Sample records for visible light absorption

  1. Tunable Spectrum Selectivity for Multiphoton Absorption with Enhanced Visible Light Trapping in ZnO Nanorods.

    PubMed

    Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea

    2018-04-17

    Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis and energy applications of mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the intrinsic modification of titania by doping, graphene quantum dot sensitization in mesoporous titania film was also investigated for visible light photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered mesoporous titania films showed synergistic effect in water splitting due to high surface area, band gap reduction, enhanced visible light absorption, and efficient charge separation and transport. This study suggests that plasma based doping and graphene quantum dot sensitization are promising strategies to reduce band gap and enhance visible light absorption of high surface area surfactant templated mesoporous titania films, leading to superior visible-light driven photoelectrochemical hydrogen production. The results demonstrate the importance of designing and manipulating the energy band alignment in composite nanomaterials for fundamentally improving visible light absorption, charge separation and transport, and thereby photoelectrochemical properties.

  4. Aerosol impacts on visible light extinction in the atmosphere of Mexico City.

    PubMed

    Eidels-Dubovoi, Silvia

    2002-03-27

    Eleven diurnal aerosol visible light absorption and scattering patterns were obtained from measurements done with an aethalometer and an integrating nephelometer during 28 February-10 March 1997 at two different sites in the Mexico City basin. Both measurement sites, the Merced site affected by regional and urban-scale aerosol and the Pedregal site dominated by regional-scale aerosol, showed a variety of diurnal light absorption and scattering patterns. For the majority of the 11 studied days, the highest absorption peaks appeared in the early morning, 07.00-09.30 h while those of scattering appeared later, 09.30-11.00 h. The earlier absorption peaks could be attributed to the elevated elemental carbon vehicular emissions during the heavy traffic hours whereas the later scattering peaks could be attributed to secondary aerosols formed photochemically in the atmosphere. During the period examined, the Pedregal site exhibited on the average a lower aerosol scattering and a higher aerosol absorption contribution to the total aerosol visible light extinction and a better visibility than that of the Merced site. Hence, the impact of aerosol absorption on the visibility degradation due to aerosols was greater at the less hazy Pedregal site. The overall 11-day aerosol visibility average of 20.9 km found at La Merced site, was only 9.4 km lower than that of 30.3 km found at the Pedregal site. This small aerosol visibility difference, of the order of the standard deviation, led to the conclusion that besides the regional-scale aerosol impact, the urban-scale aerosol impact on aerosol visible light extinction is very similar at La Merced and Pedregal sites.

  5. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    PubMed

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Photo-oxidation of polymer-like amorphous hydrogenated carbon under visible light illumination

    DOE PAGES

    Baxamusa, Salmaan; Laurence, Ted; Worthington, Matthew; ...

    2015-11-10

    Amorphous hydrogenated carbon (a-C:H), a polymer-like network typically synthesized by plasma chemical vapor deposition, has long been understood to exhibit optical absorption of visible light (λ > 400 nm). In this report we explain that this absorption is accompanied by rapid photo-oxidation (within minutes) that behaves in most respects like classic polymer photo-oxidation with the exception that it occurs under visible light illumination rather than ultraviolet illumination.

  7. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-01

    The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.

  8. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation.

    PubMed

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-04

    The metal-oxide semiconductor TiO 2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO 2 , but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO 2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO 2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W -1 ) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO 2 .

  9. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  10. Visible absorption properties of radiation exposed XR type-T radiochromic film.

    PubMed

    Butson, Martin J; Cheung, Tsang; Yu, Peter K N

    2004-10-07

    The visible absorption spectra of Gafchromic XR type-T radiochromic film have been investigated to analyse the dosimetry characteristics of the film with visible light densitometers. Common densitometers can use photospectrometry, fluorescent light (broad-band visible), helium neon (632 nm), light emitting diode (LED) or other specific bandwidth spectra. The visible absorption spectra of this film when exposed to photon radiation show peaks at 676 nm and 618 nm at 2 Gy absorbed doses which shift to slightly lower wavelengths (662 nm and 612 nm at 8 Gy absorbed dose) at higher doses. This is similar to previous models of Gafchromic film such as MD-55-2 and HS but XR type-T also includes a large absorption at lower visible wavelengths due to 'yellow' dyes placed within the film to aid with visible recognition of the film exposure level. The yellow dye band pass is produced at approximately 520 nm to 550 nm and absorbs wavelengths lower than this value within the visible spectrum. This accounts for the colour change from yellow to brown through the added absorption in the red wavelengths with radiation exposure. The film produces a relatively high dose sensitivity with up to 0.25 OD units per Gy change at 672 nm at 100 kVp x-ray energy. Variations in dose sensitivity can be achieved by varying wavelength analysis.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yeping, E-mail: ypli@ujs.edu.cn; Huang, Liying; Xu, Jingbo

    Highlights: • Novel MoO{sub 3}–C{sub 3}N{sub 4} composite was prepared by a mixing-calcination method. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows remarkably enhanced absorption of visible light. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows superior visible-light photocatalytic activity. - Abstract: Composite photocatalyst of blue MoO{sub 3}/g-C{sub 3}N{sub 4} (denoted as MoO{sub 3}–C{sub 3}N{sub 4}) was prepared by a simple mixing-calcination method. The obtained MoO{sub 3}–C{sub 3}N{sub 4} composite contains a low amount of molybdenum blue and shows remarkably enhanced absorption of visible light and high efficiency for the degradation of methylene blue dye (MB) under visible light. Themore » enhancement of visible light photocatalytic activity in MoO{sub 3}–C{sub 3}N{sub 4} is attributed to the synergetic effect: (i) the strong and wide absorption of visible light, (ii) the high separation and easy transfer of photogenerated electron–hole pairs at the heterojunction interfaces derived from the match of band position between the g-C{sub 3}N{sub 4} and MoO{sub 3}.« less

