 pressings were confined within a target cup by the aluminized window. This arrangement enabled temporal measurement of the transmitted wave profiles in which elastic wave precursors were observed.

  10. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    NASA Astrophysics Data System (ADS)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  11. Establishment of a VISAR Measurement System for Material Model Validation in DSTO

    DTIC Science & Technology

    2013-02-01

    advancements published in the works by L.M. Baker, E.R. Hollenbach and W.F. Hemsing [1-3] and results in the user-friendly interface and configuration of the...VISAR system [4] used in the current work . VISAR tests are among the mandatory instrumentation techniques when validating material models and...The present work reports on preliminary tests using the recently commissioned DSTO VISAR system, providing an assessment of the experimental set-up

  12. VISAR Analysis in the Frequency Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolan, D. H.; Specht, P.

    2017-05-18

    VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.

  13. Shock characterization of TOAD pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirick, L.J.; Navarro, N.J.

    1995-08-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degrees}, 60{degrees}, and 80{degrees}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degrees}C (125{degrees}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degrees}C for nine weeks and then heated to 50.2{degrees}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves.« less

  14. An efficient method for unfolding kinetic pressure driven VISAR data

    DOE PAGES

    Mark Harry Hess; Peterson, Kyle; Harvey-Thompson, Adam James

    2015-08-18

    Velocity Interferometer System for Any Reflector (VISAR) [Barker and Hollenbach, J. Appl. Phys.43, 4669 (1972)] is a well-known diagnostic that is employed on many shock physics and pulsed-power experiments. With the VISAR diagnostic, the velocity on the surface of any metal flyer can be found. For most experiments employing VISAR, either a kinetic pressure [Grady, Mech. Mater.29, 181 (1998)] or a magnetic pressure [Lemkeet al., Intl J. Impact Eng.38, 480 (2011)] drives the motion of the flyer. Moreover, reliable prediction of the time-dependent pressure is often a critical component to understanding the physics of these experiments. Although VISAR can provide amore » precise measurement of a flyer’s surface velocity, the real challenge of this diagnostic implementation is using this velocity to unfold the time-dependent pressure. As a result, the purpose of this paper is to elucidate a new method for quickly and reliably unfolding VISAR data.« less

  15. NPS Gas Gun for Planar Impact Studies

    NASA Astrophysics Data System (ADS)

    Cheong Ho, Chien; Hixson, Robert

    2009-11-01

    The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.

  16. Properties of the dead zone due to the gas cushion effect in PBX 9502

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2017-06-01

    The gas cushion effect is a well-known phenomenon in which gas trapped between an impactor and an explosive precompresses and deadens a layer of the explosive. We have conducted a series of impact experiments, with and without a trapped gas layer, on the plastic bonded explosive PBX 9502 (95% TATB and 5% Kel-F 800). In each experiment, a 100-oriented LiF window was glued, with an intervening Al foil (a reflector for VISAR), to the surface of a thin (2.5-3.3 mm) PBX 9502 sample and the opposite surface impacted by an impactor at a velocity sufficient to produce an overdriven detonation. VISAR was used to observe arrival of the resulting shock wave and reverberations between the LiF window and the impactor. In three experiments, a gap of 25-38 mm, filled with He gas at a pressure of 0.79 bar, existed between the impactor and the sample at the beginning of the experiment. In these three experiments, a low-amplitude wave reflected from the interface between the reacted explosive and the dead zone was observed to precede the reflection from the impactor. We have used the observed wave amplitudes and arrival times to quantify the properties of the dead zone and, by comparison to existing EOS data for reacted and unreacted PBX 9502, estimate the extent of reaction in the dead zone. This work was supported by the US Department of Energy under contract DE-AC52-06NA25396.

  17. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Smith, R F; Bolme, C

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISARmore » optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.« less

  18. Portable, solid state, fiber optic coupled Doppler interferometer system for detonation and shock diagnostics

    NASA Technical Reports Server (NTRS)

    Fleming, K. J.; Crump, O. B.

    1994-01-01

    VISAR (Velocity Interferometer System for Any Reflector) is a specialized Doppler interferometer system that is gaining world-wide acceptance as the standard for shock phenomena analysis. The VISAR's large power and cooling requirements, and the sensitive and complex nature of the interferometer cavity have restricted the traditional system to the laboratory. This paper describes the new portable VISAR, its peripheral sensors, and the role it played in optically measuring ground shock of and underground nuclear detonation. The Solid State VISAR uses a prototype diode pumped Nd:YAG laser and solid state detectors that provide a suitcase-size system with low power requirements. A special window and sensors were developed for fiber optic coupling (1 kilometer long) to the VISAR. The system has proven itself as a reliable, easy to use instrument that is capable of field test use and rapid data reduction using only a notebook personal computer (PC).

  19. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  20. Shock characterization of toad pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirick, L.J.; Navarro, M.J.

    1996-05-01

    The purpose of this program was to characterize Time Of Arrival Detectors (TOAD) pins response to shock loading with respect to risetime, amplitude, repeatability and consistency. TOAD pins were subjected to impacts of 35 to 420 kilobars amplitude and approximately 1 ms pulse width to investigate the timing spread of four pins and the voltage output profile of the individual pins. Sets of pins were also aged at 45{degree}, 60{degree} and 80{degree}C for approximately nine weeks before shock testing at 315 kilobars impact stress. Four sets of pins were heated to 50.2{degree}C (125{degree}F) for approximately two hours and then impactedmore » at either 50 or 315 kilobars. Also, four sets of pins were aged at 60{degree}C for nine weeks and then heated to 50.2{degree}C before shock testing at 50 and 315 kilobars impact stress, respectively. Particle velocity measurements at the contact point between the stainless steel targets and TOAD pins were made using a Velocity Interferometer System for Any Reflector (VISAR) to monitor both the amplitude and profile of the shock waves. {copyright} {ital 1996 American Institute of Physics.}« less

  1. Comparative shock response of additively manufactured versus conventionally wrought 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.; Palmer, T. A.

    2017-01-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens that were machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology permits direct fabrication of net- or near-net-shape metal parts. For the present investigation, velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response for one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.0 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. The possible contributions of various factors, such as composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and/or sample axis orientation relative to the additive manufacturing deposition trajectory, are considered to explain differences between the AM and baseline 304L dynamic material results.

  2. Impact Response of Thermally Sprayed Metal Deposits

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Hall, A. C.; Moore, N. W.; Pautz, S. D.; Franke, B. C.; Scherzinger, W. M.; Brown, D. W.

    2017-06-01

    Gas-gun experiments have probed the impact response of tantalum specimens that were additively manufactured using a controlled thermal spray deposition process. Velocity interferometer (VISAR) diagnostics provided time-resolved measurements of sample response under one-dimensional (i . e . , uniaxial strain) shock compression to peak stresses ranging between 1 and 4 GPa. The acquired wave-profile data have been analyzed to determine the Hugoniot Elastic Limit (HEL), Hugoniot equation of state, and high-pressure yield strength of the thermally deposited samples for comparison to published baseline results for conventionally wrought tantalum. The effects of composition, porosity, and microstructure (e . g . , grain/splat size and morphology) are assessed to explain differences in the dynamic mechanical behavior of spray-deposited versus conventional material. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Design of a line-VISAR interferometer system for the Sandia Z Machine

    NASA Astrophysics Data System (ADS)

    Galbraith, J.; Austin, K.; Baker, J.; Bettencourt, R.; Bliss, E.; Celeste, J.; Clancy, T.; Cohen, S.; Crosley, M.; Datte, P.; Fratanduono, D.; Frieders, G.; Hammer, J.; Jackson, J.; Johnson, D.; Jones, M.; Koen, D.; Lusk, J.; Martinez, A.; Massey, W.; McCarville, T.; McLean, H.; Raman, K.; Rodriguez, S.; Spencer, D.; Springer, P.; Wong, J.

    2017-08-01

    A joint team comprised of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) personnel is designing a line-VISAR (Velocity Interferometer System for Any Reflector) for the Sandia Z Machine, Z Line-VISAR. The diagnostic utilizes interferometry to assess current delivery as a function of radius during a magnetically-driven implosion. The Z Line-VISAR system is comprised of the following: a two-leg line-VISAR interferometer, an eight-channel Gated Optical Imager (GOI), and a fifty-meter transport beampath to/from the target of interest. The Z Machine presents unique optomechanical design challenges. The machine utilizes magnetically driven pulsed power to drive a target to elevated temperatures and pressures useful for high energy density science. Shock accelerations exceeding 30g and a strong electromagnetic pulse (EMP) are generated during the shot event as the machine discharges currents of over 25 million amps. Sensitive optical components must be protected from shock loading, and electrical equipment must be adequately shielded from the EMP. The optical design must accommodate temperature and humidity fluctuations in the facility as well as airborne hydrocarbons from the pulsed power components. We will describe the engineering design and concept of operations of the Z Line-VISAR system. Focus will be on optomechanical design.

  4. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center, atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  5. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image stabilization and Registration (VISAR), which is illustrated in this Quick Time movie. VISAR is a computer algorithm that stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. VISAR could also have applications in law enforcement, medical, and meteorological imaging. The software can be used for defense application by improving reconnaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  6. Detonation properties of nitromethane/diethylenetriamine solution

    NASA Astrophysics Data System (ADS)

    Mochalova, V.; Utkin, A.; Lapin, S.

    2017-01-01

    The results of the experimental determination of the detonation parameters of nitromethane (NM) with diethylenetriamine (DETA) solution are presented in this work. With the using of a laser interferometer VISAR the stability of detonation waves, the detonation velocity and the reaction time at the concentration of DETA from 0 to 60 weight percentage were investigated. It is shown that the stability of detonation waves is retained up to 25% DETA, at that the characteristic reaction time is reduced by about half at the addition of several percentage of the sensitizer to NM and then remains almost constant. The increase of the detonation velocity in the vicinity of the small, about 0.1%, concentrations of sensitizer is recorded.

  7. On the effect of conductivity of a shock-compressed gas on interferometric recording of parameters of motion of a liner

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, V. A.; Mikhailov, A. L.; Peshkov, V. V.; Bogdanov, E. N.; Rodionov, A. V.; Sedov, A. A.; Fedorov, A. V.; Nazarov, D. V.; Finyushin, S. A.; Dudoladov, V. I.; Erunov, S. V.; Blikov, A. O.

    2012-01-01

    We report on the results of a study of the acceleration dynamics of an aluminum liner to a velocity of 5.5 km/s using continuous recording of velocity (velocity interferometer system for any reflector (VISAR) and Fabry-Perot interferometer) and motion trajectory (radiointerferometer and resistive transducer) in air and in a helium atmosphere. It is found that for liner velocities exceeding 4.0 and 5.0 km/s, the displacement of the shock wave front is recorded by the radiointerferometer in air and helium, respectively. At these velocities, the conductivities of air and helium behind the shock wave front are estimated.

  8. Benefit from NASA

    NASA Image and Video Library

    1999-06-01

    Two scientists at NASA's Marshall Space Flight Center,atmospheric scientist Paul Meyer and solar physicist Dr. David Hathaway, developed promising new software, called Video Image Stabilization and Registration (VISAR). VISAR may help law enforcement agencies catch criminals by improving the quality of video recorded at crime scenes. In this photograph, the single frame at left, taken at night, was brightened in order to enhance details and reduce noise or snow. To further overcome the video defects in one frame, Law enforcement officials can use VISAR software to add information from multiple frames to reveal a person. Images from less than a second of videotape were added together to create the clarified image at right. VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects producing clearer images of moving objects, smoothes jagged edges, enhances still images, and reduces video noise or snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of ultrasounds, which are infamous for their grainy, blurred quality. The software can be used for defense application by improving recornaissance video imagery made by military vehicles, aircraft, and ships traveling in harsh, rugged environments.

  9. Shock Initiation and Equation of State of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Robbins, David; Sheffield, Steve; Dattelbaum, Dana; Chellappa, Raja; Velisavljevic, Nenad

    2013-06-01

    Ammonium nitrate (AN) is a widely used fertilizer and mining explosive commonly found in ammonium nitrate-fuel oil. Neat AN is a non-ideal explosive with measured detonation velocities approaching 4 km/s. Previously, we reported a thermodynamically-complete equation of state for AN based on its maximum density, and showed that near-full density AN did not initiate when subjected to shock input conditions up to 22 GPa. In this work, we extend these initial results, by presenting new Hugoniot data for intermediate density neat AN obtained from gas gun-driven plate impact experiments. AN at densities from 1.8 to 1.5 g/cm3 were impacted into LiF windows using a two-stage light gas gun. Dual VISARs were used to measure the interfacial particle velocity wave profile as a function of time following impact. The new Hugoniot data, in addition to updates to thermodynamic parameters derived from structural analysis and vibrational spectroscopy measurements in high pressure diamond anvil cell experiments, are used to refine the unreacted EOS for AN. Furthermore, shock initiation of neat AN was observed as the initial porosity increased (density decreased). Insights into the relationship(s) between initial density and shock initiation sensitivity are also presented, from evidence of shock initiation in the particle velocity profiles obtained for the lower density AN samples.

  10. Video Image Stabilization and Registration (VISAR) Software

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  11. Dynamic electromechanical characterization of the ferroelectric ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1998-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in pulsed power applications for many years. Recently, new design and certification requirements have generated a strong interest in numerically simulating the operation of pulsed power devices. Because of a scarcity of relevant experimental data obtained within the past twenty years, we have initiated an extensive experimental study of the dynamic behavior of this material in support of simulation efforts. The experiments performed to date have been limited to examining the behavior of unpoled material. Samples of PZT 95/5 have been shocked to axial stresses from 0.5 to 5.0 GPa in planar impact experiments. Impact face conditions have been recorded using PVDF stress gauges, and transmitted wave profiles have been recorded either at window interfaces or at a free surface using laser interferometry (VISAR). The results significantly extend the stresses examined in prior studies of unpoled material, and ensure that a comprehensive experimental characterization of the mechanical behavior under shock loading is available for continuing development of PZT 95/5 material models.

  12. Assessing Mesoscale Material Response via High-Resolution Line-Imaging VISAR

    NASA Astrophysics Data System (ADS)

    Furnish, M. D.; Trott, W. M.; Mason, J.; Podsednik, J.; Reinhart, W. D.; Hall, C.

    2004-07-01

    Of special promise for providing dynamic mesoscale response data is the line-imaging VISAR, an instrument for providing spatially resolved velocity histories in dynamic experiments. We have prepared a line-imaging VISAR system capable of spatial resolution in the 10 - 20 micron range. We are applying this instrument to selected experiments on a compressed gas gun, chosen to provide initial data for several problems of interest, including: (1) pore-collapse in single-crystal copper (70 micron diameter hole; 2 different versions); and (2) response of a welded joint in dissimilar materials (Ta, Nb) to ramp loading relative to that of a compression joint.

  13. Nitromethane ignition observed with embedded PDV optical fibers

    NASA Astrophysics Data System (ADS)

    Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.

    For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.

  14. Nonideal detonation regimes in low density explosives

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.; Kashkarov, A. O.; Pruuel, E. R.; Satonkina, N. P.; Sil'vestrov, V. V.; Yunoshev, A. S.; Plastinin, A. V.

    2016-02-01

    Measurements using Velocity Interferometer System for Any Reflector (VISAR) were performed for three high explosives at densities slightly above the natural loose-packed densities. The velocity histories at the explosive/window interface demonstrate that the grain size of the explosives plays an important role. Fine-grained materials produced rather smooth records with reduced von Neumann spike amplitudes. For commercial coarse-grained specimens, the chemical spike (if detectable) was more pronounced. This difference can be explained as a manifestation of partial burn up. In fine-grained explosives, which are more sensitive, the reaction can proceed partly within the compression front, which leads to a lower initial shock amplitude. The reaction zone was shorter in fine-grained materials because of higher density of hot spots. The noise level was generally higher for the coarse-grained explosives, which is a natural stochastic effect of the highly non-uniform flow of the heterogeneous medium. These results correlate with our previous data of electrical conductivity diagnostics. Instead of the classical Zel'dovich-von Neumann-Döring profiles, violent oscillations around the Chapman-Jouguet level were observed in about half of the shots using coarse-grained materials. We suggest that these unusual records may point to a different detonation wave propagation mechanism.

  15. The rarefaction wave propagation in transparent windows

    NASA Astrophysics Data System (ADS)

    Glam, B.; Porat, E.; Horovitz, Y.; Yosef-Hai, A.

    2017-01-01

    The radial (lateral) rarefaction wave velocity of polymethyl methacrylate (PMMA) and Lithium Fluoride (LiF) windows were studied by plate impact experiments that were carried out at Soreq NRC up to a pressure of 146 kbar in the PMMA and 334 kbar in the LiF. The windows were glued to Lead targets that were impacted by a copper impactor. The VISAR measurement was done in the window interface with the target. This information was utilized to identify the radial rarefaction arrival time at the center of different diameter windows after the shock event, and served as a measurement to the radial wave velocity in the shocked material. It was found that for both windows, LiF or PMMA, the measured radial wave velocity increases with the pressure. Furthermore, this velocity is significantly higher compared to the expected longitudinal sound velocity at the same pressure, calculated by the Steinberg EOS in the PMMA and by ab initio calculation in the LiF. Here we present the experimental results and a comparison with analytical calculation of the sound velocity using the Steinberg EOS.

  16. Benefit from NASA

    NASA Image and Video Library

    1999-06-01

    Two scientists at NASA Marshall Space Flight Center, atmospheric scientist Paul Meyer (left) and solar physicist Dr. David Hathaway, have developed promising new software, called Video Image Stabilization and Registration (VISAR), that may help law enforcement agencies to catch criminals by improving the quality of video recorded at crime scenes, VISAR stabilizes camera motion in the horizontal and vertical as well as rotation and zoom effects; produces clearer images of moving objects; smoothes jagged edges; enhances still images; and reduces video noise of snow. VISAR could also have applications in medical and meteorological imaging. It could steady images of Ultrasounds which are infamous for their grainy, blurred quality. It would be especially useful for tornadoes, tracking whirling objects and helping to determine the tornado's wind speed. This image shows two scientists reviewing an enhanced video image of a license plate taken from a moving automobile.

  17. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  18. Explosive component acceptance tester using laser interferometer technology

    NASA Technical Reports Server (NTRS)

    Wickstrom, Richard D.; Tarbell, William W.

    1993-01-01

    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results.

  19. Shock response of 7068 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Proud, William

    2013-06-01

    Aluminium alloys are widely employed throughout the aerospace and defence industries due to their high specific strength. Aluminium alloy 7068, often described as the ultimate aluminium alloy was developed by Kasier Aluminium in the mid-1990s and is the strongest aluminium commercially produced. There remains little published data on the response of this micro-structurally anisotropic alloy to dynamic loading. As part of an investigation of the high-rate mechanical properties of Al 7068, a series of plate-impact experiments using a novel meso-scale planar impact facility and a more conventional large bore gas gun were undertaken. The evolution of the elastic-plastic shock wave and spall strength as a function of sample thickness and specimen orientation were investigated using optical velocimetry (line-VISAR, PDV) techniques. Planar shock wave experiments were conducted on specimens several 100 microns to several millimetres thick cut from either parallel or perpendicular to the extrusion direction.

  20. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2017-12-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  1. Dynamic measurements in non-uniform flows

    NASA Astrophysics Data System (ADS)

    Ershov, A. P.

    2018-07-01

    The response of gauges registering the flow velocity and pressure in highly non-uniform media (for example, a powder under shock compression or powdered low-density explosive) is simulated. The modeling employs an acoustic approach. Against the average level of the signal, the fluctuations generated by the heterogeneity of the medium are observed which may distort the results completely. For reliable measurements, gauges larger than the characteristic scale of the medium non-uniformity are required. Under this condition, electromagnetic flow measurements and the velocity interferometer system for any reflector (VISAR) produce quite similar flow velocity profiles with small level of noise.

  2. Failure mechanism of resistance-spot-welded specimens impacted on base material by bullets

    NASA Astrophysics Data System (ADS)

    Fan, Chunlei; Ma, Bohan; Chen, Danian; Wang, Huanran; Ma, Dongfang

    2018-01-01

    The tests of bullet impact on the base material (BM) of a simple specimen with a single resistance-spot-welded (RSW) nugget of TRIP800 steel are performed to investigate the response of the RSW specimen to the ballistic debris impact on the RSW specimen. A one-stage gas gun is used to fire the bullets while a laser velocity interferometer system for any reflector (VISAR) is used to measure the velocity histories of the free surfaces of the RSW specimen. The recovered RSW specimens are examined with the three-dimensional super depth digital microscope (SDDM) and the scanning electro microscope (SEM). For the tests of small multiple-bullet impact, it is revealed that the wave train of the VISAR measured results and the detachment of the base material interfaces in the recovered RSW specimens are directly related to the reflection and refraction of the curved stress waves incoming to the interfaces and the free surfaces in the RSW specimens. The detachment of BM interfaces can lead to the impact failure of the RSW joints for the larger multiple-bullet impact at higher velocity, the mechanism of which is different from the case for normal incidence (spalling). For the tests of single large bullet impact, it is brought to light experimentally that the plastic strain concentration at the "notch tip" spurs either the crack near the RSW joint or the split of the nugget. The numerical simulation shows up the process of splitting the nugget: a crack initiates at the "notch tip", propagates across the nugget interface and splits the nugget into two parts. It is indicated that the interaction between the stress waves and many interfaces/free surfaces in the RSW specimen under ballistic impact causes variable local stress triaxialities and stress Lode angles, which affects the deformation and fracture mechanism of the RSW specimen including stretching and shearing failure. It is shown that the impact failure of the RSW joints is a mixture of brittle fracture and ductile fracture while the fracture or perforation of the BM is ductile.

  3. The Future Mission Tasking and Resourcing of the U.S. Coast Guard Auxiliary

    DTIC Science & Technology

    2012-09-01

    Time Between Overhaul TC Transport Canada USPS U.S. Power Squadrons VE Vessel Examination VISAR Virgin Islands Search and Rescue VSC...70% of the nation’s search and rescue with 1,800 volunteers who serve at 66 stations and operate 160 lifeboats.52 (7) The (British) Virgin Islands...Search and Rescue (VISAR). It was modeled after RNLI and operates two rescue boats, one based on Tortola, and the other Virgin Gorda. The

  4. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less

  5. Particle velocity measurements of the reaction zone in nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffield, S. A.; Engelke, R. P.; Alcon, R. R.

    2002-01-01

    The detonation reaction-zone length in neat, deuterated, and chemically sensitized nitromethane (NM) has been measured by using several different laser-based velocity interferometry systems. The experiments involved measuring the particle velocity history at a NM/PMMA (polymethylmethacrylate) window interface during the time a detonation in the NM interacted with the interface. Initially, Fabry-Perot interferometry was used, but, because of low time resolution (>5 ns), several different configurations of VISAR interferometry were subsequently used. Early work was done with VISARs with a time resolution of about 3 ns. By making changes to the recording system, we were able to improve this to {approx}1more » ns. Profiles measured at the NM/PMMA interface agree with the ZND theory, in that a spike ({approx}2.45 mm/{micro}s) is measured that is consistent with an extrapolated reactant NM Hugoniot matched to the PMMA window. The spike is rather sharp, followed by a rapid drop in particle velocity over a time of 5 to 10 ns; this is evidence of early fast reactions. Over about 50 ns, a much slower particle velocity decrease occurs to the assumed CJ condition - indicating a total reaction zone length of {approx}300 {micro}m. When the NM is chemically changed, such as replacing the hydrogen atoms with deuterium or chemically sensitizing with a base, some changes are observed in the early part of the reaction zone.« less

  6. Symmetrical Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, N. H.; Bourne, N. K.; Field, J. E.; Rosenberg, Z.

    1998-07-01

    Brar and Bless pioneered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass but limited their studies to relatively modest stresses (1). We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test in which two rods impact one upon the other. Previous work in the laboratory has characterised the glass types (soda-lime and borosilicate)(2). These experiments identify the failure mechanisms from high-speed photography and the stress and particle velocity histories are interpreted in the light of these results. The differences in response of the glasses and the relation of the fracture to the failure wave in uniaxial strain are discussed.

  7. High-rate deformation and fracture of steel 09G2S

    NASA Astrophysics Data System (ADS)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  8. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    NASA Technical Reports Server (NTRS)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  9. Single Hit Energy-resolved Laue Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limitedmore » aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.« less

  10. A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum

    NASA Astrophysics Data System (ADS)

    Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.

    2017-01-01

    Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.

  11. The Resistance to Deformation and Facture of Magnesium MA2-1 Under Shock-Wave Loading at 293 K and 823 K of the Temperature

    NASA Astrophysics Data System (ADS)

    Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey

    2011-06-01

    The spall strength and elastic-plastic response have been measured with the VISAR for MA2-1 (94.2% Mg, 0.4 % Mn, 4.4% Al, 1% Zn) alloy at temperatures from 293 K to 823 K. The decay of elastic precursor wave at 293 K is approximately in reverse proportionality with the cubic root from the distance that corresponds to decrease of plastic strain rate from 5 ×105 s-1 at 0.25 mm (213 MPa of the shear stress) down to 5 ×103 s-1 at 10 mm (63 MPa shear stress). An analysis of the rise times of plastic shock waves shows by order of magnitude faster plastic strain rates at corresponding shear stresses than that at the HEL. The decay of elastic precursor wave is weaker and the dependence of initial plastic strain rate on the shear stress at HEL is stronger than that was observed for aluminum. Unlike to aluminum, the magnesium alloy does not exhibit anomalous thermal hardening: the HEL values at 823 K are close to the values at room temperatures. The temperature increase from 293 K to 823 K has led to significant decrease of the spall strength.

  12. Comparative Shock Response of Additively Manufactured Versus Conventionally Wrought 304L Stainless Steel*

    NASA Astrophysics Data System (ADS)

    Wise, J. L.; Adams, D. P.; Nishida, E. E.; Song, B.; Maguire, M. C.; Carroll, J.; Reedlunn, B.; Bishop, J. E.

    2015-06-01

    Gas-gun experiments have probed the compression and release behavior of impact-loaded 304L stainless steel specimens machined from additively manufactured (AM) blocks as well as baseline ingot-derived bar stock. The AM technology allows direct fabrication of metal parts. For the present study, a velocity interferometer (VISAR) measured the time-resolved motion of samples subjected to one-dimensional (i.e., uniaxial strain) shock compression to peak stresses ranging from 0.2 to 7.5 GPa. The acquired wave-profile data have been analyzed to determine the comparative Hugoniot Elastic Limit (HEL), Hugoniot equation of state, spall strength, and high-pressure yield strength of the AM and conventional materials. Observed differences in shock loading and unloading characteristics for the two 304L source variants have been correlated to complementary Kolsky bar results for compressive and tensile testing at lower strain rates. The effects of composition, porosity, microstructure (e.g., grain size and morphology), residual stress, and sample axis orientation relative to the additive manufacturing deposition trajectory have been assessed to explain differences between the AM and baseline 304L dynamic mechanical properties. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Probing Dynamics in Granular Media of Contrasting Geometries via X-Ray Phase Contrast Imaging and PDV

    NASA Astrophysics Data System (ADS)

    Crum, Ryan; Pagan, Darren; Lind, Jon; Homel, Michael; Hurley, Ryan; Herbold, Eric; Akin, Minta

    Granular systems are ubiquitous in our everyday world and play a central role in many dynamic scientific problems including mine blasting, projectile penetration, astrophysical collisions, explosions, and dynamic compaction. An understanding of granular media's behavior under various loading conditions is an ongoing scientific grand challenge. This is partly due to the intricate interplay between material properties, loading conditions, grain geometry, and grain connectivity. Previous dynamic studies in granular media predominantly utilize the macro-scale analyses VISAR or PDV, diagnostics that are not sensitive to the many degrees of freedom and their interactions, focusing instead on their aggregate effect. Results of a macro-scale analysis leave the principal interactions of these degrees of freedom too entangled to elucidate. To isolate the significance of grain geometry, this study probes various geometries of granular media subjected to gas gun generated waves via in-situ X-ray analysis. Analyses include evaluating displacement fields, grain fracture, inter- and intra-granular densification, and wave front motion. Phase Contrast Imaging (PCI) and PDV analyses feed directly into our concurrent meso-scale granular media modeling efforts to enhance our predictive capabilities.

  14. Study of plastic strain localization mechanisms caused by nonequilibrium transitions in mesodefect ensembles under high-speed loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokovikov, Mikhail, E-mail: sokovikov@icmm.ru; Chudinov, Vasiliy; Bilalov, Dmitry

    2015-10-27

    The behavior of specimens dynamically loaded during split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in-situ using a high-speed infrared camera CEDIP Silver 450M. The temperature field distribution obtained at different time allowed one to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infrared camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profiler and a scanning electron microscope. The development of plasticmore » shear instability regions has been simulated numerically.« less

  15. Spallation studies on shock loaded uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, D.L.; Hixson, R.; Gustavsen, R.L.

    1997-12-31

    Uranium samples at two different purity levels were used for spall strength measurements at three different stress levels. A 50 mm single-stage gas-gun was used to produce planar impact conditions using Z-cut quartz impactors. Samples of depleted uranium were taken from very high purity material and from material that had 300 ppm of carbon added. A pair of shots was done for each impact strength, one member of the pair with VISAR diagnostics and the second with soft recovery for metallographical examination. A series of increasing final stress states were chosen to effectively freeze the microstructural damage at three placesmore » in the development to full spall separation. This allowed determination of the dependence of spall mechanisms on stress level and sample purity. This report will discuss both the results of the metallurgical examination of soft recovered samples and the modeling of the free surface VISAR data. The micrographs taken from the recovered samples show brittle cracking as the spallation failure mechanism. Deformation induced twins are plentiful and obviously play a role in the spallation process. The twins are produced in the initial shock loading and, so, are present already before the fracture process begins. The 1 d characteristics code CHARADE has been used to model the free surface VISAR data.« less

  16. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

    We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.

  17. Characterization of a signal recording system for accurate velocity estimation using a VISAR

    NASA Astrophysics Data System (ADS)

    Rav, Amit; Joshi, K. D.; Singh, Kulbhushan; Kaushik, T. C.

    2018-02-01

    The linearity of a signal recording system (SRS) in time as well as in amplitude are important for the accurate estimation of the free surface velocity history of a moving target during shock loading and unloading when measured using optical interferometers such as a velocity interferometer system for any reflector (VISAR). Signal recording being the first step in a long sequence of signal processes, the incorporation of errors due to nonlinearity, and low signal-to-noise ratio (SNR) affects the overall accuracy and precision of the estimation of velocity history. In shock experiments the small duration (a few µs) of loading/unloading, the reflectivity of moving target surface, and the properties of optical components, control the amount of input of light to the SRS of a VISAR and this in turn affects the linearity and SNR of the overall measurement. These factors make it essential to develop in situ procedures for (i) minimizing the effect of signal induced noise and (ii) determine the linear region of operation for the SRS. Here we report on a procedure for the optimization of SRS parameters such as photodetector gain, optical power, aperture etc, so as to achieve a linear region of operation with a high SNR. The linear region of operation so determined has been utilized successfully to estimate the temporal history of the free surface velocity of the moving target in shock experiments.

  18. Detonation properties of the nitromethane/ diethylenetriamine solution

    NASA Astrophysics Data System (ADS)

    Mochalova, Valentina; Utkin, Alexander; Lapin, Sergey

    2015-06-01

    The results of the experimental determination of detonation parameters for the mixture of nitromethane (NM) with diethylenetriamine (DETA) are presented in this work. By the using of a laser interferometer VISAR the stability of detonation waves, detonation velocity and the reaction time with the change of the DETA concentration from 0 to 60 weight percentages were investigated. It is shown that detonation waves are stable up to 25% DETA, and the character reaction time is reduced from 50 ns up to 30 ns with the addition of a few percentages of the sensitizer and then remains almost the constant. With further increase of the DETA concentration the detonation front becomes unstable, and it results in an arising of pulsations with amplitude of 10 microns. The limit concentration of DETA, above which the detonation of the mixture was impossible, was determined. This concentration was equal to 60%. It is shown that the dependence of the detonation velocity on the DETA concentration is non-monotonic. In particular, the increase of detonation velocity in the vicinity of small concentrations of the sensitizer, about 0.1%, was recorded. The work was supported by Russian Foundation for Basic Research (Project 15-03-07830).

  19. Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.

    2010-12-01

    Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the temperature on the liquid-vapor phase boundary (e.g., [3]) at much higher pressures than previously possible using a 2 stage gas gun [4, 5]. The density on the liquid-vapor phase boundary is constrained by comparing the velocity at the silica-LiF interface to numerical simulations that use equations of state with systematically varied liquid-vapor phase boundaries. We present the results within the context of understanding vaporization during giant impact events. [1] Brannon, R.M. and L.C. Chhabildas (1995) Int. J. Impact Engng. 17, 109-120. [2] Kurosawa, K. and S. Sugita (2010) J. Geophys. Res. in press. [3] Stewart, S.T., A. Seifter, and A.W. Obst (2008) Geophys. Res. Lett., 35, (23). [4] Lyzenga, G.A., T.J. Ahrens, and A.C. Mitchell (1983) J. Geophys. Res. , 88, (NB3), 2431-2444. [5] Boslough, M.B. (1988) J. Geophys. Res., 93, (B6), 6477-6484.

  20. Laser-Launched Flyer Plates and Direct Laser Shocks for Dynamic Material Property Measurements

    NASA Astrophysics Data System (ADS)

    Paisley, D. L.; Swift, D. C.; Johnson, R. P.; Kopp, R. A.; Kyrala, G. A.

    2002-07-01

    The Trident laser at Los Alamos was used to impart known and controlled shocks in various materials by launching flyer plates or by irradiating the sample directly. Materials investigated include copper, gold, NiTi, SS316, and other metals and alloys. Tensile spall strength, elastic-plastic transition, phase boundaries, and equation of state can be determined with small samples. Using thin samples (0.1 - 1.0 mm thick) as targets, high pressure gradients can be generated with relatively low pressures, resulting in high tensile strain rates (105 to 108 s-1). Free surface and interface velocities are recorded with point- and line-imaging VISARs. The flexible spatial and temporal pulse profiles of Trident, coupled with the use of laser-launched flyer plates, provides capabilities which complement experiments conducted using gas guns and tensile bars.

  1. Ghost fringe removal techniques using Lissajous data presentation

    DOE PAGES

    Erskine, David J.; Eggert, J. H.; Celliers, P. M.; ...

    2016-03-14

    A VISAR (Velocity Interferometer System for Any Reflector) is a Dopplervelocity interferometer which is an important optical diagnostic in shockwave experiments at the national laboratories, used to measureequation of state(EOS) of materials under extreme conditions. Unwanted reflection of laser light from target windows can produce an additional component to the VISAR fringe record that can distort and obscure the true velocity signal. When accurately removing this so-called ghost artifact component is essential for achieving high accuracy EOSmeasurements, especially when the true light signal is only weakly reflected from the shock front. Independent of the choice of algorithm for processing themore » raw data into a complex fringe signal, we have found it beneficial to plot this signal as a Lissajous and seek the proper center of this path, even under time varying intensity which can shift the perceived center. Moreover, the ghost contribution is then solved by a simple translation in the complex plane that recenters the Lissajous path. For continuous velocity histories, we find that plotting the fringe magnitude vs nonfringing intensity and optimizing linearity is an invaluable tool for determining accurate ghost offsets. For discontinuous velocity histories, we have developed graphically inspired methods which relate the results of two VISARs having different velocity per fringe proportionalities or assumptions of constant fringe magnitude to find the ghost offset. The technique can also remove window reflection artifacts in generic interferometers, such as in the metrology of surfaces.« less

  2. Index of Refraction of Shock Loaded Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Alexander, C. S.

    2009-12-01

    Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.

  3. Index of Refraction of Shock Loaded Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Alexander, Scott

    2009-06-01

    Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to approximately 25 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. App. Physics, 84, 6614 (1998)] and separate study results by Gibbons and Ahrens [J. Geophys. Res., 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.

  4. INDEX OF REFRACTION OF SHOCK LOADED SODA-LIME GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, C. S.

    2009-12-28

    Soda-lime glass (SLG) is a potential low-cost VISAR window for use at moderate shock pressures (up to 2430 GPa) where the material remains transparent. In order for SLG to be practical as a VISAR window, the correction factor, which describes the frequency correction related to the strain dependence of the refractive index, and hence the index of refraction itself, must be characterized as a function of pressure. Characterization data are reported in this paper and compared to previous results. The present data show good agreement with those of Dandekar [J. Appl. Phys. 84, 6614 (1998)] and separate study results bymore » Gibbons and Ahrens [J. Geophys. Res. 76, 5489 (1971)] up to 7 GPa. However, at stresses over 7 GPa, marked discrepancies are evident between the present data and that of Gibbons and Ahrens. Differences in test methods may explain these discrepancies.« less

  5. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falk, K.; Holec, M.; Fontes, C. J.

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  6. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    DOE PAGES

    Falk, K.; Holec, M.; Fontes, C. J.; ...

    2018-01-10

    This work presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5–35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. Thesemore » results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.« less

  7. Measurement of Preheat Due to Nonlocal Electron Transport in Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Falk, K.; Holec, M.; Fontes, C. J.; Fryer, C. L.; Greeff, C. W.; Johns, H. M.; Montgomery, D. S.; Schmidt, D. W.; Šmíd, M.

    2018-01-01

    This Letter presents a novel approach to study electron transport in warm dense matter. It also includes the first x-ray Thomson scattering (XRTS) measurement from low-density CH foams compressed by a strong laser-driven shock at the OMEGA laser facility. The XRTS measurement is combined with velocity interferometry (VISAR) and optical pyrometry (SOP) providing a robust measurement of thermodynamic conditions in the shock. Evidence of significant preheat contributing to elevated temperatures reaching 17.5-35 eV in shocked CH foam is measured by XRTS. These measurements are complemented by abnormally high shock velocities observed by VISAR and early emission seen by SOP. These results are compared to radiation hydrodynamics simulations that include first-principles treatment of nonlocal electron transport in warm dense matter with excellent agreement. Additional simulations confirm that the x-ray contribution to this preheat is negligible.

  8. Characterization of lithium fluoride windows at 450 K for shock wave experiments: Hugoniot curves and refractive index at 532 nm

    NASA Astrophysics Data System (ADS)

    Fraizier, E.; Antoine, P.; Godefroit, J.-L.; Lanier, G.; Roy, G.; Voltz, C.

    Lithium fluoride (LiF) windows are extensively used in traditional shock wave experiments because of their transparency beyond 100 GPa along [100] axis. A correct knowledge of the optical and mechanical properties of these windows is essential in order to analyze the experimental data and to determine the equation of state on a large variety of metals. This in mind, the windows supply is systematically characterized in order to determine the density, the thermal expansion and the crystalline orientation. Furthermore, an experimental campaign is conducted in order to characterize the windows properties under shock loading at 300 K and preheated conditions (450 K). This article describes the experiments, details the analysis and presents the results. Particle velocity measurements are carried out at the interface of a multiple windows stack using interferometer diagnostic (VISAR and IDL) at 532 nm wavelength. Shock velocity is calculated as a function of the time of flight through each window. The optical correction is calculated as the ratio of the apparent velocity gap and the particle velocity at the free surface. To go further, the Rankine-Hugoniot relations are applied to calculate the pressure and the density. Then, the results and uncertainties are presented and compared with literature data.

  9. Using phase contrast imaging to measure the properties of shock compressed aerogel

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Erskine, Dave; Schropp, Andres; Galtier, Eric C.; Heimann, Phil

    2017-01-01

    The Hugoniot states of low density materials, such as silica aerogel, are used in high energy density physics research because they can achieve a range of high temperature and pressure states through shock compression. The shock properties of 100mg/cc silica aerogel were studied at the Materials in Extreme Conditions end station using x-ray phase contrast imaging of spherically expanding shock waves. The shockwaves were generated by focusing a high power 532nm laser to a 50μm focal spot on a thin aluminum ablator. The shock speed was measured in separate experiments using line-VISAR measurements from the reflecting shock front. The relative timing between the x-ray probe and the optical laser pump was varied so x-ray PCI images were taken at pressures between 10GPa and 30GPa. Modeling the compression of the foam in the strong shock limit uses a Gruneisen parameter of 0.49 to fit the data rather than a value of 0.66 that would correspond to a plasma state.

  10. Polyurethane Foam Impact Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Kipp, M. E.; Chhabildas, L. C.; Reinhart, W. D.; Wong, M. K.

    1999-06-01

    Uniaxial strain impact experiments with a rigid polyurethane foam of nominal density 0.22g/cc are reported. A 6 mm thick foam impactor is mounted on the face of a projectile and impacts a thin (1 mm) target plate of aluminum or copper, on which the rear free surface velocity history is acquired with a VISAR. Impact velocities ranged from 300 to 1500 m/s. The velocity record monitors the initial shock from the foam transmitted through the target, followed by a reverberation within the target plate as the wave interacts with the compressed foam at the impact interface and the free recording surface. These one-dimensional uniaxial strain impact experiments were modeled using a traditional p-alpha porous material model for the distended polyurethane, which generally captured the motion imparted to the target by the foam. Some of the high frequency aspects of the data, reflecting the heterogeneous nature of the foam, can be recovered with computations of fully 3-dimensional explicit representations of this porous material.

  11. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-01

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ˜0.75Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  12. Using VISAR to assess the M-band isotropy in hohlraums

    DOE PAGES

    Lanier, Nicholas Edward; Kline, John L.; Morton, John

    2016-09-27

    In laser based radiation flow experiments, drive variability can often overwhelm the physics sensitivity that one seeks to quantify. Hohlraums can help by providing a more symmetrized, Planckian-like source. However, at higher temperatures, the hohlraum’s actual emission can deviate significantly from a truly blackbody, Lambertian source. At the National Ignition Facility (NIF), Dante provides the best quantification of hohlraum output. Unfortunately, limited diagnostic access coupled with NIF’s natural symmetry does not allow for Dante measurements at more than two angles. As part of the CEPHEUS campaign on NIF, proof-of-principle experiments to better quantify the gold M-band isotropy were conducted. Thesemore » experiments positioned beryllium/aluminum mirrors at differing angles, offset from the hohlraum. Filtering removes the thermal emission of the hohlraum and the remaining M-band radiation is preferentially absorbed in the aluminum layer. The subsequent hydrodynamic motion is measured via VISAR. Although indirect, this M-band measurement can be made at any angle.« less

  13. Dynamic Yielding and Spall Behavior of Commercially Pure Grade 4 Titanium

    NASA Astrophysics Data System (ADS)

    Thadhani, Naresh; Whelchel, R. L.; Sanders, Tom; Mehkote, D. S.; Iyer, K. A.; Georgia Instiutute of Technology Collaboration; Johns Hopkins University, Applied Physics Labortaory Collaboration

    2015-06-01

    The dynamic yielding and fracture (spalling) of commercially pure (grade 4) titanium are investigated using symmetric plate impact experiments over a peak stress range of 5.6 GPa to 12.5 GPa, using the 80-mm single-stage gas-gun. VISAR rear free surface velocity profiles display both a Hugoniot elastic limit (HEL) and a velocity pullback, which are indicative of dynamic compressive yielding and tensile fracture (spalling), respectively. The HEL values appear to show a slight decrease with peak stress from 2.2 GPa to 2.0 GPa along with a corresponding increase in twinning observed in recovered impacted samples. The spall strength on the other hand increases with peak stress from a value of 3.3 GPa to 3.8 GPa and shows a good power law fit with the decompression strain rate. The differing responses in dynamic yield and fracture behavior suggest that void nucleation may be the dominant mechanism affecting the spall strength of grade 4 titanium.

  14. Simultaneous determination of Hugoniot and Isentrope in gas gun experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thoe, R S

    2007-02-22

    We have been exploring the use of the ''reverse ballistics'' method to obtain Hugoniot and off Hugoniot Equation Of State. This method uses the unknown sample as the flyer and collides it into a window whose EOS is well known. A VISAR determines the particle velocity which when combined with the windows EOS gives a direct determination of the pressure. Since the pressure and particle velocity are continuous across the interface the shock speed in the flyer can be determined: Us = P/(rhoUp). Subtracting the time of arrival of the shock at the back of the flyer from the timesmore » of arrival of the rarefaction wave allows the determination of the release isentrope centered at the measured Hugoniot point and extending down to the release pressure as determined by the impedance of the sabot. Besides obtaining both Hugoniot and isentrope data on a single shot, this method has an advantage in that all the timing information is accomplished within the interferometer, i.e. no dependence of cable delays etc.« less

  15. Experimental technique for measuring the isentrope of hydrogen to several megabars

    NASA Astrophysics Data System (ADS)

    Barker, L. M.; Truncano, T. G.; Wise, J. I.; Asay, J. R.

    The experimental measurement of the Equations of State (EOS) of hydrogen has been of interest for some time because of the theoretical expectation of a transition to the metallic state in the multi-megabar pressure regime. Previous experiments have reported results which are consistent with a metallic transition, but experimental uncertainties have precluded positive identification of the metallic phase. In this paper we describe a new experimental approach to the measurement of the high-pressure EOS of hydrogen. A cryogenic hydrogen specimen, either liquid or solid, is located in the muzzle of a gun barrel between a tungsten anvil and another tungsten disk called a shim. Helium gas in the gun barrel cushions the impact and allows nearly isentropic compression of the hydrogen. The time-resolved pressure in the specimen is calculated from a laser interferometer (VISAR) measurement of the acceleration history of the anvil's free surface, and volume measurements at specific times are made by combining VISAR data, which define the position of the anvil, with flash X-ray photographs which define the shim position.

  16. Failure Waves in Glass and Ceramics under Shock Compression

    NASA Astrophysics Data System (ADS)

    Singh Brar, N.

    1999-06-01

    The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the ``so called" failure wave or front has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance, and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress level. The shear strength [τ = 1/2(σ_x-σ_y)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 2 GPa for soda-lime, borosilicate, and filled glasses. The optical (high-speed photography) observations also confirm the formation of failure front. There is a general agreement among various researchers on these observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton is based on the process of nucleation of local densification due to shock compression followed by shear failure around inhomogeneities resulting in phase boundary between the comminuted from the intact material. The second, proposed by Grady involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe microcracking originating from impact face. The third, by Espinosa and Brar proposes that the front is created through shear microcracks, which nucleate and propagate from the impact face, as originally suggested by Kanel. This mechanism is incorporated in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et. al.

  17. High Pressure Particulate Physics Facility

    DTIC Science & Technology

    2011-03-26

    controlled loading conditions, nanosecond time resolution diagnostics are required. Therefore, state of the art diagnostic tools such as Velocity...front end plate. The Data Acquisition System (DAS) is based on the state of the art National Instruments PXI system. The architecture provides...obtained by copper wire. In the future x-ray cinematography , line VISAR and time indexed spectroscopy are planned. SECTION III SUMMARY We are

  18. Innovative Solution to Video Enhancement

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Through a licensing agreement, Intergraph Government Solutions adapted a technology originally developed at NASA's Marshall Space Flight Center for enhanced video imaging by developing its Video Analyst(TM) System. Marshall's scientists developed the Video Image Stabilization and Registration (VISAR) technology to help FBI agents analyze video footage of the deadly 1996 Olympic Summer Games bombing in Atlanta, Georgia. VISAR technology enhanced nighttime videotapes made with hand-held camcorders, revealing important details about the explosion. Intergraph's Video Analyst System is a simple, effective, and affordable tool for video enhancement and analysis. The benefits associated with the Video Analyst System include support of full-resolution digital video, frame-by-frame analysis, and the ability to store analog video in digital format. Up to 12 hours of digital video can be stored and maintained for reliable footage analysis. The system also includes state-of-the-art features such as stabilization, image enhancement, and convolution to help improve the visibility of subjects in the video without altering underlying footage. Adaptable to many uses, Intergraph#s Video Analyst System meets the stringent demands of the law enforcement industry in the areas of surveillance, crime scene footage, sting operations, and dash-mounted video cameras.

