Science.gov

Sample records for viscous impeller pump

  1. Cavopulmonary assist for the univentricular Fontan circulation: von Kármán Viscous Impeller Pump (VIP™)

    PubMed Central

    Rodefeld, Mark D; Coats, Brandon; Fisher, Travis; Giridharan, Guruprasad A; Chen, Jun; Brown, John W; Frankel, Steven H

    2010-01-01

    Objectives In a univentricular Fontan circulation, modest augmentation of existing cavopulmonary pressure head (2–5 mmHg) would reduce systemic venous pressure, increase ventricular filling, and thus, substantially improve circulatory status. An ideal means of providing mechanical cavopulmonary support does not exist. We hypothesized that a viscous impeller pump, based on the von Kármán viscous pump principle, is optimal for this role. Methods A 3-dimensional computational model of the total cavopulmonary connection was created. The impeller was represented as a smooth 2-sided conical actuator disk with rotation in the vena caval axis. Flow was modeled under 3 conditions: 1) passive flow with no disc; 2) passive flow with a non-rotating disk, and 3) induced flow with disc rotation (0–5K rpm). Flow patterns and hydraulic performance were examined for each case. Hydraulic performance for a vaned impeller was assessed by measuring pressure rise and induced flow over 0–7K rpm in a laboratory mock loop. Results A nonrotating actuator disc stabilizes cavopulmonary flow, reducing power loss by 88%. Disk rotation (from baseline dynamic flow of 4.4 L/min) resulted in a pressure rise of 0.03 mmHg. A further increase of pressure of 5–20 mmHg and 0–5 L/min flow were obtained with a vaned impeller at 0–7K rpm in a laboratory mock loop. Conclusions A single viscous impeller pump stabilizes and augments cavopulmonary flow in 4 directions, in the desired pressure range, without venous pathway obstruction. It applies to the existing staged protocol as a temporary bridge-to-recovery or –transplant in established univentricular Fontan circulations. It may also enable compressed palliation of single ventricle without need for intermediary surgical staging or use of a systemic-to-pulmonary arterial shunt. PMID:20561640

  2. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  3. High Head Unshrouded Impeller Pump Stage Technology

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.; Skelley, Stephen E.; Stewart, Eric T.; Droege, Alan R.; Prueger, George H.; Chen, Wei-Chung; Williams, Morgan; Turner, James E. (Technical Monitor)

    2000-01-01

    Objective to develop an unshrouded impeller design, which a meets the performance requirements of a 3-stage fuel pump with a 2-stage pump design, has been accomplished. Performance of the baseline unshrouded impeller has been experimentally verified. Unshrouded impeller trade study and final 6+6 unshrouded impeller configuration has been presented. Structurally viable, 6+6-impeller design concept has been produced. Based on results presented in this study, at a nominal 10% tip-clearance, the 6+6 impeller design would increase payload to orbit by almost 625 lbs. per engine. The RLV vehicle requires 7 engines, therefore, application of high head unshrouded technology would increase payload capability by as much as 4,375 lbs. per vehicle.

  4. Trim or Replace Impellers on Oversized Pumps

    SciTech Connect

    Not Available

    2006-09-01

    One in a series of tip sheets to help manufacturers optimize their industrial pumping systems. As a result of conservative engineering practices, pumps are often substantially larger than they need to be for an industrial plant's process requirements. Centrifugal pumps can often be oversized because of ''rounding up'', trying to accommodate gradual increases in pipe surface roughness and flow resistance over time, or anticipating future plant capacity expansions. In addition, the plant's pumping requirements might not have been clearly defined during the design phase. Because of this conservative approach, pumps can have operating points completely different from their design points. The pump head is often less than expected, while the flow rate is greater. This can cause cavitation and waste energy as the flow rate typically must be regulated with bypass or throttle control. Oversized and throttled pumps that produce excess pressure are excellent candidates for impeller replacement or ''trimming'', to save energy and reduce costs. Trimming involves machining the impeller to reduce its diameter. Trimming should be limited to about 75% of a pump's maximum impeller diameter, because excessive trimming can result in a mismatched impeller and casing. As the impeller diameter decreases, added clearance between the impeller and the fixed pump casing increases internal flow recirculation, causes head loss, and lowers pumping efficiency. For manufacturing standardization purposes, pump casings and shafts are designed to accommodate impellers in a range of sizes. Many pump manufacturers provide pump performance curves that indicate how various models will perform with different impeller diameters or trims. The impeller should not be trimmed any smaller than the minimum diameter shown on the curve. Net positive suction head requirements (NPSHR) usually decrease at lower flow rates and can increase at the higher end of the pump head curve. The NPSHR at a given flow rate will

  5. High Head Unshrouded Impeller Pump Stage Technology

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.; Skelley, Stephen E.; Stewart, Eric T.; Droege, Alan R.; Prueger, George H.; Chen, Wei-Chung; Williams, Morgan; Turner, James E. (Technical Monitor)

    2000-01-01

    A team of engineers at NASA/MSFC and Boeing, Rocketdyne division, are developing unshrouded impeller technologies that will increase payload and decrease cost of future reusable launch vehicles. Using the latest analytical techniques and experimental data, a two-stage unshrouded fuel pump is being designed that will meet the performance requirements of a three-stage shrouded pump. Benefits of the new pump include lower manufacturing costs, reduced weight, and increased payload to orbit.

  6. CFD analysis of pump consortium impeller

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.; Chen, Y. S.; Williams, R. W.

    1992-07-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.

  7. CFD analysis of pump consortium impeller

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Y. S.; Williams, R. W.

    1992-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.

  8. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.

    PubMed

    Nishimura, Ikuya; Ichikawa, S; Mikami, M; Ishitoya, H; Motomura, T; Kawamura, M; Linneweber, J; Glueck, J; Shinohara, T; Nosé, Y

    2013-01-01

    The Gyro centrifugal pump developed as a totally implantable artificial heart was designed with a free impeller, in which the rotational shaft (male bearing) of the impeller was completely separated from the female bearing. For this type of pump, it is very important to keep the proper magnet balance (impeller-magnet and actuator-magnet) in order to prevent thrombus formation and/or bearing wear. When the magnet balance is not proper, the impeller is jerked down into the bottom bearing. On the other hand, if magnet balance is proper, the impeller lifted off the bottom of the pump housing within a certain range of pumping conditions. In this study, this floating phenomenon was investigated in detail. The floating phenomenon was proved by observation of the impeller behavior using a transparent acrylic pump. The impeller floating phenomenon was mapped on a pump performance curve. The impeller floating phenomenon is affected by the magnet-magnet coupling distance and rotational speed of the impeller. In order to keep the proper magnet balance and to maintain the impeller floating phenomenon at the driving condition of right and left pump, the magnet-magnet coupling distance was altered by a spacer which was installed between the pump and actuator. It became clear that the same pump could handle different conditions (right and left ventricular assist), by just changing the thickness of the spacer. When magnet balance is proper, the floating impeller phenomenon occurs automatically in response to the impeller rev. It is called "the dynamic RPM suspension".

  9. Radial pump impeller measurements using a laser Doppler velocimeter

    NASA Astrophysics Data System (ADS)

    Kannemans, H.

    1980-03-01

    A shrouded fully transparent radial pump impeller with thin backswept blades has been tested using a laser Doppler velocimeter. Two components of the velocity were measured relative to the laboratory reference frame in a plane perpendicular to the axis of rotation. The velocity distribution is presented relative to the blades at different radii and different flow rates over the whole blade passage. The results show that the flow is essentially unsteady and, at low flow rate, highly influenced by viscous effects. A comparison between the experimental data and a potential flow theory shows good agreement at high flow rates.

  10. [Effect of impeller vane number and angles on pump hemolysis].

    PubMed

    Qian, Kunxi; Feng, Zhigang; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2003-12-01

    To evaluate the effect of impeller design on pump hemolysis, five impellers with different number of vanes or different vane angles were manufactured and tested in one pump for hemolysis comparison. The impellers are made to have the same dimension and same logarithmic spiral vane from which coincide with the stream surfaces in the pump, according to the analytical and three-dimensional design method developed by the authors. Consequently, an impeller with 6 vanes and 30 degrees vane angle has the lowest hemolysis index. This result agrees with the theoretical analyses of other investigators searching optimal number of vanes and vane angle to achieve the highest efficiency of the pump.

  11. Viscous pumping inspired by flexible propulsion.

    PubMed

    Arco, Roger M; Vélez-Cordero, J Rodrigo; Lauga, Eric; Zenit, Roberto

    2014-09-01

    Fluid-suspended microorganisms have evolved different swimming and feeding strategies in order to cope with an environment dominated by viscous effects. For instance, ciliated organisms rely on the collective motion of flexible appendages to move and feed. By performing a non-reciprocal motion, flexible filaments can produce a net propulsive force, or pump fluid, in the absence of inertia. Inspired by such a fundamental concept, we propose a strategy to produce macroscopic pumping and mixing in creeping flow. We measured experimentally the net motion of a Newtonian viscous fluid induced by the reciprocal motion of a flapper. When the flapper is rigid no net motion is induced. In contrast, when the flapper is made of a flexible material, a net fluid pumping is measured. We quantify the effectiveness of this pumping strategy and show that optimal pumping is achieved when the length of the flapper is on the same order as the elasto-hydrodynamic penetration length. We finally discuss the possible applications of flexible impellers in mixing operations at low Reynolds numbers.

  12. Origins of hydrodynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Adkins, Douglas R.; Brennen, Christopher E.

    1987-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.

  13. Analyses of hydrodynamic radial forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Adkins, D. R.; Brennen, C. E.

    1988-01-01

    An experimental and theoretical study of the hydrodynamic interactions occurring between a centrifugal pump impeller and a volute is presented. The theoretical analysis provides a quasi-one-dimensional treatment of the flow in the volute, and it is extended to include the hydrodynamic force perturbations caused by the impeller whirling eccentrically in the volute. It is noted that these perturbations are often destabilizing. The theoretical models were found to accurately predict the radial forces caused by the flow through the impeller. The pressure acting on the front shroud of the impeller is shown to have a significant effect on the destabilizing hydrodyamic forces.

  14. New investigations of a pulsatile impeller blood pump.

    PubMed

    Qian, K X

    1990-01-01

    For circulatory assist devices and total artificial heart systems, impeller blood pumps with small total volumes would be fully implantable. One of the main obstacles, however, is generation of a pulsatile flow. The simplest way to overcome this problem is by changing the pump's revolutions per minute (rpm) periodically, but this often results in severe hemolysis. After theoretic analysis, two in vitro models of impeller blood pumps have been devised, producing pulsatile flow with constant rpm. In the first model, the impeller oscillates in an axial direction during constant rotation. The pump is driven by a DC motor (rotating) and a pneumatic device (oscillating). The form of the pulsatile pressure wave depends upon duration and amplitude of the oscillation. With 40% systolic duration and a 50 mm axial amplitude, a 70 mmHg pressure amplitude (170/100) is achieved with a semiphysiologic shape at a flow of 12 L/min. The second model produces a pulsatile flow by differing the gaps between impeller and cap on the inlet pipe. Both the cap and impeller have cone-shaped heads, and impeller oscillations of 1.5-2 mm, for example, results in a pressure pulse of 40 mmHg (150-110) at 7 L/min flow. Results of theoretic analyses have shown that both models create less turbulence in the impeller, with a consequent reduction in blood cell damage as compared to pumps with changing rpms.

  15. Numerical simulation of flow in centrifugal pump with complex impeller

    NASA Astrophysics Data System (ADS)

    Cui, Bao-ling; Lin, Yong-gang; Jin, Ying-zi

    2011-03-01

    Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically. The relative velocity and pressure distributions in the flowpart are obtained. It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller. The back-flow region is at inlet of long-blade suction side, near middle part of long-blade pressure side and outlet of short-blade suction side. The flow near volute throat is affected greatly by volute. The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat. The static and total pressure rise uniformly from inlet to outlet in the impeller. At impeller outlet, the pressure periodically decreases from pressure side to suction side, and then the static pressure sharply rise near the throat. The experimental results show that the back flow in the impeller has an important influence on the performance of pump.

  16. Modelling of bubble trajectories in a pump impeller

    NASA Astrophysics Data System (ADS)

    Dupoiron, Marine; Linden, Paul

    2015-11-01

    A vertical rotating flow in an annulus gap with an increasing diameter is used to approximate the flow in a pump impeller. We study a spherical gas bubble released at the flow inlet, subject to turbulent drag and added mass forces. Bubbles trajectories have been computed for different geometries, rotation speeds and bubble size, showing a deviation from the liquid streamlines in the angular and radial directions. This effect is related to the pump performance in multiphase conditions: the velocity difference between the gas and the liquid phases changes the final pressure rise produced by the impeller. In some extreme cases, the centrifugal force can be large enough to prevent bubbles from exiting the impeller at all, leading to an unwanted gas accumulation and the blockage of the pump. We eventually quantify the effects of geometrical and operational parameters on the pump behaviour. Work done in collaboration with Schlumberger Gould Research, Cambridge.

  17. The helical flow pump with a hydrodynamic levitation impeller.

    PubMed

    Abe, Yusuke; Ishii, Kohei; Isoyama, Takashi; Saito, Itsuro; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Nakano, Emiko; Fukazawa, Kyoko; Ishihara, Kazuhiko; Fukunaga, Kazuyoshi; Ono, Minoru; Imachi, Kou

    2012-12-01

    The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19 l/min against 100 mmHg of pressure head and 11 % maximum efficiency. The profile of the H-Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000 rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days 14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203 days of pumping. In the second experiment, a white thrombus was found in the pump after 23 days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP.

  18. The stress analysis of a heavy liquid metal pump impeller

    NASA Astrophysics Data System (ADS)

    Ma, X. D.; Li, X. L.; Zhu, Z. Q.; Li, C. J.; Gao, S.

    2016-05-01

    Lead-based coolant reactor is a promising Generation-IV reactor. In the lead-based coolant reactor, the coolant is liquid lead or lead-bismuth eutectic. The main pump in the reactor is a very important device. It supplies force for the coolant circulation. The liquid metal has a very large density which is about ten times of the water. Also, the viscosity of the coolant is small which is about one sixth of the water. When the pump transports heavy liquid, the blade loading is heavy. The large force can cause the failure of the blade when the fatigue stress exceeds the allowable stress. The impeller fraction is a very serious accident which is strictly prohibited in the nuclear reactor. In this paper, the numerical method is used to simulate the flow field of a heavy liquid metal pump. The SST k-w turbulent model is used in the calculation to get a more precise flow structure. The hydraulic force is obtained with the one way fluid solid coupling. The maximum stress in the impeller is analyzed. The stress in the liquid metal pump is compared with that in the water pump. The calculation results show that the maximum stress of the impeller blade increases with increase of flow rate. In the design of the impeller blade thickness, the impeller strength in large operating condition should be considered. The maximum stress of the impeller blade located in the middle and near the hub of the leading edge. In this position, the blade is easy to fracture. The maximum deformation of the impeller firstly increase with increase of flow rate and then decrease with increase of flow rate. The maximum deformation exists in the middle of the leading edge when in small flow rate and in the out radius of the impeller when in large flow rate. Comparing the stress of the impeller when transporting water and LBE, the maximum stress is almost one-tenth of that in the LBE impeller which is the same ratio of the density. The static stress in different medium is proportional to the pressure

  19. Performance enhancement of a pump impeller using optimal design method

    NASA Astrophysics Data System (ADS)

    Jeon, Seok-Yun; Kim, Chul-Kyu; Lee, Sang-Moon; Yoon, Joon-Yong; Jang, Choon-Man

    2017-04-01

    This paper presents the performance evaluation of a regenerative pump to increase its efficiency using optimal design method. Two design parameters which define the shape of the pump impeller, are introduced and analyzed. Pump performance is evaluated by numerical simulation and design of experiments(DOE). To analyze three-dimensional flow field in the pump, general analysis code, CFX, is used in the present work. Shear stress turbulence model is employed to estimate the eddy viscosity. Experimental apparatus with an open-loop facility is set up for measuring the pump performance. Pump performance, efficiency and pressure, obtained from numerical simulation are validated by comparison with the results of experiments. Throughout the shape optimization of the pump impeller at the operating flow condition, the pump efficiency is successfully increased by 3 percent compared to the reference pump. It is noted that the pressure increase of the optimum pump is mainly caused by higher momentum force generated inside blade passage due to the optimal blade shape. Comparisons of pump internal flow on the reference and optimum pump are also investigated and discussed in detail.

  20. Proposal of Unique Process Pump with Floating Type Centrifugal Impeller (Preliminarily Report : Axial Thrust of Impeller with Driving Shaft)

    NASA Astrophysics Data System (ADS)

    Kawashima, Ryunosuke; Kanemoto, Toshiaki; Sakamoto, Kengo; Uno, Mitsuo

    2010-06-01

    The authors have proposed the unique centrifugal pump, in which the impeller dose not have the driving shaft but is driven by the magnetic induction, namely Lorentz force, without the stay. Then, the rotating posture of the impeller is not stable, just like UFO. To make the rotating posture of the impeller stable irrespective of the operating condition, the pressure in the impeller casing was investigated experimentally while the impeller rotates at the steady state, as the preliminarily stage. The pressure, as well known, fluctuates periodically in response to the blade number. Besides, the pressure on the impeller shrouds decreases with the increase of the gap between the front shroud and the suction cover where the water leaks to the suction pipe, and is distorted in the peripheral direction. Such pressure conditions contribute directly to the hydraulic force acting on the impeller. The unstable behaviors of the impeller are induced from the above hydraulic forces, which change unsteadily in the radial and the peripheral directions in the impeller casing. The forces are affected by not only the operating condition but also the rotating posture of the impeller.

  1. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Woodard, John C

    2004-03-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump is of the centrifugal type and consists of a shaftless impeller, also acting as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, resulting from the small clearances between the impeller outside surfaces and the pump cavity. In the older version of the pump tested, these small clearances range from approximately 50 microm to 230 microm; the displacement of the impeller relative to the pump cavity is unknown in use. This article presents two experiments: the first measured displacement of the impeller using eddy-current proximity sensors and laser proximity sensors. The second experiment used Hall-effect proximity sensors to measure the displacement of the impeller relative to the pump cavity. All transducers were calibrated prior to commencement of the experiments. Voltage output from the transducers was converted into impeller movement in five degrees of freedom (x, y, z, theta(x), and theta(y)). The sixth degree of freedom, the rotation about the impeller axis (theta(z)), was determined by the commutation performed by the motor controller. The impeller displacement was found to be within the acceptable range of 8 micro m to 222 microm, avoiding blood damage and contact between the impeller and cavity walls. Thus the impeller was hydrodynamically suspended within the pump cavity and results were typical of centrifugal pump behavior. This research will be the basis for further investigation into the stiffness and damping coefficient of the pump's hydrodynamic bearing.

  2. Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Yang, Zhengjun; Wang, Fujun; Zhou, Peijian

    2012-09-01

    The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.

  3. Hydrodynamic Analysis of the Flow in an Axial Rotor and Impeller for Large Storage Pump

    NASA Astrophysics Data System (ADS)

    Bosioc, A. I.; Muntean, S.; Draghici, I.; Anton, L. E.

    2016-11-01

    In hydropower systems among hydropower plants there are integrated pumping stations (PS). In order to ensure higher flow rate, the pumps have constructive differences besides regular. Consequently, the complex shape of the suction-elbow with symmetric inlet generates an unsteady flow which is ingested by impeller. These phenomena's also generate stronger unsteady flow conditions, such as stall, wakes, turbulence and pressure fluctuations, which affect the overall mechanical behaviour of the pump with vibration, noise and radial and axial forces on the rotor. Alternatively, an axial rotor can be installed in front of the impeller. In this case, the flow non-uniformity will be decreased and the static pressure will be increased at the impeller inlet. Consequently, the efficiency behaviour practically remains unchanged while the cavitational behaviour is improved. From the assembly between axial rotor and centrifugal impeller, the axial rotor usually works in cavitation and is often replaced. The paper investigates experimentally and numerically the comparison between pump impeller without and with axial rotor hydrodynamics taking into account the flow given by the symmetrical suction elbow. Full three-dimensional turbulent numerical investigation of the symmetrical suction elbow, with axial rotor and without, pump impeller and volute are performed. The hydrodynamic analysis confirms that once the axial rotor is mounted in front of the pump impeller increase the static pressure and the incidence angle is improved at the inlet of the pump impeller.

  4. Experimental Study of Unshrouded Impeller Pump Stage Sensitivity to Tip Clearance

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.; Zoladz, Thomas; Storey, Anne K.; Skelley, Stephen E.

    2002-01-01

    This viewgraph presentation provides information on an experiment. Its objective is to experimentally determine unshrouded impeller performance sensitivity to tip clearance. The experiment included: Determining impeller efficiency at scaled operating conditions in water at MSFC's Pump Test Equipment (PTE) Facility; Testing unshrouded impeller at three different tip clearances; Testing each tip clearance configuration at on- and off-design conditions, and collecting unsteady- and steady-state data in each configuration; Determining impeller efficiency directly using drive line torquemeter and pump inlet and exit total pressure measurements.

  5. Numerical Study of a Fuel Centrifugal Pump with Variable Impeller Width for Aero-engines

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Guan, Huasheng; Ye, Zhifeng

    2015-12-01

    As typical pump with large flow rate and high reliability, centrifugal pumps in fuel system of aero-engines mostly regulate flow rate by flow bypass, which leads to low efficiency and large fuel temperature rise especially at low flow rate. An innovative fuel centrifugal pump with variable impeller width is a more effective way to regulate flow rate than flow bypass. To find external characteristics of the centrifugal pump with variable impeller width proposed in this paper, flow domain within the pump is simulated numerically and some primary performance parameters and their correlation are analyzed. Results show that flow rate of the pump can be regulated by variable impeller width and that efficiency for this scheme is higher than that for flow bypass. The higher outlet static pressure the pump runs at, the wider range of flow rates can be obtained with stronger nonlinear relationship between flow rate and impeller width.

  6. A Navier-Stokes solution of the three-dimensional viscous compressible flow in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.

    1977-01-01

    A two-dimensional time-dependent computer code was utilized to calculate the three-dimensional steady flow within the impeller blading. The numerical method is an explicit time marching scheme in two spatial dimensions. Initially, an inviscid solution is generated on the hub blade-to-blade surface by the method of Katsanis and McNally (1973). Starting with the known inviscid solution, the viscous effects are calculated through iteration. The approach makes it possible to take into account principal impeller fluid-mechanical effects. It is pointed out that the second iterate provides a complete solution to the three-dimensional, compressible, Navier-Stokes equations for flow in a centrifugal impeller. The problems investigated are related to the study of a radial impeller and a backswept impeller.

  7. Static and Dynamics of a Pump Impeller with a Balancing Device Part II: Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Martsinkovsky, V. A.; Zhulyov, A.; Kundera, C.

    2014-08-01

    This paper presents the theoretical study of the system comprising an impeller and a balancing device. It deals with the dynamic analysis of the system, i.e., the axial vibrations of the impeller, and the system stability. The dynamic analysis took into account linearized hydrodynamic forces and moments generated in the longitudinal clearances of the seals of the impeller. The theoretical analysis was supplemented with a numerical example with characteristics determined for a real single-stage centrifugal pump

  8. A novel permanent maglev impeller TAH: most requirements on blood pumps have been satisfied.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2003-07-01

    Based on the development of an impeller total artificial heart (TAH) (1987) and a permanent maglev (magnetic levitation) impeller pump (2002), as well as a patented magnetic bearing and magnetic spring (1996), a novel permanent maglev impeller TAH has been developed. The device consists of a rotor and a stator. The rotor is driven radially. Two impellers with different dimensions are fixed at both the ends of the rotor. The levitation of the rotor is achieved by using two permanent magnetic bearings, which have double function: radial bearing and axial spring. As the rotor rotates at a periodic changing speed, two pumps deliver the pulsatile flow synchronously. The volume balance between the two pumps is realized due to self-modulation property of the impeller pumps, without need for detection and control. Because the hemo-dynamic force acting on the left impeller is larger than that on the right impeller, and this force during systole is larger than that during diastole, the rotor reciprocates axially once a cycle. This is beneficial to prevent the thrombosis in the pump. Furthermore, a small flow via the gap between stator and rotor from left pump into right pump comes to a full washout in the motor and the pumps. Therefore, it seems neither mechanical wear nor thrombosis could occur. The previously developed prototype impeller TAH had demonstrated that it could operate in animal experiments indefinitely, if the bearing would not fail to work. Expectantly, this novel permanent magnetic levitation impeller TAH with simplicity, implantability, pulsatility, compatibility and durability has satisfied the most requirements on blood pumps and will have more extensive applications in experiments and clinics.

  9. Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1985-01-01

    Measurements of the steady-state hydrodynamic forces on a centrifugal pump impeller are presented as a function of position within two geometrically different volutes. These correspond to the forces experienced by the impeller at zero whirl frequency. The hydrodynamic force matrices derived from these measurements exhibit both diagonal and off-diagonal terms of substantial magnitude. These terms are of the form which would tend to excite a whirl motion in a rotordynamic analysis of the pump; this may be the cause of 'rough running' reported in many pumps. Static pressure measurements in the impeller discharge flow show that the hydrodynamic force on the impeller contains a substantial component due to the nonisotropy of the net momentum flux leaving the impeller. A similar breakdown of the contributions to the stiffness matrices reveals that the major component of these matrices results from the nonisotropy of the momentum flux.

  10. Unsteady diffuser vane pressure and impeller wake measurements in a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1987-01-01

    Unsteady surface pressure measurements on a vaned diffuser of a centrifugal pump, and wake measurements of the flow exiting a centrifugal impeller into a vaneless diffuser are presented. Frequency spectra and ensemble averages are given for the unsteady measurements. Two different impellers were used, the pump impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine) and a two-dimensional impeller. The magnitude of the unsteady total pressure measured in the stationary frame at the impeller exit was found to be of the same order of magnitude as the total pressure rise across the pump. The magnitude of the unsteady diffuser vane pressures was observed to be significantly different on suction and pressure side of the vane, attaining its largest value on the suction side the leading edge while decreasing along the vane.

  11. Numerical study of a centrifugal blood pump with different impeller profiles.

    PubMed

    Song, Guoliang; Chua, Leok Poh; Lim, Tau Meng

    2010-01-01

    Computational fluid dynamic simulations of the Kyoto-NTN magnetically suspended centrifugal blood pump with 16 forward-bending blades (16FB), 16 straight blades (16SB), and eight backward-bending blades (8BB) impellers were performed in this study. Commercial CFD software package FLUENT were used as the solver. The purpose of this study is to find out how the impeller blade profiles affect the inner flow and the performance of the centrifugal blood pump. The simulations were carried out with the same impeller rotating speed of 2,000 rpm and pump flow rate of 5 L/min to compare the three pump models. It was found that the 16SB impeller can produce higher pressure head than the 16FB and 8BB impellers under the same impeller rotating speed and pump flow rate. The flow particle tracing was carried out to estimate the blood damage level caused by the three different impeller profiles. It was found that the 16FB and 8BB models have caused the highest and lowest blood damage, respectively. The 16SB is recommended among the three pumps because it can generate the highest pressure head and induce mild blood damage index, although it was higher than that of the 8BB model.

  12. Influence of hydrophibization of impellers of centrifugal pumps on their operating characteristics

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Parygin, A. G.; Naumov, A. V.; Vikhlyantsev, A. A.; Šoukal, J.; Sedlář, M.; Komárek, M.

    2016-12-01

    This work presents experimental estimation results of changing of basic operation characteristics of a group of centrifugal pumps covering a range of values of dimensionless power-speed coefficient n s from 33 to 330 after hydrophobization of their impellers' surfaces. Hydrophobization of functional surfaces of impellers in all experiments was performed by formation of structures of organic covers by technology of MPEI NRU, which provides increasing of limiting wetting angle of surfaces to 120° and greater. Results of experimental researches of the influence of hydrophobization of impeller surfaces for high-speed pump ( n s = 330) on its characteristics is presented for the first time. Positive effect of applying hydrophobization technology to impeller surfaces in all the considered range of power-speed coefficient was generalized and estimated. It was shown that hydrophobization of impeller surfaces of centrifugal pumps provides increment to their efficiency factors within an acceptable operation range from 0.5 to 7.5%. Empiric function defining dependencies of efficiency factor increment of pump on relative supply and power-speed coefficient are suggested. Possibilities and estimation of extending acceptable operation range of a pump depending on powerspeed coefficient as a result of impeller surface hydrophobization are shown. Experimental data of comparative cavitation tests of high-speed pumps before and after hydrophobization of their impeller surfaces are generalized for the first time for considered range of power-speed coefficient values. The influence of power-speed coefficient on changing of critical net pump suction head (critical positive suction pressure) is shown. Based on existing knowledge on pumps, an attempt to validate experimentally obtained lows of changing of power and anticavitation features of centrifugal pumps after hydrophobization of their impeller surfaces is made.

  13. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Babayigit, Osman; Kocaaslan, Osman; Hilmi Aksoy, Muharrem; Melih Guleren, Kursad; Ozgoren, Muammer

    2015-05-01

    Nowadays, single and multistage centrifugal pumps are widely used in industrial and mining enterprises. One of the most important components of a centrifugal pump is the impeller. The performance characteristics are related to the pump comprising the head and the overall efficiency rely a great deal on the impeller geometry. In this work, effects of blade exit angle change on hydraulic efficiency of a multi stage pump impeller are investigated via Ansys-Fluent computational fluid dynamics software for constant width impeller entrance and exit gates, blade numbers and blade thickness. Firstly, the flow volume of a centrifugal pump impeller is generated and then mesh structure is formed for the full impeller flow volume. Secondly, rotational periodic flow model are adopted in order to examine the effect of periodic flow assumption on the performance predictions. Corresponding to the available experimental data, inlet mass flow rate, outlet static pressure and rotation of impeller are taken as 0.02m3s-1, 450 kPa and 2950 rpm, respectively for the water fluid. No slip boundary condition is exposed to all solid of surface in the flow volume. The continuity and Navier-Stokes equations with the k-ɛ turbulence model and the standard wall functions are used. During the study, numerical analyses are conducted for the blade exit angle values of 18°, 20°, 25°, 30° and 35°. In consequence of the performed analyses, it is determined that hydraulic efficiency of the pump impeller value is changed between 81.0-84.6%. The most convenient blade exit angle that yields 84.6% hydraulic efficiency at is 18°. The obtained results show that the blade exit angle range has an impact on the centrifugal pump performance describing the pump head and the hydraulic efficiency.

  14. Analysis of silt abrasion of the impeller ring in a centrifugal pump with J-grooves

    NASA Astrophysics Data System (ADS)

    Qian, Z. D.; Wang, Z. Y.; Guo, Z. W.; Dong, J.; Lu, J.

    2016-05-01

    The water flow and movement of silt in a prototype double-suction centrifugal pump was simulated using an Euler-Lagrange multiphase flow model. J-Grooves were adopted to protect the impeller ring from silt abrasion. The influence of J-grooves on the silt concentration and pump efficiency was analyzed. The results show that the radial component of the relative velocity around the impeller ring is too low to move the silt out of the spacing between the impeller plate and the casing. The high silt concentration around the impeller ring is the major contributor to silt abrasion of the impeller ring. The J-grooves induce two strong vortices, which increase the radial component of the relative velocity of water and reduce the silt concentration around the impeller ring, but additional friction losses are introduced and the pump efficiency is decreased. Optimization of the number and shape of J-grooves decreases losses in the efficiency of the pump, and effectively protects the impeller ring. Case 4 was found the most effective configuration in this study.

  15. Centrifugal blood pump with a hydraulically-levitated impeller for a permanently implantable biventricular assist device.

    PubMed

    Watanabe, Kuniyoshi; Ichikawa, Seiji; Asai, Toshimasa; Motomura, Tadashi; Hata, Atsushi; Ito, Seiichi; Shinohara, Toshiyuki; Tsujimura, Shinichi; Glueck, Julia A; Oestmann, Daniel J; Nosé, Yukihiko

    2004-06-01

    A permanently implantable biventricular assist device (BVAD) system has been developed with a centrifugal pump which is activated by a hydraulically-levitated impeller. The pump impeller floats hydraulically into the top contact position; this position prevents thrombus formation by creating a washout effect at the bottom bearing area, a common stagnant region. The pump was subjected to in vitro studies using a pulsatile mock circulation loop to confirm the impeller's top contact position and the swinging motion produced by the pulsation. Eleven in vivo BVAD studies confirmed that this swinging motion eliminated blood clot formation. Twenty-one pumps im-planted for up to three months did not reveal any thrombosis in the pumps or downstream organs. One exception was a right pump which was exposed to severe low flow due to the kinking of the outflow graft by the accidental pulling of the flow meter cable. Three ninety-day BVAD studies were achieved without thrombus formation.

  16. Study on the effect of the impeller and diffuser blade number on reactor coolant pump performances

    NASA Astrophysics Data System (ADS)

    Long, Y.; Yin, J. L.; Wang, D. Z.; Li, T. B.

    2016-05-01

    In this paper, CFD approach was employed to study how the blade number of impeller and diffuser influences reactor coolant pump performances. The three-dimensional pump internal flow channel was modelled by pro/E software, Reynolds-averaged Naiver-Stokes equations with the k-ε turbulence model were solved by the computational fluid dynamics software CFX. By post-processing on the numerical results, the performance curves of reactor coolant pump were obtained. The results are as follows, with the blade number of the impeller increasing, the head of the pump with different diffuser universally increases in the 8Q n∼1.2Q n conditions, and at different blade number of the diffuser, the head increases with the blade number of the impeller increasing. In 1.0Q n condition, when the blades number combination of impeller and diffuser chooses 4+16, 7+14 and 6+18, the head curves exist singular points. In 1.2Q n condition, the head curve still exists singular point in 6+18. With the blade number of the impeller increasing, the efficiency of the pump with different diffuser universally decreases in the 0.8Q n and 1.0Q n conditions, but in 1.2Q n condition, the efficiency of the pump with different diffuser universally increases. In 1.0Q n condition, the impellers of 4 and 5 blades are better. When the blade number combination of impeller and diffuser choose 4+11, 4+17, 4+18, 5+12, 5+17 and 5+18, the efficiencies relatively have higher values. With the blade number of the impeller increasing, the hydraulic shaft power of the pump with different diffuser universally increases in the 0.8Q n∼1.2Q n conditions, and with the blade number of the diffuser increasing, the power of different impeller overall has small fluctuation, but tends to be uniform. This means the increase of the diffuser blade number has less influence on shaft power.The influence on the head and flow by the matching relationship of the blades number between impeller and diffuser is very complicated, which

  17. Dynamic characteristics of a magnetically levitated impeller in a centrifugal blood pump.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2007-04-01

    Centrifugal blood pumps that employ hybrid active/passive magnetic bearings to support noncontact impellers have been developed in order to reduce bearing wear, pump size, the power consumption of the active magnetic bearing, and blood trauma. However, estimates made at the design stage of the vibration of the impeller in the direction of passive suspension during pump operation were inaccurate, because the influence of both the pumping fluid and the rotation of the impeller on the dynamic characteristics was not fully recognized. The purpose of this study is to investigate the dynamic characteristics in a fluid of a magnetically levitated rotating impeller by measuring both the frequency response to sinusoidal excitation of the housing over a wide frequency range and the displacement due to input of a pulsatile flow during left ventricular (LV) assist. The excitation tests were conducted under conditions in which the impeller was levitated in either air or water, and with or without rotation. The experimental and analytical results indicate that vibration of the impeller due to the external force in water was decreased, compared with that in air due to the hydraulic force of water. The axial resonant frequency rose quadratically with rotational speed, and the tilt mode had two resonant frequencies while rotating due to the gyroscopic effect. With the pump inserted into a mock systemic circulatory loop, the dynamic stability of the impeller when pulsatile pressure was applied during LV assist was verified experimentally. The amplitudes of vibration in response to the pulsatile flow in the passively constrained directions were considerably smaller in size than the dimensions of initial gaps between the impeller and the pump housing.

  18. Analysis of the dynamic response of pump-turbine impellers. Influence of the rotor

    NASA Astrophysics Data System (ADS)

    Egusquiza, Eduard; Valero, Carme; Presas, Alex; Huang, Xingxing; Guardo, Alfredo; Seidel, Ulrich

    2016-02-01

    This paper deals with the dynamic response of pump-turbine impellers. A pump-turbine impeller is a complex structure attached to a rotor and rotating inside a casing full of water with very small clearances between the rotating and the stationary parts. The dynamic response of this type of structures is very complex and it is very much affected by the connection to the rotor as well as by the added mass and boundary conditions. As a consequence its calculation presents several uncertainties. First, the dynamic response of pump-turbine impellers is introduced. Second an experimental investigation in a real impeller attached to the rotor and inside the machine was carried out. For this investigation, the impeller of an existing pump-turbine unit with an installed power of 110 MW and a diameter of 2.87 m was studied. For a better analysis of the experimental results a numerical model using FEM was also built-up. Frequencies and mode-shapes were identified numerically and experimentally and the characteristics of the structural response analyzed. To determine the influence of the rotor and supporting structures on the impeller response the results were compared with the ones obtained with the same impeller but suspended (non-connected to the rotor). Experimental and numerical simulation were also used for this case. The changes in the dynamic response due to the rotor connection were determined. Finally the results obtained are compared with the results from other pump-turbine impellers of different designs and general conclusions about the dynamics of this type of structures are given.

  19. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method. Part 1: Design and numerical validation

    SciTech Connect

    Zangeneh, M.; Goto, A.; Takemura, T.

    1996-07-01

    This paper describes the design of the blade geometry of a medium specific speed mixed flow pump impeller by using a three-dimensional inverse design method in which the blade circulation (or rV{sub {theta}}) is specified. The design objective is the reduction of impeller exit flow nonuniformity by reducing the secondary flows on the blade suction surface. The paper describes in detail the aerodynamic criteria used for the suppression of secondary flows with reference to the loading distribution and blade stacking condition used in the design. The flow through the designed impeller is computed by Dawes` viscous code, which indicates that the secondary flows are well suppressed on the suction surface. Comparison between the predicted exit flow field of the inverse designed impeller and a corresponding conventional impeller indicates that the suppression of secondary flows has resulted in substantial improvement in the exit flow field. Experimental comparison of the flow fields inside and at exit from the conventional and the inverse designed impeller is made in Part 2 of the paper.

  20. Analysis of Forced Spatial Vibrations of a Centrifugal Pump Impeller with Axial Forces Balancing Device

    NASA Astrophysics Data System (ADS)

    Zhulyov, A.; Martsinkovsky, V.; Kundera, C.

    2016-08-01

    In this paper, a model of a pump impeller with annular seals and a balancing device, used as a combined support-seal assembly, is considered. The forced coupled radial, angular and axial vibrations of the rotor are determined with consideration of linearized inertial, damping, gyroscopic, positional and circulating forces and moments acting on the impeller from the side of the fluid flow in annular seals. The theoretical analysis is supplemented with a numerical example, the amplitude frequency characteristics are shown.

  1. Cavitation optimization for a centrifugal pump impeller by using orthogonal design of experiment

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Yin, Tingyun; Yuan, Shouqi; Wang, Wenjie; Wang, Jiabin

    2017-01-01

    Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D 1, inlet incidence angle Δ β, and blade wrap angle φ are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3*3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D 1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.

  2. Force and moment rotordynamic coefficients for pump-impeller shroud surfaces

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1987-01-01

    Governing equations of motion are derived for a bulk-flow model of the leakage path between an impeller shroud and a pump housing. The governing equations consist of a path-momentum, a circumferential - momentum, and a continuity equation. The fluid annulus between the impeller shroud and pump housing is assumed to be circumferentially symmetric when the impeller is centered; i.e., the clearance can vary along the pump axis but does not vary in the circumferential direction. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leaking rate and the circumferential and path velocity distributions and pressure distributions for a centered impeller position. The first-order equations define the perturbations in the velocity and pressure distributions due to either a radial-displacement perturbation or a tilt perturbation of the impeller. Integration of the perturbed pressure and shear-stress distribution acting on the rotor yields the reaction forces and moments acting on the impeller face.

  3. Internal hydraulic analysis of impeller rounding in centrifugal pumps as turbines

    SciTech Connect

    Singh, Punit; Nestmann, Franz

    2011-01-15

    The use of pumps as turbines in different applications has been gaining importance in the recent years, but the subject of hydraulic optimization still remains an open research problem. One of these optimization techniques that include rounding of the sharp edges at the impeller periphery (or turbine inlet) has shown tendencies of performance enhancement. In order to understand the effect of this hydraulic optimization, the paper introduces an analytical model in the pump as turbine control volume and brings out the functionalities of the internal variables classified under control variables consisting of the system loss coefficient and exit relative flow direction and under dependent variables consisting of net tangential flow velocity, net head and efficiency. The paper studies the effects of impeller rounding on a combination of radial flow and mixed flow pumps as turbines using experimental data. The impeller rounding is seen to have positive impact on the overall efficiency in different operating regions with an improvement in the range of 1-3%. The behaviour of the two control variables have been elaborately studied in which it is found that the system loss coefficient has reduced drastically due to rounding effects, while the extent of changes to the exit relative flow direction seems to be limited in comparison. The reasons for changes to these control variables have been physically interpreted and attributed to the behaviour of the wake zone at the turbine inlet and circulation within the impeller control volume. The larger picture of impeller rounding has been discussed in comparison with performance prediction models in pumps as turbines. The possible limitations of the analytical model as well as the test setup are also presented. The paper concludes that the impeller rounding technique is very important for performance optimization and recommends its application on all pump as turbine projects. It also recommends the standardization of the rounding

  4. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    PubMed

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089.

  5. Performance simulation of a radial flow type impeller of centrifugal pumps using CFD

    NASA Astrophysics Data System (ADS)

    López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Chávez, S.; García., M.

    2017-01-01

    The numerical simulation of a centrifugal impeller that had previously been designed and manufactured is presented in this paper. The following operating conditions were determined: 0.50 m3/min volumetric flow at a load of 25 m, velocity of rotation of 1750 rpm, and specific velocity of 0. 27. The ANSYS CFX 14.5 software with the k-ε turbulence model was used for simulation with appropriate boundary conditions. The distributions of velocities in the flow field in addition to the distribution of pressures on the entire impeller were obtained. The simulation showed no negative values for the pressure at the entrance of the impeller. The curve of hydrodynamic behaviour of the impeller, which contains the point of operation in which the pump will work was also developed.

  6. Experimental research on internal flow in impeller of a low specific speed centrifugal pump by PIV

    NASA Astrophysics Data System (ADS)

    Zhang, J. F.; Wang, Y. F.; Yuan, S. Q.

    2016-05-01

    For the purpose of investigating the influence of two different impellers, one is with splitter blades and the other one is without splitter blades, on a low-specific centrifugal pump. The experimental investigation in impellers was conducted at different conditions and phases by means of PIV (Particle Image Velocimetry) to study the internal flow. Meanwhile, the absolute and relative velocity distributions in impellers were obtained. Experimental results show that the head value is higher in the impeller with splitter blades and both two head curves appear hump phenomena at small flow rate. The absolute velocity value increases with radius and from pressure side to suction side at the same radius gradually. The splitter blades can scour the wake, making outlet velocity distribution more uniform and improving the internal flow. The velocity distribution becomes less even in the process of closing to tongue due to reinforced interference of tongue on internal flow.

  7. Fracture control of H-O engine components. [titanium tin alloy fuel pump impellers

    NASA Technical Reports Server (NTRS)

    Ryder, J. T.

    1977-01-01

    An investigation was made to obtain the material characterization and fatigue crack propagation data necessary to establish the salient characteristics of a Ti-6Al-2.5Sn(ELI) alloy fuel pump impeller to be used in a cryogenic service environment. Testing variables considered were: coupon orientation, frequency, load range ratio, and temperature. Data analysis correlated crack propagation data from conventional laboratory coupons with data from a parallel sided rotating disk used to model rotor stresses. Four major design recommendations when bore regions of fuel pump impellers to be operated in cryogenic environments are to be relatively highly stressed are discussed.

  8. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.

    PubMed

    Song, Guoliang; Chua, Leok Poh; Lim, Tau Meng

    2010-02-01

    Computational fluid dynamic simulations of the flow in the Kyoto-NTN (Kyoto University, Kyoto, Japan) magnetically suspended centrifugal blood pump with a 16-straight-bladed impeller were performed in the present study. The flow in the pump was assumed as unsteady and turbulent, and blood was treated as a Newtonian fluid. At the impeller rotating speed of 2000 rpm and flow rate of 5 L/min, the pump produces a pressure head of 113.5 mm Hg according to the simulation. It was found that the double volute of the pump has caused symmetrical pressure distribution in the volute passages and subsequently caused symmetrical flow patterns in the blade channels. Due to the tangentially increasing pressure in the volute passages, the flow through the blade channels initially increases at the low-pressure region and then decreases due to the increased pressure. The reverse flow and vortices have been identified in the impeller blade channels. The high shear stress of the flow in the pump mainly occurred at the inlet and outlet of the blade channels, the beginning of the volute passages and the regions around the tips of the cutwater and splitter plate. Higher shear stress is obtained when the tips of the cutwater and splitter plate are located at the impeller blade trailing edges than when they are located at the middle of the impeller blade channel. It was found that the blood damage index assessed based on the blood corpuscle path tracing of the present pump was about 0.94%, which has the same order of magnitude as those of the clinical centrifugal pumps reported in the literature.

  9. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2002-01-01

    Magnetic bearings have no mechanical contact between the rotor and stator, and a rotary pump with magnetic bearings therefore has no mechanical wear and thrombosis. The magnetic bearings available, however, contain electromagnets, are complicated to control and have high energy consumption. Therefore, it is difficult to apply an electromagnetic bearing to a rotary pump without disturbing its simplicity, reliability and ability to be implanted. The authors have developed a levitated impeller pump using only permanent magnets. The rotor is supported by permanent radial magnetic forces. The impeller is fixed on one side of the rotor; on the other side the rotor magnets are mounted. Opposite these rotor magents, a driving magnet is fastened to the motor axis. Thereafter, the motor drives the rotor via magnetic coupling. In laboratory tests with saline, where the rotor is still or rotates at under 4,000 rpm, the rotor magnets have one point in contact axially with a spacer between the rotor magnets and the driving magnets. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4000 rpm, the rotor will disaffiliate from the stator axially, and become fully levitated. Since the axial levitation is produced by hydraulic force and the rotor magnets have a giro-effect, the rotor rotates very stably during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, and the levitation of the impeller is assured by use of the pump. The permanent maglev impeller pump retains the advantages of the rotary pump but overcomes the disadvantages of the leviated pump with electromagnetic-bearing, and has met with most requirements of artificial heart blood pumps, thus promising to have more applications than previously.

  10. Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Wang, Wenjie; Yuan, Shouqi; Zhang, Jinfeng

    2016-09-01

    In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0 Q d and 1.4 Q d is proposed. Three parameters, namely, the blade outlet width b 2, blade outlet angle β 2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0 Q d and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations.

  11. A compact highly efficient and low hemolytic centrifugal blood pump with a magnetically levitated impeller.

    PubMed

    Asama, Junichi; Shinshi, Tadahiko; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2006-03-01

    A magnetically levitated (maglev) centrifugal blood pump (CBP), intended for use as a ventricular assist device, needs to be highly durable and reliable for long-term use without any mechanical failure. Furthermore, maglev CBPs should be small enough to be implanted into patients of various size and weight. We have developed a compact maglev CBP employing a two-degree-of-freedom controlled magnetic bearing, with a magnetically suspended impeller directly driven by an internal brushless direct current (DC) motor. The magnetic bearing actively controls the radial motion of the impeller and passively supports axial and angular motions using a permanent magnet embedded in the impeller. The overall dimensions of the maglev CBP are 65 mm in diameter and 40 mm in height. The total power consumption and pump efficiency for pumping 6 L/min against a head pressure of 105 mm Hg were 6.5 W and 21%, respectively. To evaluate the characteristics of the maglev CBP when subjected to a disturbance, excitation of the base, simulating the movement of the patient in various directions, and the sudden interception of the outlet tube connected with the pump in a mock circulatory loop, simulating an unexpected kink and emergent clamp during a heart surgery, were tested by monitoring the five-degree-of-freedom motion of the impeller. Furthermore, the hemolytic characteristics of the maglev CBP were compared with those of the Medtronic Biomedicus BPX-80, which demonstrated the superiority of the maglev CBP.

  12. Numerical investigation of the effects of the clearance gap between the inducer and impeller of an axial blood pump.

    PubMed

    Chan, Weng-Kong; Wong, Yew-Wah; Ong, Wendy; Koh, Sy-Yuan; Chong, Victor

    2005-03-01

    A series of numerical models are generated to investigate the flow characteristics and performance of an axial blood pump. The pump model includes a straightener, an inducer-impeller, and diffuser. Numerical studies of the effects of angular alignment of the inducer and impeller blades and the axial clearance gap between the inducer and impeller are presented in this article. The pump characteristics derived from numerical simulation are validated with experimental data. Numerically simulated results showed a sinusoidal variation in the pressure generated across the pump with changes in angular alignment between the inducer and impeller. This is attributed to additional losses when flow is forced or diverted from the trailing edge of the inducer to either the pressure or suction side of the impeller blade when the alignment between the two sets of blades is not optimal. The pressure generated is a maximum when the impeller blades are at 0 or 30 degrees with respect to the inducer. The effect of rotating the impeller with respect to the inducer causes the sinusoidal pressure variation. In addition, it was observed that when the clearance gap between the inducer and impeller is reduced to 1 mm, the pressure generated is a minimum when compared to the other models. This is attributed to the interference between the inducer and impeller when the gap separating them is too small. The location of the maximum pressure on the pressure side of the impeller blade shifts upstream while its magnitude decreases for small clearance gap between the inducer and the impeller. There was no flow separation in the inducer while small regions of backflow are observed at the impeller trailing edge. Recommendations for future modifications and improvements to the pump design and model simulation are also given.

