Sample records for viscosity phase behavior

  1. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  2. Quartz Crystal Microbalance: Aerosol Viscoelastic Measurement Calibration and Subsiquent H2O Uptake

    NASA Astrophysics Data System (ADS)

    Farland, D. R., Jr.; Gilles, M. K.; Harder, T.; Weis, J.; Mueller, S.

    2015-12-01

    Aerosol particles exposed to various atmospheric relative humidity (RH) levels exhibit hygroscopic properties which are not fully understood. Water adsorption or diffusion depends on particle viscosity in semi-solid to liquid states. This relationship between particle viscosity as a function of RH and the corresponding hygroscopic behavioral response is the purpose of this study. However, reliable techniques for viscosity quantification have been limited. A Quartz Crystal Microbalance with Dissipation (QCM-D) was used for viscosity measurements and to determine phase changes. Prior to studies on field samples, microscope immersion/viscosity standard oils, salt crystals, sugars and alpha-pinene secondary organic aerosol (SOA) surrogates are used for viscosity, RH calibrations, water uptake and phase change measurements. RH was controlled by flowing N2 gas saturated with H2O for RH's between 0-75% RH. For higher RH values, (75-100% RH range) saturated salt solutions were flowed over a gore membrane to protect the QCM sensor from direct contact with the solutions. The viscosity calibration constructed via QTools fitting software illustrates the limitations as well as the ranges of reliability of the QCM viscosity measurements. Deliquescing salt crystals of differing deliquescence relative humidity's (DRH), sugars and alpha-pinene SOA's provided insight into the detection of various phase change behaviors. Water uptake experiments performed on alpha-pinene SOA and sucrose sugar yielded significantly different frequency and dissipation responses than the deliquescing salts. Future work will apply these experimental methods and analysis on aerosol particles collected during the GoAmazon field campaign.

  3. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    PubMed

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  4. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.

  5. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.

    PubMed

    Schuch, Anna; Deiters, Philipp; Henne, Julius; Köhler, Karsten; Schuchmann, Heike P

    2013-07-15

    We investigate breakup of W/O/W double emulsion droplets at high viscosity ratios and coalescence of inner water droplets dependent on the dispersed phase content (DPC) of the inner emulsion. The rheological analyses of the inner emulsions confirm the behavior expected from literature - increasing viscosity with increasing DPC and elastic behavior for high DPC. The resulting droplet sizes seem to be influenced only by the viscosity ratio calculated using the viscosity of the inner emulsion. An influence of the elastic properties of the inner emulsions could not be observed. Moreover, breakup of double emulsion droplets seems to follow the same rules as breakup of Newtonian droplets. In the second part of the paper we focus on the release of water from double emulsions by coalescence. A direct correlation between resulting double emulsion droplet sizes and encapsulation efficiency was found for each system. The initial inner dispersed phase content has a big influence on the release rate. This can partly be explained by the influence of the dispersed phase content on collision rate. Moreover, it was found that for high internal phase concentrations inner droplets coalesce with each other. The so formed bigger inner droplets seem to increase the overall release rate. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. A pH-responsive wormlike micellar system of a noncovalent interaction-based surfactant with a tunable molecular structure.

    PubMed

    Kang, Wanli; Wang, Pengxiang; Fan, Haiming; Yang, Hongbin; Dai, Caili; Yin, Xia; Zhao, Yilu; Guo, Shujun

    2017-02-08

    Responsive wormlike micelles are very useful in a number of applications, whereas it is still challenging to create dramatic viscosity changes in wormlike micellar systems. Here we developed a pH-responsive wormlike micellar system based on a noncovalent constructed surfactant, which is formed by the complexation of N-erucamidopropyl-N,N-dimethylamine (UC 22 AMPM) and citric acid at the molar ratio of 3 : 1 (EACA). The phase behavior, aggregate microstructure and viscoelasticity of EACA solutions were investigated by macroscopic appearance observation, rheological and cryo-TEM measurements. It was found that the phase behavior of EACA solutions undergoes transition from transparent viscoelastic fluids to opalescent solutions and then phase separation with white floaters upon increasing the pH. Upon increasing the pH from 2.03 to 6.17, the viscosity of wormlike micelles in the transparent solutions continuously increased and reached ∼683 000 mPa s at pH 6.17. As the pH was adjusted to 7.31, the opalescent solution shows a water-like flowing behaviour and the η 0 rapidly declines to ∼1 mPa s. Thus, dramatic viscosity changes of about 6 magnitudes can be triggered by varying the pH values without any deterioration of the EACA system. This drastic variation in rheological behavior is attributed to the pH dependent interaction between UC 22 AMPM and citric acid. Furthermore, the dependence on concentration and temperature of the rheological behavior of EACA solutions was also studied to assist in obtaining the desired pH-responsive viscosity changes.

  7. Mechanism of gas saturated oil viscosity anomaly near to phase transition point

    NASA Astrophysics Data System (ADS)

    Suleimanov, Baghir A.; Abbasov, Elkhan M.; Sisenbayeva, Marziya R.

    2017-01-01

    The article presents experimental studies of the phase behavior by the flash liberation test and of the viscosity of the live oil at different pressures. Unlike the typical studies at the pressure near the saturation pressure, the measurements were conducted at a relatively small pressure increment of 0.08-0.25 MPa. The viscosity anomaly was discovered experimentally near to the phase transition point in the range of the pressure levels P/Pb = 1-1.14 (Pb—bubble point pressure) and shows that it decreases about 70 times in comparison to the viscosity at the reservoir pressure. It was found that the bubble point pressure decreases significantly (up to 36%) with surfactant addition. Furthermore, the viscosity of the live oil at the surfactant concentration of 5 wt. % decreases almost 37 times in comparison to the viscosity at the reservoir pressure. The mechanism of observed effects was suggested based on the formation of the stable subcritical gas nuclei and associated slippage effect. The mechanism for the stabilization of the subcritical nuclei by the combined action of the surface and electrical forces, as well as the morphology of the formed nanobubbles, was considered. The model for determining the oil viscosity taking into account the slippage effect was suggested.

  8. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  9. The Brittle-Ductile Transition in Crystal and Bubble-bearing Magmas

    NASA Astrophysics Data System (ADS)

    Caricchi, L.; Pistone, M.; Cordonnier, B.; Tripoli, B.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.

    2011-12-01

    The strain response of magma is critically dependent upon its viscosity, the magnitude of the applied stress and the experimental time-scale. The brittle-ductile transition in pure silicate melts is expected for an applied stress approaching 108±0.5 Pa (Dingwell, 1997). However, magmas are mostly mixture of crystal and bubble-bearing silicate melts. To date, there are no data to constrain the ductile-brittle transition for three-phase magmas. Thus, we conducted consistent torsion experiments at high temperature (673-973 K) and high pressure (200 MPa), in the strain rate range 1*10-5-4*10-3 s-1, using a HT-HP internally-heated Paterson-type rock deformation apparatus. The samples are composed of hydrous haplogranitic glass, quartz crystals (24-65 vol%) and CO2-rich gas-pressurized bubbles (9-12 vol%). The applied strain rate was increased until brittle failure occurred; micro-fracturing and healing processes commonly occurred before sample macroscopic fracturing. The experimental results highlight a clear relationship between the effective viscosity of the three-phase magmas, strain rate, temperature and the onset of brittle-ductile behavior. Crystal- and bubble-free melts at high viscosity (1011-1011.6 Pa*s at 673 K) show brittle behavior in the strain rate range between 1*10-4 and 5*10-4 s-1. For comparable viscosities crystal and bubble-bearing magmas show a transition to brittle behavior at lower strain rates. Synchrotron-based 3D imaging of fractured samples, show the presence of fractures with an antithetic trend with respect to shear strain directions. The law found in this study expresses the transition from ductile to brittle behavior for real magmas and could significantly improve our understanding of the control of brittle processes on extrusion of high-viscosity magmas and degassing at silicic volcanoes.

  10. Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner models

    NASA Technical Reports Server (NTRS)

    Dhanasekharan, M.; Huang, H.; Kokini, J. L.; Janes, H. W. (Principal Investigator)

    1999-01-01

    The measured rheological behavior of hard wheat flour dough was predicted using three nonlinear differential viscoelastic models. The Phan-Thien Tanner model gave good zero shear viscosity prediction, but overpredicted the shear viscosity at higher shear rates and the transient and extensional properties. The Giesekus-Leonov model gave similar predictions to the Phan-Thien Tanner model, but the extensional viscosity prediction showed extension thickening. Using high values of the mobility factor, extension thinning behavior was observed but the predictions were not satisfactory. The White-Metzner model gave good predictions of the steady shear viscosity and the first normal stress coefficient but it was unable to predict the uniaxial extensional viscosity as it exhibited asymptotic behavior in the tested extensional rates. It also predicted the transient shear properties with moderate accuracy in the transient phase, but very well at higher times, compared to the Phan-Thien Tanner model and the Giesekus-Leonov model. None of the models predicted all observed data consistently well. Overall the White-Metzner model appeared to make the best predictions of all the observed data.

  11. Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique.

    PubMed

    Yeo, Leslie Y; Matar, Omar K; Perez de Ortiz, E Susana; Hewitt, Geoffrey F

    2002-04-15

    A speculative study on the conditions under which phase inversion occurs in agitated liquid-liquid dispersions is conducted using a Monte Carlo technique. The simulation is based on a stochastic model, which accounts for fundamental physical processes such as drop deformation, breakup, and coalescence, and utilizes the minimization of interfacial energy as a criterion for phase inversion. Profiles of the interfacial energy indicate that a steady-state equilibrium is reached after a sufficiently large number of random moves and that predictions are insensitive to initial drop conditions. The calculated phase inversion holdup is observed to increase with increasing density and viscosity ratio, and to decrease with increasing agitation speed for a fixed viscosity ratio. It is also observed that, for a fixed viscosity ratio, the phase inversion holdup remains constant for large enough agitation speeds. The proposed model is therefore capable of achieving reasonable qualitative agreement with general experimental trends and of reproducing key features observed experimentally. The results of this investigation indicate that this simple stochastic method could be the basis upon which more advanced models for predicting phase inversion behavior can be developed.

  12. Experience in using a numerical scheme with artificial viscosity at solving the Riemann problem for a multi-fluid model of multiphase flow

    NASA Astrophysics Data System (ADS)

    Bulovich, S. V.; Smirnov, E. M.

    2018-05-01

    The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.

  13. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    PubMed

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Rate-Dependent Behavior of the Amorphous Phase of Spider Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10−6 Ns/m and 104 Ns/m2, respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. PMID:24896131

  15. Quantitative Correlation between Viscosity of Concentrated MAb Solutions and Particle Size Parameters Obtained from Small-Angle X-ray Scattering.

    PubMed

    Fukuda, Masakazu; Moriyama, Chifumi; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2015-12-01

    To investigate the relationship between viscosity of concentrated MAb solutions and particle size parameters obtained from small-angle X-ray scattering (SAXS). The viscosity of three MAb solutions (MAb1, MAb2, and MAb3; 40-200 mg/mL) was measured by electromagnetically spinning viscometer. The protein interactions of MAb solutions (at 60 mg/mL) was evaluated by SAXS. The phase behavior of 60 mg/mL MAb solutions in a low-salt buffer was observed after 1 week storage at 25°C. The MAb1 solutions exhibited the highest viscosity among the three MAbs in the buffer containing 50 mM NaCl. Viscosity of MAb1 solutions decreased with increasing temperature, increasing salt concentration, and addition of amino acids. Viscosity of MAb1 solutions was lowest in the buffer containing histidine, arginine, and aspartic acid. Particle size parameters obtained from SAXS measurements correlated very well with the viscosity of MAb solutions at 200 mg/mL. MAb1 exhibited liquid-liquid phase separation at a low salt concentration. Simultaneous addition of basic and acidic amino acids effectively suppressed intermolecular attractive interactions and decreased viscosity of MAb1 solutions. SAXS can be performed using a small volume of samples; therefore, the particle size parameters obtained from SAXS at intermediate protein concentration could be used to screen for low viscosity antibodies in the early development stage.

  16. Phase behavior, rheological characteristics and microstructure of sodium caseinate-Persian gum system.

    PubMed

    Sadeghi, Farzad; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Phillips, Glyn O

    2018-01-01

    In this study, the phase behavior of sodium caseinate-Persian gum mixtures was investigated. The effect of thermodynamic incompatibility on phase distribution of sodium caseinate fractions as well as the flow behavior and microstructure of the biopolymer mixtures were also studied. The phase diagram clearly demonstrated the dominant effect of Persian gum on the incompatibility of the two biopolymers. SDS-PAGE electrophoresis indicated no selective fractionation of sodium caseinate subunits between equilibrium phases upon de-mixing. The microstructure of mixtures significantly changed depending on their position within the phase diagram. Fitting viscometric data to Cross and Bingham models revealed that the apparent viscosity, relaxation time and shear thinning behavior of the mixtures is greatly influenced by the volume ratio and concentration of the equilibrium phases. There is a strong dependence of the flow behavior of sodium caseinate-Persian gum mixtures on the composition of the equilibrium phases and the corresponding microstructure of the system. Copyright © 2017. Published by Elsevier Ltd.

  17. Dynamic-compliance and viscosity of PET and PEN

    NASA Astrophysics Data System (ADS)

    Weick, Brian L.

    2016-05-01

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  18. Dynamic-compliance and viscosity of PET and PEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weick, Brian L.

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  19. Rate-dependent behavior of the amorphous phase of spider dragline silk.

    PubMed

    Patil, Sandeep P; Markert, Bernd; Gräter, Frauke

    2014-06-03

    The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10(-6) Ns/m and 10(4) Ns/m(2), respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.

    PubMed

    Carrillo, Carlos A; Nypelö, Tiina E; Rojas, Orlando J

    2015-05-01

    Cellulose nanofibrils (CNF) were incorporated in water-in-oil (W/O) microemulsions and emulsions, as well as water-in-oil-in-water (W/O/W) multiple emulsions using soybean oil. The addition of CNF to the aqueous phase expanded the composition range to obtain W/O/W emulsions. CNF also increased the viscosity of the continuous phase and reduced the drop size both of which increased the stability and effective viscosity of the emulsions. The effects of oil type and polarity on the properties of the W/O/W emulsions were tested with limonene and octane, which compared to soybean oil produced a smaller emulsion drop size, and thus a higher emulsion viscosity. Overall, CNF are a feasible alternative to conventional polysaccharides as stability enhancers for normal and multiple emulsions that exhibit strong shear thinning behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Bulk viscosity of the Lennard-Jones fluid for a wide range of states computed by equilibrium molecular dynamics

    NASA Astrophysics Data System (ADS)

    Hoheisel, C.; Vogelsang, R.; Schoen, M.

    1987-12-01

    Accurate data for the bulk viscosity ηv have been obtained by molecular dynamics calculations. Many thermodynamic states of the Lennard-Jones fluid were considered. The Green-Kubo integrand of ηv is analyzed in terms of partial correlation functions constituting the total one. These partial functions behave rather differently from those found for the shear viscosity or the thermal conductivity. Generally the total autocorrelation function of ηv shows a steeper initial decay and a more pronounced long time form than those of the shear viscosity or the thermal conductivity. For states near transition to solid phases, like the pseudotriple point of argon, the Green-Kubo integrand of ηv has a significantly longer ranged time behavior than that of the shear viscosity. Hence, for the latter states, a systematic error is expected for ηv using equilibrium molecular dynamics for its computation.

  2. A Classical Phase Space Framework For the Description of Supercooled Liquids and an Apparent Universal Viscosity Collapse

    NASA Astrophysics Data System (ADS)

    Weingartner, Nicholas; Pueblo, Chris; Nogueira, Flavio; Kelton, Kenneth; Nussinov, Zohar

    A fundamental understanding of the phenomenology of the metastable supercooled liquid state remains elusive. Two of the most pressing questions in this field are how to describe the temperature dependence of the viscosity, and determine whether or not the dynamical behaviors are universal. To address these questions, we have devised a simple first-principles classical phase space description of supercooled liquids that (along with a complementary quantum approach) predicts a unique functional form for the viscosity which relies on only a single parameter. We tested this form for 45 liquids of all types and fragilities, and have demonstrated that it provides a statistically significant fit to all liquids. Additionally, by scaling the viscosity of all studied liquids using the single parameter, we have observed a complete collapse of the data of all 45 liquids to a single scaling curve over 16 decades, suggesting an underlying universality in the dynamics of supercooled liquids. In this talk I will outline the basic approach of our model, as well as demonstrate the quality of the model performance and collapse of the data.

  3. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel

    PubMed Central

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040

  4. Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)

    NASA Astrophysics Data System (ADS)

    Möginger, B.; Kehret, L.; Hausnerova, B.; Steinhaus, J.

    2016-05-01

    3D-Printing is an efficient method in the field of additive manufacturing. In order to optimize the properties of manufactured parts it is essential to adapt the curing behavior of the resin systems with respect to the requirements. Thus, effects of resin composition, e.g. due to different additives such as thickener and curing agents, on the curing behavior have to be known. As the resin transfers from a liquid to a solid glass the time dependent ion viscosity was measured using DEA with flat IDEX sensors. This allows for a sensitive measurement of resin changes as the ion viscosity changes two to four decades. The investigated resin systems are based on the monomers styrene and HEMA. To account for the effects of copolymerization in the calculation of the reaction kinetics it was assumed that the reaction can be considered as a homo-polymerization having a reaction order n≠1. Then the measured ion viscosity curves are fitted with the solution of the reactions kinetics - the time dependent degree of conversion (DC-function) - for times exceeding the initiation phase representing the primary curing. The measured ion viscosity curves can nicely be fitted with the DC-function and the determined fit parameters distinguish distinctly between the investigated resin compositions.

  5. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press.

    PubMed

    Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-07-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10(5) frames/second (fps) in air and up to ∼10(4) fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  6. Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2017-04-01

    We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.

  7. User`s guide for UTCHEM-5.32m a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    UTCHEM is a three-dimensional chemical flooding simulator. The solution scheme is analogous to IMPES, where pressure is solved for implicitly, but concentrations rather than saturations are then solved for explicitly. Phase saturations and concentrations are then solved in a flash routine. An energy balance equation is solved explicitly for reservoir temperature. The energy balance equation includes heat flow between the reservoir and the over-and under-burden rocks. The major physical phenomena modeled in the simulator are: dispersion; dilution effects; adsorption; interfacial tension; relative permeability; capillary trapping; cation exchange; phase density; compositional phase viscosity; phase behavior (pseudoquaternary); aqueous reactions; partitioning of chemicalmore » species between oil and water; dissolution/precipitation; cation exchange reactions involving more than two cations; in-situ generation of surfactant from acidic crude oil; pH dependent adsorption; polymer properties: shear thinning viscosity; inaccessible pore volume; permeability reduction; adsorption; gel properties: viscosity; permeability reduction; adsorption; tracer properties: partitioning; adsorption; radioactive decay; reaction (ester hydrolization); temperature dependent properties: viscosity; tracer reaction; gel reactions The following options are available with UTCHEM: isothermal or non-isothermal conditions, a constant or variable time-step, constant pressure or constant rate well conditions, horizontal and vertical wells, and a radial or Cartesian geometry. Please refer to the dissertation {open_quotes}Field Scale Simulation of Chemical Flooding{close_quotes} by Naji Saad, August, 1989, for a more detailed discussion of the UTCHEM simulator and its formulation.« less

  8. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. R. L.

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  9. User`s guide for UTCHEM implicit (1.0) a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    UTCHEM IMPLICIT is a three-dimensional chemical flooding simulator. The solution scheme is fully implicit. The pressure equation and the mass conservation equations are solved simultaneously for the aqueous phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used to reduce numerical dispersion effects. Saturations and phase concentrations are solved in a flash routine. The major physical phenomena modeled in the simulator are: dispersion, adsorption, aqueous-oleic-microemulsion phase behavior, interfacial tension, relative permeability, capillary trapping, compositional phase viscosity, capillary pressure, phase density, polymer properties: shear thinning viscosity, inaccessiblemore » pore volume, permeability reduction, and adsorption. The following options are available in the simulator: constant or variable time-step sizes, uniform or nonuniform grid, pressure or rate constrained wells, horizontal and vertical wells.« less

  10. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2015-08-01

    In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.

  11. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    NASA Astrophysics Data System (ADS)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  12. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr; CEA, LETI, Minatec Campus, 38000 Grenoble; Gravoueille, M.

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlightedmore » that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.« less

  13. One-, two- and three-phase viscosity treatments for basaltic lava flows

    PubMed Central

    Harris, Andrew J. L.; Allen, John S.

    2009-01-01

    Lava flows comprise three-phase mixtures of melt, crystals, and bubbles. While existing one-phase treatments allow melt phase viscosity to be assessed on the basis of composition, water content, and/or temperature, two-phase treatments constrain the effects of crystallinity or vesicularity on mixture viscosity. However, three-phase treatments, allowing for the effects of coexisting crystallinity and vesicularity, are not well understood. We investigate existing one- and two-phase treatments using lava flow case studies from Mauna Loa (Hawaii) and Mount Etna (Italy) and compare these with a three-phase treatment that has not been applied previously to basaltic mixtures. At Etna, melt viscosities of 425 ± 30 Pa s are expected for well-degassed (0.1 w. % H2O), and 135 ± 10 Pa s for less well-degassed (0.4 wt % H2O), melt at 1080°C. Application of a three-phase model yields mixture viscosities (45% crystals, 25–35% vesicles) in the range 5600–12,500 Pa s. This compares with a measured value for Etnean lava of 9400 ± 1500 Pa s. At Mauna Loa, the three-phase treatment provides a fit with the full range of field measured viscosities, giving three-phase mixture viscosities, upon eruption, of 110–140 Pa s (5% crystals, no bubble effect due to sheared vesicles) to 850–1400 Pa s (25–30% crystals, 40–60% spherical vesicles). The ability of the three-phase treatment to characterize the full range of melt-crystal-bubble mixture viscosities in both settings indicates the potential of this method in characterizing basaltic lava mixture viscosity. PMID:21691456

  14. Investigating the evolution of the phase behavior of AOT-based w/o microemulsions in dodecane as a function of droplet volume fraction.

    PubMed

    Ganguly, R; Choudhury, N

    2012-04-15

    AOT-based water in oil (w/o) microemulsions are one of the most extensively studied reverse micellar systems because of their rich phase behavior and their ability to form in the absence of any co-surfactant. The aggregation characteristics and interaction of the microemulsion droplets in these systems are known to be governed by AOT-oil compatibility and water to AOT molar ratio (w). In this manuscript by using Dynamic Light Scattering (DLS) and viscometry techniques, we show that droplet volume fraction too plays an important role in shaping the phase behavior of these microemulsions in dodecane. The phase separation characteristics and the evolution of the viscosity and the hydrodynamic radius of the microemulsion droplets on approaching the cloud points have thus been found to undergo complete transformation as one goes from low to high droplet volume fraction even at a fixed 'w'. Modeling of the DLS data attributes this to the weakening of inter droplet attractive interaction caused by the growing dominance of the excluded volume effect with increase in droplet volume fraction. In the literature, the inter droplet attractive interaction driven phase separation in these microemulsions is explained based on gas-liquid type phase transition, conceptualized in the framework of Baxter adhesive hard sphere theory. The modeling of our viscosity data, however, does not support such proposition as the characteristic stickiness parameter (τ(-1)) of the microemulsion droplets in this system remains much lower than the critical value (τ(c)(-1)≈10.25) required to enforce such phase transition. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Phase space analysis for anisotropic universe with nonlinear bulk viscosity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mumtaz, Saadia

    2018-06-01

    In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.

  16. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.

    PubMed

    Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong

    2017-07-01

    To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, J. E.

    2013-12-01

    Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.

  18. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    PubMed

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at framemore » rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.« less

  20. Re-entrant phase behavior of a concentrated anionic surfactant system with strongly binding counterions.

    PubMed

    Ghosh, Sajal Kumar; Rathee, Vikram; Krishnaswamy, Rema; Raghunathan, V A; Sood, A K

    2009-08-04

    The phase behavior of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the strongly binding counterion p-toluidine hydrochloride (PTHC) has been examined using small-angle X-ray diffraction and polarizing microscopy. A hexagonal-to-lamellar transition on varying the PTHC to SDS molar ratio (alpha) occurs through a nematic phase of rodlike micelles (Nc) --> isotropic (I) --> nematic of disklike micelles (N(D)) at a fixed surfactant concentration (phi). The lamellar phase is found to coexist with an isotropic phase (I') over a large region of the phase diagram. Deuterium nuclear magnetic resonance investigations of the phase behavior at phi = 0.4 confirm the transition from N(C) to N(D) on varying alpha. The viscoelastic and flow behaviors of the different phases were examined. A decrease in the steady shear viscosity across the different phases with increasing alpha suggests a decrease in the aspect ratio of the micellar aggregates. From the transient shear stress response of the N() and N(D) nematic phases in step shear experiments, they were characterized to be tumbling and flow aligning, respectively. Our studies reveal that by tuning the morphology of the surfactant micelles strongly binding counterions modify the phase behavior and rheological properties of concentrated surfactant solutions.

  1. Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.

    2004-01-01

    The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.

  2. Separation of aqueous two-phase polymer systems in microgravity

    NASA Technical Reports Server (NTRS)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  3. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    NASA Astrophysics Data System (ADS)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  4. Micro-rheology and interparticle interactions in aerosols probed with optical tweezers

    NASA Astrophysics Data System (ADS)

    Reid, Jonathan P.; Power, Rory M.; Cai, Chen; Simpson, Stephen H.

    2014-09-01

    Using optical tweezers for micro-rheological investigations of a surrounding fluid has been routinely demonstrated. In this work, we will demonstrate that rheological measurements of the bulk and surface properties of aerosol particles can be made directly using optical tweezers, providing important insights into the phase behavior of materials in confined environments and the rate of molecular diffusion in viscous phases. The use of holographic optical tweezers to manipulate aerosol particles has become standard practice in recent years, providing an invaluable tool to investigate particle dynamics, including evaporation/ condensation kinetics, chemical aging and phase transformation. When combined with non-linear Raman spectroscopy, the size and refractive index of a particle can be determined with unprecedented accuracy <+/- 0.05%). Active control of the relative positions of pairs of particles can allow studies of the coalescence of particles, providing a unique opportunity to investigate the bulk and surface properties that govern the hydrodynamic relaxation in particle shape. In particular, we will show how the viscosity and surface tension of particles can be measured directly in the under-damped regime at low viscosity. In the over-damped regime, we will show that viscosity measurements can extend close to the glass transition, allowing measurements over an impressive dynamic range of 12 orders of magnitude in relaxation timescale and viscosity. Indeed, prior to the coalescence event, we will show how the Brownian trajectories of trapped particles can yield important and unique insights into the interactions of aerosol particles.

  5. Ultraviolet light-responsive photorheological fluids: as a new class of smart fluids

    NASA Astrophysics Data System (ADS)

    Cho, Min-Young; Kim, Ji-Sik; Choi, Hyoung Jin; Choi, Seung-Bok; Kim, Gi-Woo

    2017-05-01

    We present a comprehensive introduction to the photorheological (PR) fluids whose rheological behavior can be changed by ultraviolet (UV) light with a wavelength of 365 nm. When the PR fluid was exposed to UV light, the viscosity of the fluid decreased, while the viscosity recovered to its initial value when UV light was turned off, indicating that the viscosity of these types of fluids can be reversible and tunable by UV light. Contrary to conventional smart fluids, such as electrorheological and magnetorheological fluids, PR fluid does not suffer from a phase splitting problem because it exists in a single-phase solution. Additionally, the PR fluid does not require any contact component, such as electrodes, and electric wires that are essential components for conventional smart fluids. In this work, the PR fluids were synthesized by doping lecithin/sodium deoxycholate reverse micelles with a photo-chromic spiropyran compound. It is demonstrated that the viscosity changes of PR fluids can be induced by UV light, and their rheological properties are examined in detail. In addition, an example of tailoring rheological properties using photoluminescence was introduced for improved response time. One of the potential applications, such as microfluidic flow control using the PR fluids, is also briefly presented.

  6. Temporal and spatial variation in porosity and compaction pressure for the viscoelastic slab

    NASA Astrophysics Data System (ADS)

    Morishige, M.; Van Keken, P. E.

    2017-12-01

    Fluid is considered to play key roles in subduction zones. It triggers various types of earthquakes by elevating pore-fluid pressure or forming hydrous minerals, and it also facilitates magma genesis by lowering the solidus temperatures of mantle and crustal rocks. Several previous numerical studies have worked on how fluid migrates and how porosity changes in time and space, but our knowledge of the fluid behavior remains limited. In this presentation, we demonstrate the detailed fluid behavior in the slab. The main features of this study are that (1) viscoelasticity is included, and that (2) fluid flow toward the inner part of the slab is also considered. We construct 2D and 3D finite element models for viscoelastic slab based on a theory of two-phase flow, which allows us to treat the movement of rock- and fluid- phases simultaneously. We solve the equations for porosity and compaction pressure which is defined as the pressure difference in between the two phases. Fluid source is fixed in time and space, and a uniform slab velocity is imposed for the whole model domain. There are several important parameters affecting the fluid behavior which includes bulk viscosity, bulk modulus, permeability, and fluid viscosity. Among these we fix bulk modulus and change the other parameters to investigate their effects on fluid migration. We find that when bulk viscosity is relatively high, elasticity is dominant and large amount of fluid is trapped in and around the fluid source. In addition, fluid migrates along the fluid source when relatively high ratio of permeability to fluid viscosity is assumed. Fluid generally moves with the slab when the ratio of permeability to fluid viscosity is low. One interesting feature is that in some cases porosity increases also in the deeper part of the fluid source due to the diffusion of compaction pressure. It suggests that the effects of resistance to volume change can be an alternative mechanism to effectively hydrate the inner part in the slab. In 3D, we find that fluid migrates in the maximum-dip direction of the slab. It leads to a fluid focusing where the slab bends away from the trench and it results in the increase in porosity and compaction pressure there. This finding may be useful to explain the observed along-arc variation in short-term slow slip events and the upper plane of double seismic zone.

  7. Individual behavior and pairwise interactions between microswimmers in anisotropic liquid

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Lavrentovich, Oleg D.; Aranson, Igor S.

    2015-01-01

    A motile bacterium swims by generating flow in its surrounding liquid. Anisotropy of the suspending liquid significantly modifies the swimming dynamics and corresponding flow signatures of an individual bacterium and impacts collective behavior. We study the interactions between swimming bacteria in an anisotropic environment exemplified by lyotropic chromonic liquid crystal. Our analysis reveals a significant localization of the bacteria-induced flow along a line coaxial with the bacterial body, which is due to strong viscosity anisotropy of the liquid crystal. Despite the fact that the average viscosity of the liquid crystal is two to three orders of magnitude higher than the viscosity of pure water, the speed of bacteria in the liquid crystal is of the same order of magnitude as in water. We show that bacteria can transport a cargo (a fluorescent particle) along a predetermined trajectory defined by the direction of molecular orientation of the liquid crystal. We demonstrate that while the hydrodynamic interaction between flagella of two close-by bacteria is negligible, the observed convergence of the swimming speeds as well as flagella waves' phase velocities may occur due to viscoelastic interaction between the bacterial bodies.

  8. Eruption cycles in a basaltic andesite system: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Smekens, J. F.; Clarke, A. B.; De'Michieli Vitturi, M.

    2015-12-01

    Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. Many of these systems present relatively evolved compositions (andesite to rhyolite), and their cyclic activity has been the subject of extensive work (e.g., Soufriere Hills Volcano, Montserrat). However, the same periodic behavior can also be observed at open systems of more mafic compositions, such as Semeru in Indonesia or Karymsky in Kamchatka for example. In this work, we use DOMEFLOW, a 1D transient numerical model of magma ascent, to identify the conditions that lead to and control periodic eruptions in basaltic andesite systems, where the viscosity of the liquid phase can be drastically lower. Periodic behavior occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and then explosively disrupts it. The characteristic timescale and magnitude of the eruptive cycles are controlled by the overall viscosity of the magmatic mixture, with higher viscosities leading to longer cycles and lower flow rates at the top of the conduit. Cyclic eruptions in basaltic andesite systems are observed for higher crystal contents, smaller conduit radii, and over a wider range of chamber pressures than the andesitic system, all of which are the direct consequence of a decrease in viscosity of the melt phase, and in turn in the intensity of the viscous forces generated by the system. Results suggest that periodicity can exist in more mafic systems with relatively lower chamber pressures than andesite and rhyolite systems, and may explain why more mafic magmas sometimes remain active for decades.

  9. Viscous friction between crystalline and amorphous phase of dragline silk.

    PubMed

    Patil, Sandeep P; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 10(2) Ns/m(2) by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading.

  10. Viscous Friction between Crystalline and Amorphous Phase of Dragline Silk

    PubMed Central

    Patil, Sandeep P.; Xiao, Senbo; Gkagkas, Konstantinos; Markert, Bernd; Gräter, Frauke

    2014-01-01

    The hierarchical structure of spider dragline silk is composed of two major constituents, the amorphous phase and crystalline units, and its mechanical response has been attributed to these prime constituents. Silk mechanics, however, might also be influenced by the resistance against sliding of these two phases relative to each other under load. We here used atomistic molecular dynamics (MD) simulations to obtain friction forces for the relative sliding of the amorphous phase and crystalline units of Araneus diadematus spider silk. We computed the coefficient of viscosity of this interface to be in the order of 102 Ns/m2 by extrapolating our simulation data to the viscous limit. Interestingly, this value is two orders of magnitude smaller than the coefficient of viscosity within the amorphous phase. This suggests that sliding along a planar and homogeneous surface of straight polyalanine chains is much less hindered than within entangled disordered chains. Finally, in a simple finite element model, which is based on parameters determined from MD simulations including the newly deduced coefficient of viscosity, we assessed the frictional behavior between these two components for the experimental range of relative pulling velocities. We found that a perfectly relative horizontal motion has no significant resistance against sliding, however, slightly inclined loading causes measurable resistance. Our analysis paves the way towards a finite element model of silk fibers in which crystalline units can slide, move and rearrange themselves in the fiber during loading. PMID:25119288

  11. Effect of viscosity on food transport and swallow initiation during eating of two-phase food in normal young adults: a pilot study.

    PubMed

    Matsuo, Koichiro; Kawase, Soichiro; Wakimoto, Nina; Iwatani, Kazuhiro; Masuda, Yuji; Ogasawara, Tadashi

    2013-03-01

    When eating food containing both liquid and solid phases (two-phase food), the liquid component frequently enters the hypopharynx before swallowing, which may increase the risk of aspiration. We therefore tested whether preswallow bolus transport and swallow initiation would change as the viscosity of two-phase food was increased. Fiberoptic endoscopy was recorded while 18 adult subjects ate 5 g of steamed rice with 3 ml of blue-dye water. Liquid viscosity was set at four levels by adding a thickening agent (0, 1, 2, and 4 wt%, respectively). We measured the timing of the leading edge of the food reaching the base of the epiglottis, as well as the location of the leading edge at swallow initiation. As viscosity increased, the leading edge of the food reached the epiglottis significantly later during chewing and was higher in the pharynx at swallow onset. The time after the leading edge reached the epiglottis did not vary among the viscosities of the two-phase food. This study found that the initial viscosity of two-phase food significantly altered oropharyngeal bolus flow and the timing of swallow initiation. Accordingly, increased two-phase food viscosity may delay food entry into the pharynx and be of use in dysphagic diets.

  12. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  13. Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale

    NASA Astrophysics Data System (ADS)

    Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe

    2017-08-01

    A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.Plain Language SummaryWe develop a core scale modeling method to simulate the viscoelastic properties of rocks saturated with viscous fluid at low frequencies based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. By using this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the composite's viscoelastic properties. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and pore aspect ratio affect the rock frame stiffness and result in different viscoelastic behavior of the saturated rocks. The lower the rock frame stiffness, the larger the stress-strain phase lags. The viscoelastic properties of saturated rocks are more sensitive to the pore aspect ratio. The results suggest that significant seismic dispersion might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids. This will be important in the context of heavy hydrocarbon reservoirs and igneous rocks saturated with silicate melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/952124-arrhenius-type-viscosity-function-model-sintering-using-skorohod-olevsky-viscous-sintering-model-within-finite-element-code','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/952124-arrhenius-type-viscosity-function-model-sintering-using-skorohod-olevsky-viscous-sintering-model-within-finite-element-code"><span>An Arrhenius-type viscosity function to model sintering using the Skorohod Olevsky viscous sintering model within a finite element code.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ewsuk, Kevin Gregory; Arguello, Jose Guadalupe, Jr.; Reiterer, Markus W.</p> <p>2006-02-01</p> <p>The ease and ability to predict sintering shrinkage and densification with the Skorohod-Olevsky viscous sintering (SOVS) model within a finite-element (FE) code have been improved with the use of an Arrhenius-type viscosity function. The need for a better viscosity function was identified by evaluating SOVS model predictions made using a previously published polynomial viscosity function. Predictions made using the original, polynomial viscosity function do not accurately reflect experimentally observed sintering behavior. To more easily and better predict sintering behavior using FE simulations, a thermally activated viscosity function based on creep theory was used with the SOVS model. In comparison withmore » the polynomial viscosity function, SOVS model predictions made using the Arrhenius-type viscosity function are more representative of experimentally observed viscosity and sintering behavior. Additionally, the effects of changes in heating rate on densification can easily be predicted with the Arrhenius-type viscosity function. Another attribute of the Arrhenius-type viscosity function is that it provides the potential to link different sintering models. For example, the apparent activation energy, Q, for densification used in the construction of the master sintering curve for a low-temperature cofire ceramic dielectric has been used as the apparent activation energy for material flow in the Arrhenius-type viscosity function to predict heating rate-dependent sintering behavior using the SOVS model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...156...23Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...156...23Z"><span>On the phase lag of turbulent dissipation in rotating tidal flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Qianjiang; Wu, Jiaxue</p> <p>2018-03-01</p> <p>Field observations of rotating tidal flows in a shallow tidally swept sea reveal that a notable phase lag of both shear production and turbulent dissipation increases with height above the seafloor. These vertical delays of turbulent quantities are approximately equivalent in magnitude to that of squared mean shear. The shear production approximately equals turbulent dissipation over the phase-lag column, and thus a main mechanism of phase lag of dissipation is mean shear, rather than vertical diffusion of turbulent kinetic energy. By relating the phase lag of dissipation to that of the mean shear, a simple formulation with constant eddy viscosity is developed to describe the phase lag in rotating tidal flows. An analytical solution indicates that the phase lag increases linearly with height subjected to a combined effect of tidal frequency, Coriolis parameter and eddy viscosity. The vertical diffusion of momentum associated with eddy viscosity produces the phase lag of squared mean shear, and resultant delay of turbulent quantities. Its magnitude is inhibited by Earth's rotation. Furthermore, a theoretical formulation of the phase lag with a parabolic eddy viscosity profile can be constructed. A first-order approximation of this formulation is still a linear function of height, and its magnitude is approximately 0.8 times that with constant viscosity. Finally, the theoretical solutions of phase lag with realistic viscosity can be satisfactorily justified by realistic phase lags of dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........76M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........76M"><span>Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mandare, Prashant N.</p> <p>2007-12-01</p> <p>Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.790a2007D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.790a2007D"><span>Material flow data for numerical simulation of powder injection molding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duretek, I.; Holzer, C.</p> <p>2017-01-01</p> <p>The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P51A2011A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P51A2011A"><span>Convection Models for Ice-Water System: Dynamical Investigation of Phase Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allu Peddinti, D.; McNamara, A. K.</p> <p>2012-12-01</p> <p>Ever since planetary missions of Voyager and Galileo revealed a dynamically altered surface of the icy moon Europa, a possible subsurface ocean under an icy shell has been speculated and surface features have been interpreted from an interior dynamics perspective. The physics of convection in a two phase water-ice system is governed by a wide set of physical parameters that include melting viscosity of ice, the variation of viscosity due to pressure and temperature, temperature contrast across and tidal heating within the system, and the evolving thickness of each layer. Due to the extreme viscosity contrast between liquid water and solid ice, it is not feasible to model the entire system to study convection. However, using a low-viscosity proxy (higher viscosity than the liquid water but much lower than solid ice) for the liquid phase provides a convenient approximation of the system, and allows for a relatively realistic representation of convection within the ice layer while also providing a self-consistent ice layer thickness that is a function of the thermal state of the system. In order to apply this method appropriately, we carefully examine the upper bound of viscosity required for the low-viscosity proxy to adequately represent the liquid phase. We identify upper bounds on the viscosity of the proxy liquid such that convective dynamics of the ice are not affected by further reductions of viscosity. Furthermore, we investigate how the temperature contrast across the system and viscosity contrast between liquid and ice control ice layer thickness. We also investigate ice shell thickening as a function of cooling, particularly how viscosity affects the conduction-to-convection transition within the ice shell. Finally, we present initial results that investigate the effects that latent heat of fusion (due to the ice-water phase transition) has on ice convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDH37004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDH37004C"><span>Water drop impact onto oil covered solid surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Ningli; Chen, Huanchen; Amirfazli, Alidad</p> <p>2016-11-01</p> <p>Droplet impact onto an oily surface can be encountered routinely in industrial applications; e.g., in spray cooling. It is not clear from literature what impact an oil film may have on the impact process. In this work, water drop impact onto both hydrophobic (glass) and hydrophilic (OTS) substrates which were covered by oil films (silicone) of different thickness (5um-50um) and viscosity (5cst-100cst) were performed. The effects of drop impact velocity, film thickness, and viscosity of the oil film and wettability of the substrate were studied. Our results show that when the film viscosity and impact velocity is low, the water drop deformed into the usual disk shape after impact, and rebounded from the surface. Such rebound phenomena disappears, when the viscosity of oil becomes very large. With the increase of the impact velocity, crown and splashing appears in the spreading phase. The crown and splashing behavior appears more easily with the increase of film thickness and decrease of its viscosity. It was also found that the substrate wettability can only affect the impact process in cases which drop has a large Webber number (We = 594), and the film's viscosity and thickness are small. This work was support by National Natural Science Foundation of China and the Project Number is 51506084.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ApPhA.119..533H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ApPhA.119..533H"><span>Influence of calcium addition and stirring on the cellular structure and foaming behavior of molten zinc</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hossein Elahi, S.; Arabi Jeshvaghani, R.; Shahverdi, H. R.</p> <p>2015-05-01</p> <p>In this paper, the influence of calcium addition and melt stirring on the structure and foaming behavior of molten zinc was investigated. In this regard, zinc foam was produced by Alporas method (in which foam alloy melts and titanium hydride is used as a blowing agent). Optical microscopy and scanning electron microscopy were used to investigate the phase distribution and structure in the foams. Results showed that addition of calcium increased foamability and foam efficiency of the molten zinc. In contrast, stirring had no significant effect on the foaming behavior of the melt. Microstructural examinations indicated that improving the foaming behavior of molten zinc was attributed to the formation of CaZn13 intermetallic phase and ZnO particles in the foam structure, which increased viscosity and reduced drainage rate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1787f0002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1787f0002C"><span>Rheological behavior on treated Malaysian crude oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandran, Krittika; Sinnathambi, Chandra Mohan</p> <p>2016-11-01</p> <p>Crude oil is always produced with water. This association causes many problems during oil production, arising from the formation of emulsion. Emulsion is an undesirable substance that increases operational and capital cost in the pipeline and processing equipment. To overcome this issue, demulsifiers are formulated to break the emulsion, where they are able to separate the water-oil emulsions to their respective phases. The emulsifier's main function is to reduce the interfacial tension properties of the emulsion. For this research, both the EOR and natural water-in-oil emulsions were treated with low a concentration demulsifier. The main objective of this paper is to determine the dynamic viscosity and rheological properties of the treated EOR and natural emulsion. The dynamic viscosity was obtained using the Brook-field Digital Viscometer. The components that influence the emulsion's rheological properties are the temperature, shear rate and shear stress. The results obtained demonstrate that the viscosity of the treated crude decreases and portrays the Non-Newtonian shear thinning "pseudo-plastic" behavior. Besides that, to determine the interfacial film of the treated crude, the spinning drop tensiometer was used. With the addition of demulsifier, the thinning rate of the oil film accelerates whereby there is a linear decrease in the interfacial tension with an increase in time. Therefore, from the results, it can be observed that the rheology study plays a significant role in the demulsification test. Furthermore, both the rheology approaches showed that time, temperature, shear rate and shear stress have a great impact on the viscosity behavior as well as the IFT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21663931','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21663931"><span>Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kiełczyński, P; Szalewski, M; Balcerzak, A; Rostocki, A J; Tefelski, D B</p> <p>2011-12-01</p> <p>Viscosity measurements were carried out on triolein at pressures from atmospheric up to 650 MPa and in the temperature range from 10°C to 40°C using ultrasonic measuring setup. Bleustein-Gulyaev SH surface acoustic waves waveguides were used as viscosity sensors. Additionally, pressure changes occurring during phase transition have been measured over the same temperature range. Application of ultrasonic SH surface acoustic waves in the liquid viscosity measurements at high pressure has many advantages. It enables viscosity measurement during phase transitions and in the high-pressure range where the classical viscosity measurement methods cannot operate. Measurements of phase transition kinetics and viscosity of liquids at high pressures and various temperatures (isotherms) is a novelty. The knowledge of changes in viscosity in function of pressure and temperature can help to obtain a deeper insight into thermodynamic properties of liquids. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27836754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27836754"><span>Impact of additives on the formation of protein aggregates and viscosity in concentrated protein solutions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bauer, Katharina Christin; Suhm, Susanna; Wöll, Anna Katharina; Hubbuch, Jürgen</p> <p>2017-01-10</p> <p>In concentrated protein solutions attractive protein interactions may not only cause the formation of undesired aggregates but also of gel-like networks with elevated viscosity. To guarantee stable biopharmaceutical processes and safe formulations, both phenomenons have to be avoided as these may hinder regular processing steps. This work screens the impact of additives on both phase behavior and viscosity of concentrated protein solutions. For this purpose, additives known for stabilizing proteins in solution or modulating the dynamic viscosity were selected. These additives were PEG 300, PEG 1000, glycerol, glycine, NaCl and ArgHCl. Concentrated lysozyme and glucose oxidase solutions at pH 3 and 9 served as model systems. Fourier-transformed-infrared spectroscopy was chosen to determine the conformational stability of selected protein samples. Influencing protein interactions, the impact of additives was strongly dependent on pH. Of all additives investigated, glycine was the only one that maintained protein conformational and colloidal stability while decreasing the dynamic viscosity. Low concentrations of NaCl showed the same effect, but increasing concentrations resulted in visible protein aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7143135-measurement-relative-viscosity-suspensions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7143135-measurement-relative-viscosity-suspensions"><span>On the measurement of the relative viscosity of suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Acrivos, A.; Fan, X.; Mauri, R.</p> <p></p> <p>The relative viscosity of a suspension of rigid, noncolloidal particles immersed in a Newtonian fluid was measured in a Couette device and was found to be shear thinning even for values of the solids fraction as low as 20%. Although such behavior was reported previously, no satisfactory explanation appears to have been given thus far. It shall be shown presently, however, that, at least for our systems, this shear-thinning effect was due to a slight mismatch in the densities of the two phases. Moreover, the apparent relative viscosities measured in our apparatus were found to be in excellent agreement withmore » those predicted theoretically using a model, originally proposed by Leighton and Acrivos [Chem. Eng. Sci. [bold 41], 1377--1384 (1986)], to describe viscous resuspension, according to which the measured relative viscosity should depend on the bulk particle concentration and on the dimensionless Shields number [ital A], and should attain its correct value for a well-mixed suspension only as [ital A][r arrow][infinity]. The predictions of this model are also in excellent agreement with the measured transient response of the apparent relative viscosity due to a sudden change in the shear rate.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27127192','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27127192"><span>The performance of bioinspired valveless piezoelectric micropump with respect to viscosity change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Seung Chul; Hur, Sunghoon; Kang, Dooho; Kim, Bo Heum; Lee, Sang Joon</p> <p>2016-04-29</p> <p>This study investigated the effect of the serial connection of two pumping chambers on transport of liquid with increased viscosity. A serially connected valveless piezoelectric micropump was fabricated inspired by the liquid-feeding strategy of a female mosquito drinking liquid with a wide range of viscosities, from nectar to blood. The performance of the micropump was investigated by varying the viscosity of working liquid. Results showed that the optimal phase difference between the two chambers was 180° out-of-phase for all viscosity conditions. The two chambers operating at 180° out-of-phase exhibited higher pumping performance compared with the sum of each single chamber solely actuated, when viscosity increased. The flow patterns in the micropump showed that the rectification efficiency improved with the increase in viscosity. Results indicated that the serially connected valveless piezoelectric micropump is more robust to the increase of viscosity than a single-chamber piezoelectric micropump. This study would be helpful in the design of microfluidic devices for transporting liquids with a wide range of viscosities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15142586','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15142586"><span>The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chau, S W; Hsu, K L; Chen, S C; Liou, T M; Shih, K C</p> <p>2004-07-30</p> <p>The droplet impingement into a cavity at micrometer-scale is one of important fluidic issues for microfabrications, e.g. the inkjet deposition process in the PLED display manufacturing. The related micro-fluidic behaviors in the deposition process should be carefully treated to ensure the desired quality of microfabrication. The droplets generally dispensing from an inkjet head, which contains an array of nozzles, have a volume in several picoliters, while each nozzle responds very quickly and jets the droplets into cavities on substrates with micrometer size. The nature of droplet impingement depends on the fluid properties, the initial state of droplet, the impact parameters and the surface characteristics. The commonly chosen non-dimensional numbers to describe this process are the Weber number, the Reynolds number, the Ohnesorge number, and the Bond number. This paper discusses the influences of fluid properties of a Newtonian fluid, such as surface tension and fluid viscosity, on micro-fluidic characteristics for a certain jetting speed in the deposition process via a numerical approach, which indicates the impingement process consists of four different phases. In the first phase, the droplet stretching outwards rapidly, where inertia force is dominated. In the second phase, the recoiling of droplet is observed, where surface tension becomes the most important force. In the third phase, the gravitational force pulls the droplet surface towards cavity walls. The fourth phase begins when the droplet surface touches cavity walls and ends when the droplet obtains a stable shape. If the fluid viscosity is relatively small, the droplet surface touches cavity walls in the second phase. A stable fluid layer would not form if the viscosity is relatively small.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23368901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23368901"><span>Influence of chain length and double bond on the aqueous behavior of choline carboxylate soaps.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rengstl, Doris; Diat, Olivier; Klein, Regina; Kunz, Werner</p> <p>2013-02-26</p> <p>In preceding studies, we demonstrated that choline carboxylates ChC(m) with alkyl chain lengths of m = 12 - 18 are highly water-soluble (for m = 12, soluble up to 93 wt % soap and 0 °C). In addition, choline soaps are featured by an extraordinary lyotropic phase behavior. With decreasing water concentration, the following phases were found: micellar phase (L(1)), discontinuous cubic phase (I(1)' and I(1)"), hexagonal phase (H(1)), bicontinuous cubic phase (V(1)), and lamellar phase (L(α)). The present work is also focused on the lyotropic phase behavior of choline soaps but with shorter alkyl chains or different alkyl chain properties. We have investigated the aqueous phase behavior of choline soaps with C(8) and C(10) chain-lengths (choline octanoate and choline decanoate) and with a C(18) chain-length with a cis-double bond (choline oleate). We found that choline decanoate follows the lyotropic phase behavior of the longer-chain homologues mentioned above. Choline octanoate in water shows no discontinuous cubic phases, but an extended, isotropic micellar solution phase. In addition, choline octanoate is at the limit between a surfactant and a hydrotrope. The double bond in choline oleate leads also to a better solubility in water and a decrease of the solubilization temperature. It also influences the Gaussian curvature of the aggregates which results in a loss of discontinuous cubic phases in the binary phase diagram. The different lyotropic mesophases were identified by the penetration scan technique with polarizing light microscope and visual observations. To clarify the structural behavior small (SAXS) and wide (WAXS) angle X-ray scattering were performed. To further characterize the extended, isotropic micellar solution phase in the binary phase diagram of choline octanoate viscosity and conductivity measurements were also carried out.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28371727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28371727"><span>Spreading properties of cosmetic emollients: Use of synthetic skin surface to elucidate structural effect.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Douguet, Marine; Picard, Céline; Savary, Géraldine; Merlaud, Fabien; Loubat-Bouleuc, Nathalie; Grisel, Michel</p> <p>2017-06-01</p> <p>The study focuses on the impact of structural and physicochemical properties of emollients on their spreadability. Fifty-three emollients, among which esters, silicones, vegetable and mineral oils, have been characterized. Their viscosity, surface tension, density and spreadability have been measured. Vitro-skin ® , an artificial skin substitute, was used as an artificial porous substrate to measure spreadability. Two different methods have been selected to characterize spreadability, namely contact angle and spreading value. Dynamic contact angle measurements showed that emollient spreadability is first governed by spontaneous spreading and that, in a second phase, absorption and migration into the porous substrate becomes the driver of the extension of the spreading area. Statistical analysis of physicochemical and spreading value data revealed that viscosity has a major impact on the spreading behavior of emollients whatever their chemical type. A special emphasis was placed on the ester family in which chemical diversity is very wide. The results highlighted a difference between "high viscosity esters" for which viscosity is the main factor impacting spreadability and "low viscosity esters" for which structural variations (mono/diester, saturated/unsaturated chain, linear/branched chain) have to be considered in addition to viscosity. Linear regressions were used to express spreading value as a function of viscosity for each of the four emollient families tested (esters, silicones, vegetable and mineral oils). These regressions allowed the development of reliable predictive models as a powerful tool for formulators to forecast spreadability of emollients. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JChPh.108.7909S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JChPh.108.7909S"><span>Flow properties of liquid crystal phases of the Gay-Berne fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarman, Sten</p> <p>1998-05-01</p> <p>We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2i3303K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2i3303K"><span>Numerical study of two-dimensional wet foam over a range of shear rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kähärä, T.</p> <p>2017-09-01</p> <p>The shear rheology of two-dimensional foam is investigated over a range of shear rates with the numerical DySMaL model, which features dynamically deformable bubbles. It is found that at low shear rates, the rheological behavior of the system can be characterized by a yield stress power-law constitutive equation that is consistent with experimental findings and can be understood in terms of soft glassy rheology models. At low shear rates, the system rheology is also found to be subject to a scaling law involving the bubble size, the surface tension, and the viscosity of the carrier fluid. At high shear rates, the model produces a dynamic phase transition with a sudden change in the flow pattern, which is accompanied by a drop in the effective viscosity. This phase transition can be linked to rapid changes in the average bubble deformation and nematic order of the system. It is very likely that this phase transition is a result of the model dynamics and does not happen in actual foams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/399716','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/399716"><span>Development of cost-effective surfactant flooding technology. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pope, G.A.; Sepehrnoori, K.</p> <p>1996-11-01</p> <p>Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19389944','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19389944"><span>Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Innocente, N; Biasutti, M; Venir, E; Spaziani, M; Marchesini, G</p> <p>2009-05-01</p> <p>The effect of different homogenization pressures (15/3 MPa and 97/3 MPa) on fat globule size and distribution as well as on structure-property relationships of ice cream mixes was investigated. Dynamic light scattering, steady shear, and dynamic rheological analyses were performed on mixes with different fat contents (5 and 8%) and different aging times (4 and 20 h). The homogenization of ice cream mixes determined a change from bimodal to monomodal particle size distributions and a reduction in the mean particle diameter. Mean fat globule diameters were reduced at higher pressure, but the homogenization effect on size reduction was less marked with the highest fat content. The rheological behavior of mixes was influenced by both the dispersed and the continuous phases. Higher fat contents caused greater viscosity and dynamic moduli. The lower homogenization pressure (15/3 MPa) mainly affected the dispersed phase and resulted in a more pronounced viscosity reduction in the higher fat content mixes. High-pressure homogenization (97/3 MPa) greatly enhanced the viscoelastic properties and the apparent viscosity. Rheological results indicated that unhomogenized and 15/3 MPa homogenized mixes behaved as weak gels. The 97/3 MPa treatment led to stronger gels, perhaps as the overall result of a network rearrangement or interpenetrating network formation, and the fat globules were found to behave as interactive fillers. High-pressure homogenization determined the apparent viscosity of 5% fat to be comparable to that of 8% fat unhomogenized mix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26940343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26940343"><span>Comment on "An alternative theory to explain the effects of coalescing oil drops on mouthfeel" by B. Le Reverend and J. Engmann, Soft Matter, 2015, 11, 7077.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xia, Qiuyang</p> <p>2016-03-28</p> <p>In a recent paper by B. Le Reverend and J. Engmann, they used a model to explain the change in the perceived viscosity by phase separation. We improved this model by adding the drop in viscosity in the aqueous phase to it and we show how this will significantly change the conclusion in the original paper. The increase in viscosity due to phase separation is highly unlikely to happen because the drop in viscosity due to loss of oil is faster at a high oil concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22360145-origin-shear-thickening-semidilute-wormlike-micellar-solutions-evidence-elastic-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22360145-origin-shear-thickening-semidilute-wormlike-micellar-solutions-evidence-elastic-turbulence"><span>Origin of shear thickening in semidilute wormlike micellar solutions and evidence of elastic turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marín-Santibáñez, Benjamín M.; Pérez-González, José, E-mail: jpg@esfm.ipn.mx; Rodríguez-González, Francisco</p> <p>2014-11-01</p> <p>The origin of shear thickening in an equimolar semidilute wormlike micellar solution of cetylpyridinium chloride and sodium salicylate was investigated in this work by using Couette rheometry, flow visualization, and capillary Rheo-particle image velocimetry. The use of the combined methods allowed the discovery of gradient shear banding flow occurring from a critical shear stress and consisting of two main bands, one isotropic (transparent) of high viscosity and one structured (turbid) of low viscosity. Mechanical rheometry indicated macroscopic shear thinning behavior in the shear banding regime. However, local velocimetry showed that the turbid band increased its viscosity along with the shearmore » stress, even though barely reached the value of the viscosity of the isotropic phase. This shear band is the precursor of shear induced structures that subsequently give rise to the average increase in viscosity or apparent shear thickening of the solution. Further increase in the shear stress promoted the growing of the turbid band across the flow region and led to destabilization of the shear banding flow independently of the type of rheometer used, as well as to vorticity banding in Couette flow. At last, vorticity banding disappeared and the flow developed elastic turbulence with chaotic dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16771551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16771551"><span>In situ evaluation of density, viscosity, and thickness of adsorbed soft layers by combined surface acoustic wave and surface plasmon resonance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Francis, Laurent A; Friedt, Jean-Michel; Zhou, Cheng; Bertrand, Patrick</p> <p>2006-06-15</p> <p>We show the theoretical and experimental combination of acoustic and optical methods for the in situ quantitative evaluation of the density, the viscosity, and the thickness of soft layers adsorbed on chemically tailored metal surfaces. For the highest sensitivity and an operation in liquids, a Love mode surface acoustic wave (SAW) sensor with a hydrophobized gold-coated sensing area is the acoustic method, while surface plasmon resonance (SPR) on the same gold surface as the optical method is monitored simultaneously in a single setup for the real-time and label-free measurement of the parameters of adsorbed soft layers, which means for layers with a predominant viscous behavior. A general mathematical modeling in equivalent viscoelastic transmission lines is presented to determine the correlation between experimental SAW signal shifts and the waveguide structure including the presence of the adsorbed layer and the supporting liquid from which it segregates. A methodology is presented to identify from SAW and SPR simulations the parameters representatives of the soft layer. During the absorption of a soft layer, thickness or viscosity changes are observed in the experimental ratio of the SAW signal attenuation to the SAW signal phase and are correlated with the theoretical model. As application example, the simulation method is applied to study the thermal behavior of physisorbed PNIPAAm, a polymer whose conformation is sensitive to temperature, under a cycling variation of temperature between 20 and 40 degrees C. Under the assumption of the bulk density and the bulk refractive index of PNIPAAm, thickness and viscosity of the film are obtained from simulations; the viscosity is correlated to the solvent content of the physisorbed layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.8517R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.8517R"><span>Experimental study on nonmonotonicity of Capillary Desaturation Curves in a 2-D pore network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos; Oostrom, Mart; Joekar-Niasar, Vahid</p> <p>2015-10-01</p> <p>Immiscible displacement in porous media is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oil saturation and Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigated the CDC as influenced by the viscosity ratio. To do so, we have conducted a comprehensive series of experiments using a high-resolution microscope and state-of-art micromodels to investigate the dynamics and patterns of phase entrapment at different Ca and M. By postprocessing of the experimental high-resolution images, we calculated the CDC and quantified the effects of the Ca and M on the phase entrapment and number of blobs trapped in the micromodel and their size distributions during immiscible two-phase flow. Our results show that CDCs are not necessarily monotonic for all M, and the physical mechanisms causing this nonmonotonic behavior are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12686294','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12686294"><span>Rheologic properties of flowable, conventional hybrid, and condensable composite resins.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, In-Bog; Son, Ho-Hyun; Um, Chung-Moon</p> <p>2003-06-01</p> <p>This research was undertaken to investigate the viscoelastic properties related to handling characteristics of five commercial flowable, two conventional hybrid and two condensable composite resins and to investigate the effect on the viscosity of filler volume fraction of composites. A dynamic oscillatory shear test was used to evaluate the storage shear modulus (G'), loss shear modulus (G"), loss tangent (tan delta) and complex viscosity (eta(*)) of the composite resins as a function of frequency (omega)-dynamic frequency sweep test from 0.01 to 100 rad/s at 25 degrees C-using an Advanced Rheometric Expansion System. To investigate the effect on the viscosity of the composites of the filler volume fraction, the filler weight% and filler volume% were measured by the Archimedes' principle using a pyknometer. The complex viscosity eta(*) of flowable composites was lower than that of the hybrid composites and significant differences were observed between brands. The complex viscosity eta(*) of condensable composites was higher than that of hybrid composites. The order of complex viscosity eta(*) at omega=10 rad/s in order of decreasing viscosity was as follows, Synergy compact, P-60, Z-250, Z-100, Aeliteflo, Tetric flow, Compoglass flow, Flow it and Revolution. The complex viscosity of flowable composites, normalized with respect to Z-100, was 0.04-0.56 but Synergy compact was 2.158 times higher than that of Z-100. The patterns of the change of loss tangent (tan delta) of the composite resins with increasing frequency were significantly different between brands. Phase angles delta ranged from 30.9 to 78.1 degrees at omega=10 rad/s. All composite resins exhibit pseudoplastic behavior with increasing shear rate. The relationships between the complex shear modulus G(*), the phase angle delta, and the shear rate omega were represented by the frequency domain phasor form, G(*)(omega)=G(*)e(i delta)=G(*) 90 degree angle delta. Only a weak relationship was found between filler volume% and the viscosity of the composite resins. This investigation shows that the viscoelasticity of composites in the same class is significantly different between brands. This rheologic property of composite resins influences the handling characteristics of the materials. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composite resins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V23B0472V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V23B0472V"><span>Shear thinning behaviors in magmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vetere, F. P.; Cassetta, M.; Perugini, D.</p> <p>2017-12-01</p> <p>Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour of the partly crystallized melt. This new dataset can be used to model the behaviour of lavas during magma rise in conduits and lava flow on Earth surface and other planetary bodies. F. Vetere et al., (2017) Experimental constraints on the rheology, eruption and emplacement dynamics of lavas from Mercury Northern Volcanic Plains". JGR-Planets DOI: 10.1002/2016JE005181</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhDT........86T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhDT........86T"><span>High temperature deformation of Vitreloy bulk metallic glasses and their composite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tao, Min</p> <p></p> <p>A complete understanding of the deformation mechanisms of BMGs and their composites requires investigation of the microstructural changes and their interplay with the mechanical behavior. In this dissertation, the deformation mechanisms of a series of Vitreloy glasses and their composites are experimentally investigated over a wide range of strain rates and temperatures, with focus on the supercooled liquid regime, by combining uniaxial mechanical testing with calorimetric and microscopic examinations. Various theories of deformation of metallic glasses and the composites are examined in light of the experimental data. A comparative structural relaxation study was performed on two closely related Vitreloy alloys, Zr41.2Ti13.8Cu12.5Ni 10Be22.5 (Vit 1) and Zr46.7Ti8.3Cu 7.5Ni10Be27.5 (Vit 4). Differential scanning calorimetric studies on the specimens deformed in compression at constant-strain-rate in supercooled liquid regime showed that mechanical loading accelerated the spinodal phase separation and nanocrystallization process in Vit 1, while the relaxation in Vit 4 featured local chemical composition fluctuation accompanied by annealing out of free volume. The effect of the structural relaxation on their mechanical behavior was further studied via single and multiple jump-in-strain-rate tests. The deformation and viscosity of a new Vitreloy alloy were characterized using uniaxial compression tests in its supercooled liquid regime. A new theoretical model named Cooperative Shear Model, which correlates the evolution of the macroscopic mechanical/thermal variables such as shear modulus and viscosity with the configurational energies of atom clusters in an amorphous alloy, was critically examined in this investigation. The model was successful in predicting the Newtonian and non-Newtonian viscosities of the material, as well as the shear moduli of the deformed specimens, in a self-consistent manner. The plastic flow of an in-situ metallic glass composite, beta-Vitreloy, was investigated under uniaxial compression in its supercooled liquid regime and at various strain rates (10-4 ˜ 10-1 s-1). The composite, with ˜ 25% volume fraction of crystalline beta-phase dendrites exhibited superplastic behavior similar to that of amorphous Vit 1. Significant strain hardening was observed when the material was deformed at high temperatures and low strain rates. A dual-phase composite model was employed in finite element simulations to understand the effect of the composite microstructure on its mechanical behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17685568','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17685568"><span>A new model to study the phase transition from microstructures to nanostructures in ionic/ionic surfactants mixture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sohrabi, Beheshteh; Gharibi, Hussein; Javadian, Soheila; Hashemianzadeh, Majid</p> <p>2007-08-30</p> <p>The phase behavior and aggregate structures of mixtures of the oppositely charged surfactants cetyltrimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) are explored at high dilution by pulsed field gradient stimulated echo (PFG-STE) NMR. The aggregation numbers and hydrodynamic radii of vesicles and mixed micelles were determined by a combination of viscosity and self-diffusion coefficient measurements. The average size of the mixed micelles was larger than that of micelles containing uniformly charged head groups. Analysis of the variations of the self-diffusion coefficient and viscosity with changing concentration of CTAB or SDS in the cationic-rich and anionic-rich regions revealed a phase transition from vesicles to mixed micelles. Differences in the lengths of the CTAB and SDS hydrophobic chains stabilize vesicles relative to other microstructures (e.g., liquid crystalline and precipitate phase), and vesicles form spontaneously over a wide range of compositions in both cationic-rich and anionic-rich solutions. The results obtained from conductometry measurements confirmed this transition. Finally, according to the capacitor model, a new model was developed for estimating the surface potentials and electrostatic free energy (g(elec)). Then we investigated the variations of electrostatic and transfer free energy in phase transition between mixed micelle and vesicle.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15013835','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15013835"><span>Numerical Modeling of Nonlinear Thermodynamics in SMA Wires</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reynolds, D R; Kloucek, P</p> <p></p> <p>We present a mathematical model describing the thermodynamic behavior of shape memory alloy wires, as well as a computational technique to solve the resulting system of partial differential equations. The model consists of conservation equations based on a new Helmholtz free energy potential. The computational technique introduces a viscosity-based continuation method, which allows the model to handle dynamic applications where the temporally local behavior of solutions is desired. Computational experiments document that this combination of modeling and solution techniques appropriately predicts the thermally- and stress-induced martensitic phase transitions, as well as the hysteretic behavior and production of latent heat associatedmore » with such materials.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26303510','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26303510"><span>Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R</p> <p>2015-10-01</p> <p>Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51O..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51O..01M"><span>Scaling Relations for Viscous and Gravitational Flow Instabilities in Multiphase Multicomponent Compressible Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moortgat, J.; Amooie, M. A.; Soltanian, M. R.</p> <p>2016-12-01</p> <p>Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows transitions between advective, diffusive, ballistic, sub-diffusive, and non-Fickian diffusive behavior. These scaling relations can be used to improve the predictive powers of field-scale reservoir simulations that cannot resolve the complexities of unstable flow and transport at cm-m scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27211637','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27211637"><span>Culinary practices mimicking a polysaccharide-rich recipe enhance the bioaccessibility of fat-soluble micronutrients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dhuique-Mayer, Claudie; Servent, Adrien; Descalzo, Adriana; Mouquet-Rivier, Claire; Amiot, Marie-Josèphe; Achir, Nawel</p> <p>2016-11-01</p> <p>This study was carried out to assess the impact of heat processing of a complex emulsion on the behavior of fat soluble micronutrients (FSM) in a traditional Tunisian dish. A simplified recipe involved, dried mucilage-rich jute leaves, tomato paste and olive oil, followed by a cooking treatment (150min). Hydrothermal pattern and viscosity were monitored along with the changes of FSM content and the bioaccessibility (called micellarization, using an in vitro digestion model). Partitioning of carotenoids differed according to their lipophilicity: lycopene, β-carotene and lutein diffused to the oil phase (100%, 70% and 10% respectively). In contrast with the poor carotenes/tocopherol bioaccessibility (0.9-1%), the highest micellarization was observed for lutein (57%) and it increased with heating time and viscosity change. Domestic culinary cooking practices probably increase the bioavailability of carotenes mainly by their diffusion to the oil phase, facilitating their in vivo transfer into micelles. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/136317-effects-polymers-rotational-viscosities-nematic-liquid-crystals-dynamics-field-alignment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/136317-effects-polymers-rotational-viscosities-nematic-liquid-crystals-dynamics-field-alignment"><span>Effects of polymers on the rotational viscosities of nematic liquid crystals and dynamics of field alignment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, D.</p> <p></p> <p>Many of the important physical phenomena exhibited by the nematic phase, such as its unusual flow properties and its responses to the electric and the magnetic fields, can be discussed regarding it as a continous medium. The Leslie-Erickson dynamic theory has the six dissipative coefficients from continuum model of liquid crystal. Parodi showed that only five of them are independent, when Onsagar`s reciprocal relations are used. One of these, which has no counterpart in the isotropic liquids, is the rotational viscosity co-efficient, {gamma}{sub 1}. The main objective of this project is to study the rotational viscosities of selected micellar nematicmore » systems and the effect of dissolved polymers in micellar and thermotropic liqud crystals. We used rotating magnetic field method which allows one to determine {gamma}{sub 1} and the anisotropic magnetic susceptibility, {chi}{sub a}. For the ionic surfactant liquid crystals of SDS and KL systems used in this study, the rotational viscosity exhibited an extraordinary drop after reaching the highest values {gamma}{sub 1} as the temperature was lowered. This behavior is not observed in normal liquid crystals. But this phenomena can be attributed to the existence of nematic biaxial phase below the rod-like nematic N{sub c} phase. The pretransitional increase in {gamma}{sub 1} near the disk-like nematic to smectic-A phase transition of the pure CsPFO/H{sub 2}O systems are better understood with the help of mean-field models of W.L. McMillan. He predicted a critical exponent {nu} = {1/2} for the divergence of {gamma}{sub 1}. The polymer (PEO, molecular weight = 10{sup 5}) dissolved in CsPFO/H{sub 2}O system (which has 0.6% critical polymer concentration), suppressed the nematic to lamellar smectic phase transition in concentrated polymer solutions (0.75% and higher). In dilute polymer solutions with lower than 0.3% polyethylene-oxide, a linear increase of {gamma}{sub 1} is observed, which agrees with Brochard theory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27380032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27380032"><span>Antioxidant Behavior of Olive Phenolics in Oil-in-Water Emulsions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Paradiso, Vito Michele; Di Mattia, Carla; Giarnetti, Mariagrazia; Chiarini, Marco; Andrich, Lucia; Caponio, Francesco</p> <p>2016-07-27</p> <p>The effect of the surrounding molecular environment (β-lactoglobulin as an emulsion stabilizer and maltodextrin as a viscosity modifier) on the antioxidant activity of three olive oil phenolic compounds (PCs) in olive oil-in-water emulsions was investigated. Oxidation potential, phenolic partitioning, and radical quenching capacity were assessed in solution and in emulsion for oleuropein, hydroxytyrosol, and tyrosol; the influence of β-lactoglobulin and maltodextrin concentration was also evaluated. Finally, the observed properties were related to the oxidative stability of the emulsions containing the PCs to explain their behavior. The order hydroxytyrosol > oleuropein > tyrosol was observed among the antioxidants for both oxidation potential and radical quenching activity. Radical quenching capacity in emulsion and anodic potential were complementary indices of antioxidant effectiveness. As the intrinsic susceptibility of an antioxidant to oxidation expressed by its anodic potential decreased, the environmental conditions (molecular interactions and changes in continuous phase viscosity) played a major role in the antioxidant effectiveness in preventing hydroperoxide decomposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27455688','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27455688"><span>Rheological Behavior of a Novel Organic-Inorganic Hybrid: Micro/Nano-Tin Fluorophosphate Glass-Polycarbonate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Jing; Liu, Huiwen; Yu, Honglin; Zou, Xiaoxuan; Jing, Bo; Dai, Wenli</p> <p>2016-03-01</p> <p>The rheological behavior of a novel, binary organic-inorganic hybrid consisting of an ultra-low Tg tin fluorophosphate glass (Pglass) and polycarbonate (PC) was investigated using oscillatory rheometry. It was found that the complex viscosity of the hybrid showed Pglass content dependence. Under low Pglass content (10-30%), the complex viscosity of the hybrid was lower than that of pure PC. While the complex viscosity was dramatically increased and higher than that of pure PC with the content of Pglass above 30%. This phenomenon was particularly remarkable at low frequencies. Besides, with the addition of Pglass the hybrid material exhibited shear-thinning behavior and the shear-thinning characteristics became more obvious with the enhancement of the Pglass content, indicating the presence of nonlinear chemical and physical interactions between the hybrid components. Differential scanning calorimetry (DSC) measurements revealed that increasing the content of Pglass caused a decrease of the glass transition temperature (Tg) of the hybrids, suggesting that Pglass was acting as a macromolecular plasticizer for the PC. The microstructure of the Pglass in the hybrid material was characterized by scanning electron microscopy (SEM). The results showed that the Pglass were dispersed as micro- and nano-bead in the continuous phase of PC and the Pglass appeared aggregation partly with the increase of the Pglass content. This contribution was anticipated to be a guideline for the processing of this promising new class of hybrid materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20865209','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20865209"><span>Changes in viscosity behavior from a normal organogelator to a heat-induced gelator for a long-chain amidoamine derivative.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morita, Clara; Sugimoto, Hiroki; Matsue, Keisuke; Kondo, Takeshi; Imura, Yoshiro; Kawai, Takeshi</p> <p>2010-11-14</p> <p>A long-chain amidoamine derivative (C18AA) acts as a normal organogelator in toluene, but changes to a heat-induced gelator, exhibiting a phase transition from sol to gel on heating upon addition of aqueous LiCl to the toluene gel. The thermal response of the heat-induced gel of C18AA was highly sensitive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4968137','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4968137"><span>Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Geoghegan, James C.; Fleming, Ryan; Damschroder, Melissa; Bishop, Steven M.; Sathish, Hasige A.; Esfandiary, Reza</p> <p>2016-01-01</p> <p>ABSTRACT Undesired solution behaviors such as reversible self-association (RSA), high viscosity, and liquid-liquid phase separation can introduce substantial challenges during development of monoclonal antibody formulations. Although a global mechanistic understanding of RSA (i.e., native and reversible protein-protein interactions) is sufficient to develop robust formulation controls, its mitigation via protein engineering requires knowledge of the sites of protein-protein interactions. In the study reported here, we coupled our previous hydrogen-deuterium exchange mass spectrometry findings with structural modeling and in vitro screening to identify the residues responsible for RSA of a model IgG1 monoclonal antibody (mAb-C), and rationally engineered variants with improved solution properties (i.e., reduced RSA and viscosity). Our data show that mutation of either solvent-exposed aromatic residues within the heavy and light chain variable regions or buried residues within the heavy chain/light chain interface can significantly mitigate RSA and viscosity by reducing the IgG's surface hydrophobicity. The engineering strategy described here highlights the utility of integrating complementary experimental and in silico methods to identify mutations that can improve developability, in particular, high concentration solution properties, of candidate therapeutic antibodies. PMID:27050875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28202730','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28202730"><span>Liquid behavior of cross-linked actin bundles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L</p> <p>2017-02-28</p> <p>The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTB...48..527W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTB...48..527W"><span>Investigation on Viscosity and Nonisothermal Crystallization Behavior of P-Bearing Steelmaking Slags with Varying TiO2 Content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhanjun; Sun, Yongqi; Sridrar, Seetharaman; Zhang, Mei; Zhang, Zuotai</p> <p>2017-02-01</p> <p>The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal-melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase ( n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from -265.93 to -185.41 KJ·mol-1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23634780','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23634780"><span>Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang</p> <p>2014-05-01</p> <p>The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27421911','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27421911"><span>Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen</p> <p>2016-09-10</p> <p>The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3856009','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3856009"><span>Homogeneous Liquid–Liquid Extraction of Rare Earths with the Betaine—Betainium Bis(trifluoromethylsulfonyl)imide Ionic Liquid System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hoogerstraete, Tom Vander; Onghena, Bieke; Binnemans, Koen</p> <p>2013-01-01</p> <p>Several fundamental extraction parameters such as the kinetics and loading were studied for a new type of metal solvent extraction system with ionic liquids. The binary mixture of the ionic liquid betainium bis(trifluoromethylsulfonyl)imide and water shows thermomorphic behavior with an upper critical solution temperature (UCST), which can be used to avoid the slower mass transfer due to the generally higher viscosity of ionic liquids. A less viscous homogeneous phase and mixing on a molecular scale are obtained when the mixture is heated up above 55 °C. The influence of the temperature, the heating and cooling times, were studied for the extraction of neodymium(III) with betaine. A plausible and equal extraction mechanism is proposed in bis(trifluoromethylsulfonyl)imide, nitrate, and chloride media. After stripping of the metals from the ionic liquid phase, a higher recovery of the ionic liquid was obtained by salting-out of the ionic liquid fraction lost by dissolution in the aqueous phase. The change of the upper critical solution temperature by the addition of HCl or betaine was investigated. In addition, the viscosity was measured below and above the UCST as a function of the temperature. PMID:24169434</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T13A4618S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T13A4618S"><span>Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shinevar, W. J.; Behn, M. D.; Hirth, G.</p> <p>2014-12-01</p> <p>Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880023940&hterms=microemulsion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmicroemulsion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880023940&hterms=microemulsion&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmicroemulsion"><span>Quantitative characterization of the viscosity of a microemulsion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berg, Robert F.; Moldover, Michael R.; Huang, John S.</p> <p>1987-01-01</p> <p>The viscosity of the three-component microemulsion water/decane/AOT has been measured as a function of temperature and droplet volume fraction. At temperatures well below the phase-separation temperature the viscosity is described by treating the droplets as hard spheres suspended in decane. Upon approaching the two-phase region from low temperature, there is a large (as much as a factor of four) smooth increase of the viscosity which may be related to the percolation-like transition observed in the electrical conductivity. This increase in viscosity is not completely consistent with either a naive electroviscous model or a simple clustering model. The divergence of the viscosity near the critical point (39 C) is superimposed upon the smooth increase. The magnitude and temperature dependence of the critical divergence are similar to that seen near the critical points of binary liquid mixtures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26135219','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26135219"><span>Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sashi, Pulikallu; Bhuyan, Abani K</p> <p>2015-07-28</p> <p>Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6543Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6543Z"><span>The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Nan; Dygert, Nick; Liang, Yan; Parmentier, E. M.</p> <p>2017-07-01</p> <p>Lunar cumulate mantle overturn and the subsequent upwelling of overturned mantle cumulates provide a potential framework for understanding the first-order thermochemical evolution of the Moon. Upwelling of ilmenite-bearing cumulates (IBCs) after the overturn has a dominant influence on the dynamics and long-term thermal evolution of the lunar mantle. An important parameter determining the stability and convective behavior of the IBC is its viscosity, which was recently constrained through rock deformation experiments. To examine the effect of IBC viscosity on the upwelling of overturned lunar cumulate mantle, here we conduct three-dimensional mantle convection models with an evolving core superposed by an IBC-rich layer, which resulted from mantle overturn after magma ocean solidification. Our modeling shows that a reduction of mantle viscosity by 1 order of magnitude, due to the presence of ilmenite, can dramatically change convective planform and long-term lunar mantle evolution. Our model results suggest a relatively stable partially molten IBC layer that has surrounded the lunar core to the present day.<abstract type="synopsis"><title type="main">Plain Language SummaryThe Moon's mantle is locally ilmenite rich. Previous models exploring the convective evolution of the lunar mantle did not consider the effects of ilmenite viscosity. Recent rock deformation experiments demonstrate that Fe-Ti oxide (ilmenite) is a low viscosity phase compared to olivine and other silicate minerals. Our modeling shows that ilmenite changes the lunar mantle plume process. An ilmenite-rich layer around the lunar core would be highly stable throughout geologic time, consistent with a partially molten, low viscosity layer around the core inferred from seismic attenuation and tidal dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28f1701M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28f1701M"><span>Modeling the viscosity of polydisperse suspensions: Improvements in prediction of limiting behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.</p> <p>2016-06-01</p> <p>The present study develops a fully consistent extension of the approach pioneered by Farris ["Prediction of the viscosity of multimodal suspensions from unimodal viscosity data," Trans. Soc. Rheol. 12, 281-301 (1968)] to describe the viscosity of polydisperse suspensions significantly improving upon our previous model [P. M. Mwasame, N. J. Wagner, and A. N. Beris, "Modeling the effects of polydispersity on the viscosity of noncolloidal hard sphere suspensions," J. Rheol. 60, 225-240 (2016)]. The new model captures the Farris limit of large size differences between consecutive particle size classes in a suspension. Moreover, the new model includes a further generalization that enables its application to real, complex suspensions that deviate from ideal non-colloidal suspension behavior. The capability of the new model to predict the viscosity of complex suspensions is illustrated by comparison against experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT.......162B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT.......162B"><span>In situ evaluation of supersolidus liquid phase sintering phenomena of stainless steel 316L: Densification and distortion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bollina, Ravi</p> <p></p> <p>Supersolidus liquid phase sintering (SLPS) is a variant of liquid phase sintering. In SLPS, prealloyed powders are heated between the solidus and liquidus temperature of the alloy. This thesis focuses on processing of stainless steel 316L via SLPS by adding boron. Various amounts of boron were added to study the effect of boron on densification and distortion. The sintering window for water atomized 316L with 0.2% boron ranges from 1430 to 1435°C and 1225 to 1245°C for water atomized 316L with 0.8% boron. The rate of change of liquid content with temperature dVL/dt decreases from 1.5%/°C to 0.1%/°C for in increase in boron content from 0 to 0.8%, giving a wider range and better control during sintering. Further; effect of boron on mechanical properties and corrosion properties was researched. It was possible to achieve tensile strength of 476+/-21 MPa and an yield strength of 250+/-5 MPa with an elongation of 15+/-2 % in water atomized 316L with 0.8% boron. Fracture analysis indicates the presence of a brittle boride phase along the grain boundary causing intergranular fracture resulting in poor ductility. The crux of this thesis discusses the evolution of apparent viscosity and its relation to the microstructure. Beam bending viscometry was successfully used to evaluate the in situ apparent viscosity evolution of water atomized 316L with 0.2 and 0.8% boron additions. The apparent viscosity drops from 174 GPa.s at 1200°C to 4 GPa.s at 1275°C with increasing fractional liquid coverage in the water atomized 316L with 0.8% boron. The apparent viscosity calculated from bending beam and was used as an input into a finite element model (FEM) derived from constitutive equations and gives an excellent, fit between simulation and experiment. The densification behavior of boron doped stainless steel was modelled using Master Sintering Curve (MSC) (based on work of sintering) for the first time. It is proven that MSC can be used to identify change in densification rate upon liquid formation during SLPS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990PhDT.......188C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990PhDT.......188C"><span>Optical and Transport Properties of Energetic Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Chang Sun</p> <p>1990-01-01</p> <p>The densities of Hydroxyl ammonium nitrate (HAN) based fast reacting liquids were measured as a function of pressure (up to 4.83 kbars) at several temperatures and the results of density measurements were fit to the Tait equation. Also the shear viscosities of this liquid were measured as a function of both pressure and temperature. The free volume model was applied to explain behavior of the shear viscosity with the assumption that only the reference temperature (T_0) in the Fulcher (1925), WLF (Williams, Landel, and Ferry) and Angell equations depends on pressure. The general relation to predict viscosity of this liquid at any temperature and pressure was derived and the difference between expected and measured values are about 5%. The phase diagrams of the HAN solution, Triethanol ammonium nitrate (TEAN) solution and LP-1845 were obtained through Differential Scanning Calorimetry (DSC) measurements. The TEAN solution has a eutectic temperature in the vicinity of 260^circK. The measured phase diagrams are in good agreement with the calculated phase diagrams. The TEAN solutions show a large supercooling effect. Some phase separation was observed in the TEAN solutions and this separation was believed to be due to eutectic composition of the TEAN solution. The expected freezing temperature of LP-1845 was almost the same with the calculated T_0 from the viscosity data. Raman spectra from the HAN solution, TEAN solution and LP-1845 were measured. Every peak in the spectra was assigned. These solutions show various interactions, such as ion-ion pairing and ion-water interaction. The strongest peak was a NO_3^- symmetric stretch mode at 1050 cm^{-1}. The time correlation functions were calculated from the Raman spectra of the 1050 cm^{-1} peak. The correlation time, which can be calculated from the linewidth, become shorter with decreasing temperatures and with increasing concentrations. The Kubo's stochastic theory explains the correlation functions very well if the solution is relatively dilute. The pressure dependence of the reaction rate was estimated by using the density data and Raman peak shift data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23004740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23004740"><span>Nanoscale simple-fluid behavior under steady shear.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yong, Xin; Zhang, Lucy T</p> <p>2012-05-01</p> <p>In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......187L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......187L"><span>Mechanisms and mechanics of shape loss during supersolidus liquid-phase sintering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lal, Anand</p> <p></p> <p>Rapid sinter densification of relatively coarse prealloyed powders is possible by exceeding the solidus temperature in an approach termed supersolidus liquid phase sintering (SLPS). However, narrow processing windows for densification without distortion often limit this process. The liquid films at the grain boundaries that are responsible for densification also reduce the structural rigidity of components. Hence, components tend to slump under their own weight. Thus, the present study investigates shape loss during SLPS and rationalizes the processing and material factors with regard to separating densification from distortion. Experiments are performed on various prealloyed powders, including bronze, 316L stainless steel, and T15 tool steel. Differential thermal analysis, dilatometry, and in situ video imaging of sintering compacts are used to follow melting, densification, and distortion, respectively. Further, density and dimensional measurements are performed on sintered compacts. Results indicate a dependence of distortion on the sintering temperature and time, compact size, and melting behavior of the alloy. It is shown that the sintering temperature window, where high-density, precise components are obtained, can be widened for 316L stainless steel by boron addition. For the first time, a beam bending technique is used to measure the macroscopic apparent viscosity of semisolid bronze. The viscosity drops with temperature above the solidus and lies in the range of 108 to 106 Pa-s. Additionally, the in situ transverse rupture strength of bronze is measured to demonstrate the softening above the solidus temperature. Further, microstructural measurements are performed to enable correlation with the slumping behavior and viscosity. A model combining the deformation mechanisms, driving forces, and microstructural characteristics is developed to predict the conditions for densification and distortion onset. The microstructure is also correlated with the magnitude of shape loss and viscosity of a semisolid aggregate. A mechanistic model, based on the semisolid rheological characteristics, is developed to predict the magnitude and nature of shape loss. The model shows good correlation with experimental data for bronze. This study offers critical insight into SLPS and provides processing strategies for fabrication of high-density components without shape loss.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI13A0278T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI13A0278T"><span>The role of upper mantle mineral phase transitions on the current structure of large-scale Earth's mantle convection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thoraval, C.</p> <p>2017-12-01</p> <p>Describing the large-scale structures of mantle convection and quantifying the mass transfer between upper and lower mantle request to account for the role played by mineral phase transitions in the transition zone. We build a density distribution within the Earth mantle from velocity anomalies described by global seismic tomographic models. The density distribution includes thermal anomalies and topographies of the phase transitions at depths of 410 and 660 km. We compute the flow driven by this density distribution using a 3D spherical circulation model, which account for depth-dependent viscosity. The dynamic topographies at the surface and at the CMB and the geoid are calculated as well. Within the range of viscosity profiles allowing for a satisfying restitution of the long wavelength geoid, we perform a parametric study to decipher the role of the characteristics of phase diagrams - mainly the Clapeyron's slopes - and of the kinetics of phase transitions, which may modify phase transition topographies. Indeed, when a phase transition is delayed, the boundary between two mineral phases is both dragged by the flow and interfere with it. The results are compared to recent estimations of surface dynamic topography and to the phase transition topographies as revealed by seismic studies. The consequences are then discussed in terms of structure of mantle flow. Comparisons between various tomographic models allow us to enlighten the most robust features. At last, the role played by the phase transitions on the lateral variations of mass transfer between upper and lower mantle are quantified by comparison to cases with no phase transitions and confronted to regional tomographic models, which reflect the variability of the behaviors of the descending slabs in the transition zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15912228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15912228"><span>Significant viscosity dependent deviations from classical van Deemter theory in liquid chromatography with porous silica monolithic columns.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nesterenko, Pavel N; Rybalko, Marina A; Paull, Brett</p> <p>2005-06-01</p> <p>Significant deviations from classical van Deemter behaviour, indicative of turbulent flow liquid chromatography, has been recorded for mobile phases of varying viscosity on porous silica monolithic columns at elevated mobile phase flow rates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H51G1285H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H51G1285H"><span>Feedbacks of Density and Viscosity Nonlinearities on Convective Mixing: Experiments and High-resolution Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hidalgo, J. J.; MacMinn, C. W.; Cueto-Felgueroso, L.; Fe, J.</p> <p>2011-12-01</p> <p>Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. The free-phase CO2 tends to rise due to buoyancy, accumulate beneath the caprock and dissolve into the brine, initially by diffusion. The CO2-brine mixture, however, is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. Here, we perform high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol) to explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture. We find that the convective flux depends strongly on the value of the concentration for which the density of the mixture is maximum, and on the viscosity contrast between the fluids. From the experimental and simulation results we elucidate the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks in the interpretation of the analogue-fluid experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/318712-organic-phase-resistance-dissolution-polycyclic-aromatic-hydrocarbon-compounds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/318712-organic-phase-resistance-dissolution-polycyclic-aromatic-hydrocarbon-compounds"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ortiz, E.; Kraatz, M.; Luthy, R.G.</p> <p></p> <p>The dissolution of naphthalene, phenanthrene, and pyrene from viscous organic phases into water was studied in continuous-flow systems for time periods ranging from several months to more than 1 year. By selecting nonaqueous phases ranging from low viscosity to semisolid, i.e., from a light lubricating oil to paraffin, the governance of mass transfer was shown to vary from water phase control to nonaqueous phase control. An advancing depleted-zone model is proposed to explain the dissolution of PAHs from a viscous organic phase wherein the formation of a depleted zone within the organic phase increases the organic phase resistance to themore » dissolution of PAHs. The experimental data suggest the formation of a depleted zone within the organic phase for systems comprising a high-viscosity oil, petrolatum (petroleum jelly), and paraffin. Organic phase resistance to naphthalene dissolution became dominant over aqueous phase resistance after flushing for several days. Such effects were not evident for low viscosity lubricating oil. The transition from aqueous-phase dissolution control to nonaqueous-phase dissolution control appears predictable, and this provides a more rational framework to assess long-term release of HOCs from viscous nonaqueous phase liquids and semisolids.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFD.D6005H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFD.D6005H"><span>Identification of viscous droplets' physical properties that determine droplet behaviors in inertial microfluidics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hur, Soojung Claire</p> <p>2013-11-01</p> <p>Inertial effects in microfluidic systems have recently recognized as a robust and passive way of focusing and ordering microscale particles and cells continuously. Moreover, theoretical analysis has shown that there exists a force away from channel walls in Poiseuille flow that locates deformable particles closer to the channel center than rigid counterparts. Then, the particle deformability can be extrapolated from the positions of particles with known sizes in the channel. Here, behaviors of various viscous droplets in inertial flow were investigated to identify critical properties determining their dynamic lateral position. Fluorinated oil solutions (μ = 1.7 mPas and 5 mPas) containing droplets (1mPas< μ<1.3Pas) were injected into a microfluidic channel with a syringe pump (8 < Rc < 50). Interfacial tension between aqueous and oil phases were varied by adding controlled amount of a surfactant. The diameter, a, deformability, Def, and dynamic lateral position, Xeq, were determined using high-speed microscopy. Xeq, was found to correlate with the particle Capillary Number, CaP, regardless of droplet viscosities when CaP <0.02 or CaP >0.2, suggesting that the viscous drag from the continuous phase and the interfacial tension were competing factors determining Xeq. Experimental results suggested that (i) interplay among droplet's viscosity, interfacial tension and inertia of carrier fluid determines dynamic lateral position of droplets and (ii) the dominant property varies at a different regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26852841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26852841"><span>Exploring the Phase Behavior of Monoolein/Oleic Acid/Water Systems for Enhanced Donezepil Administration for Alzheimer Disease Treatment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruela, André Luís Morais; Carvalho, Flávia Chiva; Pereira, Gislaine Ribeiro</p> <p>2016-01-01</p> <p>Donepezil is a drug usually administered by oral route for Alzheimer disease treatment, but several gastric side effects have been reported as diarrhea, nausea, and anorexia. We explored the phase behavior of lyotropic liquid crystalline (LLC) mesophases composed by monoolein/oleic acid/water for enhanced administration of donepezil. Polarized light microscopy suggested that these systems ranged from isotropic inverse micellar solutions (L2) to viscous and birefringent reverse hexagonal (HII) mesophases according to the amount of water in the ternary systems. Phase transition was observed from a L2 phase to HII mesophase after swelling studies, an interesting property to be explored as a precursor of LLC mesophases for mucosal administration that increases its viscosity in situ. Mucoadhesive properties of LLC mesophases were characterized using a texture analyzer indicating that these systems can have an increased residence time in the site of absorption. Donepezil-free base was incorporated in the evaluated formulations, and their in vitro release was controlled up to 24 h. The phase behavior of the systems demonstrated a great potential for enhanced donepezil administration once these mucoadhesive-controlled release formulations can incorporate the drug and prolong its release, possibly reducing its side effects. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27305061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27305061"><span>Emulsion Inks for 3D Printing of High Porosity Materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M</p> <p>2016-08-01</p> <p>Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5348278','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5348278"><span>Assessment of structural heterogeneity and viscosity in the cervix using shear wave elasticity imaging: initial results from a Rhesus macaque model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rosado-Mendez, Ivan M.; Palmeri, Mark L.; Drehfal, Lindsey C.; Guerrero, Quinton W.; Simmons, Heather; Feltovich, Helen; Hall, Timothy J.</p> <p>2016-01-01</p> <p>Shear Wave Elasticity Imaging (SWEI) shows promise for evaluating the pregnant cervix. Changes in shear wave group velocity have been attributed exclusively to changes in stiffness. This assumes homogeneity within the region of interest and purely elastic tissue behavior. However, the cervix is structurally/microstructurally heterogeneous and viscoelastic. We therefore developed strategies to investigate these complex tissue properties. SWEI was performed ex vivo on 14 unripened and 13 misoprostol-ripened cervix specimens from Rhesus macaques. After application of tests of significant and uniform shear wave displacement, as well as reliability of estimates, group velocity decreased significantly from the distal (vaginal) to proximal (uterine) end of unripened, but not ripened, specimens. Viscosity was quantified by the slope of the phase velocity vs. frequency. Dispersion was observed in both groups (median 5.5 m/s/kHz, interquartile range: 1.5–12.0 m/s/kHz), also decreasing towards the proximal cervix. This work suggests that comprehensive assessment of complex tissues such as cervix requires consideration of structural heterogeneity and viscosity. PMID:28189282</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880043995&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880043995&hterms=group+theory&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgroup%2Btheory"><span>Renormalization-group theory for the eddy viscosity in subgrid modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhou, YE; Vahala, George; Hossain, Murshed</p> <p>1988-01-01</p> <p>Renormalization-group theory is applied to incompressible three-dimensional Navier-Stokes turbulence so as to eliminate unresolvable small scales. The renormalized Navier-Stokes equation now includes a triple nonlinearity with the eddy viscosity exhibiting a mild cusp behavior, in qualitative agreement with the test-field model results of Kraichnan. For the cusp behavior to arise, not only is the triple nonlinearity necessary but the effects of pressure must be incorporated in the triple term. The renormalized eddy viscosity will not exhibit a cusp behavior if it is assumed that a spectral gap exists between the large and small scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26414421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26414421"><span>Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xue, Zheng; Worthen, Andrew; Qajar, Ali; Robert, Isaiah; Bryant, Steven L; Huh, Chun; Prodanović, Maša; Johnston, Keith P</p> <p>2016-01-01</p> <p>To date, relatively few examples of ultra-high internal phase supercritical CO2-in-water foams (also referred to as macroemulsions) have been observed, despite interest in applications including "waterless" hydraulic fracturing in energy production. The viscosities and stabilities of foams up to 0.98 CO2 volume fraction were investigated in terms of foam bubble size, interfacial tension, and bulk and surface viscosity. The foams were stabilized with laurylamidopropyl betaine (LAPB) surfactant and silica nanoparticles (NPs), with and without partially hydrolyzed polyacrylamide (HPAM). For foams stabilized with mixture of LAPB and NPs, fine ∼70 μm bubbles and high viscosities on the order of 100 cP at>0.90 internal phase fraction were stabilized for hours to days. The surfactant reduces interfacial tension, and thus facilitates bubble generation and decreases the capillary pressure to reduce the drainage rate of the lamella. The LAPB, which is in the cationic protonated form, also attracts anionic NPs (and anionic HPAM in systems containing polymer) to the interface. The adsorbed NPs at the interface are shown to slow down Ostwald ripening (with or without polymer added) and increase foam stability. In systems with added HPAM, the increase in the bulk and surface viscosity of the aqueous phase further decreases the lamella drainage rate and inhibits coalescence of foams. Thus, the added polymer increases the foam viscosity by threefold. Scaling law analysis shows the viscosity of 0.90 volume fraction foams is inversely proportional to the bubble size. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018KARJ...30..127J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018KARJ...30..127J"><span>Study the effect of polymers on the stability and rheological properties of oil-in-water (O/W) Pickering emulsion muds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jha, Praveen Kumar; Mahto, Vikas; Saxena, Vinod Kumar</p> <p>2018-05-01</p> <p>A new type of oil-in-water (O/W) Pickering emulsion systems, which were prepared by polymers such as xanthan gum, carboxymethyl cellulose (CMC), and sodium lignosulfonate have been investigated for their properties as multifunctional emulsion muds with respect to rheological control and filtration control properties. Diesel oil was used as dispersed phase and KCl-brine as continuous phase in the developed emulsions. Initially, rheological parameters like apparent viscosity, plastic viscosity, gel strength, and filtration control properties were measured using recommended practices. Emulsion stability was analyzed using steady state shear stress-shear rate and oscillatory (dynamic) rheological measurement techniques. The emulsions were found to exhibit shear-thinning (pseudoplastic) behavior. Experiments conducted for oscillatory rheological measurements have shown that emulsions are stable as per the stability criteria G' (elastic modulus) > G'' (loss modulus) and both are independent of changing ω (Frequency). These fluids have shown stable properties upto 70°C which shows that they can be used as drilling muds for drilling oil and gas wells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28379173','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28379173"><span>Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Idris, Alamin; Man, Zakaria; Maulud, Abdulhalim S; Khan, Muhammad Saad</p> <p>2017-04-05</p> <p>The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N -methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes' performances were tested for their permeance to CO₂, CH₄, and N₂ gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO₂/N₂ and CO₂/CH₄ selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO₂/N₂ and CO₂/CH₄ selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyE...87..273A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyE...87..273A"><span>How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid</p> <p>2017-03-01</p> <p>In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26736022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26736022"><span>Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tomar, Dheeraj S; Kumar, Sandeep; Singh, Satish K; Goswami, Sumit; Li, Li</p> <p>2016-01-01</p> <p>Effective translation of breakthrough discoveries into innovative products in the clinic requires proactive mitigation or elimination of several drug development challenges. These challenges can vary depending upon the type of drug molecule. In the case of therapeutic antibody candidates, a commonly encountered challenge is high viscosity of the concentrated antibody solutions. Concentration-dependent viscosity behaviors of mAbs and other biologic entities may depend on pairwise and higher-order intermolecular interactions, non-native aggregation, and concentration-dependent fluctuations of various antibody regions. This article reviews our current understanding of molecular origins of viscosity behaviors of antibody solutions. We discuss general strategies and guidelines to select low viscosity candidates or optimize lead candidates for lower viscosity at early drug discovery stages. Moreover, strategies for formulation optimization and excipient design are also presented for candidates already in advanced product development stages. Potential future directions for research in this field are also explored.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27027511','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27027511"><span>CO2 Responsive Imidazolium-Type Poly(Ionic Liquid) Gels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jing; Xu, Dan; Guo, Jiangna; Sun, Zhe; Qian, Wenjing; Zhang, Ye; Yan, Feng</p> <p>2016-07-01</p> <p>Poly(ionic liquid) (PIL) gels with CO2 stimulus responsiveness have been synthesized through the copolymerization of an imidazolium-type ionic liquid monomer with 2-(dimethyl amino) ethyl methacrylate. Upon bubbling with CO2 gas, the prepared PIL solution is converted to a transparent and stable gel, which can be turned back to the initial solution state after N2 bubbling. The reversible sol-gel phase transition behavior is proved by the reversible values of viscosity and ionic conductivity. The possible mechanism for such a reversible sol-gel phase transition is demonstrated by NMR, conductivity, and rheological measurements. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JNuM..485..129O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JNuM..485..129O"><span>Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke</p> <p>2017-03-01</p> <p>It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr1-xNix (x = 0.12 and 0.24) and Zr0.77Cr0.23) using the electrostatic levitation technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22181256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22181256"><span>Diffuse-interface approach to rotating Hele-Shaw flows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Ching-Yao; Huang, Yu-Sheng; Miranda, José A</p> <p>2011-10-01</p> <p>When two fluids of different densities move in a rotating Hele-Shaw cell, the interface between them becomes centrifugally unstable and deforms. Depending on the viscosity contrast of the system, distinct types of complex patterns arise at the fluid-fluid boundary. Deformations can also induce the emergence of interfacial singularities and topological changes such as droplet pinch-off and self-intersection. We present numerical simulations based on a diffuse-interface model for this particular two-phase displacement that capture a variety of pattern-forming behaviors. This is implemented by employing a Boussinesq Hele-Shaw-Cahn-Hilliard approach, considering the whole range of possible values for the viscosity contrast, and by including inertial effects due to the Coriolis force. The role played by these two physical contributions on the development of interface singularities is illustrated and discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ZaMP...67...54Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ZaMP...67...54Z"><span>Decay of the 3D inviscid liquid-gas two-phase flow model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yinghui</p> <p>2016-06-01</p> <p>We establish the optimal {Lp-L2(1 ≤ p < 6/5)} time decay rates of the solution to the Cauchy problem for the 3D inviscid liquid-gas two-phase flow model and analyze the influences of the damping on the qualitative behaviors of solution. Compared with the viscous liquid-gas two-phase flow model (Zhang and Zhu in J Differ Equ 258:2315-2338, 2015), our results imply that the friction effect of the damping is stronger than the dissipation effect of the viscosities and enhances the decay rate of the velocity. Our proof is based on Hodge decomposition technique, the {Lp-L2} estimates for the linearized equations and an elaborate energy method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ResPh...7.1433M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ResPh...7.1433M"><span>Predicting the viscosity of solids using steady-state creep behavior of the fibrous composites semi-theoretically</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monfared, Vahid</p> <p></p> <p>A semi-analytical formulation is presented for obtaining the viscosity of solids (such as metals) using the steady state creep model of the short-fiber composites. For achieving this aim, fluid mechanics theory is used for determining the viscosity. Sometimes, obtaining the viscosity is experimentally difficult and intricate. So, the present model may be beneficial to obtain the viscosity of metals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1584Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1584Y"><span>The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshida, Masaki</p> <p>2014-05-01</p> <p>Previous numerical studies of mantle convection focusing on subduction dynamics have indicated that the viscosity contrast between the subducting plate and the surrounding mantle have a primary effect on the behavior of subducting plates. The seismically observed plate stagnation at the base of the mantle transition zone (MTZ) under the Western Pacific and Eastern Eurasia is considered to mainly result from a viscosity increase at the ringwoodite to perovskite + magnesiowüstite (Rw→Pv+Mw) phase decomposition boundary, i.e., the boundary between the upper and lower mantle. The harzburgite layer, which is sandwiched between basaltic crust and depleted peridotite (lherzolite) layers, is a key component of highly viscous, cold oceanic plates. However, the possible sensitivity of the effective viscosity of harzburgite layers in the morphology of subducting plates that are flattened in the MTZ and/or penetrated in the lower mantle has not been examined systematically in previous three-dimensional (3D) numerical modeling studies that consider the viscosity increase at the boundary between the upper and lower mantle. In this study, in order to investigate the role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, I performed a series of numerical simulations of mantle convection with semi-dynamic plate subduction in 3D regional spherical-shell geometry. The results show that a buckled crustal layer is observed under the "heel" of the stagnant slab that begins to penetrate into the lower mantle, regardless of the magnitude of the viscosity contrast between the harzburgite layer and the underlying mantle, when the factor of viscosity increase at the boundary of the upper and lower mantle is larger than 60-100. As the viscosity contrast between the harzburgite layer and the underlying mantle increases, the curvature of buckling is larger. When the viscosity increase at the boundary of the upper and lower mantle and the viscosity contrast between the harzburgite layer and the underlying mantle are larger, the volumes of crustal and harzburgite materials trapped in the mantle transition zone (MTZ) are also larger, although almost all of the materials penetrate into the lower mantle. These materials are trapped in the MTZ for over tens of millions of years. The bending of crustal layers numerically observed in the present study is consistent with seismological evidence that there is a piece of subducted oceanic crust in the uppermost lower mantle beneath the subducting slab under the Mariana trench [Niu et al., 2003, JGR]. The results of the present study suggest that when the viscosity increase at the boundary of the upper and lower mantle is larger than 60-100, a seismically observed stagnant slab is reproduced. This result is consistent with the previous independent geodynamic studies. For instance, a 2D geodynamic model with lateral viscosity variations suggested that it would need to be substantially greater than 30, say, around 100, to explain the positive geoid anomaly in the subduction zones where the subducting slab reaches the boundary between the upper and lower mantle such as that of the western Pacific [Tosi et al., 2009, GJI]. References: [1] Tajima, F. Yoshida, M. and Ohtani, E., Conjecture with water and rheological control for subducting slab in the mantle transition zone, Geoscience Frontiers, doi:10.1016/j.gsf.2013.12.005, 2014. [2] Yoshida, M. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, Geophys. Res. Lett., 40(20), 5387-5392, doi:10.1002/2013GL057578, 2013. [3] Yoshida, M. and Tajima, F., On the possibility of a folded crustal layer stored in the hydrous mantle transition zone, Phys. Earth Planet. Inter., 219, 34-48, doi:10.1016/j.pepi.2013.03.004, 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhFl...28l7102C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhFl...28l7102C"><span>Transparent, immiscible, surrogate liquids with matchable refractive indexes: Increased range of density and viscosity ratios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cadillon, Jérémy; Saksena, Rajat; Pearlstein, Arne J.</p> <p>2016-12-01</p> <p>By replacing the "heavy" silicone oil used in the oil phase of Saksena, Christensen, and Pearlstein ["Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios," Phys. Fluids 27, 087103 (2015)] by one with a twentyfold higher viscosity, and replacing the "light" silicone oil in that work by one with a viscosity fivefold lower and a density about 10% lower, we have greatly extended the range of viscosity ratio accessible by index-matching the adjustable-composition oil phase to an adjustable-composition 1,2-propanediol + CsBr + H2O aqueous phase and have also extended the range of accessible density ratios. The new system of index-matchable surrogate immiscible liquids is capable of achieving the density and viscosity ratios for liquid/liquid systems consisting of water with the entire range of light or medium crude oils over the temperature range from 40 °F (4.44 °C) to 200 °F (93.3 °C) and can access the density and viscosity ratios for water with some heavy crude oils over part of the same temperature range. It also provides a room-temperature, atmospheric-pressure surrogate for the liquid CO2 + H2O system at 0 °C over almost all of the pressure range of interest in sub-seabed CO2 sequestration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL10002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL10002A"><span>Drop splashing: the role of surface wettability and liquid viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Almohammadi, Hamed; Amirfazli, Alidad; -Team</p> <p>2017-11-01</p> <p>There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910022647','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910022647"><span>Crystallization of the glassy grain boundary phase in silicon nitride ceramics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Drummond, Charles H., III</p> <p>1991-01-01</p> <p>The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22883157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22883157"><span>Preparation of a novel hyperbranched carbosilane-silica hybrid coating for trace amount detection by solid phase microextraction/gas chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Guowen; Li, Wenjie; Zhang, Chen; Zhou, Chuanjian; Feng, Shengyu</p> <p>2012-09-21</p> <p>Phenyl-ended hyperbranched carbosilane (HBC) is synthesized and immobilized onto the inner wall of a fused silica capillary column using a sol-gel process. The hybrid coating layer formed is used as a stationary phase for gas chromatography (GC) and as an adsorption medium for solid phase microextraction (SPME). Trifluoroacetic acid, as a catalyst in this process, helps produce a homogeneous hybrid coating layer. This result is beneficial for better column chromatographic performances, such as high efficiency and high resolution. Extraction tests using the novel hybrid layer show an extraordinarily large adsorption capacity and specific adsorption behavior for aromatic compounds. A 1 ppm trace level detectability is obtained with the SPME/GC work model when both of the stationary phase and adsorption layer bear a hyperbranched structure. A large amount of phenyl groups and a low viscosity of hyperbranched polymers contribute to these valuable properties, which are important to environment and safety control, wherein detection sensitivity and special adsorption behavior are usually required. Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27022734','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27022734"><span>Viscosity-adjusted estimation of pressure head and pump flow with quasi-pulsatile modulation of rotary blood pump for a total artificial heart.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke</p> <p>2016-09-01</p> <p>Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26465585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26465585"><span>Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao</p> <p>2015-09-01</p> <p>Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the behavior of daughter droplets is significantly different in both branch channels. Also, it is found that the contact angle hysteresis is strengthened with decreasing the viscosity ratio, leading to an earlier droplet breakup and a decrease in the maximum length that the droplet can reach before the breakup. These simulation results manifest that the present multiphase LBM can be a useful substitute to Ba et al. [Phys. Rev. E 88, 043306 (2013)PLEEE81539-375510.1103/PhysRevE.88.043306] for modeling the contact angle hysteresis, and it can be easily implemented with higher computational efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25261729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25261729"><span>Nonlinearity in cytoplasm viscosity can generate an essential symmetry breaking in cellular behaviors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tachikawa, Masashi; Mochizuki, Atsushi</p> <p>2015-01-07</p> <p>The cytoplasms of ameboid cells are nonlinearly viscous. The cell controls this viscosity by modulating the amount, localization and interactions of bio-polymers. Here we investigated how the nonlinearity infers the cellular behaviors and whether nonlinearity-specific behaviors exist. We modeled the developed plasmodium of the slime mold Physarum polycephalum as a network of branching tubes and examined the linear and nonlinear viscous cytoplasm flows in the tubes. We found that the nonlinearity in the cytoplasm׳s viscosity induces a novel type of symmetry breaking in the protoplasmic flow. We also show that symmetry breaking can play an important role in adaptive behaviors, namely, connection of behavioral modes implemented on different time scales and transportation of molecular signals from the front to the rear of the cell during cellular locomotion. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhyA..322...38P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhyA..322...38P"><span>Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.</p> <p>2003-05-01</p> <p>We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472027-kinematic-dust-viscosity-effect-linear-nonlinear-dust-acoustic-waves-space-dusty-plasmas-nonthermal-ions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472027-kinematic-dust-viscosity-effect-linear-nonlinear-dust-acoustic-waves-space-dusty-plasmas-nonthermal-ions"><span>Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg; El-Shewy, E. K.</p> <p>2015-10-15</p> <p>Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions aremore » related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2238014','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2238014"><span>STUDIES ON THE ANOMALOUS VISCOSITY AND FLOW-BIREFRINGENCE OF PROTEIN SOLUTIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lawrence, A. S. C.; Needham, Joseph; Shen, Shih-Chang</p> <p>1944-01-01</p> <p>1. A coaxial viscosimeter which permits the simultaneous determination of relative and anomalous viscosity and of flow-birefringence is described. Flow-anomaly and flow-birefringence are regarded as characteristic of elongated micelles and molecules. 2. Such methods have been applied to dilute solutions of proteins. The conditions under which the coaxial (Couette) viscosimeter measures the viscosity of the bulk phase and the surface film phase respectively have been investigated and are described. 3. The general behaviour of protein solutions subjected to shear is summarised. PMID:19873384</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDKP1030L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDKP1030L"><span>Wetting of silicone oil onto a cell-seeded substrate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung</p> <p>2017-11-01</p> <p>Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.U23D0074N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.U23D0074N"><span>Does low post-perovskite viscosity have an effect on structures at the core-mantle boundary ?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakagawa, T.; Tackley, P. J.; Ammann, M. W.; Brodholt, J. P.; Dobson, D.</p> <p>2009-12-01</p> <p>According to recent high pressure experiments [e.g. Yamazaki et al., 2006], viscosity determination using geoid fitting [Tosi et al., 2009], and new ab initio DFT calculations [Ammann et al., 2009], the viscosity of the post-perovskite phase may be lower than the viscosity of the perovskite by up to 2-3 orders of magnitude. Both activation enthalpy and the pre-exponential factor in the viscosity law are expected to be different. Here we implement phase-dependent viscosity into 3-D spherical shell, thermo-chemical mantle convection model, to investigate an effect of low post-perovskite viscosity and its influence on the heterogeneous structures in the core-mantle boundary region, including lateral variations in heat flux across the core-mantle boundary. Rheological parameters are taken from first principle calculations for perovskite [Ammann et al., 2009] plus new calculations for post-perovskite, with post-perovskite viscosity being up to three orders of magnitude lower. A major finding from our simulations is that low PPV viscosity increases the lateral heterogeneity in CMB heat flux and stabilizes compositionally-dense anomalies by basaltic material above the CMB. In order to understand the relationship between local heat flux and seismic anomaly near the core-mantle boundary, the results of these mantle convection simulations are used to expand the simple theory for the scaling relationship between CMB heat flux and seismic anomalies found in our recent paper [Nakagawa and Tackley, 2008]. Stabilizing the dense piles above the CMB by low post-perovskite viscosity effects can explain the current inference of thermo-chemical-phase structures from both seismology and mineral physics . Here we also try to determine how seismic anomalies can predict heat flux across the CMB from our modeling results. References Ammann, M., J. P. Brodholt and D. P. Dobson, PCM, doi:10.1007/s00269-008-0265-z, 2009. Nakagawa, T., and P. J. Tackley, EPSL, 271, 348-358, 2008.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5074600','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5074600"><span>Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tomar, Dheeraj S.; Kumar, Sandeep; Singh, Satish K.; Goswami, Sumit; Li, Li</p> <p>2016-01-01</p> <p>ABSTRACT Effective translation of breakthrough discoveries into innovative products in the clinic requires proactive mitigation or elimination of several drug development challenges. These challenges can vary depending upon the type of drug molecule. In the case of therapeutic antibody candidates, a commonly encountered challenge is high viscosity of the concentrated antibody solutions. Concentration-dependent viscosity behaviors of mAbs and other biologic entities may depend on pairwise and higher-order intermolecular interactions, non-native aggregation, and concentration-dependent fluctuations of various antibody regions. This article reviews our current understanding of molecular origins of viscosity behaviors of antibody solutions. We discuss general strategies and guidelines to select low viscosity candidates or optimize lead candidates for lower viscosity at early drug discovery stages. Moreover, strategies for formulation optimization and excipient design are also presented for candidates already in advanced product development stages. Potential future directions for research in this field are also explored. PMID:26736022</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97a2404N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97a2404N"><span>Shear thinning and shear thickening of a confined suspension of vesicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.</p> <p>2018-01-01</p> <p>Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4966561','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4966561"><span>Computational tool for the early screening of monoclonal antibodies for their viscosities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Agrawal, Neeraj J; Helk, Bernhard; Kumar, Sandeep; Mody, Neil; Sathish, Hasige A.; Samra, Hardeep S.; Buck, Patrick M; Li, Li; Trout, Bernhardt L</p> <p>2016-01-01</p> <p>Highly concentrated antibody solutions often exhibit high viscosities, which present a number of challenges for antibody-drug development, manufacturing and administration. The antibody sequence is a key determinant for high viscosity of highly concentrated solutions; therefore, a sequence- or structure-based tool that can identify highly viscous antibodies from their sequence would be effective in ensuring that only antibodies with low viscosity progress to the development phase. Here, we present a spatial charge map (SCM) tool that can accurately identify highly viscous antibodies from their sequence alone (using homology modeling to determine the 3-dimensional structures). The SCM tool has been extensively validated at 3 different organizations, and has proved successful in correctly identifying highly viscous antibodies. As a quantitative tool, SCM is amenable to high-throughput automated analysis, and can be effectively implemented during the antibody screening or engineering phase for the selection of low-viscosity antibodies. PMID:26399600</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDR39005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDR39005S"><span>Vortex lattices and defect-mediated viscosity reduction in active liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Slomka, Jonasz; Dunkel, Jorn</p> <p>2016-11-01</p> <p>Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..281a2047Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..281a2047Z"><span>Thermodynamic Simulation of Viscosity of TiO2-Ti2O3-CaO Ternary Slag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, P.; Ma, W. H.; Zhang, S. J.; Lei, Y.; Wen, J. H.</p> <p>2017-12-01</p> <p>The viscosity of high titanium slag at high temperature is one of the key factors of slag-iron separation. Based on the Einstein-Roscoe equation, thermodynamic simulation of viscosity of TiO2-Ti2O3-CaO ternary slag is studied by using FactSage® software, and the effects of temperature, CaO content and solid-phase particles on the viscosity of slag were studied. The results show that the increase of CaO content has the effect of reducing melting temperature and viscosity of TiO2-Ti2O3-CaO ternary slag. After the TiO2-Ti2O3-CaO ternary slag is completely melted, the increase of temperature has little effect on viscosity of slag, and the viscosity is about 110~125mPa·s. When the temperature is lower than melting temperature, TiO2-Ti2O3-CaO ternary slag will precipitate solid-phase particles, and the precipitation process is carried out in stages, and with the decrease of temperature, the precipitation will increase and the viscosity will sharply increase. TiO2-Ti2O3-CaO ternary titanium slag has obvious characteristics of short slag.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1041469-solvent-viscosity-mismatch-between-solute-plug-mobile-phase-considerations-applications-two-dimensional-hplc','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1041469-solvent-viscosity-mismatch-between-solute-plug-mobile-phase-considerations-applications-two-dimensional-hplc"><span>Solvent viscosity mismatch between the solute plug and the mobile phase: Considerations in the applications of two-dimensional HPLC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shalliker, R. Andrew; Guiochon, Georges A</p> <p></p> <p>Understanding the nature of viscosity contrast induced flow instabilities is an important aspect in the design of two-dimensional HPLC separations. When the viscosity contrast between the sample plug and the mobile phase is sufficiently large, the phenomenon known as viscous fingering can be induced. Viscous fingering is a flow instability phenomenon that occurs at the interface between two fluids with different viscosities. In liquid chromatography, viscous fingering results in the solute band undergoing a change in form as it enters into the chromatography column. Moreover, even in the absence of viscous fingering, band shapes change shape at low viscosity contrasts.more » These changes can result in a noticeable change in separation performance, with the result depending on whether the solvent pushing the solute plug has a higher or lower viscosity than the solute plug. These viscosity induced changes become more important as the solute injection volume increases and hence understanding the process becomes critical in the implementation of multidimensional HPLC techniques, since in these techniques the sample injection plug into the second dimension is an order of magnitude greater than in one-dimensional HPLC. This review article assesses the current understanding of the viscosity contrast induced processes as they relate to liquid chromatographic separation behaviour.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489855','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5489855"><span>Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Idris, Alamin; Man, Zakaria; Maulud, Abdulhalim S.; Khan, Muhammad Saad</p> <p>2017-01-01</p> <p>The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications. PMID:28379173</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17970600','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17970600"><span>Amino acid ionic liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ohno, Hiroyuki; Fukumoto, Kenta</p> <p>2007-11-01</p> <p>The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApPhL.102c3701T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApPhL.102c3701T"><span>Probing viscosity of nanoliter droplets of butterfly saliva by magnetic rotational spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tokarev, Alexander; Kaufman, Bethany; Gu, Yu; Andrukh, Taras; Adler, Peter H.; Kornev, Konstantin G.</p> <p>2013-01-01</p> <p>Magnetic rotational spectroscopy was employed for rheological analysis of nanoliter droplets of butterfly saliva. Saliva viscosity of butterflies is 4-5 times greater than that of water and similar to that of 30%-40% sucrose solutions at 25 °C. Hence, viscosity stratification would not be expected when butterflies feed on nectar with 30%-40% sugar concentrations. We did not observe any viscoelastic effects or non-Newtonian behavior of saliva droplets. Thus, butterfly saliva is significantly different rheologically from that of humans, which demonstrates a viscoelastic behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOM...tmp..211S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOM...tmp..211S"><span>A Water Model Study on Mixing Behavior of the Two-Layered Bath in Bottom Blown Copper Smelting Furnace</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Jiang, Xu; Chen, Mao; Xiang, Yong; Zhao, Baojun</p> <p>2018-05-01</p> <p>The bottom-blown copper smelting furnace is a novel copper smelter developed in recent years. Many advantages of this furnace have been found, related to bath mixing behavior under its specific gas injection scheme. This study aims to use an oil-water double-phased laboratory-scale model to investigate the impact of industry-adjustable variables on bath mixing time, including lower layer thickness, gas flow rate, upper layer thickness and upper layer viscosity. Based on experimental results, an overall empirical relationship of mixing time in terms of these variables has been correlated, which provides the methodology for industry to optimize mass transfer in the furnace.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4547336','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4547336"><span>Two-Point Microrheology of Phase-Separated Domains in Lipid Bilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hormel, Tristan T.; Reyer, Matthew A.; Parthasarathy, Raghuveer</p> <p>2015-01-01</p> <p>Though the importance of membrane fluidity for cellular function has been well established for decades, methods for measuring lipid bilayer viscosity remain challenging to devise and implement. Recently, approaches based on characterizing the Brownian dynamics of individual tracers such as colloidal particles or lipid domains have provided insights into bilayer viscosity. For fluids in general, however, methods based on single-particle trajectories provide a limited view of hydrodynamic response. The technique of two-point microrheology, in which correlations between the Brownian dynamics of pairs of tracers report on the properties of the intervening medium, characterizes viscosity at length-scales that are larger than that of individual tracers and has less sensitivity to tracer-induced distortions, but has never been applied to lipid membranes. We present, to our knowledge, the first two-point microrheological study of lipid bilayers, examining the correlated motion of domains in phase-separated lipid vesicles and comparing one- and two-point results. We measure two-point correlation functions in excellent agreement with the forms predicted by two-dimensional hydrodynamic models, analysis of which reveals a viscosity intermediate between those of the two lipid phases, indicative of global fluid properties rather than the viscosity of the local neighborhood of the tracer. PMID:26287625</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HMT....54..651B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HMT....54..651B"><span>Study of high viscous multiphase phase flow in a horizontal pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baba, Yahaya D.; Aliyu, Aliyu M.; Archibong, Archibong-Eso; Almabrok, Almabrok A.; Igbafe, A. I.</p> <p>2018-03-01</p> <p>Heavy oil accounts for a major portion of the world's total oil reserves. Its production and transportation through pipelines is beset with great challenges due to its highly viscous nature. This paper studies the effects of high viscosity on heavy oil two-phase flow characteristics such as pressure gradient, liquid holdup, slug liquid holdup, slug frequency and slug liquid holdup using an advanced instrumentation (i.e. Electrical Capacitance Tomography). Experiments were conducted in a horizontal flow loop with a pipe internal diameter (ID) of 0.0762 m; larger than most reported in the open literature for heavy oil flow. Mineral oil of 1.0-5.0 Pa.s viscosity range and compressed air were used as the liquid and gas phases respectively. Pressure gradient (measured by means differential pressure transducers) and mean liquid holdup was observed to increase as viscosity of oil is increased. Obtained results also revealed that increase in liquid viscosity has significant effects on flow pattern and slug flow features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4329548','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4329548"><span>Thickness Dependent Effective Viscosity of a Polymer Solution near an Interface Probed by a Quartz Crystal Microbalance with Dissipation Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fang, Jiajie; Zhu, Tao; Sheng, Jie; Jiang, Zhongying; Ma, Yuqiang</p> <p>2015-01-01</p> <p>The solution viscosity near an interface, which affects the solution behavior and the molecular dynamics in the solution, differs from the bulk. This paper measured the effective viscosity of a dilute poly (ethylene glycol) (PEG) solution adjacent to a Au electrode using the quartz crystal microbalance with dissipation (QCM-D) technique. We evidenced that the effect of an adsorbed PEG layer can be ignored, and calculated the zero shear rate effective viscosity to remove attenuation of high shear frequency oscillations. By increasing the overtone n from 3 to 13, the thickness of the sensed polymer solution decreased from ~70 to 30 nm. The zero shear rate effective viscosity of the polymer solution and longest relaxation time of PEG chains within it decrease with increasing solution thickness. The change trends are independent of the relation between the apparent viscosity and shear frequency and the values of the involved parameter, suggesting that the polymer solution and polymer chains closer to a solid substrate have a greater effective viscosity and slower relaxation mode, respectively. This method can study the effect of an interface presence on behavior and phenomena relating to the effective viscosity of polymer solutions, including the dynamics of discrete polymer chains. PMID:25684747</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040046907','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040046907"><span>Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul</p> <p>2004-01-01</p> <p>The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.V31A0934N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.V31A0934N"><span>Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.</p> <p>2001-12-01</p> <p>The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6702272','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6702272"><span>Roles of additives and surface control in slurry atomization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tsai, S.C.</p> <p>1990-03-01</p> <p>This quarterly report describes a quantitative correlation between the flow behavior index of a micronized coal slurry and the interparticular van der Waals attraction force as measured by the Hamaker constant. Preliminary results on the effects of interparticular electrostatic repulsion and the liquid viscosity on both the flow behavior and the relative viscosity are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1167619-electrolyte-solvation-ionic-association-acetonitrile-lithium-bis-fluorosulfonyl-imide-lifsi-mixtures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1167619-electrolyte-solvation-ionic-association-acetonitrile-lithium-bis-fluorosulfonyl-imide-lifsi-mixtures"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Han, Sang D.; Borodin, Oleg; Seo, D. M.</p> <p></p> <p>Electrolytes with the salt lithium bis(fluorosulfonyl)imide (LiFSI) have been evaluated relative to comparable electrolytes with other lithium salts. Acetonitrile (AN) has been used as a model electrolyte solvent. The information obtained from the thermal phase behavior, solvation/ionic association interactions, quantum chemical (QC) calculations and molecular dynamics (MD) simulations (with an APPLE&P many-body polarizable force field for the LiFSI salt) of the (AN)n-LiFSI mixtures provides detailed insight into the coordination interactions of the FSI- anions and the wide variability noted in the electrolyte transport property (i.e., viscosity and ionic conductivity).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRB..120..962U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRB..120..962U"><span>Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urata, Yumi; Kuge, Keiko; Kase, Yuko</p> <p>2015-02-01</p> <p>Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8e6438L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8e6438L"><span>Static magnetism and thermal switching in randomly oriented L10 FePt thin films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lisfi, A.; Pokharel, S.; Alqarni, A.; Akioya, O.; Morgan, W.; Wuttig, M.</p> <p>2018-05-01</p> <p>Static magnetism and thermally activated magnetic relaxation were investigated in granular FePt films (20 nm-200 nm thick) with random magnetic anisotropy through hysteresis loop, torque curve and magnetization time dependence measurements. While the magnetism of thicker film (200 nm thick) is dominated by a single switching of the ordered L10 phase, thinner film (20 nm) displays a double switching, which is indicative of the presence of the disordered cubic phase. The pronounced behavior of double switching in thinner film suggests that the film grain boundary is composed of soft cubic magnetic phase. The magnetic relaxation study reveals that magnetic viscosity S of the films is strongly dependent on the external applied field and exhibits a maximum value (12 kAm) around the switching field and a vanishing behavior at low (1 kOe) and large (12 kOe) fields. The activation volume of the thermal switching was found to be much smaller than the physical volume of the granular structure due to the incoherent rotation mode of the magnetization reversal mechanism, which is established to be domain wall nucleation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.A9004C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.A9004C"><span>The First Normal Stress Difference in Waterborne Paints Thickened by Hydrophobically Ethoxylated Urethane (HEUR) Rheology Modifier: A Simplified Phase Diagram</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chatterjee, Tirtha; van Dyk, Antony; Ginzburg, Valeriy; Nakatani, Alan</p> <p></p> <p>Since their invention in the 1970s, hydrophobically ethoxylated urethane (HEUR) associative thickeners are widely used to modify the rheology of waterborne paints. While their flow curves (viscosity vs. shear rate) and microstructure have been studied extensively in recent years, there is surprisingly little information on the paint normal stress under application conditions. However, understanding of normal stress behavior is critical for many applications such as brush drag and spatter. In this work we will demonstrate that in HEUR-based paints the first normal stress difference (N1) is controlled by two factors: (a) adsorption of HEUR molecules on latex particles and (b) ability of non-adsorbed HEUR to form transient bridges between particles with HEUR shells. By controlling these two effects, one can design a paint formulation with targeted N1 behavior (positive or negative N1 under high shear). Finally, a simplified phase diagram will be presented connecting formulation composition-microstructure- and N1 behavior. The results would serve as guidelines to formulate paints to meet the specific customer needs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017KARJ...29....9C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017KARJ...29....9C"><span>Non-Newtonian behavior observed via dynamic rheology for various particle types in energetic materials and simulant composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Jong Han; Lee, Sangmook; Lee, Jae Wook</p> <p>2017-02-01</p> <p>The rheological properties of polymer composites highly filled with different filler materials were examined using a stress-controlled rheometer with a parallel-plate configuration, for particle characterization of the filler materials in plastic (polymer) bonded explosive (PBX). Ethylene vinyl acetate (EVA) with dioctyl adipate (DOA) was used as the matrix phase, which was shown to exhibit Newtonian-like behavior. The dispersed phase consisted of one of two energetic materials, i.e., explosive cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX), or a simulant (Dechlorane) in a bimodal size distribution. Before the test, preshearing was conducted to identify the initial condition of each sample. All examined filled polymer specimens exhibited yield stress and shear-thinning behavior over the investigated frequency range. The complex viscosity dependence on the dynamic oscillation frequency was also fitted using an appropriate rheological model, suggesting the model parameters. Furthermore, the temperature dependency of the different filler particle types was determined for different filler volume fractions. These comparative studies revealed the influence of the particle characteristics on the rheological properties of the filled polymer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JVGR..200...27H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JVGR..200...27H"><span>Viscosity characteristics of selected volcanic rock melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd</p> <p>2011-02-01</p> <p>A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IAM....53..361G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IAM....53..361G"><span>Effect of Liquid Viscosity on Dispersion of Quasi-Lamb Waves in an Elastic-Layer-Viscous-Liquid-Layer System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guz, A. N.; Bagno, A. M.</p> <p>2017-07-01</p> <p>The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97d2606P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97d2606P"><span>Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paul, Shuvojit; Kumar, Randhir; Banerjee, Ayan</p> <p>2018-04-01</p> <p>Two-point microrheology measurements from widely separated colloidal particles approach the bulk viscosity of the host medium more reliably than corresponding single-point measurements. In addition, active microrheology offers the advantage of enhanced signal to noise over passive techniques. Recently, we reported the observation of a motional resonance induced in a probe particle in dual-trap optical tweezers when the control particle was driven externally [Paul et al., Phys. Rev. E 96, 050102(R) (2017), 10.1103/PhysRevE.96.050102]. We now demonstrate that the amplitude and phase characteristics of the motional resonance can be used as a sensitive tool for active two-point microrheology to measure the viscosity of a viscous fluid. Thus, we measure the viscosity of viscous liquids from both the amplitude and phase response of the resonance, and demonstrate that the zero crossing of the phase response of the probe particle with respect to the external drive is superior compared to the amplitude response in measuring viscosity at large particle separations. We compare our viscosity measurements with those using a commercial rheometer and obtain an agreement ˜1 % . The method can be extended to viscoelastic material where the frequency dependence of the resonance may provide further accuracy for active microrheological measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JBO....14b4013L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JBO....14b4013L"><span>Noninvasive determination of cell nucleoplasmic viscosity by fluorescence correlation spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Lifang; Wang, Xichao; Xing, Da; Chen, Tongsheng; Chen, Wei R.</p> <p>2009-03-01</p> <p>Noninvasive and reliable quantification of rheological characteristics in the nucleus is extremely useful for fundamental research and practical applications in medicine and biology. This study examines the use of fluorescence correlation spectroscopy (FCS) to noninvasively determine nucleoplasmic viscosity (ɛnu), an important parameter of nucleoplasmic rheology. Our FCS analyses show that ɛnu of lung adenocarcinoma (ASTC-a-1) and HeLa cells are 1.77+/-0.42 cP and 1.40+/-0.27 cP, respectively, about three to four times larger than the water viscosity at 37 °C. ɛnu was reduced by 31 to 36% upon hypotonic exposure and increased by 28 to 52% from 37 to 24 °C. In addition, we found that ɛnu of HeLa cells reached the lowest value in the S phase and that there was no significant difference of ɛnu between in the G1 and G2 phases. Last, nucleoplasmic viscosity was found to be larger than cytoplasmic viscosity in both HeLa and ASTC-a-1 cells. These results indicate that FCS can be used as a noninvasive tool to investigate the microenvironment of living cells. This is the first report on the measurement of ɛnu in living cells synchronized in the G1, S, and G2 phases.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7230630-roles-additives-surface-control-slurry-atomization','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7230630-roles-additives-surface-control-slurry-atomization"><span>Roles of additives and surface control in slurry atomization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tsai, S.C.</p> <p>1990-03-01</p> <p>This quartery report describes a quantitative correlation between the flow behavior index of a micronized coal slurry and the interparticular van der Waals attraction force a measured by the Hamaker constant. Preliminary results on the effects of interparticular electrostatic repulsion and the liquid viscosity on both the flow behavior and the relative viscosity are also presented. 4 refs., 2 figs., 1 tab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10138613','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10138613"><span>Roles of additives and surface control in slurry atomization. Quarterly report, April 5, 1990</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tsai, S.C.</p> <p>1990-03-01</p> <p>This quarterly report describes a quantitative correlation between the flow behavior index of a micronized coal slurry and the interparticular van der Waals attraction force as measured by the Hamaker constant. Preliminary results on the effects of interparticular electrostatic repulsion and the liquid viscosity on both the flow behavior and the relative viscosity are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840021085','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840021085"><span>Flow properties of concentrated suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hattori, K.; Izumi, K.</p> <p>1984-01-01</p> <p>The viscosity and flow behavior of a concentrated suspension, with special emphasis on fresh concrete containing a superplasticizer, is analyzed according to Newton's law of viscosity. The authors interpreted Newton's law in a new way, and explain non-Newton flow from Newton's law. The outline of this new theory is given. Viscosity of suspensions, and the effect of dispersants are analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJC...77..136S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJC...77..136S"><span>Stability of the accelerated expansion in nonlinear electrodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharif, M.; Mumtaz, Saadia</p> <p>2017-02-01</p> <p>This paper is devoted to the phase space analysis of an isotropic and homogeneous model of the universe by taking a noninteracting mixture of the electromagnetic and viscous radiating fluids whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. We establish an autonomous system of equations by introducing normalized dimensionless variables. In order to analyze the stability of the system, we find corresponding critical points for different values of the parameters. We also evaluate the power-law scale factor whose behavior indicates different phases of the universe in this model. It is concluded that the bulk viscosity as well as electromagnetic field enhances the stability of the accelerated expansion of the isotropic and homogeneous model of the universe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121v4504A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121v4504A"><span>Understanding the importance of the temperature dependence of viscosity on the crystallization dynamics in the Ge2Sb2Te5 phase-change material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aladool, A.; Aziz, M. M.; Wright, C. D.</p> <p>2017-06-01</p> <p>The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4440716','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4440716"><span>Solubilization of Tea Seed Oil in a Food-Grade Water-Dilutable Microemulsion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui</p> <p>2015-01-01</p> <p>Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40–45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line. PMID:25996147</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25996147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25996147"><span>Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Lingli; Que, Fei; Wei, Hewen; Xu, Guangwei; Dong, Xiaowei; Zhang, Hui</p> <p>2015-01-01</p> <p>Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.). The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w) as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil) could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase (< 35% water) to the bicontinuous phase (40-45% water) and finally to the oil-in-water phase (> 45% water) along the dilution line.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..MARP41010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..MARP41010S"><span>Nonlinear electrohydrodynamics of a viscous droplet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salipante, Paul; Vlahovska, Petia</p> <p>2012-02-01</p> <p>A classic result due to G.I.Taylor is that a drop placed in a uniform electric field adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. We report an instability and transition to a nonaxisymmetric rotational flow in strong fields, similar to the rotation of solid dielectric spheres observed by Quincke in the 19th century. Our experiments reveal novel droplet behaviors such as tumbling, oscillations and chaotic dynamics even under creeping flow conditions. A phase diagram demonstrates the dependence of these behaviors on drop size, viscosity ratio and electric field strength. The theoretical model, which includes anisotropy in the polarization relaxation, elucidates the interplay of interface deformation and charging as the source of the rich nonlinear dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFDD33009H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFDD33009H"><span>Electrowetting-driven spreading and jumping of drops in oil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, Jiwoo; Lee, Sang Joon</p> <p>2013-11-01</p> <p>Electrowetting-based practical applications include digital microfluidics, liquid lenses, and reflective displays. Most of them are performed in water/oil system, because oil medium reduces the contact-angle hysteresis and prevents drop evaporation. In this study, the effects of drop volume, oil viscosity, and applied voltage on the dynamic behaviors of spreading drops, such as transition of spreading pattern and response time, are investigated. Interestingly, jumping phenomena of drops are observed in oil when the applied voltage is turned off after reaching the electrowetted equilibrium radius of drops. A numerical model to predict the transient behavior of jumping drops is formulated based on the phase-field method. The numerical results for the transient deformation of jumping drops show quantitative agreement with the experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..347a2032M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..347a2032M"><span>Composite fibres based on cellulose and vinyltriethoxysilane: preparation, properties and carbonization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Makarov, I. S.; Golova, L. K.; Mironova, M. V.; Vinogradov, M. I.; Kulichikhin, V. G.</p> <p>2018-04-01</p> <p>For the first time the composite fibers based on cellulose with additives of vinyltriethoxysilane (VTEOS) have been obtained. The choice of the additive was justified by the chemical structure of the VTEOS, namely the Si-C links content and the low C/O ratio. Composite fibers were prepared from solid phase pre-solutions of cellulose with VTEOS in N-methylmorpholine-N-oxide (NMMO). An investigation of the rheological behavior of the filled cellulose solutions with VTEOS showed a slight effect of the additive on the viscosity properties of the system. Introduction of 5% of VTEOS to cellulose does not lead to significant structural changes and, as a result, mechanical properties of the fibers. The thermal behavior of composite fibers differs from cellulose fibers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD15004T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD15004T"><span>Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali</p> <p>2017-11-01</p> <p>Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29i2106C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29i2106C"><span>Drop impact onto a thin film: Miscibility effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Ningli; Chen, H.; Amirfazli, A.</p> <p>2017-09-01</p> <p>In this work a systematic experimental study was performed to understand the process of liquid drop impact onto a thin film made of a different liquid from drop. The drop and film liquids can be miscible or immiscible. Three general outcomes of deposition, crown formation without splashing, and splashing, were observed in the advancing phase of the drop impact onto a solid surface covered by either a miscible or an immiscible thin film. However, for a miscible film, a larger Weber number and film thickness are needed for the formation of a crown and splashing comparing with immiscible cases. The advancing phase of drop impact onto a thin immiscible film with a large viscosity is similar to that of drop impact onto a dry surface; for a miscible film viscous film, the behavior is far from that of a dry surface. The behavior of liquid lamella in the receding phase of drop impact onto a thin miscible film is reported for the first time. The results show that immiscibility is not a necessary condition for the existence of a receding phase. The existence of a receding phase is highly dependent on the interfacial tension between the drop and the film. The miscibility can significantly affect the receding morphology as it will cause mixing of the two liquids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990RaPC...36..613H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990RaPC...36..613H"><span>Investigations on the detection of irradiated food by measuring the viscosity of suspended spices and dried vegetables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heide, L.; Nürnberger, E.; Bögl, K. W.</p> <p></p> <p>Studies on the viscosity behavior were performed with 20 different spices or dried vegetables. In nine spices (cinnamon, ginger, mustard seed, celery, onions, shallots, lemon peel, black and white pepper) differences between unirradiated and irradiated samples were observed. Further lots were investigated to estimate the variations of viscosity depending on the origin of the samples. Additional storage experiments showed that measuring the viscosity may be a simple method to identify some radiation treated spices even after years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18518048','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18518048"><span>AsS melt under pressure: one substance, three liquids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brazhkin, V V; Katayama, Y; Kondrin, M V; Hattori, T; Lyapin, A G; Saitoh, H</p> <p>2008-04-11</p> <p>An in situ high-temperature--high-pressure study of liquid chalcogenide AsS by x-ray diffraction, resistivity measurements, and quenching from melt is presented. The obtained data provide direct evidence for the existence in the melt under compression of two transformations: one is from a moderate-viscosity molecular liquid to a high-viscosity nonmetallic polymerized liquid at P approximately 1.6-2.2 GPa; the other is from the latter to a low-viscosity metallic liquid at P approximately 4.6-4.8 GPa. Upon rapid cooling, molecular and metallic liquids crystallize to normal and high-pressure phases, respectively, while a polymerized liquid is easily quenched to a new AsS glass. General aspects of multiple phase transitions in liquid AsS, including relations to the phase diagram of the respective crystalline, are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvB..96s5128D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvB..96s5128D"><span>Theory of hydrodynamic transport in fluctuating electronic charge density wave states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delacrétaz, Luca V.; Goutéraux, Blaise; Hartnoll, Sean A.; Karlsson, Anna</p> <p>2017-11-01</p> <p>We describe the collective hydrodynamic motion of an incommensurate charge density wave state in a clean electronic system. Our description simultaneously incorporates the effects of both pinning due to weak disorder and also phase relaxation due to proliferating dislocations. We show that the interplay between these two phenomena has important consequences for charge and momentum transport. For instance, it can lead to metal-insulator transitions. We furthermore identify signatures of fluctuating density waves in frequency and spatially resolved conductivities. Phase disordering is well known to lead to a large viscosity. We derive a precise formula for the phase relaxation rate in terms of the viscosity in the dislocation cores. We thereby determine the viscosity of the superconducting state of BSCCO from the observed melting dynamics of Abrikosov lattices and show that the result is consistent with dissipation into Bogoliubov quasiparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JVGR..181...78I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JVGR..181...78I"><span>Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishibashi, Hidemi</p> <p>2009-03-01</p> <p>Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750045688&hterms=Rein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DRein','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750045688&hterms=Rein&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DRein"><span>Measurement of viscosity and elasticity of lubricants at high pressures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rein, R. G., Jr.; Charng, T. T.; Sliepcevich, C. M.; Ewbank, W. J.</p> <p>1975-01-01</p> <p>The oscillating quartz crystal viscometer has been used to investigate possible viscoelastic behavior in synthetic lubricating fluids and to obtain viscosity-pressure-temperature data for these fluids at temperatures to 300 F and pressures to 40,000 psig. The effect of pressure and temperature on the density of the test fluids was measured concurrently with the viscosity measurements. Viscoelastic behavior of one fluid, di-(2-ethylhexyl) sebacate, was observed over a range of pressures. These data were used to compute the reduced shear elastic (storage) modulus and reduced loss modulus for this fluid at atmospheric pressure and 100 F as functions of reduced frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013HPR....33..178M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013HPR....33..178M"><span>Viscosity and compressibility of diacylglycerol under high pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.</p> <p>2013-03-01</p> <p>The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003APS..DFD.KQ002S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003APS..DFD.KQ002S"><span>A Model for Displacements Between Parallel Plates That Shows Change of Type from Hyperbolic to Elliptic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique</p> <p>2003-11-01</p> <p>We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PNAS..114.8740R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PNAS..114.8740R"><span>Localized stress fluctuations drive shear thickening in dense suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rathee, Vikram; Blair, Daniel L.; Urbach, Jeffrey S.</p> <p>2017-08-01</p> <p>Dense particulate suspensions exhibit a dramatic increase in average viscosity above a critical, material-dependent shear stress. This thickening changes from continuous to discontinuous as the concentration is increased. Using direct measurements of spatially resolved surface stresses in the continuous thickening regime, we report the existence of clearly defined dynamic localized regions of substantially increased stress that appear intermittently at stresses above the critical stress. With increasing applied stress, these regions occupy an increasing fraction of the system, and the increase accounts quantitatively for the observed shear thickening. The regions represent high-viscosity fluid phases, with a size determined by the distance between the shearing surfaces and a viscosity that is nearly independent of shear rate but that increases rapidly with concentration. Thus, we find that continuous shear thickening arises from increasingly frequent localized discontinuous transitions between distinct fluid phases with widely differing viscosities.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017KARJ...29...59Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017KARJ...29...59Q"><span>Conformations of gelatin in trivalent chromium salt solutions: Viscosity and dynamic light scattering study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qiao, Congde; Zhang, Jianlong; Kong, Aiqun</p> <p>2017-02-01</p> <p>An investigation of the influences of pH, salt type, and salt concentration on the conformations of gelatin molecules in trivalent chromium salt solutions was performed by viscosity and dynamic light scattering (DLS) techniques. It was found that the viscosity behaviors as polyelectrolytes or polyampholytes depended on the charge distribution on the gelatin chains, which can be tuned by the value of pH of the gelatin solution. The intrinsic viscosity of gelatin in basic chromium sulfate aqueous solution at pH = 2.0 first decreased and then increased with increasing Cr(OH)SO4 concentration, while a monotonic decrease of the intrinsic viscosity of gelatin was observed in CrCl3 solution. However, the intrinsic viscosity of gelatin at pH = 5.0 was found to be increased first and then decreased with an increase in salt concentration in Cr(OH)SO4 solution, as well as in CrCl3 solution. We suggested that the observed viscosity behavior of gelatin in trivalent chromium salt solutions was attributed to the comprehensive effects of shielding, overcharging, and crosslinking (complexation) caused by the introduction of the different counterions. In addition, the average hydrodynamic radius ( R h ) of gelatin molecules in various salt solutions was determined by DLS. It was found that the change trend of R h with salt concentration was the same as the change of intrinsic viscosity. Based on the results of the viscosity and DLS, a possible mechanism for the conformational transition of gelatin chains with external conditions including pH, salt concentration, and salt type is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA281070','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA281070"><span>Synthetic/Biosynthetic Phase Transfer Polymers for Pollution Minimization, Remediation, and Waste Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-01-01</p> <p>in the viscosity profile is observed. DAMAB induces strong intermolecular associations via hydrophobic interactions . When copolymers of comparable...techniques such as viscosity studies. The AM/DAMAB copolymer series also interacts with surfactants in an interesting manner.’ The surface tension of...in polymer dimensions as hydrophobe is added. The shape of the viscosity curves does not suggest intermolecular interactions , as in typical</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26775991','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26775991"><span>Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palmero, Paola; Panozzo, Agnese; Colle, Ines; Chigwedere, Claire; Hendrickx, Marc; Van Loey, Ann</p> <p>2016-05-15</p> <p>A specific approach to investigate the effect of high pressure homogenization on the carotenoid bioaccessibility in tomato-based products was developed. Six different tomato-based model systems were reconstituted in order to target the specific role of the natural structural barriers (chromoplast substructure/cell wall) and of the phases (soluble/insoluble) in determining the carotenoid bioaccessibility and viscosity changes upon high pressure homogenization. Results indicated that in the absence of natural structural barriers (carotenoid enriched oil), the soluble and insoluble phases determined the carotenoid bioaccessibility upon processing whereas, in their presence, these barriers governed the bioaccessibility. Furthermore, it was shown that the increment of the viscosity upon high pressure homogenization is determined by the presence of insoluble phase, however, this result was related to the initial ratio of the soluble:insoluble phases in the system. In addition, no relationship between the changes in viscosity and carotenoid bioaccessibility upon high pressure homogenization was found. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97f2603C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97f2603C"><span>Effect of interactions between multiple interfaces on the rheological characteristics of double emulsions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Se Bin; Park, Jae Yong; Moon, Ji Young; Lee, Joon Sang</p> <p>2018-06-01</p> <p>In this study, we analyzed the rheological characteristics of double emulsions by using a three-dimensional lattice Boltzmann model. Numerical simulations indicate that interactions between multiple interfaces play a vital role in determining the shear stress on interfaces and affect deformations, which influence the relative viscosity of double emulsions. The large shear stress induced by droplets in contact increases the relative viscosity for high volume fractions. The double emulsions also show shear-thinning behavior, which corresponds with the Carreau model. The interfacial interference between the core and the deforming shell cause the relative viscosity to increase with increasing core-droplet radius. Finally, we investigated the dependence of the double-emulsion viscosity on the core-droplet viscosity. At high shear rates, the relative viscosity increases with increasing core-droplet viscosity. However, the trend is opposite at low shear rates, which results from the high inward flow (Marangoni flow) at low core-droplet viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvE..84d6715G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvE..84d6715G"><span>Phase separation in thermal systems: A lattice Boltzmann study and morphological characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Li, Hua</p> <p>2011-10-01</p> <p>We investigate thermal and isothermal symmetric liquid-vapor separations via a fast Fourier transform thermal lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed to characterize the density and velocity fields, as well as to understand the configurations and the kinetic processes. Compared with the isothermal phase separation, the freedom in temperature prolongs the spinodal decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system. After the transient procedure, both the thermal and isothermal separations show power-law scalings in domain growth, while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal case, the release of latent heat causes the changing of local temperature, which results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way: σ=σ0[(Tc-T)/(Tc-T0)]3/2, where Tc is the critical temperature and σ0 is the interfacial stress at a reference temperature T0, which is the main reason for the prolonged SD stage and the lower growth exponent in the thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the phase separating system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with the isothermal case, the local flow velocity depends not only on viscosity but also on temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1089273-investigation-stability-paraffin-exfoliated-graphite-nanoplatelet-composites-latent-heat-thermal-storage-systems','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1089273-investigation-stability-paraffin-exfoliated-graphite-nanoplatelet-composites-latent-heat-thermal-storage-systems"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Abdelaziz, Omar; Mallow, Anne; Graham, Samuel</p> <p></p> <p>Organic materials, such as paraffin wax, are sought as stable and environmentally friendly phase change materials (PCM) for thermal energy storage, but they suffer from low thermal conductivity which limits the rate at which thermal energy flows into and out of the material. A common method to improve the PCM thermal behavior is through loading with high thermal conductivity particulate fillers. However, the stability of these composites in the molten state is a concern as settling of the fillers will change the effective thermal conductivity. In this work, we investigate the stability of wax loaded with exfoliated graphite nanoplatelets eithermore » of 1 m (xGnP-1) or 15 m (xGnP-15) diameter. The effect of dispersants, oxidation of the wax, viscosity of the wax, mixing time, and hydrocarbon chain length on stability is reported. It was found that the addition of octadecylphosphonic acid (ODPA) is an effective dispersant for xGnP in paraffin and microcrystalline wax. In addition, mixing time, viscosity, and oxidation of the wax influence stability in the molten state. Overall, it was found that a mixing time of 24 hours for xGnP-15 along with ODPA mixed in a high viscosity, oxidized microcrystalline wax results in composite PCM systems with the greatest stability determined at 80 C in the molten state.