  19. Equations of state of detonation products: ammonia and methane

    NASA Astrophysics Data System (ADS)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  20. Experimental Measurements of the Chemical Reaction Zone of Detonating Liquid Explosives

    NASA Astrophysics Data System (ADS)

    Bouyer, Viviane; Sheffield, Stephen A.; Dattelbaum, Dana M.; Gustavsen, Richard L.; Stahl, David B.; Doucet, Michel; Decaris, Lionel

    2009-12-01

    We have a joint project between CEA-DAM Le Ripault and Los Alamos National Laboratory (LANL) to study the chemical reaction zone in detonating high explosives using several different laser velocimetry techniques. The short temporal duration of the von Neumann spike and early part of the reaction zone make these measurements difficult. Here, we report results obtained from detonation experiments using VISAR (velocity interferometer system for any reflector) and PDV (photon Doppler velocimetry) methods to measure the particle velocity history at a detonating nitromethane/PMMA interface. Experiments done at CEA were high-explosive-plane-wave initiated and those at LANL were gas-gun-projectile initiated with a detonation run of about 6 charge diameters in all experiments. The experiments had either glass or brass confinement. Excellent agreement of the interface particle velocity measurements at both Laboratories were obtained even though the initiation methods and the velocimetry systems were somewhat different. Some differences were observed in the peak particle velocity because of the ˜2 ns time resolution of the techniques—in all cases the peak was lower than the expected von Neumann spike. This is thought to be because the measurements were not high enough time resolution to resolve the spike.

  1. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  2. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE PAGES

    Cao, D.; Boehly, T. R.; Gregor, M. C.; ...

    2018-05-16

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic on OMEGA. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (α ~ 3) implosions, but agreement degrades for lower-adiabat (α ~ 1) designs. Several possibilities for this difference are studied: errors in placing the target at the center of irradiation (target offset),more » variations in energy between the different incident beams (power imbalance), and errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging can be applied to the pulse shapes used in shock-timing experiments. In conclusion, this will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  3. Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model

    DTIC Science & Technology

    2006-08-14

    brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the

  4. Observations and a model of undertow over the inner continental shelf

    USGS Publications Warehouse

    Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent

    2008-01-01

    Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.

  5. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f-5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  6. Seismic velocity site characterization of 10 Arizona strong-motion recording stations by spectral analysis of surface wave dispersion

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.

    2017-10-19

    Vertical one-dimensional shear wave velocity (VS) profiles are presented for strong-motion sites in Arizona for a suite of stations surrounding the Palo Verde Nuclear Generating Station. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS30), the average velocity for the entire profile (VSZ), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The VS profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean-square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  7. Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response

    DOE PAGES

    Renganathan, P.; Winey, J. M.; Gupta, Y. M.

    2017-01-19

    Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less

  8. Shock compression and release of a-axis magnesium single crystals: Anisotropy and time dependent inelastic response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renganathan, P.; Winey, J. M.; Gupta, Y. M.

    Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kevin L.

    The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR ormore » OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.« less

  10. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, O.; Biblot, J.; Janssen, P. A. E. M.

    2016-02-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. I will show some results from the coupled atmosphere-wave-ocean ensemble forecast system of ECMWF where these wave effects are now included in the ocean model component.

  11. Failure waves in glass and ceramics under shock compression

    NASA Astrophysics Data System (ADS)

    Brar, N. S.

    2000-04-01

    The response of various types of glasses (fused silica, borosilicates, soda-lime, and lead filled) to shock wave loading, especially the failure of glass behind the shock wave through the "so called" failure wave or front, has been the subject of intense research among a number of investigators. The variations in material properties across this front include complete loss of tensile (spall) strength, loss in shear strength, reduction in acoustic impedance and opacity to light. Both the Stress and velocity history from VISAR measurements have shown that the failure front propagates at a speed of 1.5 to 2.5 mm/s, depending on the peak shock stress. The shear strength [τ=1/2(σ1-σ2)] behind the failure front, determined using embedded transverse gauges, is found to decrease to about 1 GPa for soda-lime, borosilicate, and filled glasses. Optical (high-speed photography) observations also confirm formation of this failure front. There is a general agreement among various researchers on these failure observations. However, three proposed mechanisms for the formation of failure front are based on totally different formulations. The first, due to Clifton, is based on the hypothesis of densification of glass under shock compression. Densification is followed by shear failure around inhomogeneities resulting in a phase boundary between the comminuted and the intact material. The second, proposed by Grady, involves the transfer of elastic shear strain energy to dilatant strain energy as a result of severe micro-cracking originating from impact. The third, by Espinosa and Brar, proposes that the front is created through shear micro-cracks, which nucleate and propagate from the impact face; as originally suggested by Kanel. This later mechanism is supported by the observed loss of shear strength of glass by Clifton et al. at shock stress above the threshold level. Espinosa has incorporated this mechanism in multiple-plane model and simulations predict the increase in lateral stress and an observed reduction in spall strength behind the failure front. Failure front studies, in terms of loss of shear strength, have been recently extended to alumina and SiC ceramics by Bourne et al.

  12. Inter- and Intra-method Variability of VS Profiles and VS30 at ARRA-funded Sites

    NASA Astrophysics Data System (ADS)

    Yong, A.; Boatwright, J.; Martin, A. J.

    2015-12-01

    The 2009 American Recovery and Reinvestment Act (ARRA) funded geophysical site characterizations at 191 seismographic stations in California and in the central and eastern United States. Shallow boreholes were considered cost- and environmentally-prohibitive, thus non-invasive methods (passive and active surface- and body-wave techniques) were used at these stations. The drawback, however, is that these techniques measure seismic properties indirectly and introduce more uncertainty than borehole methods. The principal methods applied were Array Microtremor (AM), Multi-channel Analysis of Surface Waves (MASW; Rayleigh and Love waves), Spectral Analysis of Surface Waves (SASW), Refraction Microtremor (ReMi), and P- and S-wave refraction tomography. Depending on the apparent geologic or seismic complexity of the site, field crews applied one or a combination of these methods to estimate the shear-wave velocity (VS) profile and calculate VS30, the time-averaged VS to a depth of 30 meters. We study the inter- and intra-method variability of VS and VS30 at each seismographic station where combinations of techniques were applied. For each site, we find both types of variability in VS30 remain insignificant (5-10% difference) despite substantial variability observed in the VS profiles. We also find that reliable VS profiles are best developed using a combination of techniques, e.g., surface-wave VS profiles correlated against P-wave tomography to constrain variables (Poisson's ratio and density) that are key depth-dependent parameters used in modeling VS profiles. The most reliable results are based on surface- or body-wave profiles correlated against independent observations such as material properties inferred from outcropping geology nearby. For example, mapped geology describes station CI.LJR as a hard rock site (VS30 > 760 m/s). However, decomposed rock outcrops were found nearby and support the estimated VS30 of 303 m/s derived from the MASW (Love wave) profile.

  13. Numerical modeling and characterization of blast waves for application in blast-induced mild traumatic brain injury research

    NASA Astrophysics Data System (ADS)

    Phillips, Michael G.

    Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.

  14. Shear Wave Velocity and Site Amplification Factors for 25 Strong-Motion Instrument Stations Affected by the M5.8 Mineral, Virginia, Earthquake of August 23, 2011

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena

    2015-01-01

    Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic.more » A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.« less

  16. Cross-wind profiling based on the scattered wave scintillation in a telescope focus.

    PubMed

    Banakh, V A; Marakasov, D A; Vorontsov, M A

    2007-11-20

    The problem of wind profile reconstruction from scintillation of an optical wave scattered off a rough surface in a telescope focus plane is considered. Both the expression for the spatiotemporal correlation function and the algorithm of cross-wind velocity and direction profiles reconstruction based on the spatiotemporal spectrum of intensity of an optical wave scattered by a diffuse target in a turbulent atmosphere are presented. Computer simulations performed under conditions of weak optical turbulence show wind profiles reconstruction by the developed algorithm.

  17. Reconstructing surface wave profiles from reflected acoustic pulses using multiple receivers.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2014-08-01

    Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

  18. The Role of Second Phase Intermetallic Particles on the Spall Failure of 5083 Aluminum

    DTIC Science & Technology

    2016-12-01

    of mechanically processed 5083 aluminum (i.e., cold and hot rolled, extruded , etc.) has been previously studied by several researchers [1–4]. Results...Velocity Interferometry System for Any Reflector (VISAR) [6]. In addition, four end-state (ex situ spall recovery) experiments were conducted to augment all... extruded AMX602 Mg alloy (unpublished) J. dynamic behavior mater. (2016) 2:476–483 483 123 9 1 DEFENSE TECHNICAL (PDF) INFORMATION CTR DTIC OCA

  19. Velocity interferometer signal de-noising using modified Wiener filter

    NASA Astrophysics Data System (ADS)

    Rav, Amit; Joshi, K. D.; Roy, Kallol; Kaushik, T. C.

    2017-05-01

    The accuracy and precision of the non-contact velocity interferometer system for any reflector (VISAR) depends not only on the good optical design and linear optical-to- electrical conversion system, but also on accurate and robust post-processing techniques. The performance of these techniques, such as the phase unwrapping algorithm, depends on the signal-to-noise ratio (SNR) of the recorded signal. In the present work, a novel method of improving the SNR of the recorded VISAR signal, based on the knowledge of the noise characteristic of the signal conversion and recording system, is presented. The proposed method uses a modified Wiener filter, for which the signal power spectrum estimation is obtained using a spectral subtraction method (SSM), and the noise power spectrum estimation is obtained by taking the average of the recorded signal during the period when no target movement is expected. Since the noise power spectrum estimate is dynamic in nature, and obtained for each experimental record individually, the improved signal quality is high. The proposed method is applied to the simulated standard signals, and is not only found to be better than the SSM, but is also less sensitive to the selection of the noise floor during signal power spectrum estimation. Finally, the proposed method is applied to the recorded experimental signal and an improvement in the SNR is reported.

  20. Research on the middle-of-receiver-spread assumption of the MASW method

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Liu, J.; Xu, Y.; Liu, Q.

    2009-01-01

    The multichannel analysis of surface wave (MASW) method has been effectively used to determine near-surface shear- (S-) wave velocity. Estimating the S-wave velocity profile from Rayleigh-wave measurements is straightforward. A three-step process is required to obtain S-wave velocity profiles: acquisition of a multiple number of multichannel records along a linear survey line by use of the roll-along mode, extraction of dispersion curves of Rayleigh waves, and inversion of dispersion curves for an S-wave velocity profile for each shot gather. A pseudo-2D S-wave velocity section can be generated by aligning 1D S-wave velocity models. In this process, it is very important to understand where the inverted 1D S-wave velocity profile should be located: the midpoint of each spread (a middle-of-receiver-spread assumption) or somewhere between the source and the last receiver. In other words, the extracted dispersion curve is determined by the geophysical structure within the geophone spread or strongly affected by the source geophysical structure. In this paper, dispersion curves of synthetic datasets and a real-world example are calculated by fixing the receiver spread and changing the source location. Results demonstrate that the dispersion curves are mainly determined by structures within a receiver spread. ?? 2008 Elsevier Ltd. All rights reserved.

  1. Shear-wave velocity and site-amplification factors for 50 Australian sites determined by the spectral analysis of surface waves method

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Bradley A.; Allen, Trevor; Collins, Clive; McPherson, Andrew; Minasian, Diane L.

    2015-01-01

    One-dimensional shear-wave velocity (VS ) profiles are presented at 50 strong motion sites in New South Wales and Victoria, Australia. The VS profiles are estimated with the spectral analysis of surface waves (SASW) method. The SASW method is a noninvasive method that indirectly estimates the VS at depth from variations in the Rayleigh wave phase velocity at the surface.

  2. Ultrafast dynamic response of single crystal β-HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.

    2017-01-01

    We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.

  3. Shock induced spall fracture in polycrystalline copper

    NASA Astrophysics Data System (ADS)

    Mukherjee, D.; Rav, Amit; Sur, Amit; Joshi, K. D.; Gupta, Satish C.

    2014-04-01

    The plate impact experiments have been conducted on commercially available 99.99% pure polycrystalline samples of copper using single stage gas gun facility. The free surface velocity history of the sample plate measured using VISAR instrument is utilized to determine the dynamic yield strength and spall strength of copper. The dynamic yield strength and spall strength of polycrystalline copper sample has been determined to be 0.14 GPa and 1.32 GPa, respectively with corresponding strain rates of the order of 104/s.

  4. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, D.; Boehly, T. R.; Gregor, M. C.

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic [T. R. Boehly et al., Phys. Plasmas 18, 092706 (2011)] on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (alpha ~ 3) implosions, but agreement degrades for lower-adiabat (alpha ~ 1)more » designs. Several possibilities for this difference are studied: (1) errors in placing the target at the center of irradiation (target offset), (2) variations in energy between the different incident beams (power imbalance), and (3) errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging [A. K. Davis et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO8.7 (2016)] can be applied to the pulse shapes used in shock-timing experiments. This will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  5. Sheet flow measurements on a surf-zone sandbar under shoaling and breaking waves

    NASA Astrophysics Data System (ADS)

    Mieras, R.; Puleo, J. A.; Cox, D. T.; Anderson, D. L.; Kim, Y.; Hsu, T. J.

    2016-02-01

    A large-scale experiment to quantify sheet flow processes over a sandbar under varying levels of wave steepness was conducted in the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory. A fixed profile was constructed with concrete slabs anchored to the flume side walls, with the exception of the sandbar crest, where a steel pit was installed and filled with well-sorted sediment (d50 0.17 mm). This hybrid approach allowed for the isolation of small-scale bed response to large-scale wave forcing over the sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Near-bed (< 3 cm above the bed) velocities were estimated using Nortek Vectrino-II profiling velocimeters, while sheet layer sediment concentration profiles (volumetric concentrations > 0.08 m3/m3) were approximated using Conductivity Concentration Profilers. Test conditions consisted of a regular wave train with incident wave heights for individual runs ranging from 0.4 m to 0.6 m and incident wave periods from 5 s to 9 s, encompassing a variety of skewed and asymmetric wave shapes across the shoaling and breaking regimes. Ensemble-averaged sediment concentration profiles exhibit considerable variation across the different conditions. The largest variation in sheet layer thickness occurs beneath the wave crest, ranging from 30 grain diameters for 5 sec, 0.4 m waves, up to 80 grain diameters for 7 sec, 0.6 m waves. Furthermore, the initiation and duration of sheet flow relative to the wave period differs for each condition set. It is likely that more than one mechanism plays a role in determining the aforementioned sheet layer characteristics. In the present work, we focus on the relative magnitude and phase of the near-bed flow acceleration and shear stress in determining the characteristics of the sheet layer.

  6. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  7. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2015-03-18

    presentation of our work at the 17th annual DEPS conference. 15. SUBJECT TERMS Leaky-wave Antennas. High Power Microwaves (HPM) Antennas. Low-profile...the performance, behavior, and design of innovative High Power Microwave (HPM, GW-class) antennas of the forward-traveling, fast-wave, leaky-wave...Conformal Antennas. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON (Monitor

  8. Determining the near-surface current profile from measurements of the wave dispersion relation

    NASA Astrophysics Data System (ADS)

    Smeltzer, Benjamin; Maxwell, Peter; Aesøy, Eirik; Ellingsen, Simen

    2017-11-01

    The current-induced Doppler shifts of waves can yield information about the background mean flow, providing an attractive method of inferring the current profile in the upper layer of the ocean. We present measurements of waves propagating on shear currents in a laboratory water channel, as well as theoretical investigations of inversion techniques for determining the vertical current structure. Spatial and temporal measurements of the free surface profile obtained using a synthetic Schlieren method are analyzed to determine the wave dispersion relation and Doppler shifts as a function of wavelength. The vertical current profile can then be inferred from the Doppler shifts using an inversion algorithm. Most existing algorithms rely on a priori assumptions of the shape of the current profile, and developing a method that uses less stringent assumptions is a focus of this study, allowing for measurement of more general current profiles. The accuracy of current inversion algorithms are evaluated by comparison to measurements of the mean flow profile from particle image velocimetry (PIV), and a discussion of the sensitivity to errors in the Doppler shifts is presented.

  9. High-resolution shear-wave reflection profiling to image offset in unconsolidated near-surface sediments

    NASA Astrophysics Data System (ADS)

    Bailey, Bevin L.

    S-wave reflection profiling has many theoretical advantages, when compared to P-wave profiling, such as high-resolution potential, greater sensitivities to lithologic changes and insensitivity to the water table and pore fluids, and could be particularly useful in near-surface settings. However, S-wave surveys can be plagued by processing pitfalls unique to near-surface studies such as interference of Love waves with reflections, and the stacking of Love waves as coherent noise, leading to possible misinterpretations of the subsurface. Two lines of S-wave data are processed and used to locate previously unknown faults in Quaternary sediments in a region where earthquake activity poses a threat to surface structures. This study provides clear examples of processing pitfalls such as Love waves with hyperbolic appearances on shot gathers, and a CMP section with coherent noise that is easily misinterpreted as reflections. This study demonstrates pros and cons of using SH reflection data in the near surface.

  10. Recent RF Experiments and Application of RF Waves to Real-Time Control of Safety Factor Profile in JT-60U

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Isayama, A.; Ide, S.; Fujita, T.; Oikawa, T.; Sakata, S.; Sueoka, M.; Hosoyama, H.; JT-60 Team

    2005-09-01

    Two topics of applications of RF waves to current profile control in JT-60U are presented; application of lower-hybrid (LH) waves to safety factor profile control and electron cyclotron (EC) waves to neo-classical tearing mode (NTM) control. A real-time control system of safety factor (q) profile was developed. This system, for the first time, enables 1) real time evaluation of q profile using local magnetic pitch angle measurement by motional Stark effect (MSE) diagnostic and 2) control of current drive (CD) location (ρCD) by controlling the parallel refractive index N∥ of LH waves through control of phase difference (Δφ) of LH waves between multi-junction launcher modules. The method for real-time q profile evaluation was newly developed, without time-consuming reconstruction of equilibrium, so that the method requires less computational time. Safety factor profile by the real-time calculation agrees well with that by equilibrium reconstruction with MSE. The control system controls ρCD through Δφ in such a way to decrease the largest residual between the real-time evaluated q profile q(r) and its reference profile qref(r). The real-time control system was applied to a positive shear plasma (q(0)˜1). The reference q profile was set to monotonic positive shear profile having qref(0)=1.3. The real-time q profile approached to the qref(r) during application of real-time control, and was sustained for 3s, which was limited by the duration of the injected LH power. Temporal evolution of current profile was consistent with relaxation of inductive electric field induced by theoretical LH driven current. An m/n=3/2 NTM that appeared at βN˜3 was completely stabilized by ECCD applied to a fully-developed NTM. Precise ECCD at NTM island was essential for the stabilization. ECCD that was applied to resonant rational surface (q=3/2) before an NTM onset suppressed appearance of NTM. In order to keep NTM intensity below a level, ECCD before the mode onset was more effective than that after mode saturation.

  11. Internal Wave Impact on the Performance of a Hypothetical Mine Hunting Sonar

    DTIC Science & Technology

    2014-10-01

    time steps) to simulate the propagation of the internal wave field through the mine field. Again the transmission loss and acoustic signal strength...dependent internal wave perturbed sound speed profile was evaluated by calculating the temporal variability of the signal excess (SE) of acoustic...internal wave perturbation of the sound speed profile, was calculated for a limited sound speed field time section. Acoustic signals were projected

  12. Rayleigh-wave dispersive energy imaging and mode separating by high-resolution linear Radon transform

    USGS Publications Warehouse

    Luo, Y.; Xu, Y.; Liu, Q.; Xia, J.

    2008-01-01

    In recent years, multichannel analysis of surface waves (MASW) has been increasingly used for obtaining vertical shear-wave velocity profiles within near-surface materials. MASW uses a multichannel recording approach to capture the time-variant, full-seismic wavefield where dispersive surface waves can be used to estimate near-surface S-wave velocity. The technique consists of (1) acquisition of broadband, high-frequency ground roll using a multichannel recording system; (2) efficient and accurate algorithms that allow the extraction and analysis of 1D Rayleigh-wave dispersion curves; (3) stable and efficient inversion algorithms for estimating S-wave velocity profiles; and (4) construction of the 2D S-wave velocity field map.

  13. Exploration of S-wave velocity profiles at strong motion stations in Eskisehir, Turkey, using microtremor phase velocity and S-wave amplification

    NASA Astrophysics Data System (ADS)

    Yamanaka, Hiroaki; Özmen, Ögur Tuna; Chimoto, Kosuke; Alkan, Mehmet Akif; Tün, Muammer; Pekkan, Emrah; Özel, Oguz; Polat, Derya; Nurlu, Murat

    2018-05-01

    We have explored 1D S-wave velocity profiles of shallow and deep soil layers over a basement at strong motion stations in Eskisehir Province, Turkey. Microtremor array explorations were conducted at eight strong motion stations in the area to know shallow 1D S-wave velocity models. Rayleigh wave phase velocity at a frequency range from 3 to 30 Hz was estimated with the spatial autocorrelation analysis of array records of vertical microtremors at each station. Individual phase velocity was inverted to a shallow S-wave velocity profile. Low-velocity layers were identified at the stations in the basin. Site amplification factors from S-wave parts of earthquake records that had been estimated at the strong motion stations by Yamanaka et al. (2017) were inverted to the S-wave velocities and Q-values of the sedimentary layers. The depths to the basement with an S-wave velocity of 2.2 km/s are about 1 km in the central part of the basin, while the basement becomes shallow as 0.3 km in the marginal part of the basin. We finally discussed the effects of the shallow and deep sedimentary layers on the 1D S-wave amplification characteristics using the revealed profiles. It is found that the shallow soil layers have no significant effects in the amplification at a frequency range lower than 3 Hz in the area.

  14. Mesoscale Modeling of LX-17 Under Isentropic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Willey, T M; Friedman, G

    Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less

  15. Microstructure Effects on Spall Strength of Titanium-based Bulk Metallic Glass Composites

    NASA Astrophysics Data System (ADS)

    Diaz, Rene; Hofmann, Douglas; Thadhani, Naresh; Georgia Tech Team; GT-JPL Collaboration

    2017-06-01

    The spall strength of Ti-based metallic glass composites is investigated as a function of varying volume fractions (0-80%) of in-situ formed crystalline dendrites. With increasing dendrite content, the topology changes such that neither the harder glass nor the softer dendrites dominate the microstructure. Plate-impact experiments were performed using the 80-mm single-stage gas gun over impact stresses up to 18 GPa. VISAR interferometry was used to obtain rear free-surface velocity profiles revealing the velocity pullback spall failure signals. The spall strengths were higher than for Ti-6Al-4V alloy, and remained high up to impact stress. The influence of microstructure on the spall strength is indicated by the constants of the power law fit with the decompression strain rate. Differences in fracture behavior reveal void nucleation as a dominant mechanism affecting the spall strength. The microstructure with neither 100% glass nor with very high crystalline content, provides the most tortuous path for fracture and therefore highest spall strength. The results allow projection of spall strength predictions for design of in-situ formed metallic glass composites. ARO Grant # W911NF-09 ``1-0403 NASA JPL Contract # 1492033 ``Prime # NNN12AA01C; NSF GRFP Grant #DGE-1148903; and NDSE & G.

  16. On the shape and likelihood of oceanic rogue waves.

    PubMed

    Benetazzo, Alvise; Ardhuin, Fabrice; Bergamasco, Filippo; Cavaleri, Luigi; Guimarães, Pedro Veras; Schwendeman, Michael; Sclavo, Mauro; Thomson, Jim; Torsello, Andrea

    2017-08-15

    We consider the observation and analysis of oceanic rogue waves collected within spatio-temporal (ST) records of 3D wave fields. This class of records, allowing a sea surface region to be retrieved, is appropriate for the observation of rogue waves, which come up as a random phenomenon that can occur at any time and location of the sea surface. To verify this aspect, we used three stereo wave imaging systems to gather ST records of the sea surface elevation, which were collected in different sea conditions. The wave with the ST maximum elevation (happening to be larger than the rogue threshold 1.25H s ) was then isolated within each record, along with its temporal profile. The rogue waves show similar profiles, in agreement with the theory of extreme wave groups. We analyze the rogue wave probability of occurrence, also in the context of ST extreme value distributions, and we conclude that rogue waves are more likely than previously reported; the key point is coming across them, in space as well as in time. The dependence of the rogue wave profile and likelihood on the sea state conditions is also investigated. Results may prove useful in predicting extreme wave occurrence probability and strength during oceanic storms.

  17. Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.; Theon, J. S.

    1975-01-01

    Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.

  18. Kinetic Behaviour of Failure Waves in a Filled Glass

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Bourne, N. K.

    2007-12-01

    Experimental stress and velocity profiles in a lead filled glass demonstrate a pronounced kinetic behaviour for failure waves in the material during shock loading. The present work summarises the experimental proofs of the kinetic behaviour obtained with stress and velocity gauges. The work describes a model for this behaviour employing a kinetic description used earlier for fracture waves in Pyrex glass. This model is part of a family of two-phase, strain-rate sensitive models describing the behaviour of damaged brittle materials. The modelling results describe well both the stress decay of the failure wave precursor in the stress profiles and main pulse attenuation in the velocity profiles. The influences of the kinetic mechanisms and wave interactions within the test assembly on the reduction of this behaviour are discussed.

  19. The effect of shear stress on solitary waves in arteries.

    PubMed

    Demiray, H

    1997-09-01

    In the present work, we study the propagation of solitary waves in a prestressed thick walled elastic tube filled with an incompressible inviscid fluid. In order to include the geometric dispersion in the analysis the wall inertia and shear deformation effects are taken into account for the inner pressure-cross-sectional area relation. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the long-wave approximation is examined. It is shown that, contrary to thin tube theories, the present approach makes it possible to have solitary waves even for a Mooney-Rivlin (M-R) material. Due to dependence of the coefficients of the governing Korteweg-deVries equation on initial deformation, the solution profile changes with inner pressure and the axial stretch. The variation of wave profiles for a class of elastic materials are depicted in graphic forms. As might be seen from these illustrations, with increasing thickness ratio, the profile of solitary wave is steepened for a M-R material but it is broadened for biological tissue.

  20. Reducing uncertainties in the velocities determined by inversion of phase velocity dispersion curves using synthetic seismograms

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Mehrdad

    Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an additional tool along with the similarity between the theoretical and experimental dispersion curves. The proposed method is proven to be effective through synthetic and real world examples. In these examples, the nature of the non-uniqueness is discussed and its existence is shown. Using the proposed technique, inverted velocity profiles are estimated and effectiveness of this technique is evaluated; in the synthetic example, final inverted velocity profile is compared with the initial target velocity model, and in the real world example, final inverted shear-wave velocity profile is compared with the velocity model from independent measurements in a nearby borehole. Real world example shows that it is possible to overcome the non-uniqueness and distinguish the representative velocity profile for the site that also matches well with the borehole measurements.

  1. Investigating gravity waves evidences in the Venus upper atmosphere

    NASA Astrophysics Data System (ADS)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  2. Measuring the properties of shock released Quartz and Parylene-N

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim

    2016-10-01

    The high pressure and temperature properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies the single shock Hugoniot. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography.

  3. Multi-frequency ICRF diagnostic of Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lafonteese, David James

    This thesis explores the diagnostic possibilities of a fast wave-based method for measuring the ion density and temperature profiles of tokamak plasmas. In these studies fast waves are coupled to the plasma at frequencies at the second harmonic of the ion gyrofrequency, at which wave energy is absorbed by the finite-temperature ions. As the ion gyrofrequency is dependent upon the local magnetic field, which varies as l/R in a tokamak, this power absorption is radially localized. The simultaneous launching of multiple frequencies, all resonating at different plasma positions, allows local measurements of the ion density and temperature. To investigate the profile applications of wave damping measurements in a simulated tokamak, an inhouse slab-model ICRF code is developed. A variety of analysis methods are presented, and ion density and temperature profiles are reconstructed for hydrogen plasmas for the Electric Tokamak (ET) and ITER parameter spaces. These methods achieve promising results in simulated plasmas featuring bulk ion heating, off-axis RF heating, and density ramps. The experimental results of similar studies on the Electric Tokamak, a high aspect ratio (R/a = 5), low toroidal field (2.2 kG) device are then presented. In these studies, six fast wave frequencies were coupled using a single-strap, low-field-side antenna to ET plasmas. The frequencies were variable, and could be tuned to resonate at different radii for different experiments. Four magnetic pickup loops were used to measure of the toroidal component of the wave magnetic field. The expected greater eigenmode damping of center-resonant frequencies versus edge-resonant frequencies is consistently observed. Comparison of measured aspects of fast wave behavior in ET is made with the slab code predictions, which validate the code simulations under weakly-damped conditions. A density profile is measured for an ET discharge through analysis of the fast wave measurements, and is compared to an electron density profile derived from Thomson scattering data. The methodology behind a similar measurement of the ion temperature profile is also presented.

  4. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  5. Detonator Performance Characterization using Multi-Frame Laser Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Clarke, Steven; Landon, Colin; Murphy, Michael; Martinez, Michael; Mason, Thomas; Thomas, Keith

    2009-06-01

    Multi-frame Laser Schlieren Imaging of shock waves produced by detonators in transparent witness materials can be used to evaluate detonator performance. We use inverse calculations of the 2D propagation of shock waves in the EPIC finite element model computer code to calculate a temporal-spatial-pressure profile on the surface of the detonator that is consistent with the experimental shock waves from the schlieren imaging. Examples of calculated 2D temporal-spatial-pressure profiles from a range of detonator types (EFI --exploding foil initiators, DOI -- direct optical initiation, EBW -- exploding bridge wire, hotwire), detonator HE materials (PETN, HMX, etc), and HE densities. Also pressure interaction profiles from the interaction of multiple shock waves will be shown. LA-UR-09-00909.

  6. Drift waves control using emissive cathodes in the laboratory

    NASA Astrophysics Data System (ADS)

    Plihon, N.; Desangles, V.; De Giorgio, E.; Bousselin, G.; Marino, R.; Pustelnik, N.; Poye, A.

    2017-12-01

    Low frequency plasma fluctuations are known to be the cause of strong transport perpendicular to magnetic guiding field line. These low frequency drift waves have been studied in linear devices in the laboratory over the last two decades. Their excitation or mitigation have been addressed using different drives, such as ring biasing or electromagnetic low frequency fields. Here we present an experimental characterization of the behavior of drift waves when the profile of the background plasma rotation is controlled using hot emissive cathodes. We show that electron emission from the cathodes modify the plasma potential, which in turn controls the rotation profile. Mitigation or enhancement of drift waves (on the amplitude or azimuthal mode number) is observed depending on the plasma rotation profile.

  7. Nonlinear modeling of wave-topography interactions, shear instabilities and shear induced wave breaking using vortex method

    NASA Astrophysics Data System (ADS)

    Guha, Anirban

    2017-11-01

    Theoretical studies on linear shear instabilities as well as different kinds of wave interactions often use simple velocity and/or density profiles (e.g. constant, piecewise) for obtaining good qualitative and quantitative predictions of the initial disturbances. Moreover, such simple profiles provide a minimal model to obtain a mechanistic understanding of shear instabilities. Here we have extended this minimal paradigm into nonlinear domain using vortex method. Making use of unsteady Bernoulli's equation in presence of linear shear, and extending Birkhoff-Rott equation to multiple interfaces, we have numerically simulated the interaction between multiple fully nonlinear waves. This methodology is quite general, and has allowed us to simulate diverse problems that can be essentially reduced to the minimal system with interacting waves, e.g. spilling and plunging breakers, stratified shear instabilities (Holmboe, Taylor-Caulfield, stratified Rayleigh), jet flows, and even wave-topography interaction problem like Bragg resonance. We found that the minimal models capture key nonlinear features (e.g. wave breaking features like cusp formation and roll-ups) which are observed in experiments and/or extensive simulations with smooth, realistic profiles.

  8. Self-organising of wave and beach relief in storm: field experiments

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Olga; Saprykina, Yana; Kuznetsov, Sergey; Stremel, Margarita; Korsinin, Dmitry; Trifonova, Ekaterina; Andreeva, Natalia

    2017-04-01

    This paper presents results of waves and morfodynamics observation carried out in frame of complex field experiments "Shkorpilowtsy-2016" and "Shkorpilowtsy-2007", which were made in order to understand how bottom deformations depend on wave parameters and how wave-bottom self-organisation process runs during storm events. Sediment transport and profile deformations were analysed taking into account the presence of underwater bar (data 2007) and without it (data 2016). Experiments were made on field base of Institute of Oceanology "Fridtjof Nansen" (Bulgarian Academy of Sciences) in Shkorpilowtsy settlement, that is locates on Black Sea coast, 40 km from Varna. The base is equipped with 253 m research pier that provide measuring until 5 m depth on distance 200 m from shore. During filed works synchronous observations on wave parameters and bottom changes were made on average three times a day for one month: 18.09-08.10.2007 and 07.10-02.11.2016. Morphological observations involved cross-shore beach profile deformations measuring along the scientific pier from shore to sea through each 2 m using metal pole in 2007 and metal or rope lot in 2016. Wave measurements included visual observations of breaking and surf zones location, wave type (wind or swell wave) and direction as well as free surface deviation (wave chronogram) registrations using high-frequency capacitive or resistance sensors mounted along the pier. In 2007 registration of free surface elevation was carried out with 7 capacitance and 8 resistant wire gauges, in 2016 - with 18 capacitance wire gauges. Sampling frequency was 5 Hz in 2007 and 20 Hz in 2016, duration of the records varied from 20 min up to one hour in 2007 and between 10 min and one hour in 2016. Wave spectra computed from chronogram allowed to estimate wave spectral (significant wave height, spectral peak and mean periods and complex) and integral parameters (Irribaren and Ursell numbers) to analyse dependence bottom deformations on it. Self-organising of bottom relief and waves were studied on a scale of several storms. Results of investigations show that increase of significant wave height and spectral peak period of wave entering in coastal zone as well as Ursell number lead to erosion, which was localised in first 100 m near on barred profile and covered whole observed profile in case without bar. Features of sediment transport by forming a mobile temporal underwater bar were examined for cases of flat sloping and barred underwater beach profiles. On timescale of one storm type of wave breaking affect sediment transport: plunging wave breaking is responsible for formation and evolution of underwater sand bar as well as decreasing of sediment amount in upper part of beach profile and shoreline regression, while spilling do not lead to significant bottom deformations. The work was supported by Russian Foundation of Basic Research (grants 16-55-76002 (ERA-a), 16-35-00542 (mol_a), 15-05-08239, 15-05-04669).

  9. Study of electromagnetic wave scattering from an inhomogeneous plasma layer using Green's function volume integral equation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltanmoradi, Elmira; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir; Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19839-63113

    Gigahertz electromagnetic wave scattering from an inhomogeneous collisional plasma layer with bell-like and Epstein electron density distributions is studied by the Green's function volume integral equation method to find the reflectance, transmittance, and absorbance coefficients of this inhomogeneous plasma. Also, the effects of the frequency of the electromagnetic wave, plasma parameters, such as collision frequency, electron density, and plasma thickness, and the effects of the profile of the electron density on the electromagnetic wave scattering from this plasma slab are investigated. According to the results, when the electron density, collision frequency, and plasma thickness are increased, collisional absorbance is enhanced,more » and as a result, the absorbance bandwidth of plasma is broadened. Moreover, this broadening is more evident for plasma with bell-like electron density profile. Also, the bandwidth of the frequency and the range of pressure in which plasma behaves as a good reflector are determined in this article. According to the results, the bandwidth of the frequency is decreased for thicker plasma with bell-like profile, while it does not vary for a different plasma thickness with Epstein profile. Moreover, the range of the pressure is decreased for bell-like profile in comparison with Epstein profile. Furthermore, due to the sharp inhomogeneity of the Epstein profile, the coefficients of plasma that are uniform for plasma with bell-like profile are changed for plasma with Epstein profile, and some perturbations are seen.« less

  10. Vertical shear-wave velocity profiles generated from spectral analysis of surface waves : field examples

    DOT National Transportation Integrated Search

    2003-04-01

    Surface wave (Rayleigh wave) seismic data were acquired at six separate bridge sites in southeast Missouri. Each acquired surface wave data set was processed (spectral analysis of surface waves; SASW) and transformed into a site-specific vertical she...

  11. Asay window: A new spall diagnostic

    NASA Astrophysics Data System (ADS)

    McCluskey, Craig W.; Wilke, Mark D.; Anderson, William W.; Byers, Mark E.; Holtkamp, David B.; Rigg, Paulo A.; Furnish, Michael D.; Romero, Vincent T.

    2006-11-01

    By changing from the metallic foil of the Asay foil diagnostic, which can detect ejecta from a shocked surface, to a lithium fluoride (LiF) or polymethyl methacrylate (PMMA) window, it is possible to detect multiple spall layers and interlayer rubble. Past experiments to demonstrate this diagnostic have used high explosives (HEs) to shock metals to produce multiple spall layers. Because the exact characteristics of HE-induced spall layers cannot be predetermined, two issues exist in the quantitative interpretation of the data. First, to what level of fidelity is the Asay window method capable of providing quantitative information about spall layers, possibly separated by rubble, and second, contingent on the first, can an analytic technique be developed to convert the data to a meaningful description of spall from a given experiment? In this article, we address the first issue. A layered projectile fired from a gas gun was used to test the new diagnostic's accuracy and repeatability. We impacted a LiF or PMMA window viewed by a velocity interferometer system for any reflector (VISAR) probe with a projectile consisting of four thin stainless steel disks spaced apart 200μm with either vacuum or polyethylene. The window/surface interface velocity measured with a VISAR probe was compared with calculations. The good agreement observed between the adjusted calculation and the measured data indicates that, in principle and given enough prior information, it is possible to use the Asay window data to model a density distribution from spalled material with simple hydrodynamic models and only simple adjustments to nominal predictions.

  12. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1988-01-01

    Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  13. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  14. Ab initio study of intrinsic profiles of liquid metals and their reflectivity

    NASA Astrophysics Data System (ADS)

    del Rio, B. G.; Souto, J.; Alemany, M. M. G.; González, L. E.

    2017-08-01

    The free surfaces of liquid metals are known to exhibit a stratified profile that, in favourable cases, shows up in experiments as a peak in the ratio between the reflectivity function and that of an ideal step-like profile. This peak is located at a wave-vector related to the distance between the layers of the profile. In fact the surface roughness produced by thermally induced capillary waves causes a depletion of the previous so called intrinsic reflectivity by a damping factor that may hinder the observation of the peak. The behaviour of the intrinsic reflectivity below the layering peak is however far from being universal, with systems as Ga or In where the reflectiviy falls uniformly towards the q → 0 value, others like Sn or Bi where a shoulder appears at intermediate wavevectors, and others like Hg which show a minimum. We have performed extensive ab initio simulations of the free liquid surfaces of Bi, Pb and Hg, that yield direct information on the structure of the profiles and found that the macroscopic capillary wave theory usually employed in order to remove the capillary wave components fails badly in some cases for the typical sample sizes affordable in ab initio simulations. However, a microscopic method for the determination of the intrinsic profile is shown to be succesful in obtaining meaningful intrinsic profiles and corresponding reflectivities which reproduce correctly the qualitative behaviour observed experimentally.

  15. On a new scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an extraordinary wave in the inhomogeneous plasma of magnetic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru

    The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.

  16. Reducing injection loss in drill strings

    DOEpatents

    Drumheller, Douglas S.

    2004-09-14

    A system and method for transferring wave energy into or out of a periodic structure having a characteristic wave impedance profile at a prime frequency, the characteristic wave impedance profile comprising a real portion and an imaginary portion, comprising: locating one or more energy transfer elements each having a wave impedance at the prime frequency approximately equal to the real portion of the characteristic wave impedance at one or more points on the periodic structure with the imaginary portion approximately equaling zero; and employing the one or more energy transfer elements to transfer wave energy into or out of the periodic structure. The energy transfer may be repeaters. Quarter-wave transformers can be provided at one or more points on the periodic structure with the imaginary portion approximately equaling zero to transmit waves across one or more discontinuities. A terminator can be employed for cancellation of waves. The invention substantially eliminates reflections of the wave energy at the prime frequency by joints between sections of the periodic structure.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, A.; Gupta, Y. M.

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  18. Impulsively Generated Wave Trains in Coronal Structures. II. Effects of Transverse Structuring on Sausage Waves in Pressurelesss Slabs

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Ming-Zhe; Yu, Hui; Chen, Shao-Xia

    2018-03-01

    Impulsively generated sausage wave trains in coronal structures are important for interpreting a substantial number of observations of quasi-periodic signals with quasi-periods of order seconds. We have previously shown that the Morlet spectra of these wave trains in coronal tubes depend crucially on the dispersive properties of trapped sausage waves, the existence of cutoff axial wavenumbers, and the monotonicity of the dependence of the axial group speed on the axial wavenumber in particular. This study examines the difference a slab geometry may introduce, for which purpose we conduct a comprehensive eigenmode analysis, both analytically and numerically, on trapped sausage modes in coronal slabs with a considerable number of density profiles. For the profile descriptions examined, coronal slabs can trap sausage waves with longer axial wavelengths, and the group speed approaches the internal Alfvén speed more rapidly at large wavenumbers in the cylindrical case. However, common to both geometries, cutoff wavenumbers exist only when the density profile falls sufficiently rapidly at distances far from coronal structures. Likewise, the monotonicity of the group speed curves depends critically on the profile steepness right at the structure axis. Furthermore, the Morlet spectra of the wave trains are shaped by the group speed curves for coronal slabs and tubes alike. Consequently, we conclude that these spectra have the potential for inferring the subresolution density structuring inside coronal structures, although their detection requires an instrumental cadence of better than ∼1 s.

  19. Upper ocean moored current and density profiler applied to winter conditions near Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksen, C.C.; Dahlen, J.M.; Shillingford, J.T. Jr.

    1982-09-20

    A new moored instrument which makes repeated high vertical resolution profiles of current, temperature, and salinity in the upper ocean over extended periods was used to observe midwinter conditions near Bermuda. The operation and performance of the instrument, called the profiling current meter (PCM), in the surface wave environment of winter storms is reported here. The PCM profiles along the upper portion of a slightly subsurface mooring by adjusting its buoyancy under computer control. This design decouples the instrument from vertical motions of the mooring induced by surface waves, so that its electromagnetic current sensor operates in a favorable mean-to-fluctuatingmore » flow regime. Current, temperature, and electrical conductivity are (vector) averaged into contiguous preselected bins several meters wide over the possible profile range of 20- to 250-m depth. The PCM is capable of collecting 1000--4000 profiles in a 6- to 12-month period, depending on depth range and ambient currents. A variety of baroclinic motions are evident in the Bermuda observations. Upper ocean manifestations of both Kelvin and superinertial island-trapped waves dominate longshore currents. Vertical coherence of onshore current and temperature suggest that internal wave vertical wave number energy distribution is independent of frequency but modified by island bathymetry. Kinetic energy in shear integrated over a 115.6-m-thick layer in the upper ocean is limited to values less than or equal to the potential energy required to mix the existing stratification. Mixing events occur when kinetic energy associated with shear drives the bulk Richardson number (defined by the ratio of energy integrals over the range profiles) to unity, where it remains while shear and stratification disappear together.« less

  20. A Gauss-Newton full-waveform inversion in PML-truncated domains using scalar probing waves

    NASA Astrophysics Data System (ADS)

    Pakravan, Alireza; Kang, Jun Won; Newtson, Craig M.

    2017-12-01

    This study considers the characterization of subsurface shear wave velocity profiles in semi-infinite media using scalar waves. Using surficial responses caused by probing waves, a reconstruction of the material profile is sought using a Gauss-Newton full-waveform inversion method in a two-dimensional domain truncated by perfectly matched layer (PML) wave-absorbing boundaries. The PML is introduced to limit the semi-infinite extent of the half-space and to prevent reflections from the truncated boundaries. A hybrid unsplit-field PML is formulated in the inversion framework to enable more efficient wave simulations than with a fully mixed PML. The full-waveform inversion method is based on a constrained optimization framework that is implemented using Karush-Kuhn-Tucker (KKT) optimality conditions to minimize the objective functional augmented by PML-endowed wave equations via Lagrange multipliers. The KKT conditions consist of state, adjoint, and control problems, and are solved iteratively to update the shear wave velocity profile of the PML-truncated domain. Numerical examples show that the developed Gauss-Newton inversion method is accurate enough and more efficient than another inversion method. The algorithm's performance is demonstrated by the numerical examples including the case of noisy measurement responses and the case of reduced number of sources and receivers.

  1. Increase in velocimeter depth of focus through astigmatism. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D.J.

    1995-09-26

    Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector (VISAR). This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. The authors find that they can prevent loss of signal and greatly increase the useful depth of focus by attaching a cylindrical lens to the target lens.

  2. ON PREDICTING INFRAGRAVITY ENERGY IN THE SURF ZONE.

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Holman, Robert A.; Edge, Billy L.

    1985-01-01

    Flow data were obtained in the surf zone across a barred profile during a storm. RMS cross-shore velocities due to waves in the intragravity band (wave periods greater than 20 s) had maxima in excess of 0. 5 m/s over the bar crest. For comparison to measured spectra, synthetic spectra of cross-shore flow were computed using measured nearshore profiles. The structure, in the infragravity band, of these synthetic spectra corresponded reasonably well with the structure of the measured spectra. Total variances of measured cross-shore flow within the infragravity band were nondimensionalized by dividing by total infragravity variances of synthetic spectra. These nondimensional variances were independent of distance offshore and increased with the square of the breaker height. Thus, cross-shore flow due to infragravity waves can be estimated with knowledge of the nearshore profile and incident wave conditions. Refs.

  3. Coastal Wave Studies

    DTIC Science & Technology

    2011-09-30

    Directional wave spectra analysis from a cross-shore array of acoustic Doppler profilers, accepted paper, 12th International Workshop on Wave Hindcasting and Forecasting, 30 October – 4 November 2011, Hilo , Hawaii .