  13. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.

    PubMed

    Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira

    2010-08-01

    To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of

  14. Numerical performance evaluation of design modifications on a centrifugal pump impeller running in reverse mode

    NASA Astrophysics Data System (ADS)

    Kassanos, Ioannis; Chrysovergis, Marios; Anagnostopoulos, John; Papantonis, Dimitris; Charalampopoulos, George

    2016-06-01

    In this paper the effect of impeller design variations on the performance of a centrifugal pump running as turbine is presented. Numerical simulations were performed after introducing various modifications in the design for various operating conditions. Specifically, the effects of the inlet edge shape, the meridional channel width, the number of blades and the addition of splitter blades on impeller performance was investigated. The results showed that, an increase in efficiency can be achieved by increasing the number of blades and by introducing splitter blades.

  15. Improvement of hemolysis in a centrifugal blood pump with hydrodynamic bearings and semi-open impeller.

    PubMed

    Kosaka, Ryo; Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku

    2007-01-01

    We have developed a centrifugal blood pump with hydrodynamic bearings and semi-open impeller, and evaluated the levitation performance test and the hemolysis test. This pump is operated without any complicated control circuit and displacement-sensing module. The casing diameter is 74 mm and the height is 38 mm including flanges for volts. The weight is 251 g and the volume is 159 cm3. By changing the stator relative position against the rotor, the levitation characteristics of the impeller can be adjusted. The diameter of impeller is 36 mm and the height is 25 mm. The impeller is levitated by the thrust bearing of spiral groove type and a radial bearing of herringbone type. The pump performance was evaluated through the levitation performance test and the hemolysis test. As a result, the normalized index of hemolysis (NIH) was reduced from 0.72 g/100 L to 0.024 g/100 L corresponding to the changes of the groove direction of the hydrodynamic bearing and the expansion of the bearing gap. During these studies, we confirmed that the hemolytic property was improved by balancing the fluid dynamic force and the magnetic force.

  16. Experimental study of unsteady hydrodynamic force matrices on whirling centrifugal pump impellers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Belgacem, Jery

    1986-01-01

    An experimental facility was constructed and instrumented. A set of centrifugal flow pumps whose impellers were made to follow a controlled circular whirl motion were studied. The aim was to characterize the steady and unsteady fluid forces measured on the impeller under various pump operating conditions. The postulation was that the unsteady lateral forces result from interactions between the impeller and the surrounding diffuser and/or volute (via the working fluid), and that under certain flow regimes these forces can drive unstable lateral motions of the pump rotor. The lateral hydrodynamic forces were decomposed into their steady and unsteady parts, the latter being further expressed in terms of a generalized fluid stiffness matrix. Conclusions regarding the effect of impeller geometry could not be reached given the similarity of the tested designs. However, other results on phenomena such as skin friction and leakage flow are presented. Some of the findings are compared to experimental and theoretical data from other sources. Finally, the rotordynamic consequences of the results are discussed as the present data were applied to the case of the Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP).

  17. An ultradurable and compact rotary blood pump with a magnetically suspended impeller in the radial direction.

    PubMed

    Masuzawa, T; Kita, T; Okada, Y

    2001-05-01

    A magnetically suspended centrifugal blood pump has been developed with a self-bearing motor for long-term ventricular assist systems. The rotor of the self-bearing motor is not only actively suspended in the radial direction, but also is rotated by an electromagnetic field. The pump has a long lifetime because there are no mechanical parts such as seals and motor bearings. An outer rotor mechanism was adopted for the self-bearing motor. The stator was constructed in the central space of the motor. The rotor shaped thin ring was set at the circumferential space of the stator. Six vanes were extended from the upper surface of the rotor toward the center of the pump to construct an open-type impeller. The outer diameter and the height of the impeller are 63 mm and 34 mm, respectively. The magnetic bearing method and the servomotor mechanism were adopted to levitate and rotate the rotor. Radial movements of the rotor and rotation are controlled actively by using electromagnets in the stator. Axial movement and tilt of the rotor are restricted by passive stability to simplify the control. The radial gap between the rotor and the stator is 1 mm. A closed-loop circuit filled with water was used to examine basic performance of the pump. Maximum flow rate and pressure head were 8 L/min and 200 mm Hg, respectively. Maximum amplitude of radial displacement of the impeller was 0.15 mm. The impeller could be suspended completely without touching the casing wall during the entire pumping process. Power consumption of the pump was only 9.5 W to produce a flow rate of 5 L/min against a pressure head of 100 mm Hg. We conclude that the pump has sufficient performance for the implantable ventricular assist system.

  18. Effects of volute geometry and impeller orbit on the hydraulic performance of a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Flack, R. D.; Lanes, R. F.

    1983-01-01

    Overall performance data was taken for a Plexiglas water pump with a logarithmic spiral volute and rectangular cross sectioned flow channels. Parametric studies were made in which the center of the impeller was offset from the design center of the volute. The rig was also designed such that the impeller was allowed to synchronously orbit by a fixed amount about any center. The studies indicate that decreasing the tongue clearance decreases the head at low flowrates and increases the head at high flowrates. Also, decreasing the volute area in the first half of the volute and holding the tongue clearance the same, resulted in a decreased head for low flowrates but performance at high flowrates was not affected. Finally, the overall hydraulic performance was not affected by the impeller orbitting about the volute center.

  19. Hydrodynamic impeller stiffness, damping, and inertia in the rotordynamics of centrifugal flow pumps

    NASA Technical Reports Server (NTRS)

    Jery, S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1984-01-01

    The lateral hydrodynamic forces experienced by a centrifugal pump impeller performing circular whirl motions within several volute geometries were measured. The lateral forces were decomposed into: (1) time averaged lateral forces and (2) hydrodynamic force matrices representing the variation of the lateral forces with position of the impeller center. It is found that these force matrices essentially consist of equal diagonal terms and skew symmetric off diagonal terms. One consequence of this is that during its whirl motion the impeller experiences forces acting normal and tangential to the locus of whirl. Data on these normal and tangential forces are presented; it is shown that there exists a region of positive reduced whirl frequencies, within which the hydrodynamic forces can be destablizing with respect to whirl.

  20. On-line PWR RHR pump performance testing following motor and impeller replacement

    SciTech Connect

    DiMarzo, J.T.

    1996-12-01

    On-line maintenance and replacement of safety-related pumps requires the performance of an inservice test to determine and confirm the operational readiness of the pumps. In 1995, major maintenance was performed on two Pressurized Water Reactor (PWR) Residual Heat Removal (RHR) Pumps. A refurbished spare motor was overhauled with a new mechanical seal, new motor bearings and equipped with pump`s `B` impeller. The spare was installed into the `B` train. The motor had never been run in the system before. A pump performance test was developed to verify it`s operational readiness and determine the in-situ pump performance curve. Since the unit was operating, emphasis was placed on conducting a highly accurate pump performance test that would ensure that it satisfied the NSSS vendors accident analysis minimum acceptance curve. The design of the RHR System allowed testing of one train while the other was aligned for normal operation. A test flow path was established from the Refueling Water Storage Tank (RWST) through the pump (under test) and back to the RWST. This allowed staff to conduct a full flow range pump performance test. Each train was analyzed and an expression developed that included an error vector term for the TDH (ft), pressure (psig), and flow rate (gpm) using the variance error vector methodology. This method allowed the engineers to select a test instrumentation system that would yield accurate readings and minimal measurement errors, for data taken in the measurement of TDH (P,Q) versus Pump Flow Rate (Q). Test results for the `B` Train showed performance well in excess of the minimum required. The motor that was originally in the `B` train was similarly overhauled and equipped with `A` pump`s original impeller, re-installed in the `A` train, and tested. Analysis of the `A` train results indicate that the RHR pump`s performance was also well in excess of the vendors requirements.

  1. Tiny magnetic wireless pump: Fabrication of magnetic impeller and magnetic wireless manipulation for blood circulation in legs

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hoon; Yu, Chang Ho; Ishiyama, K.

    2015-05-01

    This paper introduces a wireless pump that uses magnetic wireless manipulation to pump blood in the legs. A compact size and sufficient hydrodynamic performance were the most important requirements. Because the bonded magnet technique allows for a complex shape and various magnetization orientations, we fabricated a magnetic impeller from magnetic SmFeN powder. The impellers demonstrated a magnetic moment of 2772.64 emu and coercive force of 7.55 kOe. Using the impeller, we developed a tiny blood pump with a diameter of 22 mm and height of 6 mm. The pump allows for a maximum flow rate of 2.7 l/min and maximum pump head of approximately 170 mm Hg at a rotating speed of 6000 rpm. This level of hydrodynamic performance is sufficient to circulate blood in the legs. In this paper, we present the magnetic properties of the magnetic impeller and the hydrodynamic performance with wireless operation.

  2. Axial reciprocation of rotating impeller: a new concept of antithrombogenecity in centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G; Li, L

    2001-01-01

    For long-term application, rotary pumps have to solve the problems of bearing wear and thrombosis along the bearing. Most investigators choose the magnetic bearing to realize zero-friction and no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. The authors have tried and found, however, that it is difficult to apply a magnetic bearing to the rotary pump without disturbing its simplicity, reliability and implantability, and have therefor developed a much simpler and much more creative approach to achieve the same results. Instead of using a sliding bearing, a rolling bearing has been devised for the pump, and its friction is about 1/15 of the sliding bearing. Furthermore, a wear-proof material of ultra-high-molecular weight polythene has been adopted to make the rollers, and its anti-wear property is 8 times better than metal. Thereby, the service life of the bearing has been prolonged to ten years according to the documents provided by the producer. In order to prevent the thrombus formation along the bearing, the impeller reciprocates axiallly as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is the result of the effects of a magnetic force between the motor rotor and stator, and a hydraulic force between the blood flow and the impeller. Similar to a piston pump, the oscillating impeller can make the blood flow in and out of the bearing, resulting in wash-out once a circle. This obviously helps to prevent thombosis along the bearing and in the pump. The endurance tests with saline of this novel pump demonstrated the durabililty of the device. It promises to be able to assist the circulation of patients permanently, and to be able to replace heart transplantation in the future.

  3. Axial reciprocation of rotating impeller: a novel approach to preventing thrombosis in centrifugal pump.

    PubMed

    Qian, K X; Zeng, P; Ru, W M; Yuan, H Y

    2002-01-01

    For long-term application, rotary pumps have to solve the problems of bearing wear and thrombosis along the bearing. Some investigators choose the magnetic bearing for zero friction and to provide no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. The authors have tried and have found, however, that it is difficult to apply a magnetic bearing to the rotary pump without disturbing its simplicity, reliability, and implantability, and have therefore developed a much simpler approach to achieve the same results. Instead of using a sliding bearing, a rolling bearing has been devised, and its friction is about 1/15 that of the sliding bearing. Furthermore, a wearproof material of ultra high molecular weight polythene has been adopted to make the rollers, and its antiwear property is eight times better than metal. The service life of the bearing has thus been prolonged. To prevent thrombus formation along the bearing, the impeller reciprocates axially as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is the result of the effects of a magnetic force between the motor rotor and stator and a hydraulic force between the blood flow and the impeller. Similar to a piston pump, the oscillating impeller can make the blood flow in and out of the bearing, resulting in washout with fresh blood once a cycle. This obviously helps to prevent thrombosis along the bearing and in the pump. Endurance tests with saline of this novel pump demonstrated device durability, promising long-term assisted circulation.

  4. Some refinements of the theory of the viscous screw pump.

    NASA Technical Reports Server (NTRS)

    Elrod, H. G.

    1972-01-01

    Recently performed analysis for herringbone thrust bearings has been incorporated into the theory of the viscous screw pump for Newtonian fluids. In addition, certain earlier corrections for sidewall and channel curvature effects have been simplified. The result is a single, refined formula for the prediction of the pressure-flow relation for these pumps.

  5. J-2X Fuel Pump Impeller Seal Simulations

    NASA Technical Reports Server (NTRS)

    Schmauch, Preston B.; West, Jeffrey S.

    2011-01-01

    The J-2X engine was originally designed for the upper stage of the previously cancelled Crew Launch Vehicle. Although the Crew Launch Vehicle was cancelled the J-2X engine, which is currently undergoing hot-fire testing, may be used on future programs. The J-2X engine is a direct descendent of the J-2 engine which powered the upper stage during the Apollo program. Many changes including a thrust increase from 230K to 294K lbf have been implemented in this engine. The rotor-dynamic stability of the fuel turbopump is highly dependent on the tangential velocity of the fluid as it enters the the front face impeller seal. Rotor-dynamic analysis predicts that a much lower tangential velocity will be required for stability than was needed for previous engines. The geometry at the seal entrance for this engine is very complex and vastly different than previous engines. In order to better determine the fluid dynamics and tangential velocity in this seal several CFD simulations were performed. The results of these simulations show that for this seal geometry a great reduction in the tangential velocity is to be expected. The simulations also provided insight into methods that could be employed to drive the swirl velocity to near zero. Unsteady and time-averaged results of several simulations will be presented.

  6. Static stress and modal analysis on the impeller of screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Yuan, S. Q.; Li, T.; Yuan, J. P.; Zhou, J. J.

    2012-11-01

    The modeling of the screw centrifugal pump was set up with Pro/E, the meshing of the fluid domain and the impeller were completed with ICEM, CFD and Workbench respectively. The 3-D steady turbulence flow in the pump was simulated by using ANSYS CFX under the design condition to get the pressure distribution on the surface of the blades. The static pressure and modal analysis were set using sequential coupling technique based on the simulation result. The results show that the maximum equivalent stress which is far less than the permissible stress occurs at the blade connected with the hub; the maximum deformation of the impeller occurs at the edge of the blade inlet; the deformation domain increase with the frequency ascended.

  7. Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump with Gap Impeller

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Chen, Hongxun; Wei, Qun

    2014-06-01

    This paper is to study the cavitating characteristics in a low specific speed centrifugal pump with gap structure impeller experimentally and numerically. A scalable DES numerical method is proposed and developed by introducing the von Karman scale instead of the local grid scale, which can switch at the RANS and LES region interface smoothly and reasonably. The SDES method can detect and grasp unsteady scale flow structures, which were proved by the flow around a triangular prism and the cavitation flow in a centrifugal pump. Through numerical and experimental research, it's shown that the simulated results match qualitatively with tested cavitation performances and visualization patterns, and we can conclude that the gap structure impeller has a superior feature of cavitation suppression. Its mechanism may be the guiding flow feature of the small vice blade and the pressure auto-balance effect of the gap tunnel.

  8. Hydraulic optimization of a double-channel pump's impeller based on multi-objective genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Binjuan; Wang, Yu; Chen, Huilong; Qiu, Jing; Hou, Duohua

    2015-03-01

    Computational fluid dynamics (CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm (MOGA) and artificial neural networks (ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of

  9. Application of a compressible flow solver and barotropic cavitation model for the evaluation of the suction head in a low specific speed centrifugal pump impeller channel

    NASA Astrophysics Data System (ADS)

    Limbach, P.; Müller, T.; Skoda, R.

    2015-12-01

    Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.

  10. On the use of a three-dimensional Navier-Stokes solver for rocket engine pump impeller design

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    A 3D Reynolds-averaged Navier-Stokes Solver and a Fast Grid Generator (FGG), developed specially for centrifugal impeller design, were incorporated into the pump impeller design process. The impeller performance from the CFD analysis was compared to one-dimensional prediction. Both analyses showed good agreement of the impeller hydraulic efficiency, 94.5 percent, but with an 8 percent discrepancy of Euler head prediction. The impeller blade angle, discharge hub to shroud width, axial length and blade stacking were systematically changed to achieve an optimum impeller design. Impeller overall efficiency, loss distribution, hub-to-tip flow angle distortion and blade-to-blade flow angle change are among those criteria used to evaluate impeller performance. Two grid sizes, one with 10 K grid points and one with 80 K grid points were used to evaluate grid dependency issues. The effects of grid resolution on the accuracy and turnaround time are discussed. In conclusion, it is demonstrated that CFD can be effectively used for design and optimization of rocket engine pump components.

  11. Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentor with hydrofoil flow impellers and internal cooling coils

    PubMed

    Kelly; Humphrey

    1998-03-01

    Considerable debate has occurred over the use of hydrofoil impellers in large-scale fermentors to improve mixing and mass transfer in highly viscous non-Newtonian systems. Using a computational fluid dynamics software package (Fluent, version 4.30) extensive calculations were performed to study the effect of impeller speed (70-130 rpm), broth rheology (value of power law flow behavior index from 0.2 to 0.6), and distance between the cooling coil bank and the fermentor wall (6-18 in.) on flow near the perimeter of a large (75-m3) fermentor equipped with A315 impellers. A quadratic model utilizing the data was developed in an attempt to correlate the effect of A315 impeller speed, power law flow behavior index, and distance between the cooling coil bank and the fermentor wall on the average axial velocity in the coil bank-wall region. The results suggest that there is a potential for slow or stagnant flow in the coil bank-wall region which could result in poor oxygen and heat transfer for highly viscous fermentations. The results also indicate that there is the potential for slow or stagnant flow in the region between the top impeller and the gas headspace when flow through the coil bank-wall region is slow. Finally, a simple guideline was developed to allow fermentor design engineers to predict the degree of flow behind a bank of helical cooling coils in a large fermentor with hydrofoil flow impellers.

  12. Controlled pitch-adjustment of impeller blades for an intravascular blood pump.

    PubMed

    Throckmorton, Amy L; Sciolino, Michael G; Downs, Emily A; Saxman, Robert S; López-Isaza, Sergio; Moskowitz, William B

    2012-01-01

    Thousands of mechanical blood pumps are currently providing circulatory support, and the incidence of their use continues to increase each year. As the use of blood pumps becomes more pervasive in the treatment of those patients with congestive heart failure, critical advances in design features to address known limitations and the integration of novel technologies become more imperative. To advance the current state-of-the-art in blood pump design, this study investigates the inclusion of pitch-adjusting blade features in intravascular blood pumps as a means to increase energy transfer; an approach not explored to date. A flexible impeller prototype was constructed with a configuration to allow for a variable range of twisted blade geometries of 60-250°. Hydraulic experiments using a blood analog fluid were conducted to characterize the pressure-flow performance for each of these twisted positions. The flexible, twisted impeller was able to produce 1-25 mmHg for 0.5-4 L/min at rotational speeds of 5,000-8,000 RPM. For a given twisted position, the pressure rise was found to decrease as a function of increasing flow rate, as expected. Generally, a steady increase in the pressure rise was observed as a function of higher twisted degrees for a constant rotational speed. Higher rotational speeds for a specific twisted impeller configuration resulted in a more substantial pressure generation. The findings of this study support the continued exploration of this unique design approach in the development of intravascular blood pumps.

  13. Influence of blade thickness on transient flow characteristics of centrifugal slurry pump with semi-open impeller

    NASA Astrophysics Data System (ADS)

    Tao, Yi; Yuan, Shouqi; Liu, Jianrui; Zhang, Fan; Tao, Jianping

    2016-10-01

    As the critical component, the impellers of the slurry pumps usually have blades of a large thickness. The increasing excretion coefficient of the blades affects the flow in the impeller resulting in a relatively higher hydraulic loss, which is rarely reported. In order to investigate the influence of blade thickness on the transient flow characteristics of a centrifugal slurry pump with a semi-open impeller, transient numerical simulations were carried out on six impellers, of which the meridional blade thickness from the leading edge to trailing edge varied from 5-10 mm, 5-15 mm, 5-20 mm, 10-10 mm, 10-15 mm, and 10-20 mm, respectively. Then, two of the six impellers, namely cases 4 and 6, were manufactured and experimentally tested for hydraulic performance to verify the simulation results. Results of these tests agreed reasonably well with those of the numerical simulation. The results demonstrate that when blade thickness increases, pressure fluctuations at the outlet of the impeller become severe. Moreover, the standard deviation of the relative velocity in the middle portion of the suction sides of the blades decreases and that at the outlet of the impeller increases. Thus, the amplitude of the impeller head pulsation for each case increases. Meanwhile, the distribution of the time-averaged relative flow angle becomes less uniform and decreases at the outlet of the impeller. Hence, as the impeller blade thickness increases, the pump head drops rapidly and the maximum efficiency point is offset to a lower flow rate condition. As the thickness of blade trailing edge increases by 10 mm, the head of the pump drops by approximately 5 m, which is approximately 10 % of the original pump head. Futhermore, it is for the first time that the time-averaged relative flow angle is being considered for the analysis of transient flow in centrifugal pump. The presented work could be a useful guideline in engineering practice when designing a centrifugal slurry pump with thick

  14. The pivot wash in two impeller modes for the Baylor/Miwatec centrifugal blood pump.

    PubMed

    Yamane, Takashi; Kodama, Takayuki; Nishida, Masahiro; Maruyama, Osamu; Yamamoto, Yoshiro; Shinohara, Toshiyuki; Motomura, Tadashi; Nosé, Yukihiko

    2006-01-01

    A centrifugal blood pump with a double pivot impeller and an eccentric inlet port is being developed as an implantable artificial heart by the Baylor College of Medicine and Miwatec Co. Ltd. Flow visualization measurements were conducted to compare the flow around the pivot for two impeller operational modes: the top and the bottom contact modes. In the top contact mode, one-way flow in the pivot gap due to the eccentric vortex was observed, and sufficient wall shear rate to prevent thrombus formation was attained around the bottom pivot for over 1,400 rpm. Computational fluid dynamic analyses confirmed that the causes of the eccentric vortex were the inlet eccentricity and the pressure imbalance in the volute.

  15. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.

    PubMed

    Boehning, Fiete; Timms, Daniel L; Amaral, Felipe; Oliveira, Leonardo; Graefe, Roland; Hsu, Po-Lin; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2011-08-01

    In many state-of-the-art rotary blood pumps for long-term ventricular assistance, the impeller is suspended within the casing by magnetic or hydrodynamic means. For the design of such suspension systems, profound knowledge of the acting forces on the impeller is crucial. Hydrodynamic bearings running at low clearance gaps can yield increased blood damage and magnetic bearings counteracting high forces consume excessive power. Most current rotary blood pump devices with contactless bearings are centrifugal pumps that incorporate a radial diffuser volute where hydraulic forces on the impeller develop. The yielding radial forces are highly dependent on impeller design, operating point and volute design. There are three basic types of volute design--singular, circular, and double volute. In this study, the hydraulic radial forces on the impeller created by the volute in an investigational centrifugal blood pump are evaluated and discussed with regard to the choice of contactless suspension systems. Each volute type was tested experimentally in a centrifugal pump test setup at various rotational speeds and flow rates. For the pump's design point at 5 L/min and 2500 rpm, the single volute had the lowest radial force (∼0 N), the circular volute yielded the highest force (∼2 N), and the double volute possessed a force of approx. 0.5 N. Results of radial force magnitude and direction were obtained and compared with a previously performed computational fluid dynamics (CFD) study.

  16. Development of a surface micromachined spiral-channel viscous pump

    NASA Astrophysics Data System (ADS)

    Kilani, Mohammad Ibrahim

    This work introduces a new pump, called the spiral pump, which targets the surface micromachining technology. We demonstrate the possibility of realizing the spiral pump geometry in standard surface micromachining, lay out the theoretical foundation for its operation, and conduct an objective assessment for its practicality. The spiral pump is a shear-driven viscous pump, which works by rotating a disk with a spiral groove at a close proximity over a stationary plate. Fluid contained in the spiral groove between the stationary plate and the rotating disk, is subject to a net tangential viscous stress, which allows it to be transported against an imposed pressure difference. A number of spiral pumps were fabricated in 5 levels of polysilicon using Sandia's Ultraplanar Multilevel Surface Micromachining Technology, SUMMiT, and the fabricated micropump were tested in dry-run mode using electrostatic probing and optical microscopy. To achieve a more comprehensive understanding of the spiral micropump operation, an analytical model was developed for the flow field in the spiral channel of the pump using an approximation which replaces the spiral channel with an equivalent straight channel with appropriate dimensions and boundary conditions. An analytical solution for this model at the lubrication limit relates the flow rate, torque and power consumption of the spiral pump to the pressure difference and rotation rate. The model was validated using macroscale experiments conducted on a scaled up spiral pump model, which involved a quantitative characterization of the spiral pump performance. Those experiments validate the developed theory and help assess the practicality of the spiral pump concept. In addition to the spiral pump, two positive-displacement ring-gear pumps were designed and fabricated in this work. The feasibility of surface micromachined ring-gear pumps is briefly investigated in this work, and compare to that of the spiral micropump.

  17. Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller.

    PubMed

    Liu, Houlin; Wang, Kai; Yuan, Shouqi; Tan, Minggao; Wang, Yong; Dong, Liang

    2013-01-01

    In order to improve internal unsteady flow in a double-blade centrifugal pump (DBCP), this study used major geometric parameters of the original design as the initial values, heads at three conditions (i.e., 80% design flow rate, 100% design flow rate, and 120% design flow rate) as the constraints conditions, and the maximum of weighted average efficiency at the three conditions as the objective function. An adaptive simulated annealing algorithm was selected to solve the energy performance calculation model and the supertransitive approximation method was applied to fix optimal weight factors of individual objectives. On the basis of hydraulic performance optimization, three-condition automatic computational fluid dynamics (CFD) optimization of impeller meridional plane for the DBCP was realized by means of Isight software integrated Pro/E, Gambit, and Fluent software. The shroud arc radii R0 and R1, shroud angle T1, hub arc radius R2, and hub angle T2 on the meridional plane were selected as the design variables and the maximum of weighted average hydraulic efficiency at the three conditions was chosen as the objective function. Performance characteristic test and particle image velocimetry (PIV) measurements of internal flow in the DBCP were conducted. Performance characteristic test results show that the weighted average efficiency of the impeller after the three-condition optimization has increased by 1.46% than that of original design. PIV measurements results show that vortex or recirculation phenomena in the impeller are distinctly improved under the three conditions.

  18. The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation

    NASA Technical Reports Server (NTRS)

    Franz, R.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1990-01-01

    Fluid-induced rotordynamic forces on a centrifugal pump impeller whirling along a trajectory eccentric to its undeflected position in the presence of cavitation were measured using the experimental facility described by Jery (1987). The force measured is a combination of a steady radial force due to the volute asymmetries and an unsteady force due to the eccentric motion of the rotor. It was found that, compared to the noncavitation condition, a cavitation corresponding to a head loss of 3 percent had little effect upon the unsteady force. However, a lesser degree of cavitation at the design point, was found to increase the destabilizing force for a particular set of whirl ratios.

  19. Modeling forces on a beam-pump system during pumping of highly viscous crude

    SciTech Connect

    Lea, J.F. )

    1991-11-01

    In previous dynamic predictive models of beam-pump performance, drag forces o the rod string commonly are modeled by an input empirical drag coefficient multiplying the local rod velocity. This paper shows how forces on the rods and pump plunger can be modeled theoretically and calculated for viscous flow. Results of viscous-flow calculations to develop drag coefficients compare well with measured field data.

  20. The Effects of Ambulatory Accelerations on the Stability of a Magnetically Suspended Impeller for an Implantable Blood Pump.

    PubMed

    Paul, Gordon; Rezaienia, Mohammed Amin; Rahideh, Akbar; Munjiza, Ante; Korakianitis, Theodosios

    2016-09-01

    This article describes the effects of ambulatory accelerations on the stability of a magnetically suspended impeller for use in implantable blood pumps. A magnetic suspension system is developed to control the radial position of a magnetic impeller using coils in the pump casing. The magnitude and periodicity of ambulatory accelerations at the torso are measured. A test rig is then designed to apply appropriate accelerations to the suspension system. Accelerations from 0 to 1 g are applied to the suspended impeller with ambulatory periodicity while the radial position of the impeller and power consumption of the suspension system are monitored. The test is carried out with the impeller suspended in air, water, and a glycerol solution to simulate the viscosity of blood. A model is developed to investigate the effects of the radial magnetic suspension system and fluid damping during ambulatory accelerations. The suspension system reduces the average displacement of the impeller suspended in aqueous solutions within its casing to 100 µm with a power consumption of below 2 W during higher magnitude ambulatory accelerations (RMS magnitude 0.3 g). The damping effect of the fluid is also examined and it is shown that buoyancy, rather than drag, is the primary cause of the damping at the low displacement oscillations that occur during the application of ambulatory accelerations to such a suspension system.

  1. Effect of Impeller Geometry on Lift-Off Characteristics and Rotational Attitude in a Monopivot Centrifugal Blood Pump.

    PubMed

    Nishida, Masahiro; Nakayama, Kento; Sakota, Daisuke; Kosaka, Ryo; Maruyama, Osamu; Kawaguchi, Yasuo; Kuwana, Katsuyuki; Yamane, Takashi

    2016-06-01

    The effect of the flow path geometry of the impeller on the lift-off and tilt of the rotational axis of the impeller against the hydrodynamic force was investigated in a centrifugal blood pump with an impeller supported by a single-contact pivot bearing. Four types of impeller were compared: the FR model with the flow path having both front and rear cutouts on the tip, the F model with the flow path having only a front cutout, the R model with only a rear cutout, and the N model with a straight flow path. First, the axial thrust and the movement about the pivot point, which was loaded on the surface of the impeller, were calculated using computational fluid dynamics (CFD) analysis. Next, the lift-off point and the tilt of the rotational axis of the impeller were measured experimentally. The CFD analysis showed that the axial thrust increased gently in the FR and R models as the flow rate increased, whereas it increased drastically in the F and N models. This difference in axial thrust was likely from the higher pressure caused by the smaller circumferential velocity in the gap between the top surface of the impeller and the casing in the FR and R models than in the F and N models, which was caused by the rear cutout. These results corresponded with the experimental results showing that the impellers lifted off in the F and N models as the flow rate increased, whereas it did not in the FR and R models. Conversely, the movement about the pivot point increased in the direction opposite the side with the pump outlet as the flow rate increased. However, the tilt of the rotational axis of the impeller, which oriented away from the pump outlet, was less than 0.8° in any model under any conditions, and was considered to negligibly affect the rotational attitude of the impeller. These results confirm that a rear cutout prevents lift-off of the impeller caused by a decrease in the axial thrust.

  2. A cost-effective extracorporeal magnetically-levitated centrifugal blood pump employing a disposable magnet-free impeller.

    PubMed

    Hijikata, W; Mamiya, T; Shinshi, T; Takatani, S

    2011-12-01

    In the field of rotary blood pumps, contactless support of the impeller by a magnetic bearing has been identified as a promising method to reduce blood damage and enhance durability. The authors developed a two-degrees-of-freedom radial controlled magnetic bearing system without a permanent magnet in the impeller in order that a low-cost disposable pump-head for an extracorporeal centrifugal blood pump could be manufactured more easily. Stable levitation and contactless rotation of the 'magnet-free' impeller were realized for a prototype blood-pump that made use of this magnetic bearing. The run-out of the impeller position at between 1000 r/min and 3000 r/min was less than 40 microm in the radial-controlled directions. The total power consumption of the magnetic bearing was less than 1 W at the same rotational speeds. When the pump was operated, a flow rate of 5 l/min against a head pressure of 78.66 kPa was achieved at a rotational speed of 4000 r/min, which is sufficient for extracorporeal circulation support. The proposed technology offers the advantage of low-cost mass production of disposable pump heads.

  3. Numerical study of 3-D inducer and impeller for pump model development

    NASA Astrophysics Data System (ADS)

    Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.

    1993-07-01

    Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.

  4. Numerical study of 3-D inducer and impeller for pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, G. C.; Chen, Y. S.; Garcia, R.; Williams, R. W.

    1993-01-01

    Current design of high-performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study is to develop a robust and effective CFD pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, two key components of the turbopump, the inducer and impeller, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne.

  5. Study on stable equilibrium of levitated impeller in rotary pump with passive magnetic bearings.

    PubMed

    Qian, K X; Wan, F K; Ru, W M; Zeng, P; Yuan, H Y

    2006-01-01

    It is widely acknowledged that the permanent maglev cannot achieve stable equilibrium; the authors have developed, however, a stable permanent maglev centrifugal blood pump. Permanent maglev needs no position detection and feedback control of the rotor, nevertheless the eccentric distance (ED) and vibration amplitude (VA) of the levitator have been measured to demonstrate the levitation and to investigate the factors affecting levitation. Permanent maglev centrifugal impeller pump has a rotor and a stator. The rotor is driven by stator coil and levitated by two passive magnetic bearings. The rotor position is measured by four Hall sensors, which are distributed evenly and peripherally on the end of the stator against the magnetic ring of the bearing on the rotor. The voltage differences of the sensors due to different distances between the sensors and the magnetic ring are converted into ED. The results verify that the rotor can be disaffiliated from the stator if the rotating speed and the flow rate of the pump are large enough, that is, the maximal ED will reduce to about half of the gap between the rotor and the stator. In addition, the gap between rotor and stator and the viscosity of the fluid to be pumped also affect levitation. The former has an optimal value of approximately 2% of the radius of the rotor. For the latter, levitation stability is better with higher viscosity, meaning smaller ED and VA. The pressure to be pumped has no effect on levitation.

  6. Preliminary in vivo study of an intra-aortic impeller pump driven by an extracorporeal whirling magnet.

    PubMed

    Li, Guorong; Zhao, Hong; Zhu, Xiaodong; Ren, Bing

    2002-10-01

    To achieve the aim of long-term heart-assist with a simple implantable device, we have been trying to develop a minimal intra-aortic impeller blood pump driven by an extracorporeal magnetic device. The purpose of the current study was to evaluate its feasibility by acute in vivo animal tests. The minimal intra-aortic pump was a cage-supported rotor-impeller, 17 mm in diameter with a total length of 30 mm. The driving magnet, mounted extracorporeally, was 55 mm in diameter and 50 mm in length. Seventeen dogs weighing from 28-34 kg were used in the study. After thoracic incision, heparin (50 U/kg) was infused. The impeller pump was inserted into the aortic chamber via a prosthetic vessel and fastened. Thin tubes were inserted into the left ventricular apex and the femoral artery to monitor the left ventricular (LV) and the aortic pressure. After closing the thoracic cavity, the extracorporeal whirling magnet, turned by an electric motor, was placed tightly against the thoracic wall parallel to the intra-aortic pump. The experiments, each lasting for about 40 min, were successful in 7 animals; the other 10 animals died of bleeding during pump implantation and were excluded from the experiment. The peak systolic pressure of the left ventricle could be considerably decreased by the pump and was reduced to as low as 28 mm Hg at a rotational speed of 9,000 rpm, showing that the simple intra-aortic impeller was effective in unloading the natural heart. The novel left ventricular assist device (LVAD) concept of an intra-aortic impeller pump, driven by an extracorporeal magnetic device, is feasible.

  7. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Cheng, X. R.; Li, R. N.; Gao, Y.; Guo, W. L.

    2013-12-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value.

  8. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  9. Quantitative approach to control spinning stability of the impeller in the pivot bearing-supported centrifugal pump.

    PubMed

    Takami, Y; Makinouchi, K; Otsuka, G; Nosé, Y

    1997-12-01

    The Gyro C1E3 pump has been developed as a completely sealless centrifugal pump driven by a magnetic coupling system for long-term usage. The Gyro C1E3 pump is a pivot bearing-supported pump in which the impeller is supported with the top and bottom pivot bearings. In the Gyro C1E3 pump, the impeller spinning is affected by the force balance between the floating force (Ff[N]) of the hydrodynamic effect and the magnetic thrust force (Tf[N]). The authors quantitatively investigated the floating force of the impeller in vitro to determine the magnetic coupling distance (MCD[mm]) that would result in stable impeller spinning. In vitro tests were performed using a loop filled with 37% glycerin solution to obtain the relationship between the MCD and floating speed (Rf, rotational speed when the impeller starts floating [rpm]) and the relationship between the MCD and Tf. From the obtained relationships, we calculated Ff and determined the relationship between the Ff and the rotational speed (R). Furthermore, we determined the relationship between d (minimum required MCD [mm]) and R from the results of determining the relationship of the MCD and Tf and of the Ff and R. The following relationships were obtained: Rf = 6.24 x 10(4) x MCD-1.35; Tf = 5.27 x 10(3) x MCD-2.29; Ff = 4.71 x 10(-6) x RPM1.69; and d = 9.02 x RPM-0.85 where RPM is the rotational speed. It was demonstrated that the floating force of the impeller is a function only of the rotational speed in the pivot bearing-supported Gyro C1E3 pump. The floating force is estimated to be 10 N to 40 N at rotational speeds of 1,500 rpm to 3,000 rpm at which the Gyro pump may be used in most clinical situations. It would be possible to control the impeller position of the Gyro pump automatically at the stable spinning condition by controlling the adequate magnetic coupling distance based upon its relationship with the rotational speed which was obtained in this study.

  10. Characteristic analysis on the pressure fluctuation in the impeller of a low specific speed mixed flow pump

    NASA Astrophysics Data System (ADS)

    Zhang, W. W.; Yu, Z. Y.; Zhu, B. S.

    2016-05-01

    To explore the pressure fluctuation characteristics of a low speed specific speed mixed flow pump caused by rotor-stator interaction, the unsteady flow was simulated with CFX for the whole flow passage of a mixed flow pump with a specific speed of 148.8. The structured mesh of the computation domain was generated with ICEM CFD and TurboGrid, and mesh-independent analysis was done in the design condition. Through the comparison with the experiment data, the reliability of the simulation was verified. In different locations of the impeller passage, monitoring points were set. With Fast Fourier Transform (FFT), the characteristic analysis on the pressure fluctuation in the impeller passage was done for three flow rate conditions (0.75Qd, Qd, 1.25Qd). The results show that the pressure fluctuation amplitude increases from the inlet to the outlet. And the maximum values in different flow rates exist near the hub of the outlet; The pressure fluctuation is small in the design condition, but the largest in the small flow rate condition, accompanied by the secondary dominant frequencies with large amplitudes; In the small flow rate condition and design condition, the dominant frequency varies from the inlet to the outlet because the combine action of the impeller and guide vane; while in the large flow rate condition, the pressure fluctuation in the whole impeller passage is affected significantly by the guide vane, and the domain frequency is 8 times the rotational frequency of impeller. In addition, the change of pressure fluctuation from the pressure surface to the suction surface in the off-design conditions is investigated, and the results demonstrates that the intensity of the pressure fluctuation in the impeller passage is closely related with the impeller as well as the distribution of the vorticity and the pressure.

  11. Analyzing pumped-well impeller logs to ascertain vertical hydraulic conductivity variations

    NASA Astrophysics Data System (ADS)

    Parker, A. H.; West, J.; Odling, N. E.; Bottrell, S. H.

    2007-12-01

    Horizontal variations in the hydraulic conductivity of aquifers are generally well characterized through simple pump test analyses. However, vertical variations are often poorly understood and misrepresented in the regional models used by regulatory bodies and water companies. Understanding these is key for predicting flow paths and hence the behavior of contaminants in the aquifer that might present a risk to public drinking water supplies. Traditionally, packer tests were used to characterize these variations, but they can be time consuming and costly to perform. However, other techniques have been developed which can quantify these variations, including impeller logging. This study aims to present new, more rigorous methods of analyzing impeller flow log data. Impeller logs were taken under pumped conditions in open wells in a chalk aquifer located in N. England. Theoretically, hydraulic conductivity can be obtained from the gradient in flow rate with depth. However, data are typically noisy due to turbulent flow and hole diameter variations with depth; so directly converting the flow rate gradient to hydraulic conductivity leads to rapid non-physical variation and negative hydraulic conductivity values. Correcting for hole diameter variations using caliper logs proved difficult due to phenomena such as jetting, whereby when the water enters a widening, it does not instantly slow down. In order to obtain more realistic hydraulic conductivity profiles, we firstly tried a data smoothing algorithm, but this approach distorted the data and still gave an unacceptable noise level. Instead, a layered modeling approach has been developed. A hydraulic conductivity profile consisting of a discrete number of uniform layers is constructed, and layer thicknesses and hydraulic conductivities are varied until a satisfactory fit to the observed flow log is achieved. Results from field sites on the confined Chalk aquifer of East Yorkshire in the United Kingdom showed good

  12. Dynamic stress analysis of sewage centrifugal pump impeller based on two-way coupling method

    NASA Astrophysics Data System (ADS)

    Pei, Ji; Yuan, Shouqi; Yuan, Jianping

    2014-03-01

    Current research on the operational reliability of centrifugal pumps has mainly focused on hydrodynamic instability. However, the interaction between the fluid and structure has not been sufficiently considered; this interaction can cause vibration and dynamic stress, which can affect the reliability. In this study, the dynamic stresses in a single-blade centrifugal pump impeller are analysed under different operating conditions; the two-way coupling method is used to calculate the fluid-structure interaction. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations are solved with the SST k-ω turbulence model for the fluid in the whole flow passage, while transient structure dynamic analysis is used with the finite element method for the structure side. The dynamic stresses in the rotor system are computed according to the fourth strength theory. The stress results show that the highest stress is near the loose bearing and that the equivalent stress increases with the flow rate because the dynamic stresses are closely related to the pressure load. The stress distributions on the blade pressure side, suction side, leading edge, and trailing edge are each analysed for different flow rates; the highest stress distribution is found on the pressure side. On the blade pressure side, a relatively large stress is found near the trailing edge and hub side. Based on these results, a stress distribution prediction method is proposed for centrifugal pumps, which considers the interaction between the fluid and structure. The method can be used to check the dynamic stress at different flow rates when optimising the pump design to increase the pump reliability.

  13. PIV pictures of stream field predict haemolysis index of centrifugal pump with streamlined impeller.

    PubMed

    Qian, K X; Feng, Z G; Ru, W M; Zeng, P; Yuan, H Y

    2007-01-01

    Previously it has been found by pump haemolysis testing that the flow rate has a remarkable effect on index of haemolysis (IH), while pressure head does not affect IH. Recent investigation with particle image velocimetry (PIV) technology has demonstrated that IH is directly related to the flow pattern of stream field in impeller vane channels. PIV is a visible approach showing the real flow status in the pump. The different positions of a tracer particle in two PIV pictures taken at 20 micros intervals decide the velocity value and direction. The velocity vectors of many particles draw the flow pattern of the stream field. The same pictures are taken at 2, 4 and 6 l min(-1) flow rates while the pressure head is kept unchanged at 100 mmHg; then the pictures are taken at 4 l min(-1) flow with different pressure heads of 80, 100 and 120 mmHg. Results reveal that the flow rate of 4 l min(-1) (IH = 0.030) has the best stream field, and neither turbulence nor separation can be seen. In other flow rates (IH: 0.048 - 0.082), there is obviously second flow. Meanwhile, no significant difference can be seen among the PIV pictures of different pressure heads pumped, which agrees with the results of haemolysis testing showing that pressure has no effect on pump haemolysis. It may be concluded that the haemolysis property of a centrifugal pump can be assessed approximately by PIV pictures, which are much easier to take than haemolysis tests.

  14. Physics-driven impeller designs for a novel intravascular blood pump for patients with congenital heart disease.

    PubMed

    Chopski, Steven G; Fox, Carson S; McKenna, Kelli L; Riddle, Michelle L; Kafagy, Dhyaa H; Stevens, Randy M; Throckmorton, Amy L

    2016-07-01

    Mechanical circulatory support offers an alternative therapeutic treatment for patients with dysfunctional single ventricle physiology. An intravascular axial flow pump is being developed as a cavopulmonary assist device for these patients. This study details the development of a new rotating impeller geometry. We examined the performance of 8 impeller geometries with blade stagger or twist angles varying from 100° to 800° using computational methods. A refined range of blade twist angles between 300° and 400° was then identified, and 4 additional geometries were evaluated. Generally, the impeller designs produced 4-26mmHg for flow rates of 1-4L/min for 6000-8000 RPM. A data regression analysis was completed and found the impeller with 400° of blade twist to be the superior performer. A hydraulic test was conducted on a prototype of the 400° impeller, which generated measurable pressure rises of 7-28mmHg for flow rates of 1-4L/min at 6000-8000 RPM. The findings of the numerical model and experiment were in reasonable agreement within approximately 20%. These results support the continued development of an axial-flow, mechanical cavopulmonary assist device as a new clinical therapeutic option for Fontan patients.

  15. Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump

    SciTech Connect

    Dong, R.; Chu, S.; Katz, J.

    1997-07-01

    Particle Image Velocimetry (PIV), pressure, and noise measurements are used to study the effect of modifications to tongue and impeller geometries on the flow structure and resulting noise in a centrifugal pump. It is demonstrated that the primary sources of noise are associated with interactions of the nonuniform outflux from the impeller (jet/wake phenomenon) with the tongue. Consequently, significant reduction of noise is achieved by increasing the gap between the tongue and the impeller up to about 20% of the impeller radius. Further increase in the gap affects the performance adversely with minimal impact on the noise level. When the gap is narrow, the primary sources of noise are impingement of the wake on the tip of the tongue, and tongue oscillations when the pressure difference across it is high. At about 20% gap, the entire wake and its associated vorticity trains miss the tongue, and the only (quite weak) effect of nonuniform outflux is the impingement of the jet on the tongue. An attempt is also made to reduce the nonuniformity in outflux from the impeller by inserting short vanes between the blades. They cause reduction in the size of the original wakes, but generate an additional jet/wake phenomenon of their own. Both wakes are weak to a level that their impacts on local pressure fluctuations and noise are insignificant. The only remaining major contributor to noise is tongue oscillations. This effect is shown to be dependent on the stiffness of the tongue.

  16. Study on measures to improve gas-liquid phase mixing in a multiphase pump impeller under high gas void fraction

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Zhu, H. W.; Ding, K.; Qiang, R.

    2012-11-01

    Rotodynamic multiphase pump can transport crude gas-liquid mixture produced from oil well, and is regarded as the good choice of oil-gas multiphase transportation in offshore product system, for its advantages that compact structure, large flow rate, not sensitive to solid particles in the fluid. However, it is prone to bring about gas-liquid separation within the impeller under high gas void fraction. To solve the problem, this paper presents several measures to break gas packet and inhibit gas-liquid separation, such as, depositing the short blades, opening holes at the blades where gas packets gather, using T-shaped blades, etc. Then, CFD software was used to simulate the flow fields which were added measures to inhibit gas-liquid separation. The results show that streamlines in three new impellers distribute more evenly than in original impeller, the gas-liquid two phases mixed degree was improved, and the gas-liquid separation was inhibited to some extent. However, adding the short blades and using T-blade impeller failed to improve the differential pressure of impellers. So the placement and the geometrical parameters of the measures inhibiting gas-liquid separation should be further optimized.

  17. Theoretical analysis of inertially irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers with equiangular blades

    SciTech Connect

    Visser, F.C.; Brouwers, J.J.H.; Badie, R.

    1994-06-01

    Using the theory of functions of a complex variable, in particular the method of conformal mapping, the irrotational and solenoidal flow in two-dimensional radial-flow pump and turbine impellers fitted with equiangular blades is analyzed. Exact solutions are given for the fluid velocity along straight radial pump and turbine impeller blades, while for logarithmic spiral pump impeller blades solutions are given which hold asymptotically as (r(sub 1)/r(sub 2))(exp n) approaches 0, in which r(sub 1) is impeller inner radius, r(sub 2) is impeller outer radius, and n is the number of blades. Both solutions are given in terms of a Fourier series, with the Fourier coefficients being given by the (Gauss) hypergeometric function and the beta function respectively. The solutions are used to derive analytical expressions for a number of parameters which are important for practical design of radial turbomachinery, and which reflect the two-dimensional nature of the flow field. Parameters include rotational slip of the flow leaving radial impellers, conditions to avoid reverse flow between impeller blades, and conditions for shockless flow at impeller entry, with the number of blades and blade curvature as variables. Furthermore, analytical extensions to classical one-dimensional Eulerian-based expressions for developed head of pumps and delivered work of turbines are given. 30 refs.

  18. Study on Internal Flow and External Performance of a Semi-open Impeller Centrifugal Pump with Different Tip Clearances

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-Qi; Cui, Bao-Ling; Zhang, Yu-Liang; Zhu, Zu-Chao

    2015-04-01

    To study the influence of tip clearance on internal flow characteristics and external performance of a prototype centrifugal pump with a semi-open impeller, the unsteady numerical simulation and performance experiments are carried out in this paper. The evolution process of leakage vortex with time t, the flow characteristics and the magnitude of leakage rate in tip clearance are obtained in details. The results indicate that the H-Q curve hump of centrifugal pump shows a weakened trend with the increasing of tip clearance Δc. Meanwhile, the leakage rate ΔQ and the ratio of leakage rate to discharge flow rate (ψ) gradually increase. At the same tip clearance, the leakage rate ΔQ increases, while the ratio of leakage rate to discharge flow rate (ψ) decreases with the increasing of discharge flow rate Q. It is found that higher volumetric loss account for a higher percentage of the total loss at small flow rate condition. There easily exist strong leakage vortexes in the impeller inlet, impeller passage and impeller outlet. The pressure difference between suction side and pressure side makes the fluid pass through the tip clearance layer to form a lower pressure region and leakage vortex.