  12. Broadband plasmonic perfect light absorber in the visible spectrum for solar cell applications

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Tanaka, Takuo

    2018-03-01

    The coupling of electromagnetic waves with subwavelength metal structures results in the perfect light absorption and has been extensively explored in the recent years for many possible applications like photovoltaics, sensing, photodetectors, emitters and camouflaging systems to name a few. Herein we present the design and fabrication of a broadband plasmonic light absorber using aluminum as functional material for operation in the visible frequency range. The metal structures can be tuned in size to manipulate the plasmonic resonance; thereby light absorption at any desired wavelengths could be realized. Thus the broadband light absorber in the visible spectrum is designed using metal structures of different sizes supporting non-overlapping individual resonances at regular intervals of wavelengths. The metal structures of different sizes are grouped in to a single unit cell and the absorber is fabricated by periodically arranging these unit cells in a square lattice. Light absorption of more than 90% for over a broad wavelength range of 200 nm from 425 nm to 650 nm in the visible spectrum is demonstrated.

  13. Reduced graphene oxide and Ag wrapped TiO{sub 2} photocatalyst for enhanced visible light photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, Kah Hon; Sim, Lan Ching; Jang, Min

    2015-10-01

    A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO{sub 2} nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO{sub 2} were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag wellmore » degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.« less

  14. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun

    2018-04-01

    Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.

  15. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    NASA Astrophysics Data System (ADS)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  16. Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Khan, Matiullah; Cao, Wenbin

    2013-11-01

    To employ TiO2 as an efficient photocatalyst, high reactivity under visible light and improved separation of photoexcited carriers are required. An effective co-doping approach is applied to modify the photocatalytic properties of TiO2 by doping vanadium (transition metal) and yttrium (rare earth element). V and/or Y codoped TiO2 was prepared using hydrothermal method without any post calcination for crystallization. Based on density functional theory, compensated and noncompensated V, Y codoped TiO2 models were constructed and their structural, electronic, and optical properties were calculated. Through combined experimental characterization and theoretical modeling, V, Y codoped TiO2 exhibited high absorption coefficient with enhanced visible light absorption. All the prepared samples showed pure anatase phase and spherical morphology with uniform particle distribution. Electronic band structure demonstrates that V, Y codoping drastically reduced the band gap of TiO2. It is found that both the doped V and Y exist in the form of substitutional point defects replacing Ti atom in the lattice. The photocatalytic activity, evaluated by the degradation of methyl orange, displays that the codoped TiO2 sample exhibits enhanced visible light photocatalytic activity. The synergistic effects of V and Y drastically improved the Brunauer-Emmett-Teller specific surface area, visible light absorption, and electron-hole pair's separation leading to the enhanced visible light catalytic activity.

  17. A Low-Cost Quantitative Absorption Spectrophotometer

    ERIC Educational Resources Information Center

    Albert, Daniel R.; Todt, Michael A.; Davis, H. Floyd

    2012-01-01

    In an effort to make absorption spectrophotometry available to high school chemistry and physics classes, we have designed an inexpensive visible light absorption spectrophotometer. The spectrophotometer was constructed using LEGO blocks, a light emitting diode, optical elements (including a lens), a slide-mounted diffraction grating, and a…

  18. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  19. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    PubMed

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Femtosecond Visible/Visible and Visible/Mid-Infrared Transient Absorption Study of the Light Harvesting Complex II

    PubMed Central

    Stahl, Andreas D.; Di Donato, Mariangela; van Stokkum, Ivo; van Grondelle, Rienk; Groot, Marie Louise

    2009-01-01

    Abstract Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a chemical, storable form. We performed time-resolved femtosecond visible pump/mid-infrared probe and visible pump/visible probe absorption difference spectroscopy on purified LHCII to gain insight into the energy transfer in this complex occurring in the femto-picosecond time regime. We find that information derived from mid-infrared spectra, together with structural and modeling information, provides a unique visualization of the flow of energy via the bottleneck pigment chlorophyll a604. PMID:20006959

  1. Viewer Makes Radioactivity "Visible"

    NASA Technical Reports Server (NTRS)

    Yin, L. I.

    1983-01-01

    Battery operated viewer demonstrates feasibility of generating threedimensional visible light simulations of objects that emit X-ray or gamma rays. Ray paths are traced for two pinhold positions to show location of reconstructed image. Images formed by pinholes are converted to intensified visible-light images. Applications range from radioactivity contamination surveys to monitoring radioisotope absorption in tumors.

  2. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection.

    PubMed

    Kang, Byung Ha; Kim, Won-Gi; Chung, Jusung; Lee, Jin Hyeok; Kim, Hyun Jae

    2018-02-28

    A homojunction-structured amorphous indium gallium zinc oxide (a-IGZO) phototransistor that can detect visible light is reported. The key element of this technology is an absorption layer composed of hydrogen-doped a-IGZO. This absorption layer is fabricated by simple hydrogen plasma doping, and subgap states are induced by increasing the amount of hydrogen impurities. These subgap states, which lead to a higher number of photoexcited carriers and aggravate the instability under negative bias illumination stress, enabled the detection of a wide range of visible light (400-700 nm). The optimal condition of the hydrogen-doped absorption layer (HAL) is fabricated at a hydrogen partial pressure ratio of 2%. As a result, the optimized a-IGZO phototransistor with the HAL exhibits a high photoresponsivity of 1932.6 A/W, a photosensitivity of 3.85 × 10 6 , and a detectivity of 6.93 × 10 11 Jones under 635 nm light illumination.

  3. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  4. Function of terahertz spectra in monitoring the decomposing process of biological macromolecules and in investigating the causes of photoinhibition.