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.790a2028R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.790a2028R"><span>Rheological characterization of modified foodstuffs with food grade thickening agents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reyes-Ocampo, I.; Aguayo-Vallejo, JP; Ascanio, G.; Córdova-Aguilar, MS</p> <p>2017-01-01</p> <p>This work describes a rheological characterization in terms of shear and extensional properties of whole milk, modified with food grade thickening agents (xanthan and carboxymethyl cellulose) with the purpose of being utilized in dysphagia treatment. Shear viscosity of the thickened fluids (2% wt. of xanthan and CMC) were measured in a stress-controlled rheometer and for extensional viscosity, a custom-built orifice flowmeter was used, with elongation rates from 20 to 3000 s-1. Such elongation-rate values represent the entire swallowing process, including the pharyngeal and esophageal phases. The steady-state shear and extensional flow curves were compared with the flow curve of a pudding consistency BaSO4 suspension (α=05), typically used as a reference fluid for the specialized commercial dysphagia products. The modified fluids presented non-Newtonian behavior in both, shear and extensional flows, and the comparison with the reference fluid show that the thickened milk prepared here, can be safely used for consumption by patients with severe dysphagia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24752231','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24752231"><span>Deformation and dynamics of red blood cells in flow through cylindrical microchannels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fedosov, Dmitry A; Peltomäki, Matti; Gompper, Gerhard</p> <p>2014-06-28</p> <p>The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance and in the cell partitioning within a microvascular network. Different shapes and dynamics of RBCs in microvessels have been previously observed experimentally including the parachute and slipper shapes. We employ mesoscale hydrodynamic simulations to predict the phase diagram of shapes and dynamics of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a wide range of channel confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes, slippers performing a swinging motion, and stationary parachutes. We discuss the effects of different RBC states on the flow resistance, and the influence of RBC properties, characterized by the Föppl-von Kármán number, on the shape diagram. The simulations are performed using the same viscosity for both external and internal fluids surrounding a RBC; however, we discuss how the viscosity contrast would affect the shape diagram.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27781216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27781216"><span>Dynamic viscosity mapping of the oxidation of squalene aerosol particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Athanasiadis, Athanasios; Fitzgerald, Clare; Davidson, Nicholas M; Giorio, Chiara; Botchway, Stanley W; Ward, Andrew D; Kalberer, Markus; Pope, Francis D; Kuimova, Marina K</p> <p>2016-11-09</p> <p>Organic aerosols (OAs) play important roles in multiple atmospheric processes, including climate change, and can impact human health. The physico-chemical properties of OAs are important for all these processes and can evolve through reactions with various atmospheric components, including oxidants. The dynamic nature of these reactions makes it challenging to obtain a true representation of their composition and surface chemistry. Here we investigate the microscopic viscosity of the model OA composed of squalene, undergoing chemical aging. We employ Fluorescent Lifetime Imaging Microscopy (FLIM) in conjunction with viscosity sensitive probes termed molecular rotors, in order to image the changes in microviscosity in real time during oxidation with ozone and hydroxyl radicals, which are two key oxidising species in the troposphere. We also recorded the Raman spectra of the levitated particles to follow the reactivity during particle ozonolysis. The levitation of droplets was achieved via optical trapping that enabled simultaneous levitation and measurement via FLIM or Raman spectroscopy and allowed the true aerosol phase to be probed. Our data revealed a very significant increase in viscosity of the levitated squalene droplets upon ozonolysis, following their transformation from the liquid to solid phase that was not observable when the oxidation was carried out on coverslip mounted droplets. FLIM imaging with sub-micron spatial resolution also revealed spatial heterogeneity in the viscosity distribution of oxidised droplets. Overall, a combination of molecular rotors, FLIM and optical trapping is able to provide powerful insights into OA chemistry and the microscopic structure that enables the dynamic monitoring of microscopic viscosity in aerosol particles in their true phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/460732-viscosity-saturated-liquid-phase-three-fluorinated-ethanes-r152a-r143a-r125','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/460732-viscosity-saturated-liquid-phase-three-fluorinated-ethanes-r152a-r143a-r125"><span>Viscosity of the saturated liquid phase of three fluorinated ethanes: R152a, R143a, and R125</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ripple, D.; Defibaugh, D.</p> <p>1997-03-01</p> <p>Data are reported for the viscosity of three saturated liquids over a temperature range from 255 K to 323 K. The liquids studied are the fluorinated compounds 1,1-difluoroethane (R152a), 1,1,1-trifluoroethane (R143a), and pentafluoroethane (R125). A capillary viscometer constructed of stainless steel and sapphire was used to obtain the data. The viscosity measurements have an expanded uncertainty of 2.4%. A free volume model of viscosity was used to correlate the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJT....39...68N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJT....39...68N"><span>Viscosity of Industrially Important Zn-Al Alloys Part II: Alloys with Higher Contents of Al and Si</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nunes, V. M. B.; Queirós, C. S. G. P.; Lourenço, M. J. V.; Santos, F. J. V.; Nieto de Castro, C. A.</p> <p>2018-05-01</p> <p>The viscosity of Zn-Al alloys melts, with industrial interest, was measured for temperatures between 693 K and 915 K, with an oscillating cup viscometer, and estimated expanded uncertainties between 3 and 5 %, depending on the alloy. The influence of minor components, such as Si, Mg and Ce + La, on the viscosity of the alloys is discussed. An increase in the amount of Mg triggers complex melt/solidification processes while the addition of Ce and La renders alloys viscosity almost temperature independent. Furthermore, increases in Al and Si contents decrease melts viscosity and lead to an Arrhenius type behavior. This paper complements a previous study describing the viscosity of Zn-Al alloys with quasi-eutectic compositions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MARF12010J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MARF12010J"><span>Investigation of ciliary propulsion of Tetrahymena Pyriformis in viscous solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jung, Ilyong; Lyubich, Eva; Valles, James</p> <p>2014-03-01</p> <p>Recent experiments by our group showed that the ciliated protist Paramecium Caudatumswims with a constant propulsive force in solutions with viscosities 1 < η/ ηw<7 where ηw is the viscosity of water. Measurements of the geometry of its helical swimming trajectory combined with high speed video of the ciliary motion provided insight into this behavior. Using a phenomenological model we found that the body cilia beating frequency decreases while the beating angle remains roughly constant to produce the constant propulsive force dependence on viscosity. In this talk, we present studies of another ciliated protozoa, Tetrahymena Pyriformis to determine whether the behavior of Paramecium is general. Preliminary results indicate that Tetrahymena Pyriformis also swims with a nearly constant propulsive force with increasing viscosity. Investigations similar to those performed on Paramecium are underway and the latest results will be presented. This work was supported by NSF PHY0750360 and at the NHMFL by NSF DMR-0084173</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SMaS...27g5001R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SMaS...27g5001R"><span>The electrorheological performance of polyaniline-based hybrid particles suspensions in silicone oil: influence of the dispersing medium viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roman, C.; García-Morales, M.; Goswami, S.; Marques, A. C.; Cidade, M. T.</p> <p>2018-07-01</p> <p>The potential of electrorheological (ER) suspensions based on polarizable particles in simple liquids relies on the particles arrangements which turn their quasi Newtonian behavior into gel-like. However, minor attention has been paid to the effect provoked by the liquid viscosity on the ease of orientation and assembly of the particles. With this aim, a study on the ER behavior, at 25 °C, of 1 wt% suspensions of polyaniline (PANI)-based hybrid particles (—graphene or —tungstene oxide) in silicone oil with varying viscosities (20, 50 and 100 cSt) was carried out. The electric field effect was higher for the PANI-graphene particles suspension in the less viscous silicone oil. However, two drawbacks were observed: (a) higher leakage current flows; and (b) reduced reversibility upon the electric field was turned off. The use of silicone oil with higher viscosity solved these issues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.L5002Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.L5002Q"><span>Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qu, Zijie; Temel, Fatma; Henderikx, Rene; Breuer, Kenneth</p> <p>2017-11-01</p> <p>The motility of bacteria E.coli in viscous fluids has been widely studied, although conflicting results on the effect of viscosity on swimming speed abound. The swimming mode of wild-type E.coli is idealized as a run-and-tumble sequence in which periods of straight swimming at a constant speed are randomly interrupted by a tumble, defined as a sudden change of direction with a very low speed. Using a tracking microscope, we follow cells for extended time and find that the swimming behavior of a single cell can exhibit a variety of behaviors including run-and-tumble and ``slow-random-walk'' in which the cells move at relatively low speed without the characteristic run. Although the characteristic swimming speed varies between individuals and in different polymer solutions, we find that the skewness of the speed distribution is solely a function of viscosity, and uniquely determines the ratio of the average speed to the characteristic run speed. Using Resistive Force Theory and the cell-specific measured characteristic run speed, we show that differences in the swimming behavior observed in solutions of different viscosity are due to changes in the flagellar bundling time, which increases as the viscosity rises, due to lower rotation rate of the flagellar motor. National Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFD.M4009G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFD.M4009G"><span>Hydrodynamic effects on phase transition in active matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gidituri, Harinadha; Akella, V. S.; Panchagnula, Mahesh; Vedantam, Srikanth; Multiphase flow physics lab Team</p> <p>2017-11-01</p> <p>Organized motion of active (self-propelled) objects are ubiquitous in nature. The objective of this study to investigate the effect of hydrodynamics on the coherent structures in active and passive particle mixtures. We use a mesoscopic method Dissipative Particle Dynamics (DPD). The system shows three different states viz. meso-turbulent (disordered state), polar flock and vortical (ordered state) for different values of activity and volume fraction of active particles. From our numerical simulations we construct a phase diagram between activity co-efficient, volume fraction and viscosity of the passive fluid. Transition from vortical to polar is triggered by increasing the viscosity of passive fluid which causes strong short-range hydrodynamic interactions. However, as the viscosity of the fluid decreases, both vortical and meso-turbulent states transition to polar flock phase. We also calculated the diffusion co-efficients via mean square displacement (MSD) for passive and active particles. We observe ballistic and diffusive regimes in the present system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/963981','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/963981"><span>Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lawler, Katherine</p> <p>2009-01-01</p> <p>The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions canmore » be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1060647-rheological-behavior-xanthan-gum-solution-related-shear-thinning-fluid-delivery-subsurface-remediation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1060647-rheological-behavior-xanthan-gum-solution-related-shear-thinning-fluid-delivery-subsurface-remediation"><span>Rheological Behavior of Xanthan Gum Solution Related to Shear Thinning Fluid Delivery for Subsurface Remediation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhong, Lirong; Oostrom, Martinus; Truex, Michael J.</p> <p></p> <p>Xanthan gum, a biopolymer, forms shear thinning fluids which can be used as delivery media to improve the distribution of remedial amendments injected into heterogeneous subsurface environments. The rheological behavior of the shear thinning solution needs to be known to develop an appropriate design for field injection. In this study, the rheological properties of xanthan gum solutions were obtained under various chemical and environmental conditions relevant to delivery of remedial amendments to groundwater. Higher xanthan concentration raised the absolute solution viscosity and increased the degree of shear thinning. Addition of remedial amendments (e.g., phosphate, sodium lactate, ethyl lactate) caused themore » dynamic viscosity of xanthan gum to decrease, but the solutions maintained shear-thinning properties. Use of simple salt (e.g. Na+, Ca2+) to increase the solution ionic strength also decreased the dynamic viscosity of xanthan and the degree of shear thinning, although the effect is a function of xanthan gum concentration and diminished as the xanthan gum concentration was increased. At high xanthan concentration, addition of salt to the solution increased dynamic viscosity. In the absence of sediments, xanthan gum solutions maintain their viscosity properties for months. However, xanthan gum solutions were shown to lose dynamic viscosity over a period of days to weeks when contacted with saturated site sediment. Loss of viscosity is attributed to physical and biodegradation processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28512313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28512313"><span>A Rapid Capillary-Pressure Driven Micro-Channel to Demonstrate Newtonian Fluid Behavior of Zebrafish Blood at High Shear Rates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Juhyun; Chou, Tzu-Chieh; Kang, Dongyang; Kang, Hanul; Chen, Junjie; Baek, Kyung In; Wang, Wei; Ding, Yichen; Carlo, Dino Di; Tai, Yu-Chong; Hsiai, Tzung K</p> <p>2017-05-16</p> <p>Blood viscosity provides the rheological basis to elucidate shear stress underlying developmental cardiac mechanics and physiology. Zebrafish is a high throughput model for developmental biology, forward-genetics, and drug discovery. The micro-scale posed an experimental challenge to measure blood viscosity. To address this challenge, a microfluidic viscometer driven by surface tension was developed to reduce the sample volume required (3μL) for rapid (<2 min) and continuous viscosity measurement. By fitting the power-law fluid model to the travel distance of blood through the micro-channel as a function of time and channel configuration, the experimentally acquired blood viscosity was compared with a vacuum-driven capillary viscometer at high shear rates (>500 s -1 ), at which the power law exponent (n) of zebrafish blood was nearly 1 behaving as a Newtonian fluid. The measured values of whole blood from the micro-channel (4.17cP) and the vacuum method (4.22cP) at 500 s -1 were closely correlated at 27 °C. A calibration curve was established for viscosity as a function of hematocrits to predict a rise and fall in viscosity during embryonic development. Thus, our rapid capillary pressure-driven micro-channel revealed the Newtonian fluid behavior of zebrafish blood at high shear rates and the dynamic viscosity during development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27934523','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27934523"><span>Synergistic Growth of Giant Wormlike Micelles in Ternary Mixed Surfactant Solutions: Effect of Octanoic Acid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Georgieva, Gergana S; Anachkov, Svetoslav E; Lieberwirth, Ingo; Koynov, Kaloian; Kralchevsky, Peter A</p> <p>2016-12-06</p> <p>The synergistic growth of giant wormlike micelles in ternary mixed solutions composed of an anionic surfactant (sodium laurylethersulfate, SLES), a zwitterionic surfactant (cocamidopropyl betaine, CAPB), and octanoic acid (HC8) is studied. Rheological data and their analysis in terms of Cole-Cole plots and micellar characteristic times are presented, and the micellar structures behind the observed rheological behavior are revealed by cryo-TEM micrographs. The surfactant composition is fixed near the maximal micelle size of the binary SLES + CAPB system, whereas the concentration of HC8 is varied. At a given HC8 concentration, the viscosity of the ternary micellar solutions exhibits a very high and sharp peak. Polarized-light optical microscopy indicates that all investigated solutions are isotropic rather than liquid-crystalline. The cryo-TEM imaging shows complex phase behavior: wormlike micelles to the left of the peak, giant entangled wormlike micelles at the peak, and long wormlike micelles coexisting with multiconnected micellar aggregates to the right of the peak. The formation of multiconnected micelles leads to a drop in viscosity at the higher concentrations. The results contribute to a better understanding of the structure-rheology relations in micellar surfactant solutions and could be useful for controlling the properties of formulations in personal-care and house-hold detergency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28040004','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28040004"><span>Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg</p> <p>2016-12-01</p> <p>Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......345C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......345C"><span>Rheological behavior of oxide nanopowder suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cinar, Simge</p> <p></p> <p>Ceramic nanopowders offer great potential in advanced ceramic materials and many other technologically important applications. Because a material's rheological properties are crucial for most processing routes, control of the rheological behavior has drawn significant attention in the recent past. The control of rheological behavior relies on an understanding of how different parameters affect the suspension viscosities. Even though the suspension stabilization mechanisms are relatively well understood for sub-micron and micron size particle systems, this knowledge cannot be directly transferred to nanopowder suspensions. Nanopowder suspensions exhibit unexpectedly high viscosities that cannot be explained with conventional mechanisms and are still a topic of investigation. This dissertation aims to establish the critical parameters governing the rheological behavior of concentrated oxide nanopowder suspensions, and to elucidate the mechanisms by which these parameters control the rheology of these suspensions. Aqueous alumina nanopowders were chosen as a model system, and the findings were extrapolated to other oxide nanopowder systems such as zirconia, yttria stabilized zirconia, and titania. Processing additives such as fructose, NaCl, HCl, NaOH, and ascorbic acid were used in this study. The effect of solids content and addition of fructose on the viscosity of alumina nanopowder suspensions was investigated by low temperature differential scanning calorimetry (LT-DSC), rheological, and zeta potential measurements. The analysis of bound water events observed in LT-DSC revealed useful information regarding the rheological behavior of nanopowder suspensions. Because of the significance of interparticle interactions in nanopowder suspensions, the electrostatic stabilization was investigated using indifferent and potential determining ions. Different mechanisms, e.g., the effect of the change in effective volume fraction caused by fructose addition and electrostatic stabilization, were combined to optimize the viscosities and the ability to control the suspension viscosity. The intrinsic viscosities of nanopowder systems were estimated using the Krieger-Dougherty relation. Both the individual and the combined effects were evaluated using slip casting of green bodies. Also, ascorbic acid was used to disperse the alumina nanopowders (described here for the first time in the open literature). The mechanism of viscosity reduction was investigated by in situ Attenuated Total Reflectance Fourier Infrared Spectroscopy (ATR-FTIR), rheological, suspension pH, and zeta potential measurements. Lastly, the findings were extrapolated to several other oxide systems. The rheological behavior of zirconia, yttria stabilized zirconia, and titania nanopowder systems was investigated as a function of solids content, bound water, and intrinsic viscosity. The results indicated that nanopowder suspensions differ from sub-micron powder suspensions because of the higher bound water content and the short separation distances between particles causing increased interparticle interactions. The bound water event was associated with the powder surface. This layer differed from the electrostatic double layer in that it was modified by fructose molecules as well as by specifically adsorbed ions such as H+ and OH but not by indifferent electrolytes, such as NaCl. Because of the large surface area of nanopowders, this additional layer increased the effective solids content and led to higher viscosities. While the alumina suspensions were studied in detail, it was also shown that the bound water was not unique to the alumina nanopowder suspensions, but also present in other oxide systems. However, the bound water content was unique for each system and provided information about its origin. The presence of bound water resulted in lower the maximum achievable solids fractions for nanopowder systems. In order to achieve higher solids contents, the bound water layer had to be modified. Because of the limited separation distances and large surface areas of nanopowders, the electrostatic double layer has an amplified effect on the viscosity of the suspensions. The addition of NaCl decreased the viscosity of alumina nanopowder suspensions significantly by compressing the double layer hence limiting the repulsion length. We also discovered that ascorbic acid can be used to disperse the alumina nanopowder suspensions. By adding only 1 wt% of ascorbic acid, the viscosity of the suspensions decreased significantly. It was shown that ascorbic acid molecules adsorbed to the alumina surfaces and when the adsorption reached equilibrium, the lowest viscosities were observed. By lowering the viscosities, the maximum achievable solids content (where viscosity = 1 Pa at a shear rate of 100 s-1) could be increased up to about 0.35, which is the highest solids content achieved with readily available processing additives reported in the open literature. Even though it is almost impossible to isolate the individual effects, three dominant mechanisms were observed in nanopowder suspensions: (i) increase in effective volume fraction (bound water), (ii) interparticle interactions (electrostatic), and (iii) adsorption of organic molecules. It was shown that the understanding of the system's parameters enables the optimization of the rheological behavior of the suspensions and the prediction of the green body quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3328691','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3328691"><span>Leukocyte Rolling on P-Selectin: A Three-Dimensional Numerical Study of the Effect of Cytoplasmic Viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Khismatullin, Damir B.; Truskey, George A.</p> <p>2012-01-01</p> <p>Rolling leukocytes deform and show a large area of contact with endothelium under physiological flow conditions. We studied the effect of cytoplasmic viscosity on leukocyte rolling using our three-dimensional numerical algorithm that treats leukocyte as a compound droplet in which the core phase (nucleus) and the shell phase (cytoplasm) are viscoelastic fluids. The algorithm includes the mechanical properties of the cell cortex by cortical tension and considers leukocyte microvilli that deform viscoelastically and form viscous tethers at supercritical force. Stochastic binding kinetics describes binding of adhesion molecules. The leukocyte cytoplasmic viscosity plays a critical role in leukocyte rolling on an adhesive substrate. High-viscosity cells are characterized by high mean rolling velocities, increased temporal fluctuations in the instantaneous velocity, and a high probability for detachment from the substrate. A decrease in the rolling velocity, drag, and torque with the formation of a large, flat contact area in low-viscosity cells leads to a dramatic decrease in the bond force and stable rolling. Using values of viscosity consistent with step aspiration studies of human neutrophils (5–30 Pa·s), our computational model predicts the velocities and shape changes of rolling leukocytes as observed in vitro and in vivo. PMID:22768931</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOM...tmp..219L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOM...tmp..219L"><span>Modeling of Mixing Behavior in a Combined Blowing Steelmaking Converter with a Filter-Based Euler-Lagrange Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Mingming; Li, Lin; Li, Qiang; Zou, Zongshu</p> <p>2018-05-01</p> <p>A filter-based Euler-Lagrange multiphase flow model is used to study the mixing behavior in a combined blowing steelmaking converter. The Euler-based volume of fluid approach is employed to simulate the top blowing, while the Lagrange-based discrete phase model that embeds the local volume change of rising bubbles for the bottom blowing. A filter-based turbulence method based on the local meshing resolution is proposed aiming to improve the modeling of turbulent eddy viscosities. The model validity is verified through comparison with physical experiments in terms of mixing curves and mixing times. The effects of the bottom gas flow rate on bath flow and mixing behavior are investigated and the inherent reasons for the mixing result are clarified in terms of the characteristics of bottom-blowing plumes, the interaction between plumes and top-blowing jets, and the change of bath flow structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790051277&hterms=casting+defect&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcasting%2Bdefect','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790051277&hterms=casting+defect&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcasting%2Bdefect"><span>Rheology of composite solid propellants during motor casting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Klager, K.; Rogers, C. J.; Smith, P. L.</p> <p>1978-01-01</p> <p>Results of casting studies are reviewed so as to define the viscosity criteria insuring the fabrication of defect-free grains. The rheology of uncured propellants is analyzed showing that a realistic assessment of a propellant's flow properties must include measurement of viscosity as a function of shear stress and time after curing agent. Methods for measuring propellant viscosity are discussed, with particular attention given to the Haake-Rotovisko rotational viscometer. The effects of propellant compositional and processing variables on apparent viscosity are examined, as are results relating rheological behavior to grain defect formation during casting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750020919','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750020919"><span>Melting behavior and phase relations of lunar samples. [Apollo 12 rock samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hays, J. F.</p> <p>1975-01-01</p> <p>Cooling rate studies of 12002 were conducted and the results interpreted in terms of the crystallization history of this rock and certain other picritic Apollo 12 samples. Calculations of liquid densities and viscosities during crystallization, crystal settling velocities, and heat loss by the parent rock body are discussed, as are petrographic studies of other Apollo 12 samples. The process of magmatic differentiation that must have accompanied the early melting and chemical fractionation of the moon's outer layers was investigated. The source of regions of both high- and low-titanium mare basalts were also studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/821335','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/821335"><span>Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Garcia, Julio Enrique</p> <p>2003-01-01</p> <p>Injection of carbon dioxide (CO 2) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO 2 will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO 2 and NaCl has beenmore » conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO 2-H 2O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO2. The basic problem of CO 2 injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO 2 injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO 2 injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO 2. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO 2 into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO 2) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO 2 displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3064579','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3064579"><span>Computing the Viscosity of Supercooled Liquids: Markov Network Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Ju; Kushima, Akihiro; Eapen, Jacob; Lin, Xi; Qian, Xiaofeng; Mauro, John C.; Diep, Phong; Yip, Sidney</p> <p>2011-01-01</p> <p>The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an atomistic energy landscape, which sheds some light on this transition. Shear stress relaxation is calculated from a master-equation description in which the system follows a transition-state pathway trajectory of hopping among local energy minima separated by activation barriers, which is in turn sampled by a metadynamics-based algorithm. Quantitative connection is established between the temperature variation of the calculated viscosity and the underlying potential energy and inherent stress landscape, showing a different landscape topography or “terrain” is needed for low-temperature viscosity (of order 107 Pa·s) from that associated with high-temperature viscosity (10−5 Pa·s). Within this range our results clearly indicate the crossover from an essentially Arrhenius scaling behavior at high temperatures to a low-temperature behavior that is clearly super-Arrhenius (fragile) for a Kob-Andersen model of binary liquid. Experimentally the manifestation of this crossover in atomic dynamics continues to raise questions concerning its fundamental origin. In this context this work explicitly demonstrates that a temperature-dependent “terrain” characterizing different parts of the same potential energy surface is sufficient to explain the signature behavior of vitrification, at the same time the notion of a temperature-dependent effective activation barrier is quantified. PMID:21464988</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008cnb..book..119C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008cnb..book..119C"><span>Drug Release and Skin Permeation from Lipid Liquid Crystalline Phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costa-Balogh, F. O.; Sparr, E.; Sousa, J. J. S.; Pais, A. A. C. C.</p> <p></p> <p>We have studied drug release and skin permeation from several different liquid crystalline lipid formulations that may be used to control the respective release rates. We have studied the release and permeation through human skin of a water-soluble and amphiphilic drug, propranolol hydrochloride, from several formulations prepared with monoolein and phytantriol as permeation enhancers and controlled release excipients. Diolein and cineol were added to selected formulations. We observed that viscosity decreases with drug load, wich is compatible with the occurrence of phase changes. Diolein stabilizes the bicontinuous cubic phases leading to an increase in viscosity and sustained release of the drug. The slowest release was found for the cubic phases with higher viscosity. Studies on skin permeation showed that these latter formulations also presented lower permeability than the less viscous monoolein lamellar phases. Formulations containing cineol originated higher permeability with higher enhancement ratios. Thus, the various formulations are adapted to different circumstances and delivery routes. While a slow release is usually desired for drug sustained delivery, the transdermal route may require a faster release. Lamellar phases, which are less viscous, are more adapted to transdermal applications. Thus, systems involving lamellar phases of monoolein and cineol are good candidates to be used as skin permeation enhancers for propranolol hydrochloride.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JChPh.147c4503S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JChPh.147c4503S"><span>Behavior of a supercooled chalcogenide liquid in the non-Newtonian regime under steady vs. oscillatory shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sen, S.; Zhu, W.; Aitken, B. G.</p> <p>2017-07-01</p> <p>The steady and oscillatory shear rate dependence of viscosity of a supercooled chalcogenide liquid of composition As10Se90 is measured at Newtonian viscosities ranging between 103 and 107 Pa s using capillary and parallel plate rheometry. The liquid displays strong violation of the Cox-Merz rule in the non-Newtonian regime where the viscosity under steady shear is nearly an order of magnitude lower than that under oscillatory shear. This behavior is argued to be related to the emergence of unusually large (6-8 nm) cooperatively rearranging regions with long relaxation times in the liquid that result from significant structural rearrangements under steady shear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..42.8333S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..42.8333S"><span>Compositional dependence of lower crustal viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shinevar, William J.; Behn, Mark D.; Hirth, Greg</p> <p>2015-10-01</p> <p>We calculate the viscosity structure of the lower continental crust as a function of its bulk composition using multiphase mixing theory. We use the Gibbs free-energy minimization routine Perple_X to calculate mineral assemblages for different crustal compositions under pressure and temperature conditions appropriate for the lower continental crust. The effective aggregate viscosities are then calculated using a rheologic mixing model and flow laws for the major crust-forming minerals. We investigate the viscosity of two lower crustal compositions: (i) basaltic (53 wt % SiO2) and (ii) andesitic (64 wt % SiO2). The andesitic model predicts aggregate viscosities similar to feldspar and approximately 1 order of magnitude greater than that of wet quartz. The viscosity range calculated for the andesitic crustal composition (particularly when hydrous phases are stable) is most similar to independent estimates of lower crust viscosity in actively deforming regions based on postglacial isostatic rebound, postseismic relaxation, and paleolake shoreline deflection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1027.1277D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1027.1277D"><span>Rheological Modification of Reduced Fat Chocolate Induced by the Addition of Limonene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Do, T.-A. Line; Vieira, Joselio; Hargreaves, Jeremy; Wolf, Bettina; Mitchell, John</p> <p>2008-07-01</p> <p>The objective of this study is to understand how the addition of limonene, a low molecular weight hydrophobic compound, to chocolate, leads to a decrease in the viscosity of molten chocolate. Chocolate is a fat (cocoa butter) based dispersion of solids (sugar, cocoa and milk solids). We showed that, by mixing with cocoa butter, limonene decreases the viscosity of chocolate by decreasing the viscosity of its continuous phase, liquid cocoa butter. To understand the functionality of limonene in decreasing the viscosity of cocoa butter (triacylglyceride melt), additional mixtures of cocoa butter and limonene were prepared and their viscosity was measured. The dependence of the viscosity on the ratio of cocoa butter to limonene analyzed using Kay's equation seems to indicate that limonene mixes with and within the cocoa butter triacylglycerides, diluting the fat and leading to a decrease in the overall fat viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28110718','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28110718"><span>Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bhatti, M M; Zeeshan, A; Ellahi, R</p> <p>2016-12-01</p> <p>In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3388210','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3388210"><span>Weak Interactions Govern the Viscosity of Concentrated Antibody Solutions: High-Throughput Analysis Using the Diffusion Interaction Parameter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.</p> <p>2012-01-01</p> <p>Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830052297&hterms=injection+molding&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinjection%2Bmolding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830052297&hterms=injection+molding&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinjection%2Bmolding"><span>Injection molding ceramics to high green densities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mangels, J. A.; Williams, R. M.</p> <p>1983-01-01</p> <p>The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...852..135N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...852..135N"><span>Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nandi, Rana; Schramm, Stefan</p> <p>2018-01-01</p> <p>We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24527930','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24527930"><span>Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P</p> <p>2014-02-14</p> <p>The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JChPh.140f4505C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JChPh.140f4505C"><span>Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.</p> <p>2014-02-01</p> <p>The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21517529','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21517529"><span>Weakly sheared active suspensions: hydrodynamics, stability, and rheology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cui, Zhenlu</p> <p>2011-03-01</p> <p>We present a kinetic model for flowing active suspensions and analyze the behavior of a suspension subjected to a weak steady shear. Asymptotic solutions are sought in Deborah number expansions. At the leading order, we explore the steady states and perform their stability analysis. We predict the rheology of active systems including an activity thickening or thinning behavior of the apparent viscosity and a negative apparent viscosity depending on the particle type, flow alignment, and the anchoring conditions, which can be tested on bacterial suspensions. We find remarkable dualities that show that flow-aligning rodlike contractile (extensile) particles are dynamically and rheologically equivalent to flow-aligning discoid extensile (contractile) particles for both tangential and homeotropic anchoring conditions. Another key prediction of this work is the role of the concentration of active suspensions in controlling the rheological behavior: the apparent viscosity may decrease with the increase of the concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010APS..DFD.LK004F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010APS..DFD.LK004F"><span>The Contribution of Red Blood Cell Dynamics to Intrinsic Viscosity and Functional ATP Release</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forsyth, Alison; Abkarian, Manouk; Wan, Jiandi; Stone, Howard</p> <p>2010-11-01</p> <p>In shear flow, red blood cells (RBCs) exhibit a variety of behaviors such as rouleaux formation, tumbling, swinging, and tank-treading. The physiological consequences of these dynamic behaviors are not understood. In vivo, ATP is known to signal vasodilation; however, to our knowledge, no one has deciphered the relevance of RBC microrheology to the functional release of ATP. Previously, we correlated RBC deformation and ATP release in microfluidic constrictions (Wan et al., 2008). In this work, a cone-plate rheometer is used to shear a low hematocrit solution of RBCs at varying viscosity ratios (λ) between the inner cytoplasmic hemoglobin and the outer medium, to determine the intrinsic viscosity of the suspension. Further, using a luciferin-luciferase enzymatic reaction, we report the relative ATP release at varying shear rates. Results indicate that for λ = 1.6, 3.8 and 11.1, ATP release is constant up to 500 s-1, which suggests that the tumbling-tanktreading transition does not alter ATP release in pure shear. For lower viscosity ratios, λ = 1.6 and 3.8, at 500 s-1 a change in slope occurs in the intrinsic viscosity data and is marked by an increase in ATP release. Based on microfluidic observations, this simultaneous change in viscosity and ATP release occurs within the tank-treading regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.602a2032K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.602a2032K"><span>Flow of High Internal Phase Ratio Emulsions through Pipes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kostak, K.; Özsaygı, R.; Gündüz, I.; Yorgancıoǧlu, E.; Tekden, E.; Güzel, O.; Sadıklar, D.; Peker, S.; Helvacı, Ş. Ş.</p> <p>2015-04-01</p> <p>The flow behavior of W/O type of HIPRE stabilized by hydrogen bonds with a sugar (sorbitol) in the aqueous phase, was studied. Two groups of experiments were done in this work: The effect of wall shear stresses were investigated in flow through pipes of different diameters. For this end, HIPREs prestirred at constant rate for the same duration were used to obtain similar drop size distributions. Existence and extent of elongational viscosity were used as a probe to elucidate the effect of drop size distribution on the flow behavior: HIPREs prestirred for the same duration at different rates were subjected to flow through converging pipes. The experimental flow curves for flow through small cylindrical pipes indicated four different stages: 1) initial increase in the flow rate at low pressure difference, 2) subsequent decrease in the flow rate due to capillary flow, 3) pressure increase after reaching the minimum flow rate and 4) slip flow after a critical pressure difference. HIPREs with sufficient external liquid phase in the plateau borders can elongate during passage through converging pipes. In the absence of liquid stored in the plateau borders, the drops rupture during extension and slip flow takes place without elongation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21401345-flow-pattern-changes-influenced-variation-viscosities-heterogeneous-gas-liquid-mixture-flow-vertical-channel','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21401345-flow-pattern-changes-influenced-variation-viscosities-heterogeneous-gas-liquid-mixture-flow-vertical-channel"><span>Flow pattern changes influenced by variation of viscosities of a heterogeneous gas-liquid mixture flow in a vertical channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keska, Jerry K.; Hincapie, Juan; Jones, Richard</p> <p></p> <p>In the steady-state flow of a heterogeneous mixture such as an air-liquid mixture, the velocity and void fraction are space- and time-dependent parameters. These parameters are the most fundamental in the analysis and description of a multiphase flow. The determination of flow patterns in an objective way is extremely critical, since this is directly related to sudden changes in spatial and temporal changes of the random like characteristic of concentration. Flow patterns can be described by concentration signals in time, amplitude, and frequency domains. Despite the vital importance and countless attempts to solve or incorporate the flow pattern phenomena intomore » multiphase models, it has still been a very challenging topic in the scientific community since the 1940's and has not yet reached a satisfactory solution. This paper reports the experimental results of the impact of fluid viscosity on flow patterns for two-phase flow. Two-phase flow was created in laboratory equipment using air and liquid as phase medium. The liquid properties were changed by using variable concentrations of glycerol in water mixture which generated a wide-range of dynamic viscosities ranging from 1 to 1060 MPa s. The in situ spatial concentration vs. liquid viscosity and airflow velocity of two-phase flow in a vertical ID=50.8 mm pipe were measured using two concomitant computer-aided measurement systems. After acquiring data, the in situ special concentration signals were analyzed in time (spatial concentration and RMS of spatial concentration vs. time), amplitude (PDF and CPDF), and frequency (PSD and CPSD) domains that documented broad flow pattern changes caused by the fluid viscosity and air velocity changes. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23679542','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23679542"><span>Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zu, Y Q; He, S</p> <p>2013-04-01</p> <p>A lattice Boltzmann model (LBM) is proposed based on the phase-field theory to simulate incompressible binary fluids with density and viscosity contrasts. Unlike many existing diffuse interface models which are limited to density matched binary fluids, the proposed model is capable of dealing with binary fluids with moderate density ratios. A new strategy for projecting the phase field to the viscosity field is proposed on the basis of the continuity of viscosity flux. The new LBM utilizes two lattice Boltzmann equations (LBEs): one for the interface tracking and the other for solving the hydrodynamic properties. The LBE for interface tracking can recover the Chan-Hilliard equation without any additional terms; while the LBE for hydrodynamic properties can recover the exact form of the divergence-free incompressible Navier-Stokes equations avoiding spurious interfacial forces. A series of 2D and 3D benchmark tests have been conducted for validation, which include a rigid-body rotation, stationary and moving droplets, a spinodal decomposition, a buoyancy-driven bubbly flow, a layered Poiseuille flow, and the Rayleigh-Taylor instability. It is shown that the proposed method can track the interface with high accuracy and stability and can significantly and systematically reduce the parasitic current across the interface. Comparisons with momentum-based models indicate that the newly proposed velocity-based model can better satisfy the incompressible condition in the flow fields, and eliminate or reduce the velocity fluctuations in the higher-pressure-gradient region and, therefore, achieve a better numerical stability. In addition, the test of a layered Poiseuille flow demonstrates that the proposed scheme for mixture viscosity performs significantly better than the traditional mixture viscosity methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22417574','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22417574"><span>Optimization of β-casein stabilized nanoemulsions using experimental mixture design.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Maher, Patrick G; Fenelon, Mark A; Zhou, Yankun; Kamrul Haque, Md; Roos, Yrjö H</p> <p>2011-10-01</p> <p>The objective of this study was to determine the effect of changing viscosity and glass transition temperature in the continuous phase of nanoemulsion systems on subsequent stability. Formulations comprising of β-casein (2.5%, 5%, 7.5%, and 10% w/w), lactose (0% to 20% w/w), and trehalose (0% to 20% w/w) were generated from Design of Experiments (DOE) software and tested for glass transition temperature and onset of ice-melting temperature in maximally freeze-concentrated state (T(g) ' & T(m) '), and viscosity (μ). Increasing β-casein content resulted in significant (P < 0.0001) increases in viscosity and T(m) ' (P= 0.0003), and significant (P < 0.0001) decreases in T(g) '. A mixture design was used to predict the optimum levels of lactose and trehalose required to attain the minimum and maximum T(g) ' and viscosity in solution at fixed protein contents. These mixtures were used to form the continuous phase of β-casein stabilized nanoemulsions (10% w/w sunflower oil) prepared by microfluidization at 70 MPa. Nanoemulsions were analyzed for T(g) ' & T(m) ', as well as viscosity, mean particle size, and stability. Increasing levels of β-casein (2.5% to 10% w/w) resulted in a significant (P < 0.0001) increase in viscosity (5 to 156 mPa.s), significant increase in particle size (P= 0.0115) from 186 to 199 nm, and significant decrease (P= 0.0001) in T(g) ' (-45 to -50 °C). Increasing the protein content resulted in a significant (P < 0.0001) increase in nanoemulsion stability. A mixture DOE was successfully used to predict glass transition and rheological properties for development of a continuous phase for use in nanoemulsions. © 2011 Institute of Food Technologists®</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29398020','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29398020"><span>Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Y; Joyner, H S; Carter, B G; Drake, M A</p> <p>2018-04-01</p> <p>Fluid milk may be pasteurized by high-temperature short-time pasteurization (HTST) or ultrapasteurization (UP). Literature suggests that UP increases milk astringency, but definitive studies have not demonstrated this effect. Thus, the objective of this study was to determine the effects of pasteurization method, fat content, homogenization pressure, and storage time on milk sensory and mechanical behaviors. Raw skim (<0.2% fat), 2%, and 5% fat milk was pasteurized in duplicate by indirect UP (140°C, 2.3 s) or by HTST pasteurization (78°C, 15 s), homogenized at 20.7 MPa, and stored at 4°C for 8 wk. Additionally, 2% fat milk was processed by indirect UP and homogenized at 13.8, 20.7, and 27.6 MPa and stored at 4°C for 8 wk. Sensory profiling, instrumental viscosity, and friction profiles of all milk were evaluated at 25°C after storage times of 1, 4, and 8 wk. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy were used to determine protein structural changes in milk at these time points. Fresh HTST milk was processed at wk 7 for wk 8 evaluations. Ultrapasteurization increased milk sensory and instrumental viscosity compared with HTST pasteurization. Increased fat content increased sensory and instrumental viscosity, and decreased astringency and friction profiles. Astringency, mixed regimen friction profiles, and sensory viscosity also increased for UP versus HTST. Increased storage time showed no effect on sensory viscosity or mechanical viscosity. However, increased storage time generally resulted in increased friction profiles and astringency. Sodium dodecyl sulfate PAGE and confocal laser scanning microscopy showed increased denatured whey protein in UP milk compared with HTST milk. The aggregates or network formed by these proteins and casein micelles likely caused the increase in viscosity and friction profiles during storage. Homogenization pressure did not significantly affect friction behaviors, mechanical viscosity, or astringency; however, samples homogenized at 13.8 MPa versus 20.7 and 27.6 MPa showed higher sensory viscosity. Astringency was positively correlated with the friction coefficient at 100 m/s sliding speed (R 2 = 0.71 for HTST milk and R 2 = 0.74 for UP milk), and sensory viscosity was positively correlated with the mechanical viscosity at a shear rate of 50 s -1 (R 2 = 0.90). Thus, instrumental testing can be used to indicate certain sensory behaviors of milk. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5192416','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5192416"><span>How Doth the Little Crocodilian: Analyzing the Influence of Environmental Viscosity on Feeding Performance of Juvenile Alligator mississippiensis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kerfoot, James R.; Easter, Emily; Elsey, Ruth M.</p> <p>2016-01-01</p> <p>Wetland habitats are used as nursery sites for hatchling and juvenile alligators (Alligator mississippiensis), where they utilize prey from aquatic and terrestrial settings. However, little is known about how viscosity of the medium influences feeding performance. We hypothesized that timing and linear excursion feeding kinematic variables would be different for individuals feeding on prey above the water compared with the same individuals feeding underwater. Individuals were fed immobile fish prey and feeding events were recorded using a high speed video camera. Feeding performance was summarized by analyzing three feeding kinematic variables (maximum gape, maximum gape velocity, duration of feeding bout) and success of strike. Results of a series of paired t-tests indicated no significant difference in kinematic variables between feeding events above water compared with underwater. Similarity in feeding performance could indicate that prey-capture is not altered by environmental viscosity or that feeding behavior can mitigate its influence. Behavioral differences were observed during feeding events with alligators approaching underwater prey having their mouths partially opened versus fully closed when feeding above water. This behavior could be an indication of a strategy used to overcome water viscosity. PMID:27706023</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27802618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27802618"><span>A novel model for smectic liquid crystals: Elastic anisotropy and response to a steady-state flow.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Püschel-Schlotthauer, Sergej; Meiwes Turrión, Victor; Stieger, Tillmann; Grotjahn, Robin; Hall, Carol K; Mazza, Marco G; Schoen, Martin</p> <p>2016-10-28</p> <p>By means of a combination of equilibrium Monte Carlo and molecular dynamics simulations and nonequilibrium molecular dynamics we investigate the ordered, uniaxial phases (i.e., nematic and smectic A) of a model liquid crystal. We characterize equilibrium behavior through their diffusive behavior and elastic properties. As one approaches the equilibrium isotropic-nematic phase transition, diffusion becomes anisotropic in that self-diffusion D ⊥ in the direction orthogonal to a molecule's long axis is more hindered than self-diffusion D ∥ in the direction parallel to that axis. Close to nematic-smectic A phase transition the opposite is true, D ∥ < D ⊥ . The Frank elastic constants K 1 , K 2 , and K 3 for the respective splay, twist, and bend deformations of the director field n̂ are no longer equal and exhibit a temperature dependence observed experimentally for cyanobiphenyls. Under nonequilibrium conditions, a pressure gradient applied to the smectic A phase generates Poiseuille-like or plug flow depending on whether the convective velocity is parallel or orthogonal to the plane of smectic layers. We find that in Poiseuille-like flow the viscosity of the smectic A phase is higher than in plug flow. This can be rationalized via the velocity-field component in the direction of the flow. In a sufficiently strong flow these smectic layers are not destroyed but significantly bent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29244585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29244585"><span>To be Stiff or to be Soft-the Dilemma of the Echinoid Tooth Ligament. II. Mechanical Properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Birenheide, R; Tsuchi, A; Motokawa, T</p> <p>1996-04-01</p> <p>The teeth of sea urchins are connected to jaws by means of ligaments. Their sliding along the jaw during continuous growth requires a pliant ligament, whereas scraping on rocks for feeding requires a stiff ligament for firm support. We investigated the mechanical properties of the tooth ligament of Diadema setosum to clarify how sea urchins solve this dilemma. In creep tests a load of 30 g caused a shift of the tooth that continued until the tooth was pulled out of the jaw. The creep curve had three phases: an initial phase of high creep rate, a long phase of constant creep rate, and a final phase of accelerating creep rate. The ligaments had a shear viscosity of about 550 MPa {middot} s. Viscosity increased reversibly after stimulation with seawater containing a high concentration of potassium ions or acetylcholine. Frozen and rethawed ligaments did not show an increase of viscosity after stimulation. The data indicate that sea urchins can change the stiffness of their tooth ligaments through nervous control. We suggest that the tooth ligament is a catch connective tissue.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0100142&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0100142&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon"><span>Critical Viscosity of Xenon investigators</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10053E..20B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10053E..20B"><span>Monitoring corneal crosslinking using phase-decorrelation OCT (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.</p> <p>2017-02-01</p> <p>Viscosity is often a critical characteristic of biological fluids such as blood and mucus. However, traditional rheology is often inadequate when only small quantities of sample are available. A robust method to measure viscosity of microquantities of biological samples could lead to a better understanding and diagnosis of diseases. Here, we present a method to measure viscosity by observing particle Brownian motion within a sample. M-mode optical coherence tomography (OCT) imaging, obtained with a phase-sensitive 47 kHz spectral domain system, yields a viscosity measurement from multiple 200-1000 microsecond frames. This very short period of continuous acquisition, as compared to laser speckle decorrelation, decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. The theory linking g(1) first-order image autocorrelation to viscosity is derived from first principles of Brownian motion and the Stokes-Einstein relation. To improve precision, multiple windows acquired over 500 milliseconds are analyzed and the resulting linear fit parameters are averaged. Verification experiments were performed with 200 µL samples of glycerol and water with polystyrene microbeads. Lateral bulk motion up to 2 mm/s was tolerated and accurate viscosity measurements were obtained to a depth of 400 µm or more. Additionally, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential for mapping tissue stiffness over a volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29083478','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29083478"><span>Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak</p> <p>2018-05-01</p> <p>Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22292204','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22292204"><span>The tribological behaviour of different clearance MOM hip joints with lubricants of physiological viscosities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, X Q; Wood, R J K; Taylor, A; Tuke, M A</p> <p>2011-11-01</p> <p>Clearance is one of the most influential parameters on the tribological performance of metal-on-metal (MOM) hip joints and its selection is a subject of considerable debate. The objective of this paper is to study the lubrication behaviour of different clearances for MOM hip joints within the range of human physiological and pathological fluid viscosities. The frictional torques developed by MOM hip joints with a 50 mm diameter were measured for both virgin surfaces and during a wear simulator test. Joints were manufactured with three different diametral clearances: 20, 100, and 200 microm. The fluid used for the friction measurements which contained different ratios of 25 percent newborn calf serum and carboxymethyl cellulose (CMC) with the obtained viscosities values ranging from 0.001 to 0.71 Pa s. The obtained results indicate that the frictional torque for the 20 microm clearance joint remains high over the whole range of the viscosity values. The frictional torque of the 100 microm clearance joint was low for the very low viscosity (0.001 Pa s) lubricant, but increased with increasing viscosity value. The frictional torque of the 200 microm clearance joint was high at very low viscosity levels, however, it reduced with increasing viscosity. It is concluded that a smaller clearance level can enhance the formation of an elastohydrodynamic lubrication (EHL) film, but this is at the cost of preventing fluid recovery between the bearing surfaces during the unloaded phase of walking. Larger clearance bearings allow a better recovery of lubricant during the unloaded phase, which is necessary for higher viscosity lubricants. The selection of the clearance value should therefore consider both the formation of the EHL film and the fluid recovery as a function of the physiological viscosity in order to get an optimal tribological performance for MOM hip joints. The application of either 25 per cent bovine serum or water in existing in vitro tribological study should also be revised to consider the relevance of clinic synovial fluid viscosities and to avoid possible misleading results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6331W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6331W"><span>Predicting the glass transition temperature and viscosity of secondary organic material using molecular composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong DeRieux, Wing-Sy; Li, Ying; Lin, Peng; Laskin, Julia; Laskin, Alexander; Bertram, Allan K.; Nizkorodov, Sergey A.; Shiraiwa, Manabu</p> <p>2018-05-01</p> <p>Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol-1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ˜ 1100 g mol-1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. Tg/T) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ˜ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon-Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon-Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2-5 orders of magnitude. Complementary measurements of viscosity and chemical composition are desired to further constrain RH-dependent viscosity in future studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667541-numerical-simulations-kelvinhelmholtz-instability-two-dimensional-parametric-study','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667541-numerical-simulations-kelvinhelmholtz-instability-two-dimensional-parametric-study"><span>NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn</p> <p>2016-06-10</p> <p>Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1166855-pore-scale-simulation-liquid-co2-displacement-water-using-two-phase-lattice-boltzmann-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1166855-pore-scale-simulation-liquid-co2-displacement-water-using-two-phase-lattice-boltzmann-model"><span>Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.</p> <p></p> <p>A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. Thismore » model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JChPh.138w4901R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JChPh.138w4901R"><span>Anomalous viscosity effect in the early stages of the ion-assisted adhesion/fusion event between lipid bilayers: A theoretical and computational study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raudino, Antonio; Marrink, Siewert J.; Pannuzzo, Martina</p> <p>2013-06-01</p> <p>The effect of viscosity on the encounter rate of two interacting membranes was investigated by combining a non-equilibrium Fokker-Planck model together with extensive Molecular Dynamics (MD) calculations. The encounter probability and stabilization of transient contact points represent the preliminary steps toward short-range adhesion and fusion of lipid leaflets. To strengthen our analytical model, we used a Coarse Grained MD method to follow the behavior of two charged palmitoyl oleoyl phosphatidylglycerol membranes embedded in a electrolyte-containing box at different viscosity regimes. Solvent friction was modulated by varying the concentration of a neutral, water-soluble polymer, polyethylene glycol, while contact points were stabilized by divalent ions that form bridges among juxtaposed membranes. While a naïve picture foresees a monotonous decrease of the membranes encounter rate with solvent viscosity, both the analytical model and MD simulations show a complex behavior. Under particular conditions, the encounter rate could exhibit a maximum at a critical viscosity value or for a critical concentration of bridging ions. These results seem to be confirmed by experimental observations taken from the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4440531','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4440531"><span>Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya</p> <p>2015-01-01</p> <p>Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles. PMID:25996055</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25996055','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25996055"><span>Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya</p> <p>2015-05-21</p> <p>Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions. We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1225384-direct-visualization-hydration-layer-alumina-nanoparticles-fluid-cell-stem-situ','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1225384-direct-visualization-hydration-layer-alumina-nanoparticles-fluid-cell-stem-situ"><span>Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Firlar, Emre; Çınar, Simge; Kashyap, Sanjay; ...</p> <p>2015-05-21</p> <p>Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more » We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19911279','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19911279"><span>Rheological study of synovial fluid obtained from dogs: healthy, pathological, and post-surgery, after spontaneous rupture of cranial cruciate ligament.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goudoulas, Thomas B; Kastrinakis, Eleftherios G; Nychas, Stavros G; Papazoglou, Lysimachos G; Kazakos, George M; Kosmas, Panagiotis V</p> <p>2010-01-01</p> <p>In the present study synovial fluid (SF) obtained from the stifle joint of healthy adult dogs and of dogs after cranial cruciate ligament rupture was analyzed regarding its rheological characteristics according to the condition of the joint. The viscoelastic and shear flow properties were measured at 25 and 38 degrees C. The results showed that the healthy SF exhibits practically temperature independent viscosity curve and satisfactory viscoelastic characteristics, i.e. G' > G'', over frequencies of 0.05-5 Hz, and characteristic relaxation time lambda of the order of magnitude of 100 s. Creep measurements demonstrate that the zero shear viscosity was in the range of 10-100 Pa s. In shear flow viscosity measurements, by increasing gamma from 10(-4) s(-1) up to 10(3) s(-1), non-Newtonian shear thinning behavior was observed and the viscosity values were decreased from 10(3) to 0.1 Pa s. On the contrary, in pathological conditions of cranial cruciate ligament rupture (CCLR), the measured viscosity was found drastically reduced, i.e. between 100 and 10 mPa s. The CCLR synovial fluid, similar to healthy SF, exhibits insignificant temperature dependence. The present study showed also that about one week after a surgery for CCLR repair the SF exhibits non-Newtonian behavior of dilute polymers. After two weeks from the operation, however, the rheological behavior converges to the one of healthy SF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RJPCA..89.1556D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RJPCA..89.1556D"><span>Partial molar volumes and viscosities of aqueous hippuric acid solutions containing LiCl and MnCl2 · 4H2O at 303.15 K</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deosarkar, S. D.; Tawde, P. D.; Zinjade, A. B.; Shaikh, A. I.</p> <p>2015-09-01</p> <p>Density (ρ) and viscosity (η) of aqueous hippuric acid (HA) solutions containing LiCl and MnCl2 · 4H2O have been studied at 303.15 K in order to understand volumetric and viscometric behavior of these systems. Apparent molar volume (φv) of salts were calculated from density data and fitted to Massons relation and partial molar volumes (φ{v/0}) at infinite dilution were determined. Relative viscosity data has been used to determine viscosity A and B coefficients using Jones-Dole relation. Partial molar volume and viscosity coefficients have been discussed in terms of ion-solvent interactions and overall structural fittings in solution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MApFl...6b4004A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MApFl...6b4004A"><span>Unusually large Stokes shift for a near-infrared emitting DNA-stabilized silver nanocluster</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ammitzbøll Bogh, Sidsel; Carro-Temboury, Miguel R.; Cerretani, Cecilia; Swasey, Steven M.; Copp, Stacy M.; Gwinn, Elisabeth G.; Vosch, Tom</p> <p>2018-04-01</p> <p>In this paper we present a new near-IR emitting silver nanocluster (NIR-DNA-AgNC) with an unusually large Stokes shift between absorption and emission maximum (211 nm or 5600 cm-1). We studied the effect of viscosity and temperature on the steady state and time-resolved emission. The time-resolved results on NIR-DNA-AgNC show that the relaxation dynamics slow down significantly with increasing viscosity of the solvent. In high viscosity solution, the spectral relaxation stretches well into the nanosecond scale. As a result of this slow spectral relaxation in high viscosity solutions, a multi-exponential fluorescence decay time behavior is observed, in contrast to the more mono-exponential decay in low viscosity solution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27990815','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27990815"><span>Influence of Functional Groups on the Viscosity of Organic Aerosol.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rothfuss, Nicholas E; Petters, Markus D</p> <p>2017-01-03</p> <p>Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO 2 ) > carbonyl (CO) ≈ ester (COO) > methylene (CH 2 ). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28239135','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28239135"><span>Dairy-Based Emulsions: Viscosity Affects Fat Difference Thresholds and Sweetness Perception.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zahn, Susann; Hoppert, Karin; Ullrich, Franziska; Rohm, Harald</p> <p>2013-11-27</p> <p>In complex emulsions, viscosity or viscosity-associated sensory attributes such as creaminess are important for quality assessment and product differentiation. Two sets of emulsions with fat or locust bean gum content being varied at seven levels were developed; the two emulsions at each level had similar apparent viscosity. Additionally, sugar concentration was kept constant either with respect to total emulsion, or with respect to the aqueous phase. Series of two-alternative forced choice tests were performed with one constant stimulus, and just noticeable differences were calculated using probability regression. The results show that, when viscosity was not compensated, it was easy for the subjects to (a) distinguish emulsions with different fat content when the fat content was addressed in the question, and to (b) distinguish emulsions with different fat or locust bean gum content when creaminess was addressed. For the latter descriptor, it is of minor importance whether viscosity is altered by fat content or a thickener. Weber fractions that were calculated for viscosity were approximately 0.20. The quantitative effects of viscosity on sweetness, however, depend on how product rheology was modified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4999026','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4999026"><span>Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Newton, Joseph M.; Schofield, Desmond; Vlahopoulou, Joanna</p> <p>2016-01-01</p> <p>Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction‐point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069–1076, 2016 PMID:27111912</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1430010-volume-change-energy-exchange-how-affect-symmetry-noh-problem','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1430010-volume-change-energy-exchange-how-affect-symmetry-noh-problem"><span>Volume change and energy exchange: How they affect symmetry in the Noh problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vachal, Pavel; Wendroff, Burton</p> <p></p> <p>The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430010-volume-change-energy-exchange-how-affect-symmetry-noh-problem','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430010-volume-change-energy-exchange-how-affect-symmetry-noh-problem"><span>Volume change and energy exchange: How they affect symmetry in the Noh problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Vachal, Pavel; Wendroff, Burton</p> <p>2018-03-14</p> <p>The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMMM..417..214Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMMM..417..214Y"><span>Viscosity and sedimentation behaviors of the magnetorheological suspensions with oleic acid/dimer acid as surfactants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Jianjian; Yan, Hua; Hu, Zhide; Ding, Ding</p> <p>2016-11-01</p> <p>This work deals with the role of polar interactions on the viscosity and sedimentation behaviors of magnetorheological suspensions with micro-sized magnetic particles dispersed in oil carriers. The oleic acid and dimer acid were employed to make an adjustment of the hydrophobicity of iron particles, in the interest of performing a comparative evaluation of the contributions of the surface polarity. The viscosity tests show that the adsorbed surfactant layer may impose a hindrance to the movement of iron particles in the oil medium. The polar attractions between dimer acid covered particles gave rise to a considerable increase in viscosity, indicating flocculation structure developed in the suspensions. The observed plateau-like region in the vicinity of 0.1 s-1 for MRF containing dimer acid is possibly due to the flocculation provoked by the carboxylic polar attraction, in which the structure is stable against fragmentation. Moreover, a quick recovery of the viscosity and a higher viscosity-temperature index also suggest the existence of particle-particle polar interaction in the suspensions containing dimer acid. The sedimentation measurements reveal that the steric repulsion of oleic acid plays a limited role in the stability of suspensions only if a large quantity of surfactant was used. The sedimentation results observed in the dimer acid covered particles confirm that loose and open flocculation was formed and enhanced sedimentation stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..96e3208F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..96e3208F"><span>Viscosity of two-dimensional strongly coupled dusty plasma modified by a perpendicular magnetic field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Yan; Lin, Wei; Murillo, M. S.</p> <p>2017-11-01</p> <p>Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ResPh...7.2352H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ResPh...7.2352H"><span>An exploration of viscosity models in the realm of kinetic theory of liquids originated fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hussain, Azad; Ghafoor, Saadia; Malik, M. Y.; Jamal, Sarmad</p> <p></p> <p>The preeminent perspective of this article is to study flow of an Eyring Powell fluid model past a penetrable plate. To find the effects of variable viscosity on fluid model, continuity, momentum and energy equations are elaborated. Here, viscosity is taken as function of temperature. To understand the phenomenon, Reynold and Vogel models of variable viscosity are incorporated. The highly non-linear partial differential equations are transfigured into ordinary differential equations with the help of suitable similarity transformations. The numerical solution of the problem is presented. Graphs are plotted to visualize the behavior of pertinent parameters on the velocity and temperature profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..251a2114B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..251a2114B"><span>Empirical equations for viscosity and specific heat capacity determination of paraffin PCM and fatty acid PCM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barreneche, C.; Ferrer, G.; Palacios, A.; Solé, A.; Inés Fernández, A.; Cabeza, L. F.