  19. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Zhai, L. L.; Wu, P.; Jiang, Q. L.; Wang, L. Q.

    2012-11-01

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  20. Centrifugal acceleration modes for incompressible fluid in the leakage annulus between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1991-01-01

    An algorithm is developed for calculating complex eigenvalues and eigenvectors associated with the fluid resonances and is used to analyze the perturbed flow in the leakage path between a shrouded-pump impeller and its housing. The eigenvalues obtained are consistent with the forced-response curves. First- and second-natural-frequency eigensolutions are presented for mode shapes corresponding to lateral excitations, and first-natural-frequency eigensolutions are presented for mode shapes corresponding to axial excitation.

  1. Method for reaching air-tightness of the joint between the casing of an impeller pump and its cover

    NASA Astrophysics Data System (ADS)

    Ryakhovskii, O. A.; Malysheva, G. V.; Vorob'ev, A. N.

    2016-12-01

    A method is considered to reach the air-tightness of the flange joint of the casing of an impeller pump with its cover using an anaerobic sealant instead of a gasket made of a thermoplastic material. The possible causes of leakage of working fluids that are related to the errors of machining flange surfaces and the specific features of their assembly are shown. The properties of anaerobic sealants that ensure the air-tightness of the flange joints are presented.

  2. Improvement of hemocompatibility in centrifugal blood pump with hydrodynamic bearings and semi-open impeller: in vitro evaluation.

    PubMed

    Kosaka, Ryo; Maruyama, Osamu; Nishida, Masahiro; Yada, Toru; Saito, Sakae; Hirai, Shusaku; Yamane, Takashi

    2009-10-01

    We have developed a noncontact-type centrifugal blood pump with hydrodynamic bearings and a semi-open impeller for mechanical circulatory assist. The impeller is levitated by an original spiral-groove thrust bearing and a herringbone-groove journal bearing, without any additional displacement-sensing module or additional complex control circuits. The pump was improved by optimizing the groove direction of the spiral-groove thrust bearing and the pull-up magnetic force between the rotor magnet and the stator coil against the impeller. To evaluate hemocompatibility, we conducted a levitation performance test and in vitro hemocompatibility tests by means of a mock-up circulation loop. In the hemolysis test, the normalized index of hemolysis was reduced from 0.721 to 0.0335 g/100 L corresponding to an expansion of the bearing gap from 1.1 to 56.1 microm. In the in vitro antithrombogenic test, blood pumps with a wide thrust bearing gap were effective in preventing thrombus formation. Through in vitro evaluation tests, we confirmed that hemocompatibility was improved by balancing the hydrodynamic fluid dynamics and magnetic forces.

  3. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Cao, Nhai The

    1993-01-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f

  4. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Astrophysics Data System (ADS)

    Cao, Nhai The

    1993-12-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f

  5. Unshrouded Centrifugal Turbopump Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a

  6. Suppression of secondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method. Part 2: Experimental validation

    SciTech Connect

    Goto, A.; Takemura, T.; Zangeneh, M.

    1996-07-01

    In Part 1 of this paper, a mixed-flow pump impeller was designed by a fully three-dimensional inverse design method, aimed at suppressing the secondary flows on the blade suction surface. In this part, the internal flow fields of the impeller are investigated experimentally, using flow visualization and phase-locked measurements of the impeller exit flow, in order to validate the effects of secondary flow suppression. The flow fields are compared with those of a conventional impeller, and it is confirmed that the secondary flows on the blade suction surface are well suppressed and the uniformity of the exit flow fields is improved substantially, in both circumferential and spanwise directions. The effects of tip clearance and the number of blades for the inverse designed impeller are also investigated experimentally and numerically.

  7. Experimental measurements of hydrodynamic stiffness matrices for a centrifugal pump impeller

    NASA Technical Reports Server (NTRS)

    Chamieh, D. S.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.; Franz, R.

    1982-01-01

    The objective of the Rotor Force Test Facility at the California Institute of Technology is to artificially orbit the center of rotation of an impeller enclosed within a volute over a range of frequencies from zero to synchronous and to measure the resulting forces on the impeller. Preliminary data from the first stage experiments in which the shaft is orbited at low frequency is reported. Steady volute forces along with stiffness matrices due to the change in position of the rotor center are measured. Static pressure taps around the volute are used to obtain volute pressure distributions for various fixed positions of the impeller center and for various flow rates. Static pressure forces are calculated from these pressure distributions allowing a more complete analysis of the components of the impeller forces. Comparison is made with various existing theoretical and experimental results.

  8. Tip clearance effects on loads and performances of semi-open impeller centrifugal pumps at different specific speeds

    NASA Astrophysics Data System (ADS)

    Boitel, G.; Fedala, D.; Myon, N.

    2016-11-01

    Relevant industrial standards or customer's specifications could strictly forbid any device adjusting the axial rotor/stator position, so that tip clearance between semi-open impeller and casing might become a result of the pump machining tolerances and assembling process, leading to big tip clearance variations compared to its nominal value. Consequently, large disparities of global performances (head, power, efficiency) and axial loads are observed with high risk of both specifications noncompliance and bearing damages. This work aims at quantifying these variations by taking into account tip clearance value and pump specific speed. Computational Fluid Dynamics is used to investigate this phenomenon by means of steady simulations led on a semi-open centrifugal pump numerical model including secondary flows, based on a k-omega SST turbulence model. Four different specific speed pump sizes are simulated (from 8 to 50, SI units), with three tip clearances for each size on a wide flow range (from 40% to 120% of the best efficiency point). The numerical results clearly show that head, power and efficiency increase as the tip clearance decreases for the whole flow range. This effect is more significant when the specific speed is low. Meanwhile, the resulting axial thrust on the impeller is very sensitive to the tip clearance and can even lead to direction inversion.

  9. Experimental investigation of the hydrodynamic forces on the shroud of a centrifugal pump impeller. Thesis

    NASA Technical Reports Server (NTRS)

    Zhuang, Fei

    1989-01-01

    Fluid-induced forces acting on a rotating impeller are known to cause rotor-dynamic problems in turbomachines. The forces generated by leakage flow along the front shroud surface of a centrifugal turbomachine impeller play an important role among these fluid-induced forces. The present research was aimed to gain a better understanding of these shroud forces. An experimental apparatus was designed and constructed to simulate the impeller shroud leakage flow. Hydrodynamic forces and steady and unsteady pressure distributions on the rotating shroud were measured as functions of eccentricity, width of shroud clearance, face seal clearance and shaft rotating speed. The forces measured from the dynamometer and manometers agreed well. The hydrodynamic force matrices were found skew-symmetric and statically unstable. This is qualitatively similar to the result of previous hydrodynamic volute force measurements. Nondimensionalized normal and tangential forces decrease slightly as Reynolds number increases. As the width of the shroud clearance decreases and/or the eccentricity increases, the hydrodynamic forces increase nonlinearly. There was some evidence found that increased front seal clearance could reduce the radial shroud forces and the relative magnitude of the destabilizing tangential force. Subharmonic pressure fluctuations were also observed which may adversely affect the behavior of the rotor system.

  10. Swimming and pumping of helical structures in viscous fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio

    2014-11-01

    Many flagellated microorganisms including E. coli swim by rotating slender helical flagella, while ciliated organisms like Paramecia swim by passing helical waves along their surfaces. We will discuss a framework for studying such problems where the Stokes equations describing viscous flow are written in helical coordinates. Analytical predictions match well with full numerical simulations, and suggest optimal geometries. This work may also aid designs in microfluidic manipulation, microswimmer engineering, and the mixing of viscous fluids.

  11. Effect of a bearing gap on hemolytic property in a hydrodynamically levitated centrifugal blood pump with a semi-open impeller.

    PubMed

    Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yambe, Tomoyuki; Imachi, Kou; Yamane, Takashi

    2013-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump with a semi-open impeller for long-term circulatory assist. The pump uses hydrodynamic bearings to enhance durability and reliability without additional displacement-sensors or control circuits. However, a narrow bearing gap of the pump has a potential for hemolysis. The purpose of this study is to develop the hydrodynamically levitated centrifugal blood pump with a semi-open impeller, and to evaluate the effect of a bearing gap on hemolytic property. The impeller levitates using a spiral-groove type thrust bearing, and a herringbone-groove type radial bearing. The pump design was improved by adopting a step type thrust bearing and optimizing the pull-up magnetic force. The pump performance was evaluated by a levitation performance test, a hemolysis test and an animal experiment. In these tests, the bearing gap increased from 1 to 63 μm. In addition, the normalized index of hemolysis (NIH) improved from 0.415 to 0.005 g/100 l, corresponding to the expansion of the bearing gap. In the animal experiment for 24 h, the plasma-free hemoglobin remained within normal ranges (<4.0 mg/dl). We confirmed that the hemolytic property of the pump was improved to the acceptable level by expanding the bearing gap greater than 60 μm.

  12. Redesign of turbine-pump impeller and diffuser using hydrodynamic design techniques. Final report

    SciTech Connect

    Hamrick, J.T.

    1980-04-01

    It is indicated that in 1976 the average operating efficiency of well irrigation pumps in the US, including losses in the column pipe and line shaft, was 55.5%, but information is presented to show that losses in a pumping system can be reduced and that it is possible to reach a goal of 82% system efficiency. Hydrodynamic design methods which are used to analyze and modify a commercially available pump are presented. The results of tests with the pump are presented for which delivery losses were reduced by means of a packer at the pump and for which line shaft losses were reduced by means of a high strength line shaft. Methods of designing pumps that have a broader high efficiency range are explored, and a design approach for doing so is presented. The method was not evaluated experimentally. (MCW)

  13. Swimming and pumping of rigid helical bodies in viscous fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio E.

    2014-04-01

    Rotating helical bodies of arbitrary cross-sectional profile and infinite length are explored as they swim through or transport a viscous fluid. The Stokes equations are studied in a helical coordinate system, and closed form analytical expressions for the force-free swimming speed and torque are derived in the asymptotic regime of nearly cylindrical bodies. High-order accurate expressions for the velocity field and swimming speed are derived for helical bodies of finite pitch angle through a double series expansion. The analytical predictions match well with the results of full numerical simulations, and accurately predict the optimal pitch angle for a given cross-sectional profile. This work may improve the modeling and design of helical structures used in microfluidic manipulation, synthetic microswimmer engineering, and the transport and mixing of viscous fluids.

  14. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 2: User's guide

    NASA Technical Reports Server (NTRS)

    Baskharone, Erian A.

    1993-01-01

    This report describes the computational steps involved in executing a finite-element-based perturbation model for computing the rotor dynamic coefficients of a shrouded pump impeller or a simple seal. These arise from the fluid/rotor interaction in the clearance gap. In addition to the sample cases, the computational procedure also applies to a separate category of problems referred to as the 'seal-like' category. The problem, in this case, concerns a shrouded impeller, with the exception that the secondary, or leakage, passage is totally isolated from the primary-flow passage. The difference between this and the pump problem is that the former is analytically of the simple 'seal-like' configuration, with two (inlet and exit) flow-permeable stations, while the latter constitutes a double-entry / double-discharge flow problem. In all cases, the problem is that of a rotor clearance gap. The problem here is that of a rotor excitation in the form of a cylindrical whirl around the housing centerline for a smooth annular seal. In its centered operation mode, the rotor is assumed to give rise to an axisymmetric flow field in the clearance gap. As a result, problems involving longitudinal or helical grooves, in the rotor or housing surfaces, go beyond the code capabilities. Discarding, for the moment, the pre- and post-processing phases, the bulk of the computational procedure consists of two main steps. The first is aimed at producing the axisymmetric 'zeroth-order' flow solution in the given flow domain. Detailed description of this problem, including the flow-governing equations, turbulence closure, boundary conditions, and the finite-element formulation, was covered by Baskharone and Hensel. The second main step is where the perturbation model is implemented, with the input being the centered-rotor 'zeroth-order' flow solution and a prescribed whirl frequency ratio (whirl frequency divided by the impeller speed). The computational domain, in the latter case, is treated

  15. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.

    PubMed

    Qian, K X; Wang, F Q; Zeng, P; Ru, W M; Yuan, H Y; Feng, Z G

    2006-01-01

    Computational fluid dynamics (CFD) technology was applied to predict the flow patterns in the authors' streamlined blood pump and an American bio-pump with straight vanes and shroud, respectively. Meanwhile, haemolysis comparative tests of the two pumps were performed to verify the theoretical analysis. The results revealed that the flow patterns in the streamlined impeller are coincident with its logarithmic vanes and parabolic shroud, and there is neither separate flow nor impact in the authors' pump. In the bio-pump, the main flow has the form of logarithmic spiral in vertical section and parabola in cross section, thus there are both stagnation and swirl between the main flow and the straight vanes and shroud. Haemolysis comparative tests demonstrated that the authors' pump has an index of haemolysis of 0.030, less than that of the bio-pump (0.065).

  16. Design of a high-pressure circulating pump for viscous liquids.

    PubMed

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  17. Design rules for pumping and metering of highly viscous fluids in microfluidics.

    PubMed

    Perry, Sarah L; Higdon, Jonathan J L; Kenis, Paul J A

    2010-11-21

    The use of fluids that are significantly more viscous than water in microfluidics has been limited due to their high resistance to flow in microscale channels. This paper reports a theoretical treatment for the flow of highly viscous fluids in deforming microfluidic channels, particularly with respect to transient effects, and discusses the implications of these effects on the design of appropriate microfluidic devices for highly viscous fluids. We couple theory describing flow in a deforming channel with design equations, both for steady-state flows and for the transient periods associated with the initial deformation and final relaxation of a channel. The results of this analysis allow us to describe these systems and also to assess the significance of different parameters on various deformation and/or transient effects. To exemplify their utility, we apply these design rules to two applications: (i) pumping highly viscous fluids for a nanolitre scale mixing application and (ii) precise metering of fluids in microfluidics.

  18. Real-Time Observation of Thrombus Growth Process in an Impeller of a Hydrodynamically Levitated Centrifugal Blood Pump by Near-Infrared Hyperspectral Imaging.

    PubMed

    Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Fujiwara, Tatsuki; Nishida, Masahiro; Maruyama, Osamu

    2015-08-01

    Understanding the thrombus formation in cardiovascular devices such as rotary blood pumps is the most important issue in developing more hemocompatible devices. The objective of this study was to develop a hyperspectral imaging (HSI) method to visualize the thrombus growth process within a rotary blood pump and investigate the optical properties of the thrombus. An in vitro thrombogenic test was conducted using fresh porcine blood and a specially designed hydrodynamically levitated centrifugal blood pump with a transparent bottom. The pump rotating at 3000 rpm circulated the blood at 1.0 L/min. The bottom surface of the pump was illuminated with white light pulsed at the same frequency as the pump rotation, and the backward-scattered light was imaged using the HSI system. Using stroboscopic HSI and an image construction algorithm, dynamic spectral imaging at wavelengths ranging from 608 to 752 nm within the rotating pump was achieved. After completing the experiment, we collected the red thrombus formed in the pump impeller and quantified the thrombus hemoglobin concentration (Hbthrombus ). The spectrum changed around the center of the impeller, and the area of change expanded toward the impeller flow path. The shape corresponded approximately to the shape of the thrombus. The spectrum change indicated that the light scattering derived from red blood cells decreased. The Hbthrombus was 4.7 ± 1.3 g/dL versus a total hemoglobin of 13 ± 0.87 g/dL. The study revealed that Hbthrombus was reduced by the surrounding blood flow.

  19. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.

  20. Development of turbo-viscous pump with ceramic rotor assembly and oil-free driving unit

    SciTech Connect

    Murakami, Y.; Abe, T. , Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki-ken, Japan ); Ohsawa, H.; Hata, S. )

    1991-05-01

    In order to establish a dynamic pumping system for fusion reactors and other advanced vacuum devices, a new type of roughing pump named turbo-viscous pump has been developed. The construction of the pump features a multistage ceramic (silicon nitride) rotor assembly and an oil-free driving unit. The rotor assembly has parallel rotor disks, between which project stator disks from the outer casing with rotor-stator clearances {lt}100 {mu}m, and a shaft with gas turbine blades. Spiral grooves are cut on either side of the rotor or stator disk of each stage, each of them starting near the center (or at the periphery) and ending at the periphery (or near the center). The pump shaft is supported by gas bearings and is driven by gas impulse turbines at {similar to}25 000 rpm. No lubricating or cooling oil is used. The turbo-viscous pump works in a wide pressure range from atmospheric pressure to 10{sup {minus}3} Pa. The pumping speed and ultimate pressure attained so far are 0.28 m{sup 3}/min (at inlet pressures between 10{sup {minus}1} and 10{sup 2} Pa) and 1{times}10{sup {minus}3} Pa, respectively.

  1. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 7: High pressure fuel turbo-pump third stage impeller analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.

  2. CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons and double helical screw ribbons impellers

    NASA Astrophysics Data System (ADS)

    Driss, Zied; Karray, Sarhan; Kchaou, Hedi; Abid, Mohamed Salah

    2011-12-01

    In this paper, the mixing performance of double helical ribbons and double helical screw ribbons impellers mounted on stirred tanks is numerical investigated. The computer simulations are conducted within a specific computational fluid dynamic (CFD) code, based on resolution of the Naviers-Stokes equations in the laminar flow with a finite volume discretization. The field velocity and the viscous dissipation rate are presented in different vessel planes. The global characteristics and the power consumption of these impellers are also studied. The numerical results showed that the velocity field is more active with the double helical screw ribbons impeller. In this case, the effectiveness of the viscous dissipation and the pumping flow has been obviously noted. Also, the pumping and the energy efficiency reach the highest values at the same Reynolds number. The good agreement between the numerical results and the experimental data quietly confirmed the analysed method.

  3. Design of a high-pressure circulating pump for viscous liquids

    NASA Astrophysics Data System (ADS)

    Seifried, Bernhard; Temelli, Feral

    2009-07-01

    The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 °C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 °C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 °C on a daily basis for a total of more than 1500 h of operation functioning trouble free.

  4. A finite-element-based perturbation model for the rotordynamic analysis of shrouded pump impellers: Part 1: Model development and applications

    NASA Technical Reports Server (NTRS)

    Baskharone, Erian A.

    1993-01-01

    This study concerns the rotor dynamic characteristics of fluid-encompassed rotors, with special emphasis on shrouded pump impellers. The core of the study is a versatile and categorically new finite-element-based perturbation model, which is based on a rigorous flow analysis and what we have generically termed the 'virtually' deformable finite-element approach. The model is first applied to the case of a smooth annular seal for verification purposes. The rotor excitation components, in this sample problem, give rise to a purely cylindrical, purely conical, and a simultaneous cylindrical/conical rotor whirl around the housing centerline. In all cases, the computed results are compared to existing experimental and analytical data involving the same seal geometry and operating conditions. Next, two labyrinth-seal configurations, which share the same tooth-to-tooth chamber geometry but differ in the total number of chambers, were investigated. The results, in this case, are compared to experimental measurements for both seal configurations. The focus is finally shifted to the shrouded-impeller problem, where the stability effects of the leakage flow in the shroud-to-housing secondary passage are investigated. To this end, the computational model is applied to a typical shrouded-impeller pump stage, fabricated and rotor dynamically tested by Sulzer Bros., and the results compared to those of a simplified 'bulk-flow' analysis and Sulzer Bros.' test data. In addition to assessing the computed rotor dynamic coefficients, the shrouded-impeller study also covers a controversial topic, namely that of the leakage-passage inlet swirl, which was previously cited as the origin of highly unconventional (resonance-like) trends of the fluid-exerted forces. In order to validate this claim, a 'microscopic' study of the fluid/shroud interaction mechanism is conducted, with the focus being on the structure of the perturbed flow field associated with the impeller whirl. The conclusions

  5. Unshrouded Impeller Technology Development Status

    NASA Technical Reports Server (NTRS)

    Droege, Alan R.; Williams, Robert W.; Garcia, Roberto

    2000-01-01

    To increase payload and decrease the cost of future Reusable Launch Vehicles (RLVs), engineers at NASA/MSFC and Boeing, Rocketdyne are developing unshrouded impeller technology for application to rocket turbopumps. An unshrouded two-stage high-pressure fuel pump is being developed to meet the performance objectives of a three-stage shrouded pump. The new pump will have reduced manufacturing costs and pump weight. The lower pump weight will allow for increased payload.

  6. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    SciTech Connect

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  7. On-site Real-Time Inspection System for Pump-impeller using X-band Linac X-ray Source

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tomohiko; Natsui, Takuya; Taguchi, Hiroki; Taniguchi, Yoshihiro; Lee, Ki woo; Hashimoto, Eiko; Sakamoto, Fumito; Sakumi, Akira; Yusa, Noritaka; Uesaka, Mitsuru; Nakamura, Naoki; Yamamoto, Masashi; Tanabe, Eiji

    2009-03-01

    The methods of nondestructive testing (NDT) are generally ultrasonic, neutron, eddy-current and X-rays, NDT by using X-rays, in particular, is the most useful inspection technique having high resolution. We can especially evaluate corroded pipes of petrochemical complex, nuclear and thermal-power plants by the high energy X-ray NDT system. We develop a portable X-ray NDT system with X-band linac and magnetron. This system can generate a 950 keV electron beam. We are able to get X-ray images of samples with 1 mm spatial resolution. This system has application to real time impeller inspection because linac based X-ray sources are able to generate pulsed X-rays. So, we can inspect the rotating impeller if the X-ray pulse rate is synchronized with the impeller rotation rate. This system has application in condition based maintenance (CBM) of nuclear plants, for example. However, 950 keV X-ray source can only be used for thin tubes with 20 mm thickness. We have started design of a 3.95 MeV X-band linac for broader X-ray NDT application. We think that this X-ray NDT system will be useful for corrosion wastage and cracking in thicker tubes at nuclear plants and impeller of larger pumps. This system consists of X-band linac, thermionic cathode electron gun, magnetron and waveguide components. For achieving higher electric fields the 3.95 MeV X-band linac structure has the side-coupled acceleration structure. This structure has more efficient acceleration than the 950 keV linac with alternating periodic structure (APS). We adopt a 1.3 MW magnetron for the RF source. This accelerator system is about 30 cm long. The beam current is about 150 mA, and X-ray dose rate is 10 Gy@1 m/500 pps. In this paper, the detail of the whole system concept and the electromagnetic field of designed linac structure will be reported.

  8. Influence of impeller and diffuser geometries on the lateral fluid forces of whirling centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Ohashi, Hideo; Sakurai, Akira; Nishihama, Jiro

    1989-01-01

    Lateral fluid forces on two-dimensional centrifugal impellers, which whirl on a circular orbit in a vaneless diffuser, were reported. Experiments were further conducted for the cases in which a three-dimensional centrifugal impeller, a model of the boiler feed pump, whirls in vaneless and vaned diffusers. The influence of the clearance configuration between the casing and front shroud of the impeller was also investigated. The result indicated that the fluid dynamic interaction between the impeller and the guide vanes induces quite strong fluctuating fluid forces to the impeller, but nevertheless its influence on radial and tangential force components averaged over a whirling orbit is relatively small.

  9. Sub-scale Waterflow Cavitation and Dynamic Transfer Function Testing of an Oxidizer Turbo-Pump Combined Inducer and Impeller

    NASA Technical Reports Server (NTRS)

    Karon, D. M.; Patel, S. K.; Zoladz, T. F.

    2016-01-01

    In 2009 and 2010, Concepts NREC prepared for and performed a series of tests on a 52% scale of a version of the Pratt & Whitney Rocketdyne J-2X Oxidizer Turbopump under a Phase III SBIR with NASA MSFC. The test article was a combined inducer and impeller, tested as a unit. This paper presents an overview of the test rig and facility, instrumentation, signal conditioning, data acquisition systems, testing approach, measurement developments, and lessons learned. Results from these tests were presented in the form of two papers at the previous JANNAF joint propulsion conference, in December of 2011.

  10. Computation of the flow field in a centrifugal impeller with splitter blades

    NASA Technical Reports Server (NTRS)

    Dejong, Frederik J.; Choi, Sang-Keun; Govindan, T. R.; Sabnis, Jayant S.

    1992-01-01

    To support the design effort of the Space Transportation Main Engine (STME) Fuel Pump Stage, viscous flow calculations were performed in a centrifugal impeller with splitter blades. These calculations were carried out with a Navier-Stokes solver (MINT), which employs a linearized block-implicit Alternating Direction Implicit (ADI) procedure to iteratively solve a finite difference form of the system of conservation equations of mass, momentum, and energy in body-fitted coordinates. A computational grid was generated algebraically for the 'channel' between two main blades of the impeller and extended both upstream of the impeller inlet and downstream of the impeller exit so that the appropriate boundary conditions could be applied. The results of the calculations show that although the overall level of flow distortion near the impeller exit is not very large, there is a noticeable difference between the flow patterns in the two 'passages' (one passage between the pressure side of the splitter blade and the suction side of the next full blade).

  11. Latest update of tests and improvements to US Coast Guard viscous oil pumping system.

    PubMed

    Drieu, Michael D; Nourse, Peter C; MacKay, Ronald; Cooper, David A; Hvidbak, Flemming

    2003-01-01

    Over the past nine years, the US Coast Guard has incorporated the prevention through people (PTP) philosophy as a "human factors" approach to learn how maritime operations can be regulated safer and be more efficient by evaluating training, management policies, operational procedures, and establishing partnerships with the maritime industry. One of the key elements of applying a PTP approach is identifying and incorporating lessons learned from major marine casualties and pollution incidents. Since 1997, the US Coast Guard National Strike Force has responded to three major oil spills involving foreign freight vessels grounding, which included the removal of highly viscous oil using various lightering equipment and systems. An informal workgroup consisting of the US Coast Guard, US Navy Supervisor of Salvage (NAVSUPSALV), and various representatives from oil pollution clean-up companies met at the following facilities: the Chevron Asphalt Facility in Edmonds, WA (September 1999), the Oil and Hazardous Materials Simulated Environmental Test Tank (OHMSETT) testing facility in Leonardo, New Jersey (November 1999 and March 2000), the Alaska Clean Seas (ACS) warehouse annex in Prudhoe Bay, AK (October 2000), and Cenac Towing Company facility in Houma, LA (May 2002). The group shared ideas and techniques, and tested different pumps and hose lengths with viscous oil. It was during the early tests that the first quantitative results showed just how efficient lubricated transport of heavy oil product could be, and broadened the knowledge of such methods to the entire industry. Although this technology had existed for many years in the oil production and handling industry, its use had never been investigated in a laboratory setting with regard to salvage response lightering systems.

  12. Boiling crisis controlled by capillary pumping and viscous friction: Liquid penetration length and dry spot diameter

    NASA Astrophysics Data System (ADS)

    Kim, Hyungdae; Ahn, Ho Seon; Kwak, Ho Jae; Kim, Moo Hwan; Kim, Dong Eok

    2016-12-01

    A boiling crisis, or critical heat flux (CHF), is a condition that determines the upper bound on removable thermal energy at a boiling surface. In such situations, the liquid cannot wet the surface because a vapor film completely covers it. CHF is enhanced on micro-structured surfaces when under boiling conditions. CHF values were measured for surfaces with rectangular microchannel geometries of various channel widths, (10-30 μm) and generally increased in value as channel widths decreased. However, the CHF value for the 5-μm channel-width surface was found to be lower than the wider channel-width surfaces. This observation contradicts models based on vapor recoil and classical instability mechanisms. Hence, we present a fluid-dynamics model that considers capillary pumping and viscous friction. With a focus on the spatial distribution of the liquid penetration region and the local dry spot under a large vapor bubble, this model can accurately predict the CHF variation associated with different channel widths.

  13. Assessment of Cavitation-Erosion Resistance of Potential Pump Impeller Materials for Mercury Service at the Spallation Neutron Source

    SciTech Connect

    Pawel, Steven J

    2007-03-01

    Using a standard vibratory horn apparatus, the relative cavitation-erosion resistance of a number of cast alloys in mercury was evaluated to facilitate material selection decisions for Hg pumps. The performance of nine different alloys - in the as-cast condition as well as following a case-hardening treatment intended to increase surface hardness - was compared in terms of weight loss and surface profile development as a function of sonication time in Hg at ambient temperature. The results indicated that among several potentially suitable alloys, CD3MWCuN perhaps exhibited the best overall resistance to cavitation in both the as-cast and surface treated conditions while the cast irons examined were found unsuitable for service of this type. However, other factors, including cost, availability, and vendor schedules may influence a material selection among the suitable alloys for Hg pumps.

  14. Power recovery turbine pump

    SciTech Connect

    Oklejas, R.A.; Oklejas, E. Jr.

    1991-09-17

    This patent describes an energy recovery pump turbine for use in industrial processes where a fluid is pumped at a high pressure into the process and at least a portion of the fluid is discharged from the process at a high pressure. It comprises a central body portion that defines a turbine impeller cavity and a pump impeller cavity; a turbine inlet nozzle extending from the turbine impeller cavity through the central body portion; the turbine inlet nozzle being located adjacent the outer periphery of the turbine impeller cavity, a turbine exhaust passageway passing into the turbine impeller cavity, the turbine exhaust passageway being located adjacent the center of the turbine impeller; a turbine positioned in the turbine impeller cavity to receive the high pressure fluid discharged from the process, the turbine having an impeller positioned on a shaft, the fluid engaging the impeller and causing the impeller and shaft to rotate.

  15. Unshrouded Centrifugal Turbopump Impeller Design Methodology

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Williams, Morgan; Chen, Wei-Chung; Paris, John; Williams, Robert; Stewart, Eric

    2001-01-01

    Turbopump weight continues to be a dominant parameter in the trade space for reduction of engine weight. Space Shuttle Main Engine weight distribution indicates that the turbomachinery make up approximately 30% of the total engine weight. Weight reduction can be achieved through the reduction of envelope of the turbopump. Reduction in envelope relates to an increase in turbopump speed and an increase in impeller head coefficient. Speed can be increased until suction performance limits are achieved on the pump or due to alternate constraints the turbine or bearings limit speed. Once the speed of the turbopump is set the impeller tip speed sets the minimum head coefficient of the machine. To reduce impeller diameter the head coefficient must be increased. A significant limitation with increasing head coefficient is that the slope of the head-flow characteristic is affected and this can limit engine throttling range. Unshrouded impellers offer a design option for increased turbopump speed without increasing the impeller head coefficient. However, there are several issues with regard to using an unshrouded impeller: there is a pump performance penalty due to the front open face recirculation flow, there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face, and since test data is very limited for this configuration, there is uncertainty in the magnitude and phase of the rotordynamic forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the hydrodynamic performance, axial thrust, and rotordynamic performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design.

  16. Implantable centrifugal blood pump with dual impeller and double pivot bearing system: electromechanical actuator, prototyping, and anatomical studies.

    PubMed

    Bock, Eduardo; Antunes, Pedro; Leao, Tarcisio; Uebelhart, Beatriz; Fonseca, Jeison; Leme, Juliana; Utiyama, Bruno; da Silva, Cibele; Cavalheiro, Andre; Filho, Diolino Santos; Dinkhuysen, Jarbas; Biscegli, Jose; Andrade, Aron; Arruda, Celso

    2011-05-01

    An implantable centrifugal blood pump has been developed with original features for a left ventricular assist device. This pump is part of a multicenter and international study with the objective to offer simple, affordable, and reliable devices to developing countries. Previous computational fluid dynamics investigations and wear evaluation in bearing system were performed followed by prototyping and in vitro tests. In addition, previous blood tests for assessment of normalized index of hemolysis show results of 0.0054±2.46 × 10⁻³ mg/100 L. An electromechanical actuator was tested in order to define the best motor topology and controller configuration. Three different topologies of brushless direct current motor (BLDCM) were analyzed. An electronic driver was tested in different situations, and the BLDCM had its mechanical properties tested in a dynamometer. Prior to evaluation of performance during in vivo animal studies, anatomical studies were necessary to achieve the best configuration and cannulation for left ventricular assistance. The results were considered satisfactory, and the next step is to test the performance of the device in vivo.

  17. Impeller Volute and Diffuser Interaction

    DTIC Science & Technology

    2006-11-01

    fluctuations, hydraulic noises and unforeseen hydrodynamic forces. These fluctuations not only generate noise and vibration that cause unacceptable... hydraulic forces in centrifugal pumps, Domm and Hergt [19], Lorett and Gopalakrishnan [20], and Fongang et al. [21] to name only a few. Some of the... pulsates as the impeller rotates in the volute. This causes a variation in the total head generates, a subsequent mixing of different total energy

  18. Creating A Data Base For Design Of An Impeller

    NASA Technical Reports Server (NTRS)

    Prueger, George H.; Chen, Wei-Chung

    1993-01-01

    Report describes use of Taguchi method of parametric design to create data base facilitating optimization of design of impeller in centrifugal pump. Data base enables systematic design analysis covering all significant design parameters. Reduces time and cost of parametric optimization of design: for particular impeller considered, one can cover 4,374 designs by computational simulations of performance for only 18 cases.

  19. A concept for improving efficiency of multistage centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Gardy, H. F.

    1970-01-01

    Multichannel impeller consists of successive stage impellers arranged concentrically without clearances between them. Reduction in friction is predicted to increase pump efficiency by 5 to 10 percent.

  20. Full 3-D viscous optimization design of a reversible pump turbine runner

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Zhu, B. S.; Cao, S. L.; Tan, L.

    2013-12-01

    The bi-directional operation of reversible pump turbines presents a great challenge in terms of runner design. In the present paper, an optimal design system for the pump turbine runner is presented by coupling three-dimensional (3-D) inverse design with the Computational Fluid Dynamics (CFD), Design of Experiment (DoE), Response Surface Methodology (RSM) and Multi Objective Genetic Algorithm (MOGA). A pump-turbine runner was designed using the system, with selecting blade loading distributions and blade lean as the input parameters, and the runner efficiency for both pump and turbine mode as optimization objectives. The CFD results show that a high efficiency runner can be designed using the present system.

  1. Advanced impeller geometry boosts liquid agitation

    SciTech Connect

    Fasano, J.B.; Bakker, A.; Penney, W.R. )

    1994-08-01

    A traditional agitator impeller often functions as a rather inefficient pump because of the way it produces fluid motion and pressure head. However, one can improve the amount of flow or shear generated by an impeller at constant power consumption and torque by changing its design. For example, a high-efficiency, axial-flow impeller produces more fluid motion per unit of power at constant torque than an otherwise similar pitched-blade turbine. The more-vigorous fluid motion cuts blend time and enhances heat-transfer in various flow-controlled mixing operations, such as blending of miscible fluids. For most applications, a higher degree of agitation intensity can be achieved on the same machine by substituting a high-efficiency impeller for a conventional pitched-blade unit. The high-efficiency impeller features a larger geometric pitch angle (30--60 deg) at the hub than at the tip (10--30 deg). Results from recently conducted controlled experiments indicate the beneficial effects of the high-efficiency impeller on blend time and heat-transfer coefficients in liquid-liquid mixing as well as solids suspension. This articles focuses on liquid agitation, with discussions of solids suspension set aside for a forthcoming piece in this series of articles on mixing.

  2. Computer Program Aids Design Of Impeller Blades

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Galazin, John V.

    1992-01-01

    Impeller blades for centrifugal turbopumps designed quickly with help of computer program. Generates blade contours and continually subjects them to evaluation. Checks physical parameters to ensure they are compatible with required performance and recycles design if criteria not met. Program written for centrifugal turbomachinery, also adapted to such axial pump components as inducer blades and stator vanes.

  3. Swimming and pumping by helical waves in viscous and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Lei; Spagnolie, Saverio E.

    2015-02-01

    We study helical bodies of arbitrary cross-sectional profile as they swim or transport fluid by the passage of helical waves. Many cases are explored: the external flow problem of swimming in a cylindrical tube or an infinite domain, the internal fluid pumping problem, and confined/unconfined swimming and internal pumping in a viscoelastic (Oldroyd-B) fluid. A helical coordinate system allows for the analytical calculation of swimming and pumping speeds and fluid velocities in the asymptotic regime of nearly cylindrical bodies. In a Newtonian flow, a matched asymptotic analysis results in corrections to the swimming speed accurate to fourth-order in the small wave amplitude, and the results compare favorably with full numerical simulations. We find that the torque-balancing rigid body rotation generally opposes the direction of wave passage, but not always. Confinement can result in local maxima and minima of the swimming speed in the helical pitch, and the effects of confinement decrease exponentially fast with the diameter of the tube. In a viscoelastic fluid, we find that the effects of fluid elasticity on swimming and internal pumping modify the Newtonian results through the mode-dependent complex viscosity, even in a confined domain.

  4. Fluid extraction across pumping and permeable walls in the viscous limit

    NASA Astrophysics Data System (ADS)

    Herschlag, G.; Liu, J.-G.; Layton, A. T.

    2016-04-01

    In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing material exchange with systems exterior to the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast we do not assume flow that is proportional to the wall velocity, but flow that is driven by hydrostatic pressure, and we use Darcy's law to close our system for normal wall velocity. We incorporate our flow solution into a model that tracks the material pressure exterior to the channel. We use this model to examine flux across the channel-reservoir barrier and demonstrate that pumping can either enhance or impede fluid extraction across channel walls. We find that associated with each set of physical flow and pumping parameters, there are optimal reservoir conditions that maximize the amount of material flowing from the channel into the reservoir.

  5. Liquid Scavenger for Separator/Pump

    NASA Technical Reports Server (NTRS)

    Berg, P. F.

    1986-01-01

    Pump for hydrogen modified to remove moisture that condenses in impeller stage. Impeller-pump housing has circumferential groove leading to exit hole near high-pressure outlet. As impeller disk rotates, flings water droplets condensed in pump toward groove. Aerodynamic drag drives water around groove to exit hole.

  6. Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements

    NASA Technical Reports Server (NTRS)

    Larosiliere, L. M.; Skoch, G. J.; Prahst, P. S.

    1997-01-01

    The performance and flow structure in an unshrouded impeller of approximately 4:1 pressure ratio is synthesized on the basis of a detailed analysis of 3D viscous CFD results and aerodynamic measurements. A good data match was obtained between CFD and measurements using laser anemometry and pneumatic probes. This solidified the role of the CFD model as a reliable representation of the impeller internal flow structure and integrated performance. Results are presented showing the loss production and secondary flow structure in the impeller. The results indicate that while the overall impeller efficiency is high, the impeller shroud static pressure recovery potential is underdeveloped leading to a performance degradation in the downstream diffusing element. Thus, a case is made for a follow-on impeller parametric design study to improve the flow quality. A strategy for aerodynamic performance enhancement is outlined and an estimate of the gain in overall impeller efficiency that might be realized through improvements to the relative diffusion process is provided.

  7. Slip due to surface roughness for a Newtonian liquid in a viscous microscale disk pump

    NASA Astrophysics Data System (ADS)

    Ligrani, Phil; Blanchard, Danny; Gale, Bruce

    2010-05-01

    In the present study, hydrophobic roughness is used to induce near-wall slip in a single rotating-disk micropump operating with Newtonian water. The amount of induced slip is altered by employing different sizes of surface roughness on the rotating disk. The magnitudes of slip length and slip velocities increase as the average size of the surface roughness becomes larger. In the present study, increased slip magnitudes from roughness are then associated with reduced pressure rise through the pump and lower radial-line-averaged shear stress magnitudes (determined within slip planes). Such shear stress and pressure rise variations are similar to those which would be present if the slip is induced by the intermolecular interactions which are associated with near-wall microscale effects. The present slip-roughness effects are quantified experimentally over rotational speeds from 50 to 1200 rpm, pressure increases from 0 to 312 kPa, net flow rates of 0-100 μl/min, and fluid chamber heights from 6.85 to 29.2 μm. Verification is provided by comparisons with analytic results determined from the rotating Couette flow forms of the Navier-Stokes equations, with different disk rotational speeds, disk roughness levels, and fluid chamber heights. These data show that slip length magnitudes show significant dependence on radial-line-averaged shear stress for average disk roughness heights of 404 and 770 nm. These slip length data additionally show a high degree of organization when normalized using by either the average roughness height or the fluid chamber height. For the latter case, such behavior provides evidence that the flow over a significant portion of the passage height is affected by the roughness, and near-wall slip velocities, especially when the average roughness height amounts to 11% of the h =6.86 μm passage height of the channel. Such scaling of the disk slip length bdisk with fluid chamber height h is consistent with d-type roughness scaling in macroscale

  8. PIV Measurements in Pumps

    DTIC Science & Technology

    2006-11-01

    Pump Impeller Fig. 37 shows the top view of pump test rig for radial impeller pumps . The goal of this experiment is cavitation observation and their...PIV Measurements in Pumps 5 - 28 RTO-EN-AVT-143 Figure 37: Test Rig for Combined PIV Measurements and Cavitation Observation. Figure 38...RTO-EN-AVT-143 5 - 1 PIV Measurements in Pumps Dr. Detlev L. Wulff TU Braunschweig Institut für Strömungsmaschinen Langer Kamp 6 D-38106

  9. High efficiency centrifugal pump

    SciTech Connect

    Nasvytis, P.J.; Jahrstorfer, G.W.

    1983-10-11

    A high speed fuel pump for a gas turnbine engine has a positively-driven shroud positioned between a main impeller and the wall of a pumping cavity to reduce impeller drag. The shroud is formed by a first disc having a boost impeller connected to its central hub portion and a second disc having a gear carried by its central hub portion. The main drive shaft assembly to which the main impeller is connected, carries a gear which meshes with gear mounted upon a shaft. The shaft also carries a gear which meshes with the gear. The gears are sized so that the shroud is driven at one-half the speed of the main impeller in order to maximize impeller drag reduction and enhance pumping capability when severe inlet conditions are present at the pump inlet.

  10. BLADED IMPELLER FOR TURBOBLOWERS

    DOEpatents

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  11. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  12. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  13. CFD analyses for advanced pump design

    NASA Technical Reports Server (NTRS)

    Dejong, F. J.; Choi, S.-K.; Govindan, T. R.

    1994-01-01

    As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.

  14. Experience in reducing the hemolysis of an impeller assist heart.

    PubMed

    Qian, K X

    1989-01-01

    Blood trauma has been one of the main problems of centrifugal pumps. The difficulties in reducing hemolysis are many, and all the factors causing excessive hemolysis always act together, making them difficult to discover and distinguish. Furthermore, error could occur at many points during hemolysis testing, making it difficult to repeat results. In developing the low hemolysis pulsatile and nonpulsatile impeller pumps the authors established an experimental method for investigating and searching for the hemolysis factors. In this study two pumps with only one differing factor were compared or only one factor on one pump was changed in the middle of the test period. In this way the effect of the individual factor on pump hemolysis could be seen and some factors have been thus confirmed as important reasons for hemolysis: 1) the drift of the pump output (including the volume and efficiency) from the design point; 2) impeller vane angles, i.e., the radial logarithmic spiral angle and the axial helical spiral angle; 3) roughness of vane surface and other blood contacting surfaces of the sealing box and pump housing; 4) vibration of the rotor resulting from dynamic disequilibrium; and 5) prerotation swirl at the inlet of the pump. The blood pressure to be pumped has been shown to have no influence on pump hemolysis. After eliminating the hemolysis factors, the blood trauma of the impeller heart has been reduced remarkably. The index of hemolysis of the nonpulsatile pump is 0.015, about one fifth of a clinically used roller made in Shanghai and two sevenths of one Sarns 7,000 Roller; the index of hemolysis of the pulstile pump is 0.020, about one sixth of a self-made diaphragm pump and one thirteenth of the Polystan pulsa tile pump.

  15. CFD Parametric Study of Consortium Impeller

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.

    1993-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform

  16. CFD parametric study of consortium impeller

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.; Chen, Y. S.; Garcia, Roberto; Williams, Robert W.

    1993-07-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Finite Difference Navier-Stokes flow solver, FDNS, which includes the extended k-epsilon turbulence model and appropriate moving interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. A second-order central difference scheme plus adaptive dissipation terms was employed in the FDNS code, along with a predictor plus multi-corrector pressure-based solution procedure. The multi-zone, multi-block capability allows the FDNS code to efficiently solve flow fields with complicated geometry. The FDNS code has been benchmarked by analyzing the pump consortium inducer, and it provided satisfactory results. In the present study, a CFD parametric study of the pump consortium impeller was conducted using the FDNS code. The pump consortium impeller, with partial blades, is a new design concept of the advanced rocket engines. The parametric study was to analyze the baseline design of the consortium impeller and its modification which utilizes TANDEM blades. In the present study, the TANDEM blade configuration of the consortium impeller considers cut full blades for about one quarter chord length from the leading edge and clocks the leading edge portion with an angle of 7.5 or 22.5 degrees. The purpose of the present study is to investigate the effect and trend of the TANDEM blade modification and provide the result as a design guideline. A 3-D flow analysis, with a 103 x 23 x 30 mesh grid system and with the inlet flow conditions measured by Rocketdyne, was performed for the baseline consortium impeller. The numerical result shows that the mass flow rate splits through various blade passages are relatively uniform

  17. Comparison Between Predicted and Experimentally Measured Flow Fields at the Exit of the SSME HPFTP Impeller

    NASA Technical Reports Server (NTRS)

    Bache, George

    1993-01-01

    Validation of CFD codes is a critical first step in the process of developing CFD design capability. The MSFC Pump Technology Team has recognized the importance of validation and has thus funded several experimental programs designed to obtain CFD quality validation data. The first data set to become available is for the SSME High Pressure Fuel Turbopump Impeller. LDV Data was taken at the impeller inlet (to obtain a reliable inlet boundary condition) and three radial positions at the impeller discharge. Our CFD code, TASCflow, is used within the Propulsion and Commercial Pump industry as a tool for pump design. The objective of this work, therefore, is to further validate TASCflow for application in pump design. TASCflow was used to predict flow at the impeller discharge for flowrates of 80, 100 and 115 percent of design flow. Comparison to data has been made with encouraging results.

  18. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    NASA Astrophysics Data System (ADS)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  19. Experimental and numerical study of three-dimensional flows in a mixed-flow pump stage

    SciTech Connect

    Takemura, T.; Goto, A.

    1996-07-01

    Internal flows of a low-specific-speed pump stage, having a mixed-flow impeller and a vaned bowl diffuser combination, have been investigated experimentally and numerically. Air was used as the test fluid, and the internal flows were measured at various locations and under various capacities. Flow calculations were made, for both the isolated impeller case and the complete stage case, using Denton viscous codes LOSS3D and MULTSTAGE14, by which the three-dimensional steady flow through multiple blade rows can be calculated using the interrow mixing process. Experimental results showed the effects of the interaction between the impeller and the reverse flow, originating in the downstream diffuser, even at the design point capacity. While an impeller exit reverse flow occurred at the shroud side in the isolated impeller calculation, it was observed at the hub side in the complete stage case, showing good agreement with the experimental results. Although the flow in the diffuser was highly distorted due to a strong swirl flow, patterns of total pressure distribution could be predicted well by the complete stage calculation.

  20. Apparatus for pumping liquids at or below the boiling point

    DOEpatents

    Bingham, Dennis N.

    2002-01-01

    A pump comprises a housing having an inlet and an outlet. An impeller assembly mounted for rotation within the housing includes a first impeller piece having a first mating surface thereon and a second impeller piece having a second mating surface therein. The second mating surface of the second impeller piece includes at least one groove therein so that at least one flow channel is defined between the groove and the first mating surface of the first impeller piece. A drive system operatively associated with the impeller assembly rotates the impeller assembly within the housing.

  1. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  2. Impeller flow field characterization with a laser two-focus velocimeter

    NASA Astrophysics Data System (ADS)

    Brozowski, L. A.; Ferguson, T. V.; Rojas, L.

    1993-07-01

    Use of Computational Fluid Dynamics (CFD) codes, prevalent in the rocket engine turbomachinery industry, necessitates data of sufficient quality and quantity to benchmark computational codes. Existing data bases for typical rocket engine configurations, in particular impellers, are limited. In addition, traditional data acquisition methods have several limitations: typically transducer uncertainties are 0.5% of transducer full scale and traditional pressure probes are unable to provide flow characteristics in the circumferential (blade-to-blade) direction. Laser velocimetry circumvents these limitations by providing +0.5% uncertainty in flow velocity and +0.5% uncertainty in flow angle. The percent of uncertainty in flow velocity is based on the measured value, not full range capability. The laser electronics multiple partitioning capability allows data acquired between blades as the impeller rotates, to be analyzed separately, thus providing blade-to-blade flow characterization. Unlike some probes, the non-intrusive measurements made with the laser velocimeter does not disturb the flow. To this end,, and under Contract (NAS8-38864) to the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC), an extensive test program was undertaken at Rocketdyne. Impellers from two different generic rocket engine pump configurations were examined. The impellers represent different spectrums of pump design: the Space Shuttle Main Engine (SSME) high pressure fuel turbopump (HPFTP) impeller was designed in the 1 1970's the Consortium for CFD application in Propulsion Technology Pump Stage Technology Team (Pump Consortium) optimized impeller was designed with the aid of modern computing techniques. The tester configuration for each of the impellers consisted of an axial inlet, an inducer, a diffuser, and a crossover discharge. While the tested configurations were carefully chosen to be representative of generic rocket engine pumps, several

  3. Impeller flow field characterization with a laser two-focus velocimeter

    NASA Technical Reports Server (NTRS)

    Brozowski, L. A.; Ferguson, T. V.; Rojas, L.