    PubMed

    Qu, Yuangang; Zhang, Shuai; Lian, Yuji; Kuang, Tingyun

    2017-03-01

    Chlorophyll a and β-carotene play an important role in harvesting light energy, which is used to drive photosynthesis in plants. In this study, terahertz (THz) and visible range spectra of chlorophyll a and β-carotene and their changes under light treatment were investigated. The results show that the all THz transmission and absorption spectra of chlorophyll a and β-carotene changed upon light treatment, with the maximum changes at 15 min of illumination indicating the greatest changes of the collective vibrational mode of chlorophyll a and β-carotene. The absorption spectra of chlorophyll a in the visible light region decreased upon light treatment, signifying the degradation of chlorophyll a molecules. It can be inferred from these results that the THz spectra are very sensitive in monitoring the changes of the collective vibrational mode, despite the absence of changes in molecular configuration. The THz spectra can therefore be used to monitor the decomposing process of biological macromolecules; however, visible absorption spectra can only be used to monitor the breakdown extent of biological macromolecules.

  5. First-principles prediction of new photocatalyst materials with visible-light absorption and improved charge separation: surface modification of rutile TiO₂ with nanoclusters of MgO and Ga₂O₃.

    PubMed

    Nolan, Michael

    2012-11-01

    Titanium dioxide is an important and widely studied photocatalytic material, but to achieve photocatalytic activity under visible-light absorption, it needs to have a narrower band gap and reduced charge carrier recombination. First-principles simulations are presented in this paper to show that heterostructures of rutil TiO₂ modified with nanoclusters of MgO and Ga₂O₃ will be new photocatalytically active materials in the UV (MgO-TiO₂) and visible (Ga₂O₃-TiO₂) regions of the solar spectrum. In particular, our investigations of a model of the excited state of the heterostructures demonstrate that upon light excitation electrons and holes can be separated onto the TiO₂ surface and the metal oxide nanocluster, which will reduce charge recombination and improve photocatalytic activity. For MgO-modified TiO₂, no significant band gap change is predicted, but for Ga₂O₃-modified TiO₂ we predict a band gap change of up to 0.6 eV, which is sufficient to induce visible light absorption. Comparisons with unmodified TiO₂ and other TiO₂-based photocatalyst structures are presented.

  6. A B-C-N hybrid porous sheet: an efficient metal-free visible-light absorption material.

    PubMed

    Lu, Ruifeng; Li, Feng; Salafranca, Juan; Kan, Erjun; Xiao, Chuanyun; Deng, Kaiming

    2014-03-07

    The polyphenylene network, known as porous graphene, is one of the most important and widely studied two-dimensional materials. As a potential candidate for photocatalysis and photovoltaic energy generation, its application has been limited by the low photocatalytic activity in the visible-light region. State-of-the-art hybrid density functional theory investigations are presented to show that an analogous B-C-N porous sheet outperforms the pristine polyphenylene network with significantly enhanced visible-light absorption. Compared with porous graphene, the calculated energy gap of the B-C-N hybrid crystal shrinks to 2.7 eV and the optical absorption peak remarkably shifts to the visible light region. The redox potentials of water splitting are well positioned in the middle of the band gap. Hybridizations among B_p, N_p and C_p orbitals are responsible for these findings. Valence and conduction band calculations indicate that the electrons and holes can be effectively separated, reducing charge recombination and improving the photoconversion efficiency. Moreover, the band gap and optical properties of the B-C-N hybrid porous sheet can be further finely engineered by external strain.

  7. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  8. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    PubMed

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  9. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light

    NASA Astrophysics Data System (ADS)

    Kong, Lina; Wang, Changhua; Wan, Fangxu; Zheng, Han; Zhang, Xintong

    2017-02-01

    Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO2 under visible-light excitation. However, the performance of these co-catalysts assistant TiO2 photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO2. XPS and EPR analyses manifest that the oxygen vacancies (VOs) and Fe-species are simultaneously introduced to the surface of TiO2. The chemical state and photocatalytic activity of the Fe-species-grafted TiO2 - x is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO2, TiO2 - x, and Fe-TiO2, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface VOs and Fe-species co-catalyst, i.e. the VOs defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  10. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue

    2016-02-01

    Different mole ratios of CdS nanoparticles (NPs)/CeO2 nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H2 production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO2 NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H2-production rate of 8.4 mmol h-1 g-1 under visible-light irradiation (λ > 420 nm). The superior photocatalytic H2 evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO2 NRs, which can effectively extend the light absorption range of wide-band gap CeO2 NRs. This work provides feasible routes to develop visible-light responsive CeO2-based nanomaterial for efficient solar utilization.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thappily, Praveen, E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com; Shiju, K., E-mail: pravvmon@gmail.com, E-mail: shiiuvenus@gmail.com

    Green synthesis of silver nanoparticles was achieved by simple visible light irradiation using aloe barbadensis leaf extract as reducing agent. UV-Vis spectroscopic analysis was used for confirmation of the successful formation of nanoparticles. Investigated the effect of light irradiation time on the light absorption of the nanoparticles. It is observed that upto 25 minutes of light irradiation, the absorption is linearly increasing with time and after that it becomes saturated. Finally, theoretically fitted the time-absorption graph and modeled a relation between them with the help of simulation software.

  12. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    PubMed

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  13. Cytotoxicity of All-Trans-Retinal Increases Upon Photodegradation†

    PubMed Central

    Różanowska, Małgorzata; Handzel, Kinga; Boulton, Michael E.; Różanowski, Bartosz

    2013-01-01

    All-trans-retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time-resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration-dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored. PMID:22515697

  14. Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less

  15. Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.

  16. Mild Deoxygenation of Sulfoxides over Plasmonic Molybdenum Oxide Hybrid with Dramatic Activity Enhancement under Visible Light.