</p> <p>2017-10-01</p> <p>Phase change materials (PCM) used in thermal energy storage (TES) systems have been presented, over recent years, as one of the most effective options in energy storage. Paraffin and fatty acids are some of the most used PCM in TES systems, as they have high phase change enthalpy and in addition they do not present subcooling nor hysteresis and have proper cycling stability. The simulations and design of TES systems require the knowledge of the thermophysical properties of PCM. Thermal conductivity, viscosity, specific heat capacity (Cp) can be experimentally determined, but these are material and time consuming tasks. To avoid or to reduce them, and to have reliable data without the need of experimentation, thermal properties can be calculated by empirical equations. In this study, five different equations are given to calculate the viscosity and specific heat capacity of fatty acid PCM and paraffin PCM. Two of these equations concern, respectively, the empirical calculation of the viscosity and liquid Cp of the whole paraffin PCM family, while the other three equations presented are for the corresponding calculation of viscosity, solid Cp, liquid Cp of the whole fatty acid family of PCM. Therefore, this study summarize the work performed to obtain the main empirical equations to measure the above mentioned properties for whole fatty acid PCM family and whole paraffin PCM family. Moreover, empirical equations have been obtained to calculate these properties for other materials of these PCM groups and these empirical equations can be extrapolated for PCM with higher or lower phase change temperatures within a lower relative error 4%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4862665','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4862665"><span>A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dong, S.; Wang, X.</p> <p>2016-01-01</p> <p>Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries. PMID:27163909</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TRACE..26..265F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TRACE..26..265F"><span>Characteristics of Nano-emulsion for Cold Thermal Storage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi</p> <p></p> <p>Phase change emulsion (PCE) is novel kind of heat storage and heat transfer fluids. It has characteristics as follows; greater apparent specific heat and higher heat transfer abilities in the phase change temperature range than conventional single phase heat transfer fluid. In this paper, a phase change emulsion, which has droplet diameter distribution of nanometer, were prepared. The Nano-emulsion was formed by low energy emulsification methods, as known the phase inversion temperature (PIT) method. Physical properties, such as viscosity, diameter and its distribution of emulsion were investigated. Especially, the relationships between preparation method and the concentration of surfactant have been discussed in detail. The results show that the viscosity of the Nano-emulsion is lower than the micro-emulsion, which was made by same mixing ratio of surfactant and concentration of phase change material. In addition, the Nano-emulsion clarified that stability was higher than microemulsions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11855619','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11855619"><span>Flow behavior characteristics of ice cream mix made with buffalo milk and various stabilizers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Minhas, Kuldip S; Sidhu, Jiwan S; Mudahar, Gurmail S; Singh, A K</p> <p>2002-01-01</p> <p>Ice cream made with buffalo milk, using optimum levels of various stabilizers of plant origin, was evaluated for its flow behavior characteristics, with the objective of producing an acceptable quality product. The minimum variation in the viscosity of mix was observed at three rates of shear (348.88, 523.33 and 1046.66 S(-1)) for all ice cream mixes. The flow behavior index (n) of all the mixes having optimum levels of various stabilizers was observed to be less than 1; indicating their pseudoplastic nature. Consistency coefficient (m) of sodium alginate was found to be 1.19; highest among all the stabilizers, followed by gelatin (1.17), karaya (1.08), guar gum (0.75), acacia gum (0.70), ghatti gum (0.36), and the control (0.29). The consistency coefficient (m) signifies the apparent viscosity of the pseudoplastic fluid. The viscosity of the mixes having various stabilizers (optimum levels) was found to be in descending order: Sodium alginate, gelatin, karaya, guar gum, acacia, ghatti and control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvE..94c2606P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvE..94c2606P"><span>Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pandey, Vikash; Holm, Sverre</p> <p>2016-09-01</p> <p>Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27739858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27739858"><span>Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pandey, Vikash; Holm, Sverre</p> <p>2016-09-01</p> <p>Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16009220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16009220"><span>Influence of sodium polyacrylate on the rheology of aqueous Laponite dispersions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Labanda, Jordi; Llorens, Joan</p> <p>2005-09-01</p> <p>Aqueous Laponite dispersions containing a sodium polyacrylate were analyzed, at fixed ionic strength and pH, by rheometric and electroacoustic (for zeta-potential determinations) techniques at 7 days after their preparation. The rheological behavior of these dispersions was determined by oscillatory and flow experiments. Addition of sodium polyacrylate modifies the interactions between Laponite particles and therefore the physical state of the dispersion. The phase diagram of Laponite dispersion as a function of sodium polyacrylate concentration shows different sol-gel transitions for a specific Laponite concentration as a function of the polyacrylate concentration. Under equilibrium flow conditions the Laponite dispersions fit the pseudoplastic Oswald-de Waele power law model. At the same time, these dispersions show thixotropy, which was analyzed using a second-order kinetic equation. The kinetic processes were characterized by breakdown and build-up parameters, which were found to depend on shear rate. This kinetic equation was modified by a power law exponent of viscosity with shear rate that takes into account the viscosity variations when the shear rates are suddenly changed, in order to fit the hysteresis loops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21728285','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21728285"><span>On the decoupling of relaxation modes in a molecular liquid caused by isothermal introduction of 2 nm structural inhomogeneities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ueno, Kazuhide; Angell, C Austen</p> <p>2011-12-08</p> <p>To support a new interpretation of the origin of the dynamic heterogeneity observed pervasively in fragile liquids as they approach their glass transition temperatures T(g), we demonstrate that the introduction of ~2 nm structural inhomogeneities into a homogeneous glass former leads to a decoupling of diffusion from viscosity similar to that observed during the cooling of orthoterphenyl (OTP) below T(A,) where Arrhenius behavior is lost. Further, the decoupling effect grows stronger as temperature decreases (and viscosity increases). The liquid is cresol, and the ~2 nm inhomogeneities are cresol-soluble asymmetric derivatized tetrasiloxy-based (polyhedral oligomeric silsesquioxane (POSS)) molecules. The decoupling is the phenomenon predicted by Onsager in discussing the approach to a liquid-liquid phase separation with decreasing temperature. In the present case the observations support the notion of a polyamorphic transition in fragile liquids that is hidden below the glass transition. A similar decoupling can be expected as a globular protein is dissolved in dilute aqueous solutions or in protic ionic liquids. © 2011 American Chemical Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=106370','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=106370"><span>Influence of Structural Properties and Kinetic Constraints on Bacillus cereus Growth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stecchini, Mara Lucia; Del Torre, Manuela; Sarais, Ileana; Saro, Onorio; Messina, Mariella; Maltini, Enrico</p> <p>1998-01-01</p> <p>The influence of structural properties and kinetic constraints on the behavior of Bacillus cereus was investigated on agar media. Dimensional criteria were used to study the growth in bacterial colonies. The architecture of the agar gel as modified by the agar content was found to influence the colony size, and smaller colonies were observed on media containing 50 to 70 g of agar liter−1. Except at low nutrient levels, colonies responded to nutrient gradients by decreasing in size the farther away they were from the nutrient source, and the decrease in colony size was influenced by the agar content. The diffusivities of glucose and a protein (insulin-like growth factor) were not affected by the gel architecture, suggesting that other factors, such as mechanical factors, could influence microbial growth in the agar systems used. Increasing the viscosity of the liquid phase of the agar media by adding polyvinylpyrrolidone resulted in a reduction in colony size. When the agar concentration was increased, the colony areas were not influenced by the viscosity of the system. PMID:9501447</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6193A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6193A"><span>Compaction Around a Spherical Inclusion in Partially Molten Rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alisic, Laura; Rhebergen, Sander; Rudge, John F.; Katz, Richard F.; Wells, Garth N.</p> <p>2015-04-01</p> <p>Conservation laws that describe the behavior of partially molten mantle rock have been established for several decades, but the associated rheology remains poorly understood. Constraints on the rheology may be obtained from recently published torsion experiments involving deformation of partially molten rock around a rigid, spherical inclusion. These experiments give rise to patterns of melt segregation that exhibit the competing effects of pressure shadows around the inclusion and melt-rich bands through the medium. Such patterns provide an opportunity to infer rheological parameters through comparison with models based on the conservation laws and constitutive relations that hypothetically govern the system. To this end, we have developed software tools using the automated code generation package FEniCS to simulate finite strain, two-phase flow around a rigid, spherical inclusion in a three-dimensional configuration that mirrors the laboratory experiments. The equations for compaction and advection-diffusion of a porous medium are solved utilising newly developed matrix preconditioning techniques. Simulations indicate that the evolution of porosity and therefore of melt distribution is predominantly controlled by the non-linear porosity-weakening exponent of the shear viscosity and the poorly known bulk viscosity. In the simulations presented here, we find that the balance of pressure shadows and melt-rich bands observed in experiments only occurs for bulk-to-shear viscosity ratio of less than about five. However, the evolution of porosity in simulations with such low bulk viscosity exceeds physical bounds at unrealistically small strain due to the unchecked, exponential growth of the porosity variations. Processes that limit or balance porosity localization will have to be incorporated in the formulation of the model to produce results that are consistent with the porosity evolution in experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26862041','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26862041"><span>Fluid friction and wall viscosity of the 1D blood flow model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria</p> <p>2016-02-29</p> <p>We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1194317-effect-bubbles-silica-dissolution-melter-feed-rheology-during-conversion-glass','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1194317-effect-bubbles-silica-dissolution-melter-feed-rheology-during-conversion-glass"><span>Effect of Bubbles and Silica Dissolution on Melter Feed Rheology during Conversion to Glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.</p> <p></p> <p>As the nuclear waste glass melter feed is converted to molten glass, the feed becomes a continuous glass-forming melt where dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the reacting melter feed is crucial for understanding the feed-to-glass conversion as it occurs during melting. We studied the melter feed viscosity during heating and correlated it with volume fractions of dissolving quartz particles and gas phase. The measurements were performed with a rotating spindle rheometer on the melter feed heated at 5 K/min, starting at several different temperatures. The effects of undissolved quartz particles,more » gas bubbles, and compositional inhomogeneity on the melter feed viscosity were determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFDA35001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFDA35001B"><span>Computational comparison of high and low viscosity micro-scale droplets splashing on a dry surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boelens, Arnout; Latka, Andrzej; de Pablo, Juan</p> <p>2015-11-01</p> <p>Depending on viscosity, a droplet splashing on a dry surface can splash immediately upon impact, a so called prompt splash, or after initially spreading on the surface, a late splash. One of the open questions in splashing is whether the mechanism behind both kinds of splashing is the same or not. Simulation results are presented comparing splashing of low viscosity ethanol with high viscosity silicone oil in air. The droplets are several hundred microns large. The simulations are 2D, and are performed using a Volume Of Fluid approach with a Finite Volume technique. The contact line is described using the Generalized Navier Boundary Condition. Both the gas phase and the liquid phase are assumed to be incompressible. The results of the simulations show good agreement with experiments. Observations that are reproduced include the effect of reduced ambient pressure suppressing splashing, and the details of liquid sheet formation and breakup. While the liquid sheet ejected in an early splash breaks up at its far edge, the liquid sheet ejected in a late splash breaks up close to the droplet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDG11006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDG11006K"><span>Elasticity modulated Electrowetting of a sessile liquid droplet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman</p> <p>2017-11-01</p> <p>The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24525069','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24525069"><span>Three-dimensional three-phase model for simulation of hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification in an oxidation ditch.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lei, Li; Ni, Jinren</p> <p>2014-04-15</p> <p>A three-dimensional three-phase fluid model, supplemented by laboratory data, was developed to simulate the hydrodynamics, oxygen mass transfer, carbon oxidation, nitrification and denitrification processes in an oxidation ditch. The model provided detailed phase information on the liquid flow field, gas hold-up distribution and sludge sedimentation. The three-phase model described water-gas, water-sludge and gas-sludge interactions. Activated sludge was taken to be in a pseudo-solid phase, comprising an initially separated solid phase that was transported and later underwent biological reactions with the surrounding liquidmedia. Floc parameters were modified to improve the sludge viscosity, sludge density, oxygen mass transfer rate, and carbon substrate uptake due to adsorption onto the activated sludge. The validation test results were in very satisfactory agreement with laboratory data on the behavior of activated sludge in an oxidation ditch. By coupling species transport and biological process models, reasonable predictions are made of: (1) the biochemical kinetics of dissolved oxygen, chemical oxygen demand (COD) and nitrogen variation, and (2) the physical kinematics of sludge sedimentation. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdWR...89...53M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdWR...89...53M"><span>Viscous and gravitational fingering in multiphase compositional and compressible flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moortgat, Joachim</p> <p>2016-03-01</p> <p>Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25961406','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25961406"><span>CO2-Controllable Foaming and Emulsification Properties of the Stearic Acid Soap Systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Wenlong; Gu, Hongyao; Zhu, Xionglu; Zhong, Yingping; Jiang, Liwen; Xu, Mengxin; Song, Aixin; Hao, Jingcheng</p> <p>2015-06-02</p> <p>Fatty acids, as a typical example of stearic acid, are a kind of cheap surfactant and have important applications. The challenging problem of industrial applications is their solubility. Herein, three organic amines-ethanolamine (EA), diethanolamine (DEA), and triethanolamine (TEA)-were used as counterions to increase the solubility of stearic acid, and the phase behaviors were investigated systematically. The phase diagrams were delineated at 25 and 50 °C, respectively. The phase-transition temperature was measured by differential scanning calorimetry (DSC) measurements, and the microstructures were vesicles and planar sheets observed by cryogenic transmission electron microscopy (cryo-TEM) observations. The apparent viscosity of the samples was determined by rheological characterizations. The values, rcmc, for the three systems were less than 30 mN·m(-1). Typical samples of bilayers used as foaming agents and emulsifiers were investigated for the foaming and emulsification assays. CO2 was introduced to change the solubility of stearic acid, inducing the transition of their surface activity and further achieving the goal of defoaming and demulsification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27111912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27111912"><span>Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Newton, Joseph M; Schofield, Desmond; Vlahopoulou, Joanna; Zhou, Yuhong</p> <p>2016-07-08</p> <p>Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction-point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069-1076, 2016. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22493899-reference-correlation-viscosity-ethane','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22493899-reference-correlation-viscosity-ethane"><span>Reference Correlation for the Viscosity of Ethane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vogel, Eckhard, E-mail: eckhard.vogel@uni-rostock.de; Span, Roland; Herrmann, Sebastian</p> <p>2015-12-15</p> <p>A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρ{sub c} and of the reciprocal reduced temperature τ = T{sub c}/T (ρ{sub c}—critical density and T{sub c}—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earliermore » viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor–liquid phase boundary, and for the near-critical region.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28197614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28197614"><span>Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rothfuss, Nicholas E; Petters, Markus D</p> <p>2017-03-01</p> <p>Atmospheric aerosols can exist in amorphous semi-solid or glassy phase states. These states are determined by the temperature (T) and relative humidity (RH). New measurements of viscosity for amorphous semi-solid nanometer size sucrose particles as a function of T and RH are reported. Viscosity is measured by inducing coagulation between two particles and probing the thermodynamic states that induce the particle to relax into a sphere. It is shown that the glass transition temperature can be obtained by extrapolation to 10 12 Pa s from the measured temperature-dependent viscosity in the 10 6 to 10 7 Pa s range. The experimental methodology was refined to allow isothermal probing of RH dependence and to increase the range of temperatures over which the dry temperature dependence can be studied. Several experiments where one monomer was sodium dodecyl sulfate (SDS), which remains solid at high RH, are also reported. These sucrose-SDS dimers were observed to relax into a sphere at T and RH similar to those observed in sucrose-sucrose dimers, suggesting that amorphous sucrose will flow over an insoluble particle at a viscosity similar to that characteristic of coalescence between two sucrose particles. Possible physical and analytical implications of this observation are considered. The data reported here suggest that semi-solid viscosity between 10 4 and 10 12 Pa s can be modelled over a wide range of T and RH using an adapted Vogel-Fulcher-Tammann equation and the Gordon-Taylor mixing rule. Sensitivity of modelled viscosity to variations in dry glass transition temperature, Gordon-Taylor constant, and aerosol hygroscopicity are explored, along with implications for atmospheric processes such as ice nucleation of glassy organic aerosols in the upper free troposphere. The reported measurement and modelling framework provides a template for characterizing the phase diagram of other amorphous aerosol systems, including secondary organic aerosols.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........55B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........55B"><span>Using Ultrasonic Speckle Velocimetry to Detect Fluid Instabilities in a Surfactant Solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bice, Jason E.</p> <p></p> <p>Rheometry is a leading technology used to define material properties of multi-phase viscoelastic fluid-like materials, such as the shear modulus and viscosity. However, traditional rheometry relies on a mechanical response from a rotating or oscillating rotor of various geometries which does not allow for any spatial or temporal quantification of the material characteristics. Further, the setup operates under the assumption of a uniform and homogeneous flow. Thus, only qualitative deductions can be realized when a complex fluid displays inhomogeneous behavior, such as wall slip or shear banding. Due to this lack of capability, non-intrusive imaging is required to define and quantify behavior that occurs in a complex fluid under shear conditions. This thesis outlines the design, fabrication, and experimental examples of an adapted ultrasonic speckle velocimetry device, which enables spatial and temporal resolution of inhomogeneous fluid behavior using ultrasound acoustics. For the experimental example, a commercial surfactant mixture (hair shampoo) was tested to show the utility and precision that ultrasonic speckle velocimetry possesses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyE...96...85H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyE...96...85H"><span>A comparison of performance of several artificial intelligence methods for predicting the dynamic viscosity of TiO2/SAE 50 nano-lubricant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemmat Esfe, Mohammad; Tatar, Afshin; Ahangar, Mohammad Reza Hassani; Rostamian, Hossein</p> <p>2018-02-01</p> <p>Since the conventional thermal fluids such as water, oil, and ethylene glycol have poor thermal properties, the tiny solid particles are added to these fluids to increase their heat transfer improvement. As viscosity determines the rheological behavior of a fluid, studying the parameters affecting the viscosity is crucial. Since the experimental measurement of viscosity is expensive and time consuming, predicting this parameter is the apt method. In this work, three artificial intelligence methods containing Genetic Algorithm-Radial Basis Function Neural Networks (GA-RBF), Least Square Support Vector Machine (LS-SVM) and Gene Expression Programming (GEP) were applied to predict the viscosity of TiO2/SAE 50 nano-lubricant with Non-Newtonian power-law behavior using experimental data. The correlation factor (R2), Average Absolute Relative Deviation (AARD), Root Mean Square Error (RMSE), and Margin of Deviation were employed to investigate the accuracy of the proposed models. RMSE values of 0.58, 1.28, and 6.59 and R2 values of 0.99998, 0.99991, and 0.99777 reveal the accuracy of the proposed models for respective GA-RBF, CSA-LSSVM, and GEP methods. Among the developed models, the GA-RBF shows the best accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011876','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011876"><span>On the relationship between tectonic plates and thermal mantle plume morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lenardic, A.; Kaula, W. M.</p> <p>1993-01-01</p> <p>Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3920698','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3920698"><span>Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari azar, Zahra</p> <p>2013-01-01</p> <p>In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween®80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams. PMID:24523740</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24523740','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24523740"><span>Formulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mortazavi, Seyed Alireza; Pishrochi, Sanaz; Jafari Azar, Zahra</p> <p>2013-01-01</p> <p>In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. In released studies, static Franz diffusion cells mounted with dialysis membrane were used. Sampling was conducted every 3 h at room temperature over a period of 24 h. The amount of released drug was measured with UV-spectrophotometer and the percentage of drug released was calculated. Based on the results obtained, the oil phase concentration had a proportional effect on particle size which can consequently influence on drug release. The particle size and the amount of released drug were affected by the applied surfactants. The components of the optimized microemulsion formulation were 15% olive oil, 12% propylene glycol (as co-surfactant), 33% Tween(®)80 (as surfactant) and 40% distilled water, which was tested for viscosity and rheological behavior. The prepared tretinoin microemulsion showed pseudoplastic-thixotropic behavior. The profile of drug release follows zero order kinetics. The optimized tretinoin microemulsion showed enhanced in-vitro release profile compared to the commercial gels and creams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6405690-turbulence-contributor-intermediate-energy-storage-during-solar-flares','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6405690-turbulence-contributor-intermediate-energy-storage-during-solar-flares"><span>Turbulence as a contributor to intermediate energy storage during solar flares</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bornmann, P.L.</p> <p></p> <p>Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5,more » 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases. 19 references.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870044569&hterms=XRP&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DXRP','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870044569&hterms=XRP&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DXRP"><span>Turbulence as a contributor to intermediate energy storage during solar flares</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bornmann, P. L.</p> <p>1987-01-01</p> <p>Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6839837-turbulence-contributor-intermediate-energy-storage-during-solar-flares','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6839837-turbulence-contributor-intermediate-energy-storage-during-solar-flares"><span>Turbulence as a contributor to intermediate energy storage during solar flares</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bornmann, P.L.</p> <p></p> <p>Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller-scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady-state, homogeneous, fluid turbulence in a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-ray Polychromator (XRP) instrument on Solar Maximum Mission (SMM) during the 1980 Novembermore » 5 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energetics and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may too rapid to account for the entire time delay between the impulsive and gradual phases.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987ApJ...313..449B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987ApJ...313..449B"><span>Turbulence as a contributor to intermediate energy storage during solar flares</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bornmann, P. L.</p> <p>1987-02-01</p> <p>Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA620917','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA620917"><span>Evaluation of Environmentally Acceptable Lubricants (EALS) for Dams Managed by the U.S. Army Corps of Engineers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-08-01</p> <p>power, and seal against dirt, dust, and water. Lubricants work by serving as a lower viscosity material between moving surfaces. The wearing surfaces...aluminum, clay , polyurea, sodium, and calcium are most common. Complex thickeners can be composed of metal soaps mixed with low-molecular-weight organic...Polyalkyl DAE N Polyest Rape Seed Viscosity Temperature Behavior (VI) 4 2 2 2 2 2 Low Temperature Behavior (Pourpoint) 5 1 3 1 2 3 Liquid Range 4 2 3 1 2 3</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3578180','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3578180"><span>Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Choi, Hyo-Jick; Bondy, Brian J.; Yoo, Dae-Goon; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.</p> <p>2012-01-01</p> <p>Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40 – 50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability. PMID:23246470</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrMat...4...32Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrMat...4...32Z"><span>Topological Ordering and Viscosity in the Glassy Ge-Se System: The Search for a Structural or Dynamical Signature of the Intermediate Phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeidler, Anita; Salmon, Philip S.; Whittaker, Dean A. J.; Pizzey, Keiron J.; Hannon, Alex C.</p> <p>2017-11-01</p> <p>The topological ordering of the network structure in vitreous Ge_xSe_{1-x} was investigated across most of the glass-forming region (0 ≤ x ≤ 0.4) by using high-resolution neutron diffraction to measure the Bhatia-Thornton number-number partial structure factor. This approach gives access to the composition dependence of the mean coordination number \\bar{n} and correlation lengths associated with the network ordering. The thermal properties of the samples were also measured by using temperature-modulated differential scanning calorimetry. The results do not point to a structural origin of the so-called intermediate phase, which in our work is indicated for the composition range 0.175(8) ≤ x ≤ 0.235(8) by a vanishingly-small non-reversing enthalpy near the glass transition. The midpoint of this range coincides with the mean-field expectation of a floppy-to-rigid transition at x = 0.20. The composition dependence of the liquid viscosity, as taken from the literature, was also investigated to look for a dynamical origin of the intermediate phase, using the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) model to estimate the viscosity at the liquidus temperature. The evidence points to a maximum in the viscosity at the liquidus temperature, and a minimum in the fragility index, for the range 0.20 ≤ x ≤ 0.22. The utility of the intermediate phase as a predictor of the material properties in network glass-forming systems is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2349C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2349C"><span>Seasonal Surface Loading Helps Constrain Short-Term Viscosity of the Asthenosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clarke, Peter J.</p> <p>2018-03-01</p> <p>Earth materials may display a range of rheological behaviors at different depths and over different timescales. The situation is particularly complex for postseismic relaxation in the uppermost mantle and lower crust, where it can be difficult to distinguish widespread viscous behavior from earthquake afterslip or localized deformation in shear zones over timescales of weeks to decades. By analyzing geodetic observations of seasonal surface mass loads and Earth's surface deformation in response, Chanard et al. (2018, https://doi.org/10.1002/2017GL076451) have established a globally averaged lower bound of 5 × 1017 Pa s for the transient viscosity of a Burgers-rheology asthenosphere. This implies that lower viscosities inferred by some studies of postseismic relaxation must result from local departures from this global value, or be an artifact of additional afterslip or shear zone deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MTDM..tmp...51Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MTDM..tmp...51Y"><span>Fractional time-dependent apparent viscosity model for semisolid foodstuffs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Xu; Chen, Wen; Sun, HongGuang</p> <p>2017-10-01</p> <p>The difficulty in the description of thixotropic behaviors in semisolid foodstuffs is the time dependent nature of apparent viscosity under constant shear rate. In this study, we propose a novel theoretical model via fractional derivative to address the high demand by industries. The present model adopts the critical parameter of fractional derivative order α to describe the corresponding time-dependent thixotropic behavior. More interestingly, the parameter α provides a quantitative insight into discriminating foodstuffs. With the re-exploration of three groups of experimental data (tehineh, balangu, and natillas), the proposed methodology is validated in good applicability and efficiency. The results show that the present fractional apparent viscosity model performs successfully for tested foodstuffs in the shear rate range of 50-150 s^{ - 1}. The fractional order α decreases with the increase of temperature at low temperature, below 50 °C, but increases with growing shear rate. While the ideal initial viscosity k decreases with the increase of temperature, shear rate, and ingredient content. It is observed that the magnitude of α is capable of characterizing the thixotropy of semisolid foodstuffs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyE...92...47A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyE...92...47A"><span>Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahmadi Nadooshan, Afshin; Hemmat Esfe, Mohammad; Afrand, Masoud</p> <p>2017-08-01</p> <p>In the present paper, the dynamic viscosity of 10W40 lubricant containing hybrid nano-materials has been examined. Hybrid nano-materials were composed of 90% of silica (SiO2) with 20-30 nm mean particle size and 10% of multi-walled carbon nanotubes (MWCNTs) with inner diameter of 2-6 nm and outer diameter of 5-20 nm. Nano-lubricant samples were prepared by two-step method with solid volume fractions of 0.05%, 0.1%, 0.25%, 0.5%, 0.75% and 1%. Dynamic viscosity of the samples was measured at temperatures between 5 and 55 °C and at shear rates of 666.5 s-1 up to 11,997 s-1. Experimental results indicated that the nano-lubricant had non-Newtonian behavior at all temperatures, while 10w40 oil was non-Newtonian only at high temperatures. With the use of the curve fitting technique of experimental data, power law and consistency indexes were obtained; furthermore, these coefficients were assessed by shear stress and viscosity diagram.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51.1347N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51.1347N"><span>Determining the Viscosity Coefficient for Viscoelastic Wave Propagation in Rock Bars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niu, Leilei; Zhu, Wancheng; Li, Shaohua; Guan, Kai</p> <p>2018-05-01</p> <p>Rocks with microdefects exhibit viscoelastic behavior during stress wave propagation. The viscosity coefficient of the wave can be used to characterize the attenuation as the wave propagates in rock. In this study, a long artificial bar with a readily adjustable viscosity coefficient was fabricated to investigate stress wave attenuation. The viscoelastic behavior of the artificial bar under dynamic loading was investigated, and the initial viscoelastic coefficient was obtained based on the amplitude attenuation of the incident harmonic wave. A one-dimensional wave propagation program was compiled to reproduce the time history of the stress wave measured during the experiments, and the program was well fitted to the Kelvin-Voigt model. The attenuation and dispersion of the stress wave in long artificial viscoelastic bars were quantified to accurately determine the viscoelastic coefficient. Finally, the method used to determine the viscoelastic coefficient of a long artificial bar based on the experiments and numerical simulations was extended to determine the viscoelastic coefficient of a short rock bar. This study provides a new method of determining the viscosity coefficient of rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8682E..1LS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8682E..1LS"><span>Study of swelling behavior in ArF resist during development by the QCM method (3): observations of swelling layer elastic modulus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sekiguchi, Atsushi</p> <p>2013-03-01</p> <p>The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29f7102F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29f7102F"><span>Effect of viscosity on droplet-droplet collisional interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finotello, Giulia; Padding, Johan T.; Deen, Niels G.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.</p> <p>2017-06-01</p> <p>A complete knowledge of the effect of droplet viscosity on droplet-droplet collision outcomes is essential for industrial processes such as spray drying. When droplets with dispersed solids are dried, the apparent viscosity of the dispersed phase increases by many orders of magnitude, which drastically changes the outcome of a droplet-droplet collision. However, the effect of viscosity on the droplet collision regime boundaries demarcating coalescence and reflexive and stretching separation is still not entirely understood and a general model for collision outcome boundaries is not available. In this work, the effect of viscosity on the droplet-droplet collision outcome is studied using direct numerical simulations employing the volume of fluid method. The role of viscous energy dissipation is analysed in collisions of droplets with different sizes and different physical properties. From the simulations results, a general phenomenological model depending on the capillary number (Ca, accounting for viscosity), the impact parameter (B), the Weber number (We), and the size ratio (Δ) is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CP....336..171M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CP....336..171M"><span>Stereoisomeric effects on dynamic viscosity versus pressure and temperature for the system cis- + trans-decalin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miyake, Yasufumi; Boned, Christian; Baylaucq, Antoine; Bessières, David; Zéberg-Mikkelsen, Claus K.; Galliéro, Guillaume; Ushiki, Hideharu</p> <p>2007-07-01</p> <p>In order to study the influence of stereoisomeric effects on the dynamic viscosity, an extensive experimental study of the viscosity of the binary system composed of the two stereoisomeric molecular forms of decalin - cis and trans - has been carried out for five different mixtures at three temperatures (303.15, 323.15 and 343.15) K and six isobars up to 100 MPa with a falling-body viscometer (a total of 90 points). The experimental relative uncertainty is estimated to be 2%. The variations of dynamic viscosity versus composition are discussed with respect to their behavior due to stereoisomerism. Four different models with a physical and theoretical background are studied in order to investigate how they take the stereoisomeric effect into account through their required model parameters. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. Overall, a satisfactory representation of the viscosity of this binary system is found for the different models within the considered ( T, p) range taken into account their simplicity. All the models are able to distinguish between the two stereoisomeric decalin compounds. Further, based on the analysis of the model parameters performed on the pure compounds, it has been found that the use of simple mixing rules without introducing any binary interaction parameters are sufficient in order to predict the viscosity of cis + trans-decalin mixtures with the same accuracy in comparison with the experimental values as obtained for the pure compounds. In addition to these models, a semi-empirical self-referencing model and the simple mixing laws of Grunberg-Nissan and Katti-Chaudhri are also applied in the representation of the viscosity behavior of these systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040073496&hterms=nucleation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnucleation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040073496&hterms=nucleation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnucleation"><span>Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystals and Polytetrehedral-Phase-Forming Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>By investigating the properties of quasicrystals and quasicrystal-forming liquid alloys, we may determine the role of ordering of the liquid phase in the formation of quasicrystals, leading to a better fundamental understanding of both the quasicrystal and the liquid. A quasicrystal is solid characterized by a symmetric but non-periodic arrangement of atoms, usually in the form of an icosahedron (12 atoms, 20 triangular faces). It is theorized that the short-range order in liquids takes this same form. The degree of ordering depends on the temperature of the liquid, and affects many of the liquid s properties, including specific heat, viscosity, and electrical resistivity. The MSFC role in this project includes solidification studies, phase diagram determination, and thermophysical property measurements on the liquid quasicrystal-forming alloys, all by electrostatic levitation (ESL). The viscosity of liquid quasicrystal-forming alloys is measured by the oscillating drop method, both in the stable and undercooled liquid state. The specific heat of solid, undercooled liquid, and stable liquid are measured by the radiative cooling rate of the droplets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPCRD..47a3104H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPCRD..47a3104H"><span>New Formulation for the Viscosity of n-Butane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrmann, Sebastian; Vogel, Eckhard</p> <p>2018-03-01</p> <p>A new viscosity formulation for n-butane, based on the residual quantity concept, uses the reference equation of state by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 929 (2006)] and is valid in the fluid region from the triple point to 650 K and to 100 MPa. The contributions for the zero-density viscosity and for the initial-density dependence were separately developed, whereas those for the critical enhancement and for the higher-density terms were pretreated. All contributions were given as a function of the reciprocal reduced temperature τ, while the last two contributions were correlated as a function of τ and of the reduced density δ. The different contributions were based on specific primary data sets, whose evaluation and choice were discussed in detail. The final formulation incorporates 13 coefficients derived employing a state-of-the-art linear optimization algorithm. The viscosity at low pressures p ≤ 0.2 MPa is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 293 ≤ T/K ≤ 626. The expanded uncertainty in the vapor phase at subcritical temperatures T ≥ 298 K as well as in the supercritical thermodynamic region T ≤ 448 K at pressures p ≤ 30 MPa is estimated to be 1.5%. It is raised to 4.0% in regions where only less reliable primary data sets are available and to 6.0% in ranges without any primary data, but in which the equation of state is valid. A weakness of the reference equation of state in the near-critical region prevents estimation of the expanded uncertainty in this region. Viscosity tables for the new formulation are presented in Appendix B for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19905451','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19905451"><span>Viscous properties of isotropic fluids composed of linear molecules: departure from the classical Navier-Stokes theory in nano-confined geometries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hansen, J S; Daivis, Peter J; Todd, B D</p> <p>2009-10-01</p> <p>In this paper we present equilibrium molecular-dynamics results for the shear, rotational, and spin viscosities for fluids composed of linear molecules. The density dependence of the shear viscosity follows a stretched exponential function, whereas the rotational viscosity and the spin viscosities show approximately power-law dependencies. The frequency-dependent shear and spin viscosities are also studied. It is found that viscoelastic behavior is first manifested in the shear viscosity and that the real part of the spin viscosities features a maximum for nonzero frequency. The calculated transport coefficients are used together with the extended Navier-Stokes equations to investigate the effect of the coupling between the intrinsic angular momentum and linear momentum for highly confined fluids. Both steady and oscillatory flows are studied. It is shown, for example, that the fluid flow rate for Poiseuille flow is reduced by up to 10% in a 2 nm channel for a buta-triene fluid at density 236 kg m(-3) and temperature 306 K. The coupling effect may, therefore, become very important for nanofluidic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyE...99..285S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyE...99..285S"><span>An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saeedi, Amir Hussein; Akbari, Mohammad; Toghraie, Davood</p> <p>2018-05-01</p> <p>In this paper, the nanofluid dynamic viscosity composed of CeO2- Ethylene Glycol is examined within 25-50 °C with 5 °C intervals and at six volume fractions (0.05, 0.1, 0.2, 0.4, 0.8 and 1.2%) experimentally. The nanofluid was exposed to ultrasound waves for various durations to study the effect of this parameter on dynamic viscosity of the fluid. We found that at a constant temperature, nanofluid viscosity increases with increases in the volume fraction of the nanoparticles. Also, at a given volume fraction, nanofluid viscosity decreases when temperature is increased. Maximum increase in nanofluid viscosity compared to the base fluid viscosity occurs at 25 °C and volume fraction of 1.2%. It can be inferred that the obtained mathematical relationship is a suitable predicting model for estimating dynamic viscosity of CeO2- Ethylene Glycol (EG) at different volume fractions and temperatures and its results are consistent to laboratory results in the set volume fraction and temperature ranges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25749106','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25749106"><span>Intrinsic viscosity and rheological properties of natural and substituted guar gums in seawater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Shibin; He, Le; Guo, Jianchun; Zhao, Jinzhou; Tang, Hongbiao</p> <p>2015-05-01</p> <p>The intrinsic viscosity and rheological properties of guar gum (GG), hydroxypropyl guar (HPG) and carboxymethyl guar (CMG) in seawater and the effects of shear rate, concentration, temperature and pH on these properties were investigated. An intrinsic viscosity-increasing effect was observed with GG and HPG in seawater (SW) compared to deionized water (DW), whereas the intrinsic viscosity of CMG in seawater was much lower than that in DW due to a screening effect that reduced the repulsion between the polymer chains. Regardless of the functional groups, all sample solutions was well characterized by a modified Cross model that exhibited the transition from Newtonian to pseudoplastic in the low shear rate range at the concentrations of interest to industries, and their viscosity increased with the increase in their concentration but decreased with the increase in temperature. In contrast to nonionic GG or HPG, anionic CMG had a slightly decreased viscosity property in SW, exhibiting polyelectrolyte viscosity behavior. The α value in the zero-shear rate viscosity vs. concentration power-law equation for the samples gave the order of CMG>HPG>GG while the SW solution of CMG had the lowest viscous flow activation energy and exhibited a strong pH-dependent viscosity by a different shear rate. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3576527','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3576527"><span>Do Clustering Monoclonal Antibody Solutions Really Have a Concentration Dependence of Viscosity?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pathak, Jai A.; Sologuren, Rumi R.; Narwal, Rojaramani</p> <p>2013-01-01</p> <p>Protein solution rheology data in the biophysics literature have incompletely identified factors that govern hydrodynamics. Whereas spontaneous protein adsorption at the air/water (A/W) interface increases the apparent viscosity of surfactant-free globular protein solutions, it is demonstrated here that irreversible clusters also increase system viscosity in the zero shear limit. Solution rheology measured with double gap geometry in a stress-controlled rheometer on a surfactant-free Immunoglobulin solution demonstrated that both irreversible clusters and the A/W interface increased the apparent low shear rate viscosity. Interfacial shear rheology data showed that the A/W interface yields, i.e., shows solid-like behavior. The A/W interface contribution was smaller, yet nonnegligible, in double gap compared to cone-plate geometry. Apparent nonmonotonic composition dependence of viscosity at low shear rates due to irreversible (nonequilibrium) clusters was resolved by filtration to recover a monotonically increasing viscosity-concentration curve, as expected. Although smaller equilibrium clusters also existed, their size and effective volume fraction were unaffected by filtration, rendering their contribution to viscosity invariant. Surfactant-free antibody systems containing clusters have complex hydrodynamic response, reflecting distinct bulk and interface-adsorbed protein as well as irreversible cluster contributions. Literature models for solution viscosity lack the appropriate physics to describe the bulk shear viscosity of unstable surfactant-free antibody solutions. PMID:23442970</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4671755','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4671755"><span>Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A.</p> <p>2015-01-01</p> <p>A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite. PMID:26641651</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26641651','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26641651"><span>Investigation of Embedded Si/C System Exposed to a Hybrid Reaction of Centrifugal-Assisted Thermite Method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahmoodian, Reza; Yahya, Rosiyah; Dabbagh, Ali; Hamdi, Mohd; Hassan, Mohsen A</p> <p>2015-01-01</p> <p>A novel method is proposed to study the behavior and phase formation of a Si+C compacted pellet under centrifugal acceleration in a hybrid reaction. Si+C as elemental mixture in the form of a pellet is embedded in a centrifugal tube. The pellet assembly and tube are exposed to the sudden thermal energy of a thermite reaction resulted in a hybrid reaction. The hybrid reaction of thermite and Si+C produced unique phases. X-ray diffraction pattern (XRD) as well as microstructural and elemental analyses are then investigated. XRD pattern showed formation of materials with possible electronic and magnetic properties. The cooling rate and the molten particle viscosity mathematical model of the process are meant to assist in understanding the physical and chemical phenomena took place during and after reaction. The results analysis revealed that up to 85% of materials converted into secondary products as ceramics-matrix composite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvB..84j4203L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvB..84j4203L"><span>Impact of medium-range order on the glass transition in liquid Ni-Si alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lü, Y. J.; Entel, P.</p> <p>2011-09-01</p> <p>We study the thermophysical properties and structure of liquid Ni-Si alloys using molecular dynamics simulations. The liquid Ni-5% and 10%Si alloys crystallize to form the face-centered cubic (Ni) at 900 and 850 K, respectively, and the glass transitions take place in Ni-20% and 25%Si alloys at about 700 K. The temperature-dependent self-diffusion coefficients and viscosities exhibit more pronounced non-Arrhenius behavior with the increase of Si content before phase transitions, indicating the enhanced glass-forming ability. These appearances of thermodynamic properties and phase transitions are found to closely relate to the medium-range order clusters with the defective face-centered cubic structure characterized by both local translational and orientational order. This locally ordered structure tends to be destroyed by the addition of more Si atoms, resulting in a delay of nucleation and even glass transition instead.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26286186','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26286186"><span>Viscosity Analysis of Dual Variable Domain Immunoglobulin Protein Solutions: Role of Size, Electroviscous Effect and Protein-Protein Interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raut, Ashlesha S; Kalonia, Devendra S</p> <p>2016-01-01</p> <p>Increased solution viscosity results in difficulties in manufacturing and delivery of therapeutic protein formulations, increasing both the time and production costs, and leading to patient inconvenience. The solution viscosity is affected by the molecular properties of both the solute and the solvent. The purpose of this work was to investigate the effect of size, charge and protein-protein interactions on the viscosity of Dual Variable Domain Immunoglobulin (DVD-Ig(TM)) protein solutions. The effect of size of the protein molecule on solution viscosity was investigated by measuring intrinsic viscosity and excluded volume calculations for monoclonal antibody (mAb) and DVD-Ig(TM) protein solutions. The role of the electrostatic charge resulting in electroviscous effects for DVD-Ig(TM) protein was assessed by measuring zeta potential. Light scattering measurements were performed to detect protein-protein interactions affecting solution viscosity. DVD-Ig(TM) protein exhibited significantly higher viscosity compared to mAb. Intrinsic viscosity and excluded volume calculations indicated that the size of the molecule affects viscosity significantly at higher concentrations, while the effect was minimal at intermediate concentrations. Electroviscous contribution to the viscosity of DVD-Ig(TM) protein varied depending on the presence or absence of ions in the solution. In buffered solutions, negative k D and B 2 values indicated the presence of attractive interactions which resulted in high viscosity for DVD-Ig(TM) protein at certain pH and ionic strength conditions. Results show that more than one factor contributes to the increased viscosity of DVD-Ig(TM) protein and interplay of these factors modulates the overall viscosity behavior of the solution, especially at higher concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2328C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2328C"><span>Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chanard, Kristel; Fleitout, Luce; Calais, Eric; Barbot, Sylvain; Avouac, Jean-Philippe</p> <p>2018-03-01</p> <p>We discuss the constraints on short-term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300-4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 1017 Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1203926-effect-foaming-silica-dissolution-melter-feed-rheology-during-conversion-glass','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1203926-effect-foaming-silica-dissolution-melter-feed-rheology-during-conversion-glass"><span>The Effect of Foaming and Silica Dissolution on Melter Feed Rheology during Conversion to Glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marcial, Jose; Chun, Jaehun; Hrma, Pavel R.</p> <p></p> <p>As the nuclear waste glass melter feed is converted to molten glass, the feed eventually becomes a continuous glass-forming melt in which dissolving refractory constituents are suspended together with numerous gas bubbles. Knowledge of mechanical properties of the melter feed is crucial for understanding the feed-to-glass conversion as it occurs in the cold cap. We measured the viscosity during heating of the feed and correlated it with the independently determined volume fractions of dissolving quartz particles and the gas phase. The measurement was performed with a rotating spindle rheometer on the melter feed heated at 5 K/min starting at severalmore » different temperatures. The effect of quartz particles, gas bubbles, and compositional inhomogeneity on the glass-forming melt viscosity was determined by fitting a linear relationship between log viscosity and volume fractions of suspended phases to data.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1017243','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1017243"><span>Efficient Multiscale Computation with Improved Momentum Flux Coupling via Operator-Splitting and Probabilistic Uncertainty Quantification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-08-23</p> <p>Different percentages of clay (10 to 30%) and sand (35 to 55%) have been used to represent various flow concentrations (Table 1). Dynamic viscosity of the... viscosity , was adopted as the wall boundary treatment method. 2.2 Physical Domain The domain consists of a 7.0m long flume, which has an inclination of...the shear stress, μapp is the apparent viscosity , K is the flow consistency index, n is the flow behavior index, and γ is the shear rate, which is</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001A%26A...368..325C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001A%26A...368..325C"><span>Radiating gravitational collapse with shearing motion and bulk viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chan, R.</p> <p>2001-03-01</p> <p>A model is proposed of a collapsing radiating star consisting of a shearing fluid with bulk viscosity undergoing radial heat flow with outgoing radiation. The pressure of the star, at the beginning of the collapse, is isotropic but due to the presence of the bulk viscosity the pressure becomes more and more anisotropic. The behavior of the density, pressure, mass, luminosity, the effective adiabatic index and the Kretschmann scalar is analyzed. Our work is compared to the case of a collapsing shearing fluid of a previous model, for a star with 6 Msun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARK53010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARK53010S"><span>The Larger the Viscosity, the Higher the Bounce</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stern, Menachem; Klein Schaarsberg, Martin; Peters, Ivo; Dodge, Kevin; Zhang, Wendy; Jaeger, Heinrich</p> <p></p> <p>A low-viscosity liquid drop can bounce upon impact onto a solid. A high-viscosity drop typically just flattens, i.e., it splats. Surprisingly, our experiments with a droplet made of densely packed glass beads in silicone oil display the opposite behavior: the low-viscosity oil suspension drop splats. The high-viscosity oil suspension bounces. Increasing solvent viscosity increases the rebound energy. To gain insight into the underlying mechanism, we model the suspension as densely packed elastic spheres experiencing viscous lubrication drag between neighbors. The model reproduces the observed trends. Plots of elastic compression and drag experienced by the particles show that rebounds are made possible by (1) a fraction of the impact energy being stored during initial contact via elastic compression, (2) a rapid broadening of local lubrication drag interactions at the initial impact site into a spatially uniform upward force throughout the drop. Including finite wall drag due to the presence of ambient air into the numerical model diminishes and eventually cuts off the rebound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1376097-phenomenological-consequences-enhanced-bulk-viscosity-near-qcd-critical-point','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1376097-phenomenological-consequences-enhanced-bulk-viscosity-near-qcd-critical-point"><span>Phenomenological consequences of enhanced bulk viscosity near the QCD critical point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi</p> <p>2017-03-06</p> <p>In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24731684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24731684"><span>Dielectric analysis of depth dependent curing behavior of dental resin composites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika</p> <p>2014-06-01</p> <p>The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2d3102S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2d3102S"><span>Geometry-dependent viscosity reduction in sheared active fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Słomka, Jonasz; Dunkel, Jörn</p> <p>2017-04-01</p> <p>We investigate flow pattern formation and viscosity reduction mechanisms in active fluids by studying a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, geometry-dependent viscosity reduction, and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of nonequilibrium fluids by tuning confinement geometry and pattern scale selection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OAP....26..294P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OAP....26..294P"><span>Endothelial Dysfunction and Blood Viscosity Inpatients with Unstable Angina in Different Periods of a Solar Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.</p> <p></p> <p>The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008Litho.102...12O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008Litho.102...12O"><span>Dynamics of cratons in an evolving mantle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, C. J.; Lenardic, A.; Griffin, W. L.; O'Reilly, Suzanne Y.</p> <p>2008-04-01</p> <p>The tectonic quiescence of cratons on a tectonically active planet has been attributed to their physical properties such as buoyancy, viscosity, and yield strength. Previous modelling has shown the conditions under which cratons may be stable for the present, but cast doubt on how they survived in a more energetic mantle of the past. Here we incorporate an endothermic phase change at 670 km, and a depth-dependent viscosity structure consistent with post-glacial rebound and geoid modelling, to simulate the dynamics of cratons in an "Earth-like" convecting system. We find that cratons are unconditionally stable in such systems for plausible ranges of viscosity ratios between the root and asthenosphere (50-150) and the root/oceanic lithosphere yield strength ratio (5-30). Realistic mantle viscosity structures have limited effect on the average background cratonic stress state, but do buffer cratons from extreme stress excursions. An endothermic phase change at 670 km introduces an additional time-dependence into the system, with slab breakthrough into the lower mantle associated with 2-3 fold stress increases at the surface. Under Precambrian mantle conditions, however, the dominant effect is not more violent mantle avalanches, or faster mantle/plate velocities, but rather the drastic viscosity drop which results from hotter mantle conditions in the past. This results in a large decrease in the cratonic stress field, and promotes craton survival under the evolving mantle conditions of the early Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AIPC.1375..240M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AIPC.1375..240M"><span>Phase Inversion of EPDM/PP Blends: Effect of Viscosity Ratio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Machado, Ana Vera; Antunes, Carla Filipa; van Duin, Martin</p> <p>2011-07-01</p> <p>EPDM/PP blends and TPVs with and without crosslinking, respectively, were prepared, in a batch mixer, using three different EPDM rubbers. EPDM/PP based TPVs were dynamic vulcanised using the resol/SnCl2 system. Samples were collected along the time in order to get information on the morphology evolution and crosslinking density during dynamic vulcanisation. The morphology was studied by SEM and the crosslink density by gel content. In the case of low viscosity EPDMs, crosslinking of the EPDM phase was retarded due to its low crosslinking efficiency. This delay on crosslinking reaction enables the observation of the various stages of the morphological mechanism that takes place during dynamic vulcanisation. It could be observed that phase inversion takes place via lamellar mechanism. More detailed insight on phase inversion mechanism during dynamic vulcanisation was accomplished.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991PhDT........40B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991PhDT........40B"><span>Determination of cohesive and normal stresses and simulation of fluidization using kinetic theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bezbaruah, R.</p> <p>1991-08-01</p> <p>The general objective of this study is focused on the solid stresses involved in gas-solid flow. These stresses are generally included in the momentum conservation equations, essentially for stability and to prevent particles from collapsing to unreasonably low values of gas volume fraction. The first half of this work undertakes the measurement of the stresses in various powders by direct means, while the second part uses a newly developed kinetic theory constitutive equation for stress to predict the flow and also the solid's viscosity in a CFB. The cohesive or tensile stress found to exist in some classes of powders is measured using a Cohetester, based on which a cohesive force model is derived, which is sensitive to the characteristic properties of the powder material. The normal stress is measured using a Consolidometer, and the powder solid's modulus is obtained as a function of the volume fraction. The solid's modulus is seen to vary with particle size and particle type, with the smaller size particles being more compressible. The simulation of flow in the CFB using Gidaspow's (1991) extension of Ding's (1990) kinetic theory model to dilute phase flow, predicts realistic values of solids' viscosity that are comparable to viscosities obtained experimentally by Miller (1991). However, to obtain a match between the two, the value of the restitution coefficient has to be close to unity. The flow behavior showed periodic oscillations of flow (turbulence) as seen in a real system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1414086-ionic-transport-high-energy-density-matter','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1414086-ionic-transport-high-energy-density-matter"><span>Ionic transport in high-energy-density matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Stanton, Liam G.; Murillo, Michael S.</p> <p>2016-04-08</p> <p>Ionic transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. Here, we developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. These results have been validated with molecular-dynamics simulations for self-diffusion, interdiffusion, viscosity, and thermal conductivity. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. By using a velocity-dependent screening model, we examine the role of dynamical screening in transport. Implications of thesemore » results for Coulomb logarithm approaches are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..95b4901P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..95b4901P"><span>Determining transport coefficients for a microscopic simulation of a hadron gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pratt, Scott; Baez, Alexander; Kim, Jane</p> <p>2017-02-01</p> <p>Quark-gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, T ˜155 MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results are consistent with Kubo relations if viscous relaxation times are twice the collision time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........22O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........22O"><span>Effects of Phase Transformations and Dynamic Material Strength on Hydrodynamic Instability Evolution in Metals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Opie, Saul</p> <p></p> <p>Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhyE...90..194H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhyE...90..194H"><span>Experimental investigation, model development and sensitivity analysis of rheological behavior of ZnO/10W40 nano-lubricants for automotive applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hemmat Esfe, Mohammad; Saedodin, Seyfolah; Rejvani, Mousa; Shahram, Jalal</p> <p>2017-06-01</p> <p>In the present study, rheological behavior of ZnO/10W40 nano-lubricant is investigated by an experimental approach. Firstly, ZnO nanoparticles of 10-30 nm were dispersed in 10W40 engine oil with solid volume fractions of 0.25-2%, then the viscosity of the composed nano-lubricant was measured in temperature ranges of 5-55 °C and in various shear rates. From analyzing the results, it was revealed that both of the base oil and nano-lubricants are non-Newtonian fluids which exhibit shear thinning behavior. Sensitivity of viscosity to the solid volume fraction enhancement was calculated by a new correlation which was proposed in terms of solid volume fraction and temperature. In order to attain an accurate model by which experimental data are predicted, an artificial neural network (ANN) with a hidden layer and 5 neurons was designed. This model was considerably accurate in predicting experimental data of dynamic viscosity as R-squared and average absolute relative deviation (AARD %) were respectively 0.9999 and 0.0502.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050000104&hterms=tellurium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtellurium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050000104&hterms=tellurium&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtellurium"><span>Thermophysical Properties of Liquid Te: Density, Electrical Conductivity, and Viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Li, C.; Su, C.; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.</p> <p>2004-01-01</p> <p>The thermophysical properties of liquid Te, namely, density, electrical conductivity, and viscosity, were determined using the pycnometric and transient torque methods from the melting point of Te (723 K) to approximately 1150 K. A maximum was observed in the density of liquid Te as the temperature was increased. The electrical conductivity of liquid Te increased to a constant value of 2.89 x 10(exp 5 OMEGA-1m-1) as the temperature was raised above 1000 K. The viscosity decreased rapidly upon heating the liquid to elevated temperatures. The anomalous behaviors of the measured properties are explained as caused by the structural transitions in the liquid and discussed in terms of Eyring's and Bachiskii's predicted behaviors for homogeneous liquids. The Properties were also measured as a function of time after the liquid was coded from approximately 1173 or 1123 to 823 K. No relaxation phenomena were observed in the properties after the temperature of liquid Te was decreased to 823 K, in contrast to the relaxation behavior observed for some of the Te compounds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007MMTB...38..631P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007MMTB...38..631P"><span>Determination of Wetting Behavior, Spread Activation Energy, and Quench Severity of Bioquenchants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prabhu, K. Narayan; Fernandes, Peter</p> <p>2007-08-01</p> <p>An investigation was conducted to study the suitability of vegetable oils such as sunflower, coconut, groundnut, castor, cashewnut shell (CNS), and palm oils as quench media (bioquenchants) for industrial heat treatment by assessing their wetting behavior and severity of quenching. The relaxation of contact angle was sharp during the initial stages, and it became gradual as the system approached equilibrium. The equilibrium contact angle decreased with increase in the temperature of the substrate and decrease in the viscosity of the quench medium. A comparison of the relaxation of the contact angle at various temperatures indicated the significant difference in spreading of oils having varying viscosity. The spread activation energy was determined using the Arrhenius type of equation. Oils with higher viscosity resulted in lower cooling rates. The quench severity of various oil media was determined by estimating heat-transfer coefficients using the lumped capacitance method. Activation energy for spreading determined using the wetting behavior of oils at various temperatures was in good agreement with the severity of quenching assessed by cooling curve analysis. A high quench severity is associated with oils having low spread activation energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014KARJ...26..377S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014KARJ...26..377S"><span>Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.</p> <p>2014-11-01</p> <p>Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22264036-rheological-behavior-cryogenic-properties-cyanate-ester-epoxy-insulation-material-fusion-superconducting-magnet','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22264036-rheological-behavior-cryogenic-properties-cyanate-ester-epoxy-insulation-material-fusion-superconducting-magnet"><span>Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wu, Z. X.; Huang, C. J.; Li, L. F.</p> <p>2014-01-27</p> <p>In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical propertiesmore » of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhFl...26g1905K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhFl...26g1905K"><span>Motor characteristics determine the rheological behavior of a suspension of microswimmers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karmakar, Richa; Gulvady, Ranjit; Tirumkudulu, Mahesh S.; Venkatesh, K. V.</p> <p>2014-07-01</p> <p>A suspension of motile cells exhibits complex rheological properties due to their collective motion. We measure the shear viscosity of a suspension of Escherichia coli strains varying in motor characteristics such as duration of run and tumble. At low cell densities, all strains irrespective of their motor characteristics exhibit a linear increase in viscosity with cell density suggesting that the cells behave as a suspension of passive rods with an effective aspect ratio set by the motor characteristics of the bacteria. As the cell density is increased beyond a critical value, the viscosity drops sharply signaling the presence of strongly coordinated motion among bacteria. The critical density depends not only on the magnitude of shear but also the motor characteristics of individual cells. High shear rate disrupts the coordinated motion reducing its behavior, once again, to a suspension of inactive particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11472147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11472147"><span>Viscosity effects on the thermal decomposition of bis(perfluoro-2-N-propoxypropionyl) peroxide in dense carbon dioxide and fluorinated solvents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bunyard, W C; Kadla, J F; DeYoung, J; DeSimone, J M</p> <p>2001-08-01</p> <p>The thermal decomposition of the free-radical initiator bis(perfluoro-2-N-propoxyprionyl) peroxide (BPPP) was studied in dense carbon dioxide and a series of fluorinated solvents. For the fluorinated solvents, the observed first-order decomposition rate constants, k(obs), increased with decreasing solvent viscosity, suggesting a single-bond decomposition mechanism. The k(obs) values are comparatively larger in dense carbon dioxide and similar to the "zero-viscosity" rate constants extrapolated from the decomposition kinetics in the fluorinated solvents. The decomposition activation parameters demonstrate a compensation behavior of the activation enthalpy with the activation entropy upon change in solvent viscosity. Comparison of the change in activation parameter values upon change in solvent viscosity for BPPP with two additional initiators, acetyl peroxide (AP) and trifluoroacetyl peroxide (TFAP), further suggests that carbon dioxide exerts a very minimal influence on the decomposition mechanism of these initiators through solvent-cage effects.