  4. Evolution of Cross-Shore Profile Models for Sustainable Coastal Design

    NASA Astrophysics Data System (ADS)

    Ismail, Nabil; El-Sayed, Mohamed

    2014-05-01

    Selection and evaluation of coastal structures are correlated with environmental wave and current parameters as well as cross shore profiles. The coupling between the environmental conditions and cross shore profiles necessitates the ability to predict reasonably the cross shore profiles. Results obtained from the validation of a cross-shore profile evolution model, Uniform Beach Sediment Transport-Time-Averaged Cross-Shore (UNIBEST-TC), were examined and further analyzed to reveal the reasons for the discrepancy between the model predictions of the field data at the surf zone of the Duck Beach in North Carolina, USA. The UNIBEST model was developed to predict the main cross shore parameters of wave height, direction, cross shore and long shore currents. However, the results of the model predictions are generally satisfactory for wave height and direction but not satisfactory for the remaining parameters. This research is focused on exploring the discrepancy between the model predictions and the field data of the Duck site, and conducting further analyses to recommend model refinements. The discrepancy is partially attributed due to the fact that the measured values, were taken close to the seabed, while the predicted values are the depth-averaged velocity. Further examination indicated that UNIBEST-TC model runs consider the RMS of the wave height spectrum with a constant gamma-value from the offshore wave spectrum at 8.0m depth. To confirm this argument, a Wavelet Analysis was applied to the time series of wave height and longshore current velocity parameters at the Duck site. The significant wave height ranged between 0.6m and 4.0m while the frequencies ranged between 0.08 to 0.2Hz at 8.0m water depth. Four cases corresponding to events of both high water level and low water level at Duck site were considered in this study. The results show that linear and non-linear interaction between wave height and long-shore current occur over the range of frequencies embracing; the low frequency band of infragravity (0.001- 0.02Hz) waves band and short incident wave band (0.05-0.10Hz). The present results highlight the necessity of incorporating interaction terms between wave - wave and wave- current in the development of cross shore and longshore model formulations. The numerical results confirm previous field observations of nearshore processes that waves in the infragravity range, shear and edge waves, play an important role on near shore hydrodynamics and beach morphology. A prime recommendation of this research work is that the UNIBEST- TC and similar models need to take into effect the interaction between waves, cross shore and longshore currents. Furthermore the models should consider the effects of long waves within the spectrum as well as the generated edge waves. Nevertheless, modeling of this wide range of processes on real beaches needs extensive field data of high spatial and temporal resolutions. Such challenging goal remains to be pursued to enhance state of art prediction of the cross-shore evolution profiles. REFERENCES Addison, P.S. (2002). "The Illustrated Wavelet Transform Handbook, Introductory Theory and Applications in Science", 349 p., Bristol, UK, Institute of Physics Publishing. Elsayed, M.A.K. (2006). "Application of a Cross-Shore Profile Evolution Model to Barred Beaches", Journal of Coastal Research, 22(3), 645-663. Elsayed, M.A.K. (2007). "Non-linear Wave-Wave Interactions in a Mistral Event". Journal of Coastal Research, 23(5), 1318-1323. Ismail, N. M., and Wiegel, R. L. (1983). "Effect of Opposing Waves on Momentum Jets Spreading Rate", Journal of Waterway, Port, Coastal and Ocean Division, ASCE, Vol.109, No.4, 465-483. Ismail, N.M. (1984). "Wave-Current Models for the Design of Marine Structures", Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 110, No. 4, 432-446. Ismail, N.M. (2007). "Discussion of Reynolds Stresses and Velocity Distributions in a Wave-Current Coexisting Environment", Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 133, No. 2, 168-169. Ismail, N. and J.W. Williams. ( 2013). Sea-Level Rise Implications for Coastal Protection from Southern Mediterranean to the U.S.A. Atlantic Coast, EGU,2013-13464, European Geosciences Union, General Assembly 2013,Vienna, Austria, 07 - 12 April.

  5. Modelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium

    NASA Astrophysics Data System (ADS)

    Chatelin, Simon; Gennisson, Jean-Luc; Bernal, Miguel; Tanter, Mickael; Pernot, Mathieu

    2015-05-01

    The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical simulation of shear waves generated from a specific probe in an anisotropic viscoelastic medium is a key issue for further developments of SWE in fibrous soft tissues. In this study we propose a complete numerical tool allowing 3D simulation of a shear wave front in anisotropic viscoelastic media. From the description of an ultrasonic transducer, the shear wave source is simulated by using Field’s II software and shear wave propagation described by using the Green’s formalism. Finally, the comparison between simulations and experiments are successively performed for both shear wave velocity and dispersion profile in a transverse isotropic hydrogel phantom, in vivo forearm muscle and in vivo biceps brachii.

  6. Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-a and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.

  7. Flow profiling of a surface-acoustic-wave nanopump.

    PubMed

    Guttenberg, Z; Rathgeber, A; Keller, S; Rädler, J O; Wixforth, A; Kostur, M; Schindler, M; Talkner, P

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  8. Flow profiling of a surface-acoustic-wave nanopump

    NASA Astrophysics Data System (ADS)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  9. Erosion Control and Environment Restoration Plan Development, Matagorda County, Texas. Phase 1: Preliminary Investigation

    DTIC Science & Technology

    2012-07-01

    Matagorda Peninsula east of MCR where a thicker cover of sand with vegetated dunes can be observed. 2.8 Typical beach profile Beach profile shape is a...clay bluffs on the beach face o Small tidal range, defined in Chapter 2, tends to focus wave action on the bluff toe o Breaking waves propel shell...toward the bluff, abrading the bluff toe o Abrasion undercuts the bluff, causing large sections to fail  Slope failure o Cyclical wave loading on

  10. NDE methods for determining the materials properties of silicon carbide plates

    NASA Astrophysics Data System (ADS)

    Kenderian, Shant; Kim, Yong; Johnson, Eric; Palusinski, Iwona A.

    2009-08-01

    Two types of SiC plates, differing in their manufacturing processes, were interrogated using a variety of NDE techniques. The task of evaluating the materials properties of these plates was a challenge due to their non-uniform thickness. Ultrasound was used to estimate the Young's Modulus and calculate the thickness profile and Poisson's Ratio of the plates. The Young's Modulus profile plots were consistent with the thickness profile plots, indicating that the technique was highly influenced by the non-uniform thickness of the plates. The Poisson's Ratio is calculated from the longitudinal and shear wave velocities. Because the thickness is cancelled out, the result is dependent only on the time of flight of the two wave modes, which can be measured accurately. X-Ray was used to determine if any density variations were present in the plates. None were detected suggesting that the varying time of flight of the acoustic wave is attributed only to variations in the elastic constants and thickness profiles of the plates. Eddy Current was used to plot the conductivity profile. Surprisingly, the conductivity profile of one type of plates varied over a wide range rarely seen in other materials. The other type revealed a uniform conductivity profile.

  11. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  12. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  13. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  14. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data

    NASA Astrophysics Data System (ADS)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.

    2017-07-01

    Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S-waves velocity models of the sedimentary strata and the upper consolidated crust. Velocity values in the upper consolidated crust beneath the South-Okhotsk Basin (Vp = 5.50-5.80 km/s, Vp/Vs = 1.74-1.76) allow interpretation of this 2.5-3.5-km-thick layer to be consistent with a felsic (granodioritic) crust. These results suggest that the Earth's crust in this region can be considered continental in nature, rather than previously accepted oceanic crust. Even though, the crust is thinned and stretched at this location.

  15. The shock sensitivity of nitromethane/methanol mixtures

    NASA Astrophysics Data System (ADS)

    Bartram, Brian; Dattelbaum, Dana; Sheffield, Steve; Gibson, Lee

    2013-06-01

    The dilution of liquid explosives has multiple effects on detonation properties including an increase in critical diameter, spatiotemporal lengthening of the chemical reaction zone, and the development of propagating wave instabilities. Earlier detonation studies of NM/methanol mixtures have shown several effects of increasing dilution, including: 1) a continual increase in the critical diameter, 2) lowering of the Chapman-Jouguet detonation pressure, and 3) slowing of the steady detonation velocity (Koldunov et al., Comb. Expl. Shock Waves). Here, we present the results of a series of gas gun-driven plate-impact experiments to study the shock-to-detonation transition in NM/methanol mixtures. Embedded electromagnetic gauges were used to obtain in situ particle velocity wave profiles at multiple Lagrangian positions in the initiating explosive mixture. From the wave profiles obtained in each experiment, an unreacted Hugoniot locus, the initiation mechanism, and the overtake-time-to-detonation were obtained as a function of shock input condition for mixture concentrations from 100% NM to 50 wt%/50 wt% NM/methanol. Desensitization with dilution is less than expected. For example, little change in overtake time occurs in 80 wt%/20 wt% NM/methanol when compared with neat NM. Furthermore, the shock wave profiles from the gauges indicate that wave instabilities grow in as the overdriven detonation wave settles down following the shock-to-detonation transition.

  16. Researche of the Earth's crust structure with powerful vibrational controlled sources

    NASA Astrophysics Data System (ADS)

    Alekseev, A.; Glinsky, B.; Kovalevsky, V.

    2003-04-01

    The paper presents the results of experimental researches of the Earth's structure, geodynamic processes and physical phenomena carried out using vibrational sources in Institutes of Siberian Branch RAS. Powerful seismic vibrators are the large mechanical devises and are installed stationary on the vibroseismic test site near Novosibirsk (Russia). The vibro-DSS experiments were carried out on 100 km-long profile from Novosibirsk to Kuzbass region and on 620 km profile between Novosibirsk and Semipalatinsk test site. Specially developed field recording systems based on multichannel three component seismic arrays were used. It allowed us to observe the main crustal waves and waves refracted on Moho boundary. In the experiments on the 620 km profile the comparison of the seismic vibrator and special 100 tons calibration explosion wave fields was made. The possibility to detect small changes of wave velocities by vibroseismic methods were shown in the experiments on the setoff 356 and 430 km, where the relative variations of velocities of seismic waves about 10-5 - 10-6 caused by the Earth's tides deformations of the crust were defined. Some new physical phenomena connected with resonance mechanism of radiation of seismic energy in low-frequency range, the radiation of acoustic waves simultaneously with seismic waves and their interaction on long distances from vibrators were detected.

  17. Self-organized kilometer-scale shoreline sand wave generation: Sensitivity to model and physical parameters

    NASA Astrophysics Data System (ADS)

    Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime

    2017-09-01

    The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.

  18. The exploration technology and application of sea surface wave

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2016-12-01

    In order to investigate the seismic velocity structure of the shallow sediments in the Bohai Sea of China, we conduct a shear-wave velocity inversion of the surface wave dispersion data from a survey of 12 ocean bottom seismometers (OBS) and 377 shots of a 9000 inch3 air gun. With OBS station spacing of 5 km and air gun shot spacing of 190 m, high-quality Rayleigh wave data were recorded by the OBSs within 0.4 5 km offset. Rayleigh wave phase velocity dispersion for the fundamental mode and first overtone in the frequency band of 0.9 3.0 Hz were retrieved with the phase-shift method and inverted for the shear-wave velocity structure of the shallow sediments with a damped iterative least-square algorithm. Pseudo 2-D shear-wave velocity profiles with depth to 400 m show coherent features of relatively weak lateral velocity variation. The uncertainty in shear-wave velocity structure was also estimated based on the pseudo 2-D profiles from 6 trial inversions with different initial models, which suggest a velocity uncertainty < 30 m/s for most parts of the 2-D profiles. The layered structure with little lateral variation may be attributable to the continuous sedimentary environment in the Cenozoic sedimentary basin of the Bohai Bay basin. The shear-wave velocity of 200 300 m/s in the top 100 m of the Bohai Sea floor may provide important information for offshore site response studies in earthquake engineering. Furthermore, the very low shear-wave velocity structure (200 700 m/s) down to 400 m depth could produce a significant travel time delay of 1 s in the S wave arrivals, which needs to be considered to avoid serious bias in S wave traveltime tomographic models.

  19. Phase mixing of Alfvén waves in axisymmetric non-reflective magnetic plasma configurations

    NASA Astrophysics Data System (ADS)

    Petrukhin, N. S.; Ruderman, M. S.; Shurgalina, E. G.

    2018-02-01

    We study damping of phase-mixed Alfvén waves propagating in non-reflective axisymmetric magnetic plasma configurations. We derive the general equation describing the attenuation of the Alfvén wave amplitude. Then we applied the general theory to a particular case with the exponentially divergent magnetic field lines. The condition that the configuration is non-reflective determines the variation of the plasma density along the magnetic field lines. The density profiles exponentially decreasing with the height are not among non-reflective density profiles. However, we managed to find non-reflective profiles that fairly well approximate exponentially decreasing density. We calculate the variation of the total wave energy flux with the height for various values of shear viscosity. We found that to have a substantial amount of wave energy dissipated at the lower corona, one needs to increase shear viscosity by seven orders of magnitude in comparison with the value given by the classical plasma theory. An important result that we obtained is that the efficiency of the wave damping strongly depends on the density variation with the height. The stronger the density decrease, the weaker the wave damping is. On the basis of this result, we suggested a physical explanation of the phenomenon of the enhanced wave damping in equilibrium configurations with exponentially diverging magnetic field lines.

  20. Wave propagation through an inhomogeneous slab sandwiched by the piezoelectric and the piezomagnetic half spaces.

    PubMed

    Jiao, Fengyu; Wei, Peijun; Li, Li

    2017-01-01

    Wave propagation through a gradient slab sandwiched by the piezoelectric and the piezomagnetic half spaces are studied in this paper. First, the secular equations in the transverse isotropic piezoelectric/piezomagnetic half spaces are derived from the general dynamic equation. Then, the state vectors at piezoelectric and piezomagnetic half spaces are related to the amplitudes of various possible waves. The state transfer equation of the functionally graded slab is derived from the equations of motion by the reduction of order, and the transfer matrix of the functionally gradient slab is obtained by solving the state transfer equation with the spatial-varying coefficient. Finally, the continuous interface conditions are used to lead to the resultant algebraic equations. The algebraic equations are solved to obtain the amplitude ratios of various waves which are further used to obtain the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and are validated by the energy conservation law. Based on the numerical results on the fives of gradient profiles, the influences of the graded slab on the wave propagation are discussed. It is found that the reflection and transmission coefficients are obviously dependent upon the gradient profile. The various surface waves are more sensitive to the gradient profile than the bulk waves. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Gravity–capillary waves in finite depth on flows of constant vorticity

    PubMed Central

    Hsu, Hung-Chu; Francius, Marc; Kharif, Christian

    2016-01-01

    This paper considers two-dimensional periodic gravity–capillary waves propagating steadily in finite depth on a linear shear current (constant vorticity). A perturbation series solution for steady periodic waves, accurate up to the third order, is derived using a classical Stokes expansion procedure, which allows us to include surface tension effects in the analysis of wave–current interactions in the presence of constant vorticity. The analytical results are then compared with numerical computations with the full equations. The main results are (i) the phase velocity is strongly dependent on the value of the vorticity; (ii) the singularities (Wilton singularities) in the Stokes expansion in powers of wave amplitude that correspond to a Bond number of 1/2 and 1/3, which are the consequences of the non-uniformity in the ordering of the Fourier coefficients, are found to be influenced by vorticity; (iii) different surface profiles of capillary–gravity waves are computed and the effect of vorticity on those profiles is shown to be important, in particular that the solutions exhibit type-2-like wave features, characterized by a secondary maximum on the surface profile with a trough between the two maxima. PMID:27956873

  2. Ice shelf structure from dispersion curve analysis of passive-source seismic data, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.

    2015-12-01

    An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.

  3. Blunted HPA axis response to stress is related to a persistent dysregulation profile in youth

    PubMed Central

    Greaves-Lord, Kirstin; Althoff, Robert R.; Hudziak, James J.; Dieleman, Gwendolyn C.; Verhulst, Frank C.; van der Ende, Jan

    2013-01-01

    The Child Behavior Checklist Dysregulation Profile (DP) in youth has been shown to be a predictor of psychopathology later in life. We examined the activity of the Hypothalamic Pituitary Adrenal (HPA) axis in youth with remitted, new, persistent, and no DP. Data from 489 youth (47% boys) participating in a Dutch longitudinal general population study were included (Wave 1 mean age=11.5, Wave 2=14.2). Wave 2 diurnal cortisol patterns and levels in response to a laboratory stress paradigm were compared in youth with DP at Wave 1 only, Wave 2 only, both Waves, and neither Wave. Youth with the DP at Wave 2 only or at both time points showed blunted cortisol responses to stress relative to the other two groups. There were no group or sex differences in diurnal cortisol activity. More research is needed to determine how the association between DP symptoms and HPA axis functioning changes over time. PMID:23603315

  4. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained from the shock tube. To conclude, our experimental results demonstrate that a compressed-gas shock tube when designed and operated carefully can replicate the blast time profiles of field explosions accurately. Such a faithful replication is an essential first step when studying the effects of blast induced neurotrauma using animal models. PMID:25520701

  5. Noise from Supersonic Coaxial Jets. Part 2; Normal Velocity Profile

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Morris, P. J.

    1997-01-01

    Instability waves have been established as noise generators in supersonic jets. Recent analysis of these slowly diverging jets has shown that these instability waves radiate noise to the far field when the waves have components with phase velocities that are supersonic relative to the ambient speed of sound. This instability wave noise generation model has been applied to supersonic jets with a single shear layer and is now applied to supersonic coaxial jets with two initial shear layers. In this paper the case of coaxial jets with normal velocity profiles is considered, where the inner jet stream velocity is higher than the outer jet stream velocity. To provide mean flow profiles at all axial locations, a numerical scheme is used to calculate the mean flow properties. Calculations are made for the stability characteristics in the coaxial jet shear layers and the noise radiated from the instability waves for different operating conditions with the same total thrust, mass flow and exit area as a single reference jet. The effects of changes in the velocity ratio, the density ratio and the area ratio are each considered independently.

  6. Internal structure of shock waves in disparate mass mixtures

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    The detailed flow structure of a normal shock wave for a gas mixture is investigated using the direct-simulation Monte Carlo method. A variable diameter hard-sphere (VDHS) model is employed to investigate the effect of different viscosity temperature exponents (VTE) for each species in a gas mixture. Special attention is paid to the irregular behavior in the density profiles which was previously observed in a helium-xenon experiment. It is shown that the VTE can have substantial effects in the prediction of the structure of shock waves. The variable hard-sphere model of Bird shows good agreement, but with some limitations, with the experimental data if a common VTE is chosen properly for each case. The VDHS model shows better agreement with the experimental data without adjusting the VTE. The irregular behavior of the light-gas component in shock waves of disparate mass mixtures is observed not only in the density profile, but also in the parallel temperature profile. The strength of the shock wave, the type of molecular interactions, and the mole fraction of heavy species have substantial effects on the existence and structure of the irregularities.

  7. Hydrodynamic Analyses and Evaluation of New Fluid Film Bearing Concepts

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    1998-01-01

    Over the past several years, numerical and experimental investigations have been performed on a waved journal bearing. The research work was undertaken by Dr. Florin Dimofte, a Senior Research Associate in the Mechanical Engineering Department at the University of Toledo. Dr. Theo Keith, Distinguished University Professor in the Mechanical Engineering Department was the Technical Coordinator of the project. The wave journal bearing is a bearing with a slight but precise variation in its circular profile such that a waved profile is circumscribed on the inner bearing diameter. The profile has a wave amplitude that is equal to a fraction of the bearing clearance. Prior to this period of research on the wave bearing, computer codes were written and an experimental facility was established. During this period of research considerable effort was directed towards the study of the bearing's stability. The previously developed computer codes and the experimental facility were of critical importance in performing this stability research. A collection of papers and reports were written to describe the results of this work. The attached captures that effort and represents the research output during the grant period.

  8. M = +1, ± 1 and ± 2 mode helicon wave excitation.

    NASA Astrophysics Data System (ADS)

    Kim, J.-H.; Yun, S.-M.; Chang, H.-Y.

    1996-11-01

    The characteristics of M=+1, ± 1 and ± 2 modes helicon wave excited using a solenoid antenna, Nagoya type III and quadrupole antenna respectively are first investigated. The solenoid antenna is constructed by winding a copper cable on a quartz discharge tube. Two dimensional cross-field measurements of ArII optical emission induced by hot electrons are made to investigate RF power deposition: Components of the wave magnetic field measured with a single-turn, coaxial magnetic probe were compared with the field patterns computed for M=+1, ± 1 and ± 2 modes. The M=+1 mode plasma produced by the solenoid antenna has a cylindrical high intensity plasma column, which center is empty. This cylindrical high intensity column results from the rotation of the cross-sectional electric field pattern (right hand circularly polarization). The radial plasma density profile has a peak at r=2.5cm with axisymmetry. It has been found that the radial profile of the plasma density is in good agreement with the computed power deposition profile. The radial profiles of the wave magnetic field are in good agreement with computations. The plasma excited by Nagoya type III antenna has two high intensity columns which results from the linear combination of M=+1 and -1 modes (i.e. plane polarization). The radial plasma density profile is in good agreement with emission intensity profile of ArII line (488nm). The plasma excited by quadrupole antenna has four high intensity columns which results from the linear combination of M=+2 and -2 modes (i.e. plane polarization). In the M=± 2 modes, the radial plasma density profile is also in good agreement with emission intensity profile of ArII line.

  9. Deciphering the embedded wave in Saturn's Maxwell ringlet

    NASA Astrophysics Data System (ADS)

    French, Richard G.; Nicholson, Philip D.; Hedman, Mathew M.; Hahn, Joseph M.; McGhee-French, Colleen A.; Colwell, Joshua E.; Marouf, Essam A.; Rappaport, Nicole J.

    2016-11-01

    The eccentric Maxwell ringlet in Saturn's C ring is home to a prominent wavelike structure that varies strongly and systematically with true anomaly, as revealed by nearly a decade of high-SNR Cassini occultation observations. Using a simple linear "accordion" model to compensate for the compression and expansion of the ringlet and the wave, we derive a mean optical depth profile for the ringlet and a set of rescaled, background-subtracted radial wave profiles. We use wavelet analysis to identify the wave as a 2-armed trailing spiral, consistent with a density wave driven by an m = 2 outer Lindblad resonance (OLR), with a pattern speed Ωp = 1769.17° d-1 and a corresponding resonance radius ares = 87530.0 km. Estimates of the surface mass density of the Maxwell ringlet range from a mean value of 11g cm-2 derived from the self-gravity model to 5 - 12gcm-2 , as inferred from the wave's phase profile and a theoretical dispersion relation. The corresponding opacity is about 0.12 cm2 g-1, comparable to several plateaus in the outer C ring (Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). A linear density wave model using the derived wave phase profile nicely matches the wave's amplitude, wavelength, and phase in most of our observations, confirming the accuracy of the pattern speed and demonstrating the wave's coherence over a period of 8 years. However, the linear model fails to reproduce the narrow, spike-like structures that are prominent in the observed optical depth profiles. Using a symplectic N-body streamline-based dynamical code (Hahn, J.M., Spitale, J.N. [2013]. Astrophys. J. 772, 122), we simulate analogs of the Maxwell ringlet, modeled as an eccentric ringlet with an embedded wave driven by a fictitious satellite with an OLR located within the ring. The simulations reproduce many of the features of the actual observations, including strongly asymmetric peaks and troughs in the inward-propagating density wave. We argue that the Maxwell ringlet wave is generated by a sectoral normal-mode oscillation inside Saturn with ℓ = m = 2 , similar to other planetary internal modes that have been inferred from density waves observed in Saturn's C ring (Hedman, M.N., Nicholson, P.D. [2013]. Astron. J. 146, 12; Hedman, M.N., Nicholson, P.D. [2014]. Mont. Not. Roy. Astron. Soc. 444, 1369-1388). Our identification of a third m = 2 mode associated with saturnian internal oscillations supports the suggestions of mode splitting by Fuller et al. (Fuller, J., Lai, D., Storch, N.I. [2014]. Icarus 231, 34-50) and Fuller (Fuller, J. [2014]. Icarus 242, 283-296). The fitted amplitude of the wave, if it is interpreted as driven by the ℓ = m = 2 f-mode, implies a radial amplitude at the 1 bar level of ∼ 50 cm, according to the models of Marley and Porco (Marley, M.S., Porco, C.C. [1993]. Icarus 106, 508).

  10. Calculations of the heights, periods, profile parameters, and energy spectra of wind waves

    NASA Technical Reports Server (NTRS)

    Korneva, L. A.

    1975-01-01

    Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.

  11. Manipulating matter rogue waves and breathers in Bose-Einstein condensates.

    PubMed

    Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M

    2014-12-01

    We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.

  12. Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Carcione, José M.; Gei, Davide

    2004-05-01

    We estimate the concentration of gas hydrate at the Mallik 2L-38 research site using P- and S-wave velocities obtained from well logging and vertical seismic profiles (VSP). The theoretical velocities are obtained from a generalization of Gassmann's modulus to three phases (rock frame, gas hydrate and fluid). The dry-rock moduli are estimated from the log profiles, in sections where the rock is assumed to be fully saturated with water. We obtain hydrate concentrations up to 75%, average values of 37% and 21% from the VSP P- and S-wave velocities, respectively, and 60% and 57% from the sonic-log P- and S-wave velocities, respectively. The above averages are similar to estimations obtained from hydrate dissociation modeling and Archie methods. The estimations based on the P-wave velocities are more reliable than those based on the S-wave velocities.

  13. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  14. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  15. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Ileykin, L. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    1995-03-01

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  16. Asymmetry of wind waves studied in a laboratory tank

    NASA Astrophysics Data System (ADS)

    Leykin, I. A.; Donelan, M. A.; Mellen, R. H.; McLaughlin, D. J.

    Asymmetry of wind waves was studied in laboratory tank tinder varied wind and fetch conditions using both bispectral analysis of wave records and third-order statistics of the surface elevation. It is found skewness S (the normalized third-order moment of surface elevation describing the horizontal asymmetry waves) varies only slightly with the inverse wave u*/Cm (where u* is the air friction velocity and Cm is phase speed of the dominant waves). At the same time asymmetry A, which is determined from the Hilbert transform of the wave record and characterizes the skewness of the rate of change of surface elevation, increase consistently in magnitude with the ratio u*/Cm. This suggests that nonlinear distortion of the wave profile determined by the degree of wind forcing and is a sensitive indicator of wind-wave interaction processes. It is shown that the asymmetric profile of waves can described within the frameworks of the nonlinear nonspectral concept (Plate, 1972; Lake and Yuen, 197 according to which the wind-wave field can be represented as a coherent bound-wave system consisting mainly of dominant component w. and its harmonics propagating with the same speed C. , as observed by Ramamonjiaris and Coantic (1976). The phase shift between o). harmonics is found and shown to increase with the asymmetry of the waves.

  17. Increase in velocimeter depth of focus through astigmatism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D.J.

    1996-05-01

    Frequently, velocimeter targets are illuminated by a laser beam passing through a hole in a mirror. This mirror is responsible for diverting returning light from a target lens to a velocity interferometer system for any reflector (VISAR). This mirror is often a significant distance from the target lens. Consequently, at certain target focus positions the returning light is strongly vignetted by the hole, causing a loss of signal. We find that we can prevent loss of signal and greatly increase the useful depth of focus by attaching a cylindrical lens to the target lens. {copyright} {ital 1996 American Institute ofmore » Physics.}« less

  18. Characterization of Detonation Products of RSI-007 Explosive

    NASA Astrophysics Data System (ADS)

    Ager, Timothy; Neel, Christopher; Chhabildas, Lalit

    2011-06-01

    PDV and VISAR have been employed to characterize the detonation products of a production quality RSI-007 explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The free surface of the Kovar serves as the witness plate for the interferometry measurements. Detailed shock reverberations are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further determine the release state in different pressure regimes. Presenter

  19. Characterization of detonation products of RSI-007 explosive

    NASA Astrophysics Data System (ADS)

    Ager, Timothy; Neel, Christopher; Breaux, Bradley; Vineski, Christopher; Welle, Eric; Lambert, David; Chhabildas, Lalit

    2012-03-01

    PDV and VISAR have been employed to characterize the detonation products of a high-purity CL-20 based explosive. The explosive was part of an exploding foil initiator (EFI) detonator assembly in which the explosive was contained within a Kovar (Fe-Ni-Co alloy) cup. The back surface of the Kovar serves as the witness plate for interferometry measurements. Detailed reverberations corresponding to shock arrival and release are recorded on the witness plate and the isentropic release path of the explosive is inferred though the velocity history. Two separate window materials are bonded to the Kovar cup in subsequent experiments and are used to further refine the release states.

  20. Ramp compression of magnesium oxide to 234 GPa

    DOE PAGES

    Wang, Jue; Smith, R. F.; Coppari, F.; ...

    2014-05-07

    Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.

  1. Dichromatic Langmuir waves in degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.

    2015-06-15

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  2. Equatorial waves in temperature in the altitude range 4 to 70 km

    NASA Astrophysics Data System (ADS)

    Krishna Murthy, B. V.; Satheesan, K.; Parameswaran, K.; Sasi, M. N.; Ramkumar, Geetha; Bhavanikumar, Y.; Raghunath, K.; Krishniah, M.

    2002-04-01

    Using altitude profiles of temperature in the range 4 to 70 km derived from Mesosphere-Stratosphere- Troposphere radar and lidar observations at Gadanki (13.5°N, 79.2°E) from 18 January 1999 to 5 March 1999, characteristics of equatorial waves are studied. Two-dimensional Fourier-transform analysis of the temperature profiles is carried out to identify the periodicities and their vertical wave numbers. From the characteristics obtained, equatorial slow Kelvin waves with periodicities 15.7 d, 9.4 d, 7.8 d and 6.7 d are identified in the troposphere and stratosphere regions and among these 7.8 d and 6.7 d periodicities are found to penetrate into the mesosphere. Equatorial waves with smaller periodicities in the range 5.2 d to 3.6 d are also observed. The vertical flux of horizontal momentum (zonal) of the identified slow Kelvin-wave periodicities in the altitude region 4-25 km is estimated. It is found that equatorial waves modulate tropical tropopause temperature and altitude.

  3. Offset-vertical seismic profiling for marine gas hydrate exploration: Is it a suitable technique? First results from ODP Leg 164

    USGS Publications Warehouse

    Pecher, I.A.; Holbrook, W.S.; Stephen, R.A.; Hoskins, H.; Lizarralde, D.; Hutchinson, D.R.; Wood, W.T.

    1997-01-01

    Walkaway vertical seismic profiles were acquired during Ocean Drilling Project (ODP) Leg 164 at the Blake Ridge to investigate seismic properties of hydrate-bearing sediments and the zone of free gas beneath them. An evaluation of compressional (P-) wave arrivals Site 994 indicates P-wave anisotrophy in the sediment column. We identified several shear (S-) wave arrivals in the horizontal components of the geophone array in the borehole and in data recorded with an ocean bottom seismometer deployed at the seafloor. S-waves were converted from P-waves at several depth levels in the sediment column. One of the most prominent conversion points appears to be the bottom simulating reflector (BSR). It is likely that other conversion points are located in the zone of low P-wave reflectivity above the BSR. Modeling suggests that a change of the shear modulus is sufficient to cause significant shear conversion without a significant normal-incidence P-wave reflection.

  4. Wave propagation and noncollisional heating in neutral loop and helicon discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Y.; Crintea, D. L.; Luggenhoelscher, D.

    2011-02-15

    Heating mechanisms in two types of magnetized low pressure rf (13.56 MHz) discharges are investigated: a helicon discharge and a neutral loop discharge. Radial B-dot probe measurements demonstrate that the neutral loop discharge is sustained by helicon waves as well. Axial B-dot probe measurements reveal standing wave and beat patterns depending on the dc magnetic field strength and plasma density. In modes showing a strong wave damping, the plasma refractive index attains values around 100, leading to electron-wave interactions. In strongly damped modes, the radial plasma density profiles are mainly determined by power absorption of the propagating helicon wave, whereasmore » in weakly damped modes, inductive coupling dominates. Furthermore, an azimuthal diamagnetic drift is identified. Measurements of the helicon wave phase demonstrate that initial plane wave fronts are bent during their axial propagation due to the inhomogeneous density profile. A developed analytical standing wave model including Landau damping reproduces very well the damping of the axial helicon wave field. This comparison underlines the theory whereupon Landau damping of electrons traveling along the field lines at speeds close to the helicon phase velocity is the main damping mechanism in both discharges.« less

  5. Gravity waves in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1994-01-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.

  6. A novel method for the measurement of the von Neumann spike in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  7. Nonautonomous characteristics of the breathers and rogue waves for a amplifier nonlinear Schrödinger Maxwell-Bloch system

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Xiao; Zhang, Lu Lu; Li, Min; Qi, Feng-Hua

    2015-09-01

    Under investigation in this paper is a amplifier nonlinear Schrödinger Maxwell-Bloch (NLS-MB) system which describes the propagation of optical pulses in an inhomogeneous erbium doped fiber. Nonautonomous breather and rogue wave (RW) solutions of the amplifier NLS-MB system are constructed via the modified Darboux transformation with the inhomogeneous parameters. By suitably choosing the dispersion coefficient function, several types of inhomogeneous nonlinear waves are obtained in: (1) periodically fluctuating dispersion profile; (2) exponentially increasing (or decreasing) dispersion profile; and (3) linearly decreasing (increasing) dispersion profile. The nonautonomous characteristics of the breathers and RWs are graphically investigated, including the breather accelerating and decelerating motions, boomerang breather, breather compression, breather evolution, periodic RW, boomerang RW and stationary RW. Such novel patterns as the periodic breathers and rogue-wave fission of the amplifier NLS-MB system are exhibited by properly adjusting the group velocity dispersion function and interaction parameter between silica and doped atoms.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sollier, A., E-mail: arnaud.sollier@cea.fr; Bouyer, V.; Hébert, P.

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressuremore » lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.« less

  9. High-Resolution Seismic Reflection Imaging of the Reelfoot Fault, New Madrid, Missouri

    NASA Astrophysics Data System (ADS)

    Rosandich, B.; Harris, J. B.; Woolery, E. W.

    2017-12-01

    Earthquakes in the Lower Mississippi Valley are mainly concentrated in the New Madrid Seismic Zone and are associated with reactivated faults of the Reelfoot Rift. Determining the relationship between the seismogenic faults (in crystalline basement rocks) and deformation at the Earth's surface and in the shallow subsurface has remained an active research topic for decades. An integrated seismic data set, including compressional (P-) wave and shear (S-) wave seismic reflection profiles, was collected in New Madrid, Missouri, across the "New Madrid" segment of the Reelfoot Fault, whose most significant rupture produced the M 7.5, February 7, 1812, New Madrid earthquake. The seismic reflection profiles (215 m long) were centered on the updip projection of the fault, which is associated with a surface drainage feature (Des Cyprie Slough) located at the base of a prominent east-facing escarpment. The seismic reflection profiles were collected using 48-channel (P-wave) and 24-channel (S-wave) towable landsteamer acquisition equipment. Seismic energy was generated by five vertical impacts of a 1.8-kg sledgehammer on a small aluminum plate for the P-wave data and five horizontal impacts of the sledgehammer on a 10-kg steel I-beam for the S-wave data. Interpretation of the profiles shows a west-dipping reverse fault (Reelfoot Fault) that propagates upward from Paleozoic sedimentary rocks (>500 m deep) to near-surface Quaternary sediments (<10 m deep). The hanging wall of the fault is anticlinally folded, a structural setting almost identical to that imaged on the Kentucky Bend and Reelfoot Lake segments (of the Reelfoot Fault) to the south.

  10. On the nature of fast sausage waves in coronal loops

    NASA Astrophysics Data System (ADS)

    Bahari, Karam

    2018-05-01

    The effect of the parameters of coronal loops on the nature of fast sausage waves are investigated. To do this three models of the coronal loop considered, a simple loop model, a current-carrying loop model and a model with radially structured density called "Inner μ" profile. For all the models the Magnetohydrodynamic (MHD) equations solved analytically in the linear approximation and the restoring forces of oscillations obtained. The ratio of the magnetic tension force to the pressure gradient force obtained as a function of the distance from the axis of the loop. In the simple loop model for all values of the loop parameters the fast sausages wave have a mixed nature of Alfvénic and fast MHD waves, in the current-carrying loop model with thick annulus and low density contrast the fast sausage waves can be considered as purely Alfvénic wave in the core region of the loop, and in the "Inner μ" profile for each set of the parameters of the loop the wave can be considered as a purely Alfvénic wave in some regions of the loop.

  11. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    PubMed Central

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction. PMID:24458018

  12. High-temperature phase transformations: The properties of the phases under shock loading

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene

    2012-03-01

    Introducing the temperature as a variable parameter in shock wave experiments extends essentially the scope of these investigations. The influence of the temperature variations on either high strain rate elastic-plastic response of solids or parameters of the shock induced phase transformations are not trivial and are not quite clear yet. The technique of VISAR-monitored planar impact experiments with the samples preheated up to 1400 K was developed and used for the studies of the effect of the preheating on the impact response and on the "dynamic" phase diagrams of pure metals (U, Ti, Fe, Co, Ag), and ionic compounds (KCl, KBr). The studies show that the increase of the shear strength of the shock-loaded metal with temperature (first reported by Kanel et al. 1996) is typical for pure FCC (Al, Ag, Cu) and some other (Sn, U) metals, and for the ionic crystals. In the metals with BCC lattice (Mo: Duffy and Ahrens 1994, Fe: Zaretsky 2009) such thermal hardening was not observed. It was found that when a pure element approaches the temperature of either a first or second order phase transition the result is a 50-100-% increase of the shear strength of the low-temperature phase. At the same time the presence of a small (~0.5 %) amount of impurities may lead to a five-fold decrease of the strength as it takes place in the vicinity of the Curie point of Ni. Applying the same technique to the study of shear stress relaxation (elastic precursor decay) near the transformation temperature may aid in understanding the mechanisms of these anomalies.

  13. Utilization of high-frequency Rayleigh waves in near-surface geophysics

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.

    2004-01-01

    Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.

  14. Transonic flow past a wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1952-01-01

    A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.

  15. Sound Velocity and Strength of Beryllium along the Principal Hugoniot using Quartz Windows

    NASA Astrophysics Data System (ADS)

    McCoy, Chad; Knudson, Marcus; Desjarlais, Michael

    2017-06-01

    The measurement of the interface wave profile is a traditional method to determine the strength of a shocked material. A novel technique was developed to enable wave profile measurements with quartz windows, extending the range of pressures where wave profile measurements are possible beyond lithium fluoride windows. The technique uses the quartz sound velocity to map Lagrangian characteristics from the shock front back to the material interface and determine the particle velocity profile in a sample. This technique was applied to experiments conducted on beryllium at the Sandia Z Accelerator. We present measurements of the longitudinal and bulk sound velocity across the beryllium shock-melt transition and the strength of solid beryllium for pressures from 130 to 200 GPa. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Field Demonstrations of Five Geophysical Methods that Could Be Used to Characterize Deposits of Alluvial Aggregate

    USGS Publications Warehouse

    Ellefsen, K.J.; Burton, B.L.; Lucius, J.E.; Haines, S.S.; Fitterman, D.V.; Witty, J.A.; Carlson, D.; Milburn, B.; Langer, W.H.

    2007-01-01

    Personnel from the U.S. Geological Survey and Martin Marietta Aggregates, Inc., conducted field demonstrations of five different geophysical methods to show how these methods could be used to characterize deposits of alluvial aggregate. The methods were time-domain electromagnetic sounding, electrical resistivity profiling, S-wave reflection profiling, S-wave refraction profiling, and P-wave refraction profiling. All demonstrations were conducted at one site within a river valley in central Indiana, where the stratigraphy consisted of 1 to 2 meters of clay-rich soil, 20 to 35 meters of alluvial sand and gravel, 1 to 6 meters of clay, and multiple layers of limestone and dolomite bedrock. All geophysical methods, except time-domain electromagnetic sounding, provided information about the alluvial aggregate that was consistent with the known geology. Although time-domain electromagnetic sounding did not work well at this site, it has worked well at other sites with different geology. All of these geophysical methods complement traditional methods of geologic characterization such as drilling.

  17. Deflagration Wave Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steadymore » deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.« less

  18. Generation of periodic intrusions at Suruga Bay when the Kuroshio follows a large meandering path

    NASA Astrophysics Data System (ADS)

    Katsumata, Takaaki

    2016-07-01

    We measured the vertical profiles of currents at the eastern mouth of the Suruga Bay using a moored acoustic Doppler current profiler (ADCP). Currents vertical profiles were found to be mostly barotropic in structure when intrusions occurred at the eastern mouth of the bay. Warm-water intrusions at the Suruga Bay and sea level elevations at the bay and at islands on the Izu Ridge located off the bay have the same period of 26 days. The temporal variation in the sea levels occurs in response to Kuroshio frontal waves, and the two phases are consistent. The sea level rise propagates from Hachijo Island to the Suruga Bay via Miyake Island and Kozu Island, i.e., from off the Suruga Bay to in or near the bay. The perturbation of the sea level along the Izu Ridge occurs as waves with a period of 26 days, a wavelength of 500 km, and a phase speed of 23 cm/sec. The propagated waves and those of the Kuroshio frontal waves have the same features. This means that the periodic inflows at the eastern mouth of the Suruga Bay are caused by the passage of Kuroshio frontal waves off the bay.

  19. Quantification of Beach Profile Change

    DTIC Science & Technology

    1988-01-01

    complex fluid motion over an irregular bottom, and absence of rigorous descriptions of broken waves and sediment-sediment interaction, also make the...monochromatic and irregular waves for a dune-like foreshore with and without a significant surf zone. For one case starting from a beach without...34foreshore", mono- chromatic waves produced a bar, whereas irregular waves of significant height and peak spectral period of the monochromatic waves did

  20. Explicit wave action conservation for water waves on vertically sheared flows

    NASA Astrophysics Data System (ADS)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical structure of the currents in wave modelling which is currently universal, might lead to significant errors in wave amplitude and the predicted wave ray paths. An extension of the work toward the more complex case of turbulent currents will also be discussed.

  1. The {sech}( {\\hat{ξ }} ) -Type Profiles: A Swiss-Army Knife for Exact Analytical Modeling of Thermal Diffusion and Wave Propagation in Graded Media

    NASA Astrophysics Data System (ADS)

    Krapez, J.-C.

    2018-07-01

    This work deals with the exact analytical modeling of transfer phenomena in heterogeneous materials exhibiting one-dimensional continuous variations of their properties. Regarding heat transfer, it has recently been shown that by applying a Liouville transformation and multiple Darboux transformations, infinite sequences of solvable profiles of thermal effusivity can be constructed together with the associated temperature (exact) solutions, all in closed-form expressions (vs. the diffusion-time variable and with a growing number of parameters). In addition, a particular class of profiles, the so-called {sech}( {\\hat{ξ }} ) -type profiles, exhibit high agility and at the same time parsimony. In this paper we delve further into the description of these solvable profiles and their properties. Most importantly, their quadrupole formulation is provided, enabling smooth synthetic profiles of effusivity of arbitrary complexity to be built, and allowing the corresponding temperature dynamic response to be obtained very easily thereafter. Examples are given with increasing variability of the effusivity and an increasing number of elementary profiles. These highly flexible profiles are equally relevant to providing an exact analytical solution to wave propagation problems in 1D graded media (i.e., Maxwell's equations, the acoustic equation, the telegraph equation, etc.). From now on, whether it be for diffusion-like or wave-like problems, when the leading properties present (possibly piecewise-) continuously heterogeneous profiles, the classical staircase model can be advantageously replaced by a "high-level" quadrupole model consisting of one or more {sech}( {\\hat{ξ }} ) -type profiles, which makes the latter a true Swiss-Army knife for analytical modeling.

  2. Near-Surface Geophysical Imaging of Deformation Associated with the Daytona Beach Sand Blow Deposits, Lee County, Arkansas

    NASA Astrophysics Data System (ADS)

    Rohrer, M.; Harris, J. B.; Cearley, C.; Teague, M.

    2017-12-01

    Within the past decade or so, paleoseismologic and geophysical studies at the Daytona Beach (DB) site in east-central Arkansas have reported earthquake-induced liquefaction (sand blows) along a prominent NW-trending lineament dated to approximately 5.5 ka. A recent compressional-wave (P-wave) seismic reflection survey acquired by the U. S. Geological Survey (USGS) along Highway 243 in Lee County, Arkansas, across the DB sand blow cluster, identified a previously unknown fault zone that is likely associated with the liquefaction. However, the USGS data were not able to image the Quaternary section (<60 m deep) and show a direct connection between the deeper faulting and the sand blows. In order to investigate the near-surface structure of the fault zone, we acquired an integrated geophysical data set consisting of 430-m-long shear-wave (S-wave) seismic reflection and ground penetrating radar (GPR) profiles above the deformation imaged on the USGS profile. The S-wave reflection data were collected using a 24-channel, towable landstreamer and the seismic energy was generated by a sledgehammer/I-beam source. The GPR data were collected with a cart-mounted 250-MHz system, using a 0.5-m antenna spacing and a 0.10-m step size. The processed seismic profile exhibits coherent reflection energy throughout the Quaternary section. Changes in reflection amplitude and coherency, offset reflections, and abundant diffractions suggest the presence of a complex zone of high-angle faults in the shallow subsurface coincident with the mapped lineament. Folded shallow reflections show that the deformation extends upward to within 10 m of the surface. Furthermore, the GPR profile images a distinct zone of deformation in the very near surface (<1.5 m deep) that is coincident with the upward projection of the deformation imaged on the S-wave seismic reflection profile.

  3. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  4. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  5. Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface

    NASA Astrophysics Data System (ADS)

    MacDowell, Luis G.

    2017-08-01

    In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.

  6. Comparison of Earthquake Damage Patterns and Shallow-Depth Vs Structure Across the Napa Valley, Inferred From Multichannel Analysis of Surface Waves (MASW) and Multichannel Analysis of Love Waves (MALW) Modeling of Basin-Wide Seismic Profiles

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Catchings, R.; Strayer, L. M.; Goldman, M.; Criley, C.; Sickler, R. R.; Boatwright, J.

    2017-12-01

    We conducted an active-source seismic investigation across the Napa Valley (Napa Valley Seismic Investigation-16) in September of 2016 consisting of two basin-wide seismic profiles; one profile was 20 km long and N-S-trending (338°), and the other 15 km long and E-W-trending (80°) (see Catchings et al., 2017). Data from the NVSI-16 seismic investigation were recorded using a total of 666 vertical- and horizontal-component seismographs, spaced 100 m apart on both seismic profiles. Seismic sources were generated by a total of 36 buried explosions spaced 1 km apart. The two seismic profiles intersected in downtown Napa, where a large number of buildings were red-tagged by the City following the 24 August 2014 Mw 6.0 South Napa earthquake. From the recorded Rayleigh and Love waves, we developed 2-Dimensional S-wave velocity models to depths of about 0.5 km using the multichannel analysis of surface waves (MASW) method. Our MASW (Rayleigh) and MALW (Love) models show two prominent low-velocity (Vs = 350 to 1300 m/s) sub-basins that were also previously identified from gravity studies (Langenheim et al., 2010). These basins trend N-W and also coincide with the locations of more than 1500 red- and yellow-tagged buildings within the City of Napa that were tagged after the 2014 South Napa earthquake. The observed correlation between low-Vs, deep basins, and the red-and yellow-tagged buildings in Napa suggests similar large-scale seismic investigations can be performed. These correlations provide insights into the likely locations of significant structural damage resulting from future earthquakes that occur adjacent to or within sedimentary basins.