    1993-01-01

    Use of Computational Fluid Dynamics (CFD) codes, prevalent in the rocket engine turbomachinery industry, necessitates data of sufficient quality and quantity to benchmark computational codes. Existing data bases for typical rocket engine configurations, in particular impellers, are limited. In addition, traditional data acquisition methods have several limitations: typically transducer uncertainties are 0.5% of transducer full scale and traditional pressure probes are unable to provide flow characteristics in the circumferential (blade-to-blade) direction. Laser velocimetry circumvents these limitations by providing +0.5% uncertainty in flow velocity and +0.5% uncertainty in flow angle. The percent of uncertainty in flow velocity is based on the measured value, not full range capability. The laser electronics multiple partitioning capability allows data acquired between blades as the impeller rotates, to be analyzed separately, thus providing blade-to-blade flow characterization. Unlike some probes, the non-intrusive measurements made with the laser velocimeter does not disturb the flow. To this end,, and under Contract (NAS8-38864) to the National Aeronautics and Space Administration (NASA) at Marshall Space Flight Center (MSFC), an extensive test program was undertaken at Rocketdyne. Impellers from two different generic rocket engine pump configurations were examined. The impellers represent different spectrums of pump design: the Space Shuttle Main Engine (SSME) high pressure fuel turbopump (HPFTP) impeller was designed in the 1 1970's the Consortium for CFD application in Propulsion Technology Pump Stage Technology Team (Pump Consortium) optimized impeller was designed with the aid of modern computing techniques. The tester configuration for each of the impellers consisted of an axial inlet, an inducer, a diffuser, and a crossover discharge. While the tested configurations were carefully chosen to be representative of generic rocket engine pumps, several

  4. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  5. Small centrifugal pumps for low thrust rockets

    NASA Technical Reports Server (NTRS)

    Gulbrandsen, N. C.; Furst, R. B.; Burgess, R. M.; Scheer, D. D.

    1985-01-01

    This paper presents the results of a combined analytical and experimental investigation of low specific speed pumps for potential use as components of propellant feed systems for low thrust rocket engines. Shrouded impellers and open face impellers were tested in volute type and vaned diffuser type pumps. Full- and partial-emission diffusers and full- and partial-admission impellers were tested. Axial and radial loads, head and efficiency versus flow, and cavitation tests were conducted. Predicted performance of two pumps are compared when pumping water and liquid hydrogen. Detailed pressure loss and parasitic power values are presented for two pump configurations. Partial-emission diffusers were found to permit use of larger impeller and diffuser passages with a minimal performance penalty. Normal manufacturing tolerances were found to result in substantial power requirement variation with only a small pressure rise change. Impeller wear ring leakage was found to reduce pump pressure rise to an increasing degree as the pump flowrate was decreased.

  6. Lidocaine Viscous

    MedlinePlus

    Lidocaine viscous, a local anesthetic, is used to treat the pain of a sore or irritated mouth ... associated with cancer chemotherapy and certain medical procedures. Lidocaine viscous is not normally used for sore throats ...

  7. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.

    PubMed

    Su, Boyang; Chua, Leok P; Lim, Tau M; Zhou, Tongming

    2010-09-01

    Generally, there are two types of impeller design used in the axial flow blood pumps. For the first type, which can be found in most of the axial flow blood pumps, the magnet is embedded inside the impeller hub or blades. For the second type, the magnet is embedded inside the cylindrical impeller shroud, and this design has not only increased the rotating stability of the impeller but has also avoided the flow interaction between the impeller blade tip and the pump casing. Although the axial flow blood pumps with either impeller design have been studied individually, the comparisons between these two designs have not been conducted in the literature. Therefore, in this study, two axial flow blood pumps with and without impeller shrouds were numerically simulated with computational fluid dynamics and compared with each other in terms of hydraulic and hematologic performances. For the ease of comparison, these two models have the same inner components, which include a three-blade straightener, a two-blade impeller, and a three-blade diffuser. The simulation results showed that the model with impeller shroud had a lower static pressure head with a lower hydraulic efficiency than its counterpart. It was also found that the blood had a high possibility to deposit on the impeller shroud inner surface, which greatly enhanced the possibility of thrombus formation. The blood damage indices in both models were around 1%, which was much lower than the 13.1% of the axial flow blood pump of Yano et al. with the corresponding experimental hemolysis of 0.033 g/100 L.

  8. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  9. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  10. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  11. Numerical studies in a centrifugal pump with the improved blade considering cavitation

    NASA Astrophysics Data System (ADS)

    Song, P. F.; Zhang, Y. X.; Xu, C.; Zhou, X.; Zhang, J. Y.

    2015-01-01

    In this paper, a centrifugal pump with the improved blade for cavitation is studied numerically. A 3D impeller with logarithmic spiral blade profile was designed by the in-house hydraulic design code using a centrifugal pump geometric parameters, and the blade profile curve of suction side on the designed impeller is replaced by a combination of tangent line and circle arc line. The cavitation flows in the centrifugal pump with designed impeller, modified impeller and centrifugal pump spectrum impeller are respectively calculated by two-phase CFD simulation at three flow rates. The tests of the centrifugal pump have been conducted to verify numerical simulation. The effects of designed impeller and modified impeller on hydraulic efficiency, critical cavitation number, cavitation length, head drop performance and vapor cavity distribution in impeller are investigated. The results show that the modification of blade profile curve of suction side can improve the cavitation performance of an impeller and hydraulic efficiency of centrifugal pump. Compared with designed impeller, the critical cavitation number of centrifugal pump with modified impeller decrease by 26.5% under the same flow rate coefficient, and the cavitation intensity in the modified impeller is weakened effectively. The hydraulic efficiency of modified impeller also increases by 4.9%.

  12. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  13. Pump

    SciTech Connect

    Johnson, J.W.; Abdul.Hye, A.B.M.

    1983-10-25

    A pump for injecting chemicals into a well employs a pivot arm for synchronous movement with a well pump. The pivot arm causes reciprocation of a plunger within the body of the chemical pump. The plunger, during its upward stroke causes the entry of chemicals from an outside source into the pump body and, during its downward stroke, causes the exiting of the chemicals into the well. (2 claims.

  14. LH2 pump component development testing in the electric pump room at test cell C inducer no. 1

    NASA Technical Reports Server (NTRS)

    Andrews, F. X.; Brunner, J. J.; Kirk, K. G.; Mathews, J. P.; Nishioka, T.

    1972-01-01

    The characteristics of a turbine pump for use with the nuclear engine for rocket vehicles are discussed. It was determined that the pump will be a two stage centrifugal pump with both stages having backswept impellers and an inducer upstream of the first stage impeller. The test program provided demonstration of the ability of the selected design to meet the imposed requirements.

  15. Oil filaments produced by an impeller in a water stirred tank

    NASA Astrophysics Data System (ADS)

    Sanjuan-Galindo, Rene; Soto, Enrique; Ascanio, Gabriel; Zenit, Roberto

    2010-11-01

    Oil dispersions in aqueous media produced in stirred tanks are part of many industrial processes. The oil drops size and dispersion stability are determined by the impeller geometry, stirring velocity and the physicochemical properties of the mixture. A critical parameter is the total interfacial area which is increased as the drop size is decreased. The mechanism that disperses the oil and generates the drops has not been completely explained. In the present work, castor oil (1% v/v, viscosity 500mPa) and water are stirred with a Scaba impeller in a flat bottom cylindrical tank. The process was recorded with high-speed video and the Reynolds number was fixed to 24,000. Before the stirring, the oil is added at the air water interface. At the beginning of the stirring, the oil is suctioned at the impeller shaft and incorporated into the flow ejected by the impeller. In this region, the flow is turbulent and exhibits velocity gradients that elongate the oil phase. Viscous thin filaments are generated and expelled from the impeller. Thereafter, the filaments are elongated and break to form drops. This process is repeated in all the oil phase and drops are incorporated into the dispersion. Two main zones can be identified in the tank: the impeller discharge characterized by high turbulence and the rest of the flow where low velocity gradients appear. In this region surface forces dominate the inertial ones, and drops became spheroidal.

  16. Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion

    NASA Technical Reports Server (NTRS)

    Garcia, R.; McConnaughey, P. K.; Eastland, A.

    1993-01-01

    The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial

  17. [Improved design of permanent maglev impeller assist heart].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2002-12-01

    Magnetic bearing has no mechanical contact between the rotor and stator. And a rotary pump with magnetic bearing has therefore no mechanical wear and thrombosis due to bearing. The available magnetic bearings, however, are devised with electric magnets, need complicated control and remarkable energy consumption. Resultantly, it is difficult to apply an electric magnetic bearing to rotary pump without disturbing its simplicity, implantability and reliability. The authors have developed a levitated impeller pump merely with permanent magnets. The rotor is supported by permanent magnetic forces radially. On one side of the rotor, the impeller is fixed; and on the other side of the rotor, the driven magnets are mounted. Opposite to this driven magnets, a driving motor coil with iron corn magnets is fastened to the motor axis. Thereafter, the motor drives the rotor via a rotating magnetic field. By laboratory tests with saline, if the rotor stands still or rotates under 4,000 rpm, the rotor has one-point contact axially with the driving motor coil. The contacting point is located in the center of the rotor. As the rotating speed increases gradually to more than 4,000 rpm, the rotor will detache from the stator axially. Then the rotor will be fully levitated. Since the axial levitation is produced by hydraulic force and the driven magnets have a gyro-effect, the rotor rotates very steadly during levitation. As a left ventricular assist device, the pump works in a rotating speed range of 5,000-8,000 rpm, the levitation of the impeller hence is ensured by practical use of the pump.

  18. Optimal Impeller Clearance for a Dual Stirred Unbaffled Tank with a Concave Blade Impeller

    NASA Astrophysics Data System (ADS)

    Devi, T. T.; Kumar, B.

    2016-07-01

    An experimental investigation of unbaffled stirred tanks is carried out with the use of a dual concave blade impeller to evaluate the mass transfer coefficient, power number, and vortex depth. The effect of the impeller clearance on mass transfer is analyzed to estimate the optimal impeller clearance for lower and upper impellers. It is found that the lower impeller positioned at 0.25 of the tank diameter with the clearance between the lower and upper impellers equal to 0.38 of the tank diameter gives the maximum mass transfer coefficient. A comparison with the results for dual Rushton and Rushton-concave impellers at the optimal clearance shows that the concave-concave impellers are most efficient. The scale-up criteria for optimal, geometrically similar systems of unbaffled stirred tanks with a dual concave impeller are proposed.

  19. Blade design loads on the flow exciting force in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.

    2012-11-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  20. Estimating Pump Blockage

    NASA Technical Reports Server (NTRS)

    Chung, W.; Meng, S. Y.; Meng, C. Y.

    1984-01-01

    Blockage predicted for all components including inducers, impellers and diffusers. Pump performance predicted by semiempirical method shows excellent agreement with test results in Space Shuttle main-engine highpressure fuel turbopump. Comparisons of pump efficiency show equally good agreement of calculated values with experimental ones. Method improves current estimation methods based solely on subjective engineering judgment.

  1. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  2. [Computational fluid dynamics simulation of different impeller combinations in high viscosity fermentation and its application].

    PubMed

    Dong, Shuhao; Zhu, Ping; Xu, Xiaoying; Li, Sha; Jiang, Yongxiang; Xu, Hong

    2015-07-01

    Agitator is one of the essential factors to realize high efficient fermentation for high aerobic and viscous microorganisms, and the influence of different impeller combination on the fermentation process is very important. Welan gum is a microbial exopolysaccharide produced by Alcaligenes sp. under high aerobic and high viscos conditions. Computational fluid dynamics (CFD) numerical simulation was used for analyzing the distribution of velocity, shear rate and gas holdup in the welan fermentation reactor under six different impeller combinations. The best three combinations of impellers were applied to the fermentation of welan. By analyzing the fermentation performance, the MB-4-6 combination had better effect on dissolved oxygen and velocity. The content of welan was increased by 13%. Furthermore, the viscosity of production were also increased.

  3. Pressure oscillation in the leakage annulus between a shrouded impeller and its housing due to impeller-discharge-pressure disturbances

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1992-01-01

    The perturbed flow in the leakage path between a shrouded-pump impeller and its housing is analyzed using experiences with the Space Shuttle Main Engine (SSME), high pressure fuel turbopump (HPFTP) wearing-ring seals. Analysis is based on a bulk-flow model which consists of the path-momentum, circumferential momentum, and continuity equations. The pressure oscillations in the leakage annulus are driven by a circumferential variation of the impeller discharge pressure. It is shown that the occurrence and nature of the pressure oscillations depend on the tangential-velocity ratio of the fluid entering the seal, the order of the Fourier coefficient, the closeness of the precessional frequency of the rotating pressure field to the first natural frequency of the fluid annulus, and the clearance of the wearing-ring seal. The results obtained may explain the internal melting observed on SSME HPFTP seal parts.

  4. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  5. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  6. Numerical calculation of the internal flow field in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Harp, J. L., Jr.; Liu, C. Y.

    1975-01-01

    An iterative numerical method has been developed for the calculation of steady, three-dimensional, viscous, compressible flow fields in centrifugal compressor impellers. The computer code, which embodies the method, solves the steady three dimensional, compressible Navier-Stokes equations in rotating, curvilinear coordinates. The solution takes place on blade-to-blade surfaces of revolution which move from the hub to the shroud during each iteration.

  7. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Mehrnia, Momammad Reza; Neghab, Masoud; Mohammad, Kazem; Nikpey, Ahmad; Pourmand, Mohammad Reza

    2013-01-07

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor.

  8. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    PubMed Central

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  9. DISK PUMP FEASIBILITY INVESTIGATION,

    DTIC Science & Technology

    The disk pump was investigated at the Air Force Rocket Propulsion Laboratory (AFRPL) to determine the feasibility of using a novel viscous pumping... pump primarily for application as an inducer. The disk pump differs drastically from conventional pumps because of the following major factors: (1) The...The pump inlet relative velocity is equal only to the through flow velocity between the disks. Therefore, there is good indication that the disk pump will

  10. An intraventricular axial flow blood pump integrated with a bearing purge system.

    PubMed

    Yamazaki, K; Kormos, R; Mori, T; Umezu, M; Kameneva, M; Antaki, J; Outa, E; Litwak, P; Kerrigan, J; Tomczak, J

    1995-01-01

    The future development of implantable axial flow blood pumps must address two major issues: mechanically induced hemolysis and shaft seal reliability. The recent revisions to our miniature intraventricular axial flow left ventricular assist device (LVAD) were aimed particularly at addressing these concerns. To improve hemocompatibility, a new impeller has been designed according to the following criteria: 1) gradual pressure rise along the blade chord; 2) minimized local fluid acceleration to prevent cavitation; 3) minimum surface roughness; and 4) radius edges. Subsequent in vitro hemolysis tests conducted with bovine and ovine blood have demonstrated very low hemolysis (normalized index of hemolysis = 0.0051 +/- 0.0047 g/100 L) with this new impeller design. To address the need for a reliable seal, we have developed a purged seal system consisting of a miniature lip seal and ceramic pressure groove journal bearing that also acts as a purge pump. Several spiral grooves formed on the bearing surface provide viscous pumping of the purge fluid, generating more than 3,000 mmHg at 10,000 rpm. This purge flow flushes the lip seal and prevents blood backflow into the bearing. We have found this purge pump to offer several advantages because it is simple, compact, durable, does not require separate actuation, and offers a wide range of flow, depending upon the groove design. In vivo animal tests demonstrated the potential of the purged seal system.

  11. PIV measurements of flow in a centrifugal blood pump: steady flow.

    PubMed

    Day, Steven W; McDaniel, James C

    2005-04-01

    Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (3-9 L/min) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and/or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6 L/min), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9 L/min) and low (3 L/min) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.

  12. Magnetically suspended miniature fluid pump and method of designing the same

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson (Inventor)

    2000-01-01

    A rotary pump for pumping fluids through a patient having a housing with an internal region, a stator member and an impeller positioned within the housing and having impeller blades, wherein the impeller is magnetically suspended and rotated, and wherein the geometric configuration of the rotary pump is sized and proportioned to minimize stagnant and traumatic fluid flow within the rotary pump. The plurality of magnetic impeller blades are preferably rare earth, high-energy-density magnets selected from the group consisting of samarium cobalt and neodymium-iron-boron alloy.

  13. High Pressure Pumps for Rocket Motors

    DTIC Science & Technology

    1950-12-01

    rotor pump 7 2.6 Vane pumps 7 3 Ccntrifugal pumps 8 3.1 General features 8 3.2 Centrifugal pumps of conventional design (shrouded 8 impeller pumps) 3.21...pump I Cross section through German screw pump 2 Twin rotor displacement pump 3 Diagram of operation of twin rotor pump 4 Cross section of a vane pump...reaconibly good balance of the SECRET SECRET Technical Note No.R.P.D.40 rcri proctinc masses a number of pistons have to be embodied in one pump, but this

  14. Computational fluid dynamics modeling of impeller designs for the HeartQuest left ventricular assist device.

    PubMed

    Curtas, Anthony R; Wood, Houston G; Allaire, Paul E; McDaniel, James C; Day, Steven W; Olsen, Don B

    2002-01-01

    To finalize the design of the next generation of the HeartQuest left ventricular assist device, a suitable impeller had to be designed and tested. The new prototype was based on calculations and test results of previous designs, but required several changes to decrease the size. For most pump designs, this is a simple matter of altering impeller geometry and rotational speed to achieve the desired pressure rise and flow rate. However, this particular pump was limited by housing geometry and the magnetic bearings that support the impeller. Without much freedom in the overall impeller size, the only parameters open to the designers were the blade profiles and the rotating speed. Rather than build several candidates and test them in a rig at enormous cost, computational models of several designs were tested and analyzed. This not only saved money, but also sped up the development time for the project. The computer models were developed in TASCflow, a computational fluid dynamics software package from AEA Technologies. This paper analyzes the data from several of the selected models, paying close attention to pumping performance and general trends from specific design changes.

  15. Pump CFD code validation tests

    NASA Technical Reports Server (NTRS)

    Brozowski, L. A.

    1993-01-01

    Pump CFD code validation tests were accomplished by obtaining nonintrusive flow characteristic data at key locations in generic current liquid rocket engine turbopump configurations. Data were obtained with a laser two-focus (L2F) velocimeter at scaled design flow. Three components were surveyed: a 1970's-designed impeller, a 1990's-designed impeller, and a four-bladed unshrouded inducer. Two-dimensional velocities were measured upstream and downstream of the two impellers. Three-dimensional velocities were measured upstream, downstream, and within the blade row of the unshrouded inducer.

  16. [The study of noninvasive ventilator impeller based on ANSYS].

    PubMed

    Hu, Zhaoyan; Lu, Pan; Xie, Haiming; Zhou, Yaxu

    2011-06-01

    An impeller plays a significant role in the non-invasive ventilator. This paper shows a model of impeller for noninvasive ventilator established with the software Solidworks. The model was studied for feasibility based on ANSYS. Then stress and strain of the impeller were discussed under the external loads. The results of the analysis provided verification for the reliable design of impellers.

  17. Pump Flow Analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Ingersoll-Rand Research, Inc.'s use of COSMIC's computer program MERIDL permits designers to evaluate performance and efficiency characteristics to be expected from the pump's impeller. It also provides information that enables a trained hydraulic engineer to make design improvements. Company was able to avoid the cost of developing new software and to improve some product design features.

  18. Impeller deflection and modal finite element analysis.

    SciTech Connect

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  19. Prediction of Microporosity in Shrouded Impeller Castings

    SciTech Connect

    Viswanathan, S. Nelson, C.D.

    1998-09-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory (ORNL) and Morris Bean and Company was to link computer models of heat and fluid flow with previously developed quality criteria for the prediction of microporosity in a Al-4.5% Cu alloy shrouded impeller casting. The results may be used to analyze the casting process design for the commercial production of 206 o alloy shrouded impeller castings. Test impeller castings were poured in the laboratory for the purpose of obtaining thermal data and porosity distributions. Also, a simulation of the test impeller casting was conducted and the results validated with porosity measurements on the test castings. A comparison of the predicted and measured microporosity distributions indicated an excellent correlation between experiments and prediction. The results of the experimental and modeling studies undertaken in this project indicate that the quality criteria developed for the prediction of microporosity in Al-4.5% Cu alloy castings can accurately predict regions of elevated microporosity even in complex castings such as the shrouded impeller casting. Accordingly, it should be possible to use quality criteria for porosity prediction in conjunction with computer models of heat and fluid flow to optimize the casting process for the production of shrouded impeller castings. Since high levels of microporosity may be expected to result in poor fatigue properties, casting designs that are optimized for low levels of microporosity should exhibit superior fatigue life.

  20. The valvo-pump. An axial, nonpulsatile blood pump.

    PubMed

    Mitamura, Y; Yozu, R; Tanaka, T; Yamazaki, K

    1991-01-01

    The valvo-pump, an axial, nonpulsatile blood pump implanted at the heart valve position while preserving diseased heart muscle, has several advantages over an artificial heart replacement, including 1) a good anatomic fit to the natural heart, 2) less blood contacting surface, and 3) ease of implantation. The housing for the pump is a tube, 37 mm in diameter (maximum) and 33 mm in length. Within the housing there is an impeller with either 10 vanes (33 mm in diameter) or 5 vanes (22 mm in diameter). The impeller is connected to a samarium-cobalt-rare-earth magnet direct current (DC) brushless motor measuring 23.8 mm in diameter and 30.2 mm in length. Sealing is achieved by means of a magnetic fluid seal. A guiding wheel with 4 vanes is located behind the impeller. The pump was studied on a hydraulic mock circulatory system to evaluate its performance characteristics. A pump flow of 6.9 L/min was obtained at a pump differential pressure of 48 mmHg, and flow of 3.1 L/min was obtained at 58 mmHg. The valvo-pump can be made feasible by developing a small, high-output, power motor and an endurable seal, as well as by optimizing the impeller design.

  1. Pump Design

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A NASA handbook on a general purpose titanium alloy was used by Sundstrand Corporation in design calculation for casting titanium impellers. Information contributed substantially to improved impeller design.

  2. Hydraulic Performance Comparison for Axial Flow Impeller and Mixed Flow Impeller with Same Specific Speed

    NASA Astrophysics Data System (ADS)

    Pan, Zhongyong; Ni, Yongyan; Yuan, Jianping; Ji, Pei

    2015-12-01

    An axial flow impeller and a mixed flow impeller with same specific speed were experimentally investigated, and the suction performance was studied with the help of CFD simulations. The results show that the axial impeller is roughly better than the mixed flow one. Especially under the design condition and a low flow rate condition range near the designed one, the axial flow impeller is more stable and therefore more suitable to be used in a water jet propulsion, while under these conditions the mixed flow impeller displays significant discrepancies. On the other hand, though its efficiency at the best efficiency point is lower than that of the axial flow one, the mixed flow impeller has a larger range of high efficiency conditions and is more convenient to be controlled to satisfy the irrigation and drainage systems that ought to be adjusted to varied flow rate conditions under a fixed head. In addition, the numerical investigation at the rated point shows that the axial impeller has a much better suction performance than the mixed flow impeller, which contradicts with the experience knowledge and therefore details need to be further studied.

  3. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  4. Pitot heat pump

    SciTech Connect

    Grose, R.D.

    1981-12-08

    A pitot heat pump is described wherein a multi-stage pitot pump is employed as the compression means in a heat pump thermodynamic cycle. The heat pump is comprised of a multi-stage vapor pitot pump, liquid pitot pump, turbine, vaporizer, evaporator, condenser and expansion valve. The turbine is used to rotate a shaft to which the impellers of the pitot pump are attached. Refrigerant gas from the evaporator enters the first stage of the pitot pump and the impeller therein forces the refrigerant gas outwardly where it enters the narrow end of a pitot tube provided therein. The discharge end of the pitot tube is in communication with the next stage of the pitot pump. In passing through the pitot tube, the refrigerant gas expands and the centrifugal force and the kinetic energy of the gas provide the energy whereby the refrigerant gas is compressed. After the last stage, the compressed gas is transmitted to the condenser of the heat pump.

  5. A teaspoon pump for pumping blood with high hydraulic efficiency and low hemolysis potential.

    PubMed

    Dame, D

    1996-06-01

    Virtually all blood pumps contain some kind of rubbing, sliding, closely moving machinery surfaces that are exposed to the blood being pumped. These valves, internal bearings, magnetic bearing position sensors, and shaft seals cause most of the problems with blood pumps. The original teaspoon pump design prevented the rubbing, sliding machinery surfaces from contacting the blood. However, the hydraulic efficiency was low because the blood was able to "slip around" the rotating impeller so that the blood itself never rotated fast enough to develop adequate pressure. An improved teaspoon blood pump has been designed and tested and has shown acceptable hydraulic performance and low hemolysis potential. The new pump uses a nonrotating "swinging" hose as the pump impeller. The fluid enters the pump through the center of the swinging hose; therefore, there can be no fluid slip between the revolving blood and the revolving impeller. The new pump uses an impeller that is comparable to a flexible garden hose. If the free end of the hose were swung around in a circle like half of a jump rope, the fluid inside the hose would rotate and develop pressure even though the hose impeller itself did not "rotate"; therefore, no rotating shaft seal or internal bearings are required.

  6. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  7. Sizing pumps for slurries

    SciTech Connect

    Akhtar, S.Z.

    1996-11-01

    Slurry characteristics have a significant impact on centrifugal pump performance. For instance, as particle size increases or the percent solids concentration increases, pump head and efficiency decrease. Therefore, before a slurry pump is selected, it is important to define the slurry characteristics as accurately as possible. The effect of the slurry characteristics on the head and efficiency of the centrifugal pump will be emphasized (the effect on flowrate is less significant). The effect of slurry characteristics is more predominant in smaller pumps (with smaller diameter impellers) than in larger pumps. The data and relationship between the various slurry parameters have been developed from correlations and nomographs published by pump vendors from their field data and test results. The information helps to avoid specifying an undersized pump/motor assembly for slurry service.

  8. Using hybrid magnetic bearings to completely suspend the impeller of a ventricular assist device.

    PubMed

    Khanwilkar, P; Olsen, D; Bearnson, G; Allaire, P; Maslen, E; Flack, R; Long, J

    1996-06-01

    Clinically available blood pumps and those under development suffer from poor mechanical reliability and poor biocompatibility related to anatomic fit, hemolysis, and thrombosis. To alleviate these problems concurrently in a long-term device is a substantial challenge. Based on testing the performance of a prototype, and on our judgment of desired characteristics, we have configured an innovative ventricular assist device, the CFVAD4, for long-term use. The design process and its outcome, the CFVAD4 system configuration, is described. To provide unprecedented reliability and biocompatibility, magnetic bearings completely suspend the rotating pump impeller. The CFVAD4 uses a combination of passive (permanent) and active (electric) magnetic bearings, a mixed flow impeller, and a slotless 3-phase brushless DC motor. These components are shaped, oriented, and integrated to provide a compact, implantable, pancake-shaped unit for placement in the left upper abdominal quadrant of adult humans.

  9. Flow Pattern Characterization for a Centrifugal Impeller

    NASA Astrophysics Data System (ADS)

    Benavides, Efrén M.

    2014-08-01

    This paper proposes a model for characterizing the flow pattern of a centrifugal impeller attending to the severity of the reverse flow. The model assumes 1) a definition of an escaping particle as the one that flows in every operational point from the trailing edge towards the leading edge of the impeller blades, and 2) a characterization of flow where an operational point is said to have a theoretical flow pattern if it is not possible to establish a fully-reversed escaping particle on it. Therefore, the first part of the article is focused on defining an escaping particle for a centrifugal compressor. The model locates over the map of a centrifugal impeller the line that splits the map in two regions: the region on the right hand side, where a theoretical flow pattern can exist, and the region on the left, where a theoretical flow pattern cannot exist. Therefore, the locus of this line marks a frontier where the expected performance of the impeller cannot be sustained as high as expected. The second part of the article uses a high-performance commercial centrifugal impeller wheel for contrasting the model. A qualitative characterization of the surge line, conclusions and discussions are presented.

  10. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  11. Passive magnetic bearing in the 3rd generation miniature axial flow pump-the valvo pump 2.

    PubMed

    Okamoto, Eiji; Ishida, Yuya; Yano, Tetsuya; Mitamura, Yoshinori

    2015-06-01

    The new miniature axial flow pump (valvo pump 2) that is installed at the base of the ascending aorta consists of a six-phase stator, an impeller in which four neodymium magnets are incorporated, and passive magnetic bearings that suspend the impeller for axial levitation. The impeller is sustained by hydrodynamic force between the blade tip of the impeller and the inner housing of the stator. The passive magnetic bearing consists of a ring neodymium magnet and a columnar neodymium magnet. The ring neodymium magnet is set in the stationary side and the columnar neodymium magnet is incorporated in the impeller shaft. Both neodymium magnets are coaxially mounted, and the anterior and posterior passive magnetic bearings suspend the impeller by repulsion force against the hydrodynamic force that acts to move the impeller in the inflow port direction. The passive magnetic bearing was evaluated by a tensile test, and the levitation force of 8.5 N and stiffness of 2.45 N/mm was obtained. Performance of the axial flow pump was evaluated by an in vitro experiment. The passive magnetic bearing showed sufficient levitation capacity to suspend the impeller in an axial direction. In conclusion, the passive magnetic bearing is promising to be one of levitation technology for the third-generation axial flow blood pump.

  12. Axisymmetric supersonic flow in rotating impellers

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W

    1952-01-01

    General equations are developed for isentropic, frictionless, axisymmetric flow in rotating impellers with blade thickness taken into account and with blade forces eliminated in favor of the blade-surface function. It is shown that the total energy of the gas relative to the rotating coordinate system is dependent on the stream function only, and that if the flow upstream of the impeller is vortex-free, a velocity potential exists which is a function of only the radial and axial distances in the impeller. The characteristic equations for supersonic flow are developed and used to investigate flows in several configurations in order to ascertain the effect of variations of the boundary conditions on the internal flow and the work input. Conditions varied are prerotation of the gas, blade turning rate, gas velocity at the blade tips, blade thickness, and sweep of the leading edge.

  13. Experimental and computational results from a large low-speed centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1993-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane and in several cases provide details of the flow within the blade boundary layers. The experimental and computational results provide a clear understanding of the development of the throughflow momentum wake which is characteristic of centrifugal compressors.

  14. Method for Reducing Pumping Damage to Blood

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Robert J. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    Methods are provided for minimizing damage to blood in a blood pump wherein the blood pump comprises a plurality of pump components that may affect blood damage such as clearance between pump blades and housing, number of impeller blades, rounded or flat blade edges, variations in entrance angles of blades, impeller length, and the like. The process comprises selecting a plurality of pump components believed to affect blood damage such as those listed herein before. Construction variations for each of the plurality of pump components are then selected. The pump components and variations are preferably listed in a matrix for easy visual comparison of test results. Blood is circulated through a pump configuration to test each variation of each pump component. After each test, total blood damage is determined for the blood pump. Preferably each pump component variation is tested at least three times to provide statistical results and check consistency of results. The least hemolytic variation for each pump component is preferably selected as an optimized component. If no statistical difference as to blood damage is produced for a variation of a pump component, then the variation that provides preferred hydrodynamic performance is selected. To compare the variation of pump components such as impeller and stator blade geometries, the preferred embodiment of the invention uses a stereolithography technique for realizing complex shapes within a short time period.

  15. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.; Nyilas, Charles P.; Denmeade, Timothy J.

    1997-01-01

    A transfer pump used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank.

  16. Flow study on a newly developed impeller for a left ventricular assist device.

    PubMed

    Hsu, Cheung-Hwa

    2003-01-01

    Nowadays, left ventricular assist devices are usually designed as high-speed, electric, rotary blood pumps. The pump drains blood from the left ventricular apex via an inlet cannula and ejects into the aortic root via an outlet conduit. To develop a high-performance pump, the present study utilizes partial differential equations to generate a surface representation of the impeller of the blood pump. Flow analysis around the impeller is performed by using the finite volume method to solve the fully incompressible three-dimensional Navier-Stokes equations along with the k-epsilon turbulence model. The numerical results highlight flow features in the end-wall region of the pump, namely the clearance leakage cross-flow, and the vortex associated with this leakage. These secondary flows induce major energy losses in the pumping device. On the test study, a test loop was proposed to measure the performance characteristics. It was shown that the design would provide a flow rate of 4.4 l/min with a pressure head of 122 mmHg. The DC motor power under these conditions was about 6 W and the rotational speed was 4500 rpm. Both the flow rate and head can satisfy the demand for the left artificial heart to work normally.

  17. Interaction of zones of flow separation in a centrifugal impeller-stationary vane system

    NASA Astrophysics Data System (ADS)

    Akin, O.; Rockwell, D.

    1994-10-01

    In a radial flow pump operating in off-design conditions, regions of stall can exist on the rotating impeller blade and on the downstream diffuser blade, vane or tongue. Interaction of these stall zones can generate complex patterns of vorticity concentrations. In turn, these vorticity concentrations are related to sources of unsteady stagnation enthalpy. The form of these patterns is strongly dependent on the instantaneous location of the impeller trailing-edge relative to the leading-edge of the vane. Comparison of instantaneous with ensemble-averaged images shows that the flow structure in the gap region between the impeller and the vane is highly repetitive. Away from this region, in particular in the separated shear layer from the vane, the nonrepetitive nature of the vorticity field is manifested in substantial reduction of peak levels of vorticity in the ensemble-averaged image, relative to the instantaneous image. The three-dimensional flow structure resulting from these separation zone interactions was characterized via end views of the flow patterns. Particularly pronounced concentrations of vorticity can occur in this plane. They tend to be located in the shear layer at the outer edge of the large-scale separation zone. These vorticity concentrations are, however, highly non-stationary for successive passages of the impeller blade. Ensemble-averaging reveals that they persist primarily on the endwalls of the diffuser.

  18. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  19. Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers

    NASA Technical Reports Server (NTRS)

    Arndt, N.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1990-01-01

    Steady and unsteady diffuser vane pressure measurements have been conducted with a two-dimensional test impeller, in an experimental investigation of rotor-stator interaction within a centrifugal pump having several vaned diffusers, under conditions of different flow coefficients and different radial gaps between the impeller blade trailing edge and the diffuser vane leading edge. The largest pressure fluctuations on the diffuser vanes and the impeller blades were found to be of the same order of magnitude as the total pressure rise across the pump. Increasing the number of diffuser vanes was found to result in a significant decrease of impeller blade pressure fluctuations.

  20. Optimization and analysis of centrifugal pump considering fluid-structure interaction.

    PubMed

    Zhang, Yu; Hu, Sanbao; Zhang, Yunqing; Chen, Liping

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller.

  1. Optimization and Analysis of Centrifugal Pump considering Fluid-Structure Interaction

    PubMed Central

    Hu, Sanbao

    2014-01-01

    This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller. PMID:25197690

  2. Experimental and Numerical Analysis of Performance Discontinuity of a Pump-Turbine under Pumping Mode

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Burgstaller, R.; Lai, X.; Gehrer, A.; Kefalas, A.; Pang, Y.

    2016-11-01

    The performance discontinuity of a pump-turbine under pumping mode is harmful to stable operation of units in hydropower station. In this paper, the performance discontinuity phenomenon of the pump-turbine was studied by means of experiment and numerical simulation. In the experiment, characteristics of the pump-turbine with different diffuser vane openings were tested in order to investigate the effect of pumping casing to the performance discontinuity. While other effects such as flow separation and rotating stall are known to have an effect on the discontinuity, the present studied test cases show that prerotation is the dominating effect for the instability, positions of the positive slope of characteristics are almost the same in different diffuser vane opening conditions. The impeller has principal effect to the performance discontinuity. In the numerical simulation, CFD analysis of tested pump-turbine has been done with k-ω and SST turbulence model. It is found that the position of performance curve discontinuity corresponds to flow recirculation at impeller inlet. Flow recirculation at impeller inlet is the cause of the discontinuity of characteristics curve. It is also found that the operating condition of occurrence of flow recirculation at impeller inlet is misestimated with k-ω and SST turbulence model. Furthermore, the original SST model has been modified. We predict the occurrence position of flow recirculation at impeller inlet correctly with the modified SST turbulence model, and it also can improve the prediction accuracy of the pump- turbine performance at the same time.

  3. Investigations on Experimental Impellers for Axial Blowers

    NASA Technical Reports Server (NTRS)

    Encke, W.

    1947-01-01

    A selection of measurements obtained on experimental impellers for axial blowers will be reported. In addition to characteristic curves plotted for low and for high peripheral velocities, proportions and blade sections for six different blower models and remarks on the design of blowers will be presented.

  4. Calculating Flow-Angle Deviation in Rotary Pumps

    NASA Technical Reports Server (NTRS)

    Meng, S. Y.; Furst, R. B.

    1986-01-01

    New mathematical formula calculates difference between angle of impeller blade and angle of flow. Formula used for inducers of mixed-flow pumps. With formula, calculations made more quickly and accurately than previously available formulas.

  5. Engineering Aspects in Blood Pump Development

    NASA Technical Reports Server (NTRS)

    Golding, Leonard; Veres, Joseph P.

    1997-01-01

    NASA turbomachinery computer codes assisted in the design of the Cleveland Clinic Foundation's centrifugal bladed blood pump. The codes were originally developed for the aerospace industry, but are applicable to the blood pump because of a high degree of synergy with this application. Traditional turbomachinery design criteria were used in the design of the blood pump centrifugal impeller and volute casing. The fluid dynamic performance of the blood pump is meeting the engineering design goals of flow rate and pressure rise.

  6. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage

  7. Hydraulic forces on a centrifugal impeller undergoing synchronous whirl

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Sato, C. J.; Branagan, L. A.

    1984-01-01

    High speed centrifugal rotating machinery with large vibrations caused by aerodynamic forces on impellers was examined. A method to calculate forces in a two dimensional orbiting impeller in an unbounded fluid with nonuniform entering flow was developed. A finite element model of the full impeller is employed to solve the inviscid flow equations. Five forces acting on the impeller are: Coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotation and pressure changes due to linear momentum. Both principal and cross coupled stiffness coefficients are calculated for the impeller.

  8. Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2015-05-01

    Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.

  9. Method and apparatus for reducing axial thrust in centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Palmer, Alan S.; Henry, John W., IV; Kerr, John P.

    1994-06-01

    A control stator comprising a plurality of stationary vanes, ribs, or cavities is provided in a centrifugal pump having a shrouded impeller. The function of the control stator is to slow the swirl of fluid in the cavity between the casing and the impeller front shroud and thereby provide a very cost effective solution to the problem of excess axial thrust. The control stator is a simple, inexpensive non-rotating part that can be affixed in an existing space in the pump casing between the casing wall and the front shroud of the impeller.

  10. Experimental determination of dynamic characteristics of the VentrAssist implantable rotary blood pump.

    PubMed

    Chung, Michael K H; Zhang, Nong; Tansley, Geoff D; Qian, Yi

    2004-12-01

    The VentrAssist implantable rotary blood pump, intended for long-term ventricular assist, is under development and is currently being tested for its rotor-dynamic stability. The pump consists of a shaftless impeller, which also acts as the rotor of the brushless DC motor. The impeller remains passively suspended in the pump cavity by hydrodynamic forces, which result from the small clearances between the outside surfaces of the impeller and the pump cavity. These small clearances range from approximately 50 microm to 230 microm in size in the version of pump reported here. This article presents experimental investigation into the dynamic characteristics of the impeller-bearing-pump housing system of the rotary blood pump for increasing pump speeds at different flow rates. The pump was mounted on a suspension system consisting of a platform and springs, where the natural frequency and damping ratio for the suspension system were determined. Real-time measurements of the impeller's displacement were performed using Hall effect sensors. A vertical disturbance force was exerted onto the pump housing, causing the impeller to be displaced in vertical direction from its dynamic equilibrium position within the pump cavity. The impeller displacement was represented by a decaying sine wave, which indicated the impeller restoring to its equilibrium position. From the decaying sine wave the natural frequency and stiffness coefficient of the system were determined. Furthermore, the logarithmic decrement method was used to determine the damping ratio and eventually the damping coefficient of the system. Results indicate that stiffness and damping coefficients increased as flow rate and pump speed increased, representing an increase in stability with these changing conditions. However, pump speed had a greater influence on the stiffness and damping coefficients than flow rate did, which was evident through dynamic analysis. Overall the experimental method presented in this

  11. Validation of Computational Fluid Dynamic analysis of a rocket engine turbopump impeller

    NASA Astrophysics Data System (ADS)

    Prueger, George H.; Lin, S. J.; Chan, Daniel C.; Eastland, Anthony H.

    1993-06-01

    Incorporation of Computational Fluid Dynamic analysis into the design process of turbomachinery components requires extensive validation of the analysis tools. This validation must include not only investigation of the capabilities of the CFD tool to adequately predict the flow structures present, but also the level of geometric modeling and grid sizes required. Validation of Rocketdyne's Three-Dimensional Elliptic Analysis Code for Turbomachinery, REACT3D, was accomplished by comparison to test data obtained with the Space Shuttle Main Engine High Pressure Fuel Pump impeller. Comparisons were made for averaged quantities which are commonly used in the design process as well as for the detail jet-wake features of the impeller discharge flow. The validation shows that with current computer technology it is feasible to use CFD analysis within the limits of design schedules and budgets.

  12. Performance analysis of axial-flow mixing impellers

    SciTech Connect

    Wu, J.; Pullum, L.

    2000-03-01

    Theoretical formulations for impeller performance were evaluated based on a blade-element theory. These enable the calculation of the head and power vs. flow-rate curves of axial-flow impellers. The technique uses the life and drag coefficients of the blade section of an impeller to calculate the spanwise swirl-velocity distribution. Using the angular-momentum equation, it is possible to calculate the corresponding spanwise distribution of the energy head of the impeller. Integration of these distributions of head and torque gives the impeller's performance. Parameters including the flow number, the power number, the thrust force number, and the swirl velocity can be found at the impeller operating point, determined using the head curve and an experimentally calibrated resistance curve. A laser Doppler velocimetry (LDV) system was used to measure the velocity distribution for different axial flow impellers in mixing tanks. Calculated flow and power numbers agreed well with the experimental results. Using the blade's spanwise head distribution and a set of calibrated flow-resistance data, it is also possible to estimate an impeller's outlet axial-velocity distribution. Predictions compared well with LDV experimental data. The effect of impeller-blade angle, number of blades, blade camber, and blade thickness on the performance of axial-flow impellers was investigated using the Agitator software.

  13. Liquid rocket propulsion impeller CFD modeling

    NASA Astrophysics Data System (ADS)

    Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.

    1993-06-01

    Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.

  14. Liquid rocket propulsion impeller CFD modeling

    NASA Technical Reports Server (NTRS)

    Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.

    1993-01-01

    Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.

  15. [Pulsatile rotary pumps with low hemolysis].

    PubMed

    Qian, K; Zeng, P; Ru, W; Yuan, H; Feng, Z; Li, L

    2001-09-01

    As is well known, a pulsatile flow is important in assisted-circulation but it is difficult to produce a pulsatile flow with rotary pump, because excessive hemolysis will be generated. The authors have found that the turbulent shear is the main factor for red cell damage and therefore the key point of pulsatile rotary pumps is to reduce the turbulence by producing a pulsatile flow. In the authors' pulsatile axial pump, the pulsatile flow is obtained by axial reciprocation of constant rotating impeller; the rotation and reciprocation of the impeller are driven separately by a DC motor and a pneumatic device. Though a physiological pulsatile flow could be achieved and turbulence would not increase remarkably because the impeller rotates constantly, a second driver except a DC motor is nevertheless necessary, thus the system will become complicated. In the authors' pulsatile radial pump, a pulsatile flow is achieved by changing the rotating speed of the impeller periodically. Turbulence is minimized by a special design of twisted vanes which enable the blood flow to change its direction rather than its dimension during periodic change of rotating speed. Hemolysis tests demonstrated that the index of hemolysis(IH) of the author's pulsatile radial pump is 0.020, with is slightly more than that of the author's nonpulsatile radial pump(IH = 0.015). Animal experiments indicated that the pulsatile radial pump can assist the circulation of calves for several months without harm to blood elements and organ functions of the recipients.

  16. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  17. Properties of a monopivot centrifugal blood pump manufactured by 3D printing.

    PubMed

    Nishida, Masahiro; Negishi, Takumi; Sakota, Daisuke; Kosaka, Ryo; Maruyama, Osamu; Hyakutake, Toru; Kuwana, Katsuyuki; Yamane, Takashi

    2016-12-01

    An impeller the same geometry as the impeller of a commercial monopivot cardiopulmonary bypass pump was manufactured using 3D printing. The 3D-printed impeller was integrated into the pump casing of the commercially available pump to form a 3D-printed pump model. The surface roughness of the impeller, the hydraulic performance, the axial displacement of the rotating impeller, and the hemolytic properties of the 3D-printed model were measured and compared with those of the commercially available model. Although the surface roughness of the 3D-printed model was significantly larger than that of the commercially available model, the hydraulic performance of the two models almost coincided. The hemolysis level of the 3D-printed model roughly coincided with that of the commercially available model under low-pressure head conditions, but increased greatly under high-pressure head conditions, as a result of the narrow gap between the rotating impeller and the pump casing. The gap became narrow under high-pressure head conditions, because the axial thrust applied to the impeller increased with increasing impeller rotational speed. Moreover, the axial displacement of the rotating impeller was twice that of the commercially available model, confirming that the elastic deformation of the 3D-printed impeller was larger than that of the commercially available impeller. These results suggest that trial models manufactured by 3D printing can reproduce the hydraulic performance of the commercial product. However, both the surface roughness and the deformation of the trial models must be considered to precisely evaluate the hemolytic properties of the model.

  18. Alignment and operability analysis of a vertical sodium pump

    SciTech Connect

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump.

  19. Hemolysis in different centrifugal pumps.

    PubMed

    Kawahito, K; Nosé, Y

    1997-04-01

    Different types of centrifugal pumps cause different amounts of hemolysis based on shear stress and blood exposure time. However, the hemolytic characteristics of centrifugal pumps in each clinical condition are not always clear. We compared the hemolytic characteristics of one cone-type centrifugal pump (Medtronic BioMedicus BP-80) and 2 impeller-type centrifugal pumps (Nikkiso HMS-12 and Terumo Capiox) under experimental conditions simulating their use in cardiopulmonary bypass (CPB), extracorporeal membrane oxygenation (ECMO), and percutaneous cardiopulmonary support (PCPS) as well as their use as left ventricular assist devices (LVADs). The normalized indexes of hemolysis (NIHs; grams free plasma hemoglobin per 100 L blood pumped) during use as LVADs were not significantly different among the 3 pumps. The BP-80 pump produced almost 3-fold more hemolysis than the HMS-12 and Capiox pumps during CPB, 3- to 4-fold more hemolysis during ECMO, and 5.5-fold more hemolysis during PCPS. The 2 impeller-type centrifugal pumps will therefore cause less hemolysis under high flow, high pressure difference (as in CPB) and low flow, high pressure difference (as in ECMO and PCPS) conditions than the cone-type pump.

  20. Fault-tolerant strategies for an implantable centrifugal blood pump using a radially controlled magnetic bearing.

    PubMed

    Pai, Chi Nan; Shinshi, Tadahiko

    2011-10-01

    In our laboratory, an implantable centrifugal blood pump (CBP) with a two degrees-of-freedom radially controlled magnetic bearing (MB) to support the impeller without contact has been developed to assist the pumping function of the weakened heart ventricle. In order to maintain the function of the CBP after damage to the electromagnets (EMs) of the MB, fault-tolerant strategies for the CBP are proposed in this study. Using a redundant MB design, magnetic levitation of the impeller was maintained with damage to up to two out of a total of four EMs of the MB; with damage to three EMs, contact-free support of the impeller was achieved using hydrodynamic and electromagnetic forces; and with damage to all four EMs, the pump operating point, of 5 l/min against 100 mmHg, was achieved using the motor for rotation of the impeller, with contact between the impeller and the stator.

  1. Detection and effects of pump low-flow operation

    SciTech Connect

    Casada, D.A.; Greene, R.H.

    1993-12-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation.

  2. The valvo-pump, an axial blood pump implanted at the heart valve position: concept and initial results.

    PubMed

    Yamazaki, K; Okamoto, E; Yamamoto, K; Mitamura, Y; Tanaka, T; Yozu, R

    1992-06-01

    The valvo-pump, an axial nonpulsatile blood pump implanted at the heart valve position, has been developed. The valvo-pump consists of an impeller and a motor, which are encased in a housing. An impeller with 5 vanes (22.0 mm in diameter) is used. The impeller is connected to a samarium-cobalt-rare earth magnet direct current (DC) brushless motor measuring 21.3 mm in diameter and 18.5 mm in length. Sealing is achieved by means of a ferrofluidic seal. A pump flow of 10.5 L/min was obtained at a pump differential pressure of 3.3 kPa (25 mm Hg), and a flow of 4.9 L/min was obtained at 7.0 kPa (53 mm Hg). Sealing was kept perfect against a pressure of 29.3 kPa (220 mm Hg) at 9,000 rpm.