    PubMed

    Kuwahara, Yasutaka; Yoshimura, Yukihiro; Haematsu, Kohei; Yamashita, Hiromi

    2018-06-17

    Harvesting solar light to boost commercially important organic synthesis still remains a challenge. Coupling of conventional noble metal catalysts with plasmonic oxide materials which exhibit intense plasmon absorption in the visible light region is a promising option for efficient solar energy utilization in catalysis. Herein we for the first time demonstrate that plasmonic hydrogen molybdenum bronze coupled with Pt nanoparticles (Pt/H x MoO 3-y ) shows a high catalytic performance in the deoxygenation of sulfoxides with 1 atm H 2 at room temperature, with dramatic activity enhancement under visible light irradiation relative to dark condition. The plasmonic molybdenum oxide hybrids with strong plasmon resonance peaks pinning at around 556 nm are obtained via a facile H-spillover process. Pt/H x MoO 3-y hybrid provides excellent selectivity for the deoxygenation of various sulfoxides as well as pyridine N-oxides, in which drastically improved catalytic efficiencies are obtained under the irradiation of visible light. Comprehensive analyses reveal that oxygen vacancies massively introduced via a H-spillover process are the main active sites, and reversible redox property of Mo atoms and strong plasmonic absorption play key roles in this reaction. The catalytic system works under extremely mild conditions and can boost the reaction by the assist of visible light, offering an ultimately greener protocol to produce sulfides from sulfoxides. Our findings may open up a new strategy for designing plasmon-based catalytic systems that can harness visible light efficiently.

  17. Experimental visualization of covalent bonds and structural disorder in a gallium zinc oxynitride photocatalyst (Ga(1-x)Znx)(N(1-x)Ox): origin of visible light absorption.

    PubMed

    Yashima, Masatomo; Yamada, Hiroki; Maeda, Kazuhiko; Domen, Kazunari

    2010-04-14

    We present the experimental visualization of covalent bonding, positional disorders and split anion sites in visible-light responsive photocatalyst (Ga(0.885)Zn(0.115))(N(0.885)O(0.115)). ZnO alloying into GaN reduces the band gap, leading to the visible-light response. DFT calculations indicated no significant difference in band gap between structural models with and without split sites.

  18. Preparation of W and N, S-codoped titanium dioxide with enhanced photocatalytic activity under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Rui; Yang, Jing-Yu; Liu, You-Qin

    2016-04-15

    Highlights: • W, N, S codoped TiO{sub 2} nanoparticles were synthesized by precipitation-impregnation method. • New linkages N–Ti–O, Ti–O–S and Ti–O–W were formed. • The activity of 0.011W, 0.030(N,S)-TiO{sub 2} is 10 times higher than that of TiO{sub 2}. • The doping enhanced visible light absorbance and accelerated the charge carrier separation. - Abstract: In this work, the preparation and physiochemical characterization of tungsten, nitrogen and sulfur codoping TiO{sub 2} photocatalysts (W, N, S-TiO{sub 2}) was undertaken. W, N, S-TiO{sub 2} nanoparticles were synthesized via the precipitation-impregnation method. To investigate the structural, optical, and electronic properties, the as-prepared W, N,more » S-TiO{sub 2} photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectrum (DRS). W, N, S-TiO{sub 2} samples showed photo-absorption in the visible light region and higher visible light photocatalytic activity than TiO{sub 2}. 0.011W, 0.030(N, S)-TiO{sub 2} exhibited the highest visible light photocatalytic activity, and the photocatalyic degradation activity of 0.011W,0.030(N,S)-TiO{sub 2} is nearly 10 times higher than that of TiO{sub 2}. Compared with the undoped TiO{sub 2}, the improved photocatalytic activity of W, N, S-TiO{sub 2} samples under visible light irradiation is attributed to the increase of the visible light absorption and the reduction in photogenerated electron-hole recombination.« less

  19. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  20. Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling.

    PubMed

    Jiang, Xiaoyun; Wang, Tao; Xiao, Shuyuan; Yan, Xicheng; Cheng, Le; Zhong, Qingfang

    2018-08-17

    A simple perfect absorption structure is proposed to achieve the high efficiency light absorption of monolayer molybdenum disulfide (MoS 2 ) by the critical coupling mechanism of guided resonances. The results of numerical simulation and theoretical analysis show that the light absorption in this atomically thin layer can be as high as 98.3% at the visible wavelengths, which is over 12 times more than that of a bare monolayer MoS 2 . In addition, the operating wavelength can be tuned flexibly by adjusting the radius of the air hole and the thickness of the dielectric layers, which is of great practical significance to improve the efficiency and selectivity of the absorption in monolayer MoS 2 . The novel idea of using critical coupling to enhance the light-MoS 2 interaction can be also adopted in other atomically thin materials. The meaningful improvement and tunability of the absorption in monolayer MoS 2 provides a good prospect for the realization of high-performance MoS 2 -based optoelectronic applications, such as photodetection and photoluminescence.

  1. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    NASA Astrophysics Data System (ADS)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  2. Erbium and nitrogen co-doped SrTiO{sub 3} with highly visible light photocatalytic activity and stability by solvothermal synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jing; Wei, Yuelin, E-mail: ylwei@hqu.edu.cn; Huang, Yunfang

    Highlights: • Er/N co-doped SrTiO{sub 3} was prepared by a solvothermal process at low temperature. • The co-doping induces the band gap narrowing and prominent absorbance in visible light region. • The samples show excellent catalytic activity and stability under visible light irradiation. - Abstract: Erbium–nitrogen co-doped SrTiO{sub 3} photocatalysts have been synthesized by a facile solvothermal method. The resulting samples were analyzed by FE-SEM, XRD, BET-surface area and UV–vis. The UV–vis absorption spectra of these powders indicated that erbium–nitrogen co-doped SrTiO{sub 3} possessed stronger absorption bands in the visible light region in comparison with that of pure SrTiO{sub 3}.more » The occurrence of the erbium–nitrogen co-doped cubic SrTiO{sub 3} induced the higher photocatalytic activities for the degradation of methyl orange (MO) under irradiation by ultraviolet light and visible light, respectively, being superior to that of pure SrTiO{sub 3} and commercial TiO{sub 2} (P-25) powders. In addition, the Er–N co-doped SrTiO{sub 3} (initial molar ratios of Sr/Er/N = 1:0.015:0.1, designated as S5) sample showed the best photocatalytic activity with the degradation rate as high as 98% after 30 min under the visible light irradiation. After five cycles, the photocatalytic activity of the S5 catalyst showed no significant decrease, which indicated that the photocatalysts were stable under visible light irradiation.« less