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1376097','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1376097"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi</p> <p></p> <p>In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..MARZ40007V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..MARZ40007V"><span>Paramecia Swim with a constant propulsion in Solutions of Varying Viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valles, James M., Jr.; Jung, Ilyong; Mickalide, Harry; Park, Hojin; Powers, Thomas</p> <p>2012-02-01</p> <p>Paramecia swim through the coordinated beating of the 1000's of cilia covering their body. We have measured the swimming speed of populations of Paramecium Caudatam in solutions of different viscosity, η, to see how their propulsion changes with increased drag. We have found the average instantaneous speed, V to decrease monotonically with increasing η. The product ηv is roughly constant over a factor of 7 change in viscosity suggesting that paramecia swim at constant propulsion force. The distribution of swimming speeds is Gaussian. The width appears proportional to the average speed implying that both fast and slow swimmers exert a constant propulsion. We discuss the possibility that this behavior implies that the body cilia beat at constant force with varying viscosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1896239','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1896239"><span>Intermonolayer Friction and Surface Shear Viscosity of Lipid Bilayer Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>den Otter, W. K.; Shkulipa, S. A.</p> <p>2007-01-01</p> <p>The flow behavior of lipid bilayer membranes is characterized by a surface viscosity for in-plane shear deformations, and an intermonolayer friction coefficient for slip between the two leaflets of the bilayer. Both properties have been studied for a variety of coarse-grained double-tailed model lipids, using equilibrium and nonequilibrium molecular dynamics simulations. For lipids with two identical tails, the surface shear viscosity rises rapidly with tail length, while the intermonolayer friction coefficient is less sensitive to the tail length. Interdigitation of lipid tails across the bilayer midsurface, as observed for lipids with two distinct tails, strongly enhances the intermonolayer friction coefficient, but hardly affects the surface shear viscosity. The simulation results are compared against the available experimental data. PMID:17468168</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26234439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26234439"><span>Unveiling the relationships among the viscosity equations of glass liquids and colloidal suspensions for obtaining universal equations with the generic free volume concept.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hao, Tian</p> <p>2015-09-14</p> <p>The underlying relationships among viscosity equations of glass liquids and colloidal suspensions are explored with the aid of free volume concept. Viscosity equations of glass liquids available in literature are focused and found to have a same physical basis but different mathematical expressions for the free volume. The glass transitions induced by temperatures in glass liquids and the percolation transition induced by particle volume fractions in colloidal suspensions essentially are a second order phase transition: both those two transitions could induce the free volume changes, which in turn determines how the viscosities are going to change with temperatures and/or particle volume fractions. Unified correlations of the free volume to both temperatures and particle volume fractions are thus proposed. The resulted viscosity equations are reducible to many popular viscosity equations currently widely used in literature; those equations should be able to cover many different types of materials over a wide temperature range. For demonstration purpose, one of the simplified versions of those newly developed equations is compared with popular viscosity equations and the experimental data: it can well fit the experimental data over a wide temperature range. The current work reveals common physical grounds among various viscosity equations, deepening our understanding on viscosity and unifying the free volume theory across many different systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24717916','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24717916"><span>High viscosity environments: an unexpected route to obtain true atomic resolution with atomic force microscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J</p> <p>2014-05-02</p> <p>Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Nanot..25q5701W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Nanot..25q5701W"><span>High viscosity environments: an unexpected route to obtain true atomic resolution with atomic force microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.</p> <p>2014-05-01</p> <p>Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DFDM29008S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DFDM29008S"><span>Surrogate Immiscible Liquid Solution Pairs with Refractive Indexes Matchable Over a Wide Range of Density and Viscosity Ratios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.</p> <p>2014-11-01</p> <p>Use of laser diagnostics in liquid-liquid flows is limited by refractive index mismatch. This can be avoided using a surrogate pair of immiscible index-matched liquids, with density and viscosity ratios matching those of the original liquid pair. We demonstrate that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables were fitted to index and density and to the logarithm of kinematic viscosity, and the fits were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0oC over a range of pressure, and for water-crude oil and water-trichloroethylene, each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and chemical analysis show that no component of either solution has significant interphase solubility. Partially supported by Intl. Inst. for Carbon-Neutral Energy Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JCrGr.307...51N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JCrGr.307...51N"><span>Effect of atmosphere on the surface tension and viscosity of molten LiNbO 3 measured using the surface laser-light scattering method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagasaka, Yuji; Kobayashi, Yusuke</p> <p>2007-09-01</p> <p>The surface tension and the viscosity of molten LiNbO 3 (LN) having the congruent composition have been measured simultaneously in a temperature range from 1537 to 1756 K under argon gas and dry-air atmospheres. The present measurement technique involves surface laser-light scattering (SLLS) that detects nanometer-order-amplitude surface waves usually regarded as ripplons excited by thermal fluctuations. This technique's non-invasive nature allows it to avoid the experimental difficulties of conventional techniques resulting from the insertion of an actuator in the melt. The results of surface tension measurement obtained under a dry-air atmosphere are about 5% smaller than those obtained under an argon atmosphere near the melting temperature, and the temperature dependence of the surface tension under a dry-air atmosphere is twice that under an argon atmosphere. The uncertainty of surface tension measurement is estimated to be ±2.6% under argon and ±1.9% under dry air. The temperature dependence of viscosity can be well correlated with the results of Arrhenius-type equations without any anomalous behavior near the melting point. The viscosities obtained under a dry-air atmosphere were slightly smaller than those obtained under an argon atmosphere. The uncertainty of viscosity measurement is estimated to be ±11.1% for argon and ±14.3% for dry air. Moreover, we observed the real-time dynamic behavior of the surface tension and the viscosity of molten LN in response to argon and dry-air atmospheres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AnPhy.370..105D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AnPhy.370..105D"><span>Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darsheshdar, E.; Yavari, H.; Zangeneh, Z.</p> <p>2016-07-01</p> <p>By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MTDM...22...67S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MTDM...22...67S"><span>Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh</p> <p>2018-02-01</p> <p>This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28259413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28259413"><span>Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V</p> <p>2017-05-01</p> <p>This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAP...121n5904G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAP...121n5904G"><span>Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.</p> <p>2017-04-01</p> <p>The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11B0348O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11B0348O"><span>A New 4D Imaging Method for Three-Phase Analogue Experiments in Volcanology (and Other Three-Phase Systems)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oppenheimer, J.; Patel, K. B.; Lev, E.; Hillman, E. M. C.</p> <p>2017-12-01</p> <p>Bubbles and crystals suspended in magmas interact with each other on a small scale, which affects large-scale volcanic processes. Studying these interactions on relevant scales of time and space is a long-standing challenge. Therefore, the fundamental explanations for the behavior of bubble- and crystal-rich magmas are still largely speculative. Recent application of X-ray tomography to experiments with synthetic magmas has already improved our understanding of small-scale 4D (3D + time) phenomena. However, this technique has low imaging rates < 20 volumes per second (vps) and does not work well with analogues, making experiments costly and slow. We demonstrate a novel methodology for imaging bubble-particle interactions in analogue suspensions by utilizing Swept Confocally Aligned Planar Excitation (SCAPE) microscopy. This method based on laser-fluorescence has been used to image live biological processes at high speed and in 3D. It allows imaging rates of up to several hundred vps and image volumes up to 1 x 1 x 0.5 mm3, with a trade-off between speed and spatial resolution. We ran two sets of experiments with silicone oil and soda-lime glass beads of <50 µm diameter, contained within a vertical glass casing 50 x 5 x 4 mm3. We used two different bubble generation methods. In the first set of experiments, small air bubbles (< 1 mm) were introduced through a hole at the bottom of the sample and allowed to rise through a suspension with low-viscosity oil. We successfully imaged bubble rise and particle movements around the bubble. In the second set, bubbles were generated by mixing acetone into the suspension and decreasing the surface pressure to cause a phase change to gaseous acetone. This bubble generation method compared favorably with previous gum rosin-acetone experiments: they provided similar degassing behaviors, along with more control on suspension viscosity and optimal optical properties for laser transmission. Large volumes of suspended bubbles, however, interfered with the laser path. In this set, we were able to track bubble nucleation sites and nucleation rates in 4D. This promising technique allows the study of small-scale interactions in two- and three-phase systems, at high imaging rates and at low cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JNR....15.1989T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JNR....15.1989T"><span>Rheology and microstructure of dilute graphene oxide suspension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tesfai, Waka; Singh, Pawan; Shatilla, Youssef; Iqbal, Muhammad Z.; Abdala, Ahmed A.</p> <p>2013-10-01</p> <p>Graphene and graphene oxide are potential candidates as nanofluids for thermal management applications. Here, we investigate the rheological properties and intrinsic viscosity of aqueous suspension of graphene and use the measured intrinsic viscosity to determine the aspect ratio of graphene oxide. Dilute suspension of graphene oxide (0.05 to 0.5 mg/mL) exhibits a shear thinning behavior at low shear rates followed by a shear-independent region that starts at shear rate between 5 and 100/s depending on the concentration. This shear thinning behavior becomes more pronounced with the increase of particle loading. Moreover, AFM imaging of the dried graphene oxide indicates the evolution of irregular and thin low fractal aggregates of 0.3-1.8 nm thickness at lower concentrations to oblate compact structures of 1-18 nm thickness of nanosheets at higher concentration. These observations elucidate the microstructure growth mechanisms of graphene oxide in multiphase systems, which are important for nanofluids applications and for dispersing graphene and graphene oxide in composite materials. The suspension has a very high intrinsic viscosity of 1661 due to the high graphene oxide aspect ratio. Based on this intrinsic viscosity, we predict graphene oxide aspect ratio of 2445. While the classical Einstein and Batchelor models underestimate the relative viscosity of graphene oxide suspension, Krieger-Dougherty prediction is in a good agreement with the experimental measurement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........58Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........58Y"><span>In situ reinforced polymers using low molecular weight compounds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yordem, Onur Sinan</p> <p>2011-12-01</p> <p>The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems. Formation of anisotropic reinforcements was evaluated using dimethyl sulfone (DMS) as the crystallizable diluent and diglycidyl ether of bisphenol-A (DGEBA)/m-phenylene diamine (mPDA) material system as the epoxy thermoset. Miscible blends of DMS and DGEBA/mPDA form homogenous mixtures that undergo polymerization induced phase separation, once the DGEBA oligomers react with mPDA. The effect of the competition between the crystallization and phase separation of DMS resulted in nano-wires to micro-scale fiber-like crystals that were generated by adjusting the reaction temperature and DMS concentration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..111...70S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..111...70S"><span>Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Starnoni, Michele; Pokrajac, Dubravka</p> <p>2018-01-01</p> <p>Snap-off is a pore-scale mechanism occurring in porous media in which a bubble of non-wetting phase displacing a wetting phase, and vice-versa, can break-up into ganglia when passing through a constriction. This mechanism is very important in foam generation processes, enhanced oil recovery techniques and capillary trapping of CO2 during its geological storage. In the present study, the effects of contact angle and viscosity ratio on the dynamics of snap-off are examined by simulating drainage in a single pore-throat constriction of variable cross-section, and for different pore-throat geometries. To model the flow, we developed a CFD code based on the Finite Volume method. The Volume-of-fluid method is used to track the interfaces. Results show that the threshold contact angle for snap-off, i.e. snap-off occurs only for contact angles smaller than the threshold, increases from a value of 28° for a circular cross-section to 30-34° for a square cross-section and up to 40° for a triangular one. For a throat of square cross-section, increasing the viscosity of the injected phase results in a drop in the threshold contact angle from a value of 30° when the viscosity ratio μ bar is equal to 1 to 26° when μ bar = 20 and down to 24° when μ bar = 20 .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeCoA.124..348C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeCoA.124..348C"><span>Viscous flow behavior of tholeiitic and alkaline Fe-rich martian basalts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chevrel, Magdalena Oryaëlle; Baratoux, David; Hess, Kai-Uwe; Dingwell, Donald B.</p> <p>2014-01-01</p> <p>The chemical compositions of martian basalts are enriched in iron with respect to terrestrial basalts. Their rheology is poorly known and liquids of this chemical composition have not been experimentally investigated. Here, we determine the viscosity of five synthetic silicate liquids having compositions representative of the diversity of martian volcanic rocks including primary martian mantle melts and alkali basalts. The concentric cylinder method has been employed between 1500 °C and the respective liquidus temperatures of these liquids. The viscosity near the glass transition has been derived from calorimetric measurements of the glass transition. Although some glass heterogeneity limits the accuracy of the data near the glass transition, it was nevertheless possible to determine the parameters of the non-Arrhenian temperature-dependence of viscosity over a wide temperature range (1500 °C to the glass transition temperature). At superliquidus conditions, the martian basalt viscosities are as low as those of the Fe-Ti-rich lunar basalts, similar to the lowest viscosities recorded for terrestrial ferrobasalts, and 0.5 to 1 order of magnitude lower than terrestrial tholeiitic basalts. Comparison with empirical models reveals that Giordano et al. (2008) offers the best approximation, whereas the model proposed by Hui and Zhang (2007) is inappropriate for the compositions considered. The slightly lower viscosities exhibited by the melts produced by low degree of mantle partial melting versus melts produced at high degree of mantle partial melting (likely corresponding to the early history of Mars), is not deemed sufficient to lead to viscosity variations large enough to produce an overall shift of martian lava flow morphologies over time. Rather, the details of the crystallization sequence (and in particular the ability of some of these magmas to form spinifex texture) is proposed to be a dominant effect on the viscosity during martian lava flow emplacement and may explain the lower range of viscosities (102-104 Pa s) inferred from lava flow morphology. Further, the differences between the rheological behaviors of tholeiitic vs. trachy-basalts are significant enough to affect their emplacement as intrusive bodies or as effusive lava flows. The upper range of viscosities (106-108 Pa s) suggested from lava flow morphology is found consistent with the occurrence of alkali basalt documented from in situ analyses and does not necessarily imply the occurrence of basaltic-andesite or andesitic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51B2911G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51B2911G"><span>Possible effects of two-phase flow pattern on the mechanical behavior of mudstones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goto, H.; Tokunaga, T.; Aichi, M.</p> <p>2016-12-01</p> <p>To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled processes of two-phase flow through preferential flow paths and deformation of porous media is needed. References: Ewing R. P., and B. Berkowitz (1998), Water Resour. Res., 34, 611-622. Lenormand, R., E. Touboul, and C. Zarcone (1988), J. Fluid Mech., 189, 165-187.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4041818','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4041818"><span>Polymerization- and Solvent-Induced Phase Separation in Hydrophilic-rich Dentin Adhesive Mimic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Abedin, Farhana; Ye, Qiang; Good, Holly J; Parthasarathy, Ranganathan; Spencer, Paulette</p> <p>2014-01-01</p> <p>Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99wt% hydroxyethylmethacrylate (HEMA) and 5 and 1wt% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane (BisGMA) prior to light curing. Viscosity of the formulations decreased with increased water content. The photo-polymerization kinetics study was carried out by time-resolved FTIR spectrum collector. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water content of 10-30%wt. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increased water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation (PIPs) and solvent-induced phase separation (SIPs) for the model hydrophilic-rich phase of dental resin. PMID:24631658</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMMR13A0055Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMMR13A0055Y"><span>Density and Viscosity Measurement of Liquid FeS at High Pressure and High Temperature Using Synchrotron X-ray</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, T.; Long, H.; Young, C.; Wang, L.; Chen, J.</p> <p>2005-12-01</p> <p>From previous experimental and theoretical studies, sulfur has been considered one of the possible light elements in the core that might be responsible for the large density deficit when compared with the theoretical pure Fe core (Ganapathy and Anders, 1974; Ahrens and Jeanloz, 1987). Therefore, understanding the physical properties of liquid FeS will help us reveal the details of the Earth?|s core. This study focused on the liquid state of sulfur in iron due to sulfur?|s lack of amount in the mantle; easiness to alloy with iron; and the predicted 5 wt% ~10 wt% amount of this light element in the core (Ahrens, 1979; Sherman, 1997). Modern development of the multi-anvil high pressure apparatus limits the pressure range of the experiments (<30 GPa). It is somewhat low if comparing with the outer core pressure condition. Therefore, extrapolation of data derived at low pressure range to the condition of the outer core (>130 GPa) has to be applied, and may produce results that are far from the true numbers. However, at the point while the techniques are limited, studying the physical properties of the liquid-phase FeS at relatively low pressures still provides us a better picture of the physical behavior of the outer core comparing with data derived from solid state FeS experiments. Pervious studies on the viscosity of the Fe-FeS system (LeBlanc and Secco, 1996; Dobson et al., 2000; Urakawa et al., 2001; Secco et al., 2002) have presented different values of viscosity numbers with a maximum difference of two orders of magnitude. We have conducted the density measurements of liquid FeS (~36 wt% of S) up to 5.6 GPa in pressure and 1673K in temperature using the in-situ synchrotron-source x-ray absorption setup at Beamline X17B2, NSLS. The viscosity measurements were conducted by the x-ray radiograph technique combined with the falling sphere method. The falling sphere method applied at the experiment is suitable for liquids with viscosities between 10-3 Pa-s and 105 Pa-s (LeBlanc et al., 1999). We used tungsten spheres in our viscosity measurement experiments. We analyzed the sphere falling motion in the sample chamber at high pressure and high temperature. And by applying our density compression curve of liquid FeS to the Stokes?| viscometry method, we were able to derive the viscosity of liquid FeS.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.822a2058S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.822a2058S"><span>Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir</p> <p>2017-04-01</p> <p>Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27430158','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27430158"><span>Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D</p> <p>2016-08-21</p> <p>We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20723943','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20723943"><span>Oil viscosity limitation on dispersibility of crude oil under simulated at-sea conditions in a large wave tank.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trudel, Ken; Belore, Randy C; Mullin, Joseph V; Guarino, Alan</p> <p>2010-09-01</p> <p>This study determined the limiting oil viscosity for chemical dispersion of oil spills under simulated sea conditions in the large outdoor wave tank at the US National Oil Spill Response Test Facility in New Jersey. Dispersant effectiveness tests were completed using crude oils with viscosities ranging from 67 to 40,100 cP at test temperature. Tests produced an effectiveness-viscosity curve with three phases when oil was treated with Corexit 9500 at a dispersant-to-oil ratio of 1:20. The oil viscosity that limited chemical dispersion under simulated at-sea conditions was in the range of 18,690 cP to 33,400 cP. Visual observations and measurements of oil concentrations and droplet size distributions in the water under treated and control slicks correlated well with direct measurements of effectiveness. The dispersant effectiveness versus oil viscosity relationship under simulated at sea conditions at Ohmsett was most similar to those from similar tests made using the Institut Francais du Pétrole and Exxon Dispersant Effectiveness (EXDET) test methods. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950018486','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950018486"><span>Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bousman, William Scott</p> <p>1995-01-01</p> <p>Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a substrate film. Pressure drop was best fitted with the Lockhart- Martinelli model. Force balances suggest that droplet entrainment may be a large component of the total pressure drop.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21320534-viscosity-alumina-nanoparticles-dispersed-car-engine-coolant','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21320534-viscosity-alumina-nanoparticles-dispersed-car-engine-coolant"><span>Viscosity of alumina nanoparticles dispersed in car engine coolant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kole, Madhusree; Dey, T.K.</p> <p></p> <p>The present paper, describes our experimental results on the viscosity of the nanofluid prepared by dispersing alumina nanoparticles (<50 nm) in commercial car coolant. The nanofluid prepared with calculated amount of oleic acid (surfactant) was tested to be stable for more than 80 days. The viscosity of the nanofluids is measured both as a function of alumina volume fraction and temperature between 10 and 50 C. While the pure base fluid display Newtonian behavior over the measured temperature, it transforms to a non-Newtonian fluid with addition of a small amount of alumina nanoparticles. Our results show that viscosity of themore » nanofluid increases with increasing nanoparticle concentration and decreases with increase in temperature. Most of the frequently used classical models severely under predict the measured viscosity. Volume fraction dependence of the nanofluid viscosity, however, is predicted fairly well on the basis of a recently reported theoretical model for nanofluids that takes into account the effect of Brownian motion of nanoparticles in the nanofluid. The temperature dependence of the viscosity of engine coolant based alumina nanofluids obeys the empirical correlation of the type: log ({mu}{sub nf}) = A exp(BT), proposed earlier by Namburu et al. (author)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-0100142.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-0100142.html"><span>Microgravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2001-01-24</p> <p>Dr. Dr. Robert F. Berg (right), principal investigator and Dr. Micheal R. Moldover (left), co-investigator, for the Critical Viscosity of Xenon (CVX/CVX-2) experiment. They are with the National Institutes of Standards and Technology, Gaithersburg, MD. The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Although it does not easily combine with other chemicals, its viscosity at the critical point can be used as a model for a range of chemicals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890004472','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890004472"><span>Driving forces: Slab subduction and mantle convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hager, Bradford H.</p> <p>1988-01-01</p> <p>Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23343281','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23343281"><span>Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik</p> <p>2013-01-21</p> <p>The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28060512','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28060512"><span>Solvent Dependent Dynamics of Salicylidene Aniline in Binary Mixtures of Supercritical CO2 with 1-Propanol or Cyclohexane.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kieda, Ryan D; Dunkelberger, Adam D; Case, Amanda S; Crim, F Fleming</p> <p>2017-02-02</p> <p>The role of different solvent environments in determining the behavior of molecules in solution is a fundamental aspect of chemical reactivity. We present an approach for exploring the influence of solvent properties on condensed-phase dynamics using ultrafast transient absorption spectroscopy in supercritical CO 2 . Using supercritical CO 2 permits adjustment of the density, by varying the temperature and pressure, whereas varying the concentration or identity of a second solvent, the cosolvent, in a binary mixture allows for adjustments of the degree of interaction between the solute and the solvent. Salicylidene aniline, a prototypical excited-state intramolecular proton-transfer system, is the subject of this study. In this system, the decay rate of the transient absorption signal decreases as the fraction of the cosolvent (for both 1-propanol and cyclohexane) increases. The decay rate also decreases with an increase in the viscosity of the mixture, but the effect is much larger for the 1-propanol cosolvent than for cyclohexane. These observations illustrate that the decay rate of the photoexcited salicylidene aniline depends on more than just the solvent viscosity, suggesting that properties such as polarity also play a role in the dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27746354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27746354"><span>Preparation and characteristic of gelatine/oxidized corn starch and gelatin/corn starch blend microspheres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Hui; Shan, Zhi Hua; Woo, Meng Wai; Chen, Xiao Dong</p> <p>2017-01-01</p> <p>Combinations of gelatin (G) and oxidized corn starch (OCS) were explored as a new microcapsule composite for single droplet spray drying. The blending solutions property, gel time, transparency and viscosity of G/CS (corn starch) and G/OCS blend solutions were compared at different ratios (10:0;9:1;8:2;7:3;6:4;5:5) and concentrations(1%wt; 3%wt; 5%wt). The drying and dissolution behaviors of composite droplet have been studied using the single droplet drying technique. Possible reaction mechanisms in the composite blend were elucidated by SEM and FTIR techniques. Blends solutions of G/OCS showed longer Gel time, higher transparency and lower viscosity; further displayed faster dissolution rate than that of G/CS under similar conditions. This was attributed to the formed Schiff base between the aldehyde group of OCS and amino group of G which improved the compatibility between G and OCS. All results indicated that the composites could be prepared with excellent properties by G/OCS (6:4) which would overcome some disadvantage such as thermodynamic incompatibility and phase separation by G/CS. Copyright © 2016. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DFD.EK001M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DFD.EK001M"><span>Coiling and Folding of Viscoelastic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth</p> <p>2007-11-01</p> <p>The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015593"><span>Containerless Measurements of Density and Viscosity of Fe-Co Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Jonghyun; Choufani, Paul; Bradshaw, Richard C.; Hyers, Robert W.; Matson, Douglas M.</p> <p>2012-01-01</p> <p>During the past years, extensive collaborative research has been done to understand phase selection in undercooled metals using novel containerless processing techniques such as electrostatic and electromagnetic levitation. Of major interest is controlling a two-step solidification process, double recalescence, in which the metastable phase forms first and then transforms to the stable phase after a certain delay time. The previous research has shown that the delay time is greatly influenced by the internal convection velocity. In the prediction of internal flow, the fidelity of the results depends on the accuracy of the material properties. This research focuses on the measurements of density and viscosity of Fe-Co alloys which will be used for the fluid simulations whose results will support upcoming International Space Station flight experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JaJAP..51gGF12Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JaJAP..51gGF12Y"><span>Tissue Viscoelasticity Imaging Using Vibration and Ultrasound Coupler Gel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamakawa, Makoto; Shiina, Tsuyoshi</p> <p>2012-07-01</p> <p>In tissue diagnosis, both elasticity and viscosity are important indexes. Therefore, we propose a method for evaluating tissue viscoelasticity by applying vibration that is usually performed in elastography and using an ultrasound coupler gel with known viscoelasticity. In this method, we use three viscoelasticity parameters based on the coupler strain and tissue strain: the strain ratio as an elasticity parameter, and the phase difference and the normalized hysteresis loop area as viscosity parameters. In the agar phantom experiment, using these viscoelasticity parameters, we were able to estimate the viscoelasticity distribution of the phantom. In particular, the strain ratio and the phase difference were robust to strain estimation error.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7152241-structure-phase-transitions-asphaltenes-solutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7152241-structure-phase-transitions-asphaltenes-solutions"><span>Structure and phase transitions of asphaltenes in solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tar, M.M. de; Sheu, E.Y.; Storm, D.A.</p> <p></p> <p>The authors investigated the rheological properties of two vacuum resid fractions in a series of solvents. The authors measured the viscosity as a function of concentration and temperature respectively. In this study, two aspects were focused: (1) the concentration dependence of viscosity for the pentane soluble fractions in a series of n-alkane solvents for study of the particle structure, and (2) the temperature dependence of viscosity of the heptane insoluble fraction in toluene at various concentrations for the study of the phase transitions. From their results it was found that all the systems studied are Newtonian. The results for (1)more » show that the particles are approximately spherical and as the carbon number of the n-alkane solvent increases, the quality of the solvent increases, thereby increasing the particle solvation. This result is consistent with that reported in a recent paper by Ali and Saleem. Also, the particles were found to behave similarly to colloidal particles. As for (2), a glass-like transition was observed at 50% concentration (0.31 volume fraction) with glass transition temperature at about 254 K, while no structural or phase transitions were observed for concentrations below 50%.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11720983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11720983"><span>Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Drury, J L; Dembo, M</p> <p>2001-12-01</p> <p>It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1301777"><span>Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Drury, J L; Dembo, M</p> <p>2001-01-01</p> <p>It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the initial moments after ramping of pressure remains mysterious. PMID:11720983</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29i6602Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29i6602Y"><span>Heat transport and coupling modes in Rayleigh-Bénard convection occurring between two layers with largely different viscosities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshida, Masaki; Iwamori, Hikaru; Hamano, Yozo; Suetsugu, Daisuke</p> <p>2017-09-01</p> <p>A high-resolution numerical simulation model in two-dimensional cylindrical geometry was used to discuss the heat transport and coupling modes in two-layer Rayleigh-Bénard convection with a high Rayleigh number (up to the order of 109), an infinite Prandtl number, and large viscosity contrasts (up to 10-3) between an outer, highly viscous layer (HVL) and an inner, low-viscosity layer (LVL). In addition to mechanical and thermal interaction across the HVL-LVL interface, which has been investigated by Yoshida and Hamano ["Numerical studies on the dynamics of two-layer Rayleigh-Bénard convection with an infinite Prandtl number and large viscosity contrasts," Phys. Fluids 28(11), 116601 (2016)], the spatiotemporal analysis in this study provides new insights into (1) heat transport over the entire system between the bottom of the LVL and the top of the HVL, in particular that associated with thermal plumes, and (2) the convection regime and coupling mode of the two layers, including the transition mechanism between the mechanical coupling mode at relatively low viscosity contrasts and the thermal coupling mode at higher viscosity contrasts. Although flow in the LVL is highly time-dependent, it shares the spatially opposite/same flow pattern synchronized to the nearly stationary upwelling and downwelling plumes in the HVL, corresponding to the mechanical/thermal coupling mode. In the transitional regime between the mechanical and thermal coupling modes, the LVL exhibits periodical switching between the two phases (i.e., the mechanical and thermal coupling phases) with a stagnant period. A detailed inspection revealed that the switching was initiated by the instability in the uppermost boundary layer of the LVL. These results suggest that convection in the highly viscous mantle of the Earth controls that of the extremely low-viscosity outer core in a top-down manner under the thermal coupling mode, which may support a scenario of top-down hemispherical dynamics proposed by the recent geochemical study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......181M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......181M"><span>Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehlem, Jeremy John</p> <p></p> <p>Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well as in their final state. Using these methods the size of the high and low cross-link density phase was examined and determined to be on the order of 50--150 nanometers. Model compounds based on phenylethyl methacrylate were formulated to determine how of nadic methyl anhydride and maleic anhydride incorporate into dimethacrylate resin systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27041298','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27041298"><span>Preparation of stable food-grade double emulsions with a hybrid premix membrane emulsification system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eisinaite, Viktorija; Juraite, Dovile; Schroën, Karin; Leskauskaite, Daiva</p> <p>2016-09-01</p> <p>In this study we demonstrate that food-grade double emulsions can be successfully prepared using a hybrid premix emulsification system. A coarse emulsion containing beetroot juice as inner water phase, sunflower oil as oil phase and 0.5% or 1.0% whey protein isolate solution as outer water phase was prepared using a rotor stator system. This emulsion was further refined, using a bed of glass beads (diameter 71μm), through which the emulsion was pushed at different applied pressure (200-500kPa) and number of passes (1-5). All applied pressures lead to much smaller droplets while the juice remained encapsulated (>98%). The viscosity of the emulsions increased due to swelling of the internal water phase, and this implies that it is possible to encapsulate the components efficiently at relatively low internal water phase fraction at which the emulsions can be handled easily, while allowing them to obtain their final viscosity later. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011TRACE..27..293H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011TRACE..27..293H"><span>Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori</p> <p></p> <p>This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMDI43A0334H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMDI43A0334H"><span>Two-Phase Flow and Compaction Within and Outside a Sphere under Pure Shear</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hier-Majumder, S.</p> <p>2017-12-01</p> <p>This work presents a framework for building analytical solutions for coupled flow in two interacting multiphase domains. The coupled system consists of a multiphase sphere embedded in a multiphase substrate. Each of these domains consist of an interconnected load bearing matrix phase and an inviscid interstitial fluid phase. This work outlines techniques for building analytical solutions for velocity, pressure, and compaction within each domain, subject to boundary conditions of continuity of matrix velocity and normal traction at the interface between the two domains. The solutions indicate that the flow is strongly dependent on the ratio of shear viscosities between the matrix phase in the sphere and the matrix phase in the substrate. When deformed under a pure shear deformation, the magnitude of flow within the sphere rapidly decreases with an increase in this ratio until it reaches a value of 40, after which, the velocity within the sphere becomes relatively insensitive to the increase in the viscosity contrast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25832501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25832501"><span>Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Binabaji, Elaheh; Ma, Junfen; Zydney, Andrew L</p> <p>2015-09-01</p> <p>The large increase in viscosity of highly concentrated monoclonal antibody solutions can be challenging for downstream processing, drug formulation, and delivery steps. The objective of this work was to examine the viscosity of highly concentrated solutions of a high purity IgG1 monoclonal antibody over a wide range of protein concentrations, solution pH, ionic strength, and in the presence / absence of different excipients. Experiments were performed with an IgG1 monoclonal antibody provided by Amgen. The steady-state viscosity was evaluated using a Rheometrics strain-controlled rotational rheometer with a concentric cylinder geometry. The viscosity data were well-described by the Mooney equation. The data were analyzed in terms of the antibody virial coefficients obtained from osmotic pressure data evaluated under the same conditions. The viscosity coefficient in the absence of excipients was well correlated with the third osmotic virial coefficient, which has a negative value (corresponding to short range attractive interactions) at the pH and ionic strength examined in this work. These results provide important insights into the effects of intermolecular protein-protein interactions on the behavior of highly concentrated antibody solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27130611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27130611"><span>Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard</p> <p>2016-07-01</p> <p>Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004PhRvD..69k6004D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004PhRvD..69k6004D"><span>Viscosity of meson matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobado, Antonio; Llanes-Estrada, Felipe J.</p> <p>2004-06-01</p> <p>We report a calculation of the shear viscosity in a relativistic multicomponent meson gas as a function of temperature and chemical potentials. We approximately solve the Uehling-Uhlenbeck transport equation of kinetic theory, appropriate for a boson gas, with relativistic kinematics. Since at low temperatures the gas can be taken as mostly composed of pions, with a fraction of kaons and etas, we explore the region where binary elastic collisions with at least one pion are the dominant scattering processes. Our input meson scattering phase shifts are fits to the experimental data obtained from chiral perturbation theory and the inverse amplitude method. Our results take the correct nonrelativistic limit (viscosity proportional to the square root of the temperature), show a viscosity of the order of the cube of the pion mass up to temperatures somewhat below that mass, and then a large increase due to kaons and etas. Our approximation may break down at even higher temperatures, where the viscosity follows a temperature power law with an exponent near 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7292E..45L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7292E..45L"><span>Development of viscosity sensor with long period fiber grating technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Jyh-Dong; Wang, Jian-Neng; Chen, Shih-Huang; Wang, Juei-Mao</p> <p>2009-03-01</p> <p>In this paper, we describe the development of a viscosity sensing system using a simple and low-cost long-period fiber grating (LPFG) sensor. The LPFG sensor was extremely sensitive to the refractive index of the medium surrounding the cladding surface of the sensing grating, thus allowing it to be used as an ambient index sensor or chemical concentration indicator. Viscosity can be simply defined as resistance to flow of a liquid. We have measured asphalt binder, 100-190000 centistokes, in comparison with optical sensing results. The system sensing asphalt binders exhibited increase trend in the resonance wavelength shift when the refractive index of the medium changed. The prototype sensor consisted of a LPFG sensing component and a cone-shaped reservoir where gravitational force can cause asphalt binders flow through the capillary. Thus the measured time for a constant volume of asphalt binders can be converted into either absolute or kinematic viscosity. In addition, a rotational viscometer and a dynamic shear rheometer were also used to evaluate the viscosity of this liquid, the ratio between the applied shear stress and rate of shear, as well as the viscoelastic property including complex shear modulus and phase angle. The measured time could be converted into viscosity of asphalt binder based on calculation. This simple LPFG viscosity sensing system is hopefully expected to benefit the viscosity measurement for the field of civil, mechanical and aerospace engineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391851-numerical-simulation-viscoelastic-layer-rearrangement-polymer-melts-using-openfoam','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391851-numerical-simulation-viscoelastic-layer-rearrangement-polymer-melts-using-openfoam"><span>Numerical simulation of viscoelastic layer rearrangement in polymer melts using OpenFOAM®</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Köpplmayr, Thomas, E-mail: tkoepplmayr@gmail.com; Mayrhofer, Elias</p> <p></p> <p>In addition to their shear-thinning behavior, polymer melts are characterized by first and second normal stress differences, which cause secondary motions. Polymer coextrusion processes involve viscoelastic two-phase flows that influence layer formation. Using polymer melts with different pigmentation makes visible the layers deformed by second normal stress differences. We used a new solver for the OpenFOAM CFD toolbox which handles viscoelastic two-phase flows. A derivative of the volume-of-fluid (VoF) methodology was employed to describe the interface. Different types of polymer melt, such as polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were investigated. In a coextrusion process, the less viscousmore » phase usually tends to encapsulate the more viscous one. However, the different viscoelastic properties of the melts also influence interface deformation. The materials were characterized by small-amplitude oscillatory-shear rheometry, and a multimode Giesekus model was used to fit shear viscosity, storage and loss modulus. Our simulations also took interfacial tension into account. Experimental observations and corresponding numerical simulations were found to be in good accordance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20231790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20231790"><span>Injectable CMC/PEI gel as an in vivo scaffold for demineralized bone matrix.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Kyung Sook; Kang, Yun Mi; Lee, Ju Young; Kim, E Sle; Kim, Chun Ho; Min, Byoung Hyun; Lee, Hai Bang; Kim, Jae Ho; Kim, Moon Suk</p> <p>2009-01-01</p> <p>A number of materials have been considered as sources of grafts to repair bone defects. Here, we examined the possibility of creating in situ-forming gels from sodium carboxymethylcellulose (CMC) and poly(ethyleneimine) (PEI) for use as an in vivo carrier of demineralized bone matrix (DBM). The interaction between anionic CMC and cationic PEI was examined by evaluating phase transition behavior and viscosity of CMC solutions containing 0-30 wt% PEI. CMC solutions containing 10 wt% PEI exhibited a sol-to-gel phase transition at temperatures greater than 35 degrees C. The phase transition is caused by electrostatic crosslinking of the CMC/PEI solution to form a gel with a three-dimensional network structure. In situ-formed gel implants were successfully fabricated in vivo by simple subcutaneous injection of the CMC/PEI (90/10) solution (with and without DBM) into Fisher rats. The resulting in situ-formed implant maintained its shape for 28 days in vitro and in vivo. Our results show that in situ-forming CMC/PEI gels can serve as a DBM carrier that can be delivered with a minimally invasive procedure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10599596','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10599596"><span>Rate of deoxygenation modulates rheologic behavior of sickle red blood cells at a given mean corpuscular hemoglobin concentration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kaul, D K; Liu, X D</p> <p>1999-01-01</p> <p>Although the mean corpuscular hemoglobin concentration (MCHC) plays a dominant role in the rheologic behavior of deoxygenated density-defined sickle red blood cells (SS RBCs), previous studies have not explored the relationship between the rate of deoxygenation and the bulk viscosity of SS RBCs at a given MCHC. In the present study, we have subjected density-defined SS classes (i.e., medium-density SS4 and dense SS5 discocytes) to varying deoxygenation rates. This approach has allowed us to minimize the effects of SS RBC heterogeneity and investigate the effect of deoxygenation rates at a given MCHC. The results show that the percentages of granular cells, classic sickle cells and holly leaf forms in deoxygenated samples are significantly influenced by the rate of deoxygenation and the MCHC of a given discocyte subpopulation. Increasing the deoxygenation rate using high K+ medium (pH 6.8), results in a greater percentage of granular cells in SS4 suspensions, accompanied by a pronounced increase in the bulk viscosity of these cells compared with gradually deoxygenated samples (mainly classic sickle cells and holly leaf forms). The effect of MCHC becomes apparent when SS5 dense cells are subjected to varying deoxygenation rates. At a given deoxygenation rate, SS5 dense discocytes show a greater increase in the percentage of granular cells than that observed for SS4 RBCs. Also, at a given deoxygenation rate, SS5 suspensions exhibit a higher viscosity than SS4 suspensions with fast deoxygenation resulting in maximal increase in viscosity. Although MCHC is the main determinant of SS RBC rheologic behavior, these studies demonstrate for the first time that at a given MCHC, the rate of deoxygenation (hence HbS polymerization rates) further modulates the rheologic behavior of SS RBCs. Thus, both MCHC and the deoxygenation rate may contribute to microcirculatory flow behavior of SS RBCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Tectp.642...29D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Tectp.642...29D"><span>Characterization of Carbopol® hydrogel rheology for experimental tectonics and geodynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Giuseppe, E.; Corbi, F.; Funiciello, F.; Massmeyer, A.; Santimano, T. N.; Rosenau, M.; Davaille, A.</p> <p>2015-02-01</p> <p>One of the long-standing challenges of modern tectonics and geodynamics is to fully understand the strong strain localization and its effects observed in the lithosphere, which presents viscous, as well as elastic and brittle properties. Recently yield stress-shear thinning hydrogels, such as Carbopol®, have been employed in analog modeling because of its great potential for mimicking the non-Newtonian behavior of rocks. Conversely its use has been limited by the difficulties in assessing its rheology and in preparing uniform samples. Ergo, it is essential to ensure a standard recipe, yielding to a reproducible behavior, no matter which rheometer model is used. We carried out, at four institutions (FAST, GFZ, IPGP and LET), a benchmark for developing a standard preparation and for testing the comparability of results. Then, we conducted a systematical rheological characterization of a wide range of Carbopol® formulas as a function of concentration, composition, pH, temperature and aging. Results show that neutral pH favors higher viscosity. The shear modulus, yield stress, viscosity, and shear thinning behavior increase with concentration. The linear viscoelastic range increases with concentration contrarily to what is observed in gelatins or colloidal suspensions. A weak inverse relationship between temperature and viscosity is found. Similarly, aging reduces both the viscosity and loss modulus, with reduction more evident for low concentration samples. Scaling analysis revealed that low concentration samples, i.e. < 0.1 wt.%, exhibiting shear thinning behavior and low yield stress, are appropriate to model the rising of thermal instabilities. Those at 0.5-1.0 wt.%, showing yield stress in the order of hundreds of Pa and n ranging between 1.6 and 3.4 are good candidates to mimic the non-linear ductile behavior of crustal rocks. We conclude that tuning the visco-elasto-plastic rheology of Carbopol® would make this material a good candidate for modeling of also other geological processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26PSL.449...26V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26PSL.449...26V"><span>Models for viscosity and shear localization in bubble-rich magmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vona, Alessandro; Ryan, Amy G.; Russell, James K.; Romano, Claudia</p> <p>2016-09-01</p> <p>Bubble content influences magma rheology and, thus, styles of volcanic eruption. Increasing magma vesicularity affects the bulk viscosity of the bubble-melt suspension and has the potential to promote non-Newtonian behavior in the form of shear localization or brittle failure. Here, we present a series of high temperature uniaxial deformation experiments designed to investigate the effect of bubbles on the magma bulk viscosity. The starting materials are cores of natural rhyolitic obsidian synthesized to have variable vesicularity (ϕ = 0- 66%). The foamed cores were deformed isothermally (T = 750 °C) at atmospheric conditions using a high-temperature uniaxial press under constant displacement rates (strain rates between 0.5- 1 ×10-4 s-1) and to total strains of 10-40%. The viscosity of the bubble-free melt (η0) was measured by micropenetration and parallel plate methods to establish a baseline for experiments on the vesicle rich cores. At the experimental conditions, rising vesicle content produces a marked decrease in bulk viscosity that is best described by a two-parameter empirical equation: log10 ⁡ηBulk =log10 ⁡η0 - 1.47[ ϕ / (1 - ϕ) ] 0.48. Our parameterization of the bubble-melt rheology is combined with Maxwell relaxation theory to map the potential onset of non-Newtonian behavior (shear localization) in magmas as a function of melt viscosity, vesicularity, and strain rate. For low degrees of strain (i.e. as in our study), the rheological properties of vesicular magmas under different flow types (pure vs. simple shear) are indistinguishable. For high strain or strain rates where simple and pure shear viscosity values may diverge, our model represents a maximum boundary condition. Vesicular magmas can behave as non-Newtonian fluids at lower strain rates than unvesiculated melts, thereby, promoting shear localization and (explosive or non-explosive) magma fragmentation. The extent of shear localization in magma influences outgassing efficiency, thereby, affecting magma ascent and the potential for explosivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT.......180H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT.......180H"><span>Phase equilibrium and preparation, crystallization and viscous sintering of glass in the alumina-silica-lanthanum phosphate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Feng</p> <p></p> <p>The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.640a2011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.640a2011C"><span>Apparent Viscosity of Active Nematics in Poiseuille Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Zhenlu; Su, Jianbing; Zeng, Xiaoming</p> <p>2015-09-01</p> <p>A Leslie-Erickson continuum hydrodynamic for flowing active nematics has been used to characterize active particle systems such as bacterial suspensions. The behavior of such a system under a plane pressure-driven Poiseuille flow is analyzed. When plate anchoring is tangential and normal, we find the apparent viscosity formula indicating a significant difference between tangential anchoring and normal anchoring conditions for both active rodlike and discoid nematics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874099','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874099"><span>Micromechanical transient sensor for measuring viscosity and density of a fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Thundat, Thomas G.; Oden, Patrick I.; Warmack, Robert J.; Finot, Eric Laurent</p> <p>2001-01-01</p> <p>A method and apparatus for measuring the viscosity and/or specific density of a fluid utilizes a microcantilever vibrated in the analyte fluid. The source of vibration is switched on and off and the transient behavior or decay in amplitude of the vibration is monitored. The method is particularly useful for the measurement of process conditions in remote locations in real time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........80Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........80Z"><span>Study on the rheoformability of semi-solid 7075 wrought aluminum alloy using seed process =</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Qinfu</p> <p></p> <p>Semisolid metal forming is becoming more and more attractive in the foundry industry due to its low cost and easy operation to produce high quality near-net-shape components. Over the past years, semisolid forming technique is mainly applied on the casting aluminum alloys due to their superior castability because of low melting temperature and viscosity. In semisolid forming field, thixoforming has been majorly used which involves of reheating the billet into semisolid state followed by casting process. Rheocasting is a more economic semisolid processing compared to thixoforming, which the semisolid billet is produced directly from liquid phase. The SEED process is one of reliable rheocasting techniques to produce high quality semisolid billets. To produce high quality semisolid billets, their unique rheological properties have been the most important issue need to be fully investigated. The aim of present project is to produce high quality semisolid AA7075 billets by SEED process and analyze their rheological properties under various process conditions. The effect of the SEED processing parameters and grain refiners on the semisolid microstructure and rheoformability were investigated. The deformation and rheological behavior of the semisolid billets of AA7075 base and its grain-refined alloys were studied using parallel-plate viscometer. In the first part, the evolution of liquid fraction to temperature of semisolid AA7075 alloy was investigated using Differential Scanning Calorimetry (DSC). It was found that the liquidus and solidus temperature of AA7075 alloy were 631 °C and 490°C respectively. And the corresponding temperatures of solid fraction of 40% and 60% were 622°C and 610°C, which was recognized as the temperature window for semisolid forming of this alloy. In the second part, the semisolid slurries were rheocasted using SEED technology and the effect of the SEED process parameters like swirling frequency and demolding temperature on evolution of microstructure was studied. It was found that the swirling frequency has a strong influence on the mean grain size and morphology of primary alpha-Al particles. With increasing swirling frequency, the mean size of alpha-Al particles first decreased significantly and then kept constant or increased slightly, due to the fragment and aggregation of solid particles. Microstructures also revealed that the alpha-Al particles tend to transform from dendrite-like to rosette-like to globular-like morphology due to the stirring movement. In the third part, the effects of TiB2 and Zr on the microstructure of semisolid AA7075 alloy were investigated. The microstructure observation and the intermetallic phase identification were carried out by optical microscopy equipped with Clemex analyzer and scanning electron microscopy (SEM). The mean size of primary alpha-Al particles decreases from more than 110 mum to less than 90 mum and the morphology changes from dendritic-like to globular-like with the addition of TiB2. With the addition of Zr or Zr + TiB 2, the mean size and morphology of primary alpha-Al particles didn't show significant modification. Furthermore, the addition of TiB2 shows significant refinement on three intermetallic phases (Mg(Zn,Cu,Al) 2, Fe-rich Al(Fe,Mn)Si and Mg2Si. All the intermetallic phases become finer in size and more uniform distribution among the grains. Finally, the rheological behavior and microstructure of deformed semisolid billets of AA7075 base and grain-refined alloys were investigated using parallel-plate viscometer. Images analysis shows that liquid segregates from center to edge of the billet during compression and with increasing temperature the liquid segregation becomes more significant. The apparent viscosity of two alloys decreases with the increasing shear rate, indicating shear thinning behavior. Shear rate jump phenomenon (first increase and then decrease) occurred at lower solid fraction, reaching a maximum shear rate value. The whole compression processing is divided into two parts: shear rate increasing part and shear rate decreasing part. For higher solid fraction, the shear rate decreases continuously and slowly. The attainable maximum shear rate value increases with the decreasing solid fraction. During the shear rate decreasing part, at any given shear rate the viscosity increases with the increasing solid fraction. The comparison of the viscosity of two alloys indicated that the TiB2-refined AA7075 alloy has lower viscosity (shear rate decreasing part) due to small grain size and globular grain shape. In addition, the grain refinement significantly expands the solid fraction range of good rheoformability from 42%-48% for the base alloy to 42%-55% for the refined alloy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPCM...30k4003T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPCM...30k4003T"><span>The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taniuchi, Takashi; Tsuchiya, Taku</p> <p>2018-03-01</p> <p>The melting curve of MgO is extended up to 4 TPa, corresponding to the Jovian core pressure, based on the one-step thermodynamic integration method implemented on ab initio molecular dynamics. The calculated melting temperatures are 3100 and 16 000 K at 0 and 500 GPa, respectively, which are consistent with previous experimental results, and 20 600 K at 3900 GPa, which is inconsistent with a recent experimental extrapolation, which implies the molten Jovian core. A quite small Clapeyron slope (dT/dP ) of 0.0+/- 0.5 is found at 3900 GPa due to comparable densities of the liquid and B2 phases under extreme compression. The Mg-O coordination number in the liquid phase is saturated at around 7.5 above 1 TPa and remains smaller than that in the B2 phase (8) even at 4 TPa, suggesting no density crossover between liquid and crystal and thus no further denser crystalline phases. Dynamical properties (atomic diffusivity and viscosity) are also investigated along the melting curve to understand these behaviors in greater detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26967445','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26967445"><span>Transient Cooperative Processes in Dewetting Polymer Melts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chandran, Sivasurender; Reiter, Günter</p> <p>2016-02-26</p> <p>We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10  kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900018667','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900018667"><span>An Improved K-Epsilon Model for Near-Wall Turbulence and Comparison with Direct Numerical Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shih, T. H.</p> <p>1990-01-01</p> <p>An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. The near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation is analyzed. Based on this analysis, a modified eddy viscosity model, having correct near-wall behavior, is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated. Fully developed channel flows were used for model testing. The calculations using various k-epsilon models are compared with direct numerical simulations. The results show that the present k-epsilon model performs well in predicting the behavior of near-wall turbulence. Significant improvement over previous k-epsilon models is obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1027.1241G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1027.1241G"><span>Rheology of Coating Materials and Their Coating Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grabsch, C.; Grüner, S.; Otto, F.; Sommer, K.</p> <p>2008-07-01</p> <p>Lots of particles used in the pharmaceutical and the food industry are coated to protect the core material. But almost no investigations about the coating material behavior do exist. In this study the focus was on the rheological material properties of fat based coating materials. Rotational shear experiments to determine the viscosity of a material were compared to oscillatory shear tests to get information about the vicoelastic behavior of the coating materials. At the liquid state the viscosity and the viscoelastic properties showed a good analogy. The viscoelastic properties of the solid coating materials yielded differences between materials that have the same properties at the liquid state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAP...118d4902W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAP...118d4902W"><span>Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Jie; Huang, Jun-Jie</p> <p>2015-07-01</p> <p>Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5267473-rheological-properties-molten-kilauea-iki-basalt-containing-suspended-crystals-revision','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5267473-rheological-properties-molten-kilauea-iki-basalt-containing-suspended-crystals-revision"><span>Rheological properties of molten Kilauea Iki basalt containing suspended crystals. Revision 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weed, H.C.; Ryerson, F.J.; Piwinskii, A.J.</p> <p>1984-01-01</p> <p>In order to model the flow behavior of molten silicate suspensions, such as magmas and slags, the rheological behavior must be known as a function of the concentration of suspended crystals, melt composition, and external conditions. We have determined the viscosity and crystallization sequence for a Kilauea Iki basalt between 1250/sup 0/C and 1149/sup 0/C at 100 kPa total pressure and fO/sub 2/ corresponding to the quartz-fayalite-magnetite buffer in an iron-saturated Pt30Rh rotating cup viscometer of the Couette type. The apparent viscosity varies from 9 to 879 Pa.s. The concentration of suspended cyrstals varies from 18 volume percent at 1250/supmore » 0/C to 59 volume percent at 1149/sup 0/C. The molten silicate suspension shows power-law behavior: log tau yx = A/sub 0/ + A/sub 1/ log du/dx, where tau/sub yx/ is the shear stress and (du/dx) the shear rate. Since A/sub 1/ less than or equal to 1, the apparent viscosity decreases with increasing shear rate and the system is pseudoplastic. 15 refs., 4 figs., 5 tabs.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARS35004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARS35004S"><span>Non-homogeneous flow profiles in sheared bacterial suspensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samanta, Devranjan; Cheng, Xiang</p> <p></p> <p>Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22132933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22132933"><span>Heat and pH stability of alkali-extractable corn arabinoxylan and its xylanase-hydrolyzate and their viscosity behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rumpagaporn, Pinthip; Kaur, Amandeep; Campanella, Osvaldo H; Patterson, John A; Hamaker, Bruce R</p> <p>2012-01-01</p> <p>In in vitro batch fermentations, both alkali-extractable corn arabinoxylan (CAX) and its xylanase-hydrolyzate (CH) were utilized by human fecal microbiota and produced similar short chain fatty acid (SCFA) contents and desirable long fermentation profiles with low initial gas production. Fortification of these arabinoxylans into processed foods would contribute desirable dietary fiber benefits to humans. Heat and pH stability, as well as viscosity behavior of CAX and CH were investigated. Size exclusion chromatography was used to analyze the molecular size distribution after treatment at different pH's and heating temperatures for different time periods. Treated under boiling and pressure cooking conditions at pH 3, CAX was degraded to a smaller molecular size, whereas the molecular size of the CH showed only a minor decrease. CAX and CH were mostly stable at neutral pH, except when CAX was treated under pressure for 60 min that slightly lowered molecular size. At 37 °C, neither CAX nor CH was adversely affected by treatment at low or neutral pH. The viscosities of solutions containing 5% and 10% of CAX were 48.7 and 637.0 mPa.s, respectively that were higher than those of solutions containing 5% and 10% of its hydrolyzate at shear rate 1 s⁻¹. The CAX solutions showed Newtonian flow behavior, whereas shear-thinning behavior was observed in CH solutions. In conclusion, the hydrolyzate of CAX has potential to be used in high fiber drinks due to its favorable fermentation properties, higher pH and heat stability, lower and shear-thinning viscosity, and lighter color than the native CAX. Arabinoxylan extracted by an alkali from corn bran is a soluble fiber with a desirable low initial and extended fermentation property. Corn arabinoxylan hydrolyzate using an endoxylanase was much more stable at different levels of acidity and heat than the native arabinoxylan, and showed lower solution viscosity and shear-thinning property that indicates its potential as an alternative functional dietary fiber for the beverage industry. © 2011 Institute of Food Technologists®</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27705775','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27705775"><span>Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mika, Jacek T; Thompson, Alexander J; Dent, Michael R; Brooks, Nicholas J; Michiels, Jan; Hofkens, Johan; Kuimova, Marina K</p> <p>2016-10-04</p> <p>The viscosity is a highly important parameter within the cell membrane, affecting the diffusion of small molecules and, hence, controlling the rates of intracellular reactions. There is significant interest in the direct, quantitative assessment of membrane viscosity. Here we report the use of fluorescence lifetime imaging microscopy of the molecular rotor BODIPY C10 in the membranes of live Escherichia coli bacteria to permit direct quantification of the viscosity. Using this approach, we investigated the viscosity in live E. coli cells, spheroplasts, and liposomes made from E. coli membrane extracts. For live cells and spheroplasts, the viscosity was measured at both room temperature (23°C) and the E. coli growth temperature (37°C), while the membrane extract liposomes were studied over a range of measurement temperatures (5-40°C). At 37°C, we recorded a membrane viscosity in live E. coli cells of 950 cP, which is considerably higher than that previously observed in other live cell membranes (e.g., eukaryotic cells, membranes of Bacillus vegetative cells). Interestingly, this indicates that E. coli cells exhibit a high degree of lipid ordering within their liquid-phase plasma membranes. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760056398&hterms=systems+diffuse&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsystems%2Bdiffuse','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760056398&hterms=systems+diffuse&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsystems%2Bdiffuse"><span>Viscosity and viscoelasticity of two-phase systems having diffuse interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hopper, R. W.</p> <p>1976-01-01</p> <p>The equilibrium stability criterion for diffuse interfaces in a two-component solution with a miscibility gap requires that the interdiffusion flux vanish. If the system is continuously deformed, convective fluxes disrupt the equilibrium in the interface regions and induce a counter diffusive flux, which is dissipative and contributes to the apparent viscosity of the mixture. Chemical free energy is recoverably stored, causing viscoelastic phenomena. Both effects are significant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24621375','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24621375"><span>Effect of lipid viscosity and high-pressure homogenization on the physical stability of "Vitamin E" enriched emulsion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alayoubi, Alaadin; Abu-Fayyad, Ahmed; Rawas-Qalaji, Mutasem M; Sylvester, Paul W; Nazzal, Sami</p> <p>2015-01-01</p> <p>Recently there has been a growing interest in vitamin E for its potential use in cancer therapy. The objective of this work was therefore to formulate a physically stable parenteral lipid emulsion to deliver higher doses of vitamin E than commonly used in commercial products. Specifically, the objectives were to study the effects of homogenization pressure, number of homogenizing cycles, viscosity of the oil phase, and oil content on the physical stability of emulsions fortified with high doses of vitamin E (up to 20% by weight). This was done by the use of a 27-run, 4-factor, 3-level Box-Behnken statistical design. Viscosity, homogenization pressure, and number of cycles were found to have a significant effect on particle size, which ranged from 213 to 633 nm, and on the percentage of vitamin E remaining emulsified after storage, which ranged from 17 to 100%. Increasing oil content from 10 to 20% had insignificant effect on the responses. Based on the results it was concluded that stable vitamin E rich emulsions could be prepared by repeated homogenization at higher pressures and by lowering the viscosity of the oil phase, which could be adjusted by blending the viscous vitamin E with medium-chain triglycerides (MCT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5192379','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5192379"><span>A Theoretical Study of Love Wave Sensors Based on ZnO–Glass Layered Structures for Application to Liquid Environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Caliendo, Cinzia; Hamidullah, Muhammad</p> <p>2016-01-01</p> <p>The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvB..89l5303F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvB..89l5303F"><span>Hall viscosity of hierarchical quantum Hall states</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fremling, M.; Hansson, T. H.; Suorsa, J.</p> <p>2014-03-01</p> <p>Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMFM...16..787D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMFM...16..787D"><span>On a Nonlinear Model for Tumor Growth: Global in Time Weak Solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donatelli, Donatella; Trivisa, Konstantina</p> <p>2014-07-01</p> <p>We investigate the dynamics of a class of tumor growth models known as mixed models. The key characteristic of these type of tumor growth models is that the different populations of cells are continuously present everywhere in the tumor at all times. In this work we focus on the evolution of tumor growth in the presence of proliferating, quiescent and dead cells as well as a nutrient. The system is given by a multi-phase flow model and the tumor is described as a growing continuum Ω with boundary ∂Ω both of which evolve in time. Global-in-time weak solutions are obtained using an approach based on penalization of the boundary behavior, diffusion and viscosity in the weak formulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.T51H..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.T51H..03H"><span>Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hearn, E. H.