  3. Comparison of rotordynamic fluid forces in axial inducers and centrifugal turbopump impellers

    NASA Astrophysics Data System (ADS)

    d'Agostino, Luca

    2016-05-01

    The paper illustrates and compares the results of the experimental campaigns carried out in the Cavitating Pump Rotordynamic Test Facility (CPRTF) at Alta, Italy, under ESA funding for the characterization of the lateral rotordynamic fluid forces acting on high-head axial inducers and centrifugal turbopump impellers for space propulsion applications. The configurations presented here refer to a three-bladed tapered-hub, variable-pitch, inducer (DAPROT3) and a single-stage centrifugal pump (VAMPIRE) with vaneless diffuser and single spiral volute. Both the centrifugal pump and the inducer have been designed by means of reduced order models specifically developed by the author and his collaborators for the geometric definition and performance prediction of this kind of hydraulic turbomachinery. Continuous spectra of the rotordynamic forces acting on the impellers as functions of the whirl frequency have been obtained by means of the novel technique recently developed and demonstrated at Alta. The influence of the rotor whirl motion, flow rate, cavitating conditions, and liquid temperature (thermal cavitation effects) on the rotordynamic fluid forces is illustrated and the observed differences in their behavior in axial inducers and centrifugal turbpumps are discussed and interpreted in the light of the outcome of recent cavitation visualization experiments carried out by the Chemical Propulsion Team at Alta.

  4. Impeller blade design method for centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Jansen, W.; Kirschner, A. M.

    1974-01-01

    The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.

  5. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    NASA Astrophysics Data System (ADS)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  6. Research on wear properties of centrifugal dredge pump based on liquid-solid two-phase fluid simulations

    NASA Astrophysics Data System (ADS)

    Peng, G. J.; Luo, Y. Y.; Wang, Z. W.

    2015-01-01

    The impeller and casing of dredge pump are worn by sediment in the flow. However, there are few studies about abrasion of the impeller and casing for normal pump operating conditions. This paper investigated the relationship between the wear rates on the surfaces of the impeller as well as casing and the sediment concentration, with the distribution of the wear rates for normal pump operating condition analyzed. An Eulerian-Lagrangian Computational Fluid Dynamics (CFD) procedure was used to simulate steady liquid-solid two-phase flow for various operating conditions. The Finnie model was then used to predict the abrasion. The results show that, the wear rate relative value of impeller and casing surface increase as the sediment concentration increases. The wear rate relative value of impeller and casing surface is larger when the pump is in low flow rate condition, and the value of casing surface is larger than that of the impeller. The wear rate relative value of pump is low when pump is in high efficiency condition. This paper shows the abrasion characteristics on the impeller and casing with sediment flow and provides reference data for predicting the abrasion conditions in the flow passage components for a dredge pump.

  7. Fluid forces on rotating centrifugal impeller with whirling motion

    NASA Technical Reports Server (NTRS)

    Shoji, H.; Ohashi, H.

    1980-01-01

    Fluid forces on a centrifugal impeller, whose rotating axis whirls with a constant speed, were calculated by using unsteady potential theory. Calculations were performed for various values of whirl speed, number of impeller blades and angle of blades. Specific examples as well as significant results are given.

  8. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  9. Novel maglev pump with a combined magnetic bearing.

    PubMed

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  10. Improved performance in viscous mycelial fermentations by agitator retrofitting.

    PubMed

    Buckland, B C; Gbewonyo, K; Dimasi, D; Hunt, G; Westerfield, G; Nienow, A W

    1988-05-01

    For viscous mycelial fermentations it was demonstrated at the pilot-plant scale that the replacement of standard radial flow Rushton turbines with larger diameter axial-flow Prochem hydrofoil impellers significantly improved oxygen transfer efficiency. It was also determined that the Streptomyces broth under evaluation is highly shear thinning. Separate experiments using a Norcardia broth with similar Theological properties demonstrated that the oxygen transfer coefficient, K(L)a, can be greatly increased by use of water additions to reduce broth viscosity. These observations are consistent with the hypothesis that the improvement in oxygen transfer by changing agitator types is primarily due to an improvement in bulk mixing. A model is presented, based on the concepts of Bajpai and Reuss, which explains this improvement in performance in terms of enlargement of the well mixed micromixer region for viscous mycelial broths.

  11. Optimization of integrated impeller mixer via radiotracer experiments.

    PubMed

    Othman, N; Kamarudin, S K; Takriff, M S; Rosli, M I; Engku Chik, E M F; Adnan, M A K

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, V dead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and V dead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization.

  12. Optimization of Integrated Impeller Mixer via Radiotracer Experiments

    PubMed Central

    Othman, N.; Kamarudin, S. K.; Takriff, M. S.; Rosli, M. I.; Engku Chik, E. M. F.; Adnan, M. A. K.

    2014-01-01

    Radiotracer experiments are carried out in order to determine the mean residence time (MRT) as well as percentage of dead zone, Vdead (%), in an integrated mixer consisting of Rushton and pitched blade turbine (PBT). Conventionally, optimization was performed by varying one parameter and others were held constant (OFAT) which lead to enormous number of experiments. Thus, in this study, a 4-factor 3-level Taguchi L9 orthogonal array was introduced to obtain an accurate optimization of mixing efficiency with minimal number of experiments. This paper describes the optimal conditions of four process parameters, namely, impeller speed, impeller clearance, type of impeller, and sampling time, in obtaining MRT and Vdead (%) using radiotracer experiments. The optimum conditions for the experiments were 100 rpm impeller speed, 50 mm impeller clearance, Type A mixer, and 900 s sampling time to reach optimization. PMID:24741344

  13. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.

    1997-10-07

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs.

  14. Submersible canned motor mixer pump

    DOEpatents

    Guardiani, Richard F.; Pollick, Richard D.

    1997-01-01

    A mixer pump used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass therethrough, thereby resisting damage to and the interruption of the operation of the mixer pump.

  15. Submersible canned motor transfer pump

    DOEpatents

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-08-19

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs.

  16. Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham

    NASA Astrophysics Data System (ADS)

    Rahmani, Lakhdar; Seghier, O.; Draoui, B.; Benachour, E.

    2016-03-01

    A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P). The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.

  17. Calculation and optimization of parameters in low-flow pumps

    NASA Astrophysics Data System (ADS)

    Kraeva, E. M.; Masich, I. S.

    2016-04-01

    The materials on balance tests of high-speed centrifugal pumps with low flow rate are presented. On the bases of analysis and research synthesis, we demonstrate the rational use of impellers of semi-open and open types providing high values for energy parameters of feed system of low-flow pumps.

  18. Quantification of the secondary flow in a radial coupled centrifugal blood pump based on particle tracking velocimetry.

    PubMed

    Watanabe, Nobuo; Masuda, Takaya; Iida, Tomoya; Kataoka, Hiroyuki; Fujimoto, Tetsuo; Takatani, Setsuo

    2005-01-01

    Secondary flow in the centrifugal blood pump helps to enhance the washout effect and to minimize thrombus formation. On the other hand, it has an adverse effect on pump efficiency. Excessive secondary flow may induce hemolytic effects. Understanding the secondary flow is thus important to the design of a compact, efficient, biocompatible blood pump. This study examined the secondary flow in a radial coupled centrifugal blood pump based on a simple particle tracking velocimetry (PTV) technique. A radial magnetically coupled centrifugal blood pump has a bell-shaped narrow clearance between the impeller inner radius and the pump casing. In order to vary the flow levels through the clearance area, clearance widths of 0.25 mm and 0.50 mm and impeller washout holes with diameters of 0 mm, 2.5 mm, and 4 mm were prepared. A high-speed video camera (2000 frames per second) was used to capture the particle images from which radial flow components were derived. The flow in the space behind the impeller was assumed to be laminar and Couette type. The larger the inner clearance or diameter of washout hole, the greater was the secondary flow rate. Without washout holes, the flow behind the impeller resulted in convection. The radial flow through the washout holes of the impeller was conserved in the radial as well as in the axial direction behind the impeller. The increase in the secondary flow reduced the net pump efficiency. Simple PTV was successful in quantifying the flow in the space behind the impeller. The results verified the hypothesis that the flow behind the impeller was theoretically Couette along the circumferential direction. The convection flow observed behind the impeller agreed with the reports of other researchers. Simple PTV was effective in understanding the fluid dynamics to help improve the compact, efficient, and biocompatible centrifugal blood pump for safe clinical applications.

  19. Magnetically suspended centrifugal blood pump with a self bearing motor.

    PubMed

    Masuzawa, Toru; Onuma, Hiroyuki; Kim, Seung-Jong; Okada, Yohji

    2002-01-01

    A magnetically suspended centrifugal blood pump with a self bearing motor has been developed for long-term ventricular assistance. A rotor of the self bearing motor is actively suspended and rotated by an electromagnetic field without mechanical bearings. Radial position of the rotor is controlled actively, and axial position of the rotor is passively stable within the thin rotor structure. An open impeller and a semiopened impeller were examined to determine the best impeller structure. The outer diameter and height of the impeller are 63 and 34 mm, respectively. Both the impellers indicated similar pump performance. Single volute and double volute structures were also tested to confirm the performance of the double volute. Power consumption for levitation and radial displacement of the impeller with a rotational speed of 1,500 rpm were 0.7 W and 0.04 mm in the double volute, while those in the single volute were 1.3 W and 0.07 mm, respectively. The stator of the self bearing motor was redesigned to avoid magnetic saturation and improve motor performance. Maximum flow rate and pressure head were 9 L/min and 250 mm Hg, respectively. The developed magnetically suspended centrifugal blood pump is a candidate for an implantable left ventricular assist device.

  20. Research of the cavitation performance of the condensate pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Pan, Z. B.; He, M. H.; Ji, K.; Zhou, W. C.; Min, S. M.

    2013-12-01

    Condensate pump is an important part of power plant circulation systems, which is used to pump condensate water. Because the condensate water pressure is very low, the first impeller of the condensate pump must have a good cavitation performance. Numerical simulation was employed to study the first impeller cavitation performance. The first impeller was set in the condensate pump barrel, and the double suction casing was kept, the parts after the double suction casing was simplified as tube. The simplicity can guarantee the inlet and outlet conditions of the impeller. Based on the RANS and SST k - ω turbulence model, CFD software was used to simulate the condensate pump at different working conditions. The numerical simulation shows that cavitation occurred at the suction side of the blades closing to the leading edge. The cavitation performance of the impeller was predicted based on the numerical calculation. Comparing with the experimental results, the numerical simulation result is smaller than that of the experiment in small flux, and the cavitation performance trend is agreed with that of the experiments.

  1. Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes

    NASA Astrophysics Data System (ADS)

    Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.

    2015-01-01

    The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.

  2. Design of a Bearingless Blood Pump

    NASA Technical Reports Server (NTRS)

    Barletta, Natale; Schoeb, Reto

    1996-01-01

    In the field of open heart surgery, centrifugal blood pumps have major advantages over roller pumps. The main drawbacks to centrifugal pumps are however problems with the bearings and with the sealing of the rotor shaft. In this paper we present a concept for a simple, compact and cost effective solution for a blood pump with a totally magnetically suspended impeller. It is based on the new technology of the 'Bearingless Motor' and is therefore called the 'Bearingless Blood Pump.' A single bearingless slice motor is at the same time a motor and a bearing system and is able to stabilize the six degrees of freedom of the pump impeller in a very simple way. Three degrees of freedom are stabilized actively (the rotation and the radial displacement of the motor slice). The axial and the angular displacement are stabilized passively. The pump itself (without the motor-stator and the control electronics) is built very simply. It consists of two parts only: the impeller with the integrated machine rotor and the housing. So the part which gets in contact with blood and has therefore to be disposable, is cheap. Fabricated in quantities, it will cost less than $10 and will therefore be affordable for the use in a heart-lung-machine.

  3. Computer code for analysing three-dimensional viscous flows in impeller passages and other duct geometries

    NASA Technical Reports Server (NTRS)

    Tatchell, D. G.

    1979-01-01

    A code, CATHY3/M, was prepared and demonstrated by application to a sample case. The preparation is reviewed, a summary of the capabilities and main features of the code is given, and the sample case results are discussed. Recommendations for future use and development of the code are provided.

  4. An experimental study of rotor-filter pump performance

    SciTech Connect

    Marshek, K.M.; Naja, M.R.

    1982-09-01

    The performance of a rotor-filter pump has been studied experimentally. To develop an understanding of pump performance, and in particular to discern the mechanism of hydraulic pulsing, flow visualization in the rotor, vibration analyses of the pump, frequency analysis of the pump hydraulic pressure pulsation, and analyses of flow characteristics for different pick-up tubes in combination with different impellers and cover plates were conducted. The frequencies of the pump's hydraulic pulsation is shown to be a function of the number of pick-up arms and the motor speed. The pump vibration and its pulsation amplitude were reduced by increasing the number of pick-up arms or by adding a radial impeller. These actions increased the lowest frequency of pulsation and decreased the chance of excitation of the pump system parts.

  5. Fluid dynamic noise in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Tse, D. G.; Whitelaw, J. H.

    1993-08-01

    Pressure distributions and frequency spectra have been obtained in a centrifugal pump having flow rates between the design point and near shut-down. The pump was comprised of a radial flow impeller with four backswept blades and a single volute. Measurements were obtained at the design flow rate and at off-design conditions to advance understanding of noise generation, to quantify the contribution of tonal, narrowband and broadband components to the overall noise and to develop strategies for suppressing fluid dynamic noise by flow control and active control. Fluid dynamic noise was generated by the unsteady conditions encountered by the impeller blade. Unsteady conditions originated from non-uniformities at the inlet and the impeller outlet at design and off-design conditions. Inlet flow non-uniformity was induced by separation regions. Flow separations are inherent in turbomachinery because of growth of the boundary layer and the disturbance effect of the rotating impeller. Flow non-uniformity at the impeller outlet stemmed from inlet flow non-uniformities in the inlet, from propagation of pressure waves in a vaneless diffuser, and from scroll effects.

  6. Implantable centrifugal pump with hybrid magnetic bearings.

    PubMed

    Bearnson, G B; Olsen, D B; Khanwilkar, P S; Long, J W; Sinnott, M; Kumar, A; Allaire, P E; Baloh, M; Decker, J

    1998-01-01

    Test methods and results of in vitro assessment of a centrifugal pump with a magnetically suspended impeller are provided. In vitro blood tests have been completed with a resulting normalized milligram index of hemolysis (NmIH) of 12.4 +/- 4.1, indicating that hemolysis is not a problem. Hydraulic characterization of the system with water has shown that a nominal pumping condition of 6 L/min at 100 mmHg was met at 2,200 rpm. Maximum clinically usable cardiac output is predicted be 10 L/min. The magnetic bearing supported impeller did not contact the housing and was shown to be stable under a variety of pumping conditions. The driving motor efficiency is 75% at the nominal condition. Finally, a description of the clinical version of the pump under development is provided.

  7. Centrifugal Pumps for Swimming Pools. National Sanitation Foundation Standard Number 17.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI. Committee for Swimming Pool Equipment Standards.

    The pumps discussed herein are intended to be used for recirculating water in swimming pools, both public and private. Included are the basic components which may be a part of a pump such as the housing, strainer, impeller, valves, and such other parts as are attached or a part of the pump as supplied by the manufacturer. This standard is intended…

  8. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  9. 27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. LEUPOLD AND STEVENS MIDGET CURRENT METER (WITH ALTERNATE IMPELLER) AND FOLDING SCALE (MEASURED IN INCHES). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  10. A seal-less centrifugal pump (Baylor Gyro Pump) for application to long-term circulatory support.

    PubMed

    Minato, N; Sakuma, I; Sasaki, T; Shiono, M; Ohara, Y; Takatani, S; Noon, G P; Nosé, Y

    1993-01-01

    We are developing a new centrifugal pump, the Baylor Gyro Centrifugal Pump (Gyro Pump), which can function for more than 2 weeks. The concept of the Gyro Pump is that a one-piece rotor-impeller with embedded permanent magnets, driven directly by a brushless direct current motor stator placed outside, rotates like a "gyroscope," and the rotor-impeller is supported by one pivot bearing at the bottom in accordance with the gyroscopic principle. This concept enables us to eliminate a driving shaft and a seal between the driving shaft and the blood chamber, which results in extending the life of the centrifugal pump. The blood passes through the space between the motor stator and the rotor to the impeller portion. In this preliminary phase, two pivot bearings were applied to support the rotor-impeller at the top and the bottom inside the blood chamber. Both pivot bearings showed less blood trauma and less thrombogenicity in in vitro and in vivo studies. The Gyro Pump is a promising second-generation centrifugal pump for long-term circulatory support in the near future.

  11. Computational fluid dynamic design of rocket engine pump components

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Prueger, George H.; Chan, Daniel C.; Eastland, Anthony H.

    1992-01-01

    Integration of computational fluid dynamics (CFD) for design and analysis of turbomachinery components is needed as the requirements of pump performance and reliability become more stringent for the new generation of rocket engine. A fast grid generator, designed specially for centrifugal pump impeller, which allows a turbomachinery designer to use CFD to optimize the component design will be presented. The CFD grid is directly generated from the impeller blade G-H blade coordinates. The grid points are first generated on the meridional plane with the desired clustering near the end walls. This is followed by the marching of grid points from the pressure side of one blade to the suction side of a neighboring blade. This fast grid generator has been used to optimize the consortium pump impeller design. A grid dependency study has been conducted for the consortium pump impeller. Two different grid sizes, one with 10,000 grid points and one with 80,000 grid points were used for the grid dependency study. The effects of grid resolution on the turnaround time, including the grid generation and completion of the CFD analysis, is discussed. The impeller overall mass average performance is compared for different designs. Optimum design is achieved through systematic change of the design parameters. In conclusion, it is demonstrated that CFD can be effectively used not only for flow analysis but also for design and optimization of turbomachinery components.

  12. Numerical simulation of pump-intake vortices

    NASA Astrophysics Data System (ADS)

    Rudolf, Pavel; Klas, Roman

    2015-05-01

    Pump pre-swirl or uneven flow distribution in front of the pump can induce pump-intake vortices. These phenomena result in blockage of the impeller suction space, deterioration of efficiency, drop of head curve and earlier onset of cavitation. Real problematic case, where head curve drop was documented, is simulated using commercial CFD software. Computational simulation was carried out for three flow rates, which correspond to three operating regimes of the vertical pump. The domain consists of the pump sump, pump itself excluding the impeller and the delivery pipe. One-phase approach is applied, because the vortex cores were not filled with air during observation of the real pump operation. Numerical simulation identified two surface vortices and one bottom vortex. Their position and strength depend on the pump flow rate. Paper presents detail analysis of the flow field on the pump intake, discusses influence of the vortices on pump operation and suggests possible actions that should be taken to suppress the intake vortices.

  13. Coiling of viscous jets

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.

    2004-11-01

    A stream of viscous fluid falling from a sufficient height onto a surface forms a series of regular coils. I use a numerical model for a deformable fluid thread to predict the coiling frequency as a function of the thread's radius, the flow rate, the fall height, and the fluid viscosity. Three distinct modes of coiling can occur: viscous (e.g. toothpaste), gravitational (honey falling from a moderate height) and inertial (honey falling from a great height). When inertia is significant, three states of steady coiling with different frequencies can exist over a range of fall heights. The numerically predicted coiling frequencies agree well with experimental measurements in the inertial coiling regime.

  14. [Centrifugal blood pumps (new possibilities of design improvement)].

    PubMed

    Leshchinskiĭ, B M; Itkin, G P; Zimin, N K

    1992-01-01

    Based on an analysis of 300 world information sources, 19 types of centrifugal blood pumps were ascertained. Five new designs suggested have an idea in common: combination of the inlet of the disk pump and of the outlet of the impeller pump. This allows uniting the merits of the above pumps and excluding their shortcomings. The designs suggested make it possible to solve the two basic problems: hemolysis and thrombogenesis inside the pumps. The use of the pumps designed on such a basis will afford a simple and reliable approach to heart function replacement.

  15. Measurements of enlarged blood pump models using Laser Doppler Anemometer.

    PubMed

    Chua, L P; Yu, S C; Leo, H L

    2000-01-01

    In an earlier study (Chua et al., 1998, 1999a), a 5:1 enlarged model of the Kyoto-NTN Magnetically Suspended Centrifugal Blood Pump (Akamatsu et al., 1995) with five different impeller blade profiles was designed and constructed. Their respective flow characteristics with respect to (1) the three different blade profile designs: forward, radial, and backward, (2) the number of blades used, and (3) the rotating speed were investigated. Among the five impeller designs, the results obtained suggested that impellers A and C designs should be adopted if higher head is required. Impellers A and C therefore were selected for the flow in between their blades to be measured using Laser Doppler Anemometer (LDA), so as to have a better understanding of the flow physics with respect to the design parameters.

  16. A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics

    PubMed Central

    Hu, Jinfei; Tse, Peter W.

    2013-01-01

    Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527

  17. The effect of gas fraction on centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhu, Z. T.; Wang, Y.; Zhao, L. F.; Ning, C.; Xie, S. F.; Liu, Z. C.

    2015-01-01

    In order to study the multiphase flow field in M125 centrifugal pump, three-dimensional modeling was used for internal flow through three-dimensional software Pro/E. Then based on SST turbulence model combining with Rayleigh-Plesset cavitation model, and structured grid to simulate the hydraulic characteristics of volute and impeller within different gas conditions. The velocity, pressure and gas volume fraction distributions of the interior flow field of volute and impeller were obtained and analyzed, which revealed the effect of gas fractions on the flow characteristic of the centrifugal pump.

  18. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis.

    PubMed

    Zhao, Xiaoyan; Ren, Lujing; Guo, Dongsheng; Wu, Wenjia; Ji, Xiaojun; Huang, He

    2016-08-01

    Effects of impeller configurations on docosahexaenoic acid production and flow characteristics were investigated by Schizochytrium sp. in a 15 L bioreactor. 6-straight blade disc turbine (6-SBDT), 6-arrowy-blade disc turbine (6-ABDT) and down-pumping propeller (DPP) were combined to form different impeller configurations. Simulated results showed that configuration SSA consisting of upper two 6-SBDT and one bottom 6-ABDT possessed the worst oxygen supply capacity. But it obtained the highest DHA percentage of 48.17 % and DHA yield of 21.42 g/L, indicating that it was beneficial for DHA synthesis and converting glucose to biomass and lipids. Configuration SAS consisting of one middle 6-ABDT and two 6-SBDT provided better mixing capacity, which resulted in the maximum glucose consumption rate of 2.86 g/L h and the highest biomass of 108.09 g/L. This study would improve insight into understanding the relationship between flow field and the physiology of Schizochytrium sp. for the scale-up of industrial DHA production.

  19. Pump instability phenomena generated by fluid forces

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.

    1985-01-01

    Rotor dynamic behavior of high energy centrifugal pumps is significantly affected by two types of fluid forces; one due to the hydraulic interaction of the impeller with the surrounding volute or diffuser and the other due to the effect of the wear rings. The available data on these forces is first reviewed. A simple one degree-of-freedom system containing these forces is analytically solved to exhibit the rotor dynamic effects. To illustrate the relative magnitude of these phenomena, an example of a multistage boiler feed pump is worked out. It is shown that the wear ring effects tend to suppress critical speed and postpone instability onset. But the volute-impeller forces tend to lower the critical speed and the instability onset speed. However, for typical boiler feed pumps under normal running clearances, the wear ring effects are much more significant than the destabilizing hydraulic interaction effects.

  20. Development and test of a plastic deep-well pump

    NASA Astrophysics Data System (ADS)

    Zhang, Q. H.; Gao, X. F.; Xu, Y.; Shi, W. D.; Lu, W. G.; Liu, W.

    2013-12-01

    To develop a plastic deep-well pump, three methods are proposed on structural and forming technique. First, the major hydraulic components are constructed by plastics, and the connection component is constructed by steel. Thus the pump structure is more concise and slim, greatly reducing its weight and easing its transportation, installation, and maintenance. Second, the impeller is designed by maximum diameter method. Using same pump casing, the stage head is greatly increased. Third, a sealing is formed by impeller front end face and steel end face, and two slots are designed on the impeller front end face, thus when the two end faces approach, a lubricating pair is formed, leading to an effective sealing. With above methods, the pump's axial length is greatly reduced, and its stage head is larger and more efficient. Especially, the pump's axial force is effectively balanced. To examine the above proposals, a prototype pump is constructed, and its testing results show that the pump efficiency exceeds the national standard by 6%, and the stage head is improved by 41%, meanwhile, its structure is more concise and ease of transportation. Development of this pump would provide useful experiences for further popularity of plastic deep-well pumps.

  1. Research on design multi-points performance curves of pump

    NASA Astrophysics Data System (ADS)

    Li, L.; Li, H.; Xu, D. H.

    2012-11-01

    The centrifugal pump's performance curves are the most important chart to reveal relevance of different performance parameters. They can show pump's function comprehensively and graphically. However these curves can't be predicted and designed precisely, duo to the complicated flow inside the impeller and the incomplete way to design pump. The complete shape of performance curves can be gained only after test. With the development of industry, many applications need the pump operating well at different flow conditions. It means the pump's performance curves should pass some specific points. This is a problem to the designer who still uses the traditional way to design pumps. In this paper, the Design of experiments was applied to arrange a plan of experiments. Because the theory equations of performance curves contain many geometry factors of impeller, changing these factors have different influence on the shape of curves, the relationship between geometry factors and the performance under different operation points been attained after using variance analysis to deal with experiment data. The relevant regression models and graphs were drawn to help understand these relationships. Depending on the predicted values of geometry factors pump's impeller was redesigned, and the pump's performance been simulated for saving time and cost. Test shows that the shape of performance curves satisfy design objective, this example can be taken as a reference of pump's specific designs.

  2. Pump-turbine performance test, Mt. Elbert Pumped-Storage Powerplant and Forebay Dam, Unit 1, Fryingpan-Arkansas project, Colorado. Flow measurement by the salt-velocity method

    SciTech Connect

    Lewey, A.B.; Favero, J.F.

    1984-12-01

    On September 13, 14, 22, and 23, 1982, a performance test was conducted on the vertical-shaft, single-impeller, pump-turbine designated Unit 1 at Mt. Elbert Pumped-Storage Powerplant and Forebay Dam. The operating characteristics were determined in the pump and turbine modes.

  3. Optimization of a centrifugal impeller design through CFD analysis

    NASA Astrophysics Data System (ADS)

    Chen, W. C.; Eastland, A. H.; Chan, D. C.; Garcia, Roberto

    1993-07-01

    This paper discusses the procedure, approach and Rocketdyne CFD results for the optimization of the NASA consortium impeller design. Two different approaches have been investigated. The first one is to use a tandem blade arrangement, the main impeller blade is split into two separate rows with the second blade row offset circumferentially with respect to the first row. The second approach is to control the high losses related to secondary flows within the impeller passage. Many key parameters have been identified and each consortium team member involved will optimize a specific parameter using 3-D CFD analysis. Rocketdyne has provided a series of CFD grids for the consortium team members. SECA will complete the tandem blade study, SRA will study the effect of the splitter blade solidity change, NASA LeRC will evaluate the effect of circumferential position of the splitter blade, VPI will work on the hub to shroud blade loading distribution, NASA Ames will examine the impeller discharge leakage flow impacts and Rocketdyne will continue to work on the meridional contour and the blade leading to trailing edge work distribution. This paper will also present Rocketdyne results from the tandem blade study and from the blade loading distribution study. It is the ultimate goal of this consortium team to integrate the available CFD analysis to design an advanced technology impeller that is suitable for use in the NASA Space Transportation Main Engine (STME) fuel turbopump.

  4. Identifying Physiologically Significant Pumping State Transitions in Implantable Rotary Blood Pumps Used as Left Ventricular Assist Devices: An In-Vivo Study

    DTIC Science & Technology

    2007-11-02

    bearing to support its impeller. The pump is to be used as a left ventricular assist device ( LVAD ). Varying pump speed can control the degree of left...These data indicate that the STI may be a valuable mechanism to in optimal LVAD control. Keywords - Implantable rotary blood pump, pumping states...as a left ventricular assist device ( LVAD ) with both bridge-to-transplant and long-term implantation anticipated. Current commercially used rotary

  5. Transformation of vibration signals in rotary blood pumps: the diagnostic potential of pump failure.

    PubMed

    Kawahito, Koji

    2013-09-01

    Although non-destructive and continuous monitoring is indispensable for long-term circulatory support with rotary blood pumps, a practical monitoring system has not yet been developed. The objective of this study was to investigate the possibility of detecting pump failure caused by thrombus formation through the monitoring of vibration signals. The data acquisition equipment included vibration pickups, a charge amplifier, vibration analysis systems, and exclusive hardware. A pivot-bearing centrifugal pump with a mock circuit was investigated for vibration analysis. To simulate the four common areas of thrombus formation, we used a piece of silicon attached to each of the following four locations: the total area of the bottom of the impeller, an eccentric shape on the bottom of the impeller, a circular shape around the shaft top, and an eccentric shape on the top of the impeller. Vibration signals were picked up, and the power spectrum density analysis was performed at pump rotational speeds of 2100, 2400, and 3000 rpm. In this study, pump failure could be detected, and the types of imitation thrombi could be determined. We conclude that vibration detection with a computerized analysis system is a potentially valuable diagnostic tool for long-term circulatory support with rotary blood pumps.

  6. Effects of outlet blade angle of centrifugal pump on the pump performance under air-water two-phase flow conditions

    SciTech Connect

    Minemura, Kiyoshi; Kinoshita, Katsuhiko; Ihara, Masaru; Furukawa, Hironori; Egashira, Kazuyuki

    1995-12-31

    To establish the optimum design parameters of offshore oil well centrifugal pumps, which should deliver crude oil containing a large amount of gas, various shapes of pump impeller with different outlet blade angles, locations of leading-edge and numbers of impeller blades as the design parameters were tested with various rotating speeds and suction pressures under air-water two-phase flow conditions. The greater the outlet blade angle, the less the degradation of the pump performance becomes, showing the optimum blade angle approximately equals to 90{degree}.

  7. Low volume variable RPM submersible well pump

    SciTech Connect

    Lorett, J.A.; Vandevier, J.E.

    1987-07-07

    This patent describes a submersible pump assembly comprising in combination: a centrifugal pump having impeller means for producing at least two flow rates for a selected head when operated at constant speed, making the pump potentially unstable, and for requiring increasing torque to produce increasing flow rates. An electric motor connects directly to the pump for driving the pump. A sensing means senses the torque output of the motor; and variable a speed drive means for varies the speed of the motor in response to the torque sensed by the sensing means to maintain a constant torque output. The constant torque applied to the pump prevents the pump from delivering more than one flow rate for a given head to stabilize the operation.

  8. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  9. Magnetically suspended centrifugal blood pump with a radial magnetic driver.

    PubMed

    Hoshi, Hideo; Katakoa, Kiroyuki; Ohuchi, Katsuhiro; Asama, Jun-ichi; Shinshi, Tadahiko; Shimokohbe, Akira; Takatani, Setsuo

    2005-01-01

    A new magnetic bearing has been designed to achieve a low electronic power requirement and high stiffness. The magnetic bearing consists of 1) radial passive forces between the permanent magnet ring mounted inside the impeller rotor and the electromagnet core materials in the pump casing and 2) radial active forces generated by the electromagnets using the two gap sensor signals. The magnetic bearing was assembled into a centrifugal rotary blood pump (CRBP) driven with a radial, magnetic coupled driver. The impeller vane shape was designed based upon the computational fluid dynamic simulation. The diameter and height of the CRBP were 75 mm and 50 mm, respectively. The magnetic bearing system required the power of 1.0-1.4 W. The radial impeller movement was controlled to within +/- 10 microm. High stiffness in the noncontrolled axes, Z, phi, and theta, was obtained by the passive magnetic forces. The pump flow of 5 L/min against 100 mm Hg head pressure was obtained at 1,800 rpm with the electrical to hydraulic efficiency being greater than 15%. The Normalized Index of Hemolysis (NIH) of the magnetic bearing CRBP was one fifth of the BioPump BP-80 and one half of the NIKKISO HPM-15 after 4 hours. The newly designed magnetic bearing with two degrees of freedom control in combination with optimized impeller vane was successful in achieving an excellent hemolytic performance in comparison with the clinical centrifugal blood pumps.

  10. Influence of blade angle distribution along leading edge on cavitation performance of a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Tan, L.; Cao, S. L.; Wang, Y. C.; Meng, G.; Qu, W. S.

    2015-01-01

    The influence of blade angle distribution along leading edge on cavitation performance of centrifugal pumps is analysed in the present paper. Three sets of blade angle distribution along leading edge for three blade inlet angles are chosen to design nine centrifugal pump impellers. The RNG k-epsilon turbulence model and the Zwart-Gerber-Belamri cavitation model are employed to simulate the cavitation flows in centrifugal pumps with different impellers and the same volute. The numerical results are compared with the experimental data, and the comparison proves that the numerical simulation can accurately predict the cavitation performance of centrifugal pumps. On the basis of the numerical simulations, the pump head variations with pump inlet pressure, and the flow details in centrifugal pump are revealed to demonstrate the influence of blade angle distribution along leading edge on cavitation performances of centrifugal pumps.

  11. The Depression Produced by Impellers and the Similarity Problem

    NASA Astrophysics Data System (ADS)

    Mândrea, Lucian; BăbuȚanu, Corina Alice; Oprina, Gabriela; Militaru, Gheorghe

    2016-11-01

    The authors intend to apply original analytical formulas to estimate the depression produced by different types of impellers. The problem has been approached in different studies, especially by numerical simulations and not from the analytical point of view. The study is useful to estimate not only the magnitude of the depression, but also the dimensions of the depression zone. Unpleasant effects can be produced if cavitations appear, leading to propelling unit damage and consequently increasing the operation costs of different applications, such as power industry, chemical industry equipment or naval transport. The authors test impellers of different sizes in two experimental setups in order to characterize the phenomenon.

  12. Theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a volute

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Y.; Acosta, A. J.; Brennen, C. E.

    1988-07-01

    Fluid forces on a rotating and whirling centrifugal impeller in a volute are analyzed with the assumption of a two-dimensional rotational, inviscid flow. For simplicity, the flow is assumed to be perfectly guided by the impeller vanes. The theory predicts the tangential and the radial force on the whirling impeller as functions of impeller geometry, volute spacing, and whirl ratio. A good qualitative agreement with experiment is found.

  13. Pump station for radioactive waste water

    SciTech Connect

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  14. Sizing of an aircraft fuel pump

    SciTech Connect

    Rohatgi, U.S.

    1995-06-01

    A need to pump a mixture of two-phase fluid appears naturally in many situations. One example of this situation is aircraft fuel systems, where the pump inlet may have two-phase mixture due to the desorption of the dissolved gases at low pressures at higher altitudes. A simple procedure of selecting proper design conditions for the inlet inducer and a method of sizing the inducer, impeller and volute to meet all the design requirements has been described. This procedure has also been applied to a typical fighter plane boost pump design.

  15. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, L.; Raimondi, A.A.

    1989-12-12

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

  16. Canned pump having a high inertia flywheel

    DOEpatents

    Veronesi, Luciano; Raimondi, ALbert A.

    1989-01-01

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

  17. VISCOUS CHARACTERICTICS ANALYSIS

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1994-01-01

    Current investigations of the hydrogen-fueled supersonic combustion ramjet engine have delineated several technological problem areas. One area, the analysis of the injection, turbulent mixing, and combusiton of hydrogen, requires the accurate calculation of the supersonic combustion flow fields. This calculation has proven difficult because of an interesting phenomena which makes possible the transition from supersonic to subsonic flow in the combustion field, due to the temperature transitions which occur in the flow field. This computer program was developed to use viscous characteristics theory to analyze supersonic combustion flow fields with imbedded subsonic regions. Intended to be used as a practical design tool for two-dimensional and axisymmetric supersonic combustor development, this program has proven useful in the analysis of such problems as determining the flow field of a single underexpanded hydrogen jet, the internal flow of a gas sampling probe, the effects of fuel-injector strut shape, and the effects of changes in combustor configuration. Both combustion and diffusive effects can significantly alter the wave pattern in a supersonic field and generate significant pressure gradients in both the axial and radial directions. The induced pressure, in turn, substantially influences the ignition delay and reaction times as well as the velocity distribution. To accurately analyze the flow fields, the effects of finite rate chemistry, mixing, and wave propagation must be properly linked to one another. The viscous characteristics theory has been used in the past to describe flows that are purely supersonic; however, the interacting pressure effects in the combustor often allow for the development of shock waves and imbedded subsonic regions. Numerical investigation of these transonic situations has required the development of a new viscous characteristics procedure which is valid within the subsonic region and can be coupled with the standard viscous

  18. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations.

    PubMed

    Ungerman, Andrew J; Heindel, Theodore J

    2007-01-01

    This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding.

  19. Effect of fluid forces on rotor stability of centrifugal compressors and pumps

    NASA Technical Reports Server (NTRS)

    Colding-Jorgensen, J.

    1980-01-01

    A simple two dimensional model for calculating the rotordynamic effects of the impeller force in centrifugal compressors and pumps is presented. It is based on potential flow theory with singularities. Equivalent stiffness and damping coefficients are calculated for a machine with a vaneless volute formed as a logarithmic spiral. It is shown that for certain operating conditions, the impeller force has a destablizing effect on the rotor.

  20. A Method to Determine the Slip Factor of Centrifugal Pumps through Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Xiao, Jun-Jian

    2015-04-01

    In this paper, a method to determine the slip factor of centrifugal impellers is proposed based on the experimental result of the external performance of centrifugal pumps. This proposed method is superior to the conventional experimental method, which needs not to measure the flow parameters at impeller outlet. The results show that the present method can be used to obtain the slip factor at offdesign condition in a wide range of flow rate besides at the design point.

  1. [Research on the feasibility of a magnetic-coupling-driven axial flow blood pump].

    PubMed

    Yu, Xiaoqing; Ding, Wenxiang; Wang, Wei; Chen, En; Jiang, Zuming; Zou, Wenyan

    2004-02-01

    A new-designed axial flow blood pump, dived by magnetic coupling and using internal hollow brushless DC motor and inlet and outlet in line with impeller, was tested in mimic circuit. The results showed good performance of the new pump and indicated that its hydrodynamic characteristic can meet the demands of clinical extracorporeal circulation and auxiliary circulation.

  2. Two-phase velocity distributions and overall performance of a centrifugal slurry pump

    SciTech Connect

    Cader, T.; Masbernat, O.; Roco, M.C. . Dept. of Mechanical Engineering)

    1994-06-01

    Back-scattering LDV has been used to investigate particulate two-phase flow in a centrifugal slurry pump. The measurements reported here have been made with a dilute suspension of 0.8 mm glass beads at the impeller-casing flow interface. This interface is of practical importance because the corresponding velocity and concentration results can be used to determine the pump head and flowrate. The present study evaluates the connection between the liquid and solids velocity distribution measured around the impeller and the pump performance determined from measurements at the pump inlet and outlet. The analysis of the velocity triangles for both phases shows the effect of the pump flowrate and inlet recirculation on the pump head at the impeller outlet, as well as the effect of particle slip on pump energy efficiency. A separate group of characteristic curves is proposed to represent the periodical fluctuations of the pump flowrate, head, and loss of efficiency due to particle slip, as a function of the impeller position.

  3. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).

    PubMed

    Kido, Kazuyuki; Hoshi, Hideo; Watanabe, Nobuo; Kataoka, Hiroyuki; Ohuchi, Katsuhiro; Asama, Junichi; Shinshi, Tadahiko; Yoshikawa, Masaharu; Takatani, Setsuo

    2006-05-01

    We have developed a tiny rotary centrifugal blood pump for the purpose of supporting circulation of children and infants. The pump is designed to provide a flow of 0.1-4.0 L/min against a head pressure of 50-120 mm Hg. The diameter of the impeller is 30 mm with six straight vanes. The impeller is supported by a hydrodynamic bearing at its center and rotated with a radial coupled magnetic driver. The bearing that supports rotation of the impeller of the tiny centrifugal blood pump is very critical to achieve durability, and clot-free and antihemolytic performance. In this study, computational fluid dynamics (CFD) analysis was performed to quantify the secondary flow through the hydrodynamic bearing at the center of the impeller and investigated the effects of bearing clearance on shear stress to optimize hemolytic performance of the pump. Two types of bearing clearance (0.1 and 0.2 mm) were studied. The wall shear stress of the 0.1-mm bearing clearance was lower than that of 0.2-mm bearing clearance at 2 L/min and 3000 rpm. This was because the axial component of the shear rate significantly decreased due to the narrower clearance even though the circumferential component of the shear rate increased. Hemolysis tests showed that the normalized index of hemolysis was reduced to 0.0076 g/100 L when the bearing clearance was reduced to 0.1 mm. It was found that the CFD prediction supported the experimental trend. The CFD is a useful tool for optimization of the hydrodynamic bearing design of the centrifugal rotary blood pump to optimize the performance of the pump in terms of mechanical effect on blood cell elements, durability of the bearing, and antithrombogenic performance.

  4. SSME Investment in Turbomachinery Inducer Impeller Design Tools and Methodology

    NASA Technical Reports Server (NTRS)

    Zoladz, Thomas; Mitchell, William; Lunde, Kevin

    2010-01-01

    Within the rocket engine industry, SSME turbomachines are the de facto standards of success with regard to meeting aggressive performance requirements under challenging operational environments. Over the Shuttle era, SSME has invested heavily in our national inducer impeller design infrastructure. While both low and high pressure turbopump failures/anomaly resolution efforts spurred some of these investments, the SSME program was a major benefactor of key areas of turbomachinery inducer-impeller research outside of flight manifest pressures. Over the past several decades, key turbopump internal environments have been interrogated via highly instrumented hot-fire and cold-flow testing. Likewise, SSME has sponsored the advancement of time accurate and cavitating inducer impeller computation fluid dynamics (CFD) tools. These investments together have led to a better understanding of the complex internal flow fields within aggressive high performing inducers and impellers. New design tools and methodologies have evolved which intend to provide confident blade designs which strike an appropriate balance between performance and self induced load management.

  5. Coiling Viscous Jets

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.

    1996-11-01

    A thin stream of glycerine or other viscous fluid poured onto a horizontal plane from a sufficient height piles up in a regular coil. In its steady state, this motion is analogous to the coiling of a flexible rope (L. Mahadevan and J.B. Keller, Proc. Roy. Soc.(A) to appear.). This analogy is used to solve the nonlinear free-boundary problem for the frequency of coiling and the coil radius. The results are compared with experimental results that go back to the the work of G.I. Taylor (1969).

  6. Research on energy conversion mechanism of a screw centrifugal pump under the water

    NASA Astrophysics Data System (ADS)

    Quan, H.; Li, R. N.; Su, Q. M.; Han, W.; Cheng, X. R.; Shen, Z. J.

    2013-12-01

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase.

  7. Technical requirements and limitations of miniaturized axial flow pumps for circulatory support.

    PubMed

    Reul, H

    1994-01-01

    The engineering principles of rotary blood pumps are elucidated by means of a basic introduction into turbomachinery. Additionally, some important dimensionless quantities which relate to pumping characteristics and pump type are introduced. These theoretical fundamentals are applied to the design of high-speed microaxial pumps, especially the two Hemopump versions. The theoretical estimates clearly show that each pump version has its physical limits, especially at small impeller sizes. It is also demonstrated that not any clinically desirable working point of an axial pump can be achieved with an arbitrarily small pump size.

  8. Viscous Puddle Jump

    NASA Astrophysics Data System (ADS)

    Al Jubaree, Taif; Weislogel, Mark; Hua, Tan

    2016-11-01

    The phenomena of spontaneous droplet jump from hydrophobic surfaces during low-g drop tower tests was recently reviewed. Such drops may be over 10,000 times larger than typical terrestrial drops and are more akin to puddles than drops. In this work we investigate the effect of viscosity on the puddle jump process for drop/puddle volumes up to 100 mL and dynamic viscosities up to 950 cSt. The large low-cost hydrophobic surfaces are created using PTFE-coated 320 grit sand paper. We adopt a scaling approach to evaluate the relevant terms of the momentum equation before performing an energy balance for both driving and dissipation terms. A scaling law is corroborated by the experimental data for viscous puddle jump time and puddle recoil velocity. Numerical solutions are also conducted for comparisons. We demonstrate highly damped puddle jumps which may be exploited in turn to study further drop dynamics phenomena such as vanishingly small Weber number drop-wall impacts, over-damped oblique impacts and rebounds, and viscous wall-bound droplet boiling in low-gravity environments.

  9. Unsteady Pressure and Velocity Measurements in Pumps

    DTIC Science & Technology

    2006-11-01

    to reproduce the data with controlled experiments . For example, the rotor exit flow measured by means of a stationary high response probe will be...Turbomachinery by Means of High-Frequency Pressure Transducers. ASME, J. of Turbomachinery, Vol. 114, pp. 100-107. [3] Castorph, D. (1975): Messung ...Dreiß, A.; Kosyna, G. (1997): Experimental Investigations of Cavitation-States in a Radial Pump Impeller. JSME CENTENNIAL GRAND CONGRESS Proceedings of

  10. Viscous sludge sample collector

    DOEpatents

    Beitel, George A [Richland, WA

    1983-01-01

    A vertical core sample collection system for viscous sludge. A sample tube's upper end has a flange and is attached to a piston. The tube and piston are located in the upper end of a bore in a housing. The bore's lower end leads outside the housing and has an inwardly extending rim. Compressed gas, from a storage cylinder, is quickly introduced into the bore's upper end to rapidly accelerate the piston and tube down the bore. The lower end of the tube has a high sludge entering velocity to obtain a full-length sludge sample without disturbing strata detail. The tube's downward motion is stopped when its upper end flange impacts against the bore's lower end inwardly extending rim.

  11. Viscous starting jets

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian J.

    1986-01-01

    The transient motion which is produced when a viscous incompressible fluid is forced from an initial state of rest is studied. The equations for unsteady particle paths, written in terms of similarity variables, are analyzed as a quasi-autonomous system with the Reynolds number treated as a parameter. By finding and classifying critical points in the system's phase portrait, the flow structure is examined. It is shown that: (1) bifurcations in the phase portrait occur at specific values of the Reynolds number of the flow in question, and (2) the exact solutions of the Stokes equations for the low-Reynolds-number limit contain two critical Reynolds numbers and three distinct states of motion which culminate in the onset of a vortex roll-up.

  12. A novel integrated electric motor/pump for underwater applications

    NASA Astrophysics Data System (ADS)

    Cho, C. Peter; Fussell, Barry K.; Hung, John Y.

    1996-04-01

    This article presents a novel electric motor/pump system that combines an axial field, permanent magnet motor with a centrifugal pump. This system, unique because the motor permanent magnet rotor and pump impeller vanes are a single unit, provides a compact, reliable, low-noise, and high-power density electrically driven centrifugal pump suitable for underwater applications in which minimizing noise, vibration, and volume are major design objectives. Performance tradeoffs for the electromagnetic analysis were made by three-dimensional finite element analysis models in conjunction with a lumped parameter magnetic circuit model.

  13. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    NASA Astrophysics Data System (ADS)

    Nishi, Y.; Fukutomi, J.; Fujiwara, R.

    2012-11-01

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate

  14. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing.

    PubMed

    Mitamura, Yoshinori; Kido, Kazuyuki; Yano, Tetsuya; Sakota, Daisuke; Yambe, Tomoyuki; Sekine, Kazumitsu; OKamoto, Eiji

    2007-03-01

    To overcome the drive shaft seal and bearing problem in rotary blood pumps, a hydrodynamic bearing, a magnetic fluid seal, and a brushless direct current (DC) motor were employed in an axial flow pump. This enabled contact-free rotation of the impeller without material wear. The axial flow pump consisted of a brushless DC motor, an impeller, and a guide vane. The motor rotor was directly connected to the impeller by a motor shaft. A hydrodynamic bearing was installed on the motor shaft. The motor and the hydrodynamic bearing were housed in a cylindrical casing and were waterproofed by a magnetic fluid seal, a mechanically noncontact seal. Impeller shaft displacement was measured using a laser sensor. Axial and radial displacements of the shaft were only a few micrometers for motor speed up to 8500 rpm. The shaft did not make contact with the bearing housing. A flow of 5 L/min was obtained at 8000 rpm at a pressure difference of 100 mm Hg. In conclusion, the axial flow blood pump consisting of a hydrodynamic bearing, a magnetic fluid seal, and a brushless DC motor provided contact-free rotation of the impeller without material wear.

  15. Split driveshaft pump for hazardous fluids

    DOEpatents

    Evans, II, Thomas P.; Purohit, Jwalit J.; Fazio, John M.

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  16. Micropump for viscous liquids and muds

    NASA Astrophysics Data System (ADS)

    Schwesinger, Norbert; Bechtel, Sasha

    1998-09-01

    This work was focused on the development of a micropump that allows the transport of fluids with high viscosities or fluids containing pigments in a large amount. This new pump should be produced by means of silicon micromachining technologies. Due to adhesion forces as well as sedimentation processes the transport of highly viscous and particle loaded fluids is a difficult problem. Dead volumes must be surely avoided in the pump because they are preferred regions of adhesion and sedimentation, respectively. The developed micropump is nearly free of dead volumes. It consists of silicon chips and a PTFE-membrane bonded together without real gluing procedures. The silicon chips contain deep etched structures manufactured by simple wet chemical etching procedures. Pressure on the liquid can be generated inside the structures by pushing the elastic membrane. A pneumatic drive was used to deflect the membranes. In a peristaltic mode it was possible to pump liquids like honey or mustard with a noticeable flow rat up to 0.6 ml/min without any back flow.