  7. Convective and Wave Signatures in Ozone Profiles Over the Equatorial Americas: Views from TC4 (2007) and SHADOZ

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; MacFarlane, Alaina M.; Morris, Gary A.; Yorks, John E.; Miller, Sonya K.; Taubman, Brett F.; Verver, Ge; Voemel, Holger; Avery, Melody A.; Hair, Johnathan W.; hide

    2009-01-01

    During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.

  8. Microtremor exploration for shallow S-wave velocity structure in Bandung Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Pramatadie, Andi Muhamad; Yamanaka, Hiroaki; Chimoto, Kosuke; Afnimar Collaboration; Koketsu, Kazuki; Sakaue, Minoru; Miyake, Hiroe; Sengara, I. Wayan; Sadisun, Imam A.

    2017-05-01

    We have conducted a microtremor survey for shallow S-wave velocity profiles to be used for seismic hazard evaluation in the Bandung Basin, Indonesia. In the survey, two arrays were deployed temporarily at each of 29 sites, by installing seven vertical sensors in triangular configurations with side lengths from 1 to 16 m. Records of vertical microtremors from each array were used to estimate Rayleigh wave phase velocity spectra using the spatial autocorrelation method, as well as the horizontal-to-vertical spectral ratio obtained at the centre of the arrays. Phase velocities at sites on the basin margin exhibit higher values than those obtained in the central part of the basin, in a frequency range of 7 to 30 Hz. The phase velocity data were used to deduce S-wave velocity profiles of shallow soil using a hybrid heuristic inversion method. We validated our inversion models by comparing observed horizontal-to-vertical spectral ratios with ellipticities of the fundamental mode of Rayleigh waves, calculated for the inversion models. The S-wave velocity profiles in the area can be characterised by two soft layers over a firm engineering basement that has an S-wave velocity of 500 m/s. The S-wave velocities of the two layers are 120 and 280 m/s on average. The distribution of the averaged S-wave velocity in the top 30 m clearly indicates low values in the eastern central part and high values in the edge of the basin. The amplification is large in the areas with low velocity layers. In addition, we have proposed an empirical relation between the amplification factor and the topographical slope in the area.

  9. Convective wave breaking in the KdV equation

    NASA Astrophysics Data System (ADS)

    Brun, Mats K.; Kalisch, Henrik

    2018-03-01

    The KdV equation is a model equation for waves at the surface of an inviscid incompressible fluid, and it is well known that the equation describes the evolution of unidirectional waves of small amplitude and long wavelength fairly accurately if the waves fall into the Boussinesq regime. The KdV equation allows a balance of nonlinear steepening effects and dispersive spreading which leads to the formation of steady wave profiles in the form of solitary waves and cnoidal waves. While these wave profiles are solutions of the KdV equation for any amplitude, it is shown here that there for both the solitary and the cnoidal waves, there are critical amplitudes for which the horizontal component of the particle velocity matches the phase velocity of the wave. Solitary or cnoidal solutions of the KdV equation which surpass these amplitudes feature incipient wave breaking as the particle velocity exceeds the phase velocity near the crest of the wave, and the model breaks down due to violation of the kinematic surface boundary condition. The condition for breaking can be conveniently formulated as a convective breaking criterion based on the local Froude number at the wave crest. This breaking criterion can also be applied to time-dependent situations, and one case of interest is the development of an undular bore created by an influx at a lateral boundary. It is shown that this boundary forcing leads to wave breaking in the leading wave behind the bore if a certain threshold is surpassed.

  10. Variations in Temperature at the Base of the Lithosphere Beneath the Archean Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Mareschal, J.; Jaupart, C. P.

    2013-12-01

    Most of the variations in surface heat flux in stable continents are caused by variations in crustal heat production, with an almost uniform heat flux at the base of the crust ( 15+/-3 mW/m2). Such relatively small differences in Moho heat flux cannot be resolved by heat flow data alone, but they lead to important lateral variations in lithospheric temperatures and thicknesses. In order to better constrain temperatures in the lower lithosphere, we have combined surface heat flow and heat production data from the southern Superior Province in Canada with vertical shear wave velocity profiles obtained from surface wave inversion. We use the Monte-Carlo method to generate lithospheric temperature profiles from which shear wave velocity can be calculated for a given mantle composition. We eliminate thermal models which yield lithospheric and sub-lithospheric velocities that do not fit the shear wave velocity profile. Surface heat flux being constrained, the free parameters of the thermal model are: the mantle heat flux, the mantle heat production, the crustal differentiation index (ratio of surface to bulk crustal heat production) and the temperature of the mantle isentrope. Two conclusions emerge from this study. One is that, for some profiles, the vertical variations in shear wave velocities cannot be accounted for by temperature alone but also require compositional changes within the lithosphere. The second is that there are long wavelength horizontal variations in mantle temperatures (~80-100K) at the base of the lithosphere and in the mantle below

  11. Multiple Bloch surface waves in visible region of light at the interfaces between rugate filter/rugate filter and rugate filter/dielectric slab/rugate filter

    NASA Astrophysics Data System (ADS)

    Ullah Manzoor, Habib; Manzoor, Tareq; Hussain, Masroor; Manzoor, Sanaullah; Nazar, Kashif

    2018-04-01

    Surface electromagnetic waves are the solution of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary-value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials in the visible region of light. In the first problem, the interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab of 400 nm is included between two semi-infinite symmetric rugate filters. Numerical results show that multiple Bloch surface waves of different phase speeds, different polarization states, different degrees of localization and different field profiles are propagated at the interface between two semi-infinite rugate filters. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.

  12. Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria

    NASA Astrophysics Data System (ADS)

    Adegbola, R. B.; Oyedele, K. F.; Adeoti, L.; Adeloye, A. B.

    2016-09-01

    We present a method that utilizes multichannel analysis of surface waves (MASW), which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D) structure reflective of the depth and surface wave velocity distribution within a depth of 0-15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.

  13. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less

  14. An Airborne Millimeter-Wave FM-CW Radar for Thickness Profiling of Freshwater Ice

    DTIC Science & Technology

    1992-11-01

    commercial and recreational application, including safety and trafficability surveys. A proto- type broadband millimeter wave (26.5 to 40 GHz) Frequency...and utility for ice safety and traffica- appropriate antenna for transmission. Morey (1974) bility studies. Other important applications include...resolution and a 2.7- which can provide reliable safety survey profiling for GHz center frequency, that is capable of airborne pro- the entire practical

  15. Theory of Electromagnetic Surface Waves in Plasma with Smooth Boundaries

    NASA Astrophysics Data System (ADS)

    Kuzelev, M. V.

    2018-05-01

    A theory of nonpotential surface waves in plasma with smooth boundaries is developed. The complex frequencies of surface waves for plasma systems of different geometries and different profiles of the plasma density are calculated. Expressions for the rates of collisionless damping of surface waves due to their resonance interaction with local plasma waves of continuous spectrum are obtained. The influence of collisions in plasma is also considered.

  16. Dark solitons, breathers, and rogue wave solutions of the coupled generalized nonlinear Schrödinger equations.

    PubMed

    Priya, N Vishnu; Senthilvelan, M; Lakshmanan, M

    2014-06-01

    We construct dark-dark soliton, general breather (GB), Akhmediev breather (AB), Ma soliton (MS), and rogue wave (RW) solutions of a coupled generalized nonlinear Schrödinger (CGNLS) equation. While dark-dark solitons are captured in the defocusing regime of the CGNLS system, the other solutions, namely, GB, AB, MS, and RW, are identified in the focusing regime. We also analyze the structures of GB, AB, MS, and RW profiles with respect to the four-wave mixing parameter. We show that when we increase the value of the real part of the four-wave mixing parameter, the number of peaks in the breather profile increases and the width of each peak shrinks. Interestingly, the direction of this profile also changes due to this change. As far as the RW profile is concerned the width of the peak becomes very thin when we increase the value of this parameter. Further, we consider the RW solution as the starting point, derive AB, MS, and GB in the reverse direction, and show that the solutions obtained in both directions match each other. In the course of the reverse analysis we also demonstrate how to capture the RW solutions directly from AB and MS.

  17. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    NASA Astrophysics Data System (ADS)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  18. Describing Site Amplification for Surface Waves in Realistic Basins

    NASA Astrophysics Data System (ADS)

    Bowden, D. C.; Tsai, V. C.

    2017-12-01

    Standard characterizations of site-specific site response assume a vertically-incident shear wave; given a 1D velocity profile, amplification and resonances can be calculated based on conservation of energy. A similar approach can be applied to surface waves, resulting in an estimate of amplification relative to a hard rock site that is different in terms of both amount of amplification and frequency. This prediction of surface-wave site amplification has been well validated through simple simulations, and in this presentation we explore the extent to which a 1D profile can explain observed amplifications in more realistic scenarios. Comparisons of various simple 2D and 3D simulations, for example, allow us to explore the effect of different basin shapes and the relative importance of effects such as focusing, conversion of wave-types and lateral surface wave resonances. Additionally, the 1D estimates for vertically-incident shear waves and for surface waves are compared to spectral ratios of historic events in deep sedimentary basins to demonstrate the appropriateness of the two different predictions. This difference in amplification responses between the wave types implies that a single measurement of site response, whether analytically calculated from 1D models or empirically observed, is insufficient for regions where surface waves play a strong role.

  19. Journal and Wave Bearing Impedance Calculation Software

    NASA Technical Reports Server (NTRS)

    Hanford, Amanda; Campbell, Robert

    2012-01-01

    The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.

  20. Simplified method for the calculation of irregular waves in the coastal zone

    NASA Astrophysics Data System (ADS)

    Leont'ev, I. O.

    2011-04-01

    A method applicable for the estimation of the wave parameters along a set bottom profile is suggested. It takes into account the principal processes having an influence on the waves in the coastal zone: the transformation, refraction, bottom friction, and breaking. The ability to use a constant mean value of the friction coefficient under conditions of sandy shores is implied. The wave breaking is interpreted from the viewpoint of the concept of the limiting wave height at a given depth. The mean and root-mean-square wave heights are determined by the height distribution function, which transforms under the effect of the breaking. The verification of the method on the basis of the natural data shows that the calculation results reproduce the observed variations of the wave heights in a wide range of conditions, including profiles with underwater bars. The deviations from the calculated values mostly do not exceed 25%, and the mean square error is 11%. The method does not require a preliminary setting and can be implemented in the form of a relatively simple calculator accessible even for an inexperienced user.

  1. Numerical analysis of internal solitary wave generation around a Island in Kuroshio Current using MITgcm.

    NASA Astrophysics Data System (ADS)

    Kodaira, Tsubasa; Waseda, Takuji

    2013-04-01

    We have conducted ADCP and CTD measurements from 31/8/2010 to 2/9/2010 at the Miyake Island, located approximately 180 km south of Tokyo. The Kuroshio Current approached the island in this period, and the PALSAR image showed parabolic bright line upstream of the island. This bright line may be a surface signature of large amplitude internal solitary wave. Although our measurements did not explicitly show evidence of the internal solitary wave, critical condition might have been satisfied because of the Kuroshio Current and strong seasonal thermocline. To discover the generation mechanism of the large amplitude internal solitary wave at the Miyake Island, we have conducted non-hydrostatic numerical simulation with the MITgcm. A simple box domain, with open boundaries at all sides, is used. The island is simplified to circular cylinder or Gaussian Bell whose radius is 3km at ocean surface level. The size of the domain is 40kmx40kmx500m for circular cylinder cases and 80kmx80kmx500m for Gaussian bell cases. By looking at our CTD data, we have chosen for initial and boundary conditions a tanh function for vertical temperature profile. Salinity was kept constant for simplicity. Vertical density profile is also described by tanh function because we adopt linear type of equation of state. Vertical velocity profile is constant or linearly changed with depth; the vertical mean speed corresponds to the linear phase speed of the first baroclinic mode obtained by solving the eigen-value problem. With these configurations, we have conducted two series of simulations: shear flow through cylinder and uniform flow going through Gaussian Bell topography. Internal solitary waves were generated in front of the cylinder for the first series of simulations with shear flow. The generated internal waves almost purely consisted of 1st baroclinic component. Their intensities were linearly related with upstream vertical shear strength. As the internal solitary wave became larger, its width became wider compared to the KdV solution described by Grimshaw (2002). This is predicted because higher order analytical solution for 2-layer fluids, i.e. the eKdV solution, gives broader solitary wave shape than that of the KdV solution because of the cubic nonlinear term. When we look at the surface velocity distribution, a parabolic shape corresponding to internal solitary wave is clearly seen. According to the fully nonlinear theoretical model for internal wave between two fluids having background linear shear flow profiles (Choi and Camassa1999), the shape of internal wave is influenced by the velocity shear as well. However, we could not clarify the effect of vertical shear because there is no fully nonlinear analytical solution for large amplitude internal wave in continuously stratified fluid. Second series of simulations with uniform flow going through Gaussian Bell topography show that internal solitary wave shows up from sides of the topography. This generation is similar to the one developed in lee side of sill topography by tidal flow. With broader bell topography, generated internal waves become larger. This makes sense because forcing region is wider. A horizontal shape of the internal solitary wave is not parabolic but the two bending line forms from the sides of the island. However, no solitary wave in front of the island develops. Our results imply that vertical shear profile is needed for the formation of the depression type internal solitary, and explains the parabolic bright line observed in the SAR image

  2. Exact analytical modeling of lightwave propagation in planar media with arbitrarily graded index profiles

    NASA Astrophysics Data System (ADS)

    Krapez, J.-C.

    2018-02-01

    Applying the Darboux transformation in the optical-depth space allows building infinite chains of exact analytical solutions of the electromagnetic (EM) fields in planar 1D-graded dielectrics. As a matter of fact, infinite chains of solvable admittance profiles (e.g. refractive-index profiles, in the case of non-magnetic materials), together with the related EM fields are simultaneously and recursively obtained. The whole procedure has received the name "PROFIDT method" for PROperty and FIeld Darboux Transformation method. By repeating the Darboux transformations we can find out progressively more complex profiles and their EM solutions. An alternative is to stop after the first step and settle for a particular class of four-parameter admittance profiles that were dubbed of "sech(ξ)-type". These profiles are highly flexible. For this reason, they can be used as elementary bricks for building and modeling profiles of arbitrary shape. In addition, the corresponding transfer matrix involves only elementary functions. The sub-class of "sech(ξ)-type" profiles with horizontal end-slopes (S-shaped function) is particularly interesting: these can be used for high-level modeling of piecewise-sigmoidal refractive-index profiles encountered in various photonic devices such as matchinglayers, antireflection layers, rugate filters, chirped mirrors and photonic crystals. These simple analytical tools also allow exploring the fascinating properties of a new kind of structure, namely smooth quasicrystals. They can also be applied to model propagation of other types of waves in graded media such as acoustic waves and electric waves in tapered transmission lines.

  3. Effects of obliquely opposing and following currents on wave propagation in a new 3D wave-current basin

    NASA Astrophysics Data System (ADS)

    Lieske, Mike; Schlurmann, Torsten

    2016-04-01

    INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common 3D wave analysis method, the Bayesian Directional Spectrum method (BDM). BDM was presented by Hashimoto et al. (1988). Lastly, identification of the wave-current interaction, the results from experiment with simultaneous waves and currents are compared with results for only-currents and only-waves in order to identify and exemplify the significance of nonlinear interaction processes. RESULTS The first results of the wave-current interaction show, as expected, a reduction in the wave height in the direction of flow and an increase in wave heights against the flow with unidirectional monochromatic waves. The superposition of current and orbital velocities cannot be conducted linearly. Furthermore, the results show a current domination for low wave periods and wave domination for larger wave periods. The criterion of a current or wave domination will be presented in the presentation. ACKNOWLEDGEMENT The support of the KFKI research project "Seegangsbelastungen (Seele)" (Contract No. 03KIS107) by the German "Federal Ministry of Education and Research (BMBF)" is gratefully acknowledged.

  4. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  5. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    NASA Astrophysics Data System (ADS)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  6. Middle Atmosphere Program. Handbook for MAP, volume 20

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1986-01-01

    Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.

  7. Index of Refraction Measurements and Window Corrections for PMMA under Shock Compression

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Williamson, David; Proud, William

    2011-06-01

    Symmetric plate impact experiments were performed to investigate the change in the refractive index of PMMA under shock loading. Flyer and target geometries allowed the measurement of shock velocity, particle velocity, and refractive index in the shocked state, using the simultaneous application of VISAR (532 nm) and Het-V (1550 nm). The change in refractive index of PMMA as a function of density is generally considered to be well described by the Gladstone-Dale relationship, meaning that the ``apparent'' velocity measured by a laser velocity interferometer is the ``true'' velocity, and hence there is no window correction. The results presented characterise the accuracy of this assumption at peak stresses up to 2 GPa.

  8. The Solsticial Pause on Mars. Part 1; A Planetary Wave Reanalysis

    NASA Technical Reports Server (NTRS)

    Lewis, Stephen R.; Mulholland, David P.; Read, Peter L.; Montabone, Luca; Wilson, R. John; Smith, Michael D.

    2015-01-01

    Large-scale planetary waves are diagnosed from an analysis of profiles retrieved from the Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft during its scientific mapping phase. The analysis is conducted by assimilating thermal profiles and total dust opacity retrievals into a Mars global circulation model. Transient waves are largest throughout the northern hemisphere autumn, winter and spring period and almost absent during the summer. The southern hemisphere exhibits generally weaker transient wave behavior. A striking feature of the low-altitude transient waves in the analysis is that they show a broad subsidiary minimum in amplitude centred on the winter solstice, a period when the thermal contrast between the summer hemisphere and the winter pole is strongest and baroclinic wave activity might be expected to be strong. This behavior, here called the 'solsticial pause,' is present in every year of the analysis. This strong pause is under-represented in many independent model experiments, which tend to produce relatively uniform baroclinic wave activity throughout the winter. This paper documents and diagnoses the transient wave solsticial pause found in the analysis; a companion paper investigates the origin of the phenomenon in a series of model experiments.

  9. Explosive Products EOS: Adjustment for detonation speed and energy release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wavemore » with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.« less

  10. Wave transport in the South Australian Basin

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; James, Charles

    2018-02-01

    The specification of the dynamics of the air-sea boundary layer is of fundamental importance to oceanography. There is a voluminous literature on the subject, however a strong link between the velocity profile due to waves and that due to turbulent processes in the wave boundary layer does not appear to have been established. Here we specify the velocity profile due to the wave field using the Toba spectrum, and the velocity profile due to turbulence at the sea surface by the net effect of slip and wave breaking in which slip is the dominant process. Under this specification, the inertial coupling of the two fluids for a constant viscosity Ekman layer yields two independent estimates for the frictional parameter (which is a function of the 10 m drag coefficient and the peak wave period) of the coupled system, one of which is due to the surface Ekman current and the other to the peak wave period. We show that the median values of these two estimates, evaluated from a ROMS simulation over the period 2011-2012 at a station on the Southern Shelf in the South Australian Basin, are similar in strong support of the air-sea boundary layer model. On integrating over the planetary boundary layer we obtain the Ekman transport (w*2/f) and the wave transport due to a truncated Toba spectrum (w*zB/κ) where w* is the friction velocity in water, f is the Coriolis parameter, κ is von Karman's constant and zB = g T2/8 π2 is the depth of wave influence in which g is the acceleration of gravity and T is the peak wave period. A comparison of daily estimates shows that the wave transports from the truncated Toba spectrum and from the SWAN spectral model are highly correlated (r = 0.82) and that on average the Toba estimates are about 86% of the SWAN estimates due to the omission of low frequency tails of the spectra, although for wave transports less than about 0.5 m2 s-1 the estimates are almost equal. In the South Australian Basin the Toba wave transport is on average about 42% of the Ekman transport.

  11. Self-consistent discharge growing model of helicon plasma

    NASA Astrophysics Data System (ADS)

    Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao

    2015-11-01

    Helicon plasma is a high-density and low-temperature plasma generated by the electromagnetic (Helicon) wave excited in the plasma. It is thought to be useful for various applications including electric thrusters. Physics of helicon plasma production involves such fundamental processes as the wave propagation (dispersion relation), collisional and non-collisional wave damping, plasma heating, ionization/recombination of neutral particles, and modification of the dispersion relation by newly ionized plasma. There remain a number of unsolved physical issues such as, how the Helicon and the TG modes influence the plasma density, electron temperature and their spatial profiles. While the Helicon mode is absorbed in the bulk plasma, the TG mode is mostly absorbed near the edge of the plasma. The local power deposition in the helicon plasma is mostly balanced by collisional loss. This local power balance can give rise to the inhomogeneous electron temperature profile that leads to time evolution of density profile and dispersion relation. In our study, we construct a self-consistent model of the discharge evolution that includes the wave excitation, electron heat transfer, and diffusion of charged particles.

  12. Visualization of interaction of Mach waves with a bow shock

    NASA Astrophysics Data System (ADS)

    Pavlov, Al.; Golubev, M.; Kosinov, A.; Pavlov, A.

    2017-10-01

    The work presents results of investigation of couple weak waves with a bow shock at Mach number M = 2. The waves produced by a small 2D roughness installed on the nozzle inset or side wall of working section. Hot-wire measurements revealed profile of the waves to be similar to N-wave. The visualization was done by means of schlieren technique and interferential AVT SA method. The inclination angle change of the Mach waves at free-stream section and bow shock section was found.

  13. Plasma wave observations at comet giacobini-zinner.

    PubMed

    Scarf, F L; Coroniti, F V; Kennel, C F; Gurnett, D A; Ip, W H; Smith, E J

    1986-04-18

    The plasma wave instrument on the International Cometary Explorer (ICE) detected bursts of strong ion acoustic waves almost continuously when the spacecraft was within 2 million kilometers of the nucleus of comet Giacobini-Zinner. Electromagnetic whistlers and low-level electron plasma oscillations were also observed in this vast region that appears to be associated with heavy ion pickup. As ICE came closer to the anticipated location of the bow shock, the electromagnetic and electrostatic wave levels increased significantly, but even in the midst of this turbulence the wave instrument detected structures with familiar bow shock characteristics that were well correlated with observations of localized electron heating phenomena. Just beyond the visible coma, broadband waves with amplitudes as high as any ever detected by the ICE plasma wave instrument were recorded. These waves may account for the significant electron heating observed in this region by the ICE plasma probe, and these observations of strong wave-particle interactions may provide answers to longstanding questions concerning ionization processes in the vicinity of the coma. Near closest approach, the plasma wave instrument detected broadband electrostatic noise and a changing pattern of weak electron plasma oscillations that yielded a density profile for the outer layers of the cold plasma tail. Near the tail axis the plasma wave instrument also detected a nonuniform flux of dust impacts, and a preliminary profile of the Giacobini-Zinner dust distribution for micrometer-sized particles is presented.

  14. An explanation for the anomalous wave profiles obtained in composition B-3 impacted by flat nosed steel rods

    NASA Astrophysics Data System (ADS)

    James, H. R.; Gustavsen, R. L.; Dattelbaum, D. M.

    2017-01-01

    In previous work involving firing flat nosed steel rods into the 60/40 RDX/TNT explosive Composition B-3, we found an apparently anomalous "hump" in particle velocity wave profiles. The "hump" occurred on the center-line established by the rod, and at relatively late times, > 1 µs, after detonation onset. Several explanations, including that of a late time reaction, were postulated. This report will present evidence that the anomalous late time "hump" is due to the arrival of rarefaction waves from the rod's periphery. Simple analytic calculations and reactive-burn hydro-code calculations will be presented supporting this hypothesis.

  15. Unidirectional Transition Waves in Bistable Lattices

    NASA Astrophysics Data System (ADS)

    Nadkarni, Neel; Arrieta, Andres F.; Chong, Christopher; Kochmann, Dennis M.; Daraio, Chiara

    2016-06-01

    We present a model system for strongly nonlinear transition waves generated in a periodic lattice of bistable members connected by magnetic links. The asymmetry of the on-site energy wells created by the bistable members produces a mechanical diode that supports only unidirectional transition wave propagation with constant wave velocity. We theoretically justify the cause of the unidirectionality of the transition wave and confirm these predictions by experiments and simulations. We further identify how the wave velocity and profile are uniquely linked to the double-well energy landscape, which serves as a blueprint for transition wave control.

  16. Surf Zone Properties and On/Offshore Sediment Transport.

    DTIC Science & Technology

    1982-06-01

    and Random Waves," Proceedings, 14th Coastal Engineering Conference, 1974, pp.558-574. Levi - Civita , T., "Determination Rigoreuse des Ondes...on Beach 2-6 Classification of Normal and Storm Beach 23 Profiles by Dean 2-7 Classification of Normal and Storm Beach 24 Profiles by Author 2-8 Two ...the surface and near bottom, return flow near mid-depth before wave breaking. There were considerable laboratory evidences supporting the two -dimen

  17. Stochastic model of temporal changes of wind spectra in the free atmosphere

    NASA Technical Reports Server (NTRS)

    Huang, Y. H.

    1974-01-01

    Data for wind profile spectra changes with respect to time from Cape Kennedy, Florida for the time period from 28 November 1964 to 11 May 1967 have been analyzed. A universal statistical distribution of the spectral change which encompasses all vertical wave numbers, wind speed categories, and elapsed time has been developed for the standard deviation of the time changes of detailed wind profile spectra as a function of wave number.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haker, C.D.; Rix, G.J.; Lai, C.G.

    The seismic stability of municipal solid waste (MSW) landfills is often a significant consideration in landfill design. However, until recently, the dynamic properties of the waste material itself, which govern the seismic response of MSW landfills, have often been approximated or assumed. Tests to determine the dynamic properties of the material directly have been limited. Measurements of seismic surface waves were used to determine the dynamic properties of MSW, which are the initial tangent shear modulus and low-strain hysteretic damping ratio. Surface wave tests were performed at three MSW landfills to determine their shear modulus and damping ratio profiles. Surfacemore » wave tests are ideal for measuring the near-surface shear modulus and damping profiles of MSW landfills because the tests are non-invasive, an advantage for testing environmentally sensitive waste material. Factors which influence the dynamic properties of waste including density, confinement, age, and placement techniques are used to interpret the measured shear modulus and damping ratio profiles.« less

  19. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal

    2015-11-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.

  20. DARLA: Data Assimilation and Remote Sensing for Littoral Applications

    DTIC Science & Technology

    2017-03-01

    in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is...the surface. The velocity profiles are obtained from a pulse-coherent acoustic Doppler sonar on a wave-following platform, termed a Surface Wave

  1. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, S.; Paetzold, M.; Häusler, B.; Hinson, D. P.; Peter, K.; Tyler, G. L.

    2017-12-01

    Atmospheric waves play a crucial role in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and for the coupling of the different atmospheric regions on Mars. Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, gravity waves, etc...). Atmospheric waves are also known to exist in the middle atmosphere of Mars ( 70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars. Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to 40-50 km) and electron density profiles in the ionosphere of Mars. Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement. A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations. The MaRS experiment is funded by DLR under grant 50QM1401.

  2. Waves in the middle and upper atmosphere of Mars as seen by the Radio Science Experiment MaRS on Mars Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia Anna; Paetzold, Martin; Häusler, Bernd; Hinson, David P.; Peter, Kerstin; Tyler, G. Leonard

    2017-10-01

    Atmospheric waves play a crucial role for the dynamics in the Martian atmosphere. They are responsible for the redistribution of momentum, energy and dust and the coupling of the different atmospheric regions on Mars.Almost all kinds of waves have been observed in the lower atmosphere (e.g. stationary and transient waves, baroclinic waves as well as migrating and non-migrating thermal tides, and gravity waves). Atmospheric waves are also known to exist in the middle atmosphere of Mars (~70-120 km, e.g. by the SPICAM instrument on Mars Express). In the thermosphere, thermal tides have been observed e.g. by radio occultation or accelerometer measurements on MGS. Recently, the NGIMS instrument on MAVEN reported gravity waves in the thermosphere of Mars.Radio Science profiles from the Mars Express Radio Science experiment MaRS on Mars Express can analyse the temperature, pressure and neutral number density profiles in the lower atmosphere (from a few hundred metres above the surface up to ~ 40-50 km) and electron density profiles in the ionosphere of Mars.Wavelike structures have been detected below the main ionospheric layers (M1 & M2) and in the topside of the ionosphere. The two coherent frequencies of the MaRS experiment allow to discriminate between plasma density fluctuations in the ionosphere and Doppler related frequency shifts caused by spacecraft movement.A careful analysis of the observed electron density fluctuations in combination with sensitivity studies of the radio occultation technique will be used to classify the observed fluctuations.The MaRS experiment is funded by DLR under grant 50QM1401.

  3. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-05-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  4. In-depth study of intra-Stark spectroscopy in the x-ray range in relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Oks, E.; Dalimier, E.; Faenov, A. Ya; Angelo, P.; Pikuz, S. A.; Pikuz, T. A.; Skobelev, I. Yu; Ryazanzev, S. N.; Durey, P.; Doehl, L.; Farley, D.; Baird, C.; Lancaster, K. L.; Murphy, C. D.; Booth, N.; Spindloe, C.; McKenna, P.; Neumann, N.; Roth, M.; Kodama, R.; Woolsey, N.

    2017-12-01

    Intra-Stark spectroscopy (ISS) is the spectroscopy within the quasistatic Stark profile of a spectral line. The present paper advances the ISS-based study of the relativistic laser-plasma interaction from our previous paper (Oks et al 2017 Opt. Express 25 1958). By improving the experimental conditions and the diagnostics, it provides an in-depth spectroscopic study of the simultaneous production of the Langmuir waves and of the ion acoustic turbulence at the surface of the relativistic critical density. It demonstrates a reliable reproducibility of the Langmuir-wave-induced dips at the same locations in the experimental profiles of Si XIV Ly-beta line, as well as of the deduced parameters (fields) of the Langmuir waves and ion acoustic turbulence in several individual 1 ps laser pulses and of the peak irradiances of 1-3 × 1020 W cm-2. Besides, this study employs for the first time the most rigorous condition of the dynamic resonance, on which the ISS phenomenon is based, compared to all previous studies in all kinds of plasmas in a wide range of electron densities. It shows how different interplays between the Langmuir wave field and the field of the ion acoustic turbulence lead to distinct spectral line profiles, including the disappearance of the Langmuir-wave-induced dips.

  5. Control of Current Profile and Instability by Radiofrequency Wave Injection in JT-60U and Its Applicability in JT-60SA

    NASA Astrophysics Data System (ADS)

    Isayama, A.; Suzuki, T.; Hayashi, N.; Ide, S.; Hamamatsu, K.; Fujita, T.; Hosoyama, H.; Kamada, Y.; Nagasaki, K.; Oyama, N.; Ozeki, T.; Sakata, S.; Seki, M.; Sueoka, M.; Takechi, M.; Urano, H.

    2007-09-01

    Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 was demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.

  6. Control of Current Profile and Instability by Radiofrequency Wave Injection in JT-60U and Its Applicability in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isayama, A.; Suzuki, T.; Hayashi, N.

    2007-09-28

    Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 wasmore » demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.« less

  7. 1D profiling using highly dispersive guided waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno; Zon, Tim van; Enthoven, Daniel

    2015-03-31

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. There are many situations where the actual defect location is not accessible, e.g., a pipe support or a partially buried pipe. Guided wave tomography has been developed to reconstruct the wall thickness. In case of bottom of the line corrosion, i.e., a single corrosion pit, a simpler approach may be followed. Data is collectedmore » in a pit-catch configuration at the 12 o'clock position using highly dispersive guided waves. The phase spectrum is used to invert for a wall thickness profile in the circumferential direction, assuming a Gaussian defect profile. An EMAT sensor design has been made to measure at the 12 o'clock position of a pipe. The concept is evaluated on measured data, showing good sizing capabilities on a variety simple defect profiles.« less

  8. Peak expiratory flow profiles delivered by pump systems. Limitations due to wave action.

    PubMed

    Miller, M R; Jones, B; Xu, Y; Pedersen, O F; Quanjer, P H

    2000-06-01

    Pump systems are currently used to test the performance of both spirometers and peak expiratory flow (PEF) meters, but for certain flow profiles the input signal (i.e., requested profile) and the output profile can differ. We developed a mathematical model of wave action within a pump and compared the recorded flow profiles with both the input profiles and the output predicted by the model. Three American Thoracic Society (ATS) flow profiles and four artificial flow-versus-time profiles were delivered by a pump, first to a pneumotachograph (PT) on its own, then to the PT with a 32-cm upstream extension tube (which would favor wave action), and lastly with the PT in series with and immediately downstream to a mini-Wright peak flow meter. With the PT on its own, recorded flow for the seven profiles was 2.4 +/- 1.9% (mean +/- SD) higher than the pump's input flow, and similarly was 2.3 +/- 2.3% higher than the pump's output flow as predicted by the model. With the extension tube in place, the recorded flow was 6.6 +/- 6.4% higher than the input flow (range: 0.1 to 18.4%), but was only 1.2 +/- 2.5% higher than the output flow predicted by the model (range: -0.8 to 5.2%). With the mini-Wright meter in series, the flow recorded by the PT was on average 6.1 +/- 9.1% below the input flow (range: -23.8 to 2. 5%), but was only 0.6 +/- 3.3% above the pump's output flow predicted by the model (range: -5.5 to 3.9%). The mini-Wright meter's reading (corrected for its nonlinearity) was on average 1.3 +/- 3.6% below the model's predicted output flow (range: -9.0 to 1. 5%). The mini-Wright meter would be deemed outside ATS limits for accuracy for three of the seven profiles when compared with the pump's input PEF, but this would be true for only one profile when compared with the pump's output PEF as predicted by the model. Our study shows that the output flow from pump systems can differ from the input waveform depending on the operating configuration. This effect can be predicted with reasonable accuracy using a model based on nonsteady flow analysis that takes account of pressure wave reflections within pump systems.

  9. Estimating hydrodynamic roughness in a wave-dominated environment with a high-resolution acoustic Doppler profiler

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.; Wilson, D.J.; Chisholm, T.A.; Gelfenbaum, G.R.

    2005-01-01

    Hydrodynamic roughness is a critical parameter for characterizing bottom drag in boundary layers, and it varies both spatially and temporally due to variation in grain size, bedforms, and saltating sediment. In this paper we investigate temporal variability in hydrodynamic roughness using velocity profiles in the bottom boundary layer measured with a high-resolution acoustic Doppler profiler (PCADP). The data were collected on the ebb-tidal delta off Grays Harbor, Washington, in a mean water depth of 9 m. Significant wave height ranged from 0.5 to 3 m. Bottom roughness has rarely been determined from hydrodynamic measurements under conditions such as these, where energetic waves and medium-to-fine sand produce small bedforms. Friction velocity due to current u*c and apparent bottom roughness z0a were determined from the PCADP burst mean velocity profiles using the law of the wall. Bottom roughness kB was estimated by applying the Grant-Madsen model for wave-current interaction iteratively until the model u*c converged with values determined from the data. The resulting kB values ranged over 3 orders of magnitude (10-1 to 10-4 m) and varied inversely with wave orbital diameter. This range of kB influences predicted bottom shear stress considerably, suggesting that the use of time-varying bottom roughness could significantly improve the accuracy of sediment transport models. Bedform height was estimated from kB and is consistent with both ripple heights predicted by empirical models and bedforms in sonar images collected during the experiment. Copyright 2005 by the American Geophysical Union.

  10. Plasma Pancakes and Deep Cavities Generated by High Power Radio Waves from the Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Briczinski, S. J., Jr.; Zawdie, K.; Huba, J.; Siefring, C. L.; Sulzer, M. P.; Nossa, E.; Aponte, N.; Perillat, P.; Jackson-Booth, N.

    2017-12-01

    Breakdown of the neutral atmosphere at ionospheric altitudes can be achieved with high power HF waves that reflect on the bottomside of the ionosphere. For overdense heating (i.e., wave frequency < maximum plasma frequency in the F-layer), the largest electric fields in the plasma are found just below the reflection altitude. There, electromagnetic waves are converted into electron plasma (Langmir) waves and ion acoustic waves. These waves are measured by scattering of the 430 MHz radar at Arecibo to from an enhanced plasma line. The photo-electron excitation of Langmuir waves yields a weaker plasma-line profile that shows the complete electron profile with the radar. Once HF enhanced Langmuir waves are formed, they can accelerate the photo-electron population to sufficient energies for neutral breakdown and enhanced ionization inside the HF Radio Beam. Plasma pancakes are produced because the breakdown process continues to build up plasma on bottom of the breakdown clouds and recombination occurs on the older breakdown plasma at the top of these clouds. Thus, the plasma pancake falls with altitude from the initial HF wave reflection altitude near 250 km to about 160 km where ion-electron recombination prevents the plasma cloud from being sustained by the high power HF. Experiments in March 2017 have produced plasma pancakes with about 100 Mega-Watts effective radiated power 5.1 MHz with the Arecibo HF Facility. Observations using the 430 MHz radar show falling plasma pancakes that disappear at low altitudes and reform at the F-layer critical reflection altitude. Sometimes the periodic and regular falling motion of the plasma pancakes is influenced by Acoustic Gravity Waves (AGW) propagating through the modified HF region. A rising AGW can cause the plasma pancake to reside at nearly constant altitude for 10 to 20 minutes. Dense cavities are also produced by high power radio waves interacting with the F-Layer. These structures are observed with the Arecibo 430 MHz radar as intense bight-outs in the plasma profile. Multiple cavities are seen simultaneously.

  11. Experimental investigation of standing wave effect in dual-frequency capacitively coupled argon discharges: role of a low-frequency source

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian

    2018-05-01

    It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio-temporal distributions of the electron-impact excitation rate by phase resolved optical emission spectroscopy.

  12. Unique determination of stratified steady water waves from pressure

    NASA Astrophysics Data System (ADS)

    Chen, Robin Ming; Walsh, Samuel

    2018-01-01

    Consider a two-dimensional stratified solitary wave propagating through a body of water that is bounded below by an impermeable ocean bed. In this work, we study how such a wave can be recovered from data consisting of the wave speed, upstream and downstream density and velocity profile, and the trace of the pressure on the bed. In particular, we prove that this data uniquely determines the wave, both in the (real) analytic and Sobolev regimes.

  13. An Experimental Study Comparing Droplet Production by a Strong Plunging and a Weak Spilling Breaking Water Waves

    NASA Astrophysics Data System (ADS)

    Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James

    2017-11-01

    In this study, the production of droplets by two mechanically generated breaking water waves is investigated in a wave tank. A strong plunging breaker and weak spilling breaker are generated repeatedly with a programmable wave maker by using two dispersively focused wave packets with the same wave maker motion profile shape (average frequency 1.15 Hz) and two overall amplitude factors. The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a high speed (650 Hz) cinematic digital in-line holographic system positioned at various locations along a horizontal plane that is 1 cm above the maximum wave crest height. The measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the two breaking waves is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  14. A Waveguide Antenna with an Extended Angular Range for Remote Steering of Wave-Beam Direction

    NASA Astrophysics Data System (ADS)

    Sobolev, D. I.; Denisov, G. G.

    2018-03-01

    A new method for increasing the angular range of a waveguide antenna for remote steering of the wave-beam direction in thermonuclear-fusion experimental setups with plasma magnetic confinement is proposed. Characteristics for large beam inclination angles can be improved using the synthesized nonuniform waveguide profile. For small angles, the characteristics remain invariable, the waveguide profile differs only slightly from the regular shape, and can be fit to limited waveguide-channel sizes.

  15. Wave Impact on a Wall: Comparison of Experiments with Similarity Solutions

    NASA Astrophysics Data System (ADS)

    Wang, A.; Duncan, J. H.; Lathrop, D. P.

    2014-11-01

    The impact of a steep water wave on a fixed partially submerged cube is studied with experiments and theory. The temporal evolution of the water surface profile upstream of the front face of the cube in its center plane is measured with a cinematic laser-induced fluorescence technique using frame rates up to 4,500 Hz. For a small range of cube positions, the surface profiles are found to form a nearly circular arc with upward curvature between the front face of the cube and a point just downstream of the wave crest. As the crest approaches the cube, the effective radius of this portion of the profile decreases rapidly. At the same time, the portion of the profile that is upstream of the crest approaches a straight line with a downward slope of about 15°. As the wave impact continues, the circular arc shrinks to zero radius with very high acceleration and a sudden transition to a high-speed vertical jet occurs. This flow singularity is modeled with a power-law scaling in time, which is used to create a time-independent system of equations of motion. The scaled governing equations are solved numerically and the similarly scaled measured free surface shapes, are favorably compared with the solutions. The support of the Office of Naval Research is gratefully acknowledged.

  16. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  17. The effects of profiles on supersonic jet noise

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Bhat, T. R. S.

    1994-01-01

    The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.

  18. Evaluation of Tsunami Run-Up on Coastal Areas at Regional Scale

    NASA Astrophysics Data System (ADS)

    González, M.; Aniel-Quiroga, Í.; Gutiérrez, O.

    2017-12-01

    Tsunami hazard assessment is tackled by means of numerical simulations, giving as a result, the areas flooded by tsunami wave inland. To get this, some input data is required, i.e., the high resolution topobathymetry of the study area, the earthquake focal mechanism parameters, etc. The computational cost of these kinds of simulations are still excessive. An important restriction for the elaboration of large scale maps at National or regional scale is the reconstruction of high resolution topobathymetry on the coastal zone. An alternative and traditional method consists of the application of empirical-analytical formulations to calculate run-up at several coastal profiles (i.e. Synolakis, 1987), combined with numerical simulations offshore without including coastal inundation. In this case, the numerical simulations are faster but some limitations are added as the coastal bathymetric profiles are very simply idealized. In this work, we present a complementary methodology based on a hybrid numerical model, formed by 2 models that were coupled ad hoc for this work: a non-linear shallow water equations model (NLSWE) for the offshore part of the propagation and a Volume of Fluid model (VOF) for the areas near the coast and inland, applying each numerical scheme where they better reproduce the tsunami wave. The run-up of a tsunami scenario is obtained by applying the coupled model to an ad-hoc numerical flume. To design this methodology, hundreds of worldwide topobathymetric profiles have been parameterized, using 5 parameters (2 depths and 3 slopes). In addition, tsunami waves have been also parameterized by their height and period. As an application of the numerical flume methodology, the coastal parameterized profiles and tsunami waves have been combined to build a populated database of run-up calculations. The combination was tackled by means of numerical simulations in the numerical flume The result is a tsunami run-up database that considers real profiles shape, realistic tsunami waves, and optimized numerical simulations. This database allows the calculation of the run-up of any new tsunami wave by interpolation on the database, in a short period of time, based on the tsunami wave characteristics provided as an output of the NLSWE model along the coast at a large scale domain (regional or National scale).

  19. A gradient-based model parametrization using Bernstein polynomials in Bayesian inversion of surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Gosselin, Jeremy M.; Dosso, Stan E.; Cassidy, John F.; Quijano, Jorge E.; Molnar, Sheri; Dettmer, Jan

    2017-10-01

    This paper develops and applies a Bernstein-polynomial parametrization to efficiently represent general, gradient-based profiles in nonlinear geophysical inversion, with application to ambient-noise Rayleigh-wave dispersion data. Bernstein polynomials provide a stable parametrization in that small perturbations to the model parameters (basis-function coefficients) result in only small perturbations to the geophysical parameter profile. A fully nonlinear Bayesian inversion methodology is applied to estimate shear wave velocity (VS) profiles and uncertainties from surface wave dispersion data extracted from ambient seismic noise. The Bayesian information criterion is used to determine the appropriate polynomial order consistent with the resolving power of the data. Data error correlations are accounted for in the inversion using a parametric autoregressive model. The inversion solution is defined in terms of marginal posterior probability profiles for VS as a function of depth, estimated using Metropolis-Hastings sampling with parallel tempering. This methodology is applied to synthetic dispersion data as well as data processed from passive array recordings collected on the Fraser River Delta in British Columbia, Canada. Results from this work are in good agreement with previous studies, as well as with co-located invasive measurements. The approach considered here is better suited than `layered' modelling approaches in applications where smooth gradients in geophysical parameters are expected, such as soil/sediment profiles. Further, the Bernstein polynomial representation is more general than smooth models based on a fixed choice of gradient type (e.g. power-law gradient) because the form of the gradient is determined objectively by the data, rather than by a subjective parametrization choice.

  20. Sub-basaltic Imaging of Ethiopian Mesozoic Sediments Using Surface Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Mammo, T.; Maguire, P.; Denton, P.; Cornwell, D.

    2003-12-01

    The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) involved the deployment of a 400km NW-SE cross-rift profile across the Main Ethiopian Rift. The profile extended to about 150km on either side of the rift over the uplifted Ethiopian plateau characterized by voluminous Tertiary flood basalts covering a thick sequence of Mesozoic sediments. These consist of three major stratigraphic units, the Cretaceous Upper Sandstone (medium grained, friable and moderately to well-sorted) overlying the Jurassic Antalo limestone (with intercalations of marl, shale, mudstone and gypsum) above the Triassic Adigrat sandstone. These sediments are suggested to be approximately 1.5km thick at the north-western end of the profile, thickening to the south-east. They are considered a possible hydrocarbon reservoir and therefore crucial to the economy of Ethiopia. The EAGLE cross-rift profile included the deployment of 97 Guralp 6TD seismometers (30sec - 80Hz bandwidth) at a nominal 5km spacing. A 5.75 tonne explosion from the Muger quarry detonated specifically for the EAGLE project generated the surface waves used in this study. Preliminary processing involving the multiple filter technique has enabled the production of group velocity dispersion curves. These curves have been inverted to provide 1-D shear wave models, with the intention of providing an in-line cross-rift profile of Mesozoic sediment thickness. Preliminary results suggest that the sediments can be distinguished from both overlying plateau basalt and underlying basement, with their internal S-wave velocity structure possibly indicating that the three sediment units described above can be separately identified.

  1. Ridge-Runnel and Swash Dynamics Field Experiment on a Steep Meso-Tidal Beach

    NASA Astrophysics Data System (ADS)

    Figlus, J.; Song, Y.-K.; Chardon-Maldonado, P.; Puleo, J. A.

    2014-12-01

    Ridge-runnel (RR) systems are morphological features that may form in the intermittently wet and dry zone of the beach immediately after storm events. Their onshore migration provides a natural way of recovery for an eroded beach but the detailed swash interactions and complex feedback mechanisms between wave dynamics, sediment transport and profile evolution are not well understood and challenging to measure in-situ. During a storm, elevated water levels and large waves can significantly erode the beach profile in a matter of hours through offshore-directed sediment transport. The beach recovery process, on the other hand, occurs over a much longer time period during less intense wave conditions. In the beginning of this 3-week field campaign at South Bethany Beach, Delaware, a Nor'easter, eroded significant portions of this steep, meso-tidal beach and formed a pronounced RR system which then evolved during the less energetic conditions after the storm. An extensive cross-shore array of sensors was installed immediately after the storm measuring near-bed velocity profiles (5 Nortek Vectrino Profilers) and horizontal velocities (6 Sontec Electromagnetic Current Meters; 1 side-looking Nortek Vectrino) suspended sediment concentrations (10 Optical Backscatter Sensors OBS-3+), and pressure fluctuations (7 GE Druck pressure transducers) in the swash zone. Dense topography surveys of the RR system were conducted twice a day during low tide conditions with a Leica RTK GPS rover system. In addition, sediment grab samples along the entire RR cross-section were collected daily. An offshore ADCP with surface wave tracking capability (Nortek 2MHz AWAC AST) measured directional wave spectra and current profiles at a water depth of approximately 6m. The RR system showed rapid onshore migration over the two tide cycles immediately after the storm, followed by a period of vertical ridge accretion of up to 3 ft at certain locations. A first look at the collected data and analysis results related to the feedback mechanisms between wave forcing and RR evolution is presented along with a discussion of difficulties encountered during the experiment.