  3. Patterning of silver nanoparticles on visible light-sensitive Mn-doped lithium niobate photogalvanic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Xiaoyan; Ohuchi, Fumio; Hatano, Hideki

    2011-08-01

    Visible light-induced polarization-dependent photochemical deposition of silver nanoparticles (AgNPs) has been demonstrated using Mn-doped congruent LiNbO{sub 3} (CLN) single crystals. Mn-doped CLN has a strong absorption over a wide region of the visible spectrum that allowed effective visible light irradiation for photochemical deposition. The AgNPs deposition on Mn-doped CLN was compared with that on non-doped congruent LiNbO{sub 3}, and together these further confirmed that the photochemical deposition on LiNbO{sub 3} is caused by the strong photogalvanic effect.

  4. Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light

    PubMed Central

    Wang, Gang; Huang, Baibiao; Li, Zhujie; Lou, Zaizhu; Wang, Zeyan; Dai, Ying; Whangbo, Myung-Hwan

    2015-01-01

    Controlling amount of intrinsic S vacancies was achieved in ZnS spheres which were synthesized by a hydrothermal method using Zn and S powders in concentrated NaOH solution with NaBH4 added as reducing agent. These S vacancies efficiently extend absorption spectra of ZnS to visible region. Their photocatalytic activities for H2 production under visible light were evaluated by gas chromatograph, and the midgap states of ZnS introduced by S vacancies were examined by density functional calculations. Our study reveals that the concentration of S vacancies in the ZnS samples can be controlled by varying the amount of the reducing agent NaBH4 in the synthesis, and the prepared ZnS samples exhibit photocatalytic activity for H2 production under visible-light irradiation without loading noble metal. This photocatalytic activity of ZnS increases steadily with increasing the concentration of S vacancies until the latter reaches an optimum value. Our density functional calculations show that S vacancies generate midgap defect states in ZnS, which lead to visible-light absorption and responded. PMID:25712901

  5. Complete erasing of ghost images caused by deeply trapped electrons on computed radiography plates

    NASA Astrophysics Data System (ADS)

    Ohuchi, H.; Kondo, Y.

    2011-03-01

    The ghost images, i.e., latent image that is unerasable with visible light (LIunVL) and reappearing image appeared on computed radiography (CR) plates were completely erased by simultaneous exposing them to filtered ultraviolet light and visible light. Three different types of CR plates (Agfa, Kodak, and Fuji) were irradiated with 50 kV X-ray beams in the dose range 8.1 mGy to 8.0 Gy, and then conventionally erased for 2 h with visible light. The remaining LIunVL could be erased by repeating 6 h simultaneous exposures to filtered ultraviolet light and visible light. After the sixth round of exposure, all the LIunVL in the three types of CR plates were erased to the same level as in an unirradiated plate and no latent images reappeared after storage at 0°C for 14 days. The absorption spectra of deep centers were specified using polychromatic ultraviolet light from a deep-ultraviolet lamp. It was found that deep centers showed a dominant peak in the absorption spectra at around 324 nm for the Agfa and Kodak plates, and at around 320 nm for the Fuji plate, in each case followed by a few small peaks. After completely erasing CR plates, these peaks were no longer observed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Junkuo, E-mail: jkgao@zstu.edu.cn; Wang, Jiangpeng; Qian, Xuefeng

    Here we report a novel synthetic pathway for preparation of Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology by using a two dimensional Cu–melamine supramolecular network as both sacrificial template and precursor. The specific surface area of Cu-g-C{sub 3}N{sub 4} is 40.86 m{sup 2} g{sup −1}, which is more than 7 times larger than that of pure g-C{sub 3}N{sub 4}. Cu-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region and expanded the absorption to the near-infrared region. The uniform nanosheet morphology, higher surface area and strong visible-light absorption have enabled Cu-g-C{sub 3}N{sub 4} exhibiting enhanced visiblemore » light photocatalytic activity for the photo-degradation of methylene blue (MB). The results indicate that metal–melamine supramolecular network can be promising precursors for the one step preparation of efficient metal-doped g-C{sub 3}N{sub 4} photocatalysts. - Graphical abstract: Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology was fabricated via a simple one step preparation by using a two dimensional Cu–melamine supra-molecular network as both sacrificial template and precursor. - Highlights: • Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology was prepared. • Cu-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region. • Cu-g-C{sub 3}N{sub 4} exhibits enhanced visible light photocatalytic activity.« less

  7. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    NASA Astrophysics Data System (ADS)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  8. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    NASA Astrophysics Data System (ADS)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  9. Iron(III)-oxo centers on TiO{sub 2} for visible light photocatalysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libera, J. A.; Elam, J. W.; Sather, N. F.

    Isolated iron(III)-oxo clusters were synthesized onto TiO{sub 2} using atomic layer deposition. The Fe{sub x}O{sub y}/TiO{sub 2} nanocomposites have unique properties that enable not only absorption of visible light, but efficient photocatalysis as demonstrated by methylene blue degradation. The localization of photogenerated electrons in core TiO{sub 2} nanocrystallites upon visible light excitation demonstrates coupling of conduction bands of mixed oxides. The redox properties of photogenerated charges in nanocomposites were studied using in situ electron paramagnetic resonance spectroscopy.