  17. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-09-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  18. A slowly rotating impeller in a rapidly rotating fluid

    NASA Astrophysics Data System (ADS)

    Machicoane, Nathanael; Moisy, Frederic; Cortet, Pierre-Philippe; Instability, waves; turbulence Team

    2016-11-01

    We characterize the two-dimensionalization process in the turbulent flow produced by an impeller rotating at a rate ω in a fluid rotating at a rate Ω around the same axis for Rossby number Ro = ω / Ω down to 0.01. The flow can be described as the superposition of a large-scale vertically invariant global rotation and small-scale shear layers detached from the impeller blades. As Ro decreases, the large-scale flow is subjected to azimuthal modulations. In this regime, the shear layers can be described in terms of wakes of inertial waves traveling with the blades, originating from the velocity difference between the non-axisymmetric large-scale flow and the blade rotation. The wakes are well defined and stable at low Rossby number, but they become disordered and interact nonlinearly at Ro of order of 1.

  19. Critical cavitation coefficient analysis of a space low specific centrifugal pump with micro gravity

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Li, Y.; Gao, Y.; Hu, Q.; Zhou, C.; Wu, Y. L.

    2016-05-01

    Centrifugal pump was used in the loop as a baselined unit. The flow rate of the pump was very small, while the head was high. This space pump must work stable for a long time (more than a year), so the performance of the pump attracted public attention. The rotational speed of the impeller was limited for stability, so the pump belonged to low specific centrifugal pump. In this paper, a single-phase centrifugal pump, which was designed for single-phase fluid loops in satellites, was modeled for numerical simulation. The hydraulic region of the pump was discretized by structured mesh. Three dimensional (3-D) flow in the pump was studied by the use of computational fluid dynamics. Partially-Averaged Navier- Stokes (PANS) model based on RNG k-ε turbulence model was developed for the simulation of the unsteady flow. Velocity inlet and pressure outlet was used as the boundary conditions. Interface was used between the impeller and the casing, as well as the impeller and inlet pipe. Performances and pressure fluctuation of the pump were investigated. The dominant frequency of the pressure fluctuation is blade passing frequency at the region close to the tongue of the casing, while it is twice of blade passing frequency at the other region.

  20. Feasibility of a TinyPump system for pediatric CPB, ECMO, and circulatory assistance: hydrodynamic performances of the modified pump housing for implantable TinyPump.

    PubMed

    Yokoyama, Naoyuki; Suzuki, Masaaki; Hoshi, Hideo; Ohuchi, Katsuhiro; Fujimoto, Tetsuo; Takatani, Setsuo

    2007-01-01

    The TinyPump is a miniature centrifugal blood pump with an extremely small priming volume of 5 ml, allowing blood transfusion free cardiopulmonary bypass as well as extracorporeal membrane oxygenation in pediatric patients. In this study, a new pump housing with the angled inlet port (25 degrees toward impeller center with respect to the flow axis) was designed to optimize the pump displaced volume and to extend the application of the TinyPump to implantable support The fluid dynamic performance analysis revealed that the head pressure losses increased from 3 to 17 mm Hg in comparison with straight port design as the pump rotational speed increased from 2,000 to 4,000 rpm. This was probably caused by perturbed flow patterns at the site of the inlet bent port area and streamline hitting the off-center of the impeller. No significant effect on pumping efficiency was observed because of modification in inlet port design. Modification in the inflow and outflow port designs together with the drive mechanism reduces the height of the pump system, including the motor, to 27 mm yielding the displaced volume of 68 ml in comparison with 40 mm of the paracorporeal system with the displaced volume of 105 ml. Further analysis in terms of hemolytic as well as antithrombogenic performance will be carried out to finalize the housing design for the implantable version of the TinyPump.

  1. Mechanically tunable microlasers based on highly viscous chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Shibaev, Petr V.; Crooker, Benjamin; Manevich, Michael; Hanelt, Eckhard

    2011-12-01

    Chiral composition is designed for highly viscous lasing microemitters. The composition forms cholesteric liquid crystal and after doping with pyrromethene 597 was used as an active lasing media in stretchable aluminized silicone cavities. Optical pumping of the system led to lasing at the wavelengths defined by a degree of cavity deformation. Lasing thresholds were lower in aluminized cavity than in transparent cavity. A simple model allowing to predict the shift of lasing wavelength as a function of deformation is developed.

  2. Interaction effects on the unstable discharge-energy characteristic of pump-turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Tao, R.; Xiao, R. F.; Yang, W.; Liu, W. C.

    2013-12-01

    For a pump-turbine, unstable discharge-energy characteristic is an important factor for operating stability. In this study, the rotor-stator interaction effects on the pump-turbine which has the unstable discharge-energy characteristic has been studied. A series of transient CFD simulations under different discharge conditions have been conducted. Through the contrast between the simulations and experiments, it is found out that the energy decline is strongly affected by the flow loss in the adjustable vane. More importantly, the magnitude and direction of fluid flowing into the adjustable vane are varying with the impeller rotating. Disordered flow structure occurs in the adjustable vane and causes the energy losses due to the interaction effects. Based on this study, improvements on the flow uniformity at impeller outlet will help us to solve the unstable discharge-energy problem.

  3. Constraining relativistic viscous hydrodynamical evolution

    SciTech Connect

    Martinez, Mauricio; Strickland, Michael

    2009-04-15

    We show that by requiring positivity of the longitudinal pressure it is possible to constrain the initial conditions one can use in second-order viscous hydrodynamical simulations of ultrarelativistic heavy-ion collisions. We demonstrate this explicitly for (0+1)-dimensional viscous hydrodynamics and discuss how the constraint extends to higher dimensions. Additionally, we present an analytic approximation to the solution of (0+1)-dimensional second-order viscous hydrodynamical evolution equations appropriate to describe the evolution of matter in an ultrarelativistic heavy-ion collision.

  4. Development of an atraumatic small centrifugal pump for second-generation cardiopulmonary bypass.

    PubMed

    Jikuya, T; Sasaki, T; Aizawa, T; Shiono, M; Glueck, J A; Smith, C P; Feldman, L; Sakuma, I; Sekela, M E; Noda, T

    1992-12-01

    A small and light direct-drive centrifugal pump has been developed for cardiopulmonary bypass. In the development process, blood compatibility studies including a hemolysis study, an in vitro fluid dynamic performance study, and in vivo durability and feasibility studies were performed. The centrifugal pump with a 50 mm diameter impeller resulted in almost the same index of hemolysis value as did a Bio-Medicus centrifugal pump. Heat dissipation from the motor was prevented by using a flexible drive cable. Forty-eight-hour sealing durability around the driving axis was accomplished by using a fluoro-rubber V-ring that connected to the hard chrome-plated stainless steel. In vitro and in vivo performances of the pump were satisfactory. Thrombus formation behind the impeller was prevented by using a holed impeller that generated blood flow from the back to the surface of the impeller. Elimination of air during priming procedures was also easier with this modification. This centrifugal pump has one-quarter of the priming volume, size, and weight of magnetically coupled centrifugal pump systems.

  5. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    NASA Astrophysics Data System (ADS)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  6. A compact centrifugal blood pump for extracorporeal circulation: design and performance.

    PubMed

    Tanaka, S; Yamamoto, S; Yamakoshi, K; Kamiya, A

    1987-08-01

    A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.

  7. Design and Analysis of High Speed Pumps (Conception et analyse des pompes a grande vitesse) (CD-ROM)

    DTIC Science & Technology

    for more compact and lighter pumps has led to an increased rotational speed up to the point where cavitation and rotordynamics become a major issue. The...better insight into the real flow in pump impellers. Rotordynamic problems and their impact on seals and bearings are discussed in detail, including the

  8. Study on the influence of back blade shape on the wear characteristics of centrifugal slurry pump

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhou, S. P.; Li, S.

    2016-05-01

    CFX particle inhomogeneous model was introduced for the mechanism analysis of a centrifugal slurry pump which is equipped with back blades on impeller shrouds. Combining with the total efficiency correction, the simulation showed good prediction accuracy of external characteristics results compared with the experimental values. Vorticity and Q-Criterion were chosen as the variables to illustrate the abrasion morphology and wear mechanism by contrasting simulation result with worn impeller in engineering. The analysis showed that the large vorticity intensity areas are distributed at the edge of impeller shroud and intensively behind the back blades. Moreover, the vorticity scattered on suction surface of back blade shows the largest intensity. The contour of Q-Criterion demonstrated that the swirl scale in front cavity is obviously larger than that in back cavity. The distribution of vorticity on both front and back shrouds can reasonably explain the impeller wear characteristics. Finally, the forward curved back blade proved to be excellence performance in vorticity distribution.

  9. Hydrogen test of a small, low specific speed centrifugal pump stage

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  10. A magnetically levitated centrifugal blood pump with a simple-structured disposable pump head.

    PubMed

    Hijikata, Wataru; Shinshi, Tadahiko; Asama, Junichi; Li, Lichuan; Hoshi, Hideo; Takatani, Setsuo; Shimokohbe, Akira

    2008-07-01

    A magnetically levitated centrifugal blood pump (MedTech Dispo) has been developed for use in a disposable extracorporeal system. The design of the pump is intended to eliminate mechanical contact with the impeller, to facilitate a simple disposable mechanism, and to reduce the blood-heating effects that are caused by motors and magnetic bearings. The bearing rotor attached to the impeller is suspended by a two degrees-of-freedom controlled radial magnetic bearing stator, which is situated outside the rotor. In the space inside the ringlike rotor, a magnetic coupling disk is placed to rotate the rotor and to ensure that the pump head is thermally isolated from the motor. In this system, the rotor can exhibit high passive stiffness due to the novel design of the closed magnetic circuits. The disposable pump head, which has a priming volume of 23 mL, consists of top and bottom housings, an impeller, and a rotor with a diameter of 50 mm. The pump can provide a head pressure of more than 300 mm Hg against a flow of 5 L/min. The normalized index of hemolysis of the MedTech Dispo is 0.0025 +/- 0.0005 g/100 L at 5 L/min against 250 mm Hg. This is one-seventh of the equivalent figure for a Bio Pump BPX-80 (Medtronic, Inc., Minneapolis, MN, USA), which has a value of 0.0170 +/- 0.0096 g/100 L. These results show that the MedTech Dispo offers high pumping performance and low blood trauma.

  11. Viscous dark fluid universe

    SciTech Connect

    Hipolito-Ricaldi, W. S.; Velten, H. E. S.; Zimdahl, W.

    2010-09-15

    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.

  12. New mechanism to reduce the size of the monopivot magnetic suspension blood pump: direct drive mechanism.

    PubMed

    Yamane, T; Nishida, M; Kijima, T; Maekawa, J

    1997-07-01

    Size reduction of the monopivot magnetic suspension blood pump has been achieved by reducing the size of the magnetic suspension and employing a direct drive mechanism in place of a brushless DC motor and a magnetic coupling. The flow has also been improved using a closed hollow impeller to remove flow obstruction at the inlet and using radial straight vanes to reduce the impeller speed by 30%. Hemolysis testing was conducted for the new models. Results showed that model DD1 presented only a slightly higher level of hemolysis than a regular extracorporeal centrifugal pump.

  13. Backswept impeller and vane island diffuser and shroud for NASA advanced-concepts compressor test rig

    NASA Technical Reports Server (NTRS)

    Perrone, G. L.; Holbrook, M. R.; Mcvaugh, J. M.

    1973-01-01

    A centrifugal impeller based on an existing backswept design was defined. In addition, a vaned diffuser was designed to match this impeller and also to be compatible with an existing 6:1 compressor test rig. The mechanical integrity of this design was verified by analysis. Hardware was procured and inspected to insure conformity with design tolerances. An overspeed test was successfully conducted on one of the impellers fabricated under this program.

  14. Numerical study of cavitation flows inside a tubular pumping station

    NASA Astrophysics Data System (ADS)

    Tang, X. L.; Huang, W.; Wang, F. J.; Yang, W.; Wu, Y. L.

    2012-11-01

    Based on RNG k-epsilon turbulence model and the full cavitation model, the cavitation flows inside a low-head tubular-pump model were predicted by using the FLUENT software. For a operating case of given flow rate, cavitation happens near the inlet on the suction surfaces of the impeller blades at the initial cavitating stage, and the cavitating area spreads to the impeller passage and hub as NPSH (net positive suction head) decreases, which will affect energy transformation. For various operating cases of cavitation flows at the given flow rates, the predicted velocity and pressure distributions as well as the vapor volumetric fraction are systematically analyzed. Finally, the cavitation performance curve of the tubular-pump model is obtained by means of the further post-processing. All the comparisons and analysis can be further employed to optimize the hydraulic and structural design of the tubular pump and to guide its safe operation.

  15. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  16. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  17. Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods

    NASA Astrophysics Data System (ADS)

    Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi

    2010-06-01

    Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.

  18. [A new approach for improving antithrombogenicity in centrifugal pump].

    PubMed

    Qian, Kunxi; Zeng, Pei; Ru, Weimin; Yuan, Haiyu

    2003-09-01

    For long-term application of the rotary pumps, it is necessary to solve the problems of bearing wear and thrombosis along the bearing. Currently, many investigators choose the magnetic bearing to realize zero-friction and no contact between the rotor and stator; the former avoids the mechanical wear and the latter eliminates the possibility of thrombus formation. We tried and found that it is difficult to apply a magnetic bearing to rotary pump without disturbing its simplicity, reliability and implantable; therefore, we have developed a much simpler and much more creative approach to achieving the same results. Instead of the sliding bearing, a rolling bearing has been devised for the pump; its friction is about 1/15 of the sliding bearing. Furthermore, a wear-proof material of ultra-high-molecular weight polythene has been adopted in making the rollers, their anti-wear property in 8 times better than that of metal. Thereby, the service life of the bearing has extended to several years. For preventing the thrombus formation along the bearing, the impeller reciprocation axially as the impeller changes its rotating speed periodically to produce a pulsatile flow. The reciprocation is a result of the effects of a magnetic force between the motor rotor and stator, and a hydraulic force between the blood flow and the impeller. Similar to piston pump, the oscillating impeller can make the blood in and out of the bearing, resulting in wash-out once a circle. This is obviously beneficial to preventing thrombosis along the bearing and in the pump. The endurance tests with saline of this novel pump demonstrated a durability of the device. It promises to be able to assist the circulation of the patients permanently and to be able to replace the heart transplantation in the future.

  19. High efficiency, variable geometry, centrifugal cryogenic pump

    SciTech Connect

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-12-31

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions.

  20. Analysis of the flow field into a two stages and double entry storage pump taking into account two geometries of stator blades

    NASA Astrophysics Data System (ADS)

    Dunca, G.; Muntean, S.; Isbasoiu, E. C.

    2010-08-01

    The paper presents the 3D numerical analysis of the flow into a hydraulic passage of the two stages and double entry storage pump. One of the reasons for choosing this machinery was that, even from the beginning of its operation, high levels of noise and vibration were recorded. According to the literature, these can be considered as effects of the impeller-stator phenomenon. After only 100 hours of operation, the pump' first stator blades was bend and the second stator blades was broken. As a rehabilitation solution, 100 mm of the chord were cut from the stator blades, near the leading edge. After the rehabilitation, a decrease of the noise and vibration levels during pump operation was observed. In order to analyse the pump behaviour, three measurements campaigns were conducted, after the rehabilitation. Yet, the experimental results were not very conclusive. A more detailed experimental analysis on a real turbo machine is very difficult and expensive. Thus, in order to obtain more detailed information regarding the impeller-stator phenomenon inside the analysed pump, a numerical analysis was realized. The impeller-stator (between the first impeller and first stator as well as between second impeller and second stator) and stator-impeller (between the first stator and second impeller) interactions are taken into account with mixing interface method. The hydrodynamic field from the inlet to the outlet is obtained. As a result, the pressure rise and hydraulic efficiency are computed at best efficiency point. These values are validated against experimental data measured into the storage pump. Comparing the numerical results obtained for the two geometries of the stators, it can be seen that they have different behaviour during the pump's operation. It can be considered that, although the same geometry modification was realized for both the stators, the effects on the flow parameters are different, only for the second stator being possible to observe a net

  1. Characterization of a centrifugal pump in He II

    NASA Technical Reports Server (NTRS)

    Weisend, J. G., II; Van Sciver, S. W.

    1988-01-01

    As part of an effort to determine the feasibility of helium transfer in space, a centrifugal pump was tested in He II at a variety of flow rates, pump speeds, and fluid temperatures. The pump, which has a straight bladed impeller 6.86 cm in diameter, generated a maximum pressure rise of 15 kPa and a maximum flow rate of 22 g/s for the conditions of the test. Pump performance seems to be independent of fluid temperature and is in good agreement with the values predicted by the manufacturer. Over the range of flow coefficients, the measured maximum efficiency is around 50 percent. Cavitation is observed in the pump and is thought to be highly dependent on the local heating of the helium in the pump. Preliminary measurements of the noise spectra of the pump suggest a possible mechanism to predict the onset of cavitation.

  2. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi

    2015-01-01

    The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level.

  3. Life cycle costs for chemical process pumps

    SciTech Connect

    Urwin, B.; Blong, R.; Jamieson, C.; Erickson, B.

    1998-01-01

    Though construction and startup costs are always a concern, proper investment in equipment and installation will save money down the line. This is particularly important for heavily used items, such as centrifugal pumps, one of the workhouses of the chemical process industries (CPI). By properly sizing and installing a centrifugal pump, the life and efficiency of the pump can be increased. At the same time, maintenance costs can be reduced. When considering a new pump, there are several areas that require attention. The first is the baseplate design. The impeller is another area of concern. The seal chamber, the third area of importance, must be designed for proper heat dissipation and lubrication of seal faces. Lastly, the power end must be considered. Optimum bearing life, effective oil cooling and minimum shaft deflection are all vital. The paper discusses installation costs, operating cost, maintenance cost, seal environment, and extended bearing life.

  4. Cavitation performance evaluation for a condensate pump

    NASA Astrophysics Data System (ADS)

    Yu, A.; Yu, W. P.; Pan, Z. B.; Luo, X. W.; Ji, B.; Y Xu, H.

    2013-12-01

    Cavitation in a condensate pump with specific speed of 95 m·m3s-1·min-1 was treated in this study. Cavitation performance for the pump was tested experimentally, and the steady state cavitating flows in the pump impeller were simulated by RANS method as well as a homogeneous cavitation model. It is noted that cavitating flow simulation reasonably depicted cavitation development in the pump. Compared to the tested results, the numerical simulation basically predicted later performance drops due to cavitation. Unfortunately, the cavitation simulation at the operation condition of 50% best efficiency point could not predict the head drop up to 3%. By applying the concept of relative cavity length cavitation performance evaluation is achieved. For better application, future study is necessary to establish the relation between relative cavity length and performance drop.

  5. Hydraulic characterization of centrifugal pumps in He I near saturated conditions

    NASA Astrophysics Data System (ADS)

    Baudouy, B.; Takeda, M.; Van Sciver, S. W.

    The hydraulic characteristics of a variable speed liquid helium centrifugal pump in He I near saturated conditions (4.2 K and ˜100 kPa) are presented. Three different housings are tested, a simple impeller housing and two housings with an impeller with an associated screw inducer, to investigate the effect of the inducer and the effect of the diffuser throat diameter dimension on the performance of the pump. The three housings have been tested in an open loop without discharge line. The pressure difference across the pumps and the mass flow rates have been recorded for different pump speeds. We compare the pump performances with predicted values. For different inlet tube length, cavitation effects, that might occur near saturated conditions, were also investigated.

  6. Activities of the NASA/Marshall Space Flight Center pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Mcconnaughey, P.; Eastland, A.

    1992-01-01

    In order to advance rocket propulsion technology, the Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology has been formed at Marshall Space Flight Center (MSFC). The Consortium consists of three Teams: the turbine stage team, the pump stage team (PST), and the combustion devices team. The PST has formulated and is implementing a plan for pump technology development whose end product will be validated CFD codes suitable for application to pump components, test data suitable for validating CFD codes, and advanced pump components optimized using CFD codes. The PST's work during the fall of 1991 and the winter and spring of 1992 is discussed in this paper. This work is highlighted by CFD analyses of an advanced impeller design and collection of laser two-focus velocimeter data for the Space Shuttle Main Engine High Pressure Fuel Pump impeller.

  7. Development of a novel centrifugal pump: magnetic rotary pump.

    PubMed

    Naganuma, S; Yambe, T; Sonobe, T; Kobayashi, S; Nitta, S

    1997-07-01

    The rotational axis of the centrifugal pump has some associated problems such as blood destruction and sealing between the axis and pump housing. To improve upon these deficits we have developed a new type of blood pump, the magnetic rotary pump (MRP). The MRP has an original design with no rotational axis and no impellers. We made a prototype MRP and examined its hemodynamics in mock circulation. The prototype MRP flow rate is only 1.0 L/min with an afterload of 30 mm Hg, and we have made some modifications in the size and drive mechanisms from these results. The modified MRP can achieve high flow rates and rotational speeds (6.0 L/min with an afterload of 100 mm Hg, 2,000 rpm) in a mock circuit, and the modified MRP was used for left heart assistance in an acute animal experiment. The MRP could maintain the hemodynamics of an anesthetized adult goat. These results suggest that the MRP needs to be improved in several areas, but the MRP may be useful as a blood pump.

  8. Predicting the Inception Cavitation of a Reversible Pump- Turbine in Pump Mode

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Xiao, Ruofu; Zhu, Di; Liu, Weichao

    2015-12-01

    Inception cavitation is a crucial indicator for reversible pump-turbines especially in pump mode. In actual applications, it is difficult to use CFD for the inception cavitation character. In this study, CFD simulation is conducted to find a proper way to evaluate the inception cavitation, different levels of vapor volume fraction in the impeller is predicted based on the tested results. Results show that the prediction of the location and scale of cavitation is accurate. The predicted cavitation number also matches the experimental data well. The vapor volume fraction levels from 0.0001% to 0.001% are recommended as the criterion of inception cavitation.

  9. Quasiadiabatic modes from viscous inhomogeneities

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2016-04-01

    The viscous inhomogeneities of a relativistic plasma determine a further class of entropic modes whose amplitude must be sufficiently small since curvature perturbations are observed to be predominantly adiabatic and Gaussian over large scales. When the viscous coefficients only depend on the energy density of the fluid the corresponding curvature fluctuations are shown to be almost adiabatic. After addressing the problem in a gauge-invariant perturbative expansion, the same analysis is repeated at a nonperturbative level by investigating the nonlinear curvature inhomogeneities induced by the spatial variation of the viscous coefficients. It is demonstrated that the quasiadiabatic modes are suppressed in comparison with a bona fide adiabatic solution. Because of its anomalously large tensor to scalar ratio the quasiadiabatic mode cannot be a substitute for the conventional adiabatic paradigm so that, ultimately, the present findings seems to exclude the possibility of a successful accelerated dynamics solely based on relativistic viscous fluids. If the dominant adiabatic mode is not affected by the viscosity of the background a sufficiently small fraction of entropic fluctuations of viscous origin cannot be a priori ruled out.

  10. Low NPSH process pumps solve instability problems in fuel-grade ethanol plant

    SciTech Connect

    Andersen, R.B.; Gaines, A.

    1984-12-01

    South Point Ethanol, one of the nation's largest producers of denatured ethyl alcohol for blending with motor fuels, encountered severe instability problems with certain pumps when the plant in South Point, Ohio went on-stream in September 1982. The ethanol is produced by fermenting the starch in cooked corn and other grains. Two 4 x 3'' centrifugal pumps with 13'' casing and 11'' impellers were originally installed to transfer the 185/sup 0/F slurry of cooked grain, or mash, through a series of coolers and into the fermenters. The single stage pumps were driven by 3600 rpm motors to provide flow rates to 600 gpm and up to 480' tdh, but developed instability problems due to the high tip speed of the 11'' impellers. The pumps transferring the degassed beer were replaced with pumps which feature a semi-open reverse vane impeller that is specifically designed to minimize stuffing box pressure and provide superior performance when operating at very low net positive suction head (NPSH) with volatile and near-boiling fluids. Two 6 x 4 x 10'' pumps with the reverse vane, low NPSH impeller were purchased to replace the 4 x 3 x 13'' mash transfer pumps that had to be overhauled about once a week. The new pumps were installed on the same bases and are driven by the original 3600 rpm electric motors. The four pumps have provided smooth, trouble-free transfer of the hot mash and degassed beer for over a year without any replacement parts or other than routine maintenance. The plant currently operates about 40 of the pumps in sizes from 1 1/2 x 1 x 6'' to 10 x 8 x 16'' to provide flow rates to 825 gpm and up to 490' tdh in various applications.

  11. The free compressible viscous vortex

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    The present study investigates the effects of compressibility on free (unsteady) viscous heat-conducting vortices. Analytical solutions are found in the limit of large but finite Reynolds number and small but finite Mach number. It is shown that the spreading of the vortex causes a radial flow. This flow is given by the solution of an ordinary differential equation, which gives the dependence of the radial velocity on the tangential velocity, density, and temperature profiles of the vortex. Estimates of the radial velocity found by solving this equation are found to be in good agreement with numerical solutions of the full equations. The equations for the viscous evolution are expanded in powers of Mach number to obtain detailed analytical solutions. It is shown that swirling axisymmetric compressible flows generate negative radial velocities far from the vortex core owing to viscous effects, regardless of the initial distributions of vorticity, density, and entropy.

  12. Cryogenic Viscous Compressor Development and Modeling for the ITER Vacuum System

    SciTech Connect

    Baylor, Larry R; Meitner, Steven J; Barbier, Charlotte N; Combs, Stephen Kirk; Duckworth, Robert C; Edgemon, Timothy D; Rasmussen, David A; Hechler, Michael P; Kersevan, R.; Dremel, M.; Pearce, R.J.H.; Boissin, Jean Claude

    2011-01-01

    The ITER vacuum system requires a roughing pump system that can pump the exhaust gas from the torus cryopumps to the tritium exhaust processing plant. The gas will have a high tritium content and therefore conventional vacuum pumps are not suitable. A pump called a cryogenic viscous compressor (CVC) is being designed for the roughing system to pump from ~500 Pa to 10 Pa at flow rates of 200 Pa-m3/ s. A unique feature of this pump is that is allows any helium in the gas to flow through the pump where it is sent to the detritiation system before exhausting to atmosphere. A small scale prototype of the CVC is being tested for heat transfer characteristics and compared to modeling results to ensure reliable operation of the full scale CVC. Keywords- ITER; vacuum; fuel cycle

  13. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, J. P.; Childs, Dara W.

    1993-01-01

    The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  14. Influence of impeller shroud forces on turbopump rotor dynamics

    NASA Technical Reports Server (NTRS)

    Williams, Jim P.; Childs, Dara W.

    1989-01-01

    The shrouded-impeller leakage path forces calculated by Childs (1987) have been analyzed to answer two questions. First, because of certain characteristics of the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were approximated by traditional stiffness, damping and inertia coefficients with the addition of whirl-frequency-dependent direct and cross-coupled stiffness terms. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.

  15. Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.

    2014-03-01

    Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.

  16. Tidal disruption of viscous bodies

    NASA Technical Reports Server (NTRS)

    Sridhar, S.; Tremaine, S.

    1992-01-01

    Tidal disruptions are investigated in viscous-fluid planetesimals whose radius is small relative to the distance of closest (parabolic-orbit) approach to a planet. The planetesimal surface is in these conditions always ellipsoidal, facilitating treatment by coupled ODEs which are solvable with high accuracy. While the disrupted planetesimals evolve into needlelike ellipsoids, their density does not decrease. The validity of viscous fluid treatment holds for solid (ice or rock) planetesimals in cases where tidal stresses are greater than material strength, but integrity is maintained by self-gravity.

  17. Method for producing viscous hydrocarbons

    DOEpatents

    Poston, Robert S.

    1982-01-01

    A method for recovering viscous hydrocarbons and synthetic fuels from a subterranean formation by drilling a well bore through the formation and completing the well by cementing a casing means in the upper part of the pay zone. The well is completed as an open hole completion and a superheated thermal vapor stream comprised of steam and combustion gases is injected into the lower part of the pay zone. The combustion gases migrate to the top of the pay zone and form a gas cap which provides formation pressure to produce the viscous hydrocarbons and synthetic fuels.

  18. Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.; Clark, D. A.; Wood, J. R.

    1986-01-01

    A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested.

  19. Method for evaluating the reliability of compressor impeller of turbocharger for vehicle application in plateau area

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Wang, Zengquan; Wang, A.-na; Zhuang, Li; Wang, Jinwei

    2016-10-01

    As turbocharging diesel engines for vehicle application are applied in plateau area, the environmental adaptability of engines has drawn more attention. For the environmental adaptability problem of turbocharging diesel engines for vehicle application, the present studies almost focus on the optimization of performance match between turbocharger and engine, and the reliability problem of turbocharger is almost ignored. The reliability problem of compressor impeller of turbocharger for vehicle application when diesel engines operate in plateau area is studied. Firstly, the rule that the rotational speed of turbocharger changes with the altitude height is presented, and the potential failure modes of compressor impeller are analyzed. Then, the failure behavior models of compressor impeller are built, and the reliability models of compressor impeller operating in plateau area are developed. Finally, the rule that the reliability of compressor impeller changes with the altitude height is studied, the measurements for improving the reliability of the compressor impellers of turbocharger operating in plateau area are given. The results indicate that when the operating speed of diesel engine is certain, the rotational speed of turbocharger increases with the increase of altitude height, and the failure risk of compressor impeller with the failure modes of hub fatigue and blade resonance increases. The reliability of compressor impeller decreases with the increase of altitude height, and it also decreases as the increase of number of the mission profile cycle of engine. The method proposed can not only be used to evaluating the reliability of compressor impeller when diesel engines operate in plateau area but also be applied to direct the structural optimization of compressor impeller.

  20. Effect of impeller design and spacing on gas exchange in a percutaneous respiratory assist catheter.

    PubMed

    Jeffries, R Garrett; Frankowski, Brian J; Burgreen, Greg W; Federspiel, William J

    2014-12-01

    Providing partial respiratory assistance by removing carbon dioxide (CO2 ) can improve clinical outcomes in patients suffering from acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. An intravenous respiratory assist device with a small (25 Fr) insertion diameter eliminates the complexity and potential complications associated with external blood circuitry and can be inserted by nonspecialized surgeons. The impeller percutaneous respiratory assist catheter (IPRAC) is a highly efficient CO2 removal device for percutaneous insertion to the vena cava via the right jugular or right femoral vein that utilizes an array of impellers rotating within a hollow-fiber membrane bundle to enhance gas exchange. The objective of this study was to evaluate the effects of new impeller designs and impeller spacing on gas exchange in the IPRAC using computational fluid dynamics (CFD) and in vitro deionized water gas exchange testing. A CFD gas exchange and flow model was developed to guide a progressive impeller design process. Six impeller blade geometries were designed and tested in vitro in an IPRAC device with 2- or 10-mm axial spacing and varying numbers of blades (2-5). The maximum CO2 removal efficiency (exchange per unit surface area) achieved was 573 ± 8 mL/min/m(2) (40.1 mL/min absolute). The gas exchange rate was found to be largely independent of blade design and number of blades for the impellers tested but increased significantly (5-10%) with reduced axial spacing allowing for additional shaft impellers (23 vs. 14). CFD gas exchange predictions were within 2-13% of experimental values and accurately predicted the relative improvement with impellers at 2- versus 10-mm axial spacing. The ability of CFD simulation to accurately forecast the effects of influential design parameters suggests it can be used to identify impeller traits that profoundly affect facilitated gas exchange.

  1. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.

    2016-05-01

    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  2. Design and evaluation of a single-pivot supported centrifugal blood pump.

    PubMed

    Yoshino, M; Uemura, M; Takahashi, K; Watanabe, N; Hoshi, H; Ohuchi, K; Nakamura, M; Fujita, H; Sakamoto, T; Takatani, S

    2001-09-01

    In order to develop a centrifugal blood pump that meets the requirements of a long-term, implantable circulatory support device, in this study a single-pivot bearing supported centrifugal blood pump was designed to evaluate its basic performance. The single-pivot structure consisted of a ceramic ball male pivot mounted on the bottom surface of the impeller and a polyethylene female pivot incorporated in the bottom pump casing. The follower magnet mounted inside the impeller was magnetically coupled to the driver magnet mounted on the shaft of the direct current brushless motor. As the motor rotated, the impeller rotated supported entirely by a single-pivot bearing system. The static pump performance obtained in the mock circulatory loop revealed an acceptable performance as a left ventricular assist device in terms of flow and head pressure. The pump flow of 5 L/min against the head pressure of 100 mm Hg was obtained at rotational speeds of 2,000 to 2,200 rpm. The maximum pump flow was 9 L/min with 2,200 rpm. The maximum electrical-to-hydraulic power conversion efficiency was around 14% at pump flows of 4 to 5 L/min. The stability of the impeller was demonstrated at the pump rpm higher than 1,400 with a single-pivot bearing without an additional support at its top. The single-pivot supported centrifugal pump can provide adequate flow and pressure as a ventricular assist device, but its mechanical stability and hemolytic as well as thrombotic performances must be tested prior to clinical use.

  3. Computational fluid dynamics and digital particle image velocimetry study of the flow through an optimized micro-axial blood pump.

    PubMed

    Triep, Michael; Brücker, Christoph; Schröder, Wolfgang; Siess, Thorsten

    2006-05-01

    A detailed knowledge of the flow field in a blood pump is indispensable in order to increase the efficiency of the pump and to reduce the shear-induced hemolysis. Thus, three different impeller designs were developed and tested by means of computational fluid dynamics (CFD) and digital particle image velocimetry (DPIV). The results show a good agreement of CFD and DPIV data. An optimization of the impeller could be achieved by following the concept of turbulent drag reduction for the axisymmetric center body.

  4. Development of a Compact Maglev Centrifugal Blood Pump Enclosed in a Titanium Housing

    NASA Astrophysics Data System (ADS)

    Pai, Chi Nan; Shinshi, Tadahiko; Asama, Junichi; Takatani, Setsuo; Shimokohbe, Akira

    A compact centrifugal blood pump consisting of a controlled two-degrees-of-freedom radial magnetic bearing and a brushless DC motor enclosed in a titanium housing has been developed for use as an implantable ventricular assist device. The magnetic bearing also supports axial and angular motions of the impeller via a magnetic coupling. The top housing is made of pure titanium, while the impeller and the stator are coated with pure titanium and Ti-6Al-7Nb, respectively, to improve the biocompatibility of the pump. The combination of pure titanium and titanium alloy was chosen because of the sensitivity of eddy current type displacement sensors through the intervening conducting wall. The dimensions of the pump are 69.0 mm in diameter and 28.5 mm in height. During a pump performance test, axial shifting of the impeller due to hydraulic forces led to variations in the rotational positioning signal, causing loss of control of the rotational speed. This problem was solved by conditioning the rotational positioning signal. With a flow rate of 5 l/min against a head pressure of 100 mmHg, the power consumption and efficiency of the pump were 5.5 W and 20%, respectively. Furthermore, the hemolysis of the blood pump was 43.6% lower when compared to that of a commercially available pump.

  5. Counter-rotating type pump-turbine unit cooperating with wind power unit

    NASA Astrophysics Data System (ADS)

    Murakami, Tengen; Kanemoto, Toshiaki

    2013-02-01

    This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In this paper, the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode, and the performances and the flow conditions were investigated numerically and experimentally. The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model. While providing the pump unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runner/impeller of the unit works evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes. These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.

  6. The analysis of unsteady characteristics in the low specific speed centrifugal pump with drainage gaps

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Chen, H. X.; Wei, Q.; Zhang, R.

    2012-11-01

    The gap drainage impeller is a new structure of impeller which is based on the idea of flow control, and it has been validated in experiments that this structure can increase the pump efficiency. The purpose of this paper is to explore a valid numerical analysis method for the simulation of low specific speed centrifugal pump, and then investigate the unsteady characteristics of the gap drainage impeller pump. The internal flow numerical simulations were done at multi-flow rates, and the calculated results were analyzed based on comparison with the experimental data of hydraulic performance, pressure pulsation and vibration acceleration. It was confirmed that: the results from the simulation tend to agree well with the experiments; the unsteady method is generally superior to the steady method in computing robustness and prediction accuracy at partial flow rates; the wall friction and clearance leakage should be considered in the performance prediction of the low specific centrifugal pump; the frequency spectra of pressure fluctuation is mainly controlled by the rotor-stator interaction, and the overall energy of pressure fluctuation and vibration is increased in part-load working conditions, especially at large flow rates; the pressure pulsation and the impeller radial fluid force are uneven in circumference, and they propagate in the opposite direction of the shaft rotating; however, the calculation error is considerable when comparing with experiments, and the reasons for which should be researched furthermore.

  7. Nonlinear wavetrains in viscous conduits

    NASA Astrophysics Data System (ADS)

    Maiden, Michelle; Hoefer, Mark

    2016-11-01

    Viscous fluid conduits provide an ideal system for the study of dissipationless, dispersive hydrodynamics. A dense, viscous fluid serves as the background medium through which a lighter, less viscous fluid buoyantly rises. If the interior fluid is continuously injected, a deformable pipe forms. The long wave interfacial dynamics are well-described by a dispersive nonlinear partial differential equation. In this talk, experiments, numerics, and asymptotics of the viscous fluid conduit system will be presented. Structures at multiple length scales are discussed, including solitons, dispersive shock waves, and periodic waves. Modulations of periodic waves will be explored in the weakly nonlinear regime with the Nonlinear Schrödinger (NLS) equation. Modulational instability (stability) is identified for sufficiently short (long) periodic waves due to a change in dispersion curvature. These asymptotic results are confirmed by numerical simulations of perturbed nonlinear periodic wave solutions. Also, numerically observed are envelope bright and dark solitons well approximated by NLS. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).

  8. Cosmological mesonic viscous fluid model

    NASA Astrophysics Data System (ADS)

    Mohanty, G.; Pradhan, B. D.

    1992-01-01

    A class of exact nonstatic solutions is obtained for Einstein field equations in a closed elliptic Robertson-Walker spacetime filled with viscous perfect fluid in the presence of attractive scalar fields. The solutions characterize strong interaction of elementary particles. It is also shown that the massive graviton possesses zero spin.

  9. Analysis of viscous micropump with single rotating cylinder

    NASA Astrophysics Data System (ADS)

    Mondal, Md. Nur Alam; Islam, Md. Shafiqul; Hasan, A. B. M. Toufique; Mitsutake, Y.

    2016-07-01

    This study presents the transient nature and performance of viscous micropump for low Reynolds number where flow is assumed laminar, unsteady, incompressible and two dimensional. The device consists of a cylinder placed eccentrically inside an extremely narrow channel, where channel axis is perpendicular to cylinder axis. When the cylinder rotates, it generates a net force on fluid due to unequal shear stresses on the top and bottom surfaces of the cylinder. This net force is capable of generating a net flow against a pressure gradient. The flow field inside the micro channel has been analyzed by using structured grid Finite Volume Method (FVM) based on Navier-Stokes equation. All parameters used in flow simulation are expressed in non-dimensional quantities for better understanding of flow behavior, regardless of dimensions or the fluid that is used. The effect of the channel height (S), the cylinder eccentricity (ɛ), the Reynolds number (Re) and Pump load (P*) have been studied. Various flow patterns inside the micro pump as well as variations in flow velocity with time are obtained. Both the steady state and transient results of viscous micro pump are validated. It is found that the average velocity of fluid increases with increasing cylinder eccentricity and decreases with increasing the channel height.

  10. Hemocompatibility of a hydrodynamic levitation centrifugal blood pump.

    PubMed

    Yamane, Takashi; Maruyama, Osamu; Nishida, Masahiro; Kosaka, Ryo; Sugiyama, Daisuke; Miyamoto, Yusuke; Kawamura, Hiroshi; Kato, Takahisa; Sano, Takeshi; Okubo, Takeshi; Sankai, Yoshiyuki; Shigeta, Osamu; Tsutsui, Tatsuo

    2007-01-01

    A noncontact type centrifugal pump without any complicated control or sensing modules has been developed as a long-term implantable artificial heart. Centrifugal pumps with impellers levitated by original hydrodynamic bearings were designed and have been modified through numerical analyses and in vitro tests. The hemolysis level was reduced by changing the pressure distribution around the impeller and subsequently expanding the bearing gap. Thrombus formation in the bearing was examined with in vitro thrombogenesis tests and was reduced by changing the groove shapes to increase the bearing-gap flow to 3% of the external flow. Unnecessary vortices around the vanes were also eliminated by changing the number of vanes from four to six.

  11. Development of an implantable centrifugal blood pump.

    PubMed

    Goldstein, A H; Pacella, J J; Trumble, D R; Clark, R E

    1992-01-01

    The efficacy of centrifugal pumps for short-term (0-30 days) ventricular support has been widely reported and favorably compared with pulsatile systems. A small, durable, implantable centrifugal blood pump is being developed for medium-term use (up to 6 months). The pump is based on the Medtronic Hemadyne system that has existed in multiple forms over the past 30 years. The pump is approximately the size of a tennis ball, weighs 240 g, and is comprised of a 2.5 cm plastic impeller driven by a radially coupled brushless DC motor. In vitro hydraulic performance was recorded over a wide range of flow conditions on a mock circulatory loop. The pump generated 7 L/min flow against an afterload of 100 mmHg pressure, with a maximum power draw of 10.4 watts. Pulsatile flow was preserved when placed in conjunction with a simulated left ventricle. In vivo testing was performed in 10 healthy sheep for 10-292 hr. Heparin was used to facilitate cannulation, and no anticoagulation was administered after pump implantation. Blood chemistries reflecting hematologic, pulmonary, renal, and hepatic functions were recorded and demonstrated no adverse effects with normal pump operation. Complications were related to kinking of blood conduits and thrombus formation within the cannulae. These results are encouraging and warrant further studies to prove feasibility of this pump as a medium-term implantable ventricular assist device.

  12. Numerical analysis of the flow field in the pump chamber of a centrifugal pump with back blades

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, Z. W.; Y Luo, Y.; Liu, M.

    2013-12-01

    Black blade is frequently used as a non-contact seal structure in centrifugal pumps transporting solid-liquid two-phase flow. However, it will disturb the flow in the pump and affect the pump performance. Numerical simulation for 3D turbulence in whole flow passage of a centrifugal pump with back blades was carried out based on RANS method, with SST k-ω turbulence model and SIMPLEC algorithm. Calculation for a similar pump without back blades was also carried out as a comparison. Boundary condition was improved due to the existence of back blade. The influence of back blades on the flow field was analysed qualitatively for three typical conditions. Meanwhile the leakage rate was calculated for several conditions and the effect of back blades was discussed. According to the results, compared with the condition without back blades, it could be seen that back blade apparently changed the flow state in the front chamber, improved near the front shroud and worsened near the pump cover. Velocity was increased and more fluid, which flowed into the front chamber from the pump cover side, flowed back to the spiral casing from the impeller shroud side. With the increase of discharge, the absolute value of leakage rate first went up and then dropped, as a consequence of the combination of two factors, discharge and differential pressure between the impeller outlet and inlet. The seal effect of back blades is most obvious under small discharge condition, and the leakage loss diminished as discharge increased.

  13. Development of a liquid hydrogen transfer pump system with MgB2 wires

    NASA Astrophysics Data System (ADS)

    Kajikawa, Kazuhiro; Kuga, Hirotsugu; Inoue, Takuro; Watanabe, Kazuki; Uchida, Yushi; Nakamura, Taketsune; Kobayashi, Hiroaki; Hongo, Motoyuki; Kojima, Takayuki; Taguchi, Hideyuki; Naruo, Yoshihiro; Wakuda, Tsuyoshi; Tanaka, Kazuhide

    An electric pump composed of an MgB2 motor is combined with superconducting level sensors using thin CuNi-sheathed MgB2 wires to transfer liquid hydrogen. An impeller is attached to the lower end of a rotating shaft on the MgB2 motor and covered with an outer casing to form a centrifugal pump. Then, the MgB2 motor and impeller are placed vertically inside a cryostat with an infill of liquid hydrogen. A glass Dewar vessel is prepared to receive the liquid hydrogen transferred from the cryostat containing the MgB2 motor. The MgB2 sensors are used not only to detect the level of liquid hydrogen but also to control the electric pump on the basis of their pre-estimated calibration curves. By using the assembled pump system, the liquid hydrogen is successfully transferred from the cryostat to the glass Dewar vessel via a transfer tube.

  14. Classification of physiologically significant pumping states in an implantable rotary blood pump: patient trial results.

    PubMed

    Karantonis, Dean M; Mason, David G; Salamonsen, Robert F; Ayre, Peter J; Cloherty, Shaun L; Lovell, Nigel H

    2007-01-01

    An integral component in the development of a control strategy for implantable rotary blood pumps is the task of reliably detecting the occurrence of left ventricular collapse due to overpumping of the native heart. Using the noninvasive pump feedback signal of impeller speed, an approach to distinguish between overpumping (or ventricular collapse) and the normal pumping state has been developed. Noninvasive pump signals from 10 human pump recipients were collected, and the pumping state was categorized as either normal or suction, based on expert opinion aided by transesophageal echocardiographic images. A number of indices derived from the pump speed waveform were incorporated into a classification and regression tree model, which acted as the pumping state classifier. When validating the model on 12,990 segments of unseen data, this methodology yielded a peak sensitivity/specificity for detecting suction of 99.11%/98.76%. After performing a 10-fold cross-validation on all of the available data, a minimum estimated error of 0.53% was achieved. The results presented suggest that techniques for pumping state detection, previously investigated in preliminary in vivo studies, are applicable and sufficient for use in the clinical environment.

  15. Fjords in viscous fingering: selection of width and opening scale

    SciTech Connect

    Mineev-weinstein, Mark; Ristroph, Leif; Thrasher, Matthew; Swinney, Harry

    2008-01-01

    Our experiments on viscous fingering of air into oil contained between closely spaced plates reveal two selection rules for the fjords of oil that separate fingers of air. (Fjords are the building blocks of solutions of the zero-surface-tension Laplacian growth equation.) Experiments in rectangular and circular geometries yield fjords with base widths {lambda}{sub c}/2, where {lambda}{sub c} is the most unstable wavelength from a linear stability analysis. Further, fjords open at an angle of 8.0{sup o}{+-}1.0{sup o}. These selection rules hold for a wide range of pumping rates and fjord lengths, widths, and directions.

  16. Development of a centrifugal pump with improved antithrombogenicity and hemolytic property for chronic circulatory support.

    PubMed

    Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Toda, K; Miyazaki, K; Eya, K; Baba, Y; Nakatani, T; Ohno, T; Nishimura, T; Takano, H

    1996-06-01

    A centrifugal pump with a unique structure has been developed for chronic support. The pump is driven by a magnetic coupling and has no rotating shaft, no seal around the rotating part, and a balancing hole at the center of the impeller and the thrust bearing. The pump was improved in stepwise fashion to realize good antithrombogenicity and low hemolysis. The first pump, the National Cardiovascular Center (NCVC)-0, had an impeller with 4 rectangular and curved vanes; 6 triangularly shaped curved vanes were employed in the second model, the NCVC-1, to reduce trauma to the blood. In the third design, the NCVC-2, the central hole was enlarged, and the thrust bearing shoulder was rounded so that blood washing was enhanced around the impeller; stream lines also were smoothed for improved antithrombogenicity. The hemolytic property of the device was evaluated in vitro with heparinized fresh goat blood; hemolysis indexes of the NCVC-0, -1, and -2 were 0.05, 0.01, and 0.006 g per 100 L, respectively. Antithrombogenicity of the pumps was examined in animal experiments as a left heart bypass device in goals weighing 52-75 kg. Six NCVC-0 pumps were driven for 14 to 33 (22.0 +/- 7.6) days in goats receiving the antiplatelet drug cilostazol orally. Four NCVC-1 pumps ran for 1 to 80 (28.5 +/- 30.6) days with the same drug regimen in 2 cases and with no anticoagulation therapy in 2 cases. After 3 preliminary 1-week tests of NCVC-2 pumps in animals, the pump was installed in 3 goats; 2 pumps were still running on the 182nd and 58th pumping day. Intracorporeal implantation also was attempted successfully. The results indicate that this pump has promising features for chronic support although longer term and additional evaluations are necessary.

  17. Cavitation improvement of double suction centrifugal pump HPP Fuhren

    NASA Astrophysics Data System (ADS)

    Škerlavaj, A.; Titzschkau, M.; Pavlin, R.; Vehar, F.; Mežnar, P.; Lipej, A.

    2012-11-01

    A double suction storage pump has been refurbished because of the strong cavitation which resulted in cavitation damage on blade and consequently in frequent repairs of the impeller. The analyses of the old and the new impeller were done by the computational fluid dynamics (CFD), performing transient simulations with the commercial solver Ansys CFX. In the simulations, the scale-adaptive-simulation with the curvature correction (SAS-CC) turbulence model was used. No model tests were carried out. Additionally, observations with the digital camera were made through the specially designed plexi-glass window, mounted at the lid at the suction side. The predicted pump head at the operating point agrees well with the pump characteristics measurements, performed with the direct thermodynamic method. The extent of the cavitation predicted by CFD is smaller than the observed one because the cloud cavitation was not predicted. The observations of the cavitation extent show that the impeller design is better than the old one, which was also possible to anticipate based on the CFD results.