</p> <p>2013-12-01</p> <p>Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller characteristic earthquakes. Thus, minimum lithosphere or shear zone effective viscosities inferred from interseismic GPS data and infinite-fault earthquake-cycle models may be too high. The finite-fault models show that relaxation of viscoelastic material in the mid crust (most likely along a viscous shear zone) may be consistent with near- to intermediate-field postseismic deformation typical of recent Mw = 7.4 to 7.9 earthquakes. This deformation is compatible with more localized and time-invariant deformation during most of the interseismic interval if (1) shear zone viscosity per unit width increases with depth or (2) the shear zone material has a Burgers viscoelastic rheology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850055562&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeofisica','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850055562&hterms=geofisica&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgeofisica"><span>The effects of transient rheology on the interpretation of lower mantle viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sabadini, R.; Yuen, D. A.; Gasperini, P.</p> <p>1985-01-01</p> <p>The role played by transient rheology in the interpretation of mantle viscosity is reexamined. The investigation has been carried out by comparing the amplitude responses with the data of secular variation of J(2), the relative sea-level histories at sites well within the ice margins and at the ice margin like the city of Boston. A linear Burgers body rheology has been assumed in ther lower mantle. The data near the edge of the ice load proves most sensitive to the transient viscosity structure. The non-monotonic behavior of sea-level data near Boston can be explained both by a steady-state lower mantle viscosity of 10 to the 22nd P with a thick lithosphere and by a transient lower mantle rheology but with a thin lithosphere. The long-term viscosity of the lower mantle in this second model has a steady-state value of around 5 x 10 to the 23rd P.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981PhDT........83G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981PhDT........83G"><span>The Rheology of a Three Component System: COAL/WATER/#4 Oil Emulsions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gilmartin, Barbara Jean</p> <p></p> <p>The purpose of this investigation was to study the rheology of a three component system, coal/water/#4 oil emulsions (COW), in which the third component, water, was present in a significant concentration, and to determine the applicability of existing theories from suspension rheology to the three component system studied. In a coal/water/oil emulsion, free coal particles adhere to the surface of the water droplets, preventing their coagulation, while the larger coal particles reside in the matrix of stabilized water droplets. The use of liquid fuels containing coal is a means of utilizing our nation's coal reserves while conserving oil. These fuels can be burned in conventional oil-fired furnaces. In this investigation, a high sulfur, high ash, bituminous coal was used, along with a heavy #4 oil to prepare the emulsions. The coal was ground to a log-normal distribution with an average particle size of 62 microns. A Haake RV3 concentric cylinder viscometer, with a ribbed measuring system, was used to determine the viscosity of the emulsions. A physical pendulum settling device measured the shift in center of mass of the COW as a function of time. The flow behavior of the fuel in pipes was also tested. In interpreting the data from the viscometer and the pipe flow experiments, a power law analysis was used in the region from 30 s('-1) to 200 s('-1). Extrapolation methods were used to obtain the low and high shear behavior of the emulsions. In the shear rate region found in boiler feed systems, COW are shear thinning with a flow behavior index of 0.7. The temperature dependent characteristic of the emulsions studied were similar and followed an Arrhenius type relationship. The viscosity of the COW decreases with increasing coal average particle size and is also a function of the width of the size distribution used. The type of coal used strongly influences the rheology of the fuel. The volatile content and the atomic oxygen to nitrogen ratio of the coal are the most predictive factors in terms of the variation in viscosity of the emulsion with coal type. The viscosity of the oil used is linearly related to the viscosity of the COW. The relative viscosity - concentration relationship for the emulsions was evaluated by an equation developed by Quemada for use in blood rheology: (eta)(,r) = (1 - (phi)/(phi)(,max))('-2). The best fit of the data to the equation was found when the coal plus water concentration was used for (phi). The maximum packing fraction increased with increasing shear rate, reflecting a breaking up of the agglomerates in the system. By using the relative packing fraction of the coal plus oil concentration, the relative viscosity of the emulsions tested at the three shear rates evaluted can be fit to the Quemada relative viscosity equation. In the pipe flow tests, the emulsions showed little time-dependent behavior, however they did exhibit a well effect. A fair correlation was obtained between pipe flow behavior and the results obtained in the viscometer. Coal/water/#4 oil emulsions behave as coal and water in oil systems and can be successfully modeled using theories from suspension rheology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41D0424Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41D0424Z"><span>Grain Boundary Sliding in Olivine + Clinopyroxene Aggregates: Weakening Mechanism and Microstructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, N.; Hirth, G.; Cooper, R. F.; Kruckenberg, S. C.</p> <p>2017-12-01</p> <p>Constraining the viscosity of olivine-rich aggregates is critical for modeling geodynamic processes in the upper mantle. The presence of pyroxenes can complicate the rheology of mantle rocks owing to heterogeneous phase boundary properties and the potential impacts of incompatible elements on interface viscosity. Thus, in the grain boundary sliding (GBS) regime, it may be inappropriate to extrapolate flow laws of end-member aggregates to predict the behavior of multiphase aggregates. We deformed mixtures of fine-grained olivine (Ol) and clinopyroxene (Cpx) with various phase ratios in a general shear geometry at a confining pressure of 1.5 GPa, 1100-1200ºC and strain rate of 10­-3-10-5 s-1 to shear strains up to 8.5. We observed a peak stress followed by weakening in each experiment (except for those at 1200ºC), yet at steady state Ol-Cpx samples are substantially weaker than either pure Ol or pure Cpx end members scaled to the same grain size. Flow law parameters are quantified and indicate that the dominant deformation mechanism is reaction-limited diffusional creep. In addition, the results are consistent with a microphysical model that does not require the diffusion of Si (Sundberg & Cooper, 2008), providing an explanation for the observed weakening of olivine and pyroxene aggregates. Olivine exhibits an axial-[010] fabric or a B-type fabric. Analysis of low-angle (2º-10º) boundary axes indicate the activation of (010)[100] slip system, but no evidence for activation of the (010)[001] slip system that is hypothesized to generate a B-type fabric by dislocation creep. In the samples with strong fabric, we sorted the grains by their grain orientation spread (GOS, a measurement of how substructured the grain is or how active the dislocations were in the grain). The low-GOS grains have smaller grain sizes, smaller aspect ratios and weaker shape preferred orientation compared to high-GOS grains. Yet, low-GOS grains also have the strongest B-type fabric, while high-GOS grains exhibit axial-[010] fabric. These data argue against the hypothesis that olivine B-type fabric forms during GBS as a result of the preferential rotation of grains controlled by crystal habit. We will provide evidence to support that fabric could be related to anisotropy in grain/phase boundary properties (i.e., viscosity and interfacial energy).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22192562','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22192562"><span>Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lesellier, E</p> <p>2012-03-09</p> <p>The chromatographic efficiency, in terms of plate number per second, was dramatically improved by the introduction of sub-two microns particles with ultra-high pressure liquid chromatography (UHPLC). On the other hand, the recent development of superficially porous particles, called core-shell or fused-core particles, appears to allow the achievement of the same efficiency performances at higher speed without high pressure drops. CO₂-based mobile phases exhibiting much lower viscosities than aqueous based mobile phases allow better theoretical efficiencies, even with 3-5 μm particles, but with relative low pressure drops. They also allow much higher flow rates or much longer columns while using conventional instruments capable to operate below 400 bar. Moreover, the use of superficially porous particles in SFC could enhance the chromatographic performances even more. The kinetic behavior of ODS phases bonded on these particles was studied, with varied flow rates, outlet (and obviously inlet) pressures, temperatures, by using a homologous series (alkylbenzenes) with 10% modifier (methanol or acetonitrile) in the carbon dioxide mobile phase. Results were also compared with classical fully porous particles, having different sizes, from 2.5 to 5 μm. Superior efficiency (N) and reduced h were obtained with these new ODS-bonded particles in regards to classical ones, showing their great interest for use in SFC. However, surprising behavior were noticed, i.e. the increase of the theoretical plate number vs. the increase of the chain length of the compounds. This behavior, opposite to the one classically reported vs. the retention factor, was not depending on the outlet pressure, but on the flow rate and the temperature changes. The lower radial trans-column diffusion on this particle types could explain these results. This diffusion reduction with these ODS-bonded superficially porous particles seems to decrease with the increase of the residence time of compounds. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..MARM39015D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..MARM39015D"><span>Universality Results for Multi-phase Hele-Shaw Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daripa, Prabir</p> <p>2013-03-01</p> <p>Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18581558','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18581558"><span>New instrument for on-line viscosity measurement of fermentation media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Picque, D; Corrieu, G</p> <p>1988-01-01</p> <p>In an attempt to resolve the difficult problem of on-line determination of the viscosity of non-Newtonian fermentation media, the authors have used a vibrating rod sensor mounted on a bioreactor. The sensor signal decreases nonlinearly with increased apparent viscosity. Electronic filtering of the signal damps the interfering effect of aeration and mechanical agitation. Sensor drift is very low (0.03% of measured value per hour). On the rheological level the sensor is primarily an empirical tool that must be specifically calibrated for each fermentation process. Once this is accomplished, it becomes possible to establish linear or second-degree correlations between the electrical signal from the sensor and the essential parameters of the fermentation process in question (pH of a fermented milk during acidification, concentration of extra cellular polysaccharide). In addition, by applying the power law to describe the rheological behavior of fermentation media, we observe a second-order polynomial correlation between the sensor signal and the behavior index (n).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1027.1114S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1027.1114S"><span>Determination of Extensional Rheological Properties by Hyperbolic Contraction Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stading, Mats</p> <p>2008-07-01</p> <p>Extensional rheologyy is important for diverse applications such as processing of viscoelastic fluids, mouthfeel of semi-solid foods, cell mitosis and baking, and is also a useful tool for testing the applicability of constitutive equations. Despite the documented influence of extensional rheological properties, it is seldom measured due to experimental difficulties. There are only commercial equipments available for low-viscosity fluids by Capillary Breakup and for polymer melts by Meissner-type winding of ribbons around cylinders. Both methods have limited applicability for medium-viscosity fluids such as foods and other biological systems. Contraction flows are extensively studied and a new test method has been developed based on contraction flow through a hyperbolic nozzle. The method is suitable for medium-viscosity fluids and has been validated by comparison to results from Filament Stretching and Capillary Breakup. The hyperbolic contraction flow method has been used to characterize food and medical systems, distinguish between different products having equal shear behavior, quantify ropy mouth feel and to predict foaming behavior of biopolymers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1319195','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1319195"><span>The puzzling first-order phase transition in water–glycerol mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Popov, Ivan; Greenbaum; Sokolov, Alexei P.</p> <p>2015-06-05</p> <p>Over the last decade, discussions on a possible liquid-liquid transition (LLT) have strongly intensified. The LLT proposed by several authors focused mostly on explaining the anomalous properties of water in a deeply supercooled state. However, there have been no direct experimental observations yet of LLT in bulk water in the so-called 'no man's land', where water exists only in the crystalline states. Recently, a novel experimental strategy to detect LLT in water has been employed using water-glycerol (W-G) mixtures, because glycerol can generate a strong hindrance for water crystallization. As a result, the observed first-order phase transition at a concentrationmore » of glycerol around c(g) approximate to 20 mol% was ascribed to the LLT. Here we show unambiguously that the first order phase transition in W-G mixtures is caused by the ice formation. We provide additional dielectric measurements, applying specific annealing temperature protocols in order to reinforce this conclusion. We also provide an explanation, why such a phase transition occurs only in the narrow glycerol concentration range. These results clearly demonstrate the danger of analysis of phase-separating liquids to gain better insights into water dynamics. These liquids have complex phase behavior that is affected by temperature, phase stability and segregation, viscosity and nucleation, and finally by crystallization, that might lead to significant misinterpretations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28462581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28462581"><span>Clay-Alcohol-Water Dispersions: Anomalous Viscosity Changes Due to Network Formation of Clay Nanosheets Induced by Alcohol Clustering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kimura, Yuji; Haraguchi, Kazutoshi</p> <p>2017-05-16</p> <p>Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1366624','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1366624"><span>Ras Diffusion Is Sensitive to Plasma Membrane Viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Goodwin, J. Shawn; Drake, Kimberly R.; Remmert, Catha L.; Kenworthy, Anne K.</p> <p>2005-01-01</p> <p>The cell surface contains a variety of barriers and obstacles that slow the lateral diffusion of glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins below the theoretical limit imposed by membrane viscosity. How the diffusion of proteins residing exclusively on the inner leaflet of the plasma membrane is regulated has been largely unexplored. We show here that the diffusion of the small GTPase Ras is sensitive to the viscosity of the plasma membrane. Using confocal fluorescence recovery after photobleaching, we examined the diffusion of green fluorescent protein (GFP)-tagged HRas, NRas, and KRas in COS-7 cells loaded with or depleted of cholesterol, a well-known modulator of membrane bilayer viscosity. In cells loaded with excess cholesterol, the diffusional mobilities of GFP-HRas, GFP-NRas, and GFP-KRas were significantly reduced, paralleling the behavior of the viscosity-sensitive lipid probes DiIC16 and DiIC18. However, the effects of cholesterol depletion on protein and lipid diffusion in cell membranes were highly dependent on the depletion method used. Cholesterol depletion with methyl-β-cyclodextrin slowed Ras diffusion by a viscosity-independent mechanism, whereas overnight cholesterol depletion slightly increased both protein and lipid diffusion. The ability of Ras to sense membrane viscosity may represent a general feature of proteins residing on the cytoplasmic face of the plasma membrane. PMID:15923235</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AIPC.1027...90O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AIPC.1027...90O"><span>Shear Rheology of Suspensions of Porous Zeolite Particles in Concentrated Polymer Solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olanrewaju, Kayode O.; Breedveld, Victor</p> <p>2008-07-01</p> <p>We present experimental data on the shear rheology of Ultem (polyetherimide)/NMP(l-methyl-2-pyrrolidinone) solutions with and without suspended surface-modified porous/nonporous zeolite (ZSM-5) particles. We found that the porous zeolite suspensions have relative viscosities that significantly exceed the Krieger-Dougherty predictions for hard sphere suspensions. The major origin of this discrepancy is the selective absorption of NMP solvent into the zeolite pores, which raises both the polymer concentration and the particle volume fraction, thus enhancing both the viscosity of the continuous phase Ultem/NMP polymer solution and the particle contribution to the suspension viscosity. Other factors, such as zeolite non-sphericity and specific interactions with Ultem polymer, contribute to the suspension viscosity to a lesser extent. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating an absorption parameter, α, into the Krieger-Dougherty model. We also propose independent approaches to determine α. The first one is indirect and based on zeolite density/porosity data, assuming that all pores will be filled with solvent. The other method is based on our experimental data, by comparing the viscosity data of porous versus non-porous zeolite suspensions. The different approaches are compared.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..1902011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..1902011S"><span>Viscosity of diluted suspensions of vegetal particles in water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szydłowska, Adriana; Hapanowicz, Jerzy</p> <p>2017-10-01</p> <p>Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i) 150÷212 μm, (ii) 106÷150 μm and (iii) below106 μm) of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MMTB...47.2582P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MMTB...47.2582P"><span>Thermo-Physical Properties of B2O3-Containing Mold Flux for High Carbon Steels in Thin Slab Continuous Casters: Structure, Viscosity, Crystallization, and Wettability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Jun-Yong; Kim, Gi Hyun; Kim, Jong Bae; Park, Sewoong; Sohn, Il</p> <p>2016-08-01</p> <p>The effect of B2O3 on the thermo-physical properties of commercial mold fluxes, including the viscosity, crystallization behavior, and wettability, was investigated. Viscosity was measured using the rotating spindle method, and CCT (continuous cooling transformation) diagrams were obtained to investigate the crystallization behavior at various cooling rates using CLSM (confocal laser scanning microscope). The wettability of the fluxes was determined by measuring the contact angles at 1573 K (1300 °C) using the digital images generated by the sessile drop method and were used to calculate the surface tension, interfacial tension, and work of adhesion for Flux A (existing flux) and B (modified flux). These thermo-physical properties were correlated with the structural analysis obtained using FT-IR (Fourier transform-infrared), Raman and MAS-NMR (magic angle spin-nuclear magnetic resonance) spectroscopy. In addition, DTA (differential thermal analysis) was performed on the samples to measure the liquidus temperatures. Higher B2O3 concentrations resulted in lower liquidus temperatures, consequently decreasing the viscosity, the break temperature, and the crystallization temperature. However, B2O3 addition accelerated crystal growth owing to the higher diffusion kinetics of the cations, which also reduced the size of the liquid/solid co-existing region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15313659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15313659"><span>Observations of instability, hysteresis, and oscillation in low-Reynolds-number flow past polymer gels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eggert, Matthew D; Kumar, Satish</p> <p>2004-10-01</p> <p>We perform a set of experiments to study the nonlinear nature of an instability that arises in low-Reynolds-number flow past polymer gels. A layer of a viscous liquid is placed on a polydimethylsiloxane (PDMS) gel in a parallel-plate rheometer which is operated in stress-controlled mode. As the shear stress on the top plate increases, the apparent viscosity stays relatively constant until a transition stress where it sharply increases. If the stress is held at a level slightly above the transition stress, the apparent viscosity oscillates with time. If the stress is increased to a value above the transition stress and then decreased back to zero, the apparent viscosity shows hysteretic behavior. If the stress is instead decreased to a constant value and held there, the apparent viscosity is different from its pretransition value and exhibits sustained oscillations. This can happen even if the stress is held at values below the transition stress. Our observations suggest that the instability studied here is subcritical and leads to a flow that is oscillatory and far from viscometric. The phenomena reported here may be useful in applications such as microfluidics, membrane separations, and polymer processing. They may also provide insight into the rheological behavior of complex fluids that undergo flow-induced gelation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10067E..11B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10067E..11B"><span>Decorrelation-based viscosity measurement using phase-sensitive optical coherence tomography (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blackburn, Brecken J.; Gu, Shi; Jenkins, Michael W.; Rollins, Andrew M.</p> <p>2017-02-01</p> <p>A robust method to measure viscosity of microquantities of biological samples, such as blood and mucus, could lead to a better understanding and diagnosis of diseases. Microsamples have presented persistent challenges to conventional rheology, which requires bulk quantities of a sample. Alternatively, fluid viscosity can be probed by monitoring microscale motion of particles. Here, we present a decorrelation-based method using M-mode phase-sensitive optical coherence tomography (OCT) to measure particle Brownian motion. This is similar to previous methods using laser speckle decorrelation but with sensitivity to nanometer-scale displacement. This allows for the measurement of decorrelation in less than 1 millisecond and significantly decreases sensitivity to bulk motion, thereby potentially enabling in vivo and in situ applications. From first principles, an analytical method is established using M-mode images obtained from a 47 kHz spectral-domain OCT system. A g(1) first-order autocorrelation is calculated from windows containing several pixels over a time frame of 200-1000 microseconds. Total imaging time is 500 milliseconds for averaging purposes. The autocorrelation coefficient over this short time frame decreases linearly and at a rate proportional to the diffusion constant of the particles, allowing viscosity to be calculated. In verification experiments using phantoms of microbeads in 200 µL glycerol-water mixtures, this method showed insensitivity to 2 mm/s lateral bulk motion and accurate viscosity measurements over a depth of 400 µm. In addition, the method measured a significant decrease of the apparent diffusion constant of soft tissue after formalin fixation, suggesting potential applications in mapping tissue stiffness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014105','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5014105"><span>Geometric flow control of shear bands by suppression of viscous sliding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan</p> <p>2016-01-01</p> <p>Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method—passive geometric flow control—that effects complete band suppression in systems which otherwise fail via shear banding. PMID:27616920</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RSPSA.47260167S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RSPSA.47260167S"><span>Geometric flow control of shear bands by suppression of viscous sliding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sagapuram, Dinakar; Viswanathan, Koushik; Mahato, Anirban; Sundaram, Narayan K.; M'Saoubi, Rachid; Trumble, Kevin P.; Chandrasekar, Srinivasan</p> <p>2016-08-01</p> <p>Shear banding is a plastic flow instability with highly undesirable consequences for metals processing. While band characteristics have been well studied, general methods to control shear bands are presently lacking. Here, we use high-speed imaging and micro-marker analysis of flow in cutting to reveal the common fundamental mechanism underlying shear banding in metals. The flow unfolds in two distinct phases: an initiation phase followed by a viscous sliding phase in which most of the straining occurs. We show that the second sliding phase is well described by a simple model of two identical fluids being sheared across their interface. The equivalent shear band viscosity computed by fitting the model to experimental displacement profiles is very close in value to typical liquid metal viscosities. The observation of similar displacement profiles across different metals shows that specific microstructure details do not affect the second phase. This also suggests that the principal role of the initiation phase is to generate a weak interface that is susceptible to localized deformation. Importantly, by constraining the sliding phase, we demonstrate a material-agnostic method-passive geometric flow control-that effects complete band suppression in systems which otherwise fail via shear banding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030060543','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030060543"><span>Studies of Nucleation and Growth, Specific Heat and Viscosity of Undercooled Melts of Quasicrystal and Polytetrahedral-Phase Forming Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kelton, K. F.; Gangopadhyay, Anup K.; Lee, G. W.; Hyers, Robert W.; Rathz, T. J.; Robinson, Michael B.; Rogers, Jan R.</p> <p>2003-01-01</p> <p>From extensive ground based work on the phase diagram and undercooling studies of Ti-Zr-Ni alloys, have clearly identified the composition of three different phases with progressively increasing polytetrahedral order such as, (Ti/Zr), the C14 Laves phase, and the i-phase, that nucleate directly from the undercooled liquid. The reduced undercooling decreases progressively with increasing polytetrahedral order in the solid, supporting Frank s hypothesis. A new facility for direct measurements of the structures and phase transitions in undercooled liquids (BESL) was developed and has provided direct proof of the primary nucleation of a metastable icosahedral phase in some Ti-Zr-Ni alloys. The first measurements of specific heat and viscosity in the undercooled liquid of this alloy system have been completed. Other than the importance of thermo-physical properties for modeling nucleation and growth processes in these materials, these studies have also revealed some interesting new results (such as a maximum of C(sup q, sub p) in the undercooled state). These ground-based results have clearly established the necessary background and the need for conducting benchmark nucleation experiments at the ISS on this alloy system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22314838-cosmological-qcd-phase-transition-steady-non-equilibrium-dissipative-horavalifshitz-early-universe','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22314838-cosmological-qcd-phase-transition-steady-non-equilibrium-dissipative-horavalifshitz-early-universe"><span>Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir</p> <p></p> <p>We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARF17007W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARF17007W"><span>Liquid droplets of cross-linked actin filaments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret</p> <p></p> <p>Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9761638','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9761638"><span>The Effects of Flocculation on the Propagation of Ultrasound in Dilute Kaolin Slurries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Austin; Challis</p> <p>1998-10-01</p> <p>A broadband ultrasonic spectrometer has been used to measure ultrasonic attenuation and phase velocity dispersion as functions of frequency in kaolin suspensions over a range of solid volume fractions from phi = 0.01 to phi = 0.08 and over a pH range from 3 to 9. The Harker and Temple theory was used to simulate ultrasound propagation in the suspension, using measured slope viscosity, particle size, and size distribution. Simulated results for ultrasonic attenuation and phase velocity agree well with measured values. Both sets of results agree well and show that for volume fractions above phi approximately 0.05 attenuation and velocity dispersion increase for increasing floc size, whereas for volume fractions below phi approximately 0.05 attenuation and velocity dispersion both decrease. It is proposed that the mechanism for this change in behavior around phi approximately 0.05 involves changes in floc density and floc size distribution with phi and pH. Copyright 1998 Academic Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21867275','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21867275"><span>Scaling properties of weakly nonlinear coefficients in the Faraday problem.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Skeldon, A C; Porter, J</p> <p>2011-07-01</p> <p>Interesting and exotic surface wave patterns have regularly been observed in the Faraday experiment. Although symmetry arguments provide a qualitative explanation for the selection of some of these patterns (e.g., superlattices), quantitative analysis is hindered by mathematical difficulties inherent in a time-dependent, free-boundary Navier-Stokes problem. More tractable low viscosity approximations are available, but these do not necessarily capture the moderate viscosity regime of the most interesting experiments. Here we focus on weakly nonlinear behavior and compare the scaling results derived from symmetry arguments in the low viscosity limit with the computed coefficients of appropriate amplitude equations using both the full Navier-Stokes equations and a reduced set of partial differential equations due to Zhang and Vinãls. We find the range of viscosities over which one can expect "low viscosity" theories to hold. We also find that there is an optimal viscosity range for locating superlattice patterns experimentally-large enough that the region of parameters giving stable patterns is not impracticably small, yet not so large that crucial resonance effects are washed out. These results help explain some of the discrepancies between theory and experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SCPMA..53..802M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SCPMA..53..802M"><span>Effects of viscosity on shock-induced damping of an initial sinusoidal disturbance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Xiaojuan; Liu, Fusheng; Jing, Fuqian</p> <p>2010-05-01</p> <p>A lack of reliable data treatment method has been for several decades the bottleneck of viscosity measurement by disturbance amplitude damping method of shock waves. In this work the finite difference method is firstly applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in inviscid and viscous flow. When water shocked to 15 GPa is taken as an example, the main results are as follows: (1) For inviscid and lower viscous flows the numerical method gives results in good agreement with the analytic solutions under the condition of small disturbance ( a 0/ λ=0.02); (2) For the flow of viscosity beyond 200 Pa s ( η = κ) the analytic solution is found to overestimate obviously the effects of viscosity. It is attributed to the unreal pre-conditions of analytic solution by Miller and Ahrens; (3) The present numerical method provides an effective tool with more confidence to overcome the bottleneck of data treatment when the effects of higher viscosity in experiments of Sakharov and flyer impact are expected to be analyzed, because it can in principle simulate the development of shock waves in flows with larger disturbance amplitude, higher viscosity, and complicated initial flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28587065','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28587065"><span>Amorphous SiC/c-ZnO-Based Quasi-Lamb Mode Sensor for Liquid Environments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caliendo, Cinzia; Hamidullah, Muhammad; Laidoudi, Farouk</p> <p>2017-05-25</p> <p>The propagation of the quasi-Lamb modes along a-SiC/ZnO thin composite plates was modeled and analysed with the aim to design a sensor able to detect the changes in parameters of a liquid environment, such as added mass and viscosity changes. The modes propagation was modeled by numerically solving the system of coupled electro-mechanical field equations in three media. The mode shape, the power flow, the phase velocity, and the electroacoustic coupling efficiency (K²) of the modes were calculated, specifically addressing the design of enhanced-coupling, microwave frequency sensors for applications in probing the solid/liquid interface. Three modes were identified that have predominant longitudinal polarization, high phase velocity, and quite good K²: the fundamental quasi symmetric mode (qS₀) and two higher order quasi-longitudinal modes (qL₁ and qL₂) with a dominantly longitudinal displacement component in one plate side. The velocity and attenuation of these modes were calculated for different liquid viscosities and added mass, and the gravimetric and viscosity sensitivities of both the phase velocity and attenuation were theoretically calculated. The present study highlights the feasibility of the a-SiC/ZnO acoustic waveguides for the development of high-frequency, integrated-circuit compatible electroacoustic devices suitable for working in a liquid environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28929263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28929263"><span>Melt Extrusion of High-Dose Co-Amorphous Drug-Drug Combinations : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arnfast, Lærke; Kamruzzaman, Md; Löbmann, Korbinian; Aho, Johanna; Baldursdottir, Stefania; Rades, Thomas; Rantanen, Jukka</p> <p>2017-12-01</p> <p>Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated. Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry. Extrudates containing a co-amorphous glass solution were produced and the solid-state composition of these was studied with DSC. Rheological analysis indicated that the studied systems display viscosities higher than expected for small molecule melts and addition of PEO decreased the viscosity of the melt. Extrudates of indomethacin-cimetidine alone displayed amorphous-amorphous phase separation after 4 weeks of storage, whereas no phase separation was observed during the 16 week storage of the indomethacin-cimetidine extrudates containing 5% (w/w) PEO. Melt extrusion of co-amorphous extrudates with low amounts of polymer was found to be a feasible manufacturing technique. Addition of 5% (w/w) polymer reduced melt viscosity and prevented phase separation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JOM....70a..29W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JOM....70a..29W"><span>Static Holdup of Liquid Slag in Simulated Packed Coke Bed Under Oxygen Blast Furnace Ironmaking Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Guang; Liu, Yingli; Zhou, Zhenfeng; Wang, Jingsong; Xue, Qingguo</p> <p>2018-01-01</p> <p>The liquid-phase flow behavior of slag in the lower zone of a blast furnace affects the furnace permeability, performance, and productivity. The effects of pulverized coal injection (PCI) on the behavior of simulated primary slag flow were investigated by quantifying the effect of key variables including Al/Si ratio [Al2O3 (wt.%) to SiO2 (wt.%)] and the amount of unburnt pulverized coal (UPC) at 1500°C. Viscosity analysis demonstrated that the slag fluidity decreased as the Al/Si ratio was increased (from 0.35 to 0.50), resulting in gradual increase of the static holdup. Increasing the amount of UPC resulted in a significant increase of the static holdup. Flooding analysis was applied to determine the maximum static holdup, which was found to be 11.5%. It was inferred that the burnout rates of pulverized coal should exceed 78.6% and 83.9% in traditional and oxygen blast furnaces, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/392464-vapor-liquid-equilibria-polyol-ester-lubricant-measurements-departure-from-ideality','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/392464-vapor-liquid-equilibria-polyol-ester-lubricant-measurements-departure-from-ideality"><span>Vapor-liquid equilibria for R-22, R-134a, R-125, and R-32/125 with a polyol ester lubricant: Measurements and departure from ideality</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martz, W.L.; Burton, C.M.; Jacobi, A.M.</p> <p>1996-11-01</p> <p>The effect of a polyol ester lubricant on equilibrium pressure, liquid density, and viscosity is presented for R-22, R-125, and R-134a at varying temperatures and concentrations. Preliminary vapor-liquid equilibrium (VLE) data and miscibility observations are also presented for an R-32/R-125 blend (50%/50%) with the ISO 68 polyol ester (POE). Real-gas behavior is modeled using the vapor-phase fugacity, and vapor pressure effects on liquid fugacities are taken into account with the Poynting effect. Positive, negative, and mixed deviations form the Lewis-Randall rule are observed in the activity coefficient behavior. Departures from ideality are related to molecular size differences, intermolecular forces inmore » the mixture, and other factors. The data are discussed in the context of previous results for other refrigerants and thermodynamic modeling of refrigerant and oil mixtures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21499526-shear-bulk-viscosities-pure-glue-matter','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21499526-shear-bulk-viscosities-pure-glue-matter"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Khvorostukhin, A. S.; Joint Institute for Nuclear Research, 141980 Dubna; Institute of Applied Physics, Moldova Academy of Science, MD-2028 Kishineu</p> <p></p> <p>Shear {eta} and bulk {zeta} viscosities are calculated in a quasiparticle model within a relaxation-time approximation for pure gluon matter. Below T{sub c}, the confined sector is described within a quasiparticle glueball model. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state, it is possible to describe the temperature dependence of the shear viscosity to entropy ratio {eta}/s and the bulk viscosity to entropy ratio {zeta}/s in reasonable agreement with available lattice data, but absolute values of the {zeta}/s ratio underestimate the upper limits of thismore » ratio in the lattice measurements typically by an order of magnitude.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869607','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869607"><span>Method for measuring liquid viscosity and ultrasonic viscometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.</p> <p>1994-01-01</p> <p>An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..MARX32003M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..MARX32003M"><span>Equation of State and Viscosity of Tantalum and Iron from First Principles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miljacic, Ljubomir; Demers, Steven; van de Walle, Axel</p> <p>2011-03-01</p> <p>To understand and model at continuum level the high-energy-density dynamic response in transition metals like Tantalum and Iron, as it arises in hypervelocity impact experiments, an accurate prediction of the underlying thermodynamic and kinetic properties for a range of temperatures and pressures is of critical importance. The relevant time scale of atomic motion in a dense gas, liquid, and solid is accessible with ab-initio Molecular Dynamics (MD) simulations. We calculate EoS for Ta and Fe via Thermodynamical Integration in 2D (V,T) phase space throughout different single and two-component phases. To reduce the ab-initio demand in selected regions of the space, we fit available gas-liquid data to the Peng-Robinson model and treat the solid phase within the Boxed-quasi-harmonic approximation. In the fluid part of the 2D phase space, we calculate shear viscosity via Green-Kubo relations, as time integration of the stress autocorrelation function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384706','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5384706"><span>In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tomar, Dheeraj S.; Li, Li; Broulidakis, Matthew P.; Luksha, Nicholas G.; Burns, Christopher T.; Singh, Satish K.; Kumar, Sandeep</p> <p>2017-01-01</p> <p>ABSTRACT Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence—structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on VH, VL, and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development. PMID:28125318</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28125318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28125318"><span>In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tomar, Dheeraj S; Li, Li; Broulidakis, Matthew P; Luksha, Nicholas G; Burns, Christopher T; Singh, Satish K; Kumar, Sandeep</p> <p>2017-04-01</p> <p>Early stage developability assessments of monoclonal antibody (mAb) candidates can help reduce risks and costs associated with their product development. Forecasting viscosity of highly concentrated mAb solutions is an important aspect of such developability assessments. Reliable predictions of concentration-dependent viscosity behaviors for mAb solutions in platform formulations can help screen or optimize drug candidates for flexible manufacturing and drug delivery options. Here, we present a computational method to predict concentration-dependent viscosity curves for mAbs solely from their sequence-structural attributes. This method was developed using experimental data on 16 different mAbs whose concentration-dependent viscosity curves were experimentally obtained under standardized conditions. Each concentration-dependent viscosity curve was fitted with a straight line, via logarithmic manipulations, and the values for intercept and slope were obtained. Intercept, which relates to antibody diffusivity, was found to be nearly constant. In contrast, slope, the rate of increase in solution viscosity with solute concentration, varied significantly across different mAbs, demonstrating the importance of intermolecular interactions toward viscosity. Next, several molecular descriptors for electrostatic and hydrophobic properties of the 16 mAbs derived using their full-length homology models were examined for potential correlations with the slope. An equation consisting of hydrophobic surface area of full-length antibody and charges on V H , V L , and hinge regions was found to be capable of predicting the concentration-dependent viscosity curves of the antibody solutions. Availability of this computational tool may facilitate material-free high-throughput screening of antibody candidates during early stages of drug discovery and development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28159365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28159365"><span>Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K</p> <p>2017-03-10</p> <p>Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25452137','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25452137"><span>Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abdalrahman, T; Scheiner, S; Hellmich, C</p> <p>2015-01-21</p> <p>It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4277193','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4277193"><span>The rheology of three-phase suspensions at low bubble capillary number</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Truby, J. M.; Mueller, S. P.; Llewellin, E. W.; Mader, H. M.</p> <p>2015-01-01</p> <p>We develop a model for the rheology of a three-phase suspension of bubbles and particles in a Newtonian liquid undergoing steady flow. We adopt an ‘effective-medium’ approach in which the bubbly liquid is treated as a continuous medium which suspends the particles. The resulting three-phase model combines separate two-phase models for bubble suspension rheology and particle suspension rheology, which are taken from the literature. The model is validated against new experimental data for three-phase suspensions of bubbles and spherical particles, collected in the low bubble capillary number regime. Good agreement is found across the experimental range of particle volume fraction (0≤ϕp≲0.5) and bubble volume fraction (0≤ϕb≲0.3). Consistent with model predictions, experimental results demonstrate that adding bubbles to a dilute particle suspension at low capillarity increases its viscosity, while adding bubbles to a concentrated particle suspension decreases its viscosity. The model accounts for particle anisometry and is easily extended to account for variable capillarity, but has not been experimentally validated for these cases. PMID:25568617</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDH16008W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDH16008W"><span>Gas driven displacement in a Hele-Shaw cell with chemical reaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, Andrew; Ward, Thomas</p> <p>2011-11-01</p> <p>Injecting a less viscous fluid into a more viscous fluid produces instabilities in the form of fingering which grow radially from the less viscous injection point (Saffman & Taylor, Proc. R. Soc. Lon. A, 1958). For two non-reacting fluids in a radial Hele-Shaw cell the ability of the gas phase to penetrate the liquid phase is largely dependent on the gap height, liquid viscosity and gas pressure. In contrast combining two reactive fluids such as aqueous calcium hydroxide and carbon dioxide, which form a precipitate, presents a more complex but technically relevant system. As the two species react calcium carbonate precipitates and increases the aqueous phase visocosity. This change in viscosity may have a significant impact on how the gas phase penetrates the liquid phase. Experimental are performed in a radial Hele-Shaw cell with gap heights O(10-100) microns by loading a single drop of aqueous calcium hydroxide and injecting carbon dioxide into the drop. The calcium hydroxide concentration, carbon dioxide pressure and gap height are varied and images of the gas penetration are analyzed to determine residual film thickness and bursting times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1228345-experimental-study-nonmonotonicity-capillary-desaturation-curves-pore-network','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1228345-experimental-study-nonmonotonicity-capillary-desaturation-curves-pore-network"><span>Experimental study on nonmonotonicity of capillary desaturation curves in a 2-D pore-network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rodriquez de Castro, Antonio; Shokri, Nima; Karadimitriou, Nikolaos</p> <p>2015-10-28</p> <p>Immiscible displacement in a porous medium is important in many applications such as soil remediation and enhanced oil recovery. When gravitational forces are negligible, two-phase immiscible displacement at the pore level is controlled by capillary and viscous forces whose relative importance is quantified through the dimensionless capillary number Ca and the viscosity ratio M between liquid phases. Depending on the values of Ca and M, capillary fingering, viscous fingering, or stable displacement may be observed resulting in a variety of patterns affecting the phase entrapment. The Capillary Desaturation Curve (CDC), which represents the relationship between the residual oils saturation andmore » Ca, is an important relation to describe the phase entrapment at a given Ca. In the present study, we investigate the CDC as influenced by the viscosity ratio. A comprehensive series of experiments using a high-resolution microscope and state-of-the-art micromodels were conducted. The CDCs were calculated and the effects of Ca and M on phase entrapments were quantified. The results show that CDCs are not necessarily monotonic for all M.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTB...48.1450T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTB...48.1450T"><span>Experimental and Theoretical Studies on the Viscosity-Structure Correlation for High Alumina-Silicate Melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talapaneni, Trinath; Yedla, Natraj; Pal, Snehanshu; Sarkar, Smarajit</p> <p>2017-06-01</p> <p>Blast furnaces are encountering high Alumina (Al2O3 > 25 pct) in the final slag due to the charging of low-grade ores. To study the viscosity behavior of such high alumina slags, synthetic slags are prepared in the laboratory scale by maintaining a chemical composition of Al2O3 (25 to 30 wt pct) CaO/SiO2 ratio (0.8 to 1.6) and MgO (8 to 16 wt pct). A chemical thermodynamic software FactSage 7.0 is used to predict liquidus temperature and viscosity of the above slags. Experimental viscosity measurements are performed above the liquidus temperature in the range of 1748 K to 1848 K (1475 °C to 1575 °C). The viscosity values obtained from FactSage closely fit with the experimental values. The viscosity and the slag structure properties are intent by Fourier Transform Infrared (FTIR) and Raman spectroscopy. It is observed that increase in CaO/SiO2 ratio and MgO content in the slag depolymerizes the silicate structure. This leads to decrease in viscosity and activation energy (167 to 149 kJ/mol) of the slag. Also, an addition of Al2O3 content increases the viscosity of slag by polymerization of alumino-silicate structure and activation energy from 154 to 161 kJ/mol. It is witnessed that the activation energy values obtained from experiment closely fit with the Shankar model based on Arrhenius equation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H41A1007Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H41A1007Z"><span>Rheological Behavior Xanthan and SlurryPro Polymer Solutions Evaluated as Shear Thinning Delivery Fluids for Subsurface Remediation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhong, L.; Oostrom, M.; Truex, M.; Vermeul, V.</p> <p>2011-12-01</p> <p>Shear thinning fluids can be applied as a delivery means to enhance the uniformity of remedial amendment distribution in heterogeneous aquifers, thereby to improve remediation performance. The rheological behavior of biopolymer xanthan gum and synthetic polymer SlurryPro were tested, and their influence on the amendment delivery performance was evaluated. The impact of polymer concentration, basic water chemistry, salinity (e.g., Br-, Na+, Ca2+ concentrations), remedial amendments (phosphate, sodium lactate, ethyl lactate, lactate oil, whey), sediments, and the mixing approach on the rheological properties of the polymer solutions was determined. The SlurryPro polymer lost shear-thinning properties even at relatively low solution ionic strength. However, the xanthan gum polymer maintained shear-thinning properties under most of the tested conditions, though with some loss in absolute viscosity with increasing ionic strength. Xanthan appeared to be the better candidate for enhanced amendment delivery. Increasing in xanthan concentration not only increased the solution viscosity, but also increased degree of shear thinning. Addition of salt decreased the solution viscosity and the degree of shear thinning, while the influence was diminished when the polymer concentration was higher. After reaching a critical xanthan concentration, addition of salt increased solution viscosity. The degradation of xanthan and SlurryPro in the presence of site aquifer materials and microbes was studied in batch tests in which the field sediment/water ratio was simulated. The viscosity of the polymer solutions dropped 85% or more in the first week, while the solution chemical oxygen demand (COD) decreasing occurred at a much slower rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JChPh.107.3144S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JChPh.107.3144S"><span>Shear flow simulations of biaxial nematic liquid crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarman, Sten</p> <p>1997-08-01</p> <p>We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007abab.conf..957Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007abab.conf..957Y"><span>Physical and Chemical Properties of Bio-Oils From Microwave Pyrolysis of Corn Stover</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger</p> <p></p> <p>This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa·s at 40°C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18478448','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18478448"><span>Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Fei; Deng, Shaobo; Chen, Paul; Liu, Yuhuan; Wan, Yiqin; Olson, Andrew; Kittelson, David; Ruan, Roger</p> <p>2007-04-01</p> <p>This study was aimed to understand the physical and chemical properties of pyrolytic bio-oils produced from microwave pyrolysis of corn stover regarding their potential use as gas turbine and home heating fuels. The ash content, solids content, pH, heating value, minerals, elemental ratio, moisture content, and viscosity of the bio-oils were determined. The water content was approx 15.2 wt%, solids content 0.22 wt%, alkali metal content 12 parts per million, dynamic viscosity 185 mPa.s at 40 degrees C, and gross high heating value 17.5 MJ/kg for a typical bio-oil produced. Our aging tests showed that the viscosity and water content increased and phase separation occurred during the storage at different temperatures. Adding methanol and/or ethanol to the bio-oils reduced the viscosity and slowed down the increase in viscosity and water content during the storage. Blending of methanol or ethanol with the bio-oils may be a simple and cost-effective approach to making the pyrolytic bio-oils into a stable gas turbine or home heating fuels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26403420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26403420"><span>Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nikmaneshi, M R; Firoozabadi, B; Saidi, M S</p> <p>2015-09-01</p> <p>The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MARD21015R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MARD21015R"><span>Dilute and Semidilute Solutions of a Nonionic, Rigid, Water-soluble Polymer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russo, Paul; Huberty, Wayne; Zhang, Donghui; Water-Soluble Rodlike Polymer Team Collaboration</p> <p>2014-03-01</p> <p>The solution physics of random polymer chains was established largely on the behavior of commercial polymers such as polystyrene for organic solvents or nonionic poly(ethyleneoxide) for aqueous solvents. Not only are these materials widely available for industrial use, they can be synthesized to be essentially monodisperse. When it comes to stiff polymers, good choices are few and less prone to be used in industrial applications. Much was learned from polypeptides such as poly(benzylglutamate) or poly(stearylglutamate) in polar organic solvents and nonpolar organic solvents, respectively, but aqueous systems generally require charge. Poly(Nɛ-2-[2-(2-Methoxyethoxy) ethoxy]acetyl-L-Lysine) a.k.a. PEGL was pioneered by Deming and coworkers. In principle, PEGL provides a convenient platform from which to study stiff polymer behavior--phase relations, dynamics, liquid crystal formation and gelation--all with good molecular weight control and uniformity and without electrical charge. Still, a large gap in knowledge exists between PEGL and traditional rodlike polymer systems. To narrow this gap, dynamic and static scattering, circular dichroism, and viscosity measurements have been made in dilute and semidilute solutions as necessary preliminaries for lyotropic liquid crystalline and gel phases. Supported by NSF DMR 1306262. Department of Chemistry and Macromolecular Studies Group. Current address: Georgia Institute of Technology, School of Materials Science and Engineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489614-widom-line-dynamical-crossover-supercritical-water-popular-water-models-versus-experiments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489614-widom-line-dynamical-crossover-supercritical-water-popular-water-models-versus-experiments"><span>The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Corradini, D.; Rovere, M.; Gallo, P., E-mail: gallop@fis.uniroma3.it</p> <p>2015-09-21</p> <p>In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show howmore » different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980JSP....22...81E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980JSP....22...81E"><span>Enhanced t -3/2 long-time tail for the stress-stress time correlation function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, Denis J.</p> <p>1980-01-01</p> <p>Nonequilibrium molecular dynamics is used to calculate the spectrum of shear viscosity for a Lennard-Jones fluid. The calculated zero-frequency shear viscosity agrees well with experimental argon results for the two state points considered. The low-frequency behavior of shear viscosity is dominated by an ω 1/2 cusp. Analysis of the form of this cusp reveals that the stress-stress time correlation function exhibits a t -3/2 "long-time tail." It is shown that for the state points studied, the amplitude of this long-time tail is between 12 and 150 times larger than what has been predicted theoretically. If the low-frequency results are truly asymptotic, they imply that the cross and potential contributions to the Kubo-Green integrand for shear viscosity exhibit a t -3/2 long-time tail. This result contradicts the established theory of such processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016FrEaS...4...24S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016FrEaS...4...24S"><span>Idiosyncrasies of volcanic sulfur viscosity and the triggering of unheralded volcanic eruptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scolamacchia, Teresa; Cronin, Shane</p> <p>2016-03-01</p> <p>Unheralded "blue-sky" eruptions from dormant volcanoes cause serious fatalities, such as at Mt. Ontake (Japan) on 27 September 2014. Could these events result from magmatic gas being trapped within hydrothermal system aquifers by elemental sulfur (Se) clogging pores, due to sharp increases in its viscosity when heated above 159oC? This mechanism was thought to prime unheralded eruptions at Mt. Ruapehu in New Zealand. Impurities in sulfur (As, Te, Se) are known to modify S-viscosity and industry experiments showed that organic compounds, H2S, and halogens dramatically influence Se viscosity under typical hydrothermal heating/cooling rates and temperature thresholds. However, the effects of complex sulfur compositions are currently ignored at volcanoes, despite its near ubiquity in long-lived volcano-hydrothermal systems. Models of impure S behavior must be urgently formulated to detect pre-eruptive warning signs before the next "blue-sky" eruption</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT.......201C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT.......201C"><span>Phase behavior of confined polymer blends and nanoparticle composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chung, Hyun-Joong</p> <p></p> <p>We have investigated phase behavior in polymer blend films of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) with 33wt% AN content and their nanoparticle (NP) composites by using the combination of imaging techniques, including atomic force microscopy (AFM), focused-ion beam (FIB), transmission and scanning electron microscopy (TEM and SEM), as well as depth profiling techniques of Rutherford backscattering spectrometry (RBS) and elastic recoil detection (ERD). For neat PMMA:SAN films, we present a novel morphology map based on pattern development mechanisms. Six distinct mechanisms are found for thickness values (d) and bulk compositions between 50-1000 nm and φPMMA = 0.3 to 0.8, respectively. When PMMA is depleted from the mid-layer by preferential wetting at φ PMMA = 0.3 (A), stable PMMA/SAN/PMMA trilayer structure is obtained. With increasing φPMMA (0.4 to 0.7), pattern development is driven by phase separation in the mid-layer, which produces circular domains (B), irregular domains (C), and bicontinuous patterns (D). Here, the growth of circular domains can be explained by the coalescence mechanism, which predicts ξ˜(sigma/eta) 1/3d2/3t1/3 , where ξ, sigma, and eta are correlation length between domains, interfacial tension between phases, and viscosity, respectively. In bicontinuous patterns, hydrodynamic pumping mechanism is suppressed with thickness confinement. When SAN composition is lean, φPMMA = 0.8 (E), the SAN phase is minority component in the mid-layer and breaks up into droplets in smooth PMMA film. When film thickness is less than 80 nm at φPMMA = 0.4 or 0.5 (F), films initially display trilayer structure, which then ruptures upon dewetting of the SAN mid-layer. Building upon the understanding of the neat PMMA:SAN blend films, we have performed the first systematic on the effect of NPs in morphology evolution and stability of polymer blend films. Whereas the location of NP impacts morphology evolution, silica NPs with mixed surface of methyl and hydroxyl groups (HM-NP) partition into dPMMA phase upon phase separation. Chlorine terminated PMMA-grafted silica NPs either partition into dPMMA phase or weakly and strongly segregate at the interface between the phases when grafting molecular weight is high (MMA(160K)-NP), intermediate (MMA(21K)-NP), and low (MMA(1.8K)-NP), respectively. Hydrogen terminated low molecular weight NPs (MMA:H(1.8K)-NP) weakly segregate to the interface. When the blend films contain the HM-NP, pattern growth and film roughening slows down with NP loading (2 to 10wt%) due to the increased viscosity of dPMMA phase. In contrast to the HM-NPs, the MMA(1.8K)-NPs pin pattern development and film roughening when they assemble and jam at the interface, resulting in a stable discrete or bicontinuous structure at low (5wt%) and high (10wt%) loading, respectively. A geometric model predicts the shape and size of the stabilized morphology using experimental parameters, including NP loading, NP radius, and film thickness. Film roughening is completely prevented even at very low loading (2wt%). The weakly segregating MMA(21K)-NPs have an intermediate effect on morphology evolution of dPMMA:SAN films compared to HM-NPs and MMA(1.8K)-NPs, which partition into dPMMA and strongly segregating to the interface, respectively. Finally, the mechanism of surface roughening is clearly observed and explained. The internal phase-separated structure of the blends exerts Laplace pressure, resulting in the surface roughening. In summary, we have extensively studied phase behavior in polymer blends and their NP composites and provided various models to explain the mechanisms underlying the morphology evolution and film roughening.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140016706','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140016706"><span>Thermophysical Property Measurements of Silicon-Transition Metal Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.</p> <p>2014-01-01</p> <p>Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ZaMP...68...69L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ZaMP...68...69L"><span>Global well-posedness of three-dimensional Navier-Stokes equations with partial viscosity under helical symmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Jitao; Niu, Dongjuan</p> <p>2017-06-01</p> <p>In this paper, we investigate the global well-posedness of three-dimensional Navier-Stokes equations with horizontal viscosity under a special symmetric structure: helical symmetry. More precisely, by a revised Ladyzhenskaya-type inequality and utilizing the behavior of helical flows, we prove the global existence and uniqueness of weak and strong solutions to the three-dimensional helical flows. Our result reveals that for the issue of global well-posedness of the viscous helical flows, the horizontal viscosity plays the important role. To some extent, our work can be seen as a generalization of the result by Mahalov et al. (Arch Ration Mech Anal 112(3):193-222, 1990).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPCRD..45d3103V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPCRD..45d3103V"><span>New Formulation for the Viscosity of Propane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, Eckhard; Herrmann, Sebastian</p> <p>2016-12-01</p> <p>A new viscosity formulation for propane, using the reference equation of state for its thermodynamic properties by Lemmon et al. [J. Chem. Eng. Data 54, 3141 (2009)] and valid in the fluid region from the triple-point temperature to 650 K and pressures up to 100 MPa, is presented. At the beginning, a zero-density contribution and one for the critical enhancement, each based on the experimental data, were independently generated in parts. The higher-density contributions are correlated as a function of the reciprocal reduced temperature τ = Tc/T and of the reduced density δ = ρ/ρc (Tc—critical temperature, ρc—critical density). The final formulation includes 17 coefficients inferred by applying a state-of-the-art linear optimization algorithm. The evaluation and choice of the primary data sets are detailed due to its importance. The viscosity at low pressures p ≤ 0.2 MPa is represented with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 273 ≤ T/K ≤ 625. The expanded uncertainty in the vapor phase at subcritical temperatures T ≥ 273 K as well as in the supercritical thermodynamic region T ≤ 423 K at pressures p ≤ 30 MPa is assumed to be 1.5%. In the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2), the expanded uncertainty increases with decreasing temperature up to 3.0%. It is further increased to 4.0% in regions of less reliable primary data sets and to 6.0% in ranges in which no primary data are available but the equation of state is valid. Tables of viscosity computed for the new formulation are given in an Appendix for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18494921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18494921"><span>Rheological characterization of hair shampoo in the presence of dead sea salt.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abu-Jdayil, B; Mohameed, H A; Sa'id, M; Snobar, T</p> <p>2004-02-01</p> <p>In Jordan, a growing industry has been established to produce different types of Dead Sea (DS) cosmetics that have DS salt (contains mainly NaCl, KCl, and MgCl(2)) in their formulas. In this work, the effect of DS salt on the rheology of hair shampoo containing the sodium lauryl ether sulfate as a main active matter was studied. The effects of DS salt and active matter concentration, and the temperature and time of salt mixing, on the rheological properties of hair shampoo were investigated. The salt-free shampoo showed a Newtonian behavior at 'low active matter' (LAM) and shear thinning at 'high active matter' (HAM). The presence of DS salt changed the rheological behavior of LAM shampoo from Newtonian (for the salt-free shampoo) to shear thinning. On the other hand, the behavior of HAM shampoo switched from shear thinning to Newtonian behavior in the presence of high concentration of DS salt. The addition of DS salt increased the apparent viscosity of shampoo to reach a maximum value that corresponded to a salt concentration of 1.5 wt.%. Further addition of DS salt led to a decrease in the shampoo viscosity to reach a value less than that of the salt-free sample at high salt concentration. Changing the mixing temperature (25-45 degrees C) and mixing time (15-120 min) of DS salt with shampoo has no significant influence on the rheological behavior. However, the mixing process increased the apparent viscosity of salt-free shampoo. The power law model fitted well the flow curves of hair shampoo with and without DS salt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23072493','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23072493"><span>Dewetting of low-viscosity films at solid/liquid interfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Péron, Nicolas; Brochard-Wyart, Françoise; Duval, Hervé</p> <p>2012-11-13</p> <p>We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) < η(B)*, the regime is inertial. The velocity of dewetting is constant and ruled by Culick’s law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20821382','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20821382"><span>Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yadav, Sandeep; Shire, Steven J; Kalonia, Devendra S</p> <p>2010-12-01</p> <p>The viscosity profiles of four different IgG(1) molecules were studied as a function of concentration at pH 6.0. At high concentrations, MAb-H and -A showed significantly higher viscosities as compared to MAb-G and -E. Zeta Potential (ξ) measurements showed that all the IgG(1) molecules carried a net positive charge at this pH. MAb-G showed the highest positive zeta potential followed by MAb-E, -H, and -A. A consistent interpretation of the impact of net charge on viscosity for these MAbs is not possible, suggesting that electroviscous effects cannot explain the differences in viscosity. Values of k(D) (dynamic light scattering) indicated that the intermolecular interactions were repulsive for MAb-E and -G; and attractive for MAb-H and -A. Solution storage modulus (G') in high concentration solutions was consistent with attractive intermolecular interactions for MAb-H and -A, and repulsive interactions for MAb-G and -E. Effect of salt addition on solution G' and k(D) indicated that the interactions were primarily electrostatic in nature. The concentration dependent viscosity data were analyzed using a modified Ross and Minton equation. The analysis explicitly differentiates between the effect of molecular shape, size, self-crowding, and electrostatic intermolecular interactions in governing high concentration viscosity behavior. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V21A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V21A..04C"><span>Understanding the rheology of two and three-phase magmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coats, R.; Cai, B.; Kendrick, J. E.; Wallace, P. A.; Hornby, A. J.; Miwa, T.; von Aulock, F. W.; Ashworth, J. D.; Godinho, J.; Atwood, R. C.; Lee, P. D.; Lavallée, Y.</p> <p>2017-12-01</p> <p>The rheology of magma plays a fundamental role in determining the style of a volcanic eruption, be it explosive or effusive. Understanding how magmas respond to changes in stress/ strain conditions may help to enhance eruption forecast models. The presence of crystals and bubbles in magmas alter the viscosity of suspensions and favor a non-Newtonian response. Thus, with the aim of grasping the rheological behavior of volcanic materials, uniaxial compressive tests were performed on natural and synthetic samples. A suite of variably porous (10-32 vol.%), highly crystalline ( 50 vol.%) dacite from the 1991-95 eruption of Mt Unzen, Japan, was selected as the natural material, while synthetic samples were sintered with desired porosities (<3, 20 and 30 vol.%) and TiO2 particles (0-50 vol.%). Tests were carried out at both room temperature and above the glass transition temperature (Tg) of the different materials to cover the entirety of the extrusion process. Room temperature tests were performed at constant strain rates of 10-1, 10-3, and 10-5 s-1. The response was brittle and peak stresses reached were positively correlated to strain rate and negatively correlated to porosity. At temperatures above Tg, strain rates of 10-3, 10-4, and 10-5 s-1 were imposed resulting in dominantly brittle, transitional and dominantly viscous responses, respectively. Samples with a brittle response reached higher peak stresses, and strain-to-failure values, at high temperature than at room temperature. In both materials, non-Newtonian, shear-thinning behavior was observed and while synthetic samples showed an expected increase in apparent viscosity with increasing crystal content, surprisingly natural samples did not show a correlation between apparent viscosity and porosity. We hypothesise this is due to crystal content being the governing factor for the volume fractions explored. In situ, high temperature synchrotron X-ray tomography was performed on selected crystal/pore volume fractions at Diamond Light Source. Unexpectedly, these observations suggest that fractures nucleate in crystals due to crystal interactions, before propagating through the interstitial melt. This ongoing study promises to uncover the way crystal-bearing magmas flow or fail, necessary to constrain magmatic processes and volcanic hazards.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T33F..01R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T33F..01R"><span>Melt transport - a personal cashing-up</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renner, J.</p> <p>2005-12-01</p> <p>The flow of fluids through rocks transports heat and material and changes bulk composition. The large-scale chemical differentiation of the Earth is related to flow of partial melts. From the perspective of current understanding of tectonic processes, prominent examples of such transport processes are the formation of oceanic crust from ascending basic melts at mid-ocean ridges, melt segregation involved in the solidification of the Earth's core, and dissolution-precipitation creep in subduction channels. Transport and deformation cannot be separated for partially molten aggregates. Permeability is only defined as an instantaneous parameter in the sense that Darcy's law is assumed to be valid; it is not an explicit parameter in the fundamental mechanical conservation laws but can be derived from them in certain circumstances as a result of averaging schemes. The governing, explicit physical properties in the mechanical equations are the shear and bulk viscosities of the solid framework and the fluid viscosity and compressibility. Constraints on the magnitude of these properties are available today from experiments at specific loading configurations, i.e., more or less well constrained initial and boundary conditions. The melt pressure remains the least controlled parameter. While the fluid viscosity is often much lower than the solid's the two-phase aggregate may exhibit considerable strength owing to the difficulty of moving the fluid through the branched pore network. The extremes in behavior depend on the time scale of loading, as known from daily live experiences (spounge, Danish coffee-pot, human tissue between neighboring bones). Several theoretical approaches attempted to formulate mechanical constitutive equations for two-phase aggregates. An important issue is the handling of internal variables in these equations. At experimental conditions, grain size, melt pocket orientation and crystallographic orientation -prime candidates for internal variables- change considerably and potentially contribute significantly to the total dissipation of the external work. Theoretically founded evolution equations for these internal variables are lacking. In experiments, both the kinetics of grain growth but also the resultant shape of grains is affected by the presence of melt. The latter is linked to the alignment of melt pockets with the maximum principle stress. Thus, the melt redistribution causes direct anisotropy but also indirect through a shape-preferred orientation of solid grains. Notably, the foliation is parallel to the maximum principle stress in contrast to deformation controlled by crystal defects alone. Extremum principles developed for dissipation potentials in the framework of irreversible thermodynamics may allow us to postulate evolution equations. Owing to their significant effect on aggregate viscosities understanding the evolution of internal variables is mandatory for substantial large-scale modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..305..350R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..305..350R"><span>Vacancies in MgO at ultrahigh pressure: About mantle rheology of super-Earths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ritterbex, Sebastian; Harada, Takafumi; Tsuchiya, Taku</p> <p>2018-05-01</p> <p>First-principles calculations are performed to investigate vacancy formation and migration in the B2 phase of MgO. Defect energetics suggest the importance of intrinsic non-interacting vacancy pairs, even though the extrinsic vacancy concentration might govern atomic diffusion in the B2 phase of MgO. The enthalpies of ionic vacancy migration are generally found to decrease across the B1-B2 phase transition around a pressure of 500 GPa. It is shown that this enthalpy change induces a substantial increase in the rate of vacancy diffusion in MgO of almost four orders of magnitude (∼104) when the B1 phase transforms into the B2 phase with increasing pressure. If plastic deformation is controlled by vacancy diffusion, mantle viscosity is expected to decrease in relation to this enhanced diffusion rate in MgO across the B1-B2 transition in the interior of Earth-like large exoplanets. Our results of atomic relaxations near the defects suggest that diffusion controlled creep viscosity may generally decrease across high-pressure phase transitions with increasing coordination number. Plastic flow and resulting mantle convection in the interior of these super-Earths may be therefore less sluggish than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950053448&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950053448&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3D%2526%25231087"><span>Asymptotic behavior of solutions of the renormalization group K-epsilon turbulence model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yakhot, A.; Staroselsky, I.; Orszag, S. A.