  10. Non-Destructive and Discriminating Identification of Illegal Drugs by Transient Absorption Spectroscopy in the Visible and Near-IR Wavelength Range

    NASA Astrophysics Data System (ADS)

    Sato, Chie; Furube, Akihiro; Katoh, Ryuzi; Nonaka, Hidehiko; Inoue, Hiroyuki

    2008-11-01

    We have tested the possibility of identifying illegal drugs by means of nanosecond transient absorption spectroscopy with a 10-ns UV-laser pulse for the excitation light and visible-to-near-IR light for the probe light. We measured the transient absorption spectra of acetonitrile solutions of d-methamphetamine, dl-3,4-methylenedioxymethamphetamine hydrochloride (MDMA), and dl-N-methyl-1-(1,3-benzodioxol-5-yl)-2-butanamine hydrochloride (MBDB), which are illegal drugs widely consumed in Japan. Transient absorption signals of these drugs were observed between 400 and 950 nm, a range in which they are transparent in the ground state. By analyzing the spectra in terms of exponential and Gaussian functions, we could identify the drugs and discriminate them from chemical substances having similar structures. We propose that transient absorption spectroscopy will be a useful, non-destructive method of inspecting for illegal drugs, especially when they are dissolved in liquids. Such a method may even be used for drugs packed in opaque materials if it is further extended to utilize intense femtosecond laser pulses.

  11. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-15

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO 2 ) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO 2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO 2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO 2 under visible light, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Enhanced visible light activity of nano-titanium dioxide doped with multiple ions: Effect of crystal defects

    NASA Astrophysics Data System (ADS)

    Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Gopakumar Warrier, Krishna

    2012-12-01

    Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe3+ resulted in a relatively lower anatase to rutile phase transformation temperature, while La3+ addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe3+ ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La3+ addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects.

  13. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    PubMed

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  14. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  15. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  16. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  17. Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity.

    PubMed

    Zhang, Qian; Huang, Yu; Xu, Lifeng; Cao, Jun-ji; Ho, Wingkei; Lee, Shun Cheng

    2016-02-17

    Harnessing inexhaustible solar energy for photocatalytic disposal of nitrogen oxides is of great significance nowadays. In this study, Ag-SrTiO3 nanocomposites (Ag-STO) were synthesized via one-pot solvothermal method for the first time. The deposition of Ag nanoparticles incurs a broad plasmonic resonance absorption in the visible light range, resulting in enhanced visible light driven activity on NO removal in comparison with pristine SrTiO3. The Ag loading amount has a significant influence on light absorption properties of Ag-STO, which further affects the photocatalytic efficiency. It was shown that 0.5% Ag loading onto SrTiO3 (in mass ratio) could remove 30% of NO in a single reaction path under visible light irradiation, which is twice higher than that achieved on pristine SrTiO3. Most importantly, the generation of harmful intermediate (NO2) is largely inhibited over SrTiO3 and Ag-STO nanocomposites, which can be ascribed to the basic surface property of strontium sites. As identified by electron spin resonance (ESR) spectra,·O2(-) and ·OH radicals are the major reactive species for NO oxidation. Essentially speaking, the abundance of reactive oxygen radicals produced over Ag-STO nanocomposites are responsible for the improved photocatalytic activity. This work provides a facile and controllable route to fabricate plasmonic Ag-SrTiO3 nanocomposite photocatalyst featuring high visible light activity and selectivity for NO abatement.

  18. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation.

    PubMed

    Sun, Jianhui; Qiao, Liping; Sun, Shengpeng; Wang, Guoliang

    2008-06-30

    In this paper, the degradation of an azo dye Orange G (OG) on nitrogen-doped TiO2 photocatalysts has been investigated under visible light and sunlight irradiation. Under visible light irradiation, the doped TiO2 nanocatalysts demonstrated higher activity than the commercial Dugussa P25 TiO2, allowing more efficient utilization of solar light, while under sunlight, P25 showed higher photocatalytic activity. According to the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectra analyses, it was found that both the nanosized anatase structure and the appearance of new absorption band in the visible region caused by nitrogen doping were responsible for the significant enhancement of OG degradation under visible light. In addition, the photosensitized oxidation mechanism originated from OG itself was also considered contributing to the higher visible-light-induced degradation efficiency. The effect of the initial pH of the solution and the dosage of hydrogen peroxide under different light sources was also investigated. Under visible light and sunlight, the optimal solution pH was both 2.0, while the optimal dosage of H2O2 was 5.0 and 15.0 mmol/l, respectively.

  19. Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+

    NASA Astrophysics Data System (ADS)

    Wu, Xi; Jiang, Shujuan; Song, Shaoqing; Sun, Chuanzhi

    2018-02-01

    Due to the inherent defects of precursor molecular structure, the limited effect of structure in the formed g-C3N4 will weaken the extension of delocalization of π electrons between the adjacent tri-s-triazine or heptazine units of g-C3N4, which thus leads to poor visible-light absorption, low utilization efficiency of charge carrier. Herein, P-introduced g-C3N4 (PC3N4) photocatalysts were constructed by partially replacing C with tributyl phosphate as precursor, and the as-designed PC3N4 photocatalysts were used to eliminate aqueous uranyl ion by photocatalytic reduction technology under visible-light irradiation. Experimental and DFT revealed that introduction of P into g-C3N4 significantly modified its electronic structure, as reflected by the narrowed band gap, enhanced visible-light absorption as well as improved transfer capability of photogenerated charge. Therefore, photocatalytic activity of PC3N4 was much better than that of pristine g-C3N4 and conventional reducing-type photocatalysts. This study suggests an efficient strategy for construct effective visible-light-responsive photocatalysts for radioactive environmental remediation.

  20. Luminescence- and nanoparticle-mediated increase of light absorption by photoreceptor cells: Converting UV light to visible light.