  2. Large scale atmospheric waves in the Venus mesosphere as seen by the VeRa Radio Science instrument on Venus Express

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, Bernd; Hinson, David P.; Tyler, G. Leonard; Andert, Thomas P.; Bird, Michael K.; Imamura, Takeshi; Pätzold, Martin; Remus, Stefan

    2015-04-01

    Atmospheric waves on all spatial scales play a crucial role in the redistribution of energy, momentum, and atmospheric constituent in planetary atmosphere and are thought to be involved in the development and maintenance of the atmospheric superrotation on Venus. The Venus Express Radio-Science Experiment VeRa sounded the Venus neutral atmosphere and ionosphere in Earth occultation geometry using the spacecraft radio subsystem at two coherent frequencies. Radial profiles of neutral number density, covering the altitude range 40-90 km, are then converted to vertical profiles of temperature and pressure, assuming hydrostatic equilibrium. The extensive VeRa data set enables us to study global scale atmospheric wave phenomena like thermal tides in the mesosphere and troposphere. A pronounced local time dependency of the temperature is found in the mesosphere at different altitude levels. Wave-2 structures dominate the low latitude range in the upper mesosphere while the higher latitudes show a strong wave-1 structure at the top of the cloud layer. The investigation of these wave structures provides valuable information about the energy transport in the atmosphere.

  3. Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urrutia, J. M.; Stenzel, R. L.

    Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers aremore » shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon “eigenmodes” with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.« less

  4. Crossflow Stability and Transition Experiments in Swept-Wing Flow

    NASA Technical Reports Server (NTRS)

    Dagenhart, J. Ray; Saric, William S.

    1999-01-01

    An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.

  5. Role of lower hybrid waves in ion heating at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.

    2017-05-01

    One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.

  6. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sati, Priti; Tripathi, V. K.

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of lowmore » frequency electromagnetic wave.« less

  7. Background - oriented schlieren analysis of shockwave propagation from encased and uncased explosives

    NASA Astrophysics Data System (ADS)

    Romo, Cynthia Paulinne

    High speed digital video images of encased and uncased large-scale explosions of Ammonium Nitrate Fuel Oil (ANFO), and Composition C-4 (C-4) at different masses were analyzed using the background oriented schlieren visualization technique. The encased explosions for ANFO and C-4 took place in the form of car bombs and pipe bombs respectively. The data obtained from the video footage were used to produce shock wave radius vs time profiles, as well as Mach number vs shock wave position profiles. The experimentally measured shock wave data for each explosive material were scaled using Sachs' scaling laws to a 1 kilogram charge at normal temperature and pressure. The results of C-4 were compared to literature, while the results of scaled ANFO were compared to each other, and to the results obtained during the uncased detonations. The comparison between the scaled profiles gathered from the encased and uncased detonations resulted in the identification of the relative amount of energy lost due to the fragmentation of the case. The C-4 profiles were compared to those obtained from computational simulations performed via CTH. The C-4 results showed an agreement in the data reported in literature and that obtained using the background-oriented schlieren (BOS) technique, as well as a good overall agreement with the profiles obtained computationally.

  8. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  9. FAST MAGNETOACOUSTIC WAVE TRAINS OF SAUSAGE SYMMETRY IN CYLINDRICAL WAVEGUIDES OF THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shestov, S.; Kuzin, S.; Nakariakov, V. M., E-mail: sshestov@gmail.com

    2015-12-01

    Fast magnetoacoustic waves guided along the magnetic field by plasma non-uniformities, in particular coronal loops, fibrils, and plumes, are known to be highly dispersive, which lead to the formation of quasi-periodic wave trains excited by a broadband impulsive driver, e.g., a solar flare. We investigated the effects of cylindrical geometry on the fast sausage wave train formation. We performed magnetohydrodynamic numerical simulations of fast magnetoacoustic perturbations of a sausage symmetry, propagating from a localized impulsive source along a field-aligned plasma cylinder with a smooth radial profile of the fast speed. The wave trains are found to have pronounced period modulation,more » with the longer instant period seen in the beginning of the wave train. The wave trains also have a pronounced amplitude modulation. Wavelet spectra of the wave trains have characteristic tadpole features, with the broadband large-amplitude heads preceding low-amplitude quasi-monochromatic tails. The mean period of the wave train is about the transverse fast magnetoacoustic transit time across the cylinder. The mean parallel wavelength is about the diameter of the wave-guiding plasma cylinder. Instant periods are longer than the sausage wave cutoff period. The wave train characteristics depend on the fast magnetoacoustic speed in both the internal and external media, the smoothness of the transverse profile of the equilibrium quantities, and also the spatial size of the initial perturbation. If the initial perturbation is localized at the axis of the cylinder, the wave trains contain higher radial harmonics that have shorter periods.« less

  10. Measurement of beam profiles by terahertz sensor card with cholesteric liquid crystals.

    PubMed

    Tadokoro, Yuzuru; Nishikawa, Tomohiro; Kang, Boyoung; Takano, Keisuke; Hangyo, Masanori; Nakajima, Makoto

    2015-10-01

    We demonstrate a sensor card with cholesteric liquid crystals (CLCs) for terahertz (THz) waves generated from a nonlinear crystal pumped by a table-top laser. A beam profile of the THz waves is successfully visualized as color change by the sensor card without additional electronic devices, power supplies, and connecting cables. Above the power density of 4.3  mW/cm2, the approximate beam diameter of the THz waves is measured using the hue image that is digitalized from the picture of the sensor card. The sensor card is low in cost, portable, and suitable for various situations such as THz imaging and alignment of THz systems.

  11. A scenario for magnonic spin-wave traps

    PubMed Central

    Busse, Frederik; Mansurova, Maria; Lenk, Benjamin; von der Ehe, Marvin; Münzenberg, Markus

    2015-01-01

    Spatially resolved measurements of the magnetization dynamics on a thin CoFeB film induced by an intense laser pump-pulse reveal that the frequencies of resulting spin-wave modes depend strongly on the distance to the pump center. This can be attributed to a laser generated temperature profile. We determine a shift of 0.5 GHz in the spin-wave frequency due to the spatial thermal profile induced by the femtosecond pump pulse that persists for up to one nanosecond. Similar experiments are presented for a magnonic crystal composed of a CoFeB-film based antidot lattice with a Damon Eshbach mode at the Brillouin zone boundary and its consequences are discussed. PMID:26279466

  12. Mechanisms of wave‐driven water level variability on reef‐fringed coastlines

    USGS Publications Warehouse

    Buckley, Mark L.; Lowe, Ryan J.; Hansen, Jeff E; van Dongeren, Ap R.; Storlazzi, Curt

    2018-01-01

    Wave‐driven water level variability (and runup at the shoreline) is a significant cause of coastal flooding induced by storms. Wave runup is challenging to predict, particularly along tropical coral reef‐fringed coastlines due to the steep bathymetric profiles and large bottom roughness generated by reef organisms, which can violate assumptions in conventional models applied to open sandy coastlines. To investigate the mechanisms of wave‐driven water level variability on a reef‐fringed coastline, we performed a set of laboratory flume experiments on an along‐shore uniform bathymetric profile with and without bottom roughness. Wave setup and waves at frequencies lower than the incident sea‐swell forcing (infragravity waves) were found to be the dominant components of runup. These infragravity waves were positively correlated with offshore wave groups, signifying they were generated in the surf zone by the oscillation of the breakpoint. On the reef flat and at the shoreline, the low‐frequency waves formed a standing wave pattern with energy concentrated at the natural frequencies of the reef flat, indicating resonant amplification. Roughness elements used in the flume to mimic large reef bottom roughness reduced low frequency motions on the reef flat and reduced wave run up by 30% on average, compared to the runs over a smooth bed. These results provide insight into sea‐swell and infragravity wave transformation and wave setup dynamics on steep‐sloped coastlines, and the effect that future losses of reef bottom roughness may have on coastal flooding along reef‐fringed coasts.

  13. Dipping-interface mapping using mode-separated Rayleigh waves

    USGS Publications Warehouse

    Luo, Y.; Xia, J.; Xu, Y.; Zeng, C.; Miller, R.D.; Liu, Q.

    2009-01-01

    Multichannel analysis of surface waves (MASW) method is a non-invasive geophysical technique that uses the dispersive characteristic of Rayleigh waves to estimate a vertical shear (S)-wave velocity profile. A pseudo-2D S-wave velocity section is constructed by aligning 1D S-wave velocity profiles at the midpoint of each receiver spread that are contoured using a spatial interpolation scheme. The horizontal resolution of the section is therefore most influenced by the receiver spread length and the source interval. Based on the assumption that a dipping-layer model can be regarded as stepped flat layers, high-resolution linear Radon transform (LRT) has been proposed to image Rayleigh-wave dispersive energy and separate modes of Rayleigh waves from a multichannel record. With the mode-separation technique, therefore, a dispersion curve that possesses satisfactory accuracy can be calculated using a pair of consecutive traces within a mode-separated shot gather. In this study, using synthetic models containing a dipping layer with a slope of 5, 10, 15, 20, or 30 degrees and a real-world example, we assess the ability of using high-resolution LRT to image and separate fundamental-mode Rayleigh waves from raw surface-wave data and accuracy of dispersion curves generated by a pair of consecutive traces within a mode-separated shot gather. Results of synthetic and real-world examples demonstrate that a dipping interface with a slope smaller than 15 degrees can be successfully mapped by separated fundamental waves using high-resolution LRT. ?? Birkh??user Verlag, Basel 2009.

  14. Effect of knots on stress waves in lumber

    Treesearch

    C.C. Gerhards

    1982-01-01

    An impact stress wave was induced in the end of 2 by 6 lumber containing knots. Rather than a normal, perpendicular-to-the-axis profile in transiting by a knot, the stress wave tended to Iead in zones of clear wood in the direction of the slope of grain or slope of the annual rings and to lag behind the knot. Of three methods evaluated to time the stress wave, the...

  15. Breakthroughs in Low-Profile Leaky-Wave HPM Antennas

    DTIC Science & Technology

    2016-09-21

    information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and... traveling , fast-wave, leaky-wave class. 1.1. Overview of Previous Activities (1st thru 11th Quarter) During the first quarter, we prepared and...theory to guide the design of high-gain configurations (again, limited to 2D, H-plane representations) for linear, forward traveling -wave, leaky

  16. Imaging Basin Structure with Teleseismic Virtual Source Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Sheehan, A. F.; Yeck, W. L.; Miller, K. C.; Worthington, L. L.; Erslev, E.; Harder, S. H.; Anderson, M. L.; Siddoway, C. S.

    2011-12-01

    We demonstrate a case of using teleseisms recorded on single channel high frequency geophones to image upper crustal structure across the Bighorn Arch in north-central Wyoming. The dataset was obtained through the EarthScope FlexArray Bighorn Arch Seismic Experiment (BASE). In addition to traditional active and passive source seismic data acquisition, BASE included a 12 day continuous (passive source) deployment of 850 geophones with 'Texan' dataloggers. The geophones were deployed in three E-W lines in north-central Wyoming extending from the Powder River Basin across the Bighorn Mountains and across the Bighorn Basin, and two N-S lines on east and west flanks of the Bighorn Mountains. The station interval is roughly 1.5-2 km, good for imaging coherent shallow structures. The approach used in this study uses the surface reflection as virtual seismic source and reverberated teleseismic P-wave phase (PpPdp) (teleseismic P-wave reflected at receiver side free surface and then reflected off crustal seismic interface) to construct seismic profiles. These profiles are equivalent to conventional active source seismic reflection profiles except that high-frequency (up to 2.4 Hz) transmitted wave fields from distant earthquakes are used as sources. On the constructed seismic profiles, the coherent PpPdp phases beneath Powder River and Bighorn Basins are distinct after the source wavelet is removed from the seismograms by deconvolution. Under the Bighorn Arch, no clear coherent signals are observed. We combine phases PpPdp and Ps to constrain the averaged Vp/Vs: 2.05-2.15 for the Powder River Basin and 1.9-2.0 for the Bighorn Basin. These high Vp/Vs ratios suggest that the layers within which P-wave reverberates are sedimentary. Assuming Vp as 4 km/s under the Powder River Basin, the estimated thickness of sedimentary layer above reflection below the profile is 3-4.5 km, consistent with the depth of the top of the Tensleep Fm. Therefore we interpret the coherent PpPdp phases about 1-3 s after direct P-wave arrival as the reflections off the interface between the Paleozoic carbonates/sandstones and Mesozoic shales.

  17. Waves in the Mesosphere of Venus as seen by the Venus Express Radio Science Experiment VeRa

    NASA Astrophysics Data System (ADS)

    Tellmann, Silvia; Häusler, B.; Hinson, D. P.; Tyler, G.; Andert, T. P.; Bird, M. K.; Imamura, T.; Pätzold, M.; Remus, S.

    2013-10-01

    The Venus Express Radio Science Experiment (VeRa) has retrieved more than 700 profiles of the mesosphere and troposphere of Venus. These profiles cover a wide range of latitudes and local times, enabling study of atmospheric wave phenomena over a range spatial scales at altitudes of 40-90 km. In addition to quasi-horizontal waves and eddies on near planetary scales, diurnally forced eddies and thermal tides, small-scale gravity waves, and turbulence play a significant role in the development and maintenance of atmospheric super-rotation. Small-scale temperature variations with vertical wavelengths of 4 km or less have wave amplitudes reaching TBD km in the stable atmosphere above the tropopause, in contrast with much weaker temperature perturbations observed in the middle cloud layer below. The strength of gravity waves increases with latitude in both hemispheres. The results suggest that convection at low latitudes and topographical forcing at high northern latitudes—possibly in combination with convection and/or Kelvin-Helmholtz instabilities—play key roles in the genesis of gravity waves. Further, thermal tides also play an important role in the mesosphere. Diurnal and semi-diurnal wave modes are observed at different latitudes and altitudes. The latitudinal and height dependence of the thermal tide modes will be investigated.

  18. TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less

  19. TH-A-207B-01: Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less

  20. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    PubMed

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Comparison of a Physical and Numerical Mobile-Bed Model of Beach and T-Head Groin Interaction

    DTIC Science & Technology

    2011-05-01

    Hydraulic Centre’s Large Area Basin (LAB), utilizing a set of moveable wave generators capable of providing long-crested waves to match a variety...was conducted manually from a bridge as shown in Figure 4. The location of the transect (Profile 2) is shown in Figure 2. Planform morphology was...4. Physical model oblique view showing profile measurement location and bridge . 2617 The T-head groins and the shore-normal breakwater trunk at the

  2. Diffractive Alvarez lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barton, Ian M.; Dixit, Sham N.; Summers, Leslie J.

    2000-01-01

    A diffractive Alvarez lens is demonstrated that consists of two separate phase plates, each having complementary 16-level surface-relief profiles that contain cubic phase delays. Translation of these two components in the plane of the phase plates is shown to produce a variable astigmatic focus. Both spherical and cylindrical phase profiles are demonstrated with good accuracy, and the discrete surface-relief features are shown to cause less than {lambda}/10 wave-front aberration in the transmitted wave front over a 40 mmx80 mm region. (c) 2000 Optical Society of America.

  3. A metasurface carpet cloak for electromagnetic, acoustic and water waves.

    PubMed

    Yang, Yihao; Wang, Huaping; Yu, Faxin; Xu, Zhiwei; Chen, Hongsheng

    2016-01-29

    We propose a single low-profile skin metasurface carpet cloak to hide objects with arbitrary shape and size under three different waves, i.e., electromagnetic (EM) waves, acoustic waves and water waves. We first present a metasurface which can control the local reflection phase of these three waves. By taking advantage of this metasurface, we then design a metasurface carpet cloak which provides an additional phase to compensate the phase distortion introduced by a bump, thus restoring the reflection waves as if the incident waves impinge onto a flat mirror. The finite element simulation results demonstrate that an object can be hidden under these three kinds of waves with a single metasurface cloak.

  4. Non-Invasive Seismic Methods for Earthquake Site Classification Applied to Ontario Bridge Sites

    NASA Astrophysics Data System (ADS)

    Bilson Darko, A.; Molnar, S.; Sadrekarimi, A.

    2017-12-01

    How a site responds to earthquake shaking and its corresponding damage is largely influenced by the underlying ground conditions through which it propagates. The effects of site conditions on propagating seismic waves can be predicted from measurements of the shear wave velocity (Vs) of the soil layer(s) and the impedance ratio between bedrock and soil. Currently the seismic design of new buildings and bridges (2015 Canadian building and bridge codes) requires determination of the time-averaged shear-wave velocity of the upper 30 metres (Vs30) of a given site. In this study, two in situ Vs profiling methods; Multichannel Analysis of Surface Waves (MASW) and Ambient Vibration Array (AVA) methods are used to determine Vs30 at chosen bridge sites in Ontario, Canada. Both active-source (MASW) and passive-source (AVA) surface wave methods are used at each bridge site to obtain Rayleigh-wave phase velocities over a wide frequency bandwidth. The dispersion curve is jointly inverted with each site's amplification function (microtremor horizontal-to-vertical spectral ratio) to obtain shear-wave velocity profile(s). We apply our non-invasive testing at three major infrastructure projects, e.g., five bridge sites along the Rt. Hon. Herb Gray Parkway in Windsor, Ontario. Our non-invasive testing is co-located with previous invasive testing, including Standard Penetration Test (SPT), Cone Penetration Test and downhole Vs data. Correlations between SPT blowcount and Vs are developed for the different soil types sampled at our Ontario bridge sites. A robust earthquake site classification procedure (reliable Vs30 estimates) for bridge sites across Ontario is evaluated from available combinations of invasive and non-invasive site characterization methods.

  5. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    NASA Astrophysics Data System (ADS)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  6. Imaging feedback for histotripsy by characterizing dynamics of acoustic radiation force impulse (ARFI)-induced shear waves excited in a treated volume.

    PubMed

    Wang, Tzu-Yin; Hall, Timothy L; Xu, Zhen; Fowlkes, J Brian; Cain, Charles A

    2014-07-01

    Our previous study indicated that shear waves decay and propagate at a lower speed as they propagate into a tissue volume mechanically fractionated by histotripsy. In this paper, we hypothesize that the change in the shear dynamics is related to the degree of tissue fractionation, and can be used to predict histotripsy treatment outcomes. To test this hypothesis, lesions with different degrees of tissue fractionation were created in agar-graphite tissue phantoms and ex vivo kidneys with increasing numbers of therapy pulses, from 0 to 2000 pulses per treatment location. The therapy pulses were 3-cycle 750-kHz focused ultrasound delivered at a peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. The shear waves were excited by acoustic radiation force impulse (ARFI) focused at the center of the lesion. The spatial and temporal behavior of the propagating shear waves was measured with ultrasound plane wave imaging. The temporal displacement profile at a lateral location 10 mm offset to the shear excitation region was detected with M-mode imaging. The decay and delay of the shear waves were quantitatively characterized on the temporal displacement profile. Results showed significant changes in two characteristics on the temporal displacement profile: the peak-to-peak displacement decayed exponentially with increasing numbers of therapy pulses; the relative time-to-peak displacement increased with increasing numbers of therapy pulses, and appeared to saturate at higher numbers of pulses. Correspondingly, the degree of tissues fractionation, as indicated by the percentage of structurally intact cell nuclei, decreased exponentially with increasing numbers of therapy pulses. Strong linear correlations were found between the two characteristics and the degree of tissue fractionation. These results suggest that the characteristics of the shear temporal displacement profile may provide useful feedback information regarding the treatment outcomes.

  7. A new momentum integral method for approximating bed shear stress

    NASA Astrophysics Data System (ADS)

    Wengrove, M. E.; Foster, D. L.

    2016-02-01

    In nearshore environments, accurate estimation of bed stress is critical to estimate morphologic evolution, and benthic mass transfer fluxes. However, bed shear stress over mobile boundaries in wave environments is notoriously difficult to estimate due to the non-equilibrium boundary layer. Approximating the friction velocity with a traditional logarithmic velocity profile model is common, but an unsteady non-uniform flow field violates critical assumptions in equilibrium boundary layer theory. There have been several recent developments involving stress partitioning through an examination of the momentum transfer contributions that lead to improved estimates of the bed stress. For the case of single vertical profile observations, Mehdi et al. (2014) developed a full momentum integral-based method for steady-unidirectional flow that integrates the streamwise Navier-Stokes equation three times to an arbitrary position within the boundary layer. For the case of two-dimensional velocity observations, Rodriguez-Abudo and Foster (2014) were able to examine the momentum contributions from waves, turbulence and the bedform in a spatial and temporal averaging approach to the Navier-Stokes equations. In this effort, the above methods are combined to resolve the bed shear stress in both short and long wave dominated environments with a highly mobile bed. The confluence is an integral based approach for determining bed shear stress that makes no a-priori assumptions of boundary layer shape and uses just a single velocity profile time series for both the phase dependent case (under waves) and the unsteady case (under solitary waves). The developed method is applied to experimental observations obtained in a full scale laboratory investigation (Oregon State's Large Wave Flume) of the nearbed velocity field over a rippled sediment bed in oscillatory flow using both particle image velocimetry and a profiling acoustic Doppler velocimeter. This method is particularly relevant for small scale field observations and laboratory observations.

  8. Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER

    NASA Astrophysics Data System (ADS)

    Doyle, E. J.

    2006-10-01

    Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.

  9. Dynamic properties of ceramic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis ofmore » shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.« less

  10. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  11. Unsteady viscous effects in the flow over an oscillating surface. [mathematical model

    NASA Technical Reports Server (NTRS)

    Lerner, J. I.

    1972-01-01

    A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.

  12. Biphoton Generation Driven by Spatial Light Modulation: Parallel-to-Series Conversion

    NASA Astrophysics Data System (ADS)

    Zhao, Luwei; Guo, Xianxin; Sun, Yuan; Su, Yumian; Loy, M. M. T.; Du, Shengwang

    2016-05-01

    We demonstrate the generation of narrowband biphotons with controllable temporal waveform by spontaneous four-wave mixing in cold atoms. In the group-delay regime, we study the dependence of the biphoton temporal waveform on the spatial profile of the pump laser beam. By using a spatial light modulator, we manipulate the spatial profile of the pump laser and map it onto the two-photon entangled temporal wave function. This parallel-to-series conversion (or spatial-to-temporal mapping) enables coding the parallel classical information of the pump spatial profile to the sequential temporal waveform of the biphoton quantum state. The work was supported by the Hong Kong RGC (Project No. 601113).

  13. Numerical investigations of shock wave interaction with laminar boundary layer on compressor profile

    NASA Astrophysics Data System (ADS)

    Piotrowicz, M.; Flaszyński, P.

    2016-10-01

    The investigation of shockwave boundary layer interaction on suction side of transonic compressor blade is one of main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to look more closely into the flow structure on suction side of a profile, a design of generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results of flow structure on a suction side of the compressor profile investigations are presented. The numerical simulations are carried out for EARSM (Explicit Algebraic Reynolds Stress Model) turbulence model with transition model. The result are compared with oil flow visualisation, schlieren pictures, Pressure Sensitive Paint (PSP) and static pressure.

  14. Shapes of star-gas waves in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen H.

    1988-01-01

    Density-wave profile shapes are influenced by several effects. By solving viscous fluid equations, the nonlinear effects of the gas and its gravitational interaction with the stars can be analyzed. The stars are treated through a linear theory developed by Lin and coworkers. Short wavelength gravitational forces are important in determining the gas density profile shape. With the inclusion of disk finite thickness effects, the gas gravitational field remains important, but is significantly reduced at short wavelengths. Softening of the gas equation of state results in an enhanced response and a smoothing of the gas density profile. A Newtonian stress relation is marginally acceptable for HI gas clouds, but not acceptable for giant molecular clouds.

  15. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia A.; Brundage, Aaron L.; Dudley, Evan C.

    2009-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.4 GPa. Dynamic compaction measurements using low-density pressings approximately 64% theoretical maximum density (TMD) were obtained in a single-stage gas gun at impact velocities between 0.17-0.95 km/s. Experiments were conducted in a reverse ballistic arrangement in which the projectile contained the CL-20 powder bed and impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 1.3 GPa. Approved for public release, SAND2009-4810C.

  16. Coexisting rogue waves within the (2+1)-component long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2014-09-01

    The coexistence of two different types of fundamental rogue waves is unveiled, based on the coupled equations describing the (2+1)-component long-wave-short-wave resonance. For a wide range of asymptotic background fields, each family of three rogue wave components can be triggered by using a slight deterministic alteration to the otherwise identical background field. The ability to trigger markedly different rogue wave profiles from similar initial conditions is confirmed by numerical simulations. This remarkable feature, which is absent in the scalar nonlinear Schrödinger equation, is attributed to the specific three-wave interaction process and may be universal for a variety of multicomponent wave dynamics spanning from oceanography to nonlinear optics.

  17. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  18. Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.

    2001-01-01

    A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less

  19. Spatial and temporal characterization of relativistic electron enhancements during the Van Allen Probes era.

    NASA Astrophysics Data System (ADS)

    Pinto, V. A.; Sibeck, D. G.; Moya, P. S.; Lyons, L. R.; Kanekal, S. G.; Kletzing, C.

    2016-12-01

    During the Van Allen probes era from September 2012 to June 2016 we have identified 53 relativistic electron enhancement events determined by increases to 2x103 #/sr-1}s{-1}cm^{-2 and above in the >2 MeV electron fluxes at geostationary orbit as measured by the GOES 13 and 15 Energetic Particle Sensor (EPS) instrument. Using the Van Allen Probes ECT-REPT and GOES EPS instruments we have characterized the radial and temporal profiles of the events, grouping them according to how the increases propagate radially. Using OMNI data we have studied the statistical properties of the solar wind for each group of events and have classified similarities and differences that might be relevant for each enhancement profile. We have also studied temporal and spatial wave activity (ULF and EMIC waves) using GOES magnetometer data and Van Allen Probes EMFISIS data for the different groups of events and categorized the appearance of such waves for the different enhancement profiles.

  20. Linear sine wave profiling to machine instability targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Derek William; Martinez, John Israel

    2016-08-01

    Specialized machining processes and programming have been developed to deliver thin tin and copper Richtmyer-Meshkov instability targets that have different amplitude perturbations across the face of one 4-in.-diameter target. Typical targets have anywhere from two to five different regions of sine waves that have different amplitudes varying from 4 to 200 μm across the face of the target. The puck is composed of multiple rings that are zero press fit together and diamond turned to create a flat platform with a tolerance of 2 μm for the shock experiment. A custom software program was written in Labview to write themore » point-to-point program for the diamond-turning profiler through the X-Y-Z movements to cut the pure planar straight sine wave geometry. As a result, the software is optimized to push the profile of the whole part into the face while eliminating any unneeded passes that do not cut any material.« less

  1. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. D.; Chang, P. C.; Chiang, W. Y.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin withmore » a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.« less

  2. Theoretical study of the transonic lift of a double-wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1954-01-01

    A theoretical study is described of the aerodynamic characteristics at small angle of attack of a thin, double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis is carried out within the framework of the transonic (nonlinear) small-disturbance theory, and the effects of angle of attack are regarded as a small perturbation on the flow previously calculated at zero angle. The mixed flow about the front half of the profile is calculated by relaxation solution of a suitably defined boundary-value problem for transonic small-disturbance equation in the hodograph plane (i.e., the Tricomi equation). The purely supersonic flow about the rear half is found by an extension of the usual numerical method of characteristics. Analytical results are also obtained, within the framework of the same theory, for the range of speed in which the bow wave is attached and the flow is completely supersonic.

  3. Crossflow Stability and Transition Experiments in a Swept-Wing Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Dagenhart, John Ray

    1992-01-01

    An experimental examination of crossflow instability and transition on a 45 degree swept wing is conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized using both sublimating-chemical and liquid-crystal coatings. Extensive hot-wire measurements are conducted at several measurement stations across a single vortex track. The mean and travelling-wave disturbances are measured simultaneously. Stationary-crossflow disturbance profiles are determined by subtracting either a reference or a span-averaged velocity profile from the mean-velocity data. Mean, stationary-crossflow, and travelling-wave velocity data are presented as local boundary-layer profiles and as contour plots across a single stationary-crossflow vortex track. Disturbance-mode profiles and growth rates are determined. The experimental data are compared to predictions from linear stability theory.

  4. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas

    2009-04-01

    In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.

  5. Electroencephalographic profiles for differentiation of disorders of consciousness

    PubMed Central

    2013-01-01

    Background Electroencephalography (EEG) is best suited for long-term monitoring of brain functions in patients with disorders of consciousness (DOC). Mathematical tools are needed to facilitate efficient interpretation of long-duration sleep-wake EEG recordings. Methods Starting with matching pursuit (MP) decomposition, we automatically detect and parametrize sleep spindles, slow wave activity, K-complexes and alpha, beta and theta waves present in EEG recordings, and automatically construct profiles of their time evolution, relevant to the assessment of residual brain function in patients with DOC. Results Above proposed EEG profiles were computed for 32 patients diagnosed as minimally conscious state (MCS, 20 patients), vegetative state/unresponsive wakefulness syndrome (VS/UWS, 11 patients) and Locked-in Syndrome (LiS, 1 patient). Their interpretation revealed significant correlations between patients’ behavioral diagnosis and: (a) occurrence of sleep EEG patterns including sleep spindles, slow wave activity and light/deep sleep cycles, (b) appearance and variability across time of alpha, beta, and theta rhythms. Discrimination between MCS and VS/UWS based upon prominent features of these profiles classified correctly 87% of cases. Conclusions Proposed EEG profiles offer user-independent, repeatable, comprehensive and continuous representation of relevant EEG characteristics, intended as an aid in differentiation between VS/UWS and MCS states and diagnostic prognosis. To enable further development of this methodology into clinically usable tests, we share user-friendly software for MP decomposition of EEG (http://braintech.pl/svarog) and scripts used for creation of the presented profiles (attached to this article). PMID:24143892

  6. A new method for depth profiling reconstruction in confocal microscopy

    NASA Astrophysics Data System (ADS)

    Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe

    2018-05-01

    Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.

  7. Stability of a very coarse-grained beach at Carmel, California

    USGS Publications Warehouse

    Dingler, J.R.

    1981-01-01

    Monastery Beach at Carmel, California, is a pocket beach composed of very coarse to granular sediment. In profile, the beach has a well-defined berm crest; a steep foreshore; and a gently sloping, barless offshore covered by large, long-crested oscillation ripples. Carmel Submarine Canyon heads a few hundred meters offshore of the beach, and San Jose Creek, a small ephemeral steam, ponds onshore of the central part of the berm. Wave conditions vary greatly during a year because the beach lies open to the Pacific Ocean for azimuths between 270??-322??N whence come a variety of wave types. Even with a variable wave climate, Monastery Beach has maintained a swell profile for almost three years. Aperiodic beach surveys show that the beach responds little to seasonal changes in wave climate. Four survey lines maintained the same swell profile throughout the study period. The fifth line maintained a stable profile only across the foreshore; the berm was twice artificially breached during storms to prevent upstream flooding along San Jose Creek. In comparison, Carmel Beach, a nearby beach composed of medium sand, commonly alternates between swell and storm profiles. The increased stability of Monastery Beach relative to Carmel Beach is attributed to two factors: grain size differences and location within Carmel Bay. Rebuilding proceeded very slowly along the breached part of the berm at Monastery Beach. The probable cause of such a low recovery rate is that oscillation ripples trapped the sand that was carried offshore when San Jose Creek eroded the beach. The ripples, which are active under high-energy conditions, approach dormancy under low-energy conditions. Each ripple, therefore, acts like a reservoir, retaining sand during most swell conditions. ?? 1981.

  8. Multichannel analysis of surface waves

    USGS Publications Warehouse

    Park, C.B.; Miller, R.D.; Xia, J.

    1999-01-01

    The frequency-dependent properties of Rayleigh-type surface waves can be utilized for imaging and characterizing the shallow subsurface. Most surface-wave analysis relies on the accurate calculation of phase velocities for the horizontally traveling fundamental-mode Rayleigh wave acquired by stepping out a pair of receivers at intervals based on calculated ground roll wavelengths. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the whole wave field. Among these nonplanar, nonfundamental-mode Rayleigh waves (noise) are body waves, scattered and nonsource-generated surface waves, and higher-mode surface waves. The degree to which each of these types of noise contaminates the dispersion curve and, ultimately, the inverted shear-wave velocity profile is dependent on frequency as well as distance from the source. Multichannel recording permits effective identification and isolation of noise according to distinctive trace-to-trace coherency in arrival time and amplitude. An added advantage is the speed and redundancy of the measurement process. Decomposition of a multichannel record into a time variable-frequency format, similar to an uncorrelated Vibroseis record, permits analysis and display of each frequency component in a unique and continuous format. Coherent noise contamination can then be examined and its effects appraised in both frequency and offset space. Separation of frequency components permits real-time maximization of the S/N ratio during acquisition and subsequent processing steps. Linear separation of each ground roll frequency component allows calculation of phase velocities by simply measuring the linear slope of each frequency component. Breaks in coherent surface-wave arrivals, observable on the decomposed record, can be compensated for during acquisition and processing. Multichannel recording permits single-measurement surveying of a broad depth range, high levels of redundancy with a single field configuration, and the ability to adjust the offset, effectively reducing random or nonlinear noise introduced during recording. A multichannel shot gather decomposed into a swept-frequency record allows the fast generation of an accurate dispersion curve. The accuracy of dispersion curves determined using this method is proven through field comparisons of the inverted shear-wave velocity (??(s)) profile with a downhole ??(s) profile.Multichannel recording is an efficient method of acquiring ground roll. By displaying the obtained information in a swept-frequency format, different frequency components of Rayleigh waves can be identified by distinctive and simple coherency. In turn, a seismic surface-wave method is derived that provides a useful noninvasive tool, where information about elastic properties of near-surface materials can be effectively obtained.

  9. New Hybridized Surface Wave Approach for Geotechnical Modeling of Shear Wave Velocity at Strong Motion Recording Stations

    NASA Astrophysics Data System (ADS)

    Kayen, R.; Carkin, B.; Minasian, D.

    2006-12-01

    Strong motion recording (SMR) networks often have little or no shear wave velocity measurements at stations where characterization of site amplification and site period effects is needed. Using the active Spectral Analysis of Surface Waves (SASW) method, and passive H/V microtremor method we have investigated nearly two hundred SMR sites in California, Alaska, Japan, Australia, China and Taiwan. We are conducting these studies, in part, to develop a new hybridized method of site characterization that utilizes a parallel array of harmonic-wave sources for active-source SASW, and a single long period seismometer for passive-source microtremor measurement. Surface wave methods excel in their ability to non-invasively and rapidly characterize the variation of ground stiffness properties with depth below the surface. These methods are lightweight, inexpensive to deploy, and time-efficient. They have been shown to produce accurate and deep soil stiffness profiles. By placing and wiring shakers in a large parallel circuit, either side-by-side on the ground or in a trailer-mounted array, a strong in-phase harmonic wave can be produced. The effect of arraying many sources in parallel is to increase the amplitude of waves received at far-away spaced seismometers at low frequencies so as to extend the longest wavelengths of the captured dispersion curve. The USGS system for profiling uses this concept by arraying between two and eight electro-mechanical harmonic-wave shakers. With large parallel arrays of vibrators, a dynamic force in excess of 1000 lb can be produced to vibrate the ground and produce surface waves. We adjust the harmonic wave through a swept-sine procedure to profile surface wave dispersion down to a frequency of 1 Hz and out to surface wave-wavelengths of 200-1000 meters, depending on the site stiffness. The parallel-array SASW procedure is augmented using H/V microtremor data collected with the active source turned off. Passive array microtremor data reveal the natural and resonance characteristics of the ground by capturing persistent natural vibrations. These microtremors are the result of the interaction of surface waves arriving from distant sources and the stiffness structure of the site under investigation. As such, these resonance effects are effective in constraining the layer thicknesses of the SASW shear wave velocity structure and aid in determining the depth of the deepest layer. Together, the hybridized SASW and H/V procedure provides a complete data set for modeling the geotechnical aspects of ground amplification of earthquake motions. Data from these investigations are available at http://walrus.wr.usgs.gov/geotech.

  10. Multi-point measurement using two-channel reflectometer with antenna switching for study of high-frequency fluctuations in GAMMA 10

    NASA Astrophysics Data System (ADS)

    Ikezoe, R.; Ichimura, M.; Okada, T.; Itagaki, J.; Hirata, M.; Sumida, S.; Jang, S.; Izumi, K.; Tanaka, A.; Yoshikawa, M.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.

    2017-03-01

    A two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile. The density fluctuations measured using this system clearly showed the high-frequency coherent fluctuations that are associated with Alfvén-ion-cyclotron (AIC) waves in GAMMA 10. A correlation analysis applied to simultaneously measured density fluctuations showed that the phase component that was included in a reflected microwave provided both high coherence and a clear phase difference for the AIC waves, while the amplitude component showed neither significant coherence nor clear phase difference. The axial phase differences of the AIC waves measured inside the hot plasma confirmed the formation of a standing wave structure. The axial variation of the radial profiles was evaluated and a clear difference was found among the AIC waves for the first time, which would be a key to clarify the unknown boundary conditions of the AIC waves.

  11. Determining the coordinate dependence of some components of the cubic susceptibility tensor {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}) of a one-dimensionally inhomogeneous absorbing plate at an arbitrary frequency dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golubkov, A A; Makarov, Vladimir A

    The possibility of unique reconstruction of the spatial profile of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}) of a one-dimensionally inhomogeneous plate whose medium has a symmetry plane m{sub y} perpendicular to its surface is proved for the first time and the unique reconstruction algorithm is proposed. The amplitude complex coefficients of reflection and transmission (measured in some range of angles of incidence) as well as of conversion of an s-polarised plane signal monochromatic wave into two waves propagating on both sides of the plate make it possible to reconstruct the profile. These twomore » waves result from nonlinear interaction of a signal wave with an intense plane wave incident normally on the plate. All the waves under consideration have the same frequency {omega}, and so its variation helps study the frequency dispersion of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}). For media with additional symmetry axes 2{sub z}, 4{sub z}, 6{sub z}, or {infinity}{sub z} that are perpendicular to the plate surface, the proposed method can be used to reconstruct the profile and to examine the frequency dispersion of about one third of all independent complex components of the tensor {chi}-hat{sup (3)}. (nonlinear-optics phenomena)« less

  12. Freezing optical rogue waves by Zeno dynamics

    NASA Astrophysics Data System (ADS)

    Bayındır, Cihan; Ozaydin, Fatih

    2018-04-01

    We investigate the Zeno dynamics of the optical rogue waves. Considering their usage in modeling rogue wave dynamics, we analyze the Zeno dynamics of the Akhmediev breathers, Peregrine and Akhmediev-Peregrine soliton solutions of the nonlinear Schrödinger equation. We show that frequent measurements of the wave inhibits its movement in the observation domain for each of these solutions. We analyze the spectra of the rogue waves under Zeno dynamics. We also analyze the effect of observation frequency on the rogue wave profile and on the probability of lingering of the wave in the observation domain. Our results can find potential applications in optics including nonlinear phenomena.

  13. Controllable parabolic-cylinder optical rogue wave.

    PubMed

    Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola

    2014-10-01

    We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

  14. Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels

    NASA Astrophysics Data System (ADS)

    Wu, Xinyi; Ma, Jun; Li, Fan; Jia, Ya

    2013-12-01

    Some experimental evidences show that spiral wave could be observed in the cortex of brain, and the propagation of this spiral wave plays an important role in signal communication as a pacemaker. The profile of spiral wave generated in a numerical way is often perfect while the observed profile in experiments is not perfect and smooth. In this paper, formation and development of spiral wave in a regular network of Morris-Lecar neurons, which neurons are placed on nodes uniformly in a two-dimensional array and each node is coupled with nearest-neighbor type, are investigated by considering the effect of stochastic ion channels poisoning and channel noise. The formation and selection of spiral wave could be detected as follows. (1) External forcing currents with diversity are imposed on neurons in the network of excitatory neurons with nearest-neighbor connection, a target-like wave emerges and its potential mechanism is discussed; (2) artificial defects and local poisoned area are selected in the network to induce new wave to interact with the target wave; (3) spiral wave can be induced to occupy the network when the target wave is blocked by the artificial defects or poisoned area with regular border lines; (4) the stochastic poisoning effect is introduced by randomly modifying the border lines (areas) of specific regions in the network. It is found that spiral wave can be also developed to occupy the network under appropriate poisoning ratio. The process of growth for the poisoned area of ion channels poisoning is measured, the effect of channels noise is also investigated. It is confirmed that perfect spiral wave emerges in the network under gradient poisoning even if the channel noise is considered.

  15. Acoustic measurements of the spatial and temporal structure of the near-bottom boundary layer in the 1990-1991 STRESS experiment

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Gross, Thomas F.; Wiberg, Patricia L.; Newhall, Arthur E.; Traykovski, Peter A.; Warren, Joseph D.

    1997-08-01

    As part of the 1990-1991 Sediment TRansport Events on Shelves and Slopes (STRESS) experiment, a 5 MHz Acoustic BackScatter System (ABSS) was deployed in 90 m of water to measure vertical profiles of near-bottom suspended sediment concentration. By looking at the vertical profile of concentration from 0 to 50 cm above bottom (cmab) with 1 cm vertical resolution, the ABSS was able to examine the detailed structure of the bottom boundary layer created by combined wave and current stresses. The acoustic profiles clearly showed the wave-current boundary layer, which extends to (order) 10 cmab. The profiles also showed evidence of an "intermediate" boundary layer, also influenced by combined wave and current stresses, just above the wave-current boundary layer. This paper examines the boundary-layer structure by comparing acoustic data obtained by the authors to a 1-D eddy viscosity model formulation. Specifically, these data are compared to a simple extension of the Grant-Glenn-Madsen model formulation. Also of interest is the appearance of apparently 3-D "advective plume" structures in these data. This is an interesting feature in a site which was initially chosen to be a good example of (temporally averaged) 1-D bottom boundary-layer dynamics. Computer modeling and sector-scanning sonar images are presented to justify the plausibility of observing 3-D structure at the STRESS site. 1997 Elsevier Science Ltd

  16. The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*

    NASA Astrophysics Data System (ADS)

    Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok

    2017-09-01

    Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.

  17. New seismic Vp- and Vp/Vs- models of HUKKA 2007 wide-angle reflection and refraction profile in northern Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Tiira, T.; Janik, T.; Kozlovskaya, E.; Grad, M.; Korja, A.; Komminaho, K.; Hegedüs, E.; Kovács, C. A.; Silvennoinen, H.; Brückl, E.

    2012-04-01

    We study the block structure within accreationary orogens. We present an example from northern part of the Fennoscandian Shield transected by deep seismic sounding profile HUKKA 2007. The 455 km long profile runs in NNW-SSE direction from Kittilä in northwestern Finnish Lapland to Kostamush in Russia near central part of the border between Finland and Russia. We present 2-D seismic velocity model (Vp and Vp/Vs ratio in the crust, depth to the Moho and depth to the intracrustal reflectors) along HUKKA 2007 wide-angle reflection and refraction profile in northern Finland. Commercial and military chemical explosions at 7 shot points were used as sources of the seismic energy. The shots were recorded by 115 recording stations deployed along the profile with an average station spacing of 3.45 km. The field recordings were cut and sorted into shot gathers. The 2-D velocity model of the HUKKA 2007 profile was developed by SEIS83 forward raytracing package using arrivals of major refracted and reflected P- and S-wave phases. In general the velocities vary in the upper crust between 5.8 and 6.1 km/s. Interesting features are three high P wave velocity (6.30-6.35 km/s) bodies in the upper crust. Two small bodies lie close to surface at first 100 km and the third one can be followed from 200 to 350 km along the profile reaching depth of 5-10 km. The central part of the profile (between 120 and 220 km) has a zone of low (lower than 6 km/s) P-wave velocity in the uppermost crust. This zone is about 4 km thick. In addition, the velocity model along the HUKKA 2007 profile shows significant difference in crustal velocity structure between the northern (up to 120 km) and southern parts of the profile. The differences in P-wave velocities and Vp/Vs ratio can be followed throughout the crust down to the Moho boundary. This suggests that the HUKKA 2007 profile transects a major terrane boundary. However, the position of this boundary with respect to major crustal units is controversial. It may be the boundary that separates the pristine parts of the Archean Karelian craton from those parts reworked in the Paleoproterozoic. Alternatively, it can be the boundary that separates the Karelian craton from the Belomorian mobile belt.

  18. Modélisation morphodynamique cross-shore d'un estran vaseux

    NASA Astrophysics Data System (ADS)

    Waeles, Benoı̂t; Le Hir, Pierre; Silva Jacinto, Ricardo

    2004-08-01

    Numerical experiments were performed to simulate the profile evolution of an intertidal mudflat with a 1D cross-shore morphodynamical model. First, the hydrodynamical forcing is a cross-shore tidal current due to semi-diurnal variations of the free surface elevation at the open boundary. Further, considering the conservation of the action density of surface gravity waves, a wave height (and resulting bottom shear stress) calculation is added to the morphodynamical model. Results of the numerical experiments show that the shape of the profile reaches equilibrium. The mudflat progrades continually when the forcing is tide only, whereas it can be steady under the simultaneous action of tide and waves. To cite this article: B. Waeles et al., C. R. Geoscience 336 (2004).

  19. Lightweight dew-/frost-point hygrometer based on a surface-acoustic-wave sensor for balloon-borne atmospheric water vapor profile sounding

    NASA Astrophysics Data System (ADS)

    Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.

    2006-01-01

    The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.

  20. Turbulence Statistics in the Coastal Ocean Bottom Boundary Layer

    NASA Astrophysics Data System (ADS)

    Nayak, A. R.; Hackett, E. E.; Luznik, L.; Katz, J.; Osborn, T. R.

    2010-12-01

    A submersible particle image velocimetry (PIV) system was deployed off the coast of New Jersey, near the LEO-15 site, to characterize the flow and turbulence in the inner part of the continental shelf bottom boundary layer. The measurement domain extended from 5 mm at the bottom up to an elevation of 51 cm in different datasets. The flow comprised of a mean current and wave-induced flow with a period of 10 s. The ratio of wave velocity amplitude to mean current magnitude varied over the tidal cycle and with elevation, with a maximum of 2.35. Their relative orientation also varied. Large databases of time-resolved, high resolution, 2D velocity distributions enabled us to calculate the instantaneous spatial velocity gradients, and from them, the statistically converged vertical dissipation rate profiles. Reynolds Stresses were estimated using the Shaw & Trowbridge technique outside of the wave boundary layer (WBL), and directly, using the instantaneous spatial variations in velocity, near the wall. Results were utilized for calculating the shear production profiles. Hilbert Transforms were utilized for calculating the wave phase of each velocity distribution, and performing conditional sampling of data to determine variations in flow and turbulence parameters during a wave cycle. The mean velocity profiles indicated the presence of a wave boundary layer, followed by a transition region, and a log layer above it. The datasets extending to the wall show that there is no clear log layer within the WBL, but, as expected, profiles vary substantially with location relative to the ripples. Phase dependent variations in mean flow and dissipation rate occurred only in the WBL and transition region, but vanished at higher elevations. The dissipation rate typically peaked during acceleration phases of wave-induced motion, especially near the wall, but it sometimes peaked during wave-crest phases. Below the transition region, the dissipation rate increased rapidly as the wall was approached all the way to the ripple crest, presumably due to the increasing presence of eddies with characteristic size of 1-3 times the ripple height that fell in the dissipation range of the energy spectra. Shear production also peaked at the ripple crest, consistent with laboratory data for rough wall boundary layers. Acknowledgements : NSF

  1. On mantle heterogeneity and anisotropy as mapped by inversion of global surface wave data

    NASA Astrophysics Data System (ADS)

    Khan, A.; Boschi, L.; Connolly, J.; Deschamps, F.