  18. Effect of the collector tube profile on Pitot pump performances

    NASA Astrophysics Data System (ADS)

    Komaki, K.; Kanemoto, T.; Sagara, K.; Umekage, T.

    2013-12-01

    The pitot pump is composed of the rotating casing with the impeller channel and the pitot tube type collector as the discharge line. The radial impeller feeds water to the rotating casing. The water rotating together with the casing is caught by the stationary pitot tube type collector, and then discharges to the outside. This type pump, as the extra high head pump, is provided mainly for boiler feed systems, and has been designed by trial and error. To optimize the pump profiles, it is desirable to investigate not only performances but also internal flow conditions. This paper discusses experimentally and numerically the relation between the pump performances and the flow conditions in the rotating casing. The moderately larger dimensions of the collector make the pump head and the discharge high with the higher hydraulic efficiency. The flow in the casing is almost the forced vortex type whose velocity is in proportion to the radius but the core velocity is affected with the drag force of the stationary collector. Based upon the above results, the profile of the pitot tube type collector was optimized with the numerical simulation.

  19. Flow Analysis of the Cleveland Clinic Centrifugal Pump

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Golding, Leonard A. R.; Smith, William A.; Horvath, David; Medvedev, Alexander

    1997-01-01

    An implantable ventricular assist rotordynamic blood pump is being developed by the Cleveland Clinic Foundation in cooperation with the NASA Lewis Research Center. At the nominal design condition, the pump provides blood flow at the rate of 5 liters per minute at a pressure rise of 100 mm of mercury and a rotative speed of 3000 RPM. Bench testing of the centrifugal pump in a water/glycerin mixture has provided flow and pressure data at several rotative speeds. A one-dimensional empirical based pump flow analysis computer code developed at NASA Lewis Research Center has been used in the design process to simulate the flow in the primary centrifugal pump stage. The computer model was used to size key impeller and volute geometric parameters that influence pressure rise and flow. Input requirements to the computer model include a simple representation of the pump geometry. The model estimates the flow conditions at the design and at off-design operating conditions at the impeller leading and trailing edges and the volute inlet and exit. The output from the computer model is compared to flow and pressure data obtained from bench testing.

  20. Elastic Suppression of Viscous Fingering

    NASA Astrophysics Data System (ADS)

    Peng, Gunnar; Lister, John

    2016-11-01

    Consider peeling an elastic tape or beam away from a rigid base to which it is stuck by a film of viscous liquid. The peeling motion requires air to invade the viscous liquid and is thus susceptible to the Saffman-Taylor fingering instability. We analyse the fundamental travelling-wave solution and show that the advancing air-liquid interface remains linearly stable at higher capillary numbers than in a standard Hele-Shaw cell. A short-wavelength expansion yields an analytical expression for the growth rate which is valid for all unstable modes throughout the parameter space, allowing us to identify and quantify four distinct physical mechanisms that each help suppress the instability. Applying our method to the experiments by Pihler-Puzovic et al. (2012) reveals that the radial geometry and time-variation stabilize the system further.

  1. Method of analysis for compressible flow through mixed-flow centrifugal impellers of arbitrary design

    NASA Technical Reports Server (NTRS)

    Hamrick, Joseph T; Ginsburg, Ambrose; Osborn, Walter M

    1952-01-01

    A method is presented for analysis of the compressible flow between the hub and the shroud of mixed-flow impellers of arbitrary design. Axial symmetry was assumed, but the forces in the meridional (hub to shroud) plane, which are derived from tangential pressure gradients, were taken into account. The method was applied to an experimental mixed-flow impeller. The analysis of the flow in the meridional plane of the impeller showed that the rotational forces, the blade curvature, and the hub-shroud profile can introduce severe velocity gradients along the hub and the shroud surfaces. Choked flow at the impeller inlet as determined by the analysis was verified by experimental results.

  2. Process Optimization of Seed Precipitation Tank with Multiple Impellers Using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-Liang; Lv, Chao; Liu, Yan; Zhang, Ting-An

    2015-07-01

    The complex fluid flow in a large-scale tank stirred with multiple Ekato Intermig impellers used in the seed precipitation process was numerically analyzed by the computational fluid dynamics method. The flow field, liquid-solid mixing, and power consumption were simulated by adopting the Eulerian granular multiphase model and standard k- ɛ turbulence model. A steady multiple reference frame approach was used to represent impeller rotation. The simulated results showed that the five-stage multiple Intermig impeller coupled with sloped baffles could generate circulation loops in axial, which is good for solid uniform mixing. The fluid is overmixed under the current industrial condition. Compared with the current process conditions, a three-stage impeller with L/ D of 1.25 not only could meet the industrial requirements, but also more than 20% power could be saved. The results have important implications for reliable design and optimal performance for industry.

  3. Three-Dimensional Flow Analysis Inside Consortium Impeller at Design and Off-Design Conditions

    NASA Technical Reports Server (NTRS)

    Hah, C.; Loellbach, J.; Tsung, F.-L.; Greenwald, D. A.; Garcia, Roberto

    1993-01-01

    Three-dimensional flow fields inside the Consortium impeller were analyzed with a Navier-Stokes code. The numerical results at the design and off-design conditions are compared with the experimental data.

  4. Design considerations of volute geometry of a centrifugal blood pump.

    PubMed

    Chan, Weng Kong; Wong, Yew Wah; Hu, Wei

    2005-12-01

    This article compares two different design techniques that are conventionally used in the design of volutes for centrifugal pumps. The imbalanced forces due to the geometry of the volute need to be taken into consideration especially in centrifugal blood pumps with magnetically suspended impeller. A reduction of these forces can reduce the instability of the impeller motion as well as the power needed to counteract its influence. Volutes using the constant angular momentum (CAM) and the constant mean velocity (CMV) methods were developed and modeled numerically. The computational results on the effect of volute geometry on the performance of a centrifugal blood pump impeller for six different volutes are presented here. For volutes designed using the CAM method, model B (volute expansion angle of 3 degrees ) had the lowest radial force of 0.26 N while the pressure head generated was 12,900 Pa. For volutes designed using the CMV method, model F (1.6 m/s) had the lowest imbalanced force of 0.45 N. However, the pressure developed by this pump was also one of the lowest at 10,652 Pa. Furthermore, when the peak scalar stresses and the mean exposure time of particles for all designs were determined using Lagrangian particle tracking method, it was observed that in general, the peak scalar stresses in CAM designed volutes are lower than those designed using CMV method. The mean exposure time of particles in the pump ranged from 400 to 500 ms. The simulation results showed that the volute designed using CAM method was superior to that of a CMV volute in terms of the magnitude of the radial force and the peak scalar stresses for the same pressure head generated. Results show that the design of volutes for blood pumps should go beyond conventional empirical methods to obtain optimal results.

  5. Reduced-order modeling for mistuned centrifugal impellers with crack damages

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Zi, Yanyang; Li, Bing; Zhang, Chunlin; He, Zhengjia

    2014-12-01

    An efficient method for nonlinear vibration analysis of mistuned centrifugal impellers with crack damages is presented. The main objective is to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. Firstly, in order to reduce the input information needed for component mode synthesis (CMS), the whole model of an impeller is obtained by rotation transformation based on the finite element model of a sector model. Then, a hybrid-interface method of CMS is employed to generate a reduced-order model (ROM) for the cracked impeller. The degrees of freedom on the crack surfaces are retained in the ROM to simulate the crack breathing effects. A novel approach for computing the inversion of large sparse matrix is proposed to save memory space during model order reduction by partitioning the matrix into many smaller blocks. Moreover, to investigate the effects of mistuning and cracks on the resonant frequencies, the bilinear frequency approximation is used to estimate the resonant frequencies of the mistuned impeller with a crack. Additionally, statistical analysis is performed using the Monte Carlo simulation to study the statistical characteristics of the resonant frequencies versus crack length at different mistuning levels. The results show that the most significant effect of mistuning and cracks on the vibration response is the shift and split of the two resonant frequencies with the same nodal diameters. Finally, potential quantitative indicators for detection of crack of centrifugal impellers are discussed.

  6. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    NASA Astrophysics Data System (ADS)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  7. Inducer analysis/pump model development

    NASA Astrophysics Data System (ADS)

    Cheng, Gary C.

    1994-03-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  8. Inducer analysis/pump model development

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.

    1994-01-01

    Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.

  9. A multiple disk centrifugal pump as a blood flow device.

    PubMed

    Miller, G E; Etter, B D; Dorsi, J M

    1990-02-01

    A multiple disk, shear force, valveless centrifugal pump was studied to determine its suitability as a blood flow device. A pulsatile version of the Tesla viscous flow turbine was designed by modifying the original steady flow pump concept to produce physiological pressures and flows with the aid of controlling circuitry. Pressures and flows from this pump were compared to a Harvard Apparatus pulsatile piston pump. Both pumps were connected to an artificial circulatory system. Frequency and systolic duration were varied over a range of physiological conditions for both pumps. The results indicated that the Tesla pump, operating in a pulsatile mode, is capable of producing physiologic pressures and flows similar to the Harvard pump and other pulsatile blood pumps.

  10. An experimental and analytical investigation into the performance of centrifugal pumps operating with air-water mixtures

    NASA Astrophysics Data System (ADS)

    Sterrett, John Douglas

    1994-01-01

    An investigation was made into the performance of centrifugal pumps when two-phase non-condensable mixtures of gas and liquid are flowing. This problem is encountered during loss-of-coolant accidents in nuclear reactor systems and in the pumping of oil where natural gas may be present in the mixture. Analytical and experimental techniques were used to address the issues of scaling between a model and a prototype pump and the validity of the single-phase pump affinity laws when two-phase flows are present. The results from this effort have also provided insight into the physical phenomena which cause the degradation in pump performance. An analytical model for the motion of a single bubble through a pump impeller is provided. The results from this fundamental problem show that the Coriolis and buoyancy forces are important in describing the kinematics of a gas phase. These results show that dynamic similitude is not preserved between a model and prototype impeller when the standard single-phase pump scaling relationships are used. The motion of a single bubble is also shown to be influenced by the magnitude of the pump suction pressure. The results from an extensive series of air-water two phase pump tests are provided. A 1/4 scale pump, modeled after the Savannah River Site K-reactor pumps, was tested over a wide range of pump speeds, flow rates, and suction pressures. These results indicate that the single-phase pump affinity laws are not applicable to two-phase pump flows and that the magnitude of the pump suction pressure is an important quantity in determining the pump performance. A second analytical model is developed for two-phase flow through a pump impeller. The results from this one-dimensional, two-fluid, non-homogeneous streamline model show good agreement with the experimental data. The model results support the experimental data in showing that the single-phase pump affinity relationships are not valid for two-phase pump flows and that dynamic

  11. Current status of the gyro centrifugal blood pump--development of the permanently implantable centrifugal blood pump as a biventricular assist device (NEDO project).

    PubMed

    Nosé, Yukihiko; Furukawa, Kojiro

    2004-10-01

    The New Energy and Industrial Technology Development Organization (NEDO) project was started in 1995. The goal is the development of a multipurpose, totally implantable biventricular assist device (BVAD) that can be used for any patient who suffers from severe heart failure. Our C1E3 (two-week pump) centrifugal pump, called the Gyro pump, has three design characteristics: a magnetic coupling and double pivot bearing system, an eccentric inlet port, and secondary vanes on the bottom of the impeller. The pump was miniaturized. The C1E3 evolved into the NEDO PI-601, a totally implantable centrifugal pump for BVAD. The current NEDO PI-710 pump (five-year pump) system includes a centrifugal pump with pivot bearings, a hydraulically-levitated impeller, an rpm-controlled miniaturized actuator (all-in-one actuator plus controller), an emergency clamp on the left outflow, and a Frank-Starling-type flow control. The final mass production model is now finalized, and the final animal study and two-year endurance studies are ongoing.

  12. Computation of viscous incompressible flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    1989-01-01

    Incompressible Navier-Stokes solution methods and their applications to three-dimensional flows are discussed. A brief review of existing methods is given followed by a detailed description of recent progress on development of three-dimensional generalized flow solvers. Emphasis is placed on primitive variable formulations which are most promising and flexible for general three-dimensional computations of viscous incompressible flows. Both steady- and unsteady-solution algorithms and their salient features are discussed. Finally, examples of real world applications of these flow solvers are given.

  13. Computational fluid dynamics of gap flow in a biocentrifugal blood pump.

    PubMed

    Chua, Leok Poh; Song, Guoliang; Yu, Simon Ching Man; Lim, Tau Meng

    2005-08-01

    The centrifugal blood pump with a magnetically suspended impeller has shown its superiority as compared to other artificial heart pumps. However, there is still insufficient understanding of fluid mechanics related issues in the clearance gap. The design nature of the pump requires sufficient washout in the clearance between the impeller and the stationary pump housing inner surface. In this study, numerical simulations were carried out to investigate the flow fields in the gap of the Kyoto-NTN centrifugal blood pump. The flow patterns in the gap region of the blood pump were presented and regions of high and low velocity were identified. It was found that the radial velocity of the blood in the gap was closely related to the pressure distribution at the exit of the impeller, both the highest pressure gradient and the highest radial velocity in the gap occurred at an angular position of 170 degrees . The mass flow rate in the gap was estimated to be 25.2% of the pump outflow, which is close to the measurement results of a five times enlarged test pump. The wall shear stresses on the gap surface were found to be over 21 Pa and below 300 Pa, which is correspondingly higher than the threshold of thrombi formation and is lower than the shearing threshold of red blood cells. Comparison of the 1 : 1 simulation model with the measurement results on a five times enlarged test pump indicates that there are some differences in the resulting radial velocity distributions in the gap and thus the washout mechanism. Two symmetrical high washout regions at both the cutwater and splitter plate were observed in the simulation instead of a single washout region at the splitter plate found in the experimental study. This may be due to the scaling effect of the enlarged test pump; also the medium used in the experiment is different from the simulation.

  14. Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.

    PubMed

    Yuhki, A; Nogawa, M; Takatani, S

    2000-06-01

    In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.

  15. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  16. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  17. Reactor internal pump behavior during cavitation

    SciTech Connect

    Komita, Hideo; Usuki, Shouji; Fukuda, Shinichi )

    1989-11-01

    The characteristics of reactor internal pumps (RIPs) under cavitation conditions were experimentally evaluated in full scale with different water temperature parameters. The hydraulic performance and vibration behavior under cavitation conditions were clarified. An advanced boiling water reactor is equipped with RIPs for coolant recirculation. The RIP is a vertical, single-stage, mixed-flow pump that is mounted in the annular downcomer of the reactor pressure vessel. In general, when a pump operates under cavitation conditions, the pump total head decreases, and the appearance and collapse of vapor bubbles induce vibration and noise, causing damage to components. Various reports have been made on centrifugal pump behavior in cold water, but very few have discussed the characteristics of a mixed-flow pump like the RIP in hot water. Very few have measured impeller vibration in hot water, which is significantly influenced by cavitation. Therefore, it is difficult to precisely determine RIP behavior under cavitation conditions. Hydraulic performance and vibration behavior under cavitation conditions are experimentally clarified in this paper.

  18. Viscous rheology of soft particles near jamming

    NASA Astrophysics Data System (ADS)

    Woldhuis, Erik; Tighe, Brian; van Hecke, Martin

    2013-03-01

    We investigate the effect of changing the exact nature of the viscous interaction in simulations of sheared soft, viscous, repulsive disks, which are considered to be a good model for foams and emulsions. We determine the way in which the power-law exponent of the rheological curve, in other words the shear-thinning or shear-thickening part, depends on the microscopic viscous interaction around the jamming density. We attempt to find a model that describes and predicts this dependence.

  19. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    NASA Astrophysics Data System (ADS)

    Kasahara, R.; Takano, G.; Murakami, T.; Kanemoto, T.; Komaki, K.

    2012-11-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  20. Nature's pumps

    NASA Astrophysics Data System (ADS)

    Vogel, Steven

    1994-10-01

    Although diverse in both form and function, the fluid-forcing devices in organisms have many of the capabilities and limitations of pumps of human design. Nature's pumps certainly look quite different from those of our technology, but all of them perform the same task. The author examines a few of these with an eye toward technological parallels and the two functional classes -- positive-displacement pumps and fluid-dynamic pumps.

  1. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  2. A status of the activities of the NASA/MSFC pump stage technology team

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Williams, R.; Dakhoul, Y.

    1992-07-01

    The Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology was established to aid the transfer of CFD related advancements among academia, government agencies, and industry. The specific goals of the Consortium are to develop CFD methodologies necessary to solve propulsion problems, to validate these methodologies, and to apply these methodologies in the design process. To accomplish these goals, a team of experts in various related fields was formed, a schedule of activities necessary to meet the goals was generated, and funding for the activities was obtained from NASA. During the past year (Mar. 1991 - Mar. 1992) the team's activities have focused on preliminary code validation and on the design of an advanced impeller. Six codes were used to calculate the flow in a Rocketdyne 0.3 flow coefficient inducer, and the results were compared to L2F data available for the inducer. This activity identified shortcomings in the experimental data sets and in the analytical solutions which must be surmounted in any future team activity. The design of the advanced impeller relied heavily on CFD results to obtain an optimized geometry. The optimized geometry was analyzed using four different codes, at design and off-design conditions. Activities for the next year include the optimization of a tandem blade impeller design, benchmark of CFD codes for diffuser and volute flows, the collection of L2F data for 'state-of-the-art' impeller and inducer, and the verification of the advanced pump team impeller design in a water rig.

  3. A status of the activities of the NASA/MSFC pump stage technology team

    NASA Technical Reports Server (NTRS)

    Garcia, R.; Williams, R.; Dakhoul, Y.

    1992-01-01

    The Consortium for Computational Fluid Dynamics (CFD) Application in Propulsion Technology was established to aid the transfer of CFD related advancements among academia, government agencies, and industry. The specific goals of the Consortium are to develop CFD methodologies necessary to solve propulsion problems, to validate these methodologies, and to apply these methodologies in the design process. To accomplish these goals, a team of experts in various related fields was formed, a schedule of activities necessary to meet the goals was generated, and funding for the activities was obtained from NASA. During the past year (Mar. 1991 - Mar. 1992) the team's activities have focused on preliminary code validation and on the design of an advanced impeller. Six codes were used to calculate the flow in a Rocketdyne 0.3 flow coefficient inducer, and the results were compared to L2F data available for the inducer. This activity identified shortcomings in the experimental data sets and in the analytical solutions which must be surmounted in any future team activity. The design of the advanced impeller relied heavily on CFD results to obtain an optimized geometry. The optimized geometry was analyzed using four different codes, at design and off-design conditions. Activities for the next year include the optimization of a tandem blade impeller design, benchmark of CFD codes for diffuser and volute flows, the collection of L2F data for 'state-of-the-art' impeller and inducer, and the verification of the advanced pump team impeller design in a water rig.

  4. Surfactant transport on viscous bilayers

    NASA Astrophysics Data System (ADS)

    Matar, Omar; Craster, Richard; Warner, Mark

    2001-11-01

    We model the external delivery of surfactant to pulmonary airways, an integral part of Surfactant Replacement Therapy (SRT), a method of treatment of Respiratory Distress Syndrome in neonates. We examine the spreading dynamics of insoluble surfactant by Marangoni stresses along the mucus-perciliary liquid bilayers that line the inside of airways. The bilayer is modelled as a thin highly viscous mucus surface film (mucus) overlying a much less viscous perciliary liquid layer (PCL); this is appropriate for small airways. By exploiting this large viscosity constrast, a variant of standard lubrication theory is adopted wherein terms, which would have otherwise been neglected in the lubrication approximation, are promoted in order to model correctly the presence of the mucus. Inclusion of van der Waals forces in the model permit the study of the effect of this mucus 'skin' on the possibility of bilayer rupture, a potential cause of failure of SRT. We find that increasing the viscosity contrast and initial mucus layer thickness delays the onset of rupture, while increasing the relative significance of Marangoni stresses leads to more marked thinning and rapid bilayer rupture [1]. [1] O. K. Matar, R. V. Craster and M. R. Warner, submitted to J. Fluid Mech. (2001).

  5. Very viscous electrically forced jets

    NASA Astrophysics Data System (ADS)

    Higuera, F. J.

    2005-11-01

    The dynamics of an axisymmetric jet of a very viscous liquid issuing into a region of uniform electric field, which is of interest for electrospinning, is described numerically using the leaky dielectric model. The jet is continuously strained by surface electric stresses. The flow depends on a capillary number Ca based on the liquid flow rate; an electric Bond number that measures the ratio of electric to surface tension stresses; the dielectric constant of the liquid; and the ratio T of a mechanical (viscous-capillary) time to the electric relaxation time required for the charge that is brought to the surface by the electric field to screen the liquid from the field. The electric current and the radius of the jet increase with Ca and tend to well defined limits for large values of this parameter, whereas a stationary jet ceases to exist when Ca decreases below a certain minimum. The radius of the jet decreases when the electric Bond number increases, due to the increased straining, and also when the time ratio T increases, which suggests that charge relaxation effects are always important in the formation of the jet.

  6. Development of a miniature intraventricular axial flow blood pump.

    PubMed

    Yamazaki, K; Umezu, M; Koyanagi, H; Outa, E; Ogino, S; Otake, Y; Shiozaki, H; Fujimoto, T; Tagusari, O; Kitamura, M

    1993-01-01

    A new intraventricular axial flow blood pump has been designed and developed as a totally implantable left ventricular assist device (LVAD). This pump consists of an impeller combined with a guide-vane, a tube housing, and a DC motor. The pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged to the ascending aorta. Our newly developed axial flow pump system has the following advantages: 1) it is a simple and compact system, 2) minimal blood stasis both in the device and the LV cavity, 3) minimal blood contacting surface of the pump, 4) easy accessibility with a less invasive surgical procedure, and 5) low cost. A pump flow > 5 L/min was obtained against 100 mmHg differential pressure in the mock circulatory system. The pump could produce a passive pulsatile flow effect with a beating heart more efficiently than other non-pulsatile pumps because of minimal pressure drop and inertia along the bypass tract. Anatomic fit studies using dissected hearts of dilated cardiomyopathy (DCM) cadavers showed that this pump could smoothly pass through the aortic valve without any interference with mitral valve function. Recently, a dynamic pressure groove bearing and a miniature lip seal have been developed. The dynamic pressure groove bearing has a simple structure and acts as a pressure resistant sealing mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  8. Viscous propulsion in active transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Cupples, G.; Dyson, R. J.; Smith, D. J.

    2017-02-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhancements to the viscosity caused by fibres. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of the constant term in Ericksen's model for the stress, which can be identified as a fibre tension or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other rheological parameters.

  9. Impeller leakage flow modeling for mechanical vibration control

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1996-01-01

    HPOTP and HPFTP vibration test results have exhibited transient and steady characteristics which may be due to impeller leakage path (ILP) related forces. For example, an axial shift in the rotor could suddenly change the ILP clearances and lengths yielding dynamic coefficient and subsequent vibration changes. ILP models are more complicated than conventional-single component-annular seal models due to their radial flow component (coriolis and centrifugal acceleration), complex geometry (axial/radial clearance coupling), internal boundary (transition) flow conditions between mechanical components along the ILP and longer length, requiring moment as well as force coefficients. Flow coupling between mechanical components results from mass and energy conservation applied at their interfaces. Typical components along the ILP include an inlet seal, curved shroud, and an exit seal, which may be a stepped labyrinth type. Von Pragenau (MSFC) has modeled labyrinth seals as a series of plain annular seals for leakage and dynamic coefficient prediction. These multi-tooth components increase the total number of 'flow coupled' components in the ILP. Childs developed an analysis for an ILP consisting of a single, constant clearance shroud with an exit seal represented by a lumped flow-loss coefficient. This same geometry was later extended to include compressible flow. The objective of the current work is to: supply ILP leakage-force impedance-dynamic coefficient modeling software to MSFC engineers, base on incompressible/compressible bulk flow theory; design the software to model a generic geometry ILP described by a series of components lying along an arbitrarily directed path; validate the software by comparison to available test data, CFD and bulk models; and develop a hybrid CFD-bulk flow model of an ILP to improve modeling accuracy within practical run time constraints.

  10. In-line unit for large-scale condensate pumps

    SciTech Connect

    Tazetdinov, A.G.

    1983-09-01

    An in-line unit has been tested in the VNIIAEN for a screw centrifugal stage, Three alternative preincorporated axial impellers designed by the Voznesenskii-Pekin method for the sleeve action were tested with two types of centrifugal impellers. The optimum values of relative vortex current, mean peripheral component of the absolute velocity, and mean peripheral velocity are obtained. The existence of an optimum value for the mean relative vortex is explained. Results of tests lead to the design of a third alternative CI and AI No. 4 as specified. As a result of the tests, a screw centrifugal state with high energy and cavitational indices, a unit needed for the development of large scale condensate pumps, was obtained.

  11. Sudden Viscous Dissipation of Compressing Turbulence

    SciTech Connect

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-11

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  12. Fluid pumping using magnetic cilia

    NASA Astrophysics Data System (ADS)

    Hanasoge, Srinivas; Ballard, Matt; Alexeev, Alexander; Hesketh, Peter; Woodruff School of Mechanical Engineering Team

    2016-11-01

    Using experiments and computer simulations, we examine fluid pumping by artificial magnetic cilia fabricated using surface micromachining techniques. An asymmetry in forward and recovery strokes of the elastic cilia causes the net pumping in a creeping flow regime. We show this asymmetry in the ciliary strokes is due to the change in magnetization of the elastic cilia combined with viscous force due to the fluid. Specifically, the time scale for forward stroke is mostly governed by the magnetic forces, whereas the time scale for the recovery stroke is determined by the elastic and viscous forces. These different time scales result in different cilia deformation during forward and backward strokes which in turn lead to the asymmetry in the ciliary motion. To disclose the physics of magnetic cilia pumping we use a hybrid lattice Boltzmann and lattice spring method. We validate our model by comparing the simulation results with the experimental data. The results of our study will be useful to design microfluidic systems for fluid mixing and particle manipulation including different biological particles. USDA and NSF.

  13. Instability of electrified viscous films

    NASA Astrophysics Data System (ADS)

    Savettaseranee, Knograt

    2002-01-01

    We examine the stability of a thin two-dimensional liquid film with a regular electric field applied in a direction parallel to an initially flat bounding fluid interface. We study the distinct physical effects of surface tension, van der Waals and electrically induced forces for a viscous incompressible fluid. The film is assumed to be sufficiently thin, and the surface tension and electrically induced forces are large enough that gravity can be ignored to the leading order. Our target is to analyse the nonlinear stability of the flow. We attain this by deriving and numerically solving a set of nonlinear evolution equations for the local film thickness and for symmetrical interfacial perturbations. We find that the electric field forces enhance the stability of the flow and can remove rupture.

  14. Topological Symmetry Breaking in Viscous Coarsening

    NASA Astrophysics Data System (ADS)

    Bouttes, David; Gouillart, Emmanuelle; Vandembroucq, Damien

    2016-09-01

    The crucial role of hydrodynamic pinch-off instabilities is evidenced in the coarsening stage of viscous liquids. The phase separation of a barium borosilicate glass melt is studied by in situ synchrotron tomography at high temperature. The high viscosity contrast between the less viscous phase and the more viscous phase induces a topological symmetry breaking: capillary breakups occur preferentially in the less viscous phase. As a result, contrasting morphologies are obtained in the two phases. This symmetry breaking is illustrated on three different glass compositions, corresponding to different volume fractions of the two phases. In particular, a fragmentation phenomenon, reminiscent of the end-pinching mechanism proposed by Stone and co-workers is evidenced in the less viscous phase.

  15. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate

    NASA Astrophysics Data System (ADS)

    Tan, Lei; Cao, Shu-Liang; Wang, Yu-Ming; Zhu, Bao-Shan

    2012-01-01

    Based on the full cavitation model which adopts homogeneous flow supposition and considering the compressibility effect on cavitation flow to modify the re-normalization group k-in turbulence model by the density function, a computational model is developed to simulate cavitation flow of a centrifugal pump at low flow rate. The Navier-Stokes equation is solved with the SIMPLEC algorithm. The calculated curves of net positive suction head available (NPSHa) HNPSHa agree well with the experimental data. The critical point of cavitation in centrifugal pump can be predicted precisely, and the NPSH critical values derived from simulation are consistent with the experimental data. Thus the veracity and reliability of this computational model are verified. Based on the result of numerical simulation, the distribution of vapor volume fraction in the impeller and pressure at the impeller inlet are analyzed. Cavities first appear on the suction side of the blade head near the front shroud. A large number of cavities block the impeller channels, which leads to the sudden drop of head at the cavitation critical point. With the reduction of NPSHa, the distribution of pressure at the impeller inlet is more uniform.

  16. Fluid dynamic design for low hemolysis in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Murashige, Tomotaka; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Kuwana, Katsuyuki; Kawaguchi, Yasuo

    2013-01-01

    We have developed a hydrodynamically levitated centrifugal blood pump for extracorporeal circulatory support as a bridge to decision pump. The impeller is levitated using hydrodynamic bearings without any complicated control circuit or displacement sensor. However, the effect of the outer circumferential velocity and the bearing area on the hemolytic property has not been clarified, even if the bearing gap is same size. The purpose of this study is to experimentally evaluate the effect of the outer circumferential velocity and the bearing area in the bearing gaps on the hemolytic property in a hydrodynamically levitated centrifugal blood pump. We prepared three models for testing. These models have the same bearing gap size by adjusting the impeller levitation position. However, the outer circumferential velocity of the impeller and the bearing area in the minimum bearing gaps are different. The outer circumferential velocity of the impeller and the bearing area were assumed to be related to the maximum shear rate and the exposure time. For the evaluation, we conducted an impeller levitation performance test and an in vitro hemolysis test. As a result, the normalized index of hemolysis (NIH) was reduced from 0.084 g/100 L to 0.040 g/100 L corresponding to a reduction in the outer circumferential velocity and a reduction in the bearing area, even if the minimum bearing gaps were same size. We confirmed that, even if the bearing gap was same size under the stably levitated condition, the outer circumferential velocity and the bearing area should be decreased in order to improve the hemolytic property.

  17. Recent developments in the design of high head pump/turbines

    SciTech Connect

    Schmidt, S.M. )

    1989-01-01

    The design of high head pump/turbines requires unique considerations because of severe operating conditions, such as turbine peaking, frequent starting and stopping turbining, pump starts, synchronous condensing, etc. The optimum pump/turbine design is a balance between performance, structural integrity, manufacturability, ease of installation, long term reliability and equipment cost. The optimization process is dependent upon design considerations such as allowable stress levels, deflections and vibration amplitude and frequency. The hydraulic and mechanical design optimization of such major components as the stay ring/spiral case, discharge ring, wicket gates, impeller, shaft and wearing ring/seals is discussed in this paper relative to recent design developments.

  18. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    PubMed

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  19. Clinical experience with Nikkiso centrifugal pumps for extracorporeal circulation.

    PubMed

    Onoda, K; Kondo, C; Mizumoto, T; Kusagawa, H; Katayama, Y; Hayashi, T; Komada, T; Hirano, R; Miyamura, T; Tanaka, J

    1994-09-01

    A comparative study of a newly developed impeller-type centrifugal pump, Nikkiso HMS-15, was made to assess the effects on hemolysis, platelet function, and renal function for extracorporeal circulation (ECC) during open heart surgery. The Bio-pump (cone-type, Medtronic) and the roller pump were used as controls. The increase of serum hemoglobin level in the Nikkiso pump was significantly lower than that in the other pumps. The decrease of platelet counts was recognized after the initiation of ECC in the three pumps whereas the levels of platelet factor 4 and beta-thromboglobulin in the Nikkiso pump group increased by far less than in the other two groups. Moreover, renal function was better maintained in the Nikkiso pump group; in particular, a significantly higher urine output was recorded during ECC and for 1 h after the termination of ECC. The results of our clinical studies suggest that the Nikkiso centrifugal pump is suitable for ECC during open heart surgery.

  20. Use minimum flow data to prolong centrifugal pump life

    SciTech Connect

    Reynolds, J.A.

    1996-03-01

    Environmental and safety concerns and, in the US, the consequences of failing of meet EPA regulations are intensifying efforts to improve the reliability of pumping equipment. A critical step toward achieving this goal is eliminating cavitation, and the resulting impeller and shaft vibrations, which, ultimately, cause seal and bearing failure. In centrifugal pumps, cavitation results when they run at very low flow rates, as can happen during unplanned upsets or interruptions. This particularly true since many centrifugal pumps are now controlled by automatic valves in their discharge lines. The problem can be prevented by providing a small bypass line to the pump`s suction source, to control temperature rise in the pump. Usually, the minimum flow is so low that the bypass loop can be kept open without detracting from the pump`s efficiency. It needn`t require a flow control valve or any special instrumentation, but will let the pump run at a comfortable flow, even with the control valve closed. This paper describes a method to determine minimum thermal flow to prevent cavitation.

  1. 241-SY-101 mixer pump lifetime expectancy. Final report

    SciTech Connect

    Shaw, C.P.

    1995-12-08

    The purpose of WHC-SD-WM-TI-726, Rev. 0 241-SY-101 Mixer Pump Lifetime Expectancy is to determine a best estimate of the mean lifetime of non-repairable (located in the waste) essential features of the hydrogen mitigation mixer pump presently installed in 101-SY. The estimated mean lifetime is 9.1 years. This report does not demonstrate operation of the entire pump assembly within the Tank Farm ``safety envelope``. It was recognized by the Defense Nuclear Facilities Safety Board (DNFSB) this test pump was not specifically designed for long term service in tank 101-SY. In June 95 the DNFSB visited Hanford and ask the question, ``how long will this test pump last and how will the essential features fail?`` During the 2 day meeting with the DNFSB it was discussed and defined within the meeting just exactly what essential features of the pump must operate. These essential features would allow the pump to operate for the purpose of extending the window for replacement. Operating with only essential features would definitely be outside the operating safety envelope and would require a waiver. There are three essential features: 1. The pump itself (i.e. the impeller and motor) must operate 2. Nozzles and discharges leg must remain unplugged 3. The pump can be re-aimed, new waste targeted, even if manually.

  2. Magnetically suspended centrifugal blood pump with an axially levitated motor.

    PubMed

    Masuzawa, Toru; Ezoe, Shiroh; Kato, Tsuyoshi; Okada, Yohji

    2003-07-01

    The longevity of a rotary blood pump is mainly determined by the durability of its wearing mechanical parts such as bearings and seals. Magnetic suspension techniques can be used to eliminate these mechanical parts altogether. This article describes a magnetically suspended centrifugal blood pump using an axially levitated motor. The motor comprises an upper stator, a bottom stator, and a levitated rotor-impeller between the stators. The upper stator has permanent magnets to generate an attractive axial bias force on the rotor and electric magnets to control the inclination of the rotor. The bottom stator has electric magnets to generate attractive forces and rotating torque to control the axial displacement and rotation of the rotor. The radial displacement of the rotor is restricted by passive stability. A shrouded impeller is integrated within the rotor. The performance of the magnetic suspension and pump were evaluated in a closed mock loop circuit filled with water. The maximum amplitude of the rotor displacement in the axial direction was only 0.06 mm. The maximum possible rotational speed during levitation was 1,600 rpm. The maximum pressure head and flow rate were 120 mm Hg and 7 L/min, respectively. The pump shows promise as a ventricular assist device.

  3. Influence of clearance model on numerical simulation of centrifugal pump

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gao, B.; Yang, L.; Du, W. Q.

    2016-05-01

    Computing models are always simplified to save the computing resources and time. Particularly, the clearance that between impeller and pump casing is always ignored. But the completer model is, the more precise result of numerical simulation is in theory. This paper study the influence of clearance model on numerical simulation of centrifugal pump. We present such influence via comparing performance, flow characteristic and pressure pulsation of two cases that the one of two cases is the model pump with clearance and the other is not. And the results show that the head decreases and power increases so that efficiency decreases after computing with front and back cavities. Then no-leakage model would improve absolute velocity magnitude in order to reach the rated flow rate. Finally, more disturbance induced by front cavity flow and wear-ring flow would change the pressure pulsation of impeller and volute. The performance of clearance flow is important for the whole pump in performance, flow characteristic, pressure pulsation and other respects.

  4. Dynamic characteristics and mechatronics model for maglev blood pump

    NASA Astrophysics Data System (ADS)

    Sun, Kun; Chen, Chen

    2017-01-01

    Magnetic bearing system(MBs) has been developed in the new-generation blood pump due to its low power consumption, low blood trauma and high durability. However, MBs for a blood pump were almost influenced by a series of factors such as hemodynamics, rotation speeds and actuator response in working fluids, compared with those applied in other industrial fields. In this study, the dynamic characteristics of MBs in fluid environments, including the influence of the pumping fluid and rotation of the impeller on the radial dynamic model were investigated by measuring the frequency response to sinusoidal excitation upon coils, and the response of radial displacement during a raise in the speed. The excitation tests were conducted under conditions in which the blood pump was levitated in air and water and with or without rotation. The experimental and simulated results indicate that rotations of the impeller affected the characteristics of MBs in water apparently, and the vibration in water was decreased, compared with that in air due to the hydraulic force. During the start-up and rotation, the actuator failed to operate fully and timely, and the voltage supplied can be chosen under the consideration of the rotor displacement and consumption.

  5. Study of a centrifugal blood pump in a mock loop system.

    PubMed

    Uebelhart, Beatriz; da Silva, Bruno Utiyama; Fonseca, Jeison; Bock, Eduardo; Leme, Juliana; da Silva, Cibele; Leão, Tarcísio; Andrade, Aron

    2013-11-01

    An implantable centrifugal blood pump (ICBP) is being developed to be used as a ventricular assist device (VAD) in patients with severe cardiovascular diseases. The ICBP system is composed of a centrifugal pump, a motor, a controller, and a power supply. The electricity source provides power to the controller and to a motor that moves the pump's rotor through magnetic coupling. The centrifugal pump is composed of four parts: external conical house, external base, impeller, and impeller base. The rotor is supported by a pivot bearing system, and its impeller base is responsible for sheltering four permanent magnets. A hybrid cardiovascular simulator (HCS) was used to evaluate the ICBP's performance. A heart failure (HF) (when the heart increases beat frequency to compensate for decrease in blood flow) was simulated in the HCS. The main objective of this work is to analyze changes in physiological parameters such as cardiac output, blood pressure, and heart rate in three situations: healthy heart, HF, and HF with left circulatory assistance by ICBP. The results showed that parameters such as aortic pressure and cardiac output affected by the HF situation returned to normal values when the ICBP was connected to the HCS. In conclusion, the test results showed satisfactory performance for the ICBP as a VAD.

  6. Measurements of gap pressure and wall shear stress of a blood pump model.

    PubMed

    Chua, L P; Akamatsu, T

    2000-04-01

    The centrifugal blood pump with a magnetically suspended impeller has shown its superiority as compared to other artificial hearts. However, there is still insufficient understanding of fluid mechanics related issues in the clearance gap. The design nature of the pump requires sufficient washout in the clearance between the impeller and stationary surfaces. As the gap is only 0.2 mm in width, it is very difficult to conduct measurements with present instrumentation. An enlarged model with 5:1 ratio of the pump has been designed and constructed according to specifications. Dimensionless gap pressure measurements of the model are very close to the prototype. The measurements of wall shear stress of the fluid flow in the clearance gap between the impeller face and inlet casing of a blood pump model were accomplished through hot-wire anemometry and rotating disk apparatus. Regions of relatively high and low shear stresses are identified. These correspond to spots where the likelihood of hemolysis and thrombus formation is high. With the use of dimensional analysis, it is found that the highest wall shear stress is equivalent to 146 Pa which is much lower than the threshold value of 400 Pa for hemolysis reported in the literature.

  7. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  8. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.

    PubMed

    Leme, Juliana; da Silva, Cibele; Fonseca, Jeison; da Silva, Bruno Utiyama; Uebelhart, Beatriz; Biscegli, José F; Andrade, Aron

    2013-11-01

    A new model of centrifugal blood pump for temporary ventricular assist devices has been developed and evaluated. The design of the device is based on centrifugal pumping principles and the usage of ceramic bearings, resulting in a pump with reduced priming (35 ± 2 mL) that can be applied for up to 30 days. Computational fluid dynamic (CFD) analysis is an efficient tool to optimize flow path geometry, maximize hydraulic performance, and minimize shear stress, consequently decreasing hemolysis. Initial studies were conducted by analyzing flow behavior with different impellers, aiming to determine the best impeller design. After CFD studies, rapid prototyping technology was used for production of pump prototypes with three different impellers. In vitro experiments were performed with those prototypes, using a mock loop system composed of Tygon tubes, oxygenator, digital flow meter, pressure monitor, electronic driver, and adjustable clamp for flow control, filled with a solution (1/3 water, 1/3 glycerin, 1/3 alcohol) simulating blood viscosity and density. Flow-versus-pressure curves were obtained for rotational speeds of 1000, 1500, 2000, 2500, and 3000 rpm. As the next step, the CFD analysis and hydrodynamic performance results will be compared with the results of flow visualization studies and hemolysis tests.

  9. Experimental Study on Scale-Up of Solid-Liquid Stirred Tank with an Intermig Impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhao, Xing; Zhang, Lifeng; Yin, Pan

    2017-02-01

    The scale-up of a solid-liquid stirred tank with an Intermig impeller was characterized via experiments. Solid concentration, impeller just-off-bottom speed and power consumption were measured in stirred tanks of different scales. The scale-up criteria for achieving the same effect of solid suspension in small-scale and large-scale vessels were evaluated. The solids distribution improves if the operating conditions are held constant as the tank is scaled-up. The results of impeller just-off-bottom speed gave X = 0.868 in the scale-up relationship ND X = constant. Based on this criterion, the stirring power per unit volume obviously decreased at N = N js, and the power number ( N P) was approximately equal to 0.3 when the solids are uniformly distributed in the vessels.

  10. Effect of NACA Injection Impeller on Mixture Distribution of Double-Row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E; Ritter, William K; Miller, Mahlon A

    1945-01-01

    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller and thus to promote a thorough mixing of fuel and charge air. Experiments with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 1500, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values.

  11. Comparative hemolysis study of clinically available centrifugal pumps.

    PubMed

    Naito, K; Suenaga, E; Cao, Z L; Suda, H; Ueno, T; Natsuaki, M; Itoh, T

    1996-06-01

    Centrifugal pumps have become important devices for cardiopulmonary bypass and circulatory assistance. Five types of centrifugal pumps are clinically available in Japan. To evaluate the blood trauma caused by centrifugal pumps, a comparative hemolysis study was performed under identical conditions. In vitro hemolysis test circuits were constructed to operate the BioMedicus BP-80 (Medtronic, BioMedicus), Sarns Delphin (Sarns/3M Healthcare), Isoflow (St. Jude Medical [SJM]), HPM-15 (Nikkiso), and Capiox CX-SP45 (Terumo). The hemolysis test loop consisted of two 1.5 m lengths of polyvinyl chloride tubing with a 3/8-inch internal diameter, a reservoir with a sampling port, and a pump head. All pumps were set to flow at 6 L/min against the total pressure head of 120 mm Hg. Experiments were conducted simultaneously for 6 h at room temperature (21 degrees C) with fresh bovine blood. Blood samples for plasma-free hemoglobin testing were taken, and the change in temperature at the pump outlet port was measured during the experiment. The mean pump rotational speeds were 1,570, 1,374, 1,438, 1,944, and 1,296 rpm, and the normalized indexes of hemolysis were 0.00070, 0.00745, 0.00096, 0.00066, 0.00090 g/100 L for the BP-80, Sarns, SJM, Nikkiso, and Terumo pumps, respectively. The change in temperature at the pump outlet port was the least for the Nikkiso pump (1.8 degrees C) and the most with the SJM pump (3.8 degrees C). This study showed that there is no relationship between the pump rotational speed (rpm) and the normalized index of hemolysis in 5 types of centrifugal pumps. The pump design and number of impellers could be more notable factors in blood damage.

  12. In vivo evaluation of centrifugal blood pump for cardiopulmonary bypass-Spiral Pump.

    PubMed

    da Silva, Cibele; da Silva, Bruno Utiyama; Leme, Juliana; Uebelhart, Beatriz; Dinkhuysen, Jarbas; Biscegli, José F; Andrade, Aron; Zavaglia, Cecília

    2013-11-01

    The Spiral Pump (SP), a centrifugal blood pump for cardiopulmonary bypass (CPB), has been developed at the Dante Pazzanese Institute of Cardiology/Adib Jatene Foundation laboratories, with support from Sintegra Company (Pompeia, Brazil). The SP is a disposable pump with an internal rotor-a conically shaped fuse with double entrance threads. This rotor is supported by two ball bearings, attached to a stainless steel shaft fixed to the housing base. Worm gears provide axial motion to the blood column, and the rotational motion of the conically shaped impeller generates a centrifugal pumping effect, improving pump efficiency without increasing hemolysis. In vitro tests were performed to evaluate the SP's hydrodynamic performance, and in vivo experiments were performed to evaluate hemodynamic impact during usual CPB. A commercially available centrifugal blood pump was used as reference. In vivo experiments were conducted in six male pigs weighing between 60 and 90 kg, placed on CPB for 6 h each. Blood samples were collected just before CPB (T0) and after every hour of CPB (T1-T6) for hemolysis determination and laboratory tests (hematological and biochemical). Values of blood pressure, mean flow, pump rotational speed, and corporeal temperature were recorded. Also, ergonomic conditions were recorded: presence of noise, difficulty in removing air bubbles, trouble in installing the pump in the drive module (console), and difficulties in mounting the CPB circuit. Comparing the laboratory and hemolysis results for the SP with those of the reference pump, we can conclude that there is no significant difference between the two devices. In addition, reports made by medical staff and perfusionists described a close similarity between the two devices. During in vivo experiments, the SP maintained blood flow and pressure at physiological levels, consistent with those applied in cardiac surgery with CPB, without presenting any malfunction. Also, the SP needed lower rotational

  13. Properly choose mechanical agitators for viscous liquids

    SciTech Connect

    Bakker, A.; Gates, L.E.

    1995-12-01

    High-viscosity mixing applications occur in most chemical process industries (CPI) plants. High-viscosity applications occur in the production of food, paint, drilling mud, and greases, to name a few. Mixing can occur in pipeline systems with motionless mixers, or in vessels using mechanical agitators, depending on the application and the process requirements. A wide variety of both motionless mixers and mechanical agitators is available to handle specific mixing problems and fluid types. This article gives an overview of designing the most commonly used agitator for blending applications: a top-entering agitator with a single shaft. The agitator can be equipped with multiple turbine-style impellers of different design, or with helical-ribbon or anchor-style impellers to optimize the agitator for the specific application and blending problem on hand. Although turbulent blending will be briefly discussed here also, this article will focus on blending in the laminar and transitional regimes. Also, the authors will discuss the special requirements for blending non-newtonian fluids, with and without yield stress. They first discuss the flow patterns and applicability of different impeller types and then present some design guidelines.

  14. Identification and classification of physiologically significant pumping states in an implantable rotary blood pump.

    PubMed

    Karantonis, Dean M; Lovell, Nigel H; Ayre, Peter J; Mason, David G; Cloherty, Shaun L

    2006-09-01

    In a clinical setting it is necessary to control the speed of rotary blood pumps used as left ventricular assist devices to prevent possible severe complications associated with over- or underpumping. The hypothesis is that by using only the noninvasive measure of instantaneous pump impeller speed to assess flow dynamics, it is possible to detect physiologically significant pumping states (without the need for additional implantable sensors). By varying pump speed in an animal model, five such states were identified: regurgitant pump flow, ventricular ejection (VE), nonopening of the aortic valve over the cardiac cycle (ANO), and partial collapse (intermittent and continuous) of the ventricle wall (PVC-I and PVC-C). These states are described in detail and a strategy for their noninvasive detection has been developed and validated using (n = 6) ex vivo porcine experiments. Employing a classification and regression tree, the strategy was able to detect pumping states with a high degree of sensitivity and specificity: state VE-99.2/100.0% (sensitivity/specificity); state ANO-100.0/100.0%; state PVC-I- 95.7/91.2%; state PVC-C-69.7/98.7%. With a simplified binary scheme differentiating suction (PVC-I, PVC-C) and nonsuction (VE, ANO) states, both such states were detected with 100% sensitivity.

  15. Development of Lorentz force-type self-bearing motor for an alternative axial flow blood pump design.

    PubMed

    Lim, Tau Meng; Zhang, Dongsheng

    2006-05-01

    A Lorentz force-type self-bearing motor was developed to provide delivery of both motoring torque and levitation force for an alternative axial flow blood pump design with an enclosed impeller. The axial flow pumps currently available introduce electromagnetic coupling from the motor's stator to the impeller by means of permanent magnets (PMs) embedded in the tips of the pump's blades. This design has distinct disadvantages, for example, pumping efficiency and electromagnetic coupling transmission are compromised by the constrained or poor geometry of the blades and limited pole width of the PMs, respectively. In this research, a Lorentz force-type self-bearing motor was developed. It is composed of (i) an eight-pole PM hollow-cylindrical rotor assembly supposedly to house and enclose the impeller of an axial flow blood pump, and (ii) a six-pole stator with two sets of copper wire and different winding configurations to provide the motoring torque and levitating force for the rotor assembly. MATLAB's xPC Target interface hardware was used as the rapid prototyping tool for the development of the controller for the self-bearing motor. Experimental results on a free/simply supported rotor assembly validated the design feasibility and control algorithm effectiveness in providing both the motoring torque and levitation force for the rotor. When levitated, a maximum orbital displacement of 0.3 mm corresponding to 1050 rpm of the rotor was measured by two eddy current probes placed in the orthogonal direction. This design has the advantage of eliminating the trade-off between motoring torques, levitating force, and pumping efficiency of previous studies. It also indicated the benefits of enclosed-impeller design as having good dynamic response, linearity, and better reliability. The nonmechanical contact feature between rotating and stationary parts will further reduce hemolysis and thromboembolitic tendencies in a typical blood pump application.