    PubMed

    Li, Lei; Sahi, Sunil K; Peng, Mingying; Lee, Eric B; Ma, Lun; Wojtowicz, Jennifer L; Malin, John H; Chen, Wei

    2016-02-10

    We developed new optic devices - singly-doped luminescence glasses and nanoparticle-coated lenses that convert UV light to visible light - for improvement of visual system functions. Tb(3+) or Eu(3+) singly-doped borate glasses or CdS-quantum dot (CdS-QD) coated lenses efficiently convert UV light to 542 nm or 613 nm wavelength narrow-band green or red light, or wide-spectrum white light, and thereby provide extra visible light to the eye. In zebrafish (wild-type larvae and adult control animals, retinal degeneration mutants, and light-induced photoreceptor cell degeneration models), the use of Tb(3+) or Eu(3+) doped luminescence glass or CdS-QD coated glass lenses provide additional visible light to the rod and cone photoreceptor cells, and thereby improve the visual system functions. The data provide proof-of-concept for the future development of optic devices for improvement of visual system functions in patients who suffer from photoreceptor cell degeneration or related retinal diseases.

  1. High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production.

    PubMed

    Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang

    2018-04-24

    Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

  2. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  3. Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion.

    PubMed

    Ding, Yuchen; Nagpal, Prashant

    2016-10-14

    Several strategies are currently being investigated for conversion of incident sunlight into renewable sources of energy, and photocatalytic or photoelectrochemical production of solar fuels can provide an important alternative. Titanium dioxide (TiO 2 ) has been heavily investigated as a material of choice due to its excellent optoelectronic properties and stability, and anion-doping proposed as a pathway to improve light absorption as well as improving the efficiency of oxygen production. While several studies have used morphological tuning, elemental doping, and surface engineering in TiO 2 to extend its absorption, there is a need to optimize simultaneously charge transport and improve interfacial chemical reaction kinetics. Here we show anion-doped (nitrogen, carbon) standalone TiO 2 nanotube membranes that absorb visible light for the water-splitting reaction, using both wireless (photocatalysis) and wired (photoelectrochemical) solar-to-fuel conversion (STFC) cells. Using simulated solar radiation, we show generation of hydrogen as a solar fuel using visible light photocatalysis. Furthermore, using a model we elucidate detailed photophysics and photoelectrochemical properties of these nanotubes, and explain the kinetics of photogenerated charge carriers following light absorption. We show that while visible light induces a superlinear photoresponse for catalytic reduction and may benefit from higher incident light intensity, ultraviolet light shows a linear photoresponse and saturation with higher light flux due to trapping of photogenerated charges (mainly electrons). These results can have important implications for design of other metal-oxide membranes for solar fuel generation, and appropriate design of dopants and induced energy levels in these photocatalysts.

  4. Visible light alters yeast metabolic rhythms by inhibiting respiration.

    PubMed

    Robertson, James Brian; Davis, Chris R; Johnson, Carl Hirschie

    2013-12-24

    Exposure of cells to visible light in nature or in fluorescence microscopy often is considered to be relatively innocuous. However, using the yeast respiratory oscillation (YRO) as a sensitive measurement of metabolism, we find that non-UV visible light has a significant impact on yeast metabolism. Blue/green wavelengths of visible light shorten the period and dampen the amplitude of the YRO, which is an ultradian rhythm of cell metabolism and transcription. The wavelengths of light that have the greatest effect coincide with the peak absorption regions of cytochromes. Moreover, treating yeast with the electron transport inhibitor sodium azide has similar effects on the YRO as visible light. Because impairment of respiration by light would change several state variables believed to play vital roles in the YRO (e.g., oxygen tension and ATP levels), we tested oxygen's role in YRO stability and found that externally induced oxygen depletion can reset the phase of the oscillation, demonstrating that respiratory capacity plays a role in the oscillation's period and phase. Light-induced damage to the cytochromes also produces reactive oxygen species that up-regulate the oxidative stress response gene TRX2 that is involved in pathways that enable sustained growth in bright visible light. Therefore, visible light can modulate cellular rhythmicity and metabolism through unexpectedly photosensitive pathways.

  5. Synthesis of Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} through a reactive flux method and its visible-light photocatalytic performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xianglin; Wang, Zeyan, E-mail: wangzeyan@sdu.edu.cn, E-mail: bbhuang@sdu.edu.cn; Huang, Baibiao, E-mail: wangzeyan@sdu.edu.cn, E-mail: bbhuang@sdu.edu.cn

    2015-10-01

    Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} was prepared by a reactive flux method. The structures, morphologies, and light absorption properties were investigated. Owing to the polar crystal structure, an internal electric field can be formed inside the material, which can facilitate the photogenerated charge separation during the photocatalytic process. Based on both the wide light absorption spectra and high charge separation efficiency originated from the polarized internal electric field, Ag{sub 9}(SiO{sub 4}){sub 2}NO{sub 3} exhibit higher efficiency over Ag{sub 3}PO{sub 4} during the degradation of organic dyes under visible light irradiation, which is expected to be a potential material for solarmore » energy harvest and conversion.« less

  6. Estimating Leaf Water Status from Vis-Nir Reflectance and Transmittance

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2017-01-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Established approaches involve measurements in the thermal infrared and the 900-2000nm reflective infrared. Less popular UV-visible-NIR techniques presumably deserve research attention, because photochemical changes linked to plant water status manifest spectral light scattering and absorption changes. Here we monitored the visible and NIR light reflected from the leaf interior as well as the leaf transmittance as the relative water content of corn (Zeamays L.) leaves decreased. Our results highlight the importance of both scattering effects and effects due to absorption by leaf pigments.