    2008-12-01

    We jointly invert Love and Rayleigh wave dispersion curves for the Earth's mantle composition, thermal state, P and S wave anisotropy at different locations on the Earth, based on self-consistent thermodynamic calculations. The method consists of four parts: 1. The composition of the Earth is modeled by the chemical system CaO-FeO-MgO- Al2O3-SiO2. Given these parameters and a geotherm (also an unknown), we calculate stable mineral modes, elastic properties, bulk density at the prevailing physical conditions using Gibbs free energy minimisation. Voigt-Reuss-Hill averaging is subsequently emplouyed to compute radial isotropic P and S wave velocity profiles in the elastic limit. 2. Anisotropic P and S wave velocities are determined from the isotropic ones by employing the relations ξ=(Vsh/Vsv)2, φ = (Vpv/Vph)2, η=F/(2A-L), Vs=(2Vsv2+Vsh2)/3 and Vp=(Vpv2+4Vph2)/5. The former three parameters are the standard anisotropy parameters, that we also invert for. 4. From these radial profiles, i.e. of Vsv, Vsh, Vph, Vpv and ρ, sunthetic Love and Rayleigh wave dispersion curves are calculated. The dispersion curves, which comprise fundamental and overtones up to 5th (Love) and 6th (Rayleigh) order have been extracted from global surface wave velocity maps. Given the above scheme, the data are at each location are jointly inverted using a Markov Chain Monte Carlo algorithm, from which a range of compositions, temperatures and radial profiles of anisotropy parameters, fitting data within uncertainties, are obtained. Our method has several advantages over standard approaches, in that no scaling relationships between Vs and Vp and ρ and Vs have to be introduced, implying that the full sensitivity of Rayleigh and Love waves to the parameters Vs, Vp and ρ is accounted for. In this particular study we investigate 5 locations distributed across the globe and reveal mantle chemical and thermal differences at these locations.

  2. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments

    USGS Publications Warehouse

    Signell, Richard P.; Beardsley, Robert C.; Graber, H. C.; Capotondi, A.

    1990-01-01

    The effect of wind waves on the steady wind-driven circulation in a narrow, shallow bay is investigated with a two-dimensional (y, z) circulation model and the Grant and Madsen [1979] bottom-boundary layer model, which includes wave-current interaction. A constant wind stress is applied in the along-channel x direction to a channel with a constant cross-sectional profile h(y). The wind-induced flushing of shallow bays is shown to be sensitive to both the shape of the cross section and the effects of surface waves. The flushing increases with increasing , where h′ is the standard deviation of cross-channel depth and  is the mean depth. This is consistent with the findings of Hearn et al. [1987]. The flushing decreases, however, with the inclusion of surface wave effects which act to increase the bottom drag felt by the currents. Increasing effective bottom friction reduces the strength of the circulation, while the along-bay surface slope, bottom stress and the structure of current profiles remain nearly unchanged. An implication of the circulation dependence on wave-current interaction is that low-frequency oscillatory winds may drive a mean circulation when the wave field changes with wind direction.x

  3. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  4. Three-dimensional modelling of thin liquid films over spinning disks

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2016-11-01

    In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk is considered. A set of non-axisymmetric evolution equations for the film thickness, radial and azimuthal flow rates are derived using a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film. These highly nonlinear partial differential equations are then solved numerically in order to reveal the formation of two and three-dimensional large-amplitude waves that travel from the disk inlet to its periphery. The spatio-temporal profile of film thickness provides us with visualization of flow structures over the entire disk and by varying system parameters(volumetric flow rate of fluid and rotational speed of disk) different wave patterns can be observed, including spiral, concentric, smooth waves and wave break-up in exceptional conditions. Similar types of waves can be found by experimentalists in literature and CFD simulation and our results show good agreement with both experimental and CFD results. Furthermore, the semi-parabolic velocity profile assumed in our model under the waves is directly compared with CFD data in various flow regimes in order to validate our model. EPSRC UK Programme Grant EP/K003976/1.

  5. Jupiter plasma wave observations: an initial voyager 1 overview.

    PubMed

    Scarf, F L; Gurnett, D A; Kurth, W S

    1979-06-01

    The Voyager I plasma wave instrument detected low-frequency radio emissions, ion acoustic waves, and electron plasma oscillations for a period of months before encountering Jupiter's bow shock. In the outer magnetosphere, measurements of trapped radio waves were used to derive an electron density profile. Near and within the Io plasma torus the instrument detected high-frequency electrostatic waves, strong whistler mode turbulence, and discrete whistlers, apparently associated with lightning. Some strong emissions in the tail region and some impulsive signals have not yet been positively identified.

  6. A numerical study of three-dimensional diurnal variations within the thermosphere.

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1973-01-01

    A thermosphere model with a realistic temperature profile is assumed. Heat conduction waves are introduced in addition to gravity waves. The temporal and spatial distribution of ion-neutral collisions is taken into account. However, the influence of viscosity waves is neglected. Viscosity-wave effects are simulated by an effective height-dependent collision number. Numerical calculations are conducted of the generation and propagation of two of the most important symmetric tidal waves at thermospheric heights. The influence of the solar EUV-heat upon the generation of the two tidal modes is investigated.

  7. Vertical Mixing In Western Lake Constance Due To Long Internal Waves

    NASA Astrophysics Data System (ADS)

    Boehrer, B.

    Current profiles in the pelagic waters of western Lake Constance have been broken up into modes of the internal wave equation [1,2]. All current profiles can be well represented by a combination of the first and second mode wave. The temporal vari- ation of the modal composition with the interaction of the first and second mode im- plies current shear at varying depths. From current and density profiles, the gradient Richardson number can be evaluated in its spatial and temporal pattern with occa- tional occurence of supercritical values at all depths, also in the deep hypolimnion. An empiric connection between gradient Richardson number and diapycnical mixing [3] is applied to yield a profile of vertical transport coefficients, which can be com- pared with transport coefficients from gradient flux calculations of temperature and electrical conductivity profiles [4]. [1] B. Boehrer, J. Ilmberger and K.O. Münnich (2000): Vertical Structure of Current in Western Lake Constance, JGR-Oceans, 105 (12), 28823-28835 [2] B. Boehrer (2000): Modal Response of a Deep Stratified Lake: Western Lake Con- stance, JGR-Oceans, 105 (12), 28837-28845 [3] H. Peeters, M.C. Gregg and J.M. Toole (1988): On the parameterization of equa- torial turbulence, JGR, 93, 1199-1218 [4] G. Heinz, J. Ilmberger and M. Schimmele (1990): Vertical Mixing in Überlinger See, western part of Lake Constance, Aquat. Sci., 52(3), 256-268

  8. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less

  9. WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths

    NASA Astrophysics Data System (ADS)

    Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.

    2010-10-01

    The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.

  10. The Mass of Saturn's B ring from hidden density waves

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Nicholson, P. D.

    2015-12-01

    The B ring is Saturn's brightest and most opaque ring, but many of its fundamental parameters, including its total mass, are not well constrained. Elsewhere in the rings, the best mass density estimates come from spiral waves driven by mean-motion resonances with Saturn's various moons, but such waves have been hard to find in the B ring. We have developed a new wavelet-based technique, for combining data from multiple stellar occultations that allows us to isolate the density wave signals from other ring structures. This method has been applied to 5 density waves using 17 occultations of the star gamma Crucis observed by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. Two of these waves (generated by the Janus 2:1 and Mimas 5:2 Inner Lindblad Resonances) are visible in individual occultation profiles, but the other three wave signatures ( associated with the Janus 3:2, Enceladus 3:1 and Pandora 3:2 Inner Lindblad Resonances ) are not visible in individual profiles and can only be detected in the combined dataset. Estimates of the ring's surface mass density derived from these five waves fall between 40 and 140 g/cm^2. Surprisingly, these mass density estimates show no obvious correlation with the ring's optical depth. Furthermore, these data indicate that the total mass of the B ring is probably between one-third and two-thirds the mass of Saturn's moon Mimas.

  11. Machining Specific Fourier Power Spectrum Profiles into Plastics for High Energy Density Physics Experiments [Machining Specific Fourier Power Spectrum Profiles into Plastics for HEDP Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.

    In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less

  12. Machining Specific Fourier Power Spectrum Profiles into Plastics for High Energy Density Physics Experiments [Machining Specific Fourier Power Spectrum Profiles into Plastics for HEDP Experiments

    DOE PAGES

    Schmidt, Derek William; Cardenas, Tana; Doss, Forrest W.; ...

    2018-01-15

    In this paper, the High Energy Density Physics program at Los Alamos National Laboratory (LANL) has had a multiyear campaign to verify the predictive capability of the interface evolution of shock propagation through different profiles machined into the face of a plastic package with an iodine-doped plastic center region. These experiments varied the machined surface from a simple sine wave to a double sine wave and finally to a multitude of different profiles with power spectrum ranges and shapes to verify LANL’s simulation capability. The MultiMode-A profiles had a band-pass flat region of the power spectrum, while the MultiMode-B profilemore » had two band-pass flat regions. Another profile of interest was the 1-Peak profile, a band-pass concept with a spike to one side of the power spectrum. All these profiles were machined in flat and tilted orientations of 30 and 60 deg. Tailor-made machining profiles, supplied by experimental physicists, were compared to actual machined surfaces, and Fourier power spectra were compared to see the reproducibility of the machining process over the frequency ranges that physicists require.« less

  13. TH-A-207B-02: QIBA Ultrasound Elasticity Imaging System Biomarker Qualification and User Testing of Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garra, B.

    Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less

  14. Transport of light, trace impurities in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.

    2012-10-01

    Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.

  15. Modeling of the control of the driven current profile in ICRF MCCD on EAST plasma

    NASA Astrophysics Data System (ADS)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Cao, J. J.; Wu, Z. Y.; Chen, Y.; Du, D.

    2018-05-01

    Control of the current profile is a crucial issue for improved confinement and the inhibition of instability in advanced tokamak operation. Using typical discharge data for the Experimental Advanced Superconducting Tokamak, numerical simulations of driven-current profile control in mode conversion current drive (MCCD) in the ion cyclotron range of frequencies were performed employing a full-wave method and Ehst-Karney efficiency formula. Results indicate that the driven current profile in MCCD can be effectively modified by shifting the mode conversion layer. The peak of the driven current can be located at an aimed position in the normalized minor radius range (-0.60 ≤r/a≤0) by changing the radiofrequency and the minority-ion concentration. The efficiency of the off-axis MCCD can reach 233 kA/MW through optimization, and the mode converted ion cyclotron wave plays an important role in such scenarios. The effects of electron temperature and plasma density on the driven current profile are also investigated.

  16. Theoretical Compton profile anisotropies in molecules and solids. IV. Parallel--perpendicular anisotropies in alkali fluoride molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matcha, R.L.; Pettitt, B.M.; Ramirez, B.I.

    1979-07-15

    Calculations of Compton profiles and parallel--perpendicular anisotropies in alkali fluorides are presented and analyzed in terms of molecular charge distributions and wave function character. It is found that the parallel profile associated with the valence pi orbital is the principal factor determining the relative shapes of the total profile anisotropies in the low momentum region.

  17. Wave-driven Hydrodynamics for Different Reef Geometries and Roughness Scenarios

    NASA Astrophysics Data System (ADS)

    Franklin, G. L.; Marino-Tapia, I.; Torres-Freyermuth, A.

    2013-05-01

    In fringing reef systems where a shallow lagoon is present behind the reef crest, wave breaking appears to dominate circulation, controlling numerous key processes such as the transport and dispersion of larvae, nutrients and sediments. Despite their importance, there is a need for more detailed knowledge on the hydrodynamic processes that take place within the surf zone of these systems and the effects different combinations of geometries and roughness have on them. The present study focuses on the use of two-dimensional (2DV) numerical model simulations and data obtained during a field campaign in Puerto Morelos, Quintana Roo, Mexico to better understand the detailed surf zone processes that occur over a fringing reef. The model used is Cornell Breaking Wave and Structures (COBRAS), which solves Reynolds-Averaged Navier-Stokes (RANS) equations. Reef geometries implemented in the model include a reef flat and two different reef crests. The effect of roughness on wave setup, radiation stress, mean flows, and cross-shore spectral evolution for the model results was studied using different roughness coefficients (Nikuradse) and a bathymetric profile obtained in the field using the bottom track option of an Acoustic Doppler Current Profiler. Field data were also analysed for the configuration and roughness of Puerto Morelos. Model results reveal that for all profiles wave setup increased significantly (~22%) with increasing bed roughness, in agreement with previous findings for sandy beaches.For all wave heights and periods studied, increasing roughness also affected spectral wave evolution across the reef, with a significant reduction in energy, particularly at infragravity frequencies. The presence of a reef crest in the profile resulted in differences in behaviour at infragravity frequencies. For example, preliminary results suggest that there is a shift towards higher frequencies as waves progress into the lagoon when a crest is present, something that does not appear to occur over the reef flat. Time-averaged velocities exhibited a dominant onshore flow due to waves at the surface, as is generally reported for coral reefs. Model results also suggest the presence of offshore velocities, which were slightly greater over the reef flat compared to the reef crest. Maximum offshore velocities appear to be more localised in the case of the reef flat whereas they extended over a larger area in the case of the reef crest. In all cases, increased roughness resulted in reduced velocities. These results are important since they concern processes that affect the circulation within the lagoon, which has implications in terms of the lagoon's residence time and hence heat dispersion and exposure to pollutants.

  18. Beach Erosion and Accretion: Comparison of the Seasonal Influence of Suspended- and Bedload-Sediment Transport at Grays Harbor, Washington, U. S. A.

    NASA Astrophysics Data System (ADS)

    Sherwood, C. R.; Lacy, J. R.; Ruggiero, P.; Kerr, L. A.; Gelfenbaum, G.; Wilson, D. J.

    2001-12-01

    We conducted field studies on the ebb-tidal delta near the entrance to Grays Harbor, Washington in Autumn, 1999 and Spring 2001, with the objectives of 1) providing directional wave data to validate a shoaling and refraction model for the ebb-tidal delta, and 2) measuring forcing (wave- and current-induced near-bottom velocities, accelerations, and shear stresses) and responses (bedforms, suspended-sediment profiles, and sediment fluxes) associated with intervals of beach erosion and accretion. In the Autumn experiment (October - December), tripods were deployed at shallow ( ~14-m) and deep ( ~24-m) sites on the northern, middle, and southern flanks of the ebb tidal. In the Spring experiment (May - mid-July), tripods were redeployed at four sites and a new inshore site ( ~9-m depth), and pressures, current velocities, and suspended-sediment concentrations were measured with 5-MHz acoustic Doppler velocimeters (ADVs), optical backscatterance sensors, upward-looking acoustic Doppler current profilers (ADCPs), a downward-looking pulse-coherent acoustic Doppler profiler (PCADP), and an acoustic backscatterance sensor (ABS). We also measured bedforms with profiling and imaging sonars and estimated Reynolds stresses with a pair of 10-MHz ADVs at the inshore site. Incident waves, nearshore circulation patterns, statistics of near-bottom wave- and current-induced velocities, and sediment fluxes were distinctly different in the two experiments. During the Autumn measurements, the general direction of wave approach shifted from WNW to WSW as the North Pacific weather pattern shifted from summer to winter, and we observed a large storm (offshore significant wave heights Hs of ~8 m) and a sequence of about 8 smaller events with ~4 to 5-m waves. Sediment transport was dominated by storm-induced, downwelling-favorable circulation that transported suspended sediments northward and offshore. Inferred bedload fluxes were directed shoreward, but were much smaller. In contrast, Spring wave conditions were much milder (maximum Hs of ~4 m), and waves approached mostly from the WNW. There were long periods of upwelling-favorable circulation interrupted by intervals of storm-induced northward flow. Net suspended-sediment transport was directed northward at the deeper sites and southward at the inshore sites. Near-bottom transport remained offshore at the deeper sites, but was lower, with negligible net cross-shore component at the shallow sites. The relative contribution of shoreward bedload transport was much larger. These changes in sediment transport outside the breaker zone are consistent with measured changes in beach and bar morphology.

  19. The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-07-01

    Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.

  20. SH-wave reflection seismic and VSP as tools for the investigation of sinkhole areas in Germany

    NASA Astrophysics Data System (ADS)

    Wadas, Sonja; Tschache, Saskia; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes can lead to damage of buildings and infrastructure and they can cause life-threatening situations, if they occur in urban areas. The process behind this phenomenon is called subrosion. Subrosion is the underground leaching of soluble rocks, e.g. anhydrite and gypsum, due to the contact with ground- and meteoric water. Depending on the leached material, and especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. For a better understanding of the subrosion processes a detailed characterization of the resulting structures is necessary. In Germany sinkholes are a problem in many areas. In northern Germany salt and in central and southern Germany sulfate and carbonate deposits are affected by subrosion. The study areas described here are located in Thuringia in central Germany and the underground is characterized by soluble Permian deposits. The occurrence of 20 to 50 sinkholes is reported per year. Two regions, Bad Frankenhausen and Schmalkalden, are investigated, showing a leaning church tower and a sinkhole of 30 m diameter and 20 m depth, respectively. In Bad Frankenhausen four P-wave and 16 SH-wave reflection seismic profiles were carried out, supplemented by three zero-offset VSPs. In Schmalkalden five SH-wave reflection seismic profiles and one zero-offset VSP were acquired. The 2-D seismic sections, in particular the SH-wave profiles, showed known and unknown near-surface faults in the vicinity of sinkholes and depressions. For imaging the near-surface (< 100 m depth) high-resolution SH-waves are advantageous in order to detect subrosion structures at different stages. The reflection patterns of the 2-D seismic sections indicate a heterogeneous underground with lateral and vertical variations in forms of discontinuous reflectors, depressions, small-scale fractures and near-surface faults. Probably the faults and fractures serve as pathways for groundwater, forming cavities due to the increase in rock permeability. Besides these structures, anomalies of the seismic velocities and the attenuation of seismic waves are visible, especially in the SH-wave profiles. Low velocities < 200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters characterizing the underground stability are the shear modulus, derived from shear-wave interval velocities and density, and the Vp-Vs ratio. The 1-D and the 2-D data revealed zones of low shear modulus < 100 MPa and high Vp-Vs ratios > 2,5, probably indicating unstable areas due to subrosion. We conclude, that SH-wave reflection seismic offer an important tool for the imaging and characterization of near-surface subrosion structures and the identification of unstable zones, especially in combination with P-wave reflection seismic and zero-offset VSP with P- and S-waves. Presumably there is a connection between the presence of large fluid pathways, like faults, and the occurrence of widespread subrosion.

  1. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment

    USGS Publications Warehouse

    Stephenson, W.J.; Louie, J.N.; Pullammanappallil, S.; Williams, R.A.; Odum, J.K.

    2005-01-01

    Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15 % or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.

  2. Rayleigh wave nonlinear inversion based on the Firefly algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Teng-Fei; Peng, Geng-Xin; Hu, Tian-Yue; Duan, Wen-Sheng; Yao, Feng-Chang; Liu, Yi-Mou

    2014-06-01

    Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.

  3. Limits of Wave Runup and Corresponding Beach-Profile Change from Large-Scale Laboratory Data

    DTIC Science & Technology

    2010-01-01

    A nearly vertical scarp developed after 40 min of wave action, with the upper limit of beach change identified at the toe of the dune scarp. and...change UL was found to approximately equal the vertical excursion of total wave runup, Rtw. An exception was runs where beach or dune scarps were...approximately equal the vertical excursion of total wave runup, Rtw. An exception was runs where beach or dune scarps were produced, which substantially limit the

  4. Stability of standing wave for the fractional nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Peng, Congming; Shi, Qihong

    2018-01-01

    In this paper, we study the stability and instability of standing waves for the fractional nonlinear Schrödinger equation i∂tu = (-Δ)su - |u|2σu, where (t ,x ) ∈R × RN, 1/2

  5. Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois, U.S

    USGS Publications Warehouse

    Pugin, Andre J.M.; Larson, T.H.; Sargent, S.L.; McBride, J.H.; Bexfield, C.E.

    2004-01-01

    SH-wave and P-wave high-resolution seismic reflection combined with land-streamer technology provide 3D regional maps of geologic formations that can be associated with aquifers and aquitards. Examples for three study areas are considered to demonstrate this. In these areas, reflection profiling detected near-surface faulting and mapped a buried glacial valley and its aquifers in two settings. The resulting seismic data can be used directly to constrain hydrogeologic modeling of shallow aquifers.

  6. Understanding Effects of Traumatic Insults on Brain Structure and Function

    DTIC Science & Technology

    2016-08-01

    42 Fig. 33 The supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The...For instance, although the pressure front of a shock wave travels at supersonic speeds (the speed of sound in water is 1,497 m/s), the shock wave... supersonic shock wave at the various distances from its launch. The liposome is located at 117.4 nm. The Mach number is 1.49. b) The pressure profile at t

  7. Variability in form and growth of sediment waves on turbidite channel levees

    USGS Publications Warehouse

    Normark, W.R.; Piper, D.J.W.; Posamentier, H.; Pirmez, C.; Migeon, S.

    2002-01-01

    Fine-grained sediment waves have been observed in many modern turbidite systems, generally restricted to the overbank depositional element. Sediment waves developed on six submarine fan systems are compared using high-resolution seismic-reflection profiles, sediment core samples (including ODP drilling), multibeam bathymetry, 3D seismic-reflection imaging (including examples of burried features), and direct measurements of turbidity currents that overflow their channels. These submarine fan examples extend over more than three orders of magnitude in physical scale. The presence or absence of sediment waves is not simply a matter of either the size of the turbidite channel-levee systems or the dominant initiation process for the turbidity currents that overflow the channels to form the wave fields. Both sediment-core data and seismic-reflection profiles document the upslope migration of the wave forms, with thicker and coarser beds deposited on the up-current flank of the waves. Some wave fields are orthogonal to channel trend and were initiated by large flows whose direction was controlled by upflow morphology, whereas fields subparallel to channel levees resulted from local spillover. In highly meandering systems, sediment waves may mimic meander planform. Larger sediment waves form on channel-levee systems with thicker overflow of turbidity currents, but available data indicate that sediment waves can be maintaned during conditions of relatively thin overflow. Coarser-grained units in sediment waves are typically laminated and thin-bedded sand as much as several centimetres thick, but sand beds as thick as several tens of centimetres have been documented from both modern and buried systems. Current production of hydrocarbons from sediment-wave deposits suggests that it is important to develop criteria for recognising this overbank element in outcrop exposures and borehole data, where the wavelength of typical waves (several kilometres) generally exceeds outcrop scales and wave heights, which are reduced as a result of consolidation during burial, may be too subtle to recognise. Crown Copyright ?? 2002 Published by Elsevier Science B.V. All rights reserved.

  8. Aspects of scintillation modelling in LEO-ground free-space optical communications

    NASA Astrophysics Data System (ADS)

    Moll, Florian

    2017-10-01

    Free-space optical communications can be used to transmit data from low Earth orbit satellites to ground with very high data rate. In the last section of the downlink, the electro-magnetic wave propagates through the turbulent atmosphere which is characterized by random index of refraction fluctuations. The propagating wave experiences phase distortions that lead to intensity scintillation in the aperture plane of the receiving telescope. For quantification, an appropriate scintillation model is needed. Approaches to analytically model the scintillation exist. Parameterization of the underlying turbulence profile (Cn2 profile) is however difficult. The Cn2 profiles are often site-specific and thus inappropriate or generic and thus too complex for a feasible deployment. An approach that directly models the scintillation effect based on measurements without claiming to be generic is therefore more feasible. Since measurements are sparse, a combination with existing theoretical framework is feasible to develop a new scintillation model that focuses on low earth orbit to ground free-space optical communications link design with direct detection. The paper addresses several questions one has to answer while analyzing the measurements data and selection of the theoretical models for the LEO downlink scenario. The first is the question of a suitable yet ease to use simple Cn2 profile. The HAP model is analyzed for its feasibility in this scenario since it includes a more realistic boundary layer profile decay than the HV model. It is found that the HAP model needs to be modified for a feasible deployment in the LEO downlink scenario for night time. The validity of the plane wave assumption in the downlink is discussed by model calculations of the scintillation index for a plane and Gaussian beam wave. Inaccuracies when using the plane earth model instead of the spherical earth model are investigated by analyzing the Rytov index. Impact of beam wander and non-ideal tracking are also discussed. Eventually, satellite measurements are discussed together with model calculations. It is found that the model calculation with the modified HAP turbulence profile fits the measurements. The plane wave assumption is valid for calculation of scintillation. The flat earth model is accurate enough to model scintillation over elevation when using the extended Rytov theory. The effect of beam wander is negligible. Further work needs to be carried out to elaborate a new scintillation model from the measurements and theory.

  9. Anomalous Surface Wave Launching by Handedness Phase Control.

    PubMed

    Zhang, Xueqian; Xu, Yuehong; Yue, Weisheng; Tian, Zhen; Gu, Jianqiang; Li, Yanfeng; Singh, Ranjan; Zhang, Shuang; Han, Jiaguang; Zhang, Weili

    2015-11-25

    Anomalous launch of a surface wave with different handedness phase control is achieved in a terahertz metasurface based on phase discontinuities. The polarity of the phase profile of the surface waves is found to be strongly correlated to the polarization handedness, promising polarization-controllable wavefront shaping, polarization sensing, and environmental refractive-index sensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The propagation of ion-acoustic waves carrying orbital angular momentum in the electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mehdian, H.; Nobahar, D.; Hajisharifi, K.

    2018-02-01

    Ion-acoustic (IA) waves carrying orbital angular momentum (OAM) are investigated in an unmagnetized, uniform, and collisionless electron-positron-ion (e-p-i) plasma system. Employing the hydrodynamic theory, the paraxial equation in term of ion perturbed number density is derived and discussed about its Laguerre-Gaussian (LG) beam solutions. Obtaining an approximate solution for the electrostatic potential, the IA wave characteristics including helical electric field structure, energy density, and OAM density are theoretically studied. Based on the numerical analysis, the effects of positron concentration, radial and angular mode number as well as beam waist on the obtained potential profile are investigated. It is shown that the depth (height) and width of the LG potential profile wells (barriers) are considerably modify by the variation of positron concentration.

  11. Correlations between wave activity and electron temperature in the Martian upper ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, Chris; Andersson, Laila; Ergun, Robert; Andrews, David

    2017-04-01

    Prior to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, only two electron temperature profiles of the Martian ionosphere existed, made by the Viking landers in the late 70s. Since MAVENs arrival at Mars in late 2014, electron temperature (and density) profiles have been measured every orbit, once every 4.5 hours. Recent analysis of this new dataset has shown that the Martian ionospheric electron temperature is significantly warmer than expected by factors of 2-3 above the exobase and within the upper ionosphere. We present correlations between electron temperature and electric field wave power (also measured by MAVEN), and discuss the possibility that such waves (which are likely produced by the Mars-solar wind interaction) may drive electron heating and contribute to the observed high temperatures.

  12. Wave-flume experiments of soft-rock cliff erosion under monochromatic waves

    NASA Astrophysics Data System (ADS)

    Regard, Vincent; Astruc, Dominique; Caplain, Bastien

    2017-04-01

    We investigate how cliffs erode under wave attack. Rocky coast erosion works through cycles, each one corresponding to three successive phases: (i) notch creation at cliff toe by mechanical action of waves, (ii) cliff fracturation leading to collapse, and (iii) evacuation of scree aprons by waves and currents. We performed experiments in a 5m x 14cm x 25cm wave flume (15 cm water depth) to investigate how waves are eroding a rocky coast. The cliff is made of wet sand and models a relatively soft rock. We used 3 different grain size (D50 = 0.28-0.41-0.48 mm), changing the cliff rheology. Waves are monochromatic; their height and period differ for the various experiments. Actual wave parameters are estimated by capacitive probes located offshore. The experiments are monitored by two video cameras both on the side and above the flume. Pictures are taken at a rate of 1Hz during the first 4h and then the rate is decreased to 0.1Hz till the end of experiment (about 1 day). The monitoring ensure a confident characterization of experiments in terms of waves (surf similarity parameter ξ and the incident wave energy flux F) and in terms of sediment (Dean number Ω and Shields number θb at breakers). Experiments begin by an initial phase of quick cliff retreat. Then the system evolves with slower cliff retreat. We focus on bottom morphology which we characterize in function of wave forcing (ξ, F). We show that the bottom morphology mainly depends on ξ. For our reference sediment (Dm = 0.41 mm), we observed: (i) surging breakers on a steep terrace (type T1) for ξ > 0.65; (ii)collapsing breakers on a bared profile attached to the inner platform (type T2) for 0.55< ξ <0.6; (iii) spilling breakers on gentle terrace (type T3) for F < 1.3 W/m and 0.55< ξ <0.6. Another bottom morphology, type T4, displays two sub-systems, an outer system with a double-bar profile where breaking waves are plunging, and an inner system with a T1, T2 or T3 profile. Some of these bottom morphologies are unsteady with sandbar oscillation. When changing sediment grain size, we observed that the bottom typology is similar but evolves in function of the Ω value. Finally, we observed that the cliff recession is proportional to F, is not monotonic with ξ and decreases with the sediment grain diameter.

  13. Advanced seismic imaging of overdeepened alpine valleys

    NASA Astrophysics Data System (ADS)

    Burschil, Thomas; Buness, Hermann; Tanner, David; Gabriel, Gerald; Krawczyk, Charlotte M.

    2017-04-01

    Major European alpine valleys and basins are densely populated areas with infrastructure of international importance. To protect the environment by, e.g., geohazard assessment or groundwater estimation, understanding of the geological structure of these valleys is essential. The shape and deposits of a valley can clarify its genesis and allows a prediction of behaviour in future glaciations. The term "overdeepened" refers to valleys and basins, in which pressurized melt-water under the glacier erodes the valley below the fluvial level. Most overdeepened valleys or basins were thus refilled during the ice melt or remain in the form of lakes. The ICDP-project Drilling Overdeepened Alpine Valleys (DOVE) intends to correlate the sedimentary succession from boreholes between valleys in the entire alpine range. Hereby, seismic exploration is essential to predict the most promising well path and drilling site. In a first step, this DFG-funded project investigates the benefit of multi-component techniques for seismic imaging. At two test sites, the Tannwald Basin and the Lienz Basin, the Leibniz Institute for Applied Geophysics acquired P-wave reflection profiles to gain structural and facies information. Built on the P-wave information, several S-wave reflection profiles were acquired in the pure SH-wave domain as well as 6-C reflection profiles using a horizontal S-wave source in inline and crossline excitation and 3-C receivers. Five P-wave sections reveal the structure of the Tannwald Basin, which is a distal branch basin of the Rhine Glacier. Strong reflections mark the base of the basin, which has a maximum depth of 240 metres. Internal structures and facies vary strongly and spatially, but allow a seismic facies characterization. We distinguish lacustrine, glacio-fluvial, and deltaic deposits, which make up the fill of the Tannwald Basin. Elements of the SH-wave and 6-C seismic imaging correlate with major structures in the P-wave image, but vary in detail. Based on the interpretation, two possible drilling sites are suggested for DOVE that will also prove the seismic interpretation and explain differences in P- and S-wave imaging. First results for the intermountain Lienz Basin are available from four parallel P-wave sections which show the asymmetric basin shape. The sedimentary base is well imaged down to ca. 0.6 km depth, and internal reflectors point to a diverse fill. Here, S-wave imaging produces less distinct sections and requires more sophisticated processing. In summary, P-wave imaging is suitable to map overdeepened structures in the Alps while S-wave imaging can contribute additional information.

  14. Rogue-wave solutions of the Zakharov equation

    NASA Astrophysics Data System (ADS)

    Rao, Jiguang; Wang, Lihong; Liu, Wei; He, Jingsong

    2017-12-01

    Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these Nth-order rogue-wave solutions explicitly in terms of Nth-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane ( x, y) arising from a constant background at t ≪ 0 and then gradually tending to the constant background for t ≫ 0. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey-Stewartson equation analytically and graphically.

  15. Thematic Mapper. Volume 1: Calibration report flight model, LANDSAT 5

    NASA Technical Reports Server (NTRS)

    Cooley, R. C.; Lansing, J. C.

    1984-01-01

    The calibration of the Flight 1 Model Thematic Mapper is discussed. Spectral response, scan profile, coherent noise, line spread profiles and white light leaks, square wave response, radiometric calibration, and commands and telemetry are specifically addressed.

  16. A 3D unstructured grid nearshore hydrodynamic model based on the vortex force formalism

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Li, Ming; van der A, Dominic A.; van der Zanden, Joep; Wolf, Judith; Chen, Xueen; Wang, Caixia

    2017-08-01

    A new three-dimensional nearshore hydrodynamic model system is developed based on the unstructured-grid version of the third generation spectral wave model SWAN (Un-SWAN) coupled with the three-dimensional ocean circulation model FVCOM to enable the full representation of the wave-current interaction in the nearshore region. A new wave-current coupling scheme is developed by adopting the vortex-force (VF) scheme to represent the wave-current interaction. The GLS turbulence model is also modified to better reproduce wave-breaking enhanced turbulence, together with a roller transport model to account for the effect of surface wave roller. This new model system is validated first against a theoretical case of obliquely incident waves on a planar beach, and then applied to three test cases: a laboratory scale experiment of normal waves on a beach with a fixed breaker bar, a field experiment of oblique incident waves on a natural, sandy barred beach (Duck'94 experiment), and a laboratory study of normal-incident waves propagating around a shore-parallel breakwater. Overall, the model predictions agree well with the available measurements in these tests, illustrating the robustness and efficiency of the present model for very different spatial scales and hydrodynamic conditions. Sensitivity tests indicate the importance of roller effects and wave energy dissipation on the mean flow (undertow) profile over the depth. These tests further suggest to adopt a spatially varying value for roller effects across the beach. In addition, the parameter values in the GLS turbulence model should be spatially inhomogeneous, which leads to better prediction of the turbulent kinetic energy and an improved prediction of the undertow velocity profile.

  17. A comparative study of surface waves inversion techniques at strong motion recording sites in Greece

    USGS Publications Warehouse

    Panagiotis C. Pelekis,; Savvaidis, Alexandros; Kayen, Robert E.; Vlachakis, Vasileios S.; Athanasopoulos, George A.

    2015-01-01

    Surface wave method was used for the estimation of Vs vs depth profile at 10 strong motion stations in Greece. The dispersion data were obtained by SASW method, utilizing a pair of electromechanical harmonic-wave source (shakers) or a random source (drop weight). In this study, three inversion techniques were used a) a recently proposed Simplified Inversion Method (SIM), b) an inversion technique based on a neighborhood algorithm (NA) which allows the incorporation of a priori information regarding the subsurface structure parameters, and c) Occam's inversion algorithm. For each site constant value of Poisson's ratio was assumed (ν=0.4) since the objective of the current study is the comparison of the three inversion schemes regardless the uncertainties resulting due to the lack of geotechnical data. A penalty function was introduced to quantify the deviations of the derived Vs profiles. The Vs models are compared as of Vs(z), Vs30 and EC8 soil category, in order to show the insignificance of the existing variations. The comparison results showed that the average variation of SIM profiles is 9% and 4.9% comparing with NA and Occam's profiles respectively whilst the average difference of Vs30 values obtained from SIM is 7.4% and 5.0% compared with NA and Occam's.

  18. A system for measuring bottom profile, waves and currents in the high-energy nearshore environment

    USGS Publications Warehouse

    Sallenger, A.H.; Howard, P.C.; Fletcher, C. H.; Howd, P.A.

    1983-01-01

    A new data-acquisition system capable of measuring waves, currents and the nearshore profile in breaking waves as high as 5 m has been developed and successfully field-tested. Components of the mechanical system are a sled carrying a vertical mast, a double-drum winch placed landward of the beach, and a line that runs from one drum of the winch around three blocks, which are the corners of a right triangle, to the other drum of the winch. The sled is attached to the shore-normal side of the triangular line arrangement and is pulled offshore by one drum of the winch and onshore by the other. The profile is measured as the sled is towed along the shore-normal transect using an infrared rangefinder mounted landward of the winch and optical prisms mounted on top of the sled's mast. A pressure sensor and two-axis electromagnetic current meter are mounted on the frame of the sled. These data are encoded on the sled and telemetered to a receiving/recording station onshore. Preliminary results suggest that near-bottom offshore-flowing currents during periods of high-energy swell are important in forcing changes to the configuration of the nearshore profile. ?? 1983.

  19. Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei

    2000-03-01

    The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.

  20. One-dimensional wave bottom boundary layer model comparison: specific eddy viscosity and turbulence closure models

    USGS Publications Warehouse

    Puleo, J.A.; Mouraenko, O.; Hanes, D.M.

    2004-01-01

    Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.

  1. Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    USGS Publications Warehouse

    Lacy, J.R.; Sherwood, C.R.

    2004-01-01

    The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s-1 and currents up to 40 cm s-1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is -0.4 cm s-1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s-1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s-1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s-1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ??? 50 cm s-1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ??? 5 cm s-1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.

  2. Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng

    2016-12-01

    In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.

  3. Direct manipulation of wave amplitude and phase through inverse design of isotropic media

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Vial, B.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.

    2017-07-01

    In this article we propose a new design methodology allowing us to control both amplitude and phase of electromagnetic waves from a cylindrical incident wave. This results in isotropic materials and does not resort to transformation optics or its quasi-conformal approximations. Our method leads to two-dimensional isotropic, inhomogeneous material profiles of permittivity and permeability, to which a general class of scattering-free wave solutions arise. Our design is based on the separation of the complex wave solution into amplitude and phase. We give two types of examples to validate our methodology.

  4. F-wave decomposition for time of arrival profile estimation.

    PubMed

    Han, Zhixiu; Kong, Xuan

    2007-01-01

    F-waves are distally recorded muscle responses that result from "backfiring" of motor neurons following stimulation of peripheral nerves. Each F-wave response is a superposition of several motor unit responses (F-wavelets). Initial deflection of the earliest F-wavelet defines the traditional F-wave latency (FWL) and earlier F-wavelet may mask F-wavelets traveling along slower (and possibly diseased) fibers. Unmasking the time of arrival (TOA) of late F-wavelets could improve the diagnostic value of the F-waves. An algorithm for F-wavelet decomposition is presented, followed by results of experimental data analysis.

  5. On a theory of surface waves in a smoothly inhomogeneous plasma in an external magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzelev, M. V., E-mail: kuzelev@mail.ru; Orlikovskaya, N. G.

    2016-12-15

    A theory of surface waves in a magnetoactive plasma with smooth boundaries has been developed. A dispersion equation for surface waves has been derived for a linear law of density change at the plasma boundary. The frequencies of surface waves and their collisionless damping rates have been determined. A generalization to an arbitrary density profile at the plasma boundary is given. The collisions have been taken into account, and the application of the Landau rule in the theory of surface wave damping in a spatially inhomogeneous magnetoactive collisional plasma has been clarified.

  6. Simulations of the Mg II K and Ca II 8542 Lines From an Alfvén Wave-Heated Flare Chromosphere

    NASA Technical Reports Server (NTRS)

    Kerr, Graham S.; Fletcher, Lyndsay; Russell, Alexander J. B.; Allred, Joel C.

    2016-01-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfven wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542 A profiles that are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with Interface Region Imaging Spectrograph observations. The predicted differences between the Ca II 8542 A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating inflares.

  7. On A Problem Of Propagation Of Shock Waves Generated By Explosive Volcanic Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, V. A.; Sobissevitch, A. L.

    2008-06-24

    Interdisciplinary study of flows of matter and energy in geospheres has become one of the most significant advances in Earth sciences. It is carried out by means of direct quantitative estimations based on detailed analysis of geological and geophysical observations and experimental data. The actual contribution is the interdisciplinary study of nonlinear acoustics and physical volcanology dedicated to shock wave propagation in a viscous and inhomogeneous medium. The equations governing evolution of shock waves with an arbitrary initial profile and an arbitrary cross-section of a beam are obtained. For the case of low viscous medium, the asymptotic solution meant tomore » calculate a profile of a shock wave in an arbitrary point has been derived. The analytical solution of the problem on propagation of shock pulses from atmosphere into a two-phase fluid-saturated geophysical medium is analysed. Quantitative estimations were carried out with respect to experimental results obtained in the course of real explosive volcanic eruptions.« less

  8. Differential Immune Profiles in Two Pandemic Influenza A(H1N1)pdm09 Virus Waves at Pandemic Epicenter.

    PubMed

    Arriaga-Pizano, Lourdes; Ferat-Osorio, Eduardo; Rodríguez-Abrego, Gabriela; Mancilla-Herrera, Ismael; Domínguez-Cerezo, Esteban; Valero-Pacheco, Nuriban; Pérez-Toledo, Marisol; Lozano-Patiño, Fernando; Laredo-Sánchez, Fernando; Malagón-Rangel, José; Nellen-Hummel, Haiko; González-Bonilla, César; Arteaga-Troncoso, Gabriel; Cérbulo-Vázquez, Arturo; Pastelin-Palacios, Rodolfo; Klenerman, Paul; Isibasi, Armando; López-Macías, Constantino

    2015-11-01

    Severe influenza A(H1N1)pdm2009 virus infection cases are characterized by sustained immune activation during influenza pandemics. Seasonal flu data suggest that immune mediators could be modified by wave-related changes. Our aim was to determine the behavior of soluble and cell-related mediators in two waves at the epicenter of the 2009 influenza pandemic. Leukocyte surface activation markers were studied in serum from peripheral blood samples, collected from the 1(st) (April-May, 2009) and 2(nd) (October 2009-February 2010) pandemic waves. Patients with confirmed influenza A(H1N1)pdm2009 virus infection (H1N1), influenza-like illness (ILI) or healthy donors (H) were analyzed. Serum IL-6, IL-4 and IL-10 levels were elevated in H1N1 patients from the 2(nd) pandemic wave. Additionally, the frequency of helper and cytotoxic T cells was reduced during the 1(st) wave, whereas CD69 expression in helper T cells was increased in the 2(nd) wave for both H1N1 and ILI patients. In contrast, CD62L expression in granulocytes from the ILI group was increased in both waves but in monocytes only in the 2(nd) wave. Triggering Receptor Expressed on Myeloid cells (TREM)-1 expression was elevated only in H1N1 patients at the 1(st) wave. Our results show that during the 2009 influenza pandemic a T cell activation phenotype is observed in a wave-dependent fashion, with an expanded activation in the 2(nd) wave, compared to the 1(st) wave. Conversely, granulocyte and monocyte activation is infection-dependent. This evidence collected at the pandemic epicenter in 2009 could help us understand the differences in the underlying cellular mechanisms that drive the wave-related immune profile behaviors that occur against influenza viruses during pandemics. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Taylor impact of glass bars

    NASA Astrophysics Data System (ADS)

    Murray, Natalie; Bourne, Neil; Field, John

    1997-07-01

    Brar and Bless pioneeered the use of plate impact upon bars as a technique for investigating the 1D stress loading of glass. We wish to extend this technique by applying VISAR and embedded stress gauge measurements to a symmetrical version of the test. In this configuration two rods impact one upon the other in a symmetrical version of the Taylor test geometry in which the impact is perfectly rigid in the centre of mass frame. Previous work in the laboratory has characterised the three glass types (float, borosilicate and a high density lead glass). These experiments will identify the 1D stress failure mechanisms from high-speed photography and the stress and particle velocity histories will be interpreted in the light of these results. The differences in response of the three glasses will be highlighted.

  10. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokovikov, Mikhail, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Chudinov, Vasiliy, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru; Bilalov, Dmitry, E-mail: sokovikov@icmm.ru, E-mail: naimark@icmm.ru

    2014-11-14

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer andmore » a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically.« less

  11. Measurement of Interfacial Profiles of Wavy Film Flow on Inclined Wall

    NASA Astrophysics Data System (ADS)

    Rosli, N.; Amagai, K.

    2016-02-01

    Falling liquid films on inclined wall present in many industrial processes such as in food processing, seawater desalination and electronic devices manufacturing industries. In order to ensure an optimal efficiency of the operation in these industries, a fundamental study on the interfacial flow profiles of the liquid film is of great importance. However, it is generally difficult to experimentally predict the interfacial profiles of liquid film flow on inclined wall due to the instable wavy flow that usually formed on the liquid film surface. In this paper, the liquid film surface velocity was measured by using a non-intrusive technique called as photochromic dye marking method. This technique utilizes the color change of liquid containing the photochromic dye when exposed to the UV light source. The movement of liquid film surface marked by the UV light was analyzed together with the wave passing over the liquid. As a result, the liquid film surface was found to slightly shrink its gradual movement when approached by the wave before gradually move again after the intersection with the wave.

  12. Numerical Assessment of Four-Port Through-Flow Wave Rotor Cycles with Passage Height Variation

    NASA Technical Reports Server (NTRS)

    Paxson, D. E.; Lindau, Jules W.

    1997-01-01

    The potential for improved performance of wave rotor cycles through the use of passage height variation is examined. A Quasi-one-dimensional CFD code with experimentally validated loss models is used to determine the flowfield in the wave rotor passages. Results indicate that a carefully chosen passage height profile can produce substantial performance gains. Numerical performance data are presented for a specific profile, in a four-port, through-flow cycle design which yielded a computed 4.6% increase in design point pressure ratio over a comparably sized rotor with constant passage height. In a small gas turbine topping cycle application, this increased pressure ratio would reduce specific fuel consumption to 22% below the un-topped engine; a significant improvement over the already impressive 18% reductions predicted for the constant passage height rotor. The simulation code is briefly described. The method used to obtain rotor passage height profiles with enhanced performance is presented. Design and off-design results are shown using two different computational techniques. The paper concludes with some recommendations for further work.

  13. Density and temperature structure over northern Europe

    NASA Technical Reports Server (NTRS)

    Philbrick, C. R.; Schmidlin, F. J.; Grossmann, K. U.; Lange, G.; Offermann, D.; Baker, K. D.; Krankowsky, D.; Von Zahn, U.