</p> <p>1994-01-01</p> <p>Presently, the only efficient way to calculate turbulent flows in complex geometries of engineering interest is to use Reynolds-average Navier-Stokes (RANS) equations. As compared to the original Navier-Stokes problem, these RANS equations posses much more complicated nonlinear structure and may exhibit far more complex nonlinear behavior. In certain cases, the asymptotic behavior of such models can be studied analytically which, aside from being an interesting fundamental problem, is important for better understanding of the internal structure of the models as well as to improve their performances. The renormalization group (RNG) K-epsilon turbulence model, derived directly from the incompresible Navier-Stokes equations, is analyzed. It has already been used to calculate a variety of turbulent and transitional flows in complex geometries. For large values of the RNG viscosity parameter, the model may exhibit singular behavior. In the form of the RNG K-epsilon model that avoids the use of explicit wall functions, a = 1, so the RNG viscosity parameter must be smaller than 23.62 to avoid singularities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DFD.EF002P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DFD.EF002P"><span>Hydrodynamics of soap films probed by two-particle microrheology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasad, Vikram; Weeks, Eric R.</p> <p>2007-11-01</p> <p>A soap film consists of a thin water layer that is separated from two bulk air phases above and below it by surfactant monolayers. The flow fields in the soap film created in response to a perturbation depend on coupling between these different phases, the exact nature of which is unknown. In order to determine this coupling, we use polystyrene spheres as tracer particles and track their diffusive motions in the soap film. The correlated Brownian motion of pairs of particles (two-particle microrheology) maps out the flow field, and provides a measure of the surface viscosity of the soap film as well. This measured surface viscosity agrees well with the value obtained from self diffusion of single particles (one-particle microrheology) in the film.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97e2902N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97e2902N"><span>Two-dimensional numerical simulation of chimney fluidization in a granular medium using a combination of discrete element and lattice Boltzmann methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ngoma, Jeff; Philippe, Pierre; Bonelli, Stéphane; Radjaï, Farhang; Delenne, Jean-Yves</p> <p>2018-05-01</p> <p>We present here a numerical study dedicated to the fluidization of a submerged granular medium induced by a localized fluid injection. To this end, a two-dimensional (2D) model is used, coupling the lattice Boltzmann method (LBM) with the discrete element method (DEM) for a relevant description of fluid-grains interaction. An extensive investigation has been carried out to analyze the respective influences of the different parameters of our configuration, both geometrical (bed height, grain diameter, injection width) and physical (fluid viscosity, buoyancy). Compared to previous experimental works, the same qualitative features are recovered as regards the general phenomenology including transitory phase, stationary states, and hysteretic behavior. We also present quantitative findings about transient fluidization, for which several dimensionless quantities and scaling laws are proposed, and about the influence of the injection width, from localized to homogeneous fluidization. Finally, the impact of the present 2D geometry is discussed, by comparison to the real three-dimensional (3D) experiments, as well as the crucial role of the prevailing hydrodynamic regime within the expanding cavity, quantified through a cavity Reynolds number, that can presumably explain some substantial differences observed regarding upward expansion process of the fluidized zone when the fluid viscosity is changed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhFl...29l1603H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhFl...29l1603H"><span>Passive non-linear microrheology for determining extensional viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.</p> <p>2017-12-01</p> <p>Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19450609','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19450609"><span>Solvent friction changes the folding pathway of the tryptophan zipper TZ2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Narayanan, Ranjani; Pelakh, Leslie; Hagen, Stephen J</p> <p>2009-07-17</p> <p>Because the rate of a diffusional process such as protein folding is controlled by friction encountered along the reaction pathway, the speed of folding is readily tunable through adjustment of solvent viscosity. The precise relationship between solvent viscosity and the rate of diffusion is complex and even conformation-dependent, however, because both solvent friction and protein internal friction contribute to the total reaction friction. The heterogeneity of the reaction friction along the folding pathway may have subtle consequences. For proteins that fold on a multidimensional free-energy surface, an increase in solvent friction may drive a qualitative change in folding trajectory. Our time-resolved experiments on the rapidly and heterogeneously folding beta-hairpin TZ2 show a shift in the folding pathway as viscosity increases, even though the energetics of folding is unaltered. We also observe a nonlinear or saturating behavior of the folding relaxation time with rising solvent viscosity, potentially an experimental signature of the shifting pathway for unfolding. Our results show that manipulations of solvent viscosity in folding experiments and simulations may have subtle and unexpected consequences on the folding dynamics being studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15553230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15553230"><span>Supercooled smectic nanoparticles: a potential novel carrier system for poorly water soluble drugs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuntsche, J; Westesen, K; Drechsler, M; Koch, M H J; Bunjes, H</p> <p>2004-10-01</p> <p>The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester. Nanoparticles were prepared by high-pressure melt homogenization or solvent evaporation using phospholipids, phospholipid/ bile salt, or polyvinyl alcohol as emulsifiers. The physicochemical state and phase behavior of the particles was characterized by particle size measurements (photon correlation spectroscopy, laser diffraction with polarization intensity differential scattering), differential scanning calorimetry, X-ray diffraction, and electron and polarizing light microscopy. The viscosity of the isotropic and liquid crystalline phases of CM in the bulk was investigated in dependence on temperature and shear rate by rotational viscometry. CM nanoparticies can be obtained in the smectic phase and retained in this state for at least 12 months when stored at 230C in optimized systems. The recrystallization tendency of CM in the dispersions strongly depends on the stabilizer system and the particle size. Stable drug-loaded smectic nanoparticles were obtained after incorporation of 10% (related to CM) ibuprofen, miconazole, etomidate, and 1% progesterone. Due to their liquid crystalline state, colloidal smectic nanoparticles offer interesting possibilities as carrier system for lipophilic drugs. CM nanoparticles are suitable model systems for studying the crystallization behavior and investigating the influence of various parameters for the development of smectic nanoparticles resistant against recrystallization upon storage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26409966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26409966"><span>Evaluation of the synergistic effects of milk proteins in a rapid viscosity analyzer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Stephani, Rodrigo; Borges de Souza, Alisson; Leal de Oliveira, Marcone Augusto; Perrone, Ítalo Tuler; Fernandes de Carvalho, Antônio; Cappa de Oliveira, Luiz Fernando</p> <p>2015-12-01</p> <p>Protein systems (PS) are routinely used by companies from Brazil and around the globe to improve the texture, yield, and palatability of processed foods. Understanding the synergistic behavior among the different protein structures of these systems during thermal treatment under the influence of pH can help to better define optimum conditions for products and processes. The interpretation of the reactions and interactions that occur simultaneously among the protein constituents of these systems as dispersions during thermal processing is still a major challenge. Here, using a rapid viscosity analyzer, we observed the rheological changes in the startup viscosities of 5 PS obtained by combining varying proportions of milk protein concentrate and whey protein concentrate under different conditions of pH (5.0, 6.5, and 7.0) and heat processing (85°C/15min and 95°C/5min). The solutions were standardized to 25% of total solids and 17% of protein. Ten analytical parameters were used to characterize each of the startup-viscosity ramps for 35 experiments conducted in a 2×3 × 5 mixed planning matrix, using principal component analysis to interpret behavioral similarities. The study showed the clear influence of pH 5.5 in the elevation of the initial temperature of the PS startup viscosity by at least 5°C, as well as the effect of different milk protein concentrate:whey protein concentrate ratios above 15:85 at pH 7.0 on the viscographic profile curves. These results suggested that the primary agent driving the changes was the synergism among the reactions and interactions of casein with whey proteins during processing. This study reinforces the importance of the rapid viscosity analyzer as an analytical tool for the simulation of industrial processes involving PS, and the use of the startup viscosity ramp as a means of interpreting the interactions of system components with respect to changes related to the treatment temperature. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhRvE..76f1126O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhRvE..76f1126O"><span>Thermoacoustic effects in supercritical fluids near the critical point: Resonance, piston effect, and acoustic emission and reflection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Onuki, Akira</p> <p>2007-12-01</p> <p>We present a general theory of thermoacoustic phenomena in one phase states of one-component fluids. Singular behavior is predicted in supercritical fluids near the critical point. In a one-dimensional geometry we start with linearized hydrodynamic equations taking into account the effects of heat conduction in the boundary walls and the bulk viscosity. We introduce a coefficient Z(ω) characterizing reflection of sound with frequency ω at the boundary in a rigid cell. As applications, we examine acoustic eigenmodes, response to time-dependent perturbations, and sound emission and reflection. Resonance and rapid adiabatic changes are noteworthy. In these processes, the role of the thermal diffusion layers is enhanced near the critical point because of the strong critical divergence of the thermal expansion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJTJE..28..119Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJTJE..28..119Z"><span>A New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.</p> <p>2011-06-01</p> <p>Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTB..tmp..900P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTB..tmp..900P"><span>Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, Youngjoo; Min, Dong Joon</p> <p>2018-04-01</p> <p>In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24571089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24571089"><span>Possible benefits of catheters with lateral holes in coronary thrombus aspiration: a computational study for different clot viscosities and vacuum pressures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Soleimani, Sajjad; Dubini, Gabriele; Pennati, Giancarlo</p> <p>2014-10-01</p> <p>According to a number of clinical studies, coronary aspiration catheters are useful tools to remove a thrombus (blood clot) blocking a coronary artery. However, these thrombectomy devices may fail to remove the blood clot entirely. Few studies have been devoted to a systematic analysis of factors affecting clot aspiration. The geometric characteristics of the aspiration catheter, the physical properties of the thrombus, and the applied vacuum pressure are crucial parameters. In this study, the aspiration of a blood clot blocking a coronary bifurcation is computationally simulated. The clot is modeled as a highly viscous fluid, and a two-phase (blood and clot) problem is solved. The effects of geometric variations in the tip of the coronary catheter, including lateral hole size and location, are investigated considering different aspiration pressures and clot viscosities. A Bird-Carreau model is adopted for blood viscosity, while a power law model is used to describe the clot rheology. Computational results for blood clot aspiration show that the presence of holes in the lateral part of the tip of the catheter can be beneficial depending on clot viscosity, hole features, and applied aspiration pressure. In general, the holes are beneficial when the clot viscosity is low, while aspiration catheters without any extra lateral holes exhibit better performance for higher clot viscosity. However, when higher aspiration pressures are applied, the catheters tend to behave relatively similarly in removing clots with various viscosities, reducing the role of the clot viscosity. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......228B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......228B"><span>Linear response and Berry curvature in two-dimensional topological phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bradlyn, Barry J.</p> <p></p> <p>In this thesis we examine the viscous and thermal transport properties of chiral topological phases, and their relationship to topological invariants. We start by developing a Kubo formalism for calculating the frequency dependent viscosity tensor of a general quantum system, both with and without a uniform external magnetic field. The importance of contact terms is emphasized. We apply this formalism to the study of integer and fractional quantum Hall states, as well as p + ip paired superfluids, and verify the relationship between the Hall viscosity and the mean orbital spin density. We also elucidate the connection between our Kubo formulas and prior adiabatic transport calculations of the Hall viscosity. Additionally, we derive a general relationship between the frequency dependent viscosity and conductivity tensors for Galilean-invariant systems. We comment on the implications of this relationship towards the measurement of Hall viscosity in solid-state systems. To address the question of thermal transport, we first review the standard Kubo formalism of Luttinger for computing thermoelectric coefficients. We apply this to the specific case of non-interacting electrons in the integer quantum Hall regime, paying careful attention to the roles of bulk and edge effects. In order to generalize our discussion to interacting systems, we construct a low-energy effective action for a two-dimensional non-relativistic topological phase of matter in a continuum, which completely describes all of its bulk thermoelectric and visco-elastic properties in the limit of low frequencies, long distances, and zero temperature, without assuming either Lorentz or Galilean invariance, by coupling the microscopic degrees of freedom to the background spacetime geometry. We derive the most general form of a local bulk induced action to first order in derivatives of the background fields, from which thermodynamic and transport properties can be obtained. We show that the gapped bulk cannot contribute to low-temperature thermoelectric transport other than the ordinary Hall conductivity; the other thermoelectric effects (if they occur) are thus purely edge effects. The stress response to time-dependent strains is given by the Hall viscosity, which is robust against perturbations and related to the spin current. Finally, we address the issue of calculating the topological central charge from bulk wavefunctions for a topological phase. Using the form of the topological terms in the induced action, we show that we can calculate the various coefficients of these terms as Berry curvatures associated to certain metric and electromagnetic vector potential perturbations. We carry out this computation explicitly for quantum Hall trial wavefunctions that can be represented as conformal blocks in a chiral conformal field theory (CFT). These calculations make use of the gauge and gravitational anomalies in the underlying chiral CFT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28237329','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28237329"><span>Incubation of boar spermatozoa in viscous media by addition of methylcellulose improves sperm quality and penetration rates during in vitro fertilization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González-Abreu, David; García-Martínez, Soledad; Fernández-Espín, Vanesa; Romar, Raquel; Gadea, Joaquín</p> <p>2017-04-01</p> <p>This work was designed to study whether viscous media can improve the in vitro sperm functionality in pigs by using methylcellulose as a thickener. Viscosity of porcine oviductal fluid (POF) was compared with culture medium (Tyrode's) supplemented with methylcellulose (MET 0, 0.5 and 1% w/v). Spermatozoa were incubated in the different media (0, 1 and 2 h) and sperm motion parameters, lipid membrane disorder, plasma membrane integrity and reactive oxygen species (ROS) formation were assessed. Fertilization results were assessed i) preincubating spermatozoa in the viscous media followed by gamete coculture in a non-viscous medium; and ii) gamete coculture in the viscous media. Viscosity of POF from early luteal phase was higher than late follicular phase. Medium without methylcellulose presented constant viscosity with increased shear rate, while viscosity of the POF and media with methylcellulose was reduced by increased shear rates. Methylcellulose improved sperm linearity, straightness and the proportion of fast-linear spermatozoa. Moreover, methylcellulose increased the rate of viable spermatozoa with intact acrosome and low lipid disorder, reducing the ROS generation. Preincubation in viscous media increased the penetration rate and the mean number of spermatozoa bound to the zona pellucida (both with 0.5 and 1% MET) and reduced monospermy with 1% MET. On the other hand fertilization in the viscous media reduced penetration rate and increased monospermy. The efficiency of the IVF system was not improved with the use of viscous media. The results show the relevance of increasing viscosity thus making the in vitro media more comparable to physiological conditions. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489530-phase-change-alloy-viscosities-down-sub-using-adam-gibbs-equation-fittings-excess-entropy-data-fragile-strong-transition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489530-phase-change-alloy-viscosities-down-sub-using-adam-gibbs-equation-fittings-excess-entropy-data-fragile-strong-transition"><span>Phase change alloy viscosities down to T{sub g} using Adam-Gibbs-equation fittings to excess entropy data: A fragile-to-strong transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wei, Shuai, E-mail: shuai.wei@asu.edu; Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85712; Lucas, Pierre</p> <p>2015-07-21</p> <p>A striking anomaly in the viscosity of Te{sub 85}Ge{sub 15} alloys noted by Greer and coworkers from the work of Neumann et al. is reminiscent of the equally striking comparison of liquid tellurium and water anomalies documented long ago by Kanno et al. In view of the power laws that are used to fit the data on water, we analyze the data on Te{sub 85}Ge{sub 15} using the Speedy-Angell power-law form, and find a good account with a singularity T{sub s} only 25 K below the eutectic temperature. However, the heat capacity data in this case are not diverging, but insteadmore » exhibit a sharp maximum like that observed in fast cooling in the Molinero-Moore model of water. Applying the Adam-Gibbs viscosity equation to these calorimetric data, we find that there must be a fragile-to-strong liquid transition at the heat capacity peak temperature, and then predict the 'strong' liquid course of the viscosity down to T{sub g} at 406 K (403.6 K at 20 K min{sup −1} in this study). Since crystallization can be avoided by moderately fast cooling in this case, we can check the validity of the extrapolation by making a direct measurement of fragility at T{sub g}, using differential scanning calorimetric techniques, and then comparing with the value from the extrapolated viscosity at T{sub g}. The agreement is encouraging, and prompts discussion of relations between water and phase change alloy anomalies.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMMR33A2309W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMMR33A2309W"><span>Nanoscale Origin of the Dichotimous Viscosity-Pressure Behavior in Silicate Melts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Y.; Sakamaki, T.; Skiner, L.; Jing, Z.; Yu, T.; Kono, Y.; Park, C.; Shen, G.; Rivers, M. L.; Sutton, S. R.</p> <p>2013-12-01</p> <p>A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates physical properties such as viscosity and density. While viscosity of depolymerized silicate melts increases with pressure consistent with free volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3 - 5 GPa, above which it turns over to normal (positive) pressure dependence. We conducted high-pressure melt structure studies along the jadeite (Jd) - diopside (Di) join, using a Paris-Edinburgh Press at the HPCAT beamline 16-BM-B and measured Jd melt density using a DIA type apparatus based on x-ray absorption at GSECARS beamline 13-BM-D. Structures of polymerized (Jd and Jd50Di50) and depolymerized (Di) melts show distinct responses to pressure. For Jd melt, T-O, T-T bond lengths (where T denotes tetrahedrally coordinated Al and Si) and T-O-T angle all exhibit rapid, sometimes non-linear decrease with increasing pressure to ~3 GPa. For Di melt, these parameters vary linearly with pressure and change very little. Molecular dynamics calculations, constrained by the x-ray structural data, were employed to examine details of structural evolution in polymerized and depolymerized liquids. A structural model is developed to link structural evolution to changes in melt properties, such as density and viscosity, with pressure. We show that the pressure of the viscosity turnover corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in continual breakup of tetrahedral connectivity and viscosity decrease. Above the turnover pressure, Si and Al coordination increases to allow further packing, with increasing viscosity. This structural response prescribes the distribution of melt viscosity and density with depth, and may be the main controlling factor for magma transport rates in terrestrial planetary interiors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SolE....8.1211V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SolE....8.1211V"><span>Constraints on the rheology of the lower crust in a strike-slip plate boundary: evidence from the San Quintín xenoliths, Baja California, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Werf, Thomas; Chatzaras, Vasileios; Marcel Kriegsman, Leo; Kronenberg, Andreas; Tikoff, Basil; Drury, Martyn R.</p> <p>2017-12-01</p> <p>The rheology of lower crust and its transient behavior in active strike-slip plate boundaries remain poorly understood. To address this issue, we analyzed a suite of granulite and lherzolite xenoliths from the upper Pleistocene-Holocene San Quintín volcanic field of northern Baja California, Mexico. The San Quintín volcanic field is located 20 km east of the Baja California shear zone, which accommodates the relative movement between the Pacific plate and Baja California microplate. The development of a strong foliation in both the mafic granulites and lherzolites, suggests that a lithospheric-scale shear zone exists beneath the San Quintín volcanic field. Combining microstructural observations, geothermometry, and phase equilibria modeling, we estimated that crystal-plastic deformation took place at temperatures of 750-890 °C and pressures of 400-560 MPa, corresponding to 15-22 km depth. A hot crustal geotherm of 40 ° C km-1 is required to explain the estimated deformation conditions. Infrared spectroscopy shows that plagioclase in the mafic granulites is relatively dry. Microstructures are interpreted to show that deformation in both the uppermost lower crust and upper mantle was accommodated by a combination of dislocation creep and grain-size-sensitive creep. Recrystallized grain size paleopiezometry yields low differential stresses of 12-33 and 17 MPa for plagioclase and olivine, respectively. The lower range of stresses (12-17 MPa) in the mafic granulite and lherzolite xenoliths is interpreted to be associated with transient deformation under decreasing stress conditions, following an event of stress increase. Using flow laws for dry plagioclase, we estimated a low viscosity of 1.1-1.3×1020 Pa ṡ s for the high temperature conditions (890 °C) in the lower crust. Significantly lower viscosities in the range of 1016-1019 Pa ṡ s, were estimated using flow laws for wet plagioclase. The shallow upper mantle has a low viscosity of 5.7×1019 Pa ṡ s, which indicates the lack of an upper-mantle lid beneath northern Baja California. Our data show that during post-seismic transients, the upper mantle and the lower crust in the Pacific-Baja California plate boundary are characterized by similar and low differential stress. Transient viscosity of the lower crust is similar to the viscosity of the upper mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23469941','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23469941"><span>Effects of humidity and solution viscosity on electrospun fiber morphology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nezarati, Roya M; Eifert, Michelle B; Cosgriff-Hernandez, Elizabeth</p> <p>2013-10-01</p> <p>Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH = 5%-75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (< 50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (> 50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to fabricate tissue engineering scaffolds with tunable and reproducible properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3751372','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3751372"><span>Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nezarati, Roya M.; Eifert, Michelle B.</p> <p>2013-01-01</p> <p>Electrospinning is a popular technique to fabricate tissue engineering scaffolds due to the exceptional tunability of fiber morphology that can be used to control scaffold mechanical properties, degradation rate, and cell behavior. Although the effects of modulating processing or solution parameters on fiber morphology have been extensively studied, there remains limited understanding of the impact of environmental parameters such as humidity. To address this gap, three polymers (poly(ethylene glycol) [PEG], polycaprolactone [PCL], and poly(carbonate urethane) [PCU]) were electrospun at a range of relative humidities (RH=5%–75%) and the resulting fiber architecture characterized with scanning electron microscopy. Low relative humidity (<50%) resulted in fiber breakage for all three polymers due to decreased electrostatic discharge from the jet. At high relative humidity (>50%), three distinct effects were observed based on individual polymer properties. An increase in fiber breakage and loss of fiber morphology occurred in the PEG system as a result of increased water absorption at high relative humidity. In contrast, surface pores on PCL fibers were observed and hypothesized to have formed via vapor-induced phase separation. Finally, decreased PCU fiber collection occurred at high humidity likely due to increased electrostatic discharge. These findings highlight that the effects of relative humidity on electrospun fiber morphology are dependent on polymer hydrophobicity, solvent miscibility with water, and solvent volatility. An additional study was conducted to highlight that small changes in molecular weight can strongly influence solution viscosity and resulting fiber morphology. We propose that solution viscosity rather than concentration is a more useful parameter to report in electrospinning methodology to enable reproduction of findings. In summary, this study further elucidates key mechanisms in electrospun fiber formation that can be utilized to fabricate tissue engineering scaffolds with tunable and reproducible properties. PMID:23469941</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0100146&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0100146&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon"><span>Critical Viscosity of Xenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Shear thirning will cause a normally viscous fluid -- such as pie filling or whipped cream -- to deform and flow more readily under high shear conditions. In shear thinning, a pocket of fluid will deform and move one edge forward, as depicted here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27447927','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27447927"><span>Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Shuang; Qiu, Bai-Ling; Zhu, Chen-Qi; Yang, Ya-Ya Gao; Wu, Di; Liang, Qi-Hui; Han, Nan-Yin</p> <p>2016-09-15</p> <p>Gravitational field-flow fractionation (GrFFF) is a useful technique for separation and characterization for micrometer-sized particles. Elution behavior of micrometer-sized particles in GrFFF was researched in this study. Particles in GrFFF channel are subject to hydrodynamic lift forces (HLF), fluid inertial forces and gravity, which drive them to different velocities by carrier flow, resulting in a size-based separation. Effects of ionic strength, flow rate and viscosity as well as methanol were investigated using polystyrene latex beads as model particles. This study is devoted to experimental verification of the effect of every factor and their comprehensive function. All experiments were performed to show isolated influence of every variable factor. The orthogonal design test was used to evaluate various factors comprehensively. Results suggested that retention ratio of particles increases with increasing flow rate or the viscosity of carrier liquid by adjusting external forces acting on particles. In addition, retention ratio increases as ionic strength decreases because of decreased electrostatic repulsion between particles and channel accumulation wall. As far as methanol, there is no general trend due to the change of both density and viscosity. On the basis of orthogonal design test it was found that viscosity of carrier liquid plays a significant role in determining resolution of micrometer-sized particles in GrFFF. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27283672','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27283672"><span>Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sarkar, Abhijit; Sinha, Biswajit</p> <p>2016-11-15</p> <p>The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhLB..767..103C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhLB..767..103C"><span>Crossing the phantom divide with dissipative normal matter in the Israel-Stewart formalism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cruz, Norman; Lepe, Samuel</p> <p>2017-04-01</p> <p>A phantom solution in the framework of the causal Israel-Stewart (IS) formalism is discussed. We assume a late time behavior of the cosmic evolution by considering only one dominant matter fluid with viscosity. In the model it is assumed a bulk viscosity of the form ξ =ξ0ρ 1 / 2, where ρ is the energy density of the fluid. We evaluate and discuss the behavior of the thermodynamical parameters associated to this solution, like the temperature, rate of entropy, entropy, relaxation time, effective pressure and effective EoS. A discussion about the assumption of near equilibrium of the formalism and the accelerated expansion of the solution is presented. The solution allows to cross the phantom divide without evoking an exotic matter fluid and the effective EoS parameter is always lesser than -1 and time independent. A future singularity (big rip) occurs, but different from the Type I (big rip) solution classified in S. Nojiri, S.D. Odintsov and S. Tsujikawa (2005) [2], if we consider other thermodynamics parameters like, for example, the effective pressure in the presence of viscosity or the relaxation time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2108024','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2108024"><span>CYTOPLASMIC FILAMENTS OF AMOEBA PROTEUS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pollard, Thomas D.; Ito, Susumu</p> <p>1970-01-01</p> <p>The role of filaments in consistency changes and movement in a motile cytoplasmic extract of Amoeba proteus was investigated by correlating light and electron microscopic observations with viscosity measurements. The extract is prepared by the method of Thompson and Wolpert (1963). At 0°C, this extract is nonmotile and similar in structure to ameba cytoplasm, consisting of groundplasm, vesicles, mitochondria, and a few 160 A filaments. The extract undergoes striking ATP-stimulated streaming when warmed to 22°C. Two phases of movement are distinguished. During the first phase, the apparent viscosity usually increases and numerous 50–70 A filaments appear in samples of the extract prepared for electron microscopy, suggesting that the increase in viscosity in caused, at least in part, by the formation of these thin filaments. During this initial phase of ATP-stimulated movement, these thin filaments are not detectable by phase-contrast or polarization microscopy, but later, in the second phase of movement, 70 A filaments aggregate to form birefringent microscopic fibrils. A preparation of pure groundplasm with no 160 A filaments or membranous organelles exhibits little or no ATP-stimulated movement, but 50–70 A filaments form and aggregate into birefringent fibrils. This observation and the structural relationship of the 70 A and the 160 A filaments in the motile extract suggest that both types of filaments may be required for movement. These two types of filaments, 50–70 A and 160 A, are also present in the cytoplasm of intact amebas. Fixed cells could not be used to study the distribution of these filaments during natural ameboid movement because of difficulties in preserving the normal structure of the ameba during preparation for electron microscopy. PMID:4915451</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/4915451','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/4915451"><span>Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pollard, T D; Ito, S</p> <p>1970-08-01</p> <p>The role of filaments in consistency changes and movement in a motile cytoplasmic extract of Amoeba proteus was investigated by correlating light and electron microscopic observations with viscosity measurements. The extract is prepared by the method of Thompson and Wolpert (1963). At 0 degrees C, this extract is nonmotile and similar in structure to ameba cytoplasm, consisting of groundplasm, vesicles, mitochondria, and a few 160 A filaments. The extract undergoes striking ATP-stimulated streaming when warmed to 22 degrees C. Two phases of movement are distinguished. During the first phase, the apparent viscosity usually increases and numerous 50-70 A filaments appear in samples of the extract prepared for electron microscopy, suggesting that the increase in viscosity in caused, at least in part, by the formation of these thin filaments. During this initial phase of ATP-stimulated movement, these thin filaments are not detectable by phase-contrast or polarization microscopy, but later, in the second phase of movement, 70 A filaments aggregate to form birefringent microscopic fibrils. A preparation of pure groundplasm with no 160 A filaments or membranous organelles exhibits little or no ATP-stimulated movement, but 50-70 A filaments form and aggregate into birefringent fibrils. This observation and the structural relationship of the 70 A and the 160 A filaments in the motile extract suggest that both types of filaments may be required for movement. These two types of filaments, 50-70 A and 160 A, are also present in the cytoplasm of intact amebas. Fixed cells could not be used to study the distribution of these filaments during natural ameboid movement because of difficulties in preserving the normal structure of the ameba during preparation for electron microscopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29425863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29425863"><span>In situ observation of sol-gel transition of agarose aqueous solution by fluorescence measurement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Zheng; Yang, Kun; Li, Haining; Yuan, Chaosheng; Zhu, Xiang; Huang, Haijun; Wang, Yongqiang; Su, Lei; Fang, Yapeng</p> <p>2018-06-01</p> <p>Sol-gel transition behavior of agarose aqueous solution was investigated by using rheology and fluorescence measurement. On heating, the storage modulus G' decreased gradually, then deviated abruptly at the temperature of about 65°C, and finally decreased slowly again. For fluorescence measurement, the phase transition point kept almost at the temperature of 65°C, which was consistent with that in rheology measurement. Upon compression, it was indicated that the fluorescence lifetime for the probe in the agarose aqueous solution showed a dramatic change in the vicinity of the phase transition point. T vs. P phase diagram of agarose aqueous solution was constructed, which showed that the melting point was an increasing function of pressure. Based on the phase diagram, the agarose gels were prepared by cooling under atmospheric pressure and the pressure of 300MPa, respectively. From the result of the recovered samples studied by optical rheometry, it was found that agarose gel prepared under high pressure had a higher elasticity and lower viscosity index, compared with that under atmospheric pressure. It could be speculated that such kinds of properties might be attributed to the smaller pore size during gelation under high pressure. Copyright © 2018. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7738W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7738W"><span>Seismic Constraints on the Mantle Viscosity Structure beneath Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wiens, Douglas; Heeszel, David; Aster, Richard; Nyblade, Andrew; Wilson, Terry</p> <p>2015-04-01</p> <p>Lateral variations in upper mantle viscosity structure can have first order effects on glacial isostatic adjustment. These variations are expected to be particularly large for the Antarctic continent because of the stark geological contrast between ancient cratonic and recent tectonically active terrains in East and West Antarctica, respectively. A large misfit between observed and predicted GPS rates for West Antarctica probably results in part from the use of a laterally uniform viscosity structure. Although not linked by a simple relationship, mantle seismic velocities can provide important constraints on mantle viscosity structure, as they are both largely controlled by temperature and water content. Recent higher resolution seismic models for the Antarctic mantle, derived from data acquired by new seismic stations deployed in the AGAP/GAMSEIS and ANET/POLENET projects, offer the opportunity to use the seismic velocity structure to place new constraints on the viscosity of the Antarctic upper mantle. We use an Antarctic shear wave velocity model derived from array analysis of Rayleigh wave phase velocities [Heeszel et al, in prep] and examine a variety of methodologies for relating seismic, thermal and rheological parameters to compute a suite of viscosity models for the Antarctic mantle. A wide variety of viscosity structures can be derived using various assumptions, but they share several robust common elements. There is a viscosity contrast of at least two orders of magnitude between East and West Antarctica at depths of 80-250 km, reflecting the boundary between cold cratonic lithosphere in East Antarctica and warm upper mantle in West Antarctica. The region beneath the Ellsworth-Whitmore Mtns and extending to the Pensacola Mtns. shows intermediate viscosity between the extremes of East and West Antarctica. There are also significant variations between different parts of West Antarctica, with the lowest viscosity occurring beneath the Marie Byrd Land (MBL). The MBL Dome and adjacent coastal areas show extremely low viscosity (~1018Pa-s) for most parameterizations, suggesting that low mantle viscosity may produce a very rapid response to ice mass loss in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4767348','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4767348"><span>Acidic pH increases airway surface liquid viscosity in cystic fibrosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.</p> <p>2016-01-01</p> <p>Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1421677-confinement-effects-host-chain-dynamics-polymer-nanocomposite-thin-films','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1421677-confinement-effects-host-chain-dynamics-polymer-nanocomposite-thin-films"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Kyle J.; Glynos, Emmanouil; Maroulas, Serafeim-Dionysios</p> <p></p> <p>Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g.: sensing, energy conversion) of these materials, introduces additional complications with regard to the processing-morphology-function behavior. A primary challenge is to understand and control the viscosity of a PNC with decreasing film thickness confinement for nanoscale applications. Using a combination of X-ray photon correlation spectroscopy (XPCS) and X-ray standing wave based resonance enhanced XPCS to study the dynamics of neat poly-2-vinyl pyridine (P2VP) chains and the nanoparticle dynamics, respectively, we identified a new mechanism that dictates the viscosity of PNCmore » films in the nanoscale regime. We show that while the viscosities of neat P2VP films as thin as 50 nm remained the same as the bulk, PNC films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were equal to the bulk values. These results -NP proximities and suppression of their dynamics -suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for 2D and 3D nanoscale applications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22300127-abrupt-growth-dynamics-nonlinear-resistive-tearing-mode-viscosity-effects','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22300127-abrupt-growth-dynamics-nonlinear-resistive-tearing-mode-viscosity-effects"><span>On the abrupt growth dynamics of nonlinear resistive tearing mode and the viscosity effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ali, A.; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp; Kishimoto, Y.</p> <p>2014-05-15</p> <p>The nonlinear evolution of the resistive tearing mode exhibits an abrupt growth after an X-point collapse once the magnetic island exceeds a certain critical width Δ′w{sub c} for large instability parameter Δ′, leading to a current sheet formation [N. F. Loureiro et al., Phys. Rev. Lett. 95, 235003 (2005)]. In this work, we investigate the underlying mechanism of the X-point collapse as well as the current sheet formation including the viscosity effects, based on a secondary instability analysis. The secondary instability is excited due to the quasilinear current modification by the zonal current. In particular, it is identified that themore » current peaking effect is plausibly responsible for the onset of the X-point collapse and the current sheet formation, leading to the explosive growth of reconnected flux. In the presence of finite viscosity, the Δ′w{sub c} scaling with the resistivity gets modified. A transition behavior is revealed at P{sub r}≈1 for the viscosity dependence of Δ′w{sub c} and the linear tearing instability. However, the explosive growth seems to be independent of the viscosity in the magnetic Prandtl number P{sub r}<1 regime, while large viscosity plays a strong dissipation role.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26484392','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26484392"><span>Description and comparative study of physico-chemical parameters of the teleost fish skin mucus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guardiola, Francisco A; Cuartero, María; Del Mar Collado-González, María; Arizcún, Marta; Díaz Baños, F Guillermo; Meseguer, José; Cuesta, Alberto; Esteban, María A</p> <p>2015-01-01</p> <p>The study of mucosal surfaces, and in particular the fish skin and its secreted mucus, has been of great interest recently among immunologists. Measurement of the viscosity and other physico-chemical parameters (protein concentration, pH, conductivity, redox potential, osmolality and density) of the skin mucus can help to understand its biological functions. We have used five marine species of teleost: gilthead seabream (Sparus aurata L.), European sea bass (Dicentrarchus labrax L.), shi drum (Umbrina cirrosa L.), common dentex (Dentex dentex L.) and dusky grouper (Epinephelus marginatus L.), all of them with commercial interest in the aquaculture of the Mediterranean area. Mucus showed a direct shear- and temperature-dependent viscosity, with a non-Newtonian behavior, which differed however between two groups: one with higher viscosity (D. labrax, U. cirrosa, D. dentex) and the other with lower viscosity (S. aurata, E. marginatus). In addition, there was a clear interrelation between density and osmolality, as well as between density and temperature. Taking into account that high values of viscosity should improve the barrier effect against pathogens but low values of viscosity are needed for good locomotion characteristics, our results may help elucidate the relationship between physico-chemical and biological parameters of skin mucus, and disease susceptibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15449942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15449942"><span>Internal friction controls the speed of protein folding from a compact configuration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pabit, Suzette A; Roder, Heinrich; Hagen, Stephen J</p> <p>2004-10-05</p> <p>Several studies have found millisecond protein folding reactions to be controlled by the viscosity of the solvent: Reducing the viscosity allows folding to accelerate. In the limit of very low solvent viscosity, however, one expects a different behavior. Internal interactions, occurring within the solvent-excluded interior of a compact molecule, should impose a solvent-independent upper limit to folding speed once the bulk diffusional motions become sufficiently rapid. Why has this not been observed? We have studied the effect of solvent viscosity on the folding of cytochrome c from a highly compact, late-stage intermediate configuration. Although the folding rate accelerates as the viscosity declines, it tends toward a finite limiting value approximately 10(5) s(-1) as the viscosity tends toward zero. This limiting rate is independent of the cosolutes used to adjust solvent friction. Therefore, interactions within the interior of a compact denatured polypeptide can limit the folding rate, but the limiting time scale is very fast. It is only observable when the solvent-controlled stages of folding are exceedingly rapid or else absent. Interestingly, we find a very strong temperature dependence in these "internal friction"-controlled dynamics, indicating a large energy scale for the interactions that govern reconfiguration within compact, near-native states of a protein.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860049983&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dviscoelastic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860049983&hterms=viscoelastic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dviscoelastic"><span>Tidal dissipation in a viscoelastic planet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ross, M.; Schubert, G.</p> <p>1986-01-01</p> <p>Tidal dissipation is examined using Maxwell standard liner solid (SLS), and Kelvin-Voigt models, and viscosity parameters are derived from the models that yield the amount of dissipation previously calculated for a moon model with QW = 100 in a hypothetical orbit closer to the earth. The relevance of these models is then assessed for simulating planetary tidal responses. Viscosities of 10 exp 14 and 10 ex 18 Pa s for the Kelvin-Voigt and Maxwell rheologies, respectively, are needed to match the dissipation rate calculated using the Q approach with a quality factor = 100. The SLS model requires a short time viscosity of 3 x 10 exp 17 Pa s to match the Q = 100 dissipation rate independent of the model's relaxation strength. Since Q = 100 is considered a representative value for the interiors of terrestrial planets, it is proposed that derived viscosities should characterize planetary materials. However, it is shown that neither the Kelvin-Voigt nor the SLS models simulate the behavior of real planetary materials on long time scales. The Maxwell model, by contrast, behaves realistically on both long and short time scales. The inferred Maxwell viscosity, corresponding to the time scale of days, is several times smaller than the longer time scale (greater than or equal to 10 exp 14 years) viscosity of the earth's mantle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985apmp.book...58Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985apmp.book...58Z"><span>Numerical solution of problems concerning the thermal convection of a variable-viscosity liquid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zherebiatev, I. F.; Lukianov, A. T.; Podkopaev, Iu. L.</p> <p></p> <p>A stabilizing-correction scheme is constructed for integrating the fourth-order equation describing the dynamics of a viscous incompressible liquid. As an example, a solution is obtained to the problem of the solidification of a liquid in a rectangular region with allowance for convective energy transfer in the liquid phase as well as temperature-dependent changes of viscosity. It is noted that the proposed method can be used to study steady-state problems of thermal convection in ingots obtained through continuous casting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JChPh..92.1106B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JChPh..92.1106B"><span>Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bazhenov, Alexiev M.; Heyes, David M.</p> <p>1990-01-01</p> <p>The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28794316','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28794316"><span>Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hashizaki, Kaname; Imai, Miko; Yako, Shuhei; Tsusaka, Hitomi; Sakanishi, Yuichi; Saito, Yoshihiro; Fujii, Makiko</p> <p>2017-09-01</p> <p>We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η 0 ) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η 0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26566035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26566035"><span>Food emulsions as delivery systems for flavor compounds: A review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mao, Like; Roos, Yrjö H; Biliaderis, Costas G; Miao, Song</p> <p>2017-10-13</p> <p>Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARA37006J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARA37006J"><span>The mechanical properties of phase separated protein droplets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jawerth, Louise; Ijavi, Mahdiye; Patel, Avinash; Saha, Shambaditya; Jülicher, Frank; Hyman, Anthony</p> <p></p> <p>In vivo, numerous proteins associate into liquid compartments by de-mixing from the surrounding solution, similar to oil molecules in water. Many of these proteins and their corresponding liquid compartments play a crucial role in important biological processes, for instance germ line specification in C. elegans or in neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS). However, despite their importance, very little is known about the physical properties of the resulting droplets as well as the physical mechanisms that control their phase separation from solution. To gain a deeper understanding of these aspects, we study a few such proteins in vitro. When these proteins are purified and added to a physiological buffer, they phase separate into droplets ranging in size from a few to tens of microns with liquid-like behavior similar to their physiological counterparts. By attaching small beads to the surface of the droplets, we can deform the droplets by manipulating the beads directly using optical tweezers. By measuring the force required to deform the droplets we determine their surface tension, elasticity and viscosity as well as the frequency response of these properties. We also measure these properties using passive micro-rheology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDE38006L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDE38006L"><span>Modeling and measuring non-Newtonian shear flows of soft interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lopez, Juan; Raghunandan, Aditya; Underhill, Patrick; Hirsa, Amir</p> <p>2017-11-01</p> <p>Soft interfaces of polymers, particles, and proteins between fluid phases are ubiquitous in industrial and natural processes. The flow response of such systems to deformation is often not linear, as one would expect for Newtonian interfaces. The resistance to (pure shear) flow of interfaces is generally characterized by a single intrinsic material property, the surface shear viscosity. Predicted shear responses of Newtonian interfaces have achieved consensus across a wide range of flow conditions and measurement devices, when the nonlinear hydrodynamic coupling to the bulk phase is correctly accounted for. However, predicting the flows of sheared non-Newtonian interfaces remains a challenge. Here, we introduce a computational model that incorporates a non-Newtonian constitutive equation for the sheared interface and properly accounts for the coupled interfacial and bulk phase flows. We compare predictions to experiments performed with a model phospholipid system, DPPC - the main constituent of mammalian lung surfactant. Densely packed films of DPPC are directly sheared in a knife-edge surface viscometer. Yield-stress and shear thinning behaviors are shown to be accurately captured across hydrodynamic regimes straddling the Stokes flow limit to inertia dominated flows. Supported by NASA Grant NNX13AQ22G.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...93a2072S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...93a2072S"><span>Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Supramono, D.; Julianto; Haqqyana; Setiadi, H.; Nasikin, M.</p> <p>2017-11-01</p> <p>In co-pyrolysis of biomass-plastics, bio-oil produced contains both oxygenated and non-oxygenated compounds. High oxygen composition is responsible for instability and low heating value of bio-oil and high acid content for corrosiveness. Aims of the present work are to evaluate possibilities of achieving phase separation between oxygenated and non-oxygenated compounds in bio-oil using a proposed stirred tank reactor and to achieve synergistic effects on bio-oil yield and non-oxygenated compound layer yield. Separation of bio-oil into two layers, i.e. that containing oxygenated compounds (polar phase) and non-oxygenated compounds (non-polar phase) is important to obtain pure non-polar phase ready for the next processing of hydrogenation and used directly as bio-fuel. There has been no research work on co-pyrolysis of biomass-plastic considering possibility of phase separation of bio-oil. The present work is proposing a stirred tank reactor for co-pyrolysis with nitrogen injection, which is capable of tailoring co-pyrolysis conditions leading to low viscosity and viscosity asymmetry, which induce phase separation between polar phase and non-polar phase. The proposed reactor is capable of generating synergistic effect on bio-oil and non-polar yields as the composition of PP in feed is more than 25% weight in which non-polar layers contain only alkanes, alkenes, cycloalkanes and cycloalkenes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29454188','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29454188"><span>Modified two-step emulsion solvent evaporation technique for fabricating biodegradable rod-shaped particles in the submicron size range.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Safari, Hanieh; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola</p> <p>2018-05-15</p> <p>Though the emulsion solvent evaporation (ESE) technique has been previously modified to produce rod-shaped particles, it cannot generate small-sized rods for drug delivery applications due to the inherent coupling and contradicting requirements for the formation versus stretching of droplets. The separation of the droplet formation from the stretching step should enable the creation of submicron droplets that are then stretched in the second stage by manipulation of the system viscosity along with the surface-active molecule and oil-phase solvent. A two-step ESE protocol is evaluated where oil droplets are formed at low viscosity followed by a step increase in the aqueous phase viscosity to stretch droplets. Different surface-active molecules and oil phase solvents were evaluated to optimize the yield of biodegradable PLGA rods. Rods were assessed for drug loading via an imaging agent and vascular-targeted delivery application via blood flow adhesion assays. The two-step ESE method generated PLGA rods with major and minor axis down to 3.2 µm and 700 nm, respectively. Chloroform and sodium metaphosphate was the optimal solvent and surface-active molecule, respectively, for submicron rod fabrication. Rods demonstrated faster release of Nile Red compared to spheres and successfully targeted an inflamed endothelium under shear flow in vitro and in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T13D0558A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T13D0558A"><span>Controls on rheology of peridotite at a palaeosubduction interface: a transect across the base of the Oman-UAE ophiolite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ambrose, T. K.; Wallis, D.; Hansen, L. N.; Waters, D. J.; Searle, M. P.</p> <p>2017-12-01</p> <p>Studies of experimentally deformed rocks and small-scale natural shear zones have demonstrated that volumetrically minor phases can control strain localisation by limiting grain growth and promoting grain-size sensitive deformation mechanisms. Such studies are often used to infer a critical role for minor phases in the development of plate boundaries. However, the role of of minor phases in strain localisation at plate boundaries remains to be tested by direct observation. To test the hypothesis that minor phases control strain localisation at plate boundaries, we conducted microstructural analyses of peridotite samples collected across the base of the Oman-UAE ophiolite. The base of the ophiolite is marked by the Semail thrust, which represents the now exhumed contact between subducted oceanic crust and the overlying mantle wedge. As such, the base of the ophiolite provides the opportunity to directly examine a former plate boundary. Our results demonstrate that the mean olivine grain size is inversely proportional to the abundance of minor phases (primarily pyroxene), consistent with suppression of grain growth by grain-boundary pinning. Our results also reveal that mean olivine grain size is proportional to CPO strength, suggesting that the fraction of strain accommodated by different deformation mechanisms varied spatially. Experimentally-derived flow laws indicate that under the inferred deformation conditions the viscosity of olivine was grain-size sensitive. As such, grain size, and thereby the abundance of minor phases, influenced viscosity during subduction-related deformation along the base of the mantle wedge. We calculate that viscosity and strain rate respectively decrease and increase by approximately an order of magnitude towards the base of the ophiolite. Our data indicate that this rheological weakening was primarily the result of more abundant secondary phases near the base of the ophiolite. Our interpretations are consistent with those of previous studies on experimentally deformed rocks and smaller-scale natural shear zones that indicate minor phases can strongly influence strain localisation. However, our study demonstrates for the first time that minor phases can control strain localisation at the scale of a major plate boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800028699&hterms=atmospheric+pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Datmospheric%2Bpollution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800028699&hterms=atmospheric+pollution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Datmospheric%2Bpollution"><span>Finite-element numerical modeling of atmospheric turbulent boundary layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, H. N.; Kao, S. K.</p> <p>1979-01-01</p> <p>A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RJPCA..88.1527D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RJPCA..88.1527D"><span>Physicochemical properties and ion-solvent interactions in aqueous sodium, ammonium, and lead acetate solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deosarkar, S. D.; Mendkudle, M. S.</p> <p>2014-09-01</p> <p>Densities (ρ), viscosities (η) and refractive indices ( n D) of aqueous sodium acetate (SA), ammonium acetate (AA), and lead acetate (LA) solutions have been measured for different concentrations of salts at 302.15 K. Apparent molar volumes (φv) for studied solutions were calculated from density data, and fitted to Masson's relation and partial molar volume (φ{v/o}) was determined. Viscosity data were fitted to Jones-Dole equation and viscosity A- and B-coefficients were determined. Refractive index and density data were fitted to Lorentz and Lorenz equation and specific refraction ( R D) were calculated. Behavior of various physicochemical properties indicated presence of strong ion-solvent interactions in present systems and the acetate salts structure maker in water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AcMSn..28..266X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AcMSn..28..266X"><span>Water hammer prediction and control: the Green's function method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi</p> <p>2012-04-01</p> <p>By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=228381','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=228381"><span>Adsorption Behavior of Heat Modified Soybean Oil via Boundary Lubrication Coefficient of Friction Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The frictional behaviors of soybean oil and heat modified soybean oils with different Gardner scale viscosities as additives in hexadecane have been examined in a boundary lubrication test regime (steel contacts) using Langmuir adsorption model. The free energy of adsorption (delta-Gads) of various...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26292131','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26292131"><span>Viscosity and Wetting Property of Water Confined in Extended Nanospace Simultaneously Measured from Highly-Pressurized Meniscus Motion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Lixiao; Kazoe, Yutaka; Mawatari, Kazuma; Sugii, Yasuhiko; Kitamori, Takehiko</p> <p>2012-09-06</p> <p>Understanding fluid and interfacial properties in extended nanospace (10-1000 nm) is important for recent advances of nanofluidics. We studied properties of water confined in fused-silica nanochannels of 50-1500 nm sizes with two types of cross-section: (1) square channel of nanoscale width and depth, and (2) plate channel of microscale width and nanoscale depth. Viscosity and wetting property were simultaneously measured from capillary filling controlled by megapascal external pressure. The viscosity increased in extended nanospace, while the wetting property was almost constant. Especially, water in the square nanochannels had much higher viscosity than the plate channel, which can be explained considering loosely coupled water molecules by hydrogen bond on the surface within 24 nm. This study suggests specificity of fluids two-dimensionally confined in extended nanoscale, in which the liquid is highly viscous by the specific water phase, while the wetting dynamics is governed by the well-known adsorbed water layer of several-molecules thickness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26572399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26572399"><span>Does viscosity or structure govern the rate at which starch granules are digested?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hardacre, Allan K; Lentle, Roger G; Yap, Sia-Yen; Monro, John A</p> <p>2016-01-20</p> <p>The rates of in vitro digestion of incompletely or fully gelatinised potato and corn starch were measured at 37 °C over 20 min in a rheometer fitted with cup and vane geometry at shear rates of 0.1, 1 and 10 s(-1). Shear rate did not influence the rate of starch digestion provided it was close to physiological levels. However, rates of digestion were significantly reduced when shear rates were below the physiological range (0.1 s(-1)) or when gelatinisation was incomplete. At physiological shear rates the relationship between starch digestion and viscosity was sigmoid in form and following a short initial slow phase a rapid decline in viscosity occurred as starch was digested and the structural integrity of the granules was lost. Conversely, when shear rate was reduced below physiological levels or gelatinisation was incomplete, digestion was hindered, granule integrity was maintained and the relationship between starch and viscosity became linear. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA618499','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA618499"><span>Fatigue Behavior of IM7/BMI 5250-4 Composite at Room and Elevated Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-03-01</p> <p>to the ancient Egyptians and their use of clay bricks reinforced with straw, but it is most commonly used in steel-reinforce concrete today [5, p...the temperature increases during the first part of the cure cycle, the viscosity of the resin decreases until the resin becomes a fluid. At about 165...C, the viscosity reaches a minimum value then begins to rise. During the hold at 191°C, a continuous cross-linked network is formed. Crosslinking</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=MSFC-0100145&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=MSFC-0100145&hterms=xenon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dxenon"><span>Critical Viscosity of Xenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2001-01-01</p> <p>The Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002 will measure the viscous behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. Because xenon near the critical point will collapse under its own weight, experiments on Earth (green line) are limited as they get closer (toward the left) to the critical point. CVX in the microgravity of space (red line) moved into unmeasured territory that scientists had not been able to reach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhyU...43..493B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhyU...43..493B"><span>REVIEWS OF TOPICAL PROBLEMS: Universal viscosity growth in metallic melts at megabar pressures: the vitreous state of the Earth's inner core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brazhkin, Vadim V.; Lyapin, A. G.</p> <p>2000-05-01</p> <p>Experimental data on and theoretical models for the viscosity of various types of liquids and melts under pressure are reviewed. Experimentally, the least studied melts are those of metals, whose viscosity is considered to be virtually constant along the melting curve. The authors' new approach to the viscosity of melts involves the measurement of the grain size in solidified samples. Measurements on liquid metals at pressures up to 10 GPa using this method show, contrary to the empirical approach, that the melt viscosity grows considerably along the melting curves. Based on the experimental data and on the critical analysis of current theories, a hypothesis of a universal viscosity behavior is introduced for liquids under pressure. Extrapolating the liquid iron results to the pressures and temperatures at the Earth's core reveals that the Earth's outer core is a very viscous melt with viscosity values ranging from 102 Pa s to 1011 Pa s depending on the depth. The Earth's inner core is presumably an ultraviscous (>1011 Pa s) glass-like liquid — in disagreement with the current idea of a crystalline inner core. The notion of the highly viscous interior of celestial bodies sheds light on many mysteries of planetary geophysics and astronomy. From the analysis of the pressure variation of the melting and glass-transition temperatures, an entirely new concept of a stable metallic vitreous state arises, calling for further experimental and theoretical study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988ZNatA..43..977D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988ZNatA..43..977D"><span>Phase Equilibria and Transport Properties in the Systems AgNO3/RCN/H2O. R = CH3, C2H5, C3H7, C4H,, C6H5, and C6H5CH2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, Surjya P.; Wittekopf, Burghard; Weil, Konrad G.</p> <p>1988-11-01</p> <p>Silver nitrate can form homogeneous liquid phases with some organic nitriles and water, even when there is no miscibility between the pure liquid components. We determined the shapes of the single phase regions in the ternary phase diagram for the following systems: silver nitrate /RCN /H2O with R =CH3, C3H7, C6H5, and C6H5CH2 at room temperature and for R =C6H5 also at 60 °C and O °C. Furthermore we studied kinematic viscosities, electrical conductivities, and densities of mixtures containing silver nitrate, RCN, and water with the mole ratios X /4 /1 (0.2≦ X ≦S 3.4). In these cases also R = C2H5 and C4H9 were studied. The organic nitriles show different dependences of viscosity and conductivity on the silver nitrate content from the aliphatic ones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4424679','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4424679"><span>Multicomponent model of deformation and detachment of a biofilm under fluid flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tierra, Giordano; Pavissich, Juan P.; Nerenberg, Robert; Xu, Zhiliang; Alber, Mark S.</p> <p>2015-01-01</p> <p>A novel biofilm model is described which systemically couples bacteria, extracellular polymeric substances (EPS) and solvent phases in biofilm. This enables the study of contributions of rheology of individual phases to deformation of biofilm in response to fluid flow as well as interactions between different phases. The model, which is based on first and second laws of thermodynamics, is derived using an energetic variational approach and phase-field method. Phase-field coupling is used to model structural changes of a biofilm. A newly developed unconditionally energy-stable numerical splitting scheme is implemented for computing the numerical solution of the model efficiently. Model simulations predict biofilm cohesive failure for the flow velocity between and m s−1 which is consistent with experiments. Simulations predict biofilm deformation resulting in the formation of streamers for EPS exhibiting a viscous-dominated mechanical response and the viscosity of EPS being less than . Higher EPS viscosity provides biofilm with greater resistance to deformation and to removal by the flow. Moreover, simulations show that higher EPS elasticity yields the formation of streamers with complex geometries that are more prone to detachment. These model predictions are shown to be in qualitative agreement with experimental observations. PMID:25808342</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10620258','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10620258"><span>Chemical and rheological properties of an extracellular polysaccharide produced by the cyanobacterium Anabaena sp. ATCC 33047.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moreno, J; Vargas, M A; Madiedo, J M; Muñoz, J; Rivas, J; Guerrero, M G</p> <p>2000-02-05</p> <p>The cyanobacterium (blue-green alga) Anabaena sp. ATCC 33047 produces an exopolysaccharide (EPS) during the stationary growth phase in batch culture. Chemical analysis of EPS revealed a heteropolysaccharidic nature, with xylose, glucose, galactose, and mannose the main neutral sugars found. The infrared (IR) spectrum of EPS showed absorption bands of carboxylate groups. The average molecular mass of the polymer was 1.35 MDa. Aqueous dispersions at EPS concentrations ranging from 0.2% to 0.6% (w/w) showed marked shear-thinning properties (power-law behavior). Linear dynamic viscoelastic properties showed that the elastic component was always higher than the viscous component. Viscous and viscoelastic properties demonstrated the absence of conformational changes within the concentration range studied. Stress-growth experiments revealed that 0.4% and 0.6% (w/w) EPS dispersions showed thixotropic properties. A detailed comparison of the linear dynamic viscoelasticity, transient flow, and decreasing shear rate flow curve properties was made for 0.4% (w/w) dispersions of xanthan gum (XG), Alkemir 110 (AG), and EPS. Viscoelastic spectra demonstrated that the EPS dispersion turned out to be more "fluidlike" than the AG and XG dispersions. The flow indexes indicated that the EPS dispersion was less shear-sensitive than that of XG, showing essentially the same viscosity, that is, >50 s(-1). The fact that viscosities of EPS and AG dispersions were not substantially different within the shear-rate range covered must be emphasized, in relation to EPS potential applications. The rheological behavior of EPS dispersions indicates the formation of an intermediate structure between a random-coil polysaccharide and a weak gel. Copyright 2000 John Wiley & Sons, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTB...49..291K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTB...49..291K"><span>Effect of Initial FeO Content and CaO:SiO2 Ratio on the Reduction Smelting Kinetics of the CaO-SiO2-MgOsatd.-FeO Slag System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Jong Bae; Sohn, Il</p> <p>2018-02-01</p> <p>The effect of the initial FeO content and CaO:SiO2 ratio (CaO mass pct/SiO2 mass pct) on the reduction smelting of FeO with carbon flake addition is investigated in the CaO-MgOsatd.-SiO2-FeO slag system at 1823 K (1550 °C). Carbon rapidly reacted with FeO in the molten slag, causing both foaming and compositional changes in the slag. As FeO is reduced, the MgO saturation is modified, and solid precipitants, including MgO and other complex oxides, were observed, which significantly affected the slag properties, including the viscosity and foaming behavior. The solid-phase fraction and viscosity were estimated from changes in the measured FeO content over time using the thermochemical software FactSage. The iron recovery, which is distinguished from the amount of reduced Fe droplets, showed opposite behavior to the measured maximum foaming height and modified foaming index. According to the FeO mass transfer coefficient considering slag foaming at various initial FeO contents and CaO:SiO2 ratios, the reduction rate was optimal at higher initial FeO contents and a CaO:SiO2 ratio of 2.0, which did not correspond to the optimal iron recovery at an initial FeO content of 44 mass pct and above and a CaO:SiO2 ratio of 1.2. The results showed that slag foaming may increase the reduction kinetics, but the slag composition needs to be optimized for greater iron recovery.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>