  16. CFD applications in pump flows

    NASA Astrophysics Data System (ADS)

    Kiris, Cetin; Chang, Liang; Kwak, Dochan

    1992-07-01

    The objective of the proposed paper is to develop a computational procedure that solves incompressible Navier-Stokes equations for pump flows. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. As a benchmark problem, the flow through the Rocketdyne inducer is numerically simulated. A coarse grid solution is obtained with a single zone by using an algebraic turbulence model. In multi-zone fine grid computation, a one-equation Baldwin-Barth turbulence model is utilized. Numerical results are compared with experimental measurements and a good agreement is found between the two. The resulting computer code is then applied to the flow analysis inside a two-stage fuel pump impeller operating at 80 percent, 100 percent, and 120 percent of design flow.

  17. CFD applications in pump flows

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Liang; Kwak, Dochan

    1992-01-01

    The objective of the proposed paper is to develop a computational procedure that solves incompressible Navier-Stokes equations for pump flows. The solution method is based on the pseudo-compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. As a benchmark problem, the flow through the Rocketdyne inducer is numerically simulated. A coarse grid solution is obtained with a single zone by using an algebraic turbulence model. In multi-zone fine grid computation, a one-equation Baldwin-Barth turbulence model is utilized. Numerical results are compared with experimental measurements and a good agreement is found between the two. The resulting computer code is then applied to the flow analysis inside a two-stage fuel pump impeller operating at 80 percent, 100 percent, and 120 percent of design flow.

  18. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    NASA Astrophysics Data System (ADS)

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-01

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  19. Unilateral contact induced blade/casing vibratory interactions in impellers: Analysis for rigid casings

    NASA Astrophysics Data System (ADS)

    Batailly, Alain; Meingast, Markus; Legrand, Mathias

    2015-02-01

    This contribution addresses the vibratory analysis of unilateral-contact induced structural interactions between a bladed impeller and its surrounding rigid casing. Such assemblies can be found in helicopter or small aircraft engines for instance and the interactions of interest shall arise due to the always tighter operating clearances between the rotating and stationary components. The investigation is conducted by extending to cyclically symmetric structures an in-house time-marching based tool dedicated to unilateral contact occurrences in turbomachines. The main components of the considered impeller together with the associated assumptions and modelling principles considered in this work are detailed. Typical dynamical features of cyclically symmetric structures, such as the aliasing effect and frequency clustering are explored in this nonlinear framework by means of thorough frequency-domain analyses and harmonic trackings of the numerically predicted impeller displacements. Additional contact maps highlight the existence of critical rotational velocities at which displacements potentially reach high amplitudes due to the synchronization of the bladed assembly vibratory pattern with the shape of the rigid casing. The proposed numerical investigations are also compared to a simpler and (almost) empirical criterion: it is suggested, based on nonlinear numerical simulations with a linear reduced order model of the impeller and a rigid casing, that this criterion may miss important critical velocities emanating from the unfavorable combination of aliasing and contact-induced higher harmonics in the vibratory response of the impeller. Overall, this work suggests a way to enhance guidelines to improve the design of impellers in the context of nonlinear and nonsmooth dynamics.

  20. A theoretical study of fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser

    NASA Technical Reports Server (NTRS)

    Tsujimoto, Yoshinobu; Acosta, Allan J.; Yoshida, Yoshiki

    1989-01-01

    The fluid forces on a centrifugal impeller rotating and whirling in a vaned diffuser are analyzed on the assumption that the number of impeller and diffuser vanes is so large that the flows are perfectly guided by the vanes. The flow is taken to be two dimensional, inviscid, and incompressible, but the effects of impeller and diffuser losses are taken into account. It is shown that the interaction with the vaned diffuser may cause destabilizing fluid forces. From these discussions, it is found that the whirling forces are closely related to the steady head-capacity characteristics of the impeller. This physical understanding of the whirling forces can be applied also to the cases with volute casings. At partial capacities, it is shown that the impeller forces change greatly when the flow rate and whirl velocity are near to the impeller or vaned diffuser attributed rotating stall onset capacity, and the stall propagation velocity, respectively. In such cases the impeller forces may become destabilizing for impeller whirl.

  1. Investigation of the jet-wake flow of a highly loaded centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Eckardt, D.

    1978-01-01

    Investigations, aimed at developing a better understanding of the complex flow field in high performance centrifugal compressors were performed. Newly developed measuring techniques for unsteady static and total pressures as well as flow directions, and a digital data analysis system for fluctuating signals were thoroughly tested. The loss-affected mixing process of the distorted impeller discharge flow was investigated in detail, in the absolute and relative system, at impeller tip speeds up to 380 m/s. A theoretical analysis proved good coincidence of the test results with the DEAN-SENOO theory, which was extended to compressible flows.

  2. Heart Pump Design for Cleveland Clinic Foundation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Through a Lewis CommTech Program project with the Cleveland Clinic Foundation, the NASA Lewis Research Center is playing a key role in the design and development of a permanently implantable, artificial heart pump assist device. Known as the Innovative Ventricular Assist System (IVAS), this device will take on the pumping role of the damaged left ventricle of the heart. The key part of the IVAS is a nonpulsatile (continuous flow) artificial heart pump with centrifugal impeller blades, driven by an electric motor. Lewis is part of an industry and academia team, led by the Ohio Aerospace Institute (OAI), that is working with the Cleveland Clinic Foundation to make IVAS a reality. This device has the potential to save tens of thousands of lives each year, since 80 percent of heart attack victims suffer irreversible damage to the left ventricle, the part of the heart that does most of the pumping. Impeller blade design codes and flow-modeling analytical codes will be used in the project. These codes were developed at Lewis for the aerospace industry but will be applicable to the IVAS design project. The analytical codes, which currently simulate the flow through the compressor and pump systems, will be used to simulate the flow within the blood pump in the artificial heart assist device. The Interdisciplinary Technology Office heads up Lewis' efforts in the IVAS project. With the aid of numerical modeling, the blood pump will address many design issues, including some fluid-dynamic design considerations that are unique to the properties of blood. Some of the issues that will be addressed in the design process include hemolysis, deposition, recirculation, pump efficiency, rotor thrust balance, and bearing lubrication. Optimum pumping system performance will be achieved by modeling all the interactions between the pump components. The interactions can be multidisciplinary and, therefore, are influenced not only by the fluid dynamics of adjacent components but also by

  3. The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Fu, Bao; Zhuang, Ming

    2014-03-01

    To make the large-scale helium cryogenic system of fusion device EAST (experimental advanced super-conducting tokamak) run stably, as the core part, the helium turbine expander must meet the requirement of refrigeration capacity. However, previous designs were based on one dimension flow to determine the average fluid parameters and geometric parameters of impeller cross-sections, so that it could not describe real physical processes in the internal flow of the turbine expander. Therefore, based on the inverse proposition of streamline curvature method in the context of quasi-three-dimensional flows, the all-over-controlled vortex concept was adopted to design the impeller under specified condition. The wrap angle of the impeller blade and the whole flow distribution on the meridian plane were obtained; meanwhile the performance of the designed impeller was analyzed. Thus a new design method is proposed here for the inverse proposition of the helium turbine expander impeller.

  4. Pumping system

    SciTech Connect

    Kime, J.A.

    1987-05-19

    This patent describes a gas-oil production system for pumping formation fluid in a well through a tubing string within which a down hole pump connects to a hydraulic stroking device through a rod string providing the pump including a plunger reciprocally driven by the hydraulic stroking device toward an upper terminal position during a plunger upstroke. The rod string normally supports the weight of a column of fluid and toward a lower terminal position at the end of a plunger downstroke during which the weight of the column fluid is normally transferred to the tubing string through fluid within the pump. The method for detecting when the well is pumped off comprises: supplying working fluid to the hydraulic stroking device to raise the hydraulic stroking device and thereby move the plunger from the lower terminal position to the upper terminal position; and removing the working fluid at a controlled rate from the hydraulic stroking device.

  5. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  6. Sintering of polydisperse viscous droplets

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Dingwell, Donald B.

    2017-03-01

    Sintering—or coalescence—of compacts of viscous droplets is driven by the interfacial tension between the droplets and the interstitial gas phase. The process, which occurs in a range of industrial and natural settings, such as the manufacture of ceramics and the welding of volcanic ash, causes the compact to densify, to become stronger, and to become less permeable. We investigate the role of droplet polydispersivity in sintering dynamics by conducting experiments in which populations of glass spheres with different size distributions are heated to temperatures above the glass transition interval. We quantify the progress of sintering by tracking changes in porosity with time. The sintering dynamics is modeled by treating the system as a random distribution of interstitial gas bubbles shrinking under the action of interfacial tension only. We identify the scaling between the polydispersivity of the initial droplets and the dynamics of bulk densification. The framework that we develop allows the sintering dynamics of arbitrary polydisperse populations of droplets to be predicted if the initial droplet (or particle) size distribution is known.

  7. Numerical analysis of head degrade law under cavitation condition of contra-rotating axial flow waterjet pump

    NASA Astrophysics Data System (ADS)

    Huang, D.; Pan, Z. Y.

    2015-01-01

    In order to study the flow-head characteristic curve, the SST turbulence model, homogeneous multiphase model and Rayleigh-Plesset equation were applied to simulate the cavitation characteristics in contra-rotating axial flow waterjet pump under different conditions based on ANSYS CFX software. The distribution of cavity, pressure coefficient of the blade at the design point under different cavitation conditions were obtained. The analysis results of flow field show that the vapour volume distribution on the impeller indicates that the vapour first appears at the leading edge of blade and then extends to the outlet of impeller with the reduction of Net Positive Suction Head Allowance (NPSHA). The present study illustrates that the main reason for the decline of the pump performance is the development of cavitation, and the simulation can truly reflect the cavitation performance of the contra-rotating axial flow waterjet pump.

  8. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.

    PubMed

    Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui

    2010-03-01

    Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region.

  9. Influence of bearing support structures on shaft vibration of large hydraulic pump/turbines

    SciTech Connect

    Pistner, C.A.; Greenplate, B.S.; Waddell, A.M.

    1995-12-31

    Start-up transient loads from pump/turbine impellers can cause excessive vibration problems in the shaft system. If the radial guide bearing supports are structurally soft or loose, or if the bearings are worn, the resulting radial shaft movement causes abnormal wear. The wear normally occurs at the impeller sealing surfaces, main shaft seals, motor/generator components, piping, brackets, foundation connections, etc. This paper explores the critical factors causing shaft system vibration problems at the Tennessee Valley Authority`s Raccoon Mountain Pumped Storage Plant, as well as the unique modifications which were implemented to strengthen and improve the units. The solution involved extensive three-dimensional finite element structural and thermal transient analyses of the original and re-designed turbine shoe bearing, bearing housings, and support structures. The conclusion compares the calculated and measured shaft system response to transient loads of the original and modified system.

  10. Fluorescent image tracking velocimetry of the Nimbus AxiPump.

    PubMed

    Kerrigan, J P; Shaffer, F D; Maher, T R; Dennis, T J; Borovetz, H S; Antaki, J F

    1993-01-01

    High shear rates and extended residence times causing hemolysis and platelet activation can develop in an assist pump or cannula when inferior flow conditions exist. The high volume output of a miniature axial flow pump presents challenges in avoiding these adverse conditions. To assess the hemodynamics within the continuous flow Nimbus Axi-Pump, vector flow fields inside a translucent inflow cannula and a modified 12 mm AxiPump were mapped. Fluorescent image tracking velocimetry was used to track the motion of neutrally buoyant fluorescent particles (30 microns) using pulsed laser light, high resolution video cameras, and computer image analysis. An acrylic pump housing and cannula were integrated into a mock circulatory loop filled with a Newtonian, optically clear blood analog fluid. The flow parameters were controlled to yield known, physiologic loading conditions, including varying degrees of pulsatility. Cannula flow visualization results exhibited critical recirculation patterns at the bend. These results will be used to further optimize the design of the inflow. Particle impact was seen at the pump inlet in the inducer region of the rotor. Very good attachment of flow from the rotor to stator was observed when the pump operated at normal operating speeds. Intermittent regurgitant flow fields were evident in the presence of increased pulsatility and low pump speed. These results have lead to improvements in impeller design and speed control criteria to avoid potential deleterious flows.

  11. On numerical simulation of viscous flows

    NASA Astrophysics Data System (ADS)

    Ghia, K. N.; Ghia, U.

    Numerical simulation methods for viscous incompressible laminar flows are reviewed, with a focus on finite-difference schemes. The approaches to high/moderate-Reynolds-number flows (strong-viscous-interaction model or single sets of equations) and the factors affecting the versatility, reliability, and accuracy of the analysis algorithms are considered; approximate-factorization implicit solution techniques for low-Reynolds-number flows are discussed; and the procedures used in a number of specific problems are indicated.

  12. Comparing the performances of circular ponds with different impellers by CFD simulation and microalgae culture experiments.

    PubMed

    Meng, Chen; Huang, Jianke; Ye, Chunyu; Cheng, Wenchao; Chen, Jianpei; Li, Yuanguang

    2015-07-01

    In this study, a numerical simulation using computational fluid dynamics (CFD) was used to investigate the hydrodynamic characteristics of circular ponds with three different impellers (hydrofoil, four-pitched-blade turbine, and grid plate). The reliability of the CFD model was validated by particle image velocimetry (PIV). Hydrodynamic analyses were conducted to evaluate the average velocity magnitude along the light direction (Uz), turbulence properties, average shear stress, pressure loss and the volume percentage of dead zone inside circular ponds. The simulation results showed that Uz value of hydrofoil was 58.9, 40.3, and 28.8% higher than those of grid plate with single arm, grid plate with double arms and four-pitched blade turbines in small-scale circular ponds, respectively. In addition, hydrofoil impeller with down-flow operation had outstanding mixing characteristics. Lastly, the results of Chlorella pyrenoidosa cultivation experiments indicated that the biomass concentration of hydrofoil impeller with down-flow operation was 65.2 and 88.8% higher than those of grid plate with double arms and four-pitched-blade turbine, respectively. Therefore, the optimal circular pond mixing system for microalgae cultivation involved a hydrofoil impeller with down-flow operation.

  13. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  14. Aerodynamic stiffness of an unbound eccentric whirling centrifugal impeller with an infinite number of blades

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Branagan, L. A.; Kocur, J. A.

    1982-01-01

    An unbounded eccentric centrifugal impeller with an infinite number of log spiral blades undergoing synchronous whirling in an incompressible fluid is considered. The forces acting on it due to coriolis forces, centripetal forces, changes in linear momentum, changes in pressure due to rotating and changes in pressure due to changes in linear momentum are evaluated.

  15. Effects of scaling on centrifugal blood pumps.

    PubMed

    Wong, Yew Wah; Chan, Weng Kong; Yu, S C M; Chua, Leok Poh

    2002-11-01

    Experimental studies on the effects of scaling on the performance of centrifugal blood pumps were conducted in a closed-loop test rig. For the prototype, eight different impellers of the same outer diameter of 25 mm were tested at 1,500, 2,000, and 2,500 revolutions per minute (rpm) using blood analog as fluid medium. This corresponds to Reynolds numbers (Re) of 25,900, 34,500, and 43,200, respectively. The results indicated that the nondimensional pump characteristic is a function of Re. This is understandable since the typical operating Re for centrifugal blood pumps is less than 100,000. Thus, the effects of scaling cannot be ignored for centrifugal blood pumps. Experiments on a 5x scaled-up model have also indicated that the scaled-up model is more efficient than the prototype model. Our results showed that in the range of Re tested, the nondimensional head versus flow curve is a function of Re to the power of approximately 0.25. It is observed that the nondimensional head versus flow is a function of diameter ratio to the power of 0.2.

  16. Optimization of centrifugal pump cavitation performance based on CFD

    NASA Astrophysics Data System (ADS)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  17. Cavitation instabilities of an inducer in a cryogenic pump

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Jin; Sung, Hyung Jin; Choi, Chang-Ho; Kim, Jin-Sun

    2017-03-01

    Inducers assist cryogenic pumps to operate safely under cavitation conditions by increasing the pressure of the impeller inlet, but create cavitation instabilities. The use of cryogenic fluids requires special attention because of safety and handling concerns. To examine the cavitation instabilities of a cryogenic pump, two kinds of working fluids, water and liquid oxygen, were employed. The cavitation instabilities were measured with an accelerometer installed on the pump casing. The flow coefficient and the head slightly decrease with decreases in the cavitation number before the cavitation breakdown. These trends are true of both fluids. Several cavitation instabilities were identified with the accelerometer. At lower flow coefficients, super-synchronous rotating cavitation was found in a similar cavitation number range for both fluids. At higher flow coefficients, the cavitation numbers of the cavitation instabilities in the liquid oxygen test are smaller than those of the water test.

  18. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  19. Development of the Valvo pump: an axial flow pump implanted at the heart valve position.

    PubMed

    Mitamura, Y; Nakamura, H; Okamoto, E; Yozu, R; Kawada, S; Kim, D W

    1999-06-01

    Pulsatile artificial hearts having a relatively large volume are difficult to implant in a small patient, but rotary blood pumps can be easily implanted. The objective of this study was to show the feasibility of using the Valvo pump, an axial flow pump implanted at the heart valve position, in such cases. The Valvo pump consists of an impeller and a motor. The motor is waterproofed with a ferrofluidic seal. A blood flow of 5 L/min was obtained at a pressure difference of 13.3 kPa (100 mm Hg) at 7,000 rpm. The normalized index of hemolysis (NIH) was 0.030 +/- 0.003 (n = 3) for a blood flow of 5 L/min at a pressure difference of 13.3 kPa. The pressure resistance of the ferrofluidic seal was 37.5 kPa in a static condition and 26.3 kPa at 10,000 rpm. The seal exhibited no leaks for 41+ days against 20.0 kPa. The results showed that the Valvo pump can maintain systemic circulation with an acceptable level of hemolysis.

  20. Research on energy conversion mechanism of rotodynamic pump and design of non-overload centrifugal pump

    NASA Astrophysics Data System (ADS)

    Zhang, X. L.; Hu, S. B.; Shen, Z. Z.; Wu, S. P.; Li, K.

    2016-05-01

    In this paper, an attempt has been made for the calculation of an expression for the intrinsic law of input power which has not yet been given by current theory of Rotodynamic pump. By adequate recognition of the characteristics of non-inertial system within the rotating impeller, it is concluded that the input power consists of two power components, the first power component, whose magnitude increases with the increase of the flow rate, corresponds to radial velocity component, and the second power component, whose magnitude decreases with the increase of the flow rate, corresponds to tangential velocity component, therefore, the law of rise, basic levelness and drop of input power curves of centrifugal pump, mixed-flow pump and axial-flow pump can be explained reasonably. Through further analysis, the main ways for realizing non-overload of centrifugal pump are obtained, and its equivalent design factor is found out, the factor correlates with the outlet angle of leading face and back face of the blade, wrap angle, number of blades, outlet width, area ratio, and the ratio of operating flow rate to specified flow rate and so on. These are verified with actual example.

  1. Small centrifugal pumps for low-thrust rocket engines

    NASA Technical Reports Server (NTRS)

    Furst, R. B.

    1986-01-01

    Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed.

  2. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  3. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  4. Slurry pumping: Pump performance prediction

    SciTech Connect

    Taccani, R.; Pediroda, V.; Reini, M.; Giadrossi, A.

    2000-07-01

    Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new test loop has been realized in the laboratory of the Energetics Department of the University of Trieste which allows pump performance to be determined at various pump speeds, with many different mixture concentrations and rheologies. The pump test rig consists of 150 mm diameter pipe with facilities for measuring suction and discharge pressure, flowrate, pump input power and speed, slurry density and temperature. In particular flowrate is measured by diverting flow into a weighing tank and timing a specified volume of slurry. An automatic PC based data acquisition system has been implemented. Preliminary tests with clear water show that performance can be measured with good repeatability and accuracy. The new test rig is used to verify the range of validity of the correlations to predict pump performance, available in literature and of that proposed by authors. This correlation, based on a Neural Network and not on a predefined analytical expression, can be easily improved with new experimental data.

  5. SSME alternate turbopump (pump section) axial load analysis

    NASA Technical Reports Server (NTRS)

    Crease, G. A.; Rosello, A., Jr.; Fetfatsidis, A. K.

    1989-01-01

    A flow balancing computer program constructed to calculate the axial loads on the Space Shuttle Main Engine (SSME) alternate turbopumps (ATs) pump sections are described. The loads are used in turn to determine load balancing piston design requirements. The application of the program to the inlet section, inducer/impeller/stage, bearings, seals, labyrinth, damper, piston, face and corner, and stationary/rotating surfaces is indicated. Design analysis results are reported which show that the balancing piston's designs are adequate and that performance and life will not be degraded by the turbopump's axial load characteristics.

  6. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  7. Statistical characteristics of suction pressure signals for a centrifugal pump under cavitating conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Yu, Benxu; Ji, Yucheng; Lu, Jiaxin; Yuan, Shouqi

    2017-02-01

    Centrifugal pumps are often used in operating conditions where they can be susceptible to premature failure. The cavitation phenomenon is a common fault in centrifugal pumps and is associated with undesired effects. Among the numerous cavitation detection methods, the measurement of suction pressure fluctuation is one of the most used methods to detect or diagnose the degree of cavitation in a centrifugal pump. In this paper, a closed loop was established to investigate the pump cavitation phenomenon, the statistical parameters for PDF (Probability Density Function), Variance and RMS (Root Mean Square) were used to analyze the relationship between the cavitation performance and the suction pressure signals during the development of cavitation. It is found that the statistical parameters used in this research are able to capture critical cavitation condition and cavitation breakdown condition, whereas difficult for the detection of incipient cavitation in the pump. At part-load conditions, the pressure fluctuations at the impeller inlet show more complexity than the best efficiency point (BEP). Amplitude of PDF values of suction pressure increased steeply when the flow rate dropped to 40 m3/h (the design flow rate was 60 m3/h). One possible reason is that the flow structure in the impeller channel promotes an increase of the cavitation intensity when the flow rate is reduced to a certain degree. This shows that it is necessary to find the relationship between the cavitation instabilities and flow instabilities when centrifugal pumps operate under part-load flow rates.

  8. Hydrodynamic Analysis of the Flow Field Induced by a Symmetrical Suction Elbow at the Pump Inlet

    NASA Astrophysics Data System (ADS)

    Muntean, S.; Bosioc, A. I.; Drăghici, I.; Anton, L. E.

    2016-11-01

    The paper investigates the hydrodynamic field generated by the symmetrical suction elbow at the pump impeller inlet. The full three-dimensional turbulent numerical investigation of the flow in the symmetrical suction elbow is performed using FLUENT then the flow non-uniformity generated by it is numerically computed. The numerical results on the annular cross section are qualitatively and quantitatively validated against LDV data. A good agreement between numerical results and experimental data is obtained on this cross section located downstream to the suction elbow and upstream to the pump impeller. The hydrodynamic flow structure with four vortices is identified plotting the vorticity field. The largest values of the vorticity magnitude are identified in the center of both vortices located behind the shaft. The vortex core location is plotted on four annular cross sections located along to the cylindrical part between the suction elbow and the pump inlet. Also, the three-dimensional distribution of the vortex core filaments is visualized and extracted. The shapes of vortex core filaments located behind the pump shaft agree well with its visualization performed on the test rig. As a result, the three-dimensional complex geometry of the suction elbow and the pump shaft are identified as the main sources of the flow non-uniformity at the pump inlet.

  9. The Effect of Geometry on the Efficiency and Hemolysis of Centrifugal Implantable Blood Pumps.

    PubMed

    Mozafari, Sahand; Rezaienia, Mohammad A; Paul, Gordon M; Rothman, Martin T; Wen, Pihua; Korakianitis, Theodosios

    The application of centrifugal pumps as heart assist devices imposes design limitations on the impeller geometry. Geometry and operating parameters will affect the performance and the hemocompatibility of the device. Among all the parameters affecting the hemocompatibility, pressure, rotational speed, blade numbers, angle, and width have significant impact on the blood trauma. These parameters directly (pressure, speed) and indirectly (geometry) affect the efficiency of the pump as well. This study describes the experimental investigation on geometric parameters and their effect on the performance of small centrifugal pumps suitable for Mechanical Circulatory Support (MCS) devices. Experimental and numerical techniques were implemented to analyze the performance of 15 centrifugal impellers with different characteristics. The effect of each parameter on the pump performance and hemolysis was studied by calculating the normalized index of hemolysis (NIH) and the shear stress induced in each pump. The results show five and six blades, 15-35° outlet angle, and the lowest outlet width that meets the required pressure rise are optimum values for an efficient hemocompatible pump.

  10. Splitter-bladed centrifugal compressor impeller designed for automotive gas turbine application. [at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Pampreen, R. C.

    1977-01-01

    Mechanical design and fabrication of two splitter-bladed centrifugal compressor impellers were completed for rig testing at NASA Lewis Research Center. These impellers were designed for automotive gas turbine application. The mechanical design was based on NASA specifications for blade-shape and flowpath configurations. The contractor made engineering drawings and performed calculations for mass and center-of-gravity, for stress and vibration analyses, and for shaft critical speed analysis. One impeller was machined to print; the other had a blade height and exit radius of 2.54 mm larger than print dimensions.

  11. Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-row Radial Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Marble, Frank E.; Ritter, William K.; Miller, Mahlon A.

    1946-01-01

    For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.

  12. Preliminary validation of a new magnetic wireless blood pump.

    PubMed

    Kim, Sung Hoon; Ishiyama, Kazushi; Hashi, Shuichiro; Shiraishi, Yasuyuki; Hayatsu, Yukihiro; Akiyama, Masatoshi; Saiki, Yoshikatsu; Yambe, Tomoyuki

    2013-10-01

    In general, a blood pump must be small, have a simple configuration, and have sufficient hydrodynamic performance. Herein, we introduce new mechanisms for a wireless blood pump that is small and simple and provides wireless and battery-free operation. To achieve wireless and battery-free operation, we implement magnetic torque and force control methods that use two external drivers: an external coil and a permanent magnet with a DC-motor, respectively. Power harvesting can be used to drive an electronic circuit for wireless monitoring (the observation of the pump conditions and temperature) without the use of an internal battery. The power harvesting will be used as a power source to drive other electronic devices, such as various biosensors with their driving circuits. To have both a compact size and sufficient pumping capability, the fully magnetic impeller has five stages and each stage includes four backward-curved blades. The pump has total and inner volumes of 20 and 9.8 cc, respectively, and weighs 52 g. The pump produces a flow rate of approximately 8 L/min at 80 mm Hg and the power generator produces 0.3 W of electrical power at 120 Ω. The pump also produces a minimum flow rate of 1.5 L/min and a pressure of 30 mm Hg for circulation at a maximum distance of 7.5 cm.

  13. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump.

    PubMed

    Yang, Xiao-Chen; Zhang, Yan; Gui, Xing-Min; Hu, Sheng-Shou

    2011-10-01

    The advent of various technologies has allowed mechanical blood pumps to become more reliable and versatile in recent decades. In our study group, a novel structure of axial flow blood pump was developed for assisting the left ventricle. The design point of the left ventricular assist blood pump 25 (LAP-25) was chosen at 4 Lpm with 100 mm Hg according to our clinical practice. Computational fluid dynamics was used to design and analyze the performance of the LAP-25. In order to obtain a required hydraulic performance and a satisfactory hemolytic property in the LAP-25 of a smaller size, a novel structure was developed including an integrated shroud impeller, a streamlined impeller hub, and main impeller blades with splitter blades; furthermore, tandem cascades were introduced in designing the diffuser. The results of numerical simulation show the LAP-25 can generate flow rates of 3-5 Lpm at rotational speeds of 8500-10,500 rpm, producing pressure rises of 27.5-148.3 mm Hg with hydraulic efficiency points ranging from 13.4 to 27.5%. Moreover, the fluid field and the hemolytic property of the LAP-25 were estimated, and the mean hemolysis index of the pump was 0.0895% with Heuser's estimated model. In conclusion, the design of the LAP-25 shows an acceptable result.

  14. The effect of impeller type on silica sol formation in laboratory scale agitated tank

    SciTech Connect

    Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng

    2016-02-08

    The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.

  15. The thinning of viscous liquid threads.

    NASA Astrophysics Data System (ADS)

    Castrejon-Pita, J. Rafael; Castrejon-Pita, Alfonso A.; Hutchings, Ian M.

    2012-11-01

    The thinning neck of dripping droplets is studied experimentally for viscous Newtonian fluids. High speed imaging is used to measure the minimum neck diameter in terms of the time τ to breakup. Mixtures of water and glycerol with viscosities ranging from 20 to 363 mPa s are used to model the Newtonian behavior. The results show the transition from potential to inertial-viscous regimes occurs at the predicted values of ~Oh2. Before this transition the neck contraction rate follows the inviscid scaling law ~τ 2 / 3 . After the transition, the neck thinning tends towards the linear viscous scaling law ~ τ . Project supported by the EPSRC-UK (EP/G029458/1) and Cambridge-KACST.

  16. Buckling and stretching of thin viscous sheets

    NASA Astrophysics Data System (ADS)

    O'Kiely, Doireann; Breward, Chris; Griffiths, Ian; Howell, Peter; Lange, Ulrich

    2016-11-01

    Thin glass sheets are used in smartphone, battery and semiconductor technology, and may be manufactured by producing a relatively thick glass slab and subsequently redrawing it to a required thickness. The resulting sheets commonly possess undesired centerline ripples and thick edges. We present a mathematical model in which a viscous sheet undergoes redraw in the direction of gravity, and show that, in a sufficiently strong gravitational field, buckling is driven by compression in a region near the bottom of the sheet, and limited by viscous resistance to stretching of the sheet. We use asymptotic analysis in the thin-sheet, low-Reynolds-number limit to determine the centerline profile and growth rate of such a viscous sheet.

  17. Application of energy gradient theory in flow instability in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Dou, H. S.; Jiang, W.

    2013-12-01

    The flow instability in a centrifugal pump is studied using the energy gradient theory. Since the Re is high, the base flow is assumed to be turbulent. The distribution of the energy gradient function K at various flow rates is obtained from numerical simulations. According to the energy gradient method, the area with larger value of K is the place to cause instability and to be of high turbulence intensity. The results show that instability is easier to be excited in the area of impeller outlet and volute tongue. In order to improve the stability of centrifugal pumps working under low flow rate condition, carefulness must be taken in these two key areas.

  18. Inverse transonic airfoil design including viscous interaction

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1976-01-01

    A numerical technique was developed for the analysis of specified transonic airfoils or for the design of airfoils having a prescribed pressure distribution, including the effect of weak viscous interaction. The method uses the full potential equation, a stretched Cartesian coordinate system, and the Nash-MacDonald turbulent boundary layer method. Comparisons with experimental data for typical transonic airfoils show excellent agreement. An example shows the application of the method to design a thick aft-cambered airfoil, and the effects of viscous interaction on its performance are discussed.

  19. Viscous shock profiles and primitive formulations

    NASA Technical Reports Server (NTRS)

    Karni, S.

    1990-01-01

    Weak solutions of hyperbolic systems in primitive (non-conservation) form for which a consistent conservation form exists are considered. It is shown that primitive formulations, shock relations are not uniquely defined by the states to either side of the shock but also depend on the viscous path connecting the two. Scheme-dependent high order correction terms are derived that enforce consistent viscous shock profiles. The resulting primitive algorithm is conservative to the order of approximation. One dimensional Euler calculations of flows containing strong shocks clearly show that conservation errors in primitive flow calculations are of comparable quality.

  20. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  1. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  2. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  3. A microfluidic two-pump system inspired by liquid feeding in mosquitoes

    NASA Astrophysics Data System (ADS)

    Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan

    Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.

  4. Design and performance of family of diffusing scrolls with mixed-flow impeller and vaneless diffuser

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Bradshaw, Guy R

    1949-01-01

    A family of diffusing scrolls was designed for use with a mixed-flow impeller and a small-diameter vaneless diffuser. The design theory, intended to maintain a uniform pressure around the scroll inlet, permits determination of the position of scroll cross sections of preassigned area by considering the radial variation in fluid density and the effects of friction along the scroll. Inasmuch as the design method leaves the cross-sectional shape undetermined, the effect of certain variations in scroll shape was investigated by studying scrolls having angles of divergence (of the scroll walls downstream of the entrance section) of 24 degrees, 40 degrees, and 80 degrees. A second 80 degree scroll was of asymmetrical construction and a third was plaster-cast instead of sand-cast. Each scroll was tested as a compressor component at actual impeller tip speeds of 700 to 1300 feet per second from full throttle to surge.

  5. Effect of impeller geometry on gas-liquid mass transfer coefficients in filamentous suspensions.

    PubMed

    Dronawat, S N; Svihla, C K; Hanley, T R

    1997-01-01

    Volumetric gas-liquid mass transfer coefficients were measured in suspensions of cellulose fibers with concentrations ranging from 0 to 20 g/L. The mass transfer coefficients were measured using the dynamic method. Results are presented for three different combinations of impellers at a variety of gassing rates and agitation speeds. Rheological properties of the cellulose fibers were also measured using the impeller viscometer method. Tests were conducted in a 20 L stirred-tank fermentor and in 65 L tank with a height to diameter ratio of 3:1. Power consumption was measured in both vessels. At low agitation rates, two Rushton turbines gave 20% better performance than the Rushton and hydrofoil combination and 40% better performance than the Rushton and propeller combination for oxygen transfer. At higher agitation rates, the Rushton and hydrofoil combination gave 14 and 25% better performance for oxygen transfer than two Rushton turbines and the Rushton and hydrofoil combination, respectively.

  6. Third-generation blood pumps with mechanical noncontact magnetic bearings.

    PubMed

    Hoshi, Hideo; Shinshi, Tadahiko; Takatani, Setsuo

    2006-05-01

    This article reviews third-generation blood pumps, focusing on the magnetic-levitation (maglev) system. The maglev system can be categorized into three types: (i) external motor-driven system, (ii) direct-drive motor-driven system, and (iii) self-bearing or bearingless motor system. In the external motor-driven system, Terumo (Ann Arbor, MI, U.S.A.) DuraHeart is an example where the impeller is levitated in the axial or z-direction. The disadvantage of this system is the mechanical wear in the mechanical bearings of the external motor. In the second system, the impeller is made into the rotor of the motor, and the magnetic flux, through the external stator, rotates the impeller, while the impeller levitation is maintained through another electromagnetic system. The Berlin Heart (Berlin, Germany) INCOR is the best example of this principle where one-axis control combination with hydrodynamic force achieves high performance. In the third system, the stator core is shared by the levitation and drive coil to make it as if the bearing does not exist. Levitronix CentriMag (Zürich, Switzerland), which appeared recently, employs this concept to achieve stable and safe operation of the extracorporeal system that can last for a duration of 14 days. Experimental systems including HeartMate III (Thoratec, Woburn, MA, U.S.A.), HeartQuest (WorldHeart, Ottawa, ON, Canada), MagneVAD (Gold Medical Technologies, Valhalla, NY, U.S.A.), MiTiHeart (MiTi Heart, Albany, NY, U.S.A.), Ibaraki University's Heart (Hitachi, Japan) and Tokyo Medical and Dental University/Tokyo Institute of Technology's disposable and implantable maglev blood pumps are also reviewed. In reference to second-generation blood pumps, such as the Jarvik 2000 (Jarvik Heart, New York, NY, U.S.A.), which is showing remarkable achievement, a question is raised whether a complicated system such as the maglev system is really needed. We should pay careful attention to future clinical outcomes of the ongoing clinical

  7. Sugarcane bagasse enzymatic hydrolysis: rheological data as criteria for impeller selection.

    PubMed

    Pereira, Leonardo Tupi Caldas; Pereira, Lucas Tupi Caldas; Teixeira, Ricardo Sposina Sobral; Bon, Elba Pinto da Silva; Freitas, Suely Pereira

    2011-08-01

    The aim of this work was to select an efficient impeller to be used in a stirred reactor for the enzymatic hydrolysis of sugar cane bagasse. All experiments utilized 100 g (dry weight)/l of steam-pretreated bagasse, which is utilized in Brazil for cattle feed. The process was studied with respect to the rheological behavior of the biomass hydrolysate and the enzymatic conversion of the bagasse polysaccharides. These parameters were applied to model the power required for an impeller to operate at pilot scale (100 l) using empirical correlations according to Nagata [16]. Hydrolysis experiments were carried out using a blend of cellulases, β-glucosidase, and xylanases produced in our laboratory by Trichoderma reesei RUT C30 and Aspergillus awamori. Hydrolyses were performed with an enzyme load of 10 FPU/g (dry weight) of bagasse over 36 h with periodic sampling for the measurement of viscosity and the concentration of glucose and reducing sugars. The mixture presented pseudoplastic behavior. This rheological model allowed for a performance comparison to be made between flat-blade disk (Rushton turbine) and pitched-blade (45°) impellers. The simulation showed that the pitched blade consumed tenfold less energy than the flat-blade disk turbine. The resulting sugar syrups contained 22 g/l of glucose, which corresponded to 45% cellulose conversion.

  8. Experimental Impeller Fragmentation of Iliocaval Thrombosis Under Tulip Filter Protection: Preliminary Results

    SciTech Connect

    Schmitz-Rode, Thomas; Vorwerk, Dierk; Schuermann, Karl; Guenther, Rolf W.

    1996-04-15

    Purpose: To assess the efficacy of catheter fragmentation of massive caval thrombosis and of filter protection against procedure-related pulmonary embolism. Methods: In 10 sheep, a self-expanding tulip-shaped filter made from Wallstent mesh (diameter 25 mm) was introduced from the right jugular approach into the proximal inferior vena cava. Experimentally induced massive iliocaval thrombosis was fragmented by an impeller catheter (expanded diameter 14 mm), which was advanced coaxially through the sheath of the expanded filter. Post-procedural cavography and pulmonary angiography were performed to document the extent of caval recanalization and pulmonary embolism. Results: In all cases, impeller fragmentation cleared the inferior vena cava and the iliac veins of thrombi completely. Fragments washed downstream were trapped in the filter. In two of the first cases, parts of the clots caused pulmonary embolism before the filter was in place. Further events were avoided by a modification of the experimental setup. Except for some small peripheral perfusion defects in two cases, pulmonary angiograms did not show any incidence of pulmonary embolism. Conclusion: Our preliminary results suggest that impeller fragmentation of iliocaval thrombi under tulip filter protection is effective and does not cause significant pulmonary embolism.

  9. Measurement of rheology of distiller's grain slurries using a helical impeller viscometer.

    PubMed

    Houchin, Tiffany L; Hanley, Thomas R

    2004-01-01

    Current research is focused on developing a process to convert the cellulose and hemicellulose in distiller's grains into fermentable sugars, increasing both ethanol yield and the amount of protein in the remaining solid product. The rheologic properties of distiller's grain slurries were determined for concentrations of 21, 23, and 25%. Distiller's grain slurries are non-Newtonian, heterogeneous fluids subject to particle settling. Traditional methods of viscosity measurement, such as cone-and-plate and concentric cylinder viscometers, are not adequate for these fluids. A helical impeller viscometer was employed to measure impeller torque over a range of rotational speeds. Newtonian and non-Newtonian calibration fluids were utilized to obtain constants that relate shear stresses and shear rates to the experimental data. The Newtonian impeller constant, c, was 151; the non-Newtonian shear rate constant, k, was 10.30. Regression analysis of experimental data was utilized for comparison to power law, Herschel-Bulkley, and Casson viscosity models with regression coefficients exceeding 0.99 in all cases.

  10. Production of heavy oil with a hydraulic gas pump

    SciTech Connect

    Amani, M.

    1995-12-31

    The original designs of the Hydraulic Gas Pump were first presented in Society of Petroleum Engineers SPE paper 025422. This pump is still in the conceptual stage, but the technology to build it is available. This paper presents its theoretical applications for the production of heavy oil. An important advantage of the Hydraulic Gas Pump is its ability to pump liquids from deep wells. Rod pumps are limited when pumping viscous oil from deep wells because of problems with rod stress and rod fall. The Hydraulic Gas Pump can provide an alternative to rod pumps for lifting heavy oil from deep wells. Another advantage of the Hydraulic Gas Pump for the production of heavy oil is its ability to operate in gassy, sandy, and high temperature environments. Gas and steam do not affect its efficiency. This makes the pump useful for steam projects, fire-flood projects, or lifting heavy oil in gassy environments. The Hydraulic Gas Pump operates by a rotative gas compression system. This paper presents a discussion of its operation and its lift capacity.

  11. Enhancement of hemocompatibility of the MERA monopivot centrifugal pump: toward medium-term use.

    PubMed

    Yamane, Takashi; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu; Yamamoto, Yoshihiro; Kuwana, Katsuyuki; Kawamura, Hiroshi; Shiraishi, Yasuyuki; Yambe, Tomoyuki; Sankai, Yoshiyuki; Tsutsui, Tatsuo

    2013-02-01

    The MERA monopivot centrifugal pump has been developed for use in open-heart surgery, circulatory support, and bridge-to-decision for up to 4 weeks. The pump has a closed-type, 50-mm diameter impeller with four straight paths. The impeller is supported by a monopivot bearing and is driven by a radial-flux magnet-coupling motor. Because flow visualization experiments have clarified sufficient pivot wash and stagnation at the sharp corner of the pivot support was suggested, sharp corners were removed in the design stage. The index of hemolysis of the pump operating at more than 200 mm Hg was found to be lower than that of a commercial pump. Four-week animal tests were then conducted two times; improvement of thrombus formation was seen in the female pivot through modification of female pivot geometry. Overall antithrombogenicity was also recorded. Finally, to assure mid-term use, an additional 4-week durability test revealed that the rate of the axial pivot wear was as small as 1.1 µm/day. The present in vitro and in vivo studies revealed that the MERA monopivot centrifugal pump has sufficient hemocompatibility and durability for up to 4 weeks.

  12. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  13. Fluctuating pressures in pump diffuser and collector scrolls, part 1

    NASA Technical Reports Server (NTRS)

    Sloteman, Donald P.

    1989-01-01

    The cracking of scroll liners on the SSME High Pressure Fuel Turbo Pump (HPFTP) on hot gas engine test firings has prompted a study into the nature of pressure fluctuations in centrifugal pump states. The amplitudes of these fluctuations and where they originate in the pump stage are quantified. To accomplish this, a test program was conducted to map the pressure pulsation activity in a centrifugal pump stage. This stage is based on typical commercial (or generic) pump design practice and not the specialized design of the HPFTP. Measurements made in the various elements comprising the stage indicate that pulsation activity is dominated by synchronous related phenomena. Pulsation amplitudes measured in the scroll are low, on the order of 2 to 7 percent of the impeller exit tip speed velocity head. Significant non-sychronous pressure fluctuations occur at low flow, and while of interest to commercial pump designers, have little meaning to the HPFTP experience. Results obtained with the generic components do provide insights into possible pulsation related scroll failures on the HPFTP, and provide a basis for further study.

  14. Dilepton production in schematic causal viscous hydrodynamics

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Han, Kyong Chol; Ko, Che Ming

    2011-02-01

    Assuming that in the hot dense matter produced in relativistic heavy-ion collisions, the energy density, entropy density, and pressure as well as the azimuthal and space-time rapidity components of the shear tensor are uniform in the direction transversal to the reaction plane, we derive a set of schematic equations from the Isreal-Stewart causal viscous hydrodynamics. These equations are then used to describe the evolution dynamics of relativistic heavy-ion collisions by taking the shear viscosity to entropy density ratio of 1/4π for the initial quark-gluon plasma (QGP) phase and of 10 times this value for the later hadron-gas (HG) phase. Using the production rate evaluated with particle distributions that take into account the viscous effect, we study dilepton production in central heavy-ion collisions. Compared with results from the ideal hydrodynamics, we find that although the dilepton invariant mass spectra from the two approaches are similar, the transverse momentum spectra are significantly enhanced at high transverse momenta by the viscous effect. We also study the transverse momentum dependence of dileptons produced from QGP for a fixed transverse mass, which is essentially absent in the ideal hydrodynamics, and find that this so-called transverse mass scaling is violated in the viscous hydrodynamics, particularly at high transverse momenta.

  15. Viscous fingering with partial miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2015-11-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Studies of viscous fingering have focused on fluids that are either fully miscible or perfectly immiscible. In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other. Following our recent work for miscible (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a Hele-Shaw cell, when the two fluids have limited (but nonzero) solubility in one another. Partial miscibility is characterized through the design of thermodynamic free energy of the two-fluid system. We elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution.

  16. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  17. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. Magnetically suspended rotary blood pump with radial type combined motor-bearing.

    PubMed

    Masuzawa, T; Kita, T; Matsuda, K; Okada, Y

    2000-06-01

    A magnetically suspended centrifugal blood pump is being developed with a combined motor-bearing for long-term ventricular assist systems. The combined motor-bearing actively suspends a rotor in a radial direction to deal with radial force unbalance in the pump and rotates the rotor by using the electric magnetic field. Therefore, the pump has no mechanical parts such as bearings of the motor and has a long lifetime. The developed pump consists of a thin rotor with a semi open-type 6 vane impeller and a stator to suspend and rotate the rotor. The rotor has 4-pole permanent magnets on the circumferential surface. The outer diameter and the thickness of the rotor are 60 mm and 8 mm, respectively. Axial movement and tilt of the rotor are restricted by passive stability based on the thin rotor structure. Radial movements of the rotor, such as levitation in radial direction and rotation, are controlled actively by using electric magnets of the stator. The electric magnet coils to produce levitation and rotation forces are constructed on the periphery stator. The p +/- 2-pole algorithm and the synchronous motor mechanism are adopted to levitate and rotate the rotor. The radial gap between the rotor and the stator is 1 mm. A closed-loop circuit filled with water was connected to the developed pump to examine the basic performance of the pump and the magnetic suspension system. Maximum rotational speed, flow rate, and head were 2,800 rpm, 11 L/min, and 270 mm Hg, respectively. The rotor with the impeller could be suspended completely during the entire pumping process. We conclude the pump with the combined motor-bearing has sufficient performance for the blood pump.

  19. Viscous fingering with partially miscible fluids

    NASA Astrophysics Data System (ADS)

    Fu, X.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    When a less viscous fluid displaces a more viscous fluid, the contrast in viscosity destabilizes the interface between the two fluids, leading to the formation of fingers. Experimental and numerical studies of viscous fingering have focused on fluids that are either fully miscible (e.g. water and glycerol) or perfectly immiscible (e.g. water and oil). In practice, however, the miscibility of two fluids can change appreciably with temperature and pressure, and often falls into the case of partial miscibility, where two fluids have limited solubility in each other (e.g. CO2 and water). Following our recent work for miscible systems (Jha et al., PRL 2011, 2013) and immiscible systems (Cueto-Felgueroso and Juanes, PRL 2012, JFM 2014), here we propose a phase-field model for fluid-fluid displacements in a porous medium, when the two fluids have limited (but nonzero) solubility in one another. In our model, partial miscibility is characterized through the design of the thermodynamic free energy of the two-fluid system. We express the model in dimensionless form and elucidate the key dimensionless groups that control the behavior of the system. We present high-resolution numerical simulations of the model applied to the viscous fingering problem. On one hand, we demonstrate the effect of partial miscibility on the hydrodynamic instability. On the other, we elucidate the role of the degree of fingering on the rate of mutual fluid dissolution. Figure caption: final snapshots in simulations of viscous fingering with a two-fluid system mimicking that of CO2 and water. The colormap corresponds to the concentration of CO2. A band of less viscous gas phase rich in CO2 (red) displaces through the more viscous liquid phase that is undersaturated with CO2 (blue). At the fluid interface, an exchange of CO2 occurs as a result of local chemical potentials that drives the system towards thermodynamic equilibrium. This results in a shrinkage of gas phase as well as a local increase in

  20. The study of a reactor cooling pump under two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, P.; Yuan, S. Q.; Wang, X. L.; Zhang, F.

    2015-01-01

    In this paper, the steady pressure field has been investigated numerically by computational fluid dynamics (CFD) in a nuclear reactor cooling pump. As a multiphase approach the Eulerian-Eulerian two fluid model has been applied to calculated five computational models with different kinds of blades. The analysis of inner flow field of the five model pumps shows that the pressure in the impeller increases with the increase of the gas contents and the pressure distributions are irregular at the inlet of different blades when the gas contents less than 20%. With the increase of the number of blades, the vortexes at the outlet of impeller decrease whereas the vortexes in the deep of the volute markedly increases and high velocity of the fluid huddle is generated gradually at the outlet pipes. Under the action of centrifugal force and Coriolis force, gas phase mainly concentrated at the lower velocity and lower pressure area. The radial force on the impeller gradually increases with the increase of the gas contents.