    1985-01-01

    During the Energy Budget Campaign, a number of profiles of the density and temperature were obtained to study the structure and variability of the atmosphere. The measurements were made using rocketborne instrumentation launched from Esrange, Sweden, and Andoya Rocket Range, Norway, during November and December 1980. The techniques included meteorological temperature sondes, passive falling sphere, accelerometer instrumented falling spheres, density gauges, mass spectrometers and infrared emission experiments. The instruments provided data covering the altitude range from 20 to 150 km. The measurements were made during periods which have been grouped into three categories by level of geomagnetic activity. Analysis has been made to compare the results and to examine the wave features and variations in the vertical profiles for scales ranging between hundreds of meters and tens of kilometers. Most of the features observed fit qualitatively within the range expected for internal gravity waves. However, the features in the profiles during one of the measurement periods are unusual and may be due to aurorally generated shock waves. The geomagnetic storm conditions caused temperature increases in the lower thermosphere which maximized in the 120-140 km region.

  14. Quantification of Surf Zone Bathymetry from Video Observations of Wave Breaking

    NASA Astrophysics Data System (ADS)

    Aarninkhof, S.; Ruessink, G.

    2002-12-01

    Cost-efficient methods to quantify surf zone bathymetry with high resolution in time and space would be of great value for coastal research and management. Automated video techniques provide the potential to do so. Time-averaged video observations of the nearshore zone show bright intensities at locations where waves preferentially break. Highly similar patterns are found from model simulations of depth-induced wave breaking, which show increasing rates of wave dissipation in shallow areas like sand bars. Thus, video observations of wave breaking - at least qualitatively - reflect sub-merged beach bathymetry. In search of the quantification of this relationship, we present a new model concept to map sub-merged beach bathymetry from time-averaged video images. This is achieved by matching model-predicted and video-observed rates of wave dissipation. First, time-averaged image intensities are sampled along a cross-shore array and interpreted in terms of a wave dissipation parameter. This involves a correction for the effect of persistent foam, which is visible at time-averaged video images but not predicted by common wave propagation models. The dissipation profiles thus obtained are used to update an initial beach bathymetry through optimisation of the match between measured and modelled rates of wave dissipation. The latter is done by raising the bottom elevation in areas where the measured dissipation rate exceeds the computed dissipation and vice versa. Since the model includes video data with high resolution in time (typically multiple images over a tidal cycle), it allows for virtually continous monitoring of surfzone bathymetry . Model tests against a synthetic data set of artificially generated wave dissipation profiles have shown the model's capability to accurately reconstruct beach bathymetry, over a wide range of morphological configurations. Maximum model deviations were found in the case of highly developed bar-trough systems (bar heights up to 4 m) and near the shoreline. Model performance strongly benefits from an increase of wave heights and tidal ranges. At the moment, the model is subject to validation against a data set of multiple-barred beach profiles, surveyed during a 3 week period of stormy wheather in the course of the Coast3D field experiments at Egmond (The Netherlands). Although the video-based estimates of bar bathymetry show a shoreward off-set of the location of the inner bar and vertical deviations of 0.5 (0.8) m near the outer (inner) bar crest, these preliminary results show a promising match in terms of profile shape and the migration of the seaward bar face. Model application at the time scale of months to years is subject to present research. This work was supported by the DIOC Earth Observations of Delft University of Technology, the Delft Cluster program at Delft Hydraulics, the Dutch Ministry of Public Works Rijkswaterstaaat and the EU-funded Coastview project.

  15. Impact of plunging breaking waves on a partially submerged cube

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ikeda, C.; Duncan, J. H.

    2013-11-01

    The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.

  16. Deducing noninductive current profile from surface voltage evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Wukitch, S.; Hershkowitz, N.

    Solving the resistive diffusion equation in the presence of a noninductive current source determines the time-evolution of the surface voltage. By inverting the problem the current drive profile can be determined from the surface voltage evolution. We show that under wide range of conditions the deduced profile is unique. If the conductivity profile is known, this method can be employed to infer the noninductive current profile, and, ipso facto, the profile of the total current. We discuss the application of this method to analyze the Alfven wave current drive experiments in Phaedrus-T.

  17. Testing relativistic electron acceleration mechanisms

    NASA Astrophysics Data System (ADS)

    Green, Janet Carol

    2002-09-01

    This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to electrons with energy >=4.0 MeV becoming more peaked at 90° during the storm recovery phase. The observation is consistent with but does not confirm the model. Our tests indicate that relativistic electrons are accelerated by an internal source acceleration mechanism but we do not identify a unique mechanism.

  18. Sensitivity Tests Between Vs30 and Detailed Shear Wave Profiles Using 1D and 3D Site Response Analysis, Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    West, Loyd Travis

    Site characterization is an essential aspect of hazard analysis and the time-averaged shear-wave velocity to 30 m depth "Vs30" for site-class has become a critical parameter in site-specific and probabilistic hazard analysis. Yet, the general applicability of Vs30 can be ambiguous and much debate and research surround its application. In 2007, in part to mitigate the uncertainty associated with the use of Vs30 in Las Vegas Valley, the Clark County Building Department (CCBD) in collaboration with the Nevada System of Higher Education (NSHE) embarked on an endeavor to map Vs30 using a geophysical methods approach for a site-class microzonation map of over 500 square miles (1500 km2) in southern Nevada. The resulting dataset, described by Pancha et al. (2017), contains over 10,700 1D shear-wave-velocity-depth profiles (SWVP) that constitute a rich database of 3D shear-wave velocity structure that is both laterally and vertical heterogenous. This study capitalizes on the uniquely detailed and spatially dense CCBD database to carry out sensitivity tests on the detailed shear-wave-velocity-profiles and the Vs30 utilizing 1D and 3D site-response approaches. Sensitivity tests are derived from the 1D oscillator response of a single-degree-of-freedom-oscillator and from 3D finite-difference deterministic simulations up to 15 Hz frequency using similar model parameters. Results demonstrate that the detailed SWVP are amplifying ground motions by roughly 50% over the simple Vs30 models, above 4.6 Hz frequency. Numerical simulations also depict significant lateral resonance, focusing, and scattering from seismic energy attributed to the 3D small-scale heterogeneities of the shear-wave-velocity profiles that result in a 70% increase in peak ground velocity. Additionally, PGV ratio maps clearly establish that the increased amplification from the detailed SWVPs is consistent throughout the model space. As a corollary, this study demonstrates the use of finite-differencing numerical based methods to simulate ground motions at high frequencies, up to 15 Hz.

  19. Numerical experiments on breaking waves on contrasting beaches using a two-phase flow approach

    NASA Astrophysics Data System (ADS)

    Bakhtyar, R.; Barry, D. A.; Kees, C. E.

    2012-11-01

    A mechanistic understanding of beach environments needs to account for interactions of oceanic forcing and beach materials, in particular the role of waves on the evolution of the beach profile. A fully coupled two-phase flow model was used to simulate nearshore fluid-sediment turbulent flow in the cross-shore direction. It includes the Reynolds-Averaged Navier-Stokes equations and turbulent stress closures for each phase, and accounts for inter-granular stresses. The model has previously been validated using laboratory-scale data, so the results are likely more reliable for that scale. It was used to simulate wave breaking and the ensuing hydrodynamics and sediment transport processes in the surf/swash zones. Numerical experiments were conducted to investigate the effects of varying beach and wave characteristics (e.g., beach slope, sediment grain size, wave periods and heights) on the foreshore profile changes. Spilling and plunging breakers occur on dissipative and intermediate beaches, respectively. The impact of these wave/beach types on nearshore zone hydrodynamics and beach morphology was determined. The numerical results showed that turbulent kinetic energy, sediment concentrations and transport rate are greater on intermediate than on dissipative beaches. The results confirmed that wave energy, beach grain size and bed slope are main factors for sediment transport and beach morphodynamics. The location of the maximum sediment transport is near the breaking point for both beach types. Coarse- and fine-sand beaches differ significantly in their erosive characteristics (e.g., foreshore profile evolutions are erosive and accretionary on the fine and coarse sand beaches, respectively). In addition, a new parameter (based on main driving factors) is proposed that can characterize the sediment transport in the surf and swash zones. The results are consistent with existing physical observations, suggesting that the two-phase flow model is suitable for the simulation of hyper-concentrated mixed water-sediment flows in the nearshore. The model thus has potential as a useful tool for investigating interactions between nearshore hydrodynamics and beach morphology.

  20. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE PAGES

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  1. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  2. Strength and deformation of shocked diamond single crystals: Orientation dependence

    NASA Astrophysics Data System (ADS)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.

  3. Temperature maxima in stable two-dimensional shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-07-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}

  4. The Geomorphology of Puget Sound Beaches

    DTIC Science & Technology

    2006-10-01

    of longer-term climate variations it is referred to as a meteorological residual. An analysis of regional air pressure and water level observations...wave and tidal climate . For further details on the analy- sis rational and methods, see Finlayson (2006) The clustering analysis resulted in four profile...energy compared with incident waves on the Pacific Coast, and (2) the wave climate is tightly coupled with local wind patterns. The direction of

  5. Microwave Remote Sensing of Falling Snow

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.

    2005-01-01

    This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.

  6. Turbulent Structure Under Short Fetch Wind Waves

    DTIC Science & Technology

    2015-12-01

    1970) developed the LFT utilizing the concurrent measurement of sea surface elevation (η) and the near surface velocities to isolate the wave...Layers and Air-Sea Transfer program by making very high spatial resolution profile measurements of the 3-D velocity field into the crest-trough...distribution is unlimited TURBULENT STRUCTURE UNDER SHORT FETCH WIND WAVES Michael J. Papa Lieutenant Commander, United States Navy B.S., United States Naval

  7. Vertically Propagating Waves in the Upper Atmosphere of Saturn From Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    Schinder, P. J.; Flasar, F. M.; Kliore, A. J.; French, R. G.; Marouf, E. A.; Nagy, A.; Rappaport, N.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D. U.; Goltz, G. L.; Johnston, D. V.; Rochblatt, D.; McGhee, C. A.

    2005-12-01

    We present results from 12 ingress and egress soundings done within 10 degrees of Saturn's equator. Above the 100-mbar level, near the tropopause, the vertical profiles of temperature are marked by undulatory structure that may be associated with vertically propagating waves. We determine the properties and spectra of these waves, and speculate on their origins and their dynamical effects on the upper atmosphere.

  8. On the structure of nonlinear waves in liquids with gas bubbles

    NASA Astrophysics Data System (ADS)

    Beylich, Alfred E.; Gülhan, Ali

    1990-08-01

    Transient wave phenomena in two-phase mixtures with a liquid as the matrix and gas bubbles as the dispersed phase have been studied in a shock tube using glycerine as the liquid and He, N2, and SF6 as gases having a large variation in the ratio of specific heats and the thermal diffusivity. Two different sizes of bubble radii have been produced , R0=1.15 and 1.6 mm, with a dispersion in size of less than 5%. The void fraction was varied over one order of magnitude, φ0=0.2%-2%. The measured pressure profiles were averaged by superimposing many shots, typically 20. Speeds and profiles were measured for shock waves and for wave packets. Investigation of the wave structure allows one to approach the fundamental question of how the physics on the level of the microstructure influences the behavior on the macroscale. In the theoretical work, modeling on the basis of a hierarchy of characteristic length scales is developed. Bubble interactions, transient heat transfer, and dissipation due to molecular and bulk viscosities are included. Solutions for small void fractions and moderate amplitudes are obtained for the steady cases of shock waves and solitons and are compared with the experimental results.

  9. Molecular dynamics simulation of a piston driven shock wave in a hard sphere gas. Final Contractor ReportPh.D. Thesis

    NASA Technical Reports Server (NTRS)

    Woo, Myeung-Jouh; Greber, Isaac

    1995-01-01

    Molecular dynamics simulation is used to study the piston driven shock wave at Mach 1.5, 3, and 10. A shock tube, whose shape is a circular cylinder, is filled with hard sphere molecules having a Maxwellian thermal velocity distribution and zero mean velocity. The piston moves and a shock wave is generated. All collisions are specular, including those between the molecules and the computational boundaries, so that the shock development is entirely causal, with no imposed statistics. The structure of the generated shock is examined in detail, and the wave speed; profiles of density, velocity, and temperature; and shock thickness are determined. The results are compared with published results of other methods, especially the direct simulation Monte-Carlo method. Property profiles are similar to those generated by direct simulation Monte-Carlo method. The shock wave thicknesses are smaller than the direct simulation Monte-Carlo results, but larger than those of the other methods. Simulation of a shock wave, which is one-dimensional, is a severe test of the molecular dynamics method, which is always three-dimensional. A major challenge of the thesis is to examine the capability of the molecular dynamics methods by choosing a difficult task.

  10. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  11. Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER

    DTIC Science & Technology

    2002-09-30

    profiler merges two well-established instruments, EPSONDE (Oakey, 1988) and Seahorse (Hamilton et al, 1999). The EPSONDE ocean- microstructure technology...will be repackaged with modernized electronics and data logging memory and used as the payload for the Seahorse  moored profiler. APPROACH The...mounting to decouple the SeaHorse motions from the profiler. SeaHorseTM uses wave energy to move the profiler down a mooring wire to a docked

  12. Rogue waves in the Davey-Stewartson I equation.

    PubMed

    Ohta, Yasuhiro; Yang, Jianke

    2012-09-01

    General rogue waves in the Davey-Stewartson-I equation are derived by the bilinear method. It is shown that the simplest (fundamental) rogue waves are line rogue waves which arise from the constant background with a line profile and then disappear into the constant background again. It is also shown that multirogue waves describe the interaction of several fundamental rogue waves. These multirogue waves also arise from the constant background and then decay back to it, but in the intermediate times, interesting curvy wave patterns appear. However, higher-order rogue waves exhibit different dynamics. Specifically, only part of the wave structure in the higher-order rogue waves rises from the constant background and then retreats back to it, and this transient wave possesses patterns such as parabolas. But the other part of the wave structure comes from the far distance as a localized lump, which decelerates to the near field and interacts with the transient rogue wave, and is then reflected back and accelerates to the large distance again.

  13. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  14. Rogue-wave bullets in a composite (2+1)D nonlinear medium.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru

    2016-07-11

    We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.

  15. Electron-cyclotron damping of helicon waves in low diverging magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T.; Charles, C.; Boswell, R. W.

    2011-04-15

    Particle-in-cell simulations are performed to investigate wave propagation and absorption behavior of low-field (B{sub 0}<5 mT) helicon waves in the presence of a diverging magnetic field. The 1D electromagnetic simulations, which include experimental external magnetic field profiles, provide strong evidence for electron-cyclotron damping of helicon waves in the spatially decaying nonuniform magnetic field. For a dipole-type magnetic field configuration, the helicon waves are absence in the downstream (lower field) region of the plasma and are observed to be completely absorbed. As the magnetic field is changed slightly however, wave damping decreases, and waves are able to propagate freely downstream, confirmingmore » previous experimental measurements of this phenomenon.« less

  16. Upper bound on the slope of steady water waves with small adverse vorticity

    NASA Astrophysics Data System (ADS)

    So, Seung Wook; Strauss, Walter A.

    2018-03-01

    We consider the angle of inclination (with respect to the horizontal) of the profile of a steady 2D inviscid symmetric periodic or solitary water wave subject to gravity. There is an upper bound of 31.15° in the irrotational case [1] and an upper bound of 45° in the case of favorable vorticity [13]. On the other hand, if the vorticity is adverse, the profile can become vertical. We prove here that if the adverse vorticity is sufficiently small, then the angle still has an upper bound which is slightly larger than 45°.

  17. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  18. A refraction-corrected tomographic algorithm for immersion laser-ultrasonic imaging of solids with piecewise linear surface profile

    NASA Astrophysics Data System (ADS)

    Zarubin, V.; Bychkov, A.; Simonova, V.; Zhigarkov, V.; Karabutov, A.; Cherepetskaya, E.

    2018-05-01

    In this paper, a technique for reflection mode immersion 2D laser-ultrasound tomography of solid objects with piecewise linear 2D surface profiles is presented. Pulsed laser radiation was used for generation of short ultrasonic probe pulses, providing high spatial resolution. A piezofilm sensor array was used for detection of the waves reflected by the surface and internal inhomogeneities of the object. The original ultrasonic image reconstruction algorithm accounting for refraction of acoustic waves at the liquid-solid interface provided longitudinal resolution better than 100 μm in the polymethyl methacrylate sample object.

  19. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.

    2014-12-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refaction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph=ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011) [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013) [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012) [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014) [5] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 21, 012903 (2014)

  20. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.

  1. Cassini RSS occultation observations of density waves in Saturn's rings

    NASA Astrophysics Data System (ADS)

    McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.

    2005-08-01

    On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.

  2. Broadband transmission-type coding metamaterial for wavefront manipulation for airborne sound

    NASA Astrophysics Data System (ADS)

    Li, Kun; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2018-07-01

    The recent advent of coding metamaterials, as a new class of acoustic metamaterials, substantially reduces the complexity in the design and fabrication of acoustic functional devices capable of manipulating sound waves in exotic manners by arranging coding elements with discrete phase states in specific sequences. It is therefore intriguing, both physically and practically, to pursue a mechanism for realizing broadband acoustic coding metamaterials that control transmitted waves with a fine resolution of the phase profile. Here, we propose the design of a transmission-type acoustic coding device and demonstrate its metamaterial-based implementation. The mechanism is that, instead of relying on resonant coding elements that are necessarily narrow-band, we build weak-resonant coding elements with a helical-like metamaterial with a continuously varying pitch that effectively expands the working bandwidth while maintaining the sub-wavelength resolution of the phase profile that is vital for the production of complicated wave fields. The effectiveness of our proposed scheme is numerically verified via the demonstration of three distinctive examples of acoustic focusing, anomalous refraction, and vortex beam generation in the prescribed frequency band on the basis of 1- and 2-bit coding sequences. Simulation results agree well with theoretical predictions, showing that the designed coding devices with discrete phase profiles are efficient in engineering the wavefront of outcoming waves to form the desired spatial pattern. We anticipate the realization of coding metamaterials with broadband functionality and design flexibility to open up possibilities for novel acoustic functional devices for the special manipulation of transmitted waves and underpin diverse applications ranging from medical ultrasound imaging to acoustic detections.

  3. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  4. Investigation of non-reciprocal magnon propagation using lock-in thermography

    NASA Astrophysics Data System (ADS)

    Wid, Olga; Bauer, Jan; Müller, Alexander; Breitenstein, Otwin; Parkin, Stuart S. P.; Schmidt, Georg

    2017-04-01

    We have investigated the unidirectional spin wave heat conveyer effect in a 200 nm thin yttrium iron garnet (YIG) film using lock-in thermography (LIT). This originates from the non-reciprocal propagation of magnons, which leads to an asymmetric heat transport. To excite the spin waves we use two different respective antenna geometries: a coplanar waveguide (CPW) or a ‘microstrip’-like antenna on top of the YIG. By using the CPW and comparing the results for the Damon-Eshbach and the backward volume modes we are able to show that the origin of the asymmetric heat profile are indeed the non-reciprocal spin waves. Using the ‘microstrip’-like geometry we can confirm these results and we can even observe a distinct excitation profile along the antenna due to small field inhomogeneities.

  5. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements.

    PubMed

    Colomb, Tristan; Dürr, Florian; Cuche, Etienne; Marquet, Pierre; Limberger, Hans G; Salathé, René-Paul; Depeursinge, Christian

    2005-07-20

    We present a digital holographic microscope that permits one to image polarization state. This technique results from the coupling of digital holographic microscopy and polarization digital holography. The interference between two orthogonally polarized reference waves and the wave transmitted by a microscopic sample, magnified by a microscope objective, is recorded on a CCD camera. The off-axis geometry permits one to reconstruct separately from this single hologram two wavefronts that are used to image the object-wave Jones vector. We applied this technique to image the birefringence of a bent fiber. To evaluate the precision of the phase-difference measurement, the birefringence induced by internal stress in an optical fiber is measured and compared to the birefringence profile captured by a standard method, which had been developed to obtain high-resolution birefringence profiles of optical fibers.

  6. Transversally periodic solitary gravity–capillary waves

    PubMed Central

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  7. A reprogrammable multifunctional chalcogenide guided-wave lens.

    PubMed

    Cao, Tun; Wei, Chen-Wei; Cen, Meng-Jia; Guo, Bao; Kim, Yong-June; Zhang, Shuang; Qiu, Cheng-Wei

    2018-06-05

    The transformation optics (TO) technique, which establishes an equivalence between a curved space and a spatial distribution of inhomogeneous constitutive parameters, has enabled an extraordinary paradigm for manipulating wave propagation. However, extreme constitutive parameters, as well as a static nature, inherently limit the simultaneous achievement of broadband performance, ultrafast reconfigurability and versatile reprogrammable functions. Here, we integrate the TO technique with an active phase-change chalcogenide to achieve a reconfigurable multi-mode guided-wave lens. The lens is made of a Rinehart-shaped curved waveguide with an effective refractive index gradient profile through partially crystallizing Ge2Sb2Te5. Upon changing the bias time of the external voltage imparted to the Ge2Sb2Te5 segments, the refractive index gradient profile can be tuned with a transformative platform for various functions for visible light. The electrically reprogrammable multi-mode guided-wave lens is capable of dynamically acquiring various functionalities with an ultrafast response time. Our findings may offer a significant step forward by providing a universal method to obtain ultrafast and highly versatile guided-wave manipulation, such as in Einstein rings, cloaking, Maxwell fish-eye lenses and Luneburg lenses.

  8. Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio

    Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measuredmore » properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.« less

  9. Phase velocity nonuniformity-resulted beam patterns in difference frequency generation.

    PubMed

    Lu, Daquan; Qian, Liejia; Li, Yongzhong; Yang, Hua; Zhu, Heyuan; Fan, Dianyuan

    2007-04-16

    The evolution of the difference frequency generation between a planar pump wave and a focused signal wave has been numerically investigated in this paper. We show that, at the difference frequency wave, various beam patterns such as ring and moon-like, are resulted due to the nonuniform distribution of phase velocity in the focused signal wave. The subluminal and superluminal regions can be identified by the intersection of two generated beam profiles that correspond to a pair of phase-mismatches with equal value but opposite signs.

  10. Estimating Parameters for the Earth-Ionosphere Waveguide Using VLF Narrowband Transmitters

    NASA Astrophysics Data System (ADS)

    Gross, N. C.; Cohen, M.

    2017-12-01

    Estimating the D-region (60 to 90 km altitude) ionospheric electron density profile has always been a challenge. The D-region's altitude is too high for aircraft and balloons to reach but is too low for satellites to orbit at. Sounding rocket measurements have been a useful tool for directly measuring the ionosphere, however, these types of measurements are infrequent and costly. A more sustainable type of measurement, for characterizing the D-region, is remote sensing with very low frequency (VLF) waves. Both the lower ionosphere and Earth's ground strongly reflect VLF waves. These two spherical reflectors form what is known as the Earth-ionosphere waveguide. As VLF waves propagate within the waveguide, they interact with the D-region ionosphere, causing amplitude and phase changes that are polarization dependent. These changes can be monitored with a spatially distributed array of receivers and D-region properties can be inferred from these measurements. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a narrow propagation region. We report on an effort to improve the understanding of VLF wave propagation by estimating the commonly known h' and beta two parameter exponential electron density profile. Measurements from multiple narrowband transmitters at multiple receivers are taken, concurrently, and input into an algorithm. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received narrowband amplitude and phase and the outputs are the estimated h' and beta parameters. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Emphasis is placed on profiling the daytime ionosphere, which has a more stable and predictable profile than the nighttime. Daytime ionospheric disturbances, from high solar activity, are also analyzed.

  11. A digital laser slopemeter

    NASA Astrophysics Data System (ADS)

    Crossingham, Grant James

    This thesis is concerned with the design of a new ocean going instrument to measure the local sea surface profile. The motivation behind this project was the need to investigate oceanographic features that have been observed using imaging radar aboard aircraft and satellites. The measurements made with this instrument will further the understanding of the processes involved in radar backscatter from the ocean surface and will enable further analysis of ocean phenomena detected using imaging radars. With an improved understanding of these processes it will be possible to analyse quantitatively satellite images generated from around the globe. This will allow global environmental monitoring which could lead to improved weather forecasting, pollution control such as oil slick monitoring and surface and subsurface operations. It is believed that radar signals having a wavelength of 10 to 300mm are backscattered from waves on the ocean surface of similar length. Earlier attempts to measure waves including those designed to measure millimetric waves are critically reviewed and an account of the evolution of the design of a new instrument to measure these small waves is presented. This new instrument has been tested in the laboratory, which has demonstrated that a repeatable wave slope measurement accuracy of +/-0.56° has been achieved in static tests. Dynamic tests made using a wave tank have generated a wave slope profile, clearly showing 10mm wavelengths present on the surface. The new Digital Slopemeter is designed to measure the small-scale sea surface roughness for wavelengths in the range 10mm to 224mm. This instrument uses two grids of wavelength shifting fibres to digitally record the slope of a refracted laser beam. The laser beam is rapidly scanned over the sea surface to ensure that the profile of the surface is effectively stationary over a length of 224mm. The wave slope is sampled at 3.5mm intervals along each scan, allowing 7mm wavelengths to be resolved. This efficient measurement of the sea surface roughness enables a real-time display of the data collected. The design of the instrument permits it to be deployed from the bow of a research vessel in moderate seas. This instrument is therefore simple and flexible to deploy.

  12. Full-wave reflection of lightning long-wave radio pulses from the ionospheric D region: Comparison with midday observations of broadband lightning signals

    NASA Astrophysics Data System (ADS)

    Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert

    2010-05-01

    We are developing and testing a steep-incidence D region sounding method for inferring profile information, principally regarding electron density. The method uses lightning emissions (in the band 5-500 kHz) as the probe signal. The data are interpreted by comparison against a newly developed single-reflection model of the radio wave's encounter with the lower ionosphere. The ultimate application of the method will be to study transient, localized disturbances of the nocturnal D region, including those instigated by lightning itself. Prior to applying the method to study lightning-induced perturbations of the nighttime D region, we have performed a validation test against more stable and predictable daytime observations, where the profile of electron density is largely determined by direct solar X-ray illumination. This article reports on the validation test. Predictions from our recently developed full-wave ionospheric-reflection model are compared to statistical summaries of daytime lightning radiated waveforms, recorded by the Los Alamos Sferic Array. The comparison is used to retrieve best fit parameters for an exponential profile of electron density in the ionospheric D region. The optimum parameter values are compared to those found elsewhere using a narrowband beacon technique, which used totally different measurements, ranges, and modeling approaches from those of the work reported here.

  13. Wave energetics of the southern hemisphere of Mars

    NASA Astrophysics Data System (ADS)

    Battalio, Michael; Szunyogh, Istvan; Lemmon, Mark

    2018-07-01

    An assessment of the energetics of transient waves in the southern hemisphere of Mars is presented using the Mars Analysis Correction Data Assimilation (MACDA) dataset (v1.0) and the eddy kinetic energy equation. The dataset is divided into four representative periods covering the summer and winter solstices, a late fall period, and an early spring period for three Mars years. Spring eddies are the most intense, with eddies during the fall being less intense due to a marginally more stable mean-temperature profile and reduced recirculation of ageostrophic geopotential fluxes compared to the spring. Eddy kinetic energy during winter is reduced in intensity as a result of the winter solstitial pause in wave activity, and eddy kinetic energy during the summer is limited. Baroclinic energy conversion acts as a source in fall and spring but disappears during the winter as a result of a stabilized vertical temperature profile. Barotropic energy conversion acts as both a source and a sink of eddy kinetic energy, being most positive during the solstitial pause. Eddies take a northwest to southeast track across the southern highlands in the fall but have a more zonal track in the spring due to stronger eddy kinetic energy advection. Wave energetics is less intense in the southern compared to the northern hemisphere as a result of a shallower baroclinically unstable vertical profile.

  14. Short-term Morphodynamics of an Eroding Salt Marsh Shoreline in the Delaware Estuary, USA

    NASA Astrophysics Data System (ADS)

    Fanta, D.; Quirk, T. E.

    2017-12-01

    Marsh edge morphology can change rapidly through erosional and depositional processes. Along seemingly similar stretches of marsh shoreline, erosion processes and rates can vary dramatically. In the Delaware Estuary, annual rates of edge erosion vary from a few centimeters to several meters across relatively short stretches of shoreline. Differences in erosion processes observed here include areas with and without vegetation growth seaward of the eroding marsh scarp. To better understand the factors that influence changes in marsh edge morphology, we examined wave energy, marsh scarp profile, and vegetation structure in relation to lateral erosion and accretion along two stretches of the Delaware Estuary for two years. Rates of erosion ranged from 0.01 to over 7 m/yr depending on shoreline exposure to waves and location on marsh scarp depth profile. Sediment deposition and accretion were up to an order of magnitude higher 15 cm from the marsh edge than 5 cm from the marsh edge, and were driven by storm events. In some areas, vegetation persisted seaward of eroding marshes where wave activity was dampened by a shallower bathymetric profile. Wave energy, distance from the edge and marsh elevation all contributed to vegetation structure, and therefore sedimentation and accretion dynamics. These results highlight the interactive nature of biophysical processes leading to lateral retreat or potential resilience of marsh edges.

  15. Finite Element Modeling and Long Wave Infrared Imaging for Detection and Identification of Buried Objects

    DTIC Science & Technology

    surface temperature profile of a sandbox containing buried objects using a long-wave infrared camera. Images were recorded for several days under ambient...time of day . Best detection of buried objects corresponded to shallow depths for observed intervals where maxima/minima ambient temperatures coincided

  16. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... section considering the most severe wave heights and profiles for which approval is desired. The loads for... a rotor lift not exceeding two-thirds of the rotorcraft weight to act throughout the landing impact. (b) Vertical landing conditions. The rotorcraft must initially contact the most critical wave surface...

  17. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... section considering the most severe wave heights and profiles for which approval is desired. The loads for... a rotor lift not exceeding two-thirds of the rotorcraft weight to act throughout the landing impact. (b) Vertical landing conditions. The rotorcraft must initially contact the most critical wave surface...

  18. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... section considering the most severe wave heights and profiles for which approval is desired. The loads for... a rotor lift not exceeding two-thirds of the rotorcraft weight to act throughout the landing impact. (b) Vertical landing conditions. The rotorcraft must initially contact the most critical wave surface...

  19. 14 CFR 29.519 - Hull type rotorcraft: Water-based and amphibian.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... section considering the most severe wave heights and profiles for which approval is desired. The loads for... a rotor lift not exceeding two-thirds of the rotorcraft weight to act throughout the landing impact. (b) Vertical landing conditions. The rotorcraft must initially contact the most critical wave surface...

  20. On Long Baroclinic Rossby Waves in the Tropical North Atlantic Observed From Profiling Floats

    DTIC Science & Technology

    2007-05-16

    15b and 15c). Reclosing of vortex isolines while forming a new corotating eddy pair typically indicates excitation of periodical auto-oscillations in...important dynamical effect as reclosing of vortex isolines between corotating eddies, which are components of the semiannual standing Rossby wave

  1. VERITAS (Venus Emissivity, Radio Science, InSAR, Topo-graphy And Spectroscopy): A Proposed Discovery Mission

    NASA Astrophysics Data System (ADS)

    Smrekar, Suzanne; Dyar, Melinda; Hensley, Scott; Helbert, Joern; VERITAS Science Team

    2016-10-01

    VERITAS addresses one of the most fundamental questions in planetary evolution: How Earth-like is Venus? These twin planets diverged down different evolutionary paths, yet Venus may hold lessons for past and future Earth, as well as for Earth-sized exoplanets. VERITAS will search for the mineralogical fingerprints of past water, follow up on the discoveries of recent volcanism and the possible young surface age, and reveal the conditions that have prevented plate tectonics from developing. Collectively these questions address how Venus ended up a sulfurous inferno while Earth became habitable.VERITAS carries the Venus Interferometric Synthetic Aperture Radar (VISAR) and the Venus Emissivity Mapper (VEM), plus a gravity science investigation.The VISAR X-band radar produces: 1) a global digital elevation model (DEM) with 250 m postings, 5 m height accuracy, 2) Synthetic aperture radar (SAR) global imaging with 30 m pixels, 3) SAR imaging at 15 m for targeted areas, and 4) surface deformation from repeat pass interferometry (RPI) at 2 mm height precision for targeted, potentially active areas. VEM [see Helbert abstract] will measure surface emissivity, look for active volcanic flows and outgassing of water over ~78% of the surface using 6 NIR surface bands within 5 atmospheric windows and 8 bands for calibration of clouds, stray light, and water vapor.VERITAS uses Ka-band uplink and downlink to create a global gravity field with 3 mgal accuracy and 145 km resolution (130 spherical harmonic degree and order or d&o) and providing a significantly higher resolution field with much more uniform resolution than that available from Magellan.VERITAS will create a rich data set of high resolution topography, imaging, spectroscopy, and gravity. These co-registered data sets will be on par with those acquired for Mercury, Mars and the Moon that have revolutionized our understanding of these bodies. VERITAS would be a valuable asset for future lander or probe missions, collecting the data needed to select landing or entry sites. VERITAS also provides a baseline for future missions to detect surface change, and contributes to our ability to predict the nature of Earth-sized exoplanets.

  2. Four-wave parametric oscillation in sodium vapor by electromagnetically induced diffraction.

    PubMed

    Harada, Ken-ichi; Ogata, Minoru; Mitsunaga, Masaharu

    2007-05-01

    We have observed a novel type of parametric oscillation in sodium atomic vapor where four off-axis signal waves simultaneously build up under resonant and counterpropagating pump beams with elliptical beam profiles. The four waves, two of them Stokes shifted and the other two anti-Stokes shifted, have similar output powers of up to 10 mW with a conversion efficiency of 30% and are parametrically coupled by electromagnetically induced diffraction.

  3. A silicon technology for millimeter-wave monolithic circuits

    NASA Astrophysics Data System (ADS)

    Stabile, P. J.; Rosen, A.

    1984-12-01

    A silicon millimeter-wave integrated-circuit (SIMMWIC) technology that includes high-energy ion implantation and pulsed-laser annealing, secondary ion mass spectrometry (SIMS) profile diagnostics, and novel wafer thinning has been developed. This technology has been applied to a SIMMWIC single-pole single-throw (SPST) switch and to IMPATT and p-i-n diode fabrication schemes. Thus, the SIMMWIC technology is a proven base for monolithic millimeter-wave sources and control circuit applications.

  4. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  5. Focusing guided waves using surface bonded elastic metamaterials

    NASA Astrophysics Data System (ADS)

    Yan, Xiang; Zhu, Rui; Huang, Guoliang; Yuan, Fuh-Gwo

    2013-09-01

    Bonding a two-dimensional planar array of small lead discs on an aluminum plate with silicone rubber is shown numerically to focus low-frequency flexural guided waves. The "effective mass density profile" of this type of elastic metamaterials (EMMs), perpendicular to wave propagation direction, is carefully tailored and designed, which allows rays of flexural A0 mode Lamb waves to bend in succession and then focus through a 7 × 9 planar array. Numerical simulations show that Lamb waves can be focused beyond EMMs region with amplified displacement and yet largely retained narrow banded waveform, which may have potential application in structural health monitoring.

  6. Autonomous Sensing of Layered Structures in Hawaiian Waters

    DTIC Science & Technology

    2007-09-30

    APPROACH In March of 2007 we were awarded $112,842 for the fabrication of an autonomous profiler (the SeaHorse ) for the detection of thin layers of...phytoplankton in the coastal ocean. The SeaHorse (Figures 1, 2) makes use of wave energy to power extended, high-resolution profiling of water...the sample rate of the SeaHorse profiler itself. For example, if we observe a layer at 10 m depth, we can instruct the profiler to maintain this

  7. GPS radio occultation simulation experiments for the upcoming Strateole-2 superpressure balloon campaign investigating equatorial waves

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Cao, B.; Alexander, M. J.; Zhang, W.

    2017-12-01

    Deep tropical convection influences the transport of mass and momentum from the equatorial upper troposphere into the lower stratosphere through the generation and interaction of waves at a broad range of scales. The France-US collaborative Stratéole-2 project will explore equatorial waves in the tropopause region with super-pressure balloons, designed to drift on quasi-Lagrangian trajectories in the lower stratosphere. The Stratéole-2 program will launch 5 balloons from the Seychelles in the Indian Ocean in 2018-2019, and 20 balloons in 2020-2021, each with a flight duration of about 80 days. Five balloons will carry the Radio OCcultation (ROC2) instrument at 20 km altitude to execute a continuous sequence of temperature profiles on either side of the balloon trajectory to sample the equatorial wave field in three dimensions. It will also carry a micro-lidar for detecting cirrus and convective cloud tops. The goals are to describe the horizontal and vertical structure of tropical waves and their impact on cirrus formation and to investigate the relationships of waves to convective clouds. The GPS measurements quantify wave activity by providing precise estimates of balloon velocity and height perturbations due to waves and by providing refractivity profiles that are sensitive to vertical temperature fluctuations caused by waves. We present ray-tracing simulations of the propagation of GPS signals through the Earth's atmosphere, where they will be bent and delayed due to the gradient of atmospheric refractive index. European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to construct the refractive index of the equatorial atmosphere, in which abundant atmospheric waves are present. With the known GPS signal geometry, the excess phase/Doppler are simulated that reflect the wave signatures. The resulting refractivity retrievals provide guidance for interpreting the spectral range of waves that the ROC2 instruments are most likely to reveal.

  8. Bulk ion heating with ICRF waves in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantsinen, M. J., E-mail: mervi.mantsinen@bsc.es; Barcelona Supercomputing Center, Barcelona; Bilato, R.

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR andmore » is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.« less

  9. Absorbing boundary layers for spin wave micromagnetics

    NASA Astrophysics Data System (ADS)

    Venkat, G.; Fangohr, H.; Prabhakar, A.

    2018-03-01

    Micromagnetic simulations are used to investigate the effects of different absorbing boundary layers (ABLs) on spin waves (SWs) reflected from the edges of a magnetic nano-structure. We define the conditions that a suitable ABL must fulfill and compare the performance of abrupt, linear, polynomial and tan hyperbolic damping profiles in the ABL. We first consider normal incidence in a permalloy stripe and propose a transmission line model to quantify reflections and calculate the loss introduced into the stripe due to the ABL. We find that a parabolic damping profile absorbs the SW energy efficiently and has a low reflection coefficient, thus performing much better than the commonly used abrupt damping profile. We then investigated SWs that are obliquely incident at 26.6 °, 45 ° and 63.4 ° on the edge of a yttrium-iron-garnet film. The parabolic damping profile again performs efficiently by showing a high SW energy transfer to the ABL and a low reflected SW amplitude.

  10. Profiling of Atmospheric Water Vapor with MIR and LASE

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesly, M. E.; Browell, E. V.; Ismail, S.; Chang, L. A.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.

  11. Long-wave infrared profile feature extractor (PFx) sensor

    NASA Astrophysics Data System (ADS)

    Sartain, Ronald B.; Aliberti, Keith; Alexander, Troy; Chiu, David

    2009-05-01

    The Long Wave Infrared (LWIR) Profile Feature Extractor (PFx) sensor has evolved from the initial profiling sensor that was developed by the University of Memphis (Near IR) and the Army Research Laboratory (visible). This paper presents the initial signatures of the LWIR PFx for human with and without backpacks, human with animal (dog), and a number of other animals. The current version of the LWIR PFx sensor is a diverging optical tripwire sensor. The LWIR PFx signatures are compared to the signatures of the Profile Sensor in the visible and Near IR spectral regions. The LWIR PFx signatures were collected with two different un-cooled micro bolometer focal plane array cameras, where the individual pixels were used as stand alone detectors (a non imaging sensor). This approach results in a completely passive, much lower bandwidth, much longer battery life, low weight, small volume sensor that provides sufficient information to classify objects into human Vs non human categories with a 98.5% accuracy.

  12. Gravity wave momentum flux estimation from CRISTA satellite data

    NASA Astrophysics Data System (ADS)

    Ern, M.; Preusse, P.; Alexander, M. J.; Offermann, D.

    2003-04-01

    Temperature altitude profiles measured by the CRISTA satellite were analyzed for gravity waves (GWs). Amplitudes, vertical and horizontal wavelengths of GWs are retrieved by applying a combination of maximum entropy method (MEM) and harmonic analysis (HA) to the temperature height profiles and subsequently comparing the so retrieved GW phases of adjacent altitude profiles. From these results global maps of the absolute value of the vertical flux of horizontal momentum have been estimated. Significant differences between distributions of the temperature variance and distributions of the momentum flux exist. For example, global maps of the momentum flux show a pronounced northward shift of the equatorial maximum whereas temperature variance maps of the tropics/subtropics are nearly symmetric with respect to the equator. This indicates the importance of the influence of horizontal and vertical wavelength distribution on global structures of the momentum flux.

  13. Measurements and modeling of radio frequency field structures in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. A.; Chen, Guangye; Arefiev, A. V.

    2011-01-01

    Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less

  14. Universal hydrodynamic flow in holographic planar shock collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesler, Paul M.; Kilbertus, Niki; van der Schee, Wilke

    2015-11-20

    We study the collision of planar shock waves in AdS 5 as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shockmore » profiles, we find universal behavior in the subsequent hydrodynamic evolution. In addition, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.« less

  15. Southern Argentina Agile Meteor Radar: Initial assessment of gravity wave momentum fluxes

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.

    2010-10-01

    The Southern Argentina Agile Meteor Radar (SAAMER) was installed on Tierra del Fuego (53.8°S) in May 2008 and has been operational since that time. This paper describes tests of the SAAMER ability to measure gravity wave momentum fluxes and applications of this capability during different seasons. Test results for specified mean, tidal, and gravity wavefields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the distribution of meteors throughout the diurnal cycle and averaged over a month allows characterization of both monthly mean profiles and diurnal variations of the gravity wave momentum fluxes. Applications of the same methods for real data suggest confidence in the monthly mean profiles and the composite day diurnal variations of gravity wave momentum fluxes at altitudes where meteor counts are sufficient to yield good statistical fits to the data. Monthly mean zonal winds and gravity wave momentum fluxes exhibit anticorrelations consistent with those seen at other midlatitude and high-latitude radars during austral spring and summer, when no strong local gravity wave sources are apparent. When stratospheric variances are significantly enhanced over the Drake Passage “hot spot” during austral winter, however, MLT winds and momentum fluxes over SAAMER exhibit very different correlations that suggest that MLT dynamics are strongly influenced by strong local gravity wave sources within this “hot spot.” SAAMER measurements of mean zonal and meridional winds at these times and their differences from measurements at a conjugate site provide further support for the unusual momentum flux measurements.

  16. Wave reflection effects in the central circulation of American alligators (Alligator mississippiensis): what the heart sees.

    PubMed

    Syme, Douglas A; Gamperl, A Kurt; Braun, Marvin H; Jones, David R

    2006-10-01

    A large central compliance is thought to dominate the hemodynamics of all vertebrates except birds and mammals. Yet large crocodilians may adumbrate the avian and mammalian condition and set the stage for significant wave transmission (reflection) effects, with potentially detrimental impacts on cardiac performance. To investigate whether crocodilians exhibit wave reflection effects, pressures and flows were recorded from the right aorta, carotid artery, and femoral artery of six adult, anesthetized American alligators (Alligator mississippiensis) during control conditions and after experimentally induced vasodilation and constriction. Hallmarks of wave reflection phenomena were observed, including marked differences between the measured profiles for flow and pressure, peaking of the femoral pressure pulse, and a diastolic wave in the right aortic pressure profile. Pulse wave velocity and peripheral input impedance increased with progressive constriction, and thus changes in both the timing and magnitude of reflections accounted for the altered reflection effects. Resolution of pressure and flow waves into incident and reflected components showed substantial reflection effects within the right aorta, with reflection coefficients at the first harmonic approaching 0.3 when constricted. Material properties measured from isolated segments of blood vessels revealed a major reflection site at the periphery and, surprisingly, at the junction of the truncus and right aorta. Thus, while our results clearly show that significant wave reflection phenomena are not restricted to birds and mammals, they also suggest that rather than cope with potential negative impacts of reflections, the crocodilian heart simply avoids them because of a large impedance mismatch at the truncus.

  17. Nonlinear hyperbolic theory of thermal waves in metals

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Choi, S. H.

    1975-01-01

    A closed-form solution for cylindrical thermal waves in metals is given based on the nonlinear hyperbolic system of energy-conservation and heat-flux relaxation equations. It is shown that heat released from a line source propagates radially outward with finite speed in the form of a thermal wave which exhibits a discontinuous wave front. Unique nonlinear thermal-wave solutions exist up to a critical amount of driving energy, i.e., for larger energy releases, the thermal flow becomes multivalued (occurrence of shock waves). By comparison, it is demonstrated that the parabolic thermal-wave theory gives, in general, a misleading picture of the profile and propagation of thermal waves and leads to physical (infinite speed of heat propagation) and mathematical (divergent energy integrals) difficulties. Attention is drawn to the importance of temporal heat-flux relaxation for the physical understanding of fast transient processes such as thermal waves and more general explosions and implosions.

  18. Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua

    2014-01-15

    With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significantmore » effects on the properties of nonlinear waves and collision-induced nonlinear structure.« less

  19. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    USGS Publications Warehouse

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  20. Ultrasonic bulk wave measurements on composite using fiber from recycled CFRP

    NASA Astrophysics Data System (ADS)

    Paterson, David; Ijomah, Winifred L.; Windmill, James F. C.; Kao, Chih-Chuan; Smillie, Grant

    2018-04-01

    This study investigates the velocity profile for both a virgin carbon fiber reinforced plastic (v-CFRP) and a reused fiber CFRP (rf-CFRP) which exhibit quasi-isotropy; all samples have 3 iterations of symmetry type [0, -45, +45, 90]s. An isotropic virgin CFRP (v-CFRP), produced by using a hand layup process, is presented along with a pyrolysis recycling process (at 600°C) designed to extract the carbon fibers. A virgin carbon fiber mat with a similar architecture was also thermally conditioned under the same pyrolysis conditions. Both resultant carbon fiber mats were used to produce the rf-CFRPs. Ultrasonic wave velocities at different angles of incidence for both v-CFRP and rf-CFRP were recorded. In the case of v-CFRP, two samples were studied, and it was recorded that the velocity for both a longitudinal wave and transverse wave remained relatively constant up until these waves completely attenuated at observed angles, indicating what would be expected from an isotropic sample. A close relationship in terms of waves speed was also recorded for the two v-CFRP samples. In the case of rf-CFRP, the longitudinal wave velocities were generally less closely related when compared to the v-CFRP, with a maximum of approximately 32% difference being recorded. The transverse wave velocity was also found to decrease incident angle indicating sample anisotropy. The authors suggest that the more severe decreasing velocity with increasing incident angle, when compared to v-CFRP, may be caused by resin impregnation issues and not by changes that occur during the recycling process. Therefore, a hypothesis that both the rf-CFRP and the V-CFRP will return a similar wave profile given an identical resin fiber content is put forward.

  1. Multichannel analysis of surface-waves and integration of downhole acoustic televiewer imaging, ultrasonic Vs and Vp, and vertical seismic profiling in an NEHRP-standard classification, South of Concordia, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Raef, Abdelmoneam; Gad, Sabreen; Tucker-Kulesza, Stacey

    2015-10-01

    Seismic site characteristics, as pertaining to earthquake hazard reduction, are a function of the subsurface elastic moduli and the geologic structures. This study explores how multiscale (surface, downhole, and laboratory) datasets can be utilized to improve "constrained" average Vs30 (shear-wave velocity to a 30-meter depth). We integrate borehole, surface and laboratory measurements for a seismic site classification based on the standards of the National Earthquake Hazard Reduction Program (NEHRP). The seismic shear-wave velocity (Vs30) was derived from a geophysical inversion workflow that utilized multichannel analysis of surface-waves (MASW) and downhole acoustic televiewer imaging (DATI). P-wave and S-wave velocities, based on laboratory measurements of arrival times of ultrasonic-frequency signals, supported the workflow by enabling us to calculate Poisson's ratio, which was incorporated in building an initial model for the geophysical inversion of MASW. Extraction of core samples from two boreholes provided lithology and thickness calibration of the amplitudes of the acoustic televiewer imaging for each layer. The MASW inversion, for calculating Vs sections, was constrained with both ultrasonic laboratory measurements (from first arrivals of Vs and Vp waveforms at simulated in situ overburden stress conditions) and the downhole acoustic televiewer (DATV) amplitude logs. The Vs30 calculations enabled categorizing the studied site as NEHRP-class "C" - very dense soil and soft rock. Unlike shallow fractured carbonates in the studied area, S-wave and P-wave velocities at ultrasonic frequency for the deeper intact shale core-samples from two boreholes were in better agreement with the corresponding velocities from both a zero-offset vertical seismic profiling (VSP) and inversion of Rayleigh-wave velocity dispersion curves.

  2. Statistical comparisons of gravity wave features derived from OH airglow and SABER data

    NASA Astrophysics Data System (ADS)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.

    2017-12-01

    The Aerospace Corporation's near-IR camera (ANI), deployed at Andes Lidar Observatory (ALO), Cerro Pachon Chile (30S,70W) since 2010, images the bright OH Meinel (4,2) airglow band. The imager provides detailed observations of gravity waves and instability dynamics, as described by Hecht et al. (2014). The camera employs a wide-angle lens that views a 73 by 73 degree region of the sky, approximately 120 km x 120 km at 85 km altitude. Image cadence of 30s allows for detailed spectral analysis of the horizontal components of wave features, including the evolution and decay of instability features. The SABER instrument on NASA's TIMED spacecraft provides remote soundings of kinetic temperature profiles from the lower stratosphere to the lower thermosphere. Horizontal and vertical filtering techniques allow SABER temperatures to be analyzed for gravity wave variances [Walterscheid and Christensen, 2016]. Here we compare the statistical characteristics of horizontal wave spectra, derived from airglow imagery, with vertical wave variances derived from SABER temperature profiles. The analysis is performed for a period of strong mountain wave activity over the Andes spanning the period between June and September 2012. Hecht, J. H., et al. (2014), The life cycle of instability features measured from the Andes Lidar Observatory over Cerro Pachon on March 24, 2012, J. Geophys. Res. Atmos., 119, 8872-8898, doi:10.1002/2014JD021726. Walterscheid, R. L., and A. B. Christensen (2016), Low-latitude gravity wave variances in the mesosphere and lower thermosphere derived from SABER temperature observation and compared with model simulation of waves generated by deep tropical convection, J. Geophys. Res. Atmos., 121, 11,900-11,912, doi:10.1002/2016JD024843.

  3. Characterisation of ground motion recording stations in the Groningen gas field

    NASA Astrophysics Data System (ADS)

    Noorlandt, Rik; Kruiver, Pauline P.; de Kleine, Marco P. E.; Karaoulis, Marios; de Lange, Ger; Di Matteo, Antonio; von Ketelhodt, Julius; Ruigrok, Elmer; Edwards, Benjamin; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2018-05-01

    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity ( V S). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ V S values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed V S profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent V S information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative V S profiles at the accelerograph station sites. The measured V S profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the V S profile and the observed amplification from vertical array stations is also excellent.

  4. Characterisation of ground motion recording stations in the Groningen gas field

    NASA Astrophysics Data System (ADS)

    Noorlandt, Rik; Kruiver, Pauline P.; de Kleine, Marco P. E.; Karaoulis, Marios; de Lange, Ger; Di Matteo, Antonio; von Ketelhodt, Julius; Ruigrok, Elmer; Edwards, Benjamin; Rodriguez-Marek, Adrian; Bommer, Julian J.; van Elk, Jan; Doornhof, Dirk

    2018-01-01

    The seismic hazard and risk analysis for the onshore Groningen gas field requires information about local soil properties, in particular shear-wave velocity (V S). A fieldwork campaign was conducted at 18 surface accelerograph stations of the monitoring network. The subsurface in the region consists of unconsolidated sediments and is heterogeneous in composition and properties. A range of different methods was applied to acquire in situ V S values to a target depth of at least 30 m. The techniques include seismic cone penetration tests (SCPT) with varying source offsets, multichannel analysis of surface waves (MASW) on Rayleigh waves with different processing approaches, microtremor array, cross-hole tomography and suspension P-S logging. The offset SCPT, cross-hole tomography and common midpoint cross-correlation (CMPcc) processing of MASW data all revealed lateral variations on length scales of several to tens of metres in this geological setting. SCPTs resulted in very detailed V S profiles with depth, but represent point measurements in a heterogeneous environment. The MASW results represent V S information on a larger spatial scale and smooth some of the heterogeneity encountered at the sites. The combination of MASW and SCPT proved to be a powerful and cost-effective approach in determining representative V S profiles at the accelerograph station sites. The measured V S profiles correspond well with the modelled profiles and they significantly enhance the ground motion model derivation. The similarity between the theoretical transfer function from the V S profile and the observed amplification from vertical array stations is also excellent.

  5. Intermittent large amplitude internal waves observed in Port Susan, Puget Sound

    NASA Astrophysics Data System (ADS)

    Harris, J. C.; Decker, L.

    2017-07-01

    A previously unreported internal tidal bore, which evolves into solitary internal wave packets, was observed in Port Susan, Puget Sound, and the timing, speed, and amplitude of the waves were measured by CTD and visual observation. Acoustic Doppler current profiler (ADCP) measurements were attempted, but unsuccessful. The waves appear to be generated with the ebb flow along the tidal flats of the Stillaguamish River, and the speed and width of the resulting waves can be predicted from second-order KdV theory. Their eventual dissipation may contribute significantly to surface mixing locally, particularly in comparison with the local dissipation due to the tides. Visually the waves appear in fair weather as a strong foam front, which is less visible the farther they propagate.

  6. Wave drag as the objective function in transonic fighter wing optimization

    NASA Technical Reports Server (NTRS)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  7. Approximate Stokes Drift Profiles in Deep Water

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  8. On multi-graded-index soliton solutions for the Boussinesq-Burgers equations in optical communications

    NASA Astrophysics Data System (ADS)

    Abdel-Gawad, H. I.; Tantawy, M.

    2017-02-01

    Very recently, multi-solitary long waves for the homogeneous Boussinesq-Burgers equations (BBEs) were studied. Here its found that the time dependent coefficients (BBEs), shows multi-graded-index solitons waves, which are graded refractive index profile and can offer a new route for high-power lasers and transmission. They should increase data rates in low-cost telecommunications systems. Further, that (BBEs) show long periodic solitons waves in communications and television antennas.

  9. Blobs and drift wave dynamics

    DOE PAGES

    Zhang, Yanzeng; Krasheninnikov, S. I.

    2017-09-29

    The modified Hasegawa-Mima equation retaining all nonlinearities is investigated from the point of view of the formation of blobs. The linear analysis shows that the amplitude of the drift wave packet propagating in the direction of decreasing background plasma density increases and eventually saturates due to nonlinear effects. Nonlinear modification of the time averaged plasma density profile results in the formation of large amplitude modes locked in the radial direction, but still propagating in the poloidal direction, which resembles the experimentally observed chain of blobs propagating in the poloidal direction. Such specific density profiles, causing the locking of drift waves,more » could form naturally at the edge of tokamak due to a neutral ionization source. Thus, locked modes can grow in situ due to plasma instabilities, e.g., caused by finite resistivity. Furthermore, the modulation instability (in the poloidal direction) of these locked modes can result in a blob-like burst of plasma density.« less

  10. Flow measurement around a model ship with propeller and rudder

    NASA Astrophysics Data System (ADS)

    van, S. H.; Kim, W. J.; Yoon, H. S.; Lee, Y. Y.; Park, I. R.

    2006-04-01

    For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.

  11. Physiological breakdown of Jeffrey six constant nanofluid flow in an endoscope with nonuniform wall

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Shaheen, A.; Hussain, S.

    2015-12-01

    This paper analyse the endoscopic effects of peristaltic nanofluid flow of Jeffrey six-constant fluid model in the presence of magnetohydrodynamics flow. The current problem is modeled in the cylindrical coordinate system and exact solutions are managed (where possible) under low Reynolds number and long wave length approximation. The influence of emerging parameters on temperature and velocity profile are discussed graphically. The velocity equation is solved analytically by utilizing the homotopy perturbation technique strongly, while the exact solutions are computed from temperature equation. The obtained expressions for velocity , concentration and temperature is sketched during graphs and the collision of assorted parameters is evaluate for transform peristaltic waves. The solution depend on thermophoresis number Nt, local nanoparticles Grashof number Gr, and Brownian motion number Nb. The obtained expressions for the velocity, temperature, and nanoparticles concentration profiles are plotted and the impact of various physical parameters are investigated for different peristaltic waves.

  12. Correspondence: Reply to ‘Phantom phonon localization in relaxors’

    DOE PAGES

    Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.

    2017-12-05

    The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less

  13. Correspondence: Reply to ‘Phantom phonon localization in relaxors’

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Michael E.; Abernathy, Douglas L.; Budai, John D.

    The Correspondence by Gehring et al. mistakes Anderson phonon localization for the concept of an atomic-scale local mode. An atomic-scale local mode refers to a single atom vibrating on its own within a crystal. Such a local mode will have an almost flat intensity profile, but this is not the same as phonon localization. Anderson localization is a wave interference effect in a disordered system that results in waves becoming spatially localized. The length scale of the localized waves is set by the wavelength, which is approximately 2 nm in this case. This larger length scale in real space meansmore » narrower intensity profiles in reciprocal space. Here, we conclude that the claims in the Correspondence by Gehring et al. are incorrect because they mistakenly assume that the length scale for Anderson localization is atomic, and because the experimental observations rule out multiple scattering as the origin.« less

  14. Measurement of near-surface seismic compressional wave velocities using refraction tomography at a proposed construction site on the Presidio of Monterey, California

    USGS Publications Warehouse

    Powers, Michael H.; Burton, Bethany L.

    2012-01-01

    The U.S. Army Corps of Engineers is determining the feasibility of constructing a new barracks building on the U.S. Army Presidio of Monterey in Monterey, California. Due to the presence of an endangered orchid in the proposed area, invasive techniques such as exploratory drill holes are prohibited. To aid in determining the feasibility, budget, and design of this building, a compressional-wave seismic refraction survey was proposed by the U.S. Geological Survey as an alternative means of investigating the depth to competent bedrock. Two sub-parallel profiles were acquired along an existing foot path and a fence line to minimize impacts on the endangered flora. The compressional-wave seismic refraction tomography data for both profiles indicate that no competent rock classified as non-rippable or marginally rippable exists within the top 30 feet beneath the ground surface.

  15. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    PubMed Central

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-01-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation. PMID:27439474

  16. Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion

    NASA Astrophysics Data System (ADS)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang

    2016-07-01

    The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.

  17. 3-D Upper-Mantle Shear Velocity Model Beneath the Contiguous United States Based on Broadband Surface Wave from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Chu, Risheng; Yang, Yingjie

    2018-05-01

    Ambient noise seismic tomography has been widely used to study crustal and upper-mantle shear velocity structures. Most studies, however, concentrate on short period (< 50 s) surface wave from ambient noise, while studies using long period surface wave from ambient noise are limited. In this paper, we demonstrate the feasibility of using long-period surface wave from ambient noise to study the lithospheric structure on a continental scale. We use broadband Rayleigh wave phase velocities to obtain a 3-D V S structures beneath the contiguous United States at period band of 10-150 s. During the inversion, 1-D shear wave velocity profile is parameterized using B-spline at each grid point and is inverted with nonlinear Markov Chain Monte Carlo method. Then, a 3-D shear velocity model is constructed by assembling all the 1-D shear velocity profiles. Our model is overall consistent with existing models which are based on multiple datasets or data from earthquakes. Our model along with the other post-USArray models reveal lithosphere structures in the upper mantle, which are consistent with the geological tectonic background (e.g., the craton root and regional upwelling provinces). The model has comparable resolution on lithosphere structures compared with many published results and can be used for future detailed regional or continental studies and analysis.

  18. Applications of AMC-based impedance surfaces

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Amiri, Mikal Askarian; Modi, Anuj Y.; Pandi, Sivaseetharaman; Birtcher, Craig R.

    2018-03-01

    The recent and major enhancements of artificial magnetic conductor (AMC) and their applications namely RCS reduction, low-profile antennas and holographic leaky wave antennas are reviewed. Full-wave simulations are compared to measurements of fabricated models, and a good agreement is attained. All of the measurement were conducted in the Arizona State University electromagnetic anechoic chamber (EMAC).

  19. Vietnamese Refugees in the United States: Adaptation and Transitional Status.

    ERIC Educational Resources Information Center

    Nguyen, Liem T.; Henkin, Alan B.

    1982-01-01

    Profiles the "boat people," the second wave of refugees, and compares data with available research on the first wave of Vietnamese immigrants. Concludes that differences in background and conditions of migration affect sociocultural adjustment; the first group appears more acculturated but also seem more resistant to assimilation in the host…

  20. Imaging a soil fragipans using a high-frequency MASW method

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to noninvasively image a fragipan layer, a naturally occurring dense soil layer, using a high-frequency (HF) multi-channel analysis of surface wave (MASW) method. The HF-MASW is developed to measure the soil profile in terms of the shear (S) wave velocity at depths up...

  1. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less

  2. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    NASA Astrophysics Data System (ADS)

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; Lane, J. Matthew D.

    2018-05-01

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressure gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. These simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.

  3. New measurements quantify atmospheric greenhouse effect

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.

  4. Waves in the Martian Atmosphere: Results from MGS Radio Occultations

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Hinson, D. P.; Tyler, G. L.

    1999-01-01

    Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.

  5. Verification of experimental dynamic strength methods with atomistic ramp-release simulations

    DOE PAGES

    Moore, Alexander P.; Brown, Justin L.; Lim, Hojun; ...

    2018-05-04

    Material strength and moduli can be determined from dynamic high-pressure ramp-release experiments using an indirect method of Lagrangian wave profile analysis of surface velocities. This method, termed self-consistent Lagrangian analysis (SCLA), has been difficult to calibrate and corroborate with other experimental methods. Using nonequilibrium molecular dynamics, we validate the SCLA technique by demonstrating that it accurately predicts the same bulk modulus, shear modulus, and strength as those calculated from the full stress tensor data, especially where strain rate induced relaxation effects and wave attenuation are small. We show here that introducing a hold in the loading profile at peak pressuremore » gives improved accuracy in the shear moduli and relaxation-adjusted strength by reducing the effect of wave attenuation. When rate-dependent effects coupled with wave attenuation are large, we find that Lagrangian analysis overpredicts the maximum unload wavespeed, leading to increased error in the measured dynamic shear modulus. Furthermore, these simulations provide insight into the definition of dynamic strength, as well as a plausible explanation for experimental disagreement in reported dynamic strength values.« less

  6. Verification Test of the SURF and SURFplus Models in xRage: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-06-20

    The previous study used an underdriven detonation wave (steady ZND reaction zone profile followed by a scale invariant rarefaction wave) for PBX 9502 as a validation test of the implementation of the SURF and SURFplus models in the xRage code. Even with a fairly fine uniform mesh (12,800 cells for 100mm) the detonation wave profile had limited resolution due to the thin reaction zone width (0.18mm) for the fast SURF burn rate. Here we study the effect of finer resolution by comparing results of simulations with cell sizes of 8, 2 and 1 μm, which corresponds to 25, 100 andmore » 200 points within the reaction zone. With finer resolution the lead shock pressure is closer to the von Neumann spike pressure, and there is less noise in the rarefaction wave due to fluctuations within the reaction zone. As a result the average error decreases. The pointwise error is still dominated by the smearing the pressure kink in the vicinity of the sonic point which occurs at the end of the reaction zone.« less

  7. Mean, tidal, and fluctuating winds in the middle atmosphere and lower thermosphere observed during MAP/WINE in Northern Scandinavia

    NASA Technical Reports Server (NTRS)

    Roettger, J.

    1989-01-01

    During the MAP/WINE campaign in winter 1983 to 1984 several instrumental techniques, such as meteorological rockets, sounding rockets, MST radar and incoherent scatter radar, were applied to measure wind velocities in the middle atmosphere. Profiles of mean, tidal and fluctuating wind velocities were obtained up to 90 to 100 km altitude. These are compared with profiles from models, measurements at other locations and at other times as well as satellite derived data. The results are discussed in terms of ageostropic winds, planetary waves, tidal modes and the possibility of a saturated gravity wave spectrum in the mesosphere.

  8. Subwavelength elastic joints connecting torsional waveguides to maximize the power transmission coefficient

    NASA Astrophysics Data System (ADS)

    Lee, Joong Seok; Lee, Il Kyu; Seung, Hong Min; Lee, Jun Kyu; Kim, Yoon Young

    2017-03-01

    Joints with slowly varying tapered shapes, such as linear or exponential profiles, are known to transmit incident wave power efficiently between two waveguides with dissimilar impedances. This statement is valid only when the considered joint length is longer than the wavelengths of the incident waves. When the joint length is shorter than the wavelengths, however, appropriate shapes of such subwavelength joints for efficient power transmission have not been explored much. In this work, considering one-dimensional torsional wave motion in a cylindrical elastic waveguide system, optimal shapes or radial profiles of a subwavelength joint maximizing the power transmission coefficient are designed by a gradient-based optimization formulation. The joint is divided into a number of thin disk elements using the transfer matrix approach and optimal radii of the disks are determined by iterative shape optimization processes for several single or bands of wavenumbers. Due to the subwavelength constraint, the optimized joint profiles were found to be considerably different from the slowly varying tapered shapes. Specifically, for bands of wavenumbers, peculiar gourd-like shapes were obtained as optimal shapes to maximize the power transmission coefficient. Numerical results from the proposed optimization formulation were also experimentally realized to verify the validity of the present designs.

  9. Shear-wave velocity profile and seismic input derived from ambient vibration array measurements: the case study of downtown L'Aquila

    NASA Astrophysics Data System (ADS)

    Di Giulio, Giuseppe; Gaudiosi, Iolanda; Cara, Fabrizio; Milana, Giuliano; Tallini, Marco

    2014-08-01

    Downtown L'Aquila suffered severe damage (VIII-IX EMS98 intensity) during the 2009 April 6 Mw 6.3 earthquake. The city is settled on a top flat hill, with a shear-wave velocity profile characterized by a reversal of velocity at a depth of the order of 50-100 m, corresponding to the contact between calcareous breccia and lacustrine deposits. In the southern sector of downtown, a thin unit of superficial red soils causes a further shallow impedance contrast that may have influenced the damage distribution during the 2009 earthquake. In this paper, the main features of ambient seismic vibrations have been studied in the entire city centre by using array measurements. We deployed six 2-D arrays of seismic stations and 1-D array of vertical geophones. The 2-D arrays recorded ambient noise, whereas the 1-D array recorded signals produced by active sources. Surface-wave dispersion curves have been measured by array methods and have been inverted through a neighbourhood algorithm, jointly with the H/V ambient noise spectral ratios related to Rayleigh waves ellipticity. We obtained shear-wave velocity (Vs) profiles representative of the southern and northern sectors of downtown L'Aquila. The theoretical 1-D transfer functions for the estimated Vs profiles have been compared to the available empirical transfer functions computed from aftershock data analysis, revealing a general good agreement. Then, the Vs profiles have been used as input for a deconvolution analysis aimed at deriving the ground motion at bedrock level. The deconvolution has been performed by means of EERA and STRATA codes, two tools commonly employed in the geotechnical engineering community to perform equivalent-linear site response studies. The waveform at the bedrock level has been obtained deconvolving the 2009 main shock recorded at a strong motion station installed in downtown. Finally, this deconvolved waveform has been used as seismic input for evaluating synthetic time-histories in a strong-motion target site located in the middle Aterno river valley. As a target site, we selected the strong-motion station of AQV 5 km away from downtown L'Aquila. For this site, the record of the 2009 L'Aquila main shock is available and its surface stratigraphy is adequately known making possible to propagate the deconvolved bedrock motion back to the surface, and to compare recorded and synthetic waveforms.

  10. Analysis of Wave Predictions from the Coastal Model Test Bed using Operationally Estimated Bathymetry

    NASA Astrophysics Data System (ADS)

    Bak, S.; Smith, J. M.; Hesser, T.; Bryant, M. A.

    2016-12-01

    Near-coast wave models are generally validated with relatively small data sets that focus on analytical solutions, specialized experiments, or intense storms. Prior studies have compiled testbeds that include a few dozen experiments or storms to validate models (e.g., Ris et al. 2002), but few examples exist that allow for continued model evaluation in the nearshore and surf-zone in near-realtime. The limited nature of these validation sets is driven by a lack of high spatial and temporal resolution in-situ wave measurements and the difficulty in maintaining these instruments on the active profile over long periods of time. The US Army Corps of Engineers Field Research Facility (FRF) has initiated a Coastal Model Test-Bed (CMTB), which is an automated system that continually validates wave models (with morphological and circulation models to follow) utilizing the rich data set of oceanographic and bathymetric measurements collected at the FRF. The FRF's cross-shore wave array provides wave measurements along a cross-shore profile from 26 m of water depth to the shoreline, utilizing various instruments including wave-rider buoys, AWACs, aquadopps, pressure gauges, and a dune-mounted lidar (Brodie et al. 2015). This work uses the CMTB to evaluate the performance of a phase-averaged numerical wave model, STWAVE (Smith 2007, Massey et al. 2011) over the course of a year at the FRF in Duck, NC. Additionally, from the BathyDuck Experiment in October 2015, the CMTB was used to determine the impact of applying the depth boundary condition for the model from monthly acoustic bathymetric surveys in comparison to hourly estimates using a video-based inversion method (e.g., cBathy, Holman et al. 2013). The modeled wave parameters using both bathymetric boundary conditions are evaluated using the FRF's cross-shore wave array and two additional cross-shore arrays of wave measurements in 2 to 4 m water depth from BathyDuck in Fall, 2015.

  11. A progress report on the ARRA-funded geotechnical site characterization project

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.

    2011-12-01

    For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.

  12. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  13. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.

  14. Investigation of sinkhole areas in Germany using 2D shear wave reflection seismics and zero-offset VSP

    NASA Astrophysics Data System (ADS)

    Tschache, Saskia; Wadas, Sonja; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-04-01

    Sinkholes pose a serious geohazard for humans and infrastructure in populated areas. The Junior Research Group Subrosion within the Leibniz Institute for Applied Geophysics and the joint project SIMULTAN work on the multi-scale investigation of subrosion processes in the subsurface, which cause natural sinkholes. In two case studies in sinkhole areas of Thuringia in Germany, we applied 2D shear wave reflection seismics using SH-waves with the aim to detect suitable parameters for the characterisation of critical zones. This method has the potential to image near-surface collapse and faulting structures in improved resolution compared to P-wave surveys resulting from the shorter wavelength of shear waves. Additionally, the shear wave velocity field derived by NMO velocity analysis is a basis to calculate further physical parameters, as e.g. the dynamic shear modulus. In both investigation areas, vertical seismic profiles (VSP) were acquired by generating P- and SH-waves (6 component VSP) directly next to a borehole equipped with a 3C downhole sensor. They provide shear and compressional wave velocity profiles, which are used to improve the 2D shear wave velocity field from surface seismics, to perform a depth calibration of the seismic image and to calculate the Vp/Vs ratio. The signals in the VSP data are analysed with respect to changes in polarisation and attenuation with depth and/or azimuth. The VSP data reveal low shear wave velocities of 200-300 m/s in rock layers known to be heavily affected by subrosion and confirm the low velocities calculated from the surface seismic data. A discrepancy of the shear wave velocities is observed in other intervals probably due to unsymmetrical travel paths in the surface seismics. In some VSP data dominant conversion of the direct SH-wave to P-wave is observed that is assumed to be caused by an increased presence of cavities. A potential fault distorting the vertical travel paths was detected by abnormal P-wave first arrivals in the VSP dataset of a borehole located near the city of Bad Frankenhausen. In addition, a strong attenuation of the source signals may indicate areas influenced by subrosion.

  15. Spectroscopic study of shock-induced decomposition in ammonium perchlorate single crystals.

    PubMed

    Gruzdkov, Y A; Winey, J M; Gupta, Y M

    2008-05-01

    Time-resolved Raman scattering measurements were performed on ammonium perchlorate (AP) single crystals under stepwise shock loading. For particular temperature and pressure conditions, the intensity of the Raman spectra in shocked AP decayed exponentially with time. This decay is attributed to shock-induced chemical decomposition in AP. A series of shock experiments, reaching peak stresses from 10-18 GPa, demonstrated that higher stresses inhibit decomposition while higher temperatures promote it. No orientation dependence was found when AP crystals were shocked normal to the (210) and (001) crystallographic planes. VISAR (velocity interferometer system for any reflector) particle velocity measurements and time-resolved optical extinction measurements carried out to verify these observations are consistent with the Raman data. The combined kinetic and spectroscopic results are consistent with a proton-transfer reaction as the first decomposition step in shocked AP.

  16. Patterns of Alloy Deformation by Pulsed Pressure

    NASA Astrophysics Data System (ADS)

    Chebotnyagin, L. M.; Potapov, V. V.; Lopatin, V. V.

    2015-06-01

    Patterns of alloy deformation for optimization of a welding regime are studied by the method of modeling and deformation profiles providing high deformation quality are determined. A model of stepwise kinetics of the alloy deformation by pulsed pressure from the expanding plasma channel inside of a deformable cylinder is suggested. The model is based on the analogy between the acoustic and electromagnetic wave processes in long lines. The shock wave pattern of alloy deformation in the presence of multiple reflections of pulsed pressure waves in the gap plasma channel - cylinder wall and the influence of unloading waves from free surfaces are confirmed.

  17. Exact travelling wave solutions for a diffusion-convection equation in two and three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Elwakil, S. A.; El-Labany, S. K.; Zahran, M. A.; Sabry, R.

    2004-04-01

    The modified extended tanh-function method were applied to the general class of nonlinear diffusion-convection equations where the concentration-dependent diffusivity, D( u), was taken to be a constant while the concentration-dependent hydraulic conductivity, K( u) were taken to be in a power law. The obtained solutions include rational-type, triangular-type, singular-type, and solitary wave solutions. In fact, the profile of the obtained solitary wave solutions resemble the characteristics of a shock-wave like structure for an arbitrary m (where m>1 is the power of the nonlinear convection term).

  18. Effect of electron beam on the properties of electron-acoustic rogue waves

    NASA Astrophysics Data System (ADS)

    El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.

    2015-04-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  19. Assessing the Impacts of Coastal Erosion, Passive Inundation, and Dynamic Wave Inundation under Higher Sea Level in Hawaii

    NASA Astrophysics Data System (ADS)

    Fletcher, C. H., II; Anderson, T. R.; Barbee, M.

    2016-02-01

    The Interagency Climate Adaptation Committee was created by the Hawaii Legislature and Act 83 to investigate community vulnerability to sea level rise (SLR) in Hawaii. To support the committee, we model: (1) coastal erosion; (2) wave inundation; and (3) passive flooding based on the IPCC RCP 8.5 model of SLR over the 21st Century. Erosion is estimated using a hybrid equilibrium profile model (Anderson et al., 2015) that combines historical rates of shoreline change with a Bruun-type model of beach profile adjustment to SLR. Results are mapped to GIS layers showing the 80th-percentile probability of potential shoreline change at years 2030, 2050, 2075, and 2100. Seasonal wave inundation is modeled using XBeach (Deltares) in non-hydrostatic mode. A seasonal high wave event (Ho=2.3 m, Tp=16 s, Dir=200° for the Ewa test site) is simulated at each heightened sea level (corresponding to the years previously mentioned); which accounts for changes in wave dynamics due to the change in water level over the reef platform. We use a bare earth topo/bathy digital elevation model derived from USACE 2013 LIDAR data surveys and multi-beam and side-scan sonar data from the Hawaii Mapping Research Group at the University of Hawaii. Waves are modeled along one-dimensional profiles spaced 20 m apart. From this, we develop a gridded product of water depth and velocity for use in a vulnerability analysis. Passive flooding due to SLR, the so-called "bath tub" method, is used as a proxy for groundwater inundation of low-lying coastal plains (where the majority of development in Hawaii takes place). Modeling results are used with other available data in the FEMA Hazus software to estimate exposure and loss of upland assets. Here, we present the three modeling products and a summary of the larger hazard assessment for the Ewa area on the Hawaiian Island of Oahu.

  20. Investigations of the internal wave characteristics and saturation degree in the Earth's atmosphere by using radiosonde measurements of wind and temperature and their applications to the RO wave studies

    NASA Astrophysics Data System (ADS)

    Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander

    Internal gravity waves (IGWs) affect the structure and circulation of the Earth’s atmosphere by transporting energy and momentum upward from lower atmosphere. Observations of the temperature and wind velocity fluctuations in the middle atmosphere have shown that wave amplitudes grow with increasing altitude, however, no quickly enough in order to correspond to amplitude growth due to exponential decrease of density in the absence of energy dissipation. The theory of saturated IGWs explains such rate of the wave amplitude growth in the following way: any wave amplitude in excess of the threshold value will lead to instability and the production of turbulence that acts to prevent further growth of the wave amplitude. The mechanisms that contribute most to the dissipation and saturation of the dominant IGW motions in the atmosphere are thought to be the dynamical (shear) and convective instability. For high-frequency waves, the threshold amplitude required to achieve shear instability is virtually identical to that required for convective instability. But for low-frequency IGWs, the shear instability threshold falls well below that necessary for convective instability. The knowledge of actual and threshold wave amplitudes is important when the effect of IGWs on the background atmosphere is to be assessed. The internal wave saturation assumption plays the key role for radio occultation (RO) investigations of IGWs in planetary atmospheres [Gubenko et al., 2008, 2011, 2012], therefore a radiosonde study of wave saturation processes in the Earth’s atmosphere is actual task. The results of determination of the actual and threshold amplitudes, saturation degree and other characteristics for identified IGWs in the Earth’s atmosphere found from high-resolution radiosonde measurements SPARC (http://www.sparc.sunysb.edu/) of horizontal wind and temperature are presented. The usefulness of these observations in conjunction with RO studies of IGWs is discussed. The work was carried out under partial support of the RFBR grant 13-02-00526-a and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.

  1. Upper Mississippi embayment shallow seismic velocities measured in situ

    USGS Publications Warehouse

    Liu, Huaibao P.; Hu, Y.; Dorman, J.; Chang, T.-S.; Chiu, J.-M.

    1997-01-01

    Vertical seismic compressional- and shear-wave (P- and S-wave) profiles were collected from three shallow boreholes in sediment of the upper Mississippi embayment. The site of the 60-m hole at Shelby Forest, Tennessee, is on bluffs forming the eastern edge of the Mississippi alluvial plain. The bluffs are composed of Pleistocene loess, Pliocene-Pleistocene alluvial clay and sand deposits, and Tertiary deltaic-marine sediment. The 36-m hole at Marked Tree, Arkansas, and the 27-m hole at Risco, Missouri, are in Holocene Mississippi river floodplain sand, silt, and gravel deposits. At each site, impulsive P- and S-waves were generated by man-made sources at the surface while a three-component geophone was locked downhole at 0.91-m intervals. Consistent with their very similar geology, the two floodplain locations have nearly identical S-wave velocity (VS) profiles. The lowest VS values are about 130 m s-1, and the highest values are about 300 m s-1 at these sites. The shear-wave velocity profile at Shelby Forest is very similar within the Pleistocene loess (12m thick); in deeper, older material, VS exceeds 400 m s-1. At Marked Tree, and at Risco, the compressional-wave velocity (VP) values above the water table are as low as about 230 m s-1, and rise to about 1.9 km s-1 below the water table. At Shelby Forest, VP values in the unsaturated loess are as low as 302 m s-1. VP values below the water table are about 1.8 km s-1. For the two floodplain sites, the VP/VS ratio increases rapidly across the water table depth. For the Shelby Forest site, the largest increase in the VP/VS ratio occurs at ???20-m depth, the boundary between the Pliocene-Pleistocene clay and sand deposits and the Eocene shallow-marine clay and silt deposits. Until recently, seismic velocity data for the embayment basin came from earthquake studies, crustal-scale seismic refraction and reflection profiles, sonic logs, and from analysis of dispersed earthquake surface waves. Since 1991, seismic data for shallow sediment obtained from reflection, refraction, crosshole and downhole techniques have been obtained for sites at the northern end of the embayment basin. The present borehole data, however, are measured from sites representative of large areas in the Mississippi embayment. Therefore, they fill a gap in information needed for modeling the response of the embayment to destructive seismic shaking.

  2. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin

    USGS Publications Warehouse

    Liu, M.; Mooney, W.D.; Li, S.; Okaya, N.; Detweiler, S.

    2006-01-01

    The 1000-km-long Darlag-Lanzhou-Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4??km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3??km/s are 0.15??km/s lower than the worldwide average of 6.45??km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4??km/s and only 0.5??km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38??km as the crustal thickness increases from 42??km in the Ordos basin to 63??km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino-Korean and Gobi Ala Shan platforms. ?? 2006.

  3. Sensitivity of ground motion parameters to local site effects for areas characterised by a thick buried low-velocity layer.

    NASA Astrophysics Data System (ADS)

    Farrugia, Daniela; Galea, Pauline; D'Amico, Sebastiano; Paolucci, Enrico

    2016-04-01

    It is well known that earthquake damage at a particular site depends on the source, the path that the waves travel through and the local geology. The latter is capable of amplifying and changing the frequency content of the incoming seismic waves. In regions of sparse or no strong ground motion records, like Malta (Central Mediterranean), ground motion simulations are used to obtain parameters for purposes of seismic design and analysis. As an input to ground motion simulations, amplification functions related to the shallow subsurface are required. Shear-wave velocity profiles of several sites on the Maltese islands were obtained using the Horizontal-to-Vertical Spectral Ratio (H/V), the Extended Spatial Auto-Correlation (ESAC) technique and the Genetic Algorithm. The sites chosen were all characterised by a layer of Blue Clay, which can be up to 75 m thick, underlying the Upper Coralline Limestone, a fossiliferous coarse grained limestone. This situation gives rise to a velocity inversion. Available borehole data generally extends down till the top of the Blue Clay layer therefore the only way to check the validity of the modelled shear-wave velocity profile is through the thickness of the topmost layer. Surface wave methods are characterised by uncertainties related to the measurements and the model used for interpretation. Moreover the inversion procedure is also highly non-unique. Such uncertainties are not commonly included in site response analysis. Yet, the propagation of uncertainties from the extracted dispersion curves to inversion solutions can lead to significant differences in the simulations (Boaga et al., 2011). In this study, a series of sensitivity analyses will be presented with the aim of better identifying those stratigraphic properties which can perturb the ground motion simulation results. The stochastic one-dimensional site response analysis algorithm, Extended Source Simulation (EXSIM; Motazedian and Atkinson, 2005), was used to perform these analyses. The amplification functions were extracted using the programme SITE_AMP (Boore, 2003), which computes amplifications based on the square root of the effective seismic impedance. Sensitivity indices were obtained by changing two parameters (thickness and shear-wave velocity) of the different layers while keeping the others constant. Additional analyses were carried out by producing various profiles within specified boundaries which are able to fit the experimental data. The analyses also show the important role that the shear-wave velocity profiles play in ground motion simulations. The results obtained highlight the importance of the correct knowledge of both the properties of the Upper Coralline Limestone and the Blue Clay, especially the Blue Clay thickness.

  4. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Lian, Zhan

    2018-02-01

    By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.

  5. Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone

    USGS Publications Warehouse

    Hamilton, R.M.; Mooney, W.D.

    1990-01-01

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  6. Tunable modulation of refracted lamb wave front facilitated by adaptive elastic metasurfaces

    NASA Astrophysics Data System (ADS)

    Li, Shilong; Xu, Jiawen; Tang, J.

    2018-01-01

    This letter reports designs of adaptive metasurfaces capable of modulating incoming wave fronts of elastic waves through electromechanical-tuning of their cells. The proposed elastic metasurfaces are composed of arrayed piezoelectric units with individually connected negative capacitance elements that are online tunable. By adjusting the negative capacitances properly, accurately formed, discontinuous phase profiles along the elastic metasurfaces can be achieved. Subsequently, anomalous refraction with various angles can be realized on the transmitted lowest asymmetric mode Lamb wave. Moreover, designs to facilitate planar focal lenses and source illusion devices can also be accomplished. The proposed flexible and versatile strategy to manipulate elastic waves has potential applications ranging from structural fault detection to vibration/noise control.

  7. Theory of nonreciprocal spin-wave excitations in spin Hall oscillators with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Zivieri, R.; Giordano, A.; Verba, R.; Azzerboni, B.; Carpentieri, M.; Slavin, A. N.; Finocchio, G.

    2018-04-01

    A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin current in spin Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i -DMI) is developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well as the frequencies and spatial profiles of the excited spin-wave modes. It is found that the frequency of the excited spin waves exhibits a quadratic redshift with the i -DMI strength. At the same time, in the range of small and moderate values of the i -DMI constant, the averaged wave number of the excited spin waves is almost independent of the i -DMI, which results in a rather weak dependence on the i -DMI of the threshold current of the spin-wave excitation. The obtained analytical results are confirmed by the results of micromagnetic simulations.

  8. Numerical modelling of wind effects on breaking waves in the surf zone

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2017-10-01

    Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier-Stokes equations with the k - 𝜖 turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.

  9. Structure of the detonation wave front in a mixture of nitromethane with acetone

    NASA Astrophysics Data System (ADS)

    Buravova, S. N.

    2012-09-01

    It is shown that the leading front of an inhomogeneous detonation wave is a shock wave in which wave structures of the type of triple shock configurations are moving. It was experimentally found that the reaction in these inhomogeneities occurs in oblique shock waves. The reaction sites at the wave front are ring-shaped. In a 75: 25 mixture of nitromethane with acetone, up to 70% of the front surface is occupied by the reaction at the sites in the wave front. Measurements of the mass velocity profile indicate that afterburning takes place in the unloading area behind the Jouguet plane. Calculations of the heat release in the reaction mixture with a decrease in the mass velocity indicate that the material that have not reacted in the inhomogeneities can be ignited in the induction zone. It is suggested that the adiabatic flashes are a mechanism that generates inhomogeneities in the detonation wave front.

  10. Coastal retreat and shoreface profile variations in the Canadian Beaufort Sea

    USGS Publications Warehouse

    Hequette, A.; Barnes, P.W.

    1990-01-01

    The coastline of the southern Canadian Beaufort Sea consists primarily of unconsolidated bluffs. Although the sea is ice-free for 3 months of the year and wave energy is restricted by pack ice, the coast is undergoing regional retreat with erosion rates as high as 10 m a-1 in some locations. Simple and multiple regression analyses were carried out to determine the degree of correlation between the mean retreat rate measured at various locations and the different parameters that may control shoreline recession. Sediment texture, ground-ice content, cliff height, wave energy and shoreface gradient revealed medium to poor correlation with erosion rates, showing that the recessive evolution of the coastline can not be explained solely by wave-induced and subaerial processes. The comparison of nearshore echo-sounding records from 1987 with bathymetry from 1971 showed substantial erosion (up to 1 m) of the submarine profile between 12 and 15 m of water. There is strong evidence that this erosion has been caused by sea ice gouging on the seafloor. From depths of 5 to 9 m, accretion has taken place, possibly induced by ice-push processes, and inshore of the 5 m isobath wave and current erosion of the shoreface has occurred. These results suggest that the erosion of the inner shelf by ice gouging drives the erosion observed inshore on the coastal bluffs and nearshore zone as the shoreface profile strives for a state of dynamic equilibrium. ?? 1990.

  11. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  12. Radiating pattern of surge-current-induced THz light in near-field and far-field zone.

    PubMed

    Han, J W; Choi, Y G; Lee, J S

    2018-04-25

    We generate the THz wave on the surface of an unbiased GaAs crystal by illuminating femtosecond laser pulses with a 45° incidence angle, and investigate its propagation properties comprehensively both in a near-field and in a far-field zone by performing a knife-edge scan measurement. In the near-field zone, i.e. 540 μm away from the generation point, we found that the beam simply takes a Gaussian shape of which width follows well a behavior predicted by a paraxial wave equation. In the far-field zone, on the other hand, it takes a highly anisotropic shape; whereas the beam profile maintains a Gaussian shape along the normal to the plane of incidence, it takes satellite peak structures along the direction in parallel to the plane of incidence. From the comparison with simulation results obtained by using a dipole radiation model, we demonstrated that this irregular beam pattern is attributed to the combined effect of the position-dependent phase retardation of the THz waves and the diffraction-limited size of the initial beam which lead to the interference of the waves in the far-field zone. Also, we found that this consideration accounting for a crossover of THz beam profile to the anisotropic non-Gaussian beam in the far-field zone can be applied for a comprehensive understanding of several other THz beam profiles obtained previously in different configurations.

  13. Identification of Stratospheric Waves in Ozone in the Tropics from OMI High Spectral Resolution Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Liu, X.; Bhartia, P. K.

    2007-01-01

    Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.

  14. Ion acoustic solitary wave with weakly transverse perturbations in quantum electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.; Khan, S. A.; Department of Physics, COMSATS Institute of Information Technology, Islamabad

    2007-05-15

    The characteristics and stability of ion acoustic solitary wave with transverse perturbations are examined in ultracold quantum magnetospheric plasma consisting of electrons, positrons, and ions. Using the quantum hydrodynamic model, a dispersion relation in the linear regime, and the Kadomtsev-Petviashvili equation in the nonlinear regime are derived. The quantum corrections are studied through quantum statistics and diffraction effects. It is found that compressive solitary wave can propagate in this system. The quantum effects are also studied graphically for both linear and nonlinear profiles of ion acoustic wave. Using energy consideration method, conditions for existence of stable solitary waves are obtained.more » It is found that stable solitary waves depend on quantum corrections, positron concentration, and direction cosine of the wave vector k along the x axis.« less

  15. Pc-5 wave power in the plasmasphere and trough: CRRES observations

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Angelopoulos, V.; Takahashi, K.; Singer, H. J.; Anderson, R. R.

    2009-12-01

    The CRRES (Combined Release and Radiation Effects Satellite) mission provides an opportunity to study the distribution of MHD wave power in the inner magnetosphere both inside the high-density plasmasphere and in the low-density trough. We present a statistical survey of Pc-5 wave power using CRRES magnetometer and plasma wave data separated into plasmasphere and trough intervals. Using a database of plasmapause crossings, we examined differences in power spectral density between the plasmasphere and trough regions. We found significant differences between the plasmasphere and trough in the radial profiles of Pc-5 wave power. On average, wave power was higher in the trough, but the difference in power depended on magnetic local time. Our study shows that determining the plasmapause location is important for understanding and modeling the MHD wave environment in the Pc-5 frequency band.

  16. Deepening Minimums in Phase Space Density as an Evidence of the Localied Loss of Electrons by EMIC waves

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Aseev, N.; Drozdov, A.; Kellerman, A. C.; Usanova, M.

    2017-12-01

    Recent observations and modeling provided significant improvements in our understanding of the energization mechanisms for the electrons in the radiation belts. However, loss processes remain poorly understood. In this study we present analysis of the evolution of electron radial profiles of fluxes, pitch angle and energy distributions. Our modeling and observational results show that different loss mechanisms are operational at different energies. Global simulations at all energies, radial distances, and pitch angels are compared to Van Allen Probes observations of electron fluxes. VERB 3D model including various waves is capable of reproducing the dynamics of pitch angle distributions and energy spectra, demonstrating which loss mechanisms dominate at different energies. Analysis of the profiles of phase space density provides additional confirmation for our conclusions and presents a novel technique that identifies the region of intense local loss due to EMIC wave scattering. This technique allows us to identify the minimum energy affected by the EMIC loss and the location of the location of the EMIC-induced loss. Further comparison with theoretical estimates confirms that 1-2 MeV electrons cannot be effectively scattered by EMIC waves and most pronounced effect of EMIC waves is seen above 4MeV.

  17. A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    USGS Publications Warehouse

    Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.

    2005-01-01

    The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.

  18. Observations of Seasonal Morphological Evolution at a Moderately Energetic Beach in Rincón, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Rivera Nieves, A.; Loubriel, M.; Rodriguez-Abudo, S.; Canals, M.; Salgado-Domínguez, G.

    2016-02-01

    Seasonal variations in the wave climate near Rincón, Puerto Rico include high winter swells associated with meteorological disturbances in the north and mid Atlantic, short period waves resulting from local storms, and the occasional south swell. The resulting beach morphology is therefore a complex function of the wave climate, wave-induced currents, and local and remote meteorology, among others. Over the past 75 years, this particular stretch of beach has suffered severe erosion problems, losing as much as 100 meters of beach width at particular locations. The purpose of this study is to develop a high-resolution time series of beach morphology to examine in more detail the seasonal variations at the site. Beach profiles will be collected on a weekly basis using an RTK GPS system at three permanent stations spanning 2 km of coast. Sediment samples will be collected along the profiles to identify sediment properties associated with distinct morphological features, while digital photographs will provide a qualitative sense of beach width. The resulting morphological changes will be assessed in light of the Rincon's directional Waverider buoy data and CariCOOS' SWAN high-resolution wave model. This study will provide quantifiable insights into seasonal erosion/accretion trends at a highly touristic stretch of coast in the US Caribbean.

  19. Crustal shear wave velocity structure in the northeastern Tibet based on the Neighbourhood algorithm inversion of receiver functions

    NASA Astrophysics Data System (ADS)

    Wu, Zhenbo; Xu, Tao; Liang, Chuntao; Wu, Chenglong; Liu, Zhiqiang

    2018-03-01

    The northeastern (NE) Tibet records and represents the far-field deformation response of the collision between the Indian and Eurasian plates in the Cenozoic time. Over the past two decades, studies have revealed the existence of thickened crust in the NE Tibet, but the thickening mechanism is still in debate. We deployed a passive-source seismic profile with 22 temporary broad-band seismic stations in the NE Tibet to investigate the crustal shear wave velocity structure in this region. We selected 288 teleseismic events located in the west Pacific subduction zone near Japan with similar ray path to calculate P-wave receiver functions. Neighbourhood algorithm method is applied to invert the shear wave velocity beneath stations. The inversion result shows a low-velocity zone (LVZ) is roughly confined to the Songpan-Ganzi block and Kunlun mountains and extends to the southern margin of Gonghe basin. Considering the low P-wave velocity revealed by the wide-angle reflection-refraction seismic experiment and high ratio of Vp/Vs based on H-κ grid searching of the receiver functions in this profile, LVZ may be attributed to partial melting induced by temperature change. This observation appears to be consistent with the crustal ductile deformation in this region derived from other geophysical investigations.

  20. Assessment of soil compaction properties based on surface wave techniques

    NASA Astrophysics Data System (ADS)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

Top