  7. Visualization under ultraviolet light enhances 100-fold the sensitivity of peroxidase-stained blots.

    PubMed

    Domingo, A; Marco, R

    1989-10-01

    As described in this article, visualization and/or photography under uv light of 4-chloro-1-naphthol-developed, peroxidase-marked immunoblots allows an increase in sensitivity of more than 100 times over the apparent staining results observable under normal visible white light. This increase in sensitivity can be obtained with the minimal additional requirement of an uv lamp, with the actual chloronaphthol staining procedure remaining unaltered and thereby allowing the monitoring of specific reactions with much smaller quantities of antigen or antibodies. Substantial shortening of the procedure is another advantage, making it possible to complete in 20 min or even less a procedure usually requiring 3 to 6 h. The phenomenon depends on the uv absorption and the fluorescence quenching properties of the products of the peroxidase reaction. The absorption spectra of the membranes with or without peroxidase products indicate that an intermediate in the peroxidase reaction is responsible for the absorption under uv light. This intermediate accumulates under conditions where the final product absorbing in the visible light has not begun to be produced, thus explaining the large increase in sensitivity. The behaviors of three types of membranes, nitrocellulose, nylon, and Immobilon (PVDF), are compared. Due to its lower uv absorption, PVDF gives by far the best results, followed by nitrocellulose.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities ofmore » lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors.« less

  9. Plasmons in N-doped graphene nanostructures tuned by Au/Ag films: a time-dependent density functional theory study.

    PubMed

    Shu, Xiaoqin; Cheng, Xinlu; Zhang, Hong

    2018-04-18

    The energy resonance point of the prominent peak of the absorption spectrum of nitrogen-doped graphene is in the ultraviolet region. This limits its application as a co-catalyst in renewable hydrogen evolution through photocatalytic water splitting in the visible light region. It is well known that noble metal films show active absorption in the visible region due to the existence of the unique feature known as surface plasmon resonance. Here we report tunable plasmons in nitrogen-doped graphene nanostructures using noble metal (Au/Ag) films. The energy resonance point of the prominent peak of the composite nanostructure is altered by changing the separation space of two-layered nanostructures. We found the strength of the absorption spectrum of the composite nanostructure is much stronger than the isolated N-doped graphene monolayer. When the separation space is decreased, the prominent peak of the absorption spectrum is red-shifted to the visible light region. Moreover, currents of several microamperes exist above the surface of the N-doped graphene and Au film composite nanostructure. In addition, the field enhancement exceeds 1000 when an impulse excitation polarized in the armchair-edge direction (X-axis) when the separation space is decreased to 3 Å and is close to 100 when an impulse excitation polarized in the zigzag-edge direction (Y-axis). The N-doped graphene and noble metal film composite nanostructure is a good candidate material as a co-catalyst in renewable hydrogen production by photocatalytic water splitting in the visible light region.

  10. Backscatter absorption gas imaging systems and light sources therefore

    DOEpatents

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  11. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials.

    PubMed

    Li, Bei; Zhao, Yufei; Zhang, Shitong; Gao, Wa; Wei, Min

    2013-10-23

    A visible-light responsive photocatalyst was fabricated by anchoring NiTi-layered double hydroxide (NiTi-LDH) nanosheets to the surface of reduced graphene oxide sheets (RGO) via an in situ growth method; the resulting NiTi-LDH/RGO composite displays excellent photocatalytic activity toward water splitting into oxygen with a rate of 1.968 mmol g(-1) h(-1) and a quantum efficiency as high as 61.2% at 500 nm, which is among the most effective visible-light photocatalysts. XRD patterns and SEM images indicate that the NiTi-LDH nanosheets (diameter: 100-200 nm) are highly dispersed on the surface of RGO. UV-vis absorption spectroscopy exhibits that the introduction of RGO enhances the visible-light absorption range of photocatalysts, which is further verified by the largely decreased band gap (∼1.78 eV) studied by cyclic voltammetry measurements. Moreover, photoluminescence (PL) measurements indicate a more efficient separation of electron-hole pairs; electron spin resonance (ESR) and Raman scattering spectroscopy confirm the electrons transfer from NiTi-LDH nanosheets to RGO, accounting for the largely enhanced carrier mobility and the resulting photocatalytic activity in comparison with pristine NiTi-LDH material. Therefore, this work demonstrates a facile approach for the fabrication of visible-light responsive NiTi-LDH/RGO composite photocatalysts, which can be used as a promising candidate in solar energy conversion and environmental science.

  12. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  13. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Light absorption of secondary organic aerosol: Composition and contribution of nitro-aromatic compounds

    EPA Science Inventory

    Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...

  15. Glass-Based Transparent Conductive Electrode: Its Application to Visible-to-Ultraviolet Light-Emitting Diodes.

    PubMed

    Lee, Tae Ho; Kim, Kyeong Heon; Lee, Byeong Ryong; Park, Ju Hyun; Schubert, E Fred; Kim, Tae Geun

    2016-12-28

    Nitride-based ultraviolet light-emitting diodes (UV LEDs) are promising replacements for conventional UV lamps. However, the external quantum efficiency of UV LEDs is much lower than for visible LEDs due to light absorption in the p-GaN contact and electrode layers, along with p-AlGaN growth and doping issues. To minimize such absorption, we should obtain direct ohmic contact to p-AlGaN using UV-transparent ohmic electrodes and not use p-GaN as a contact layer. Here, we propose a glass-based transparent conductive electrode (TCE) produced using electrical breakdown (EBD) of an AlN thin film, and we apply the thin film to four (Al)GaN-based visible and UV LEDs with thin buffer layers for current spreading and damage protection. Compared to LEDs with optimal ITO contacts, our LEDs with AlN TCEs exhibit a lower forward voltage, higher light output power, and brighter light emission for all samples. The ohmic transport mechanism for current injection and spreading from the metal electrode to p-(Al)GaN layer via AlN TCE is also investigated by analyzing the p-(Al)GaN surface before and after EBD.

  16. A facile hydrothermal approach to synthesize rGO/BiVO4 photocatalysts for visible light induced degradation of RhB dye

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-05-01

    RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.

  17. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    PubMed

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  18. Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles.

    PubMed

    Osorio-Vargas, Paula A; Pulgarin, Cesar; Sienkiewicz, Andrzej; Pizzio, Luis R; Blanco, Mirta N; Torres-Palma, Ricardo A; Pétrier, Christian; Rengifo-Herrera, Julián A

    2012-05-01

    Low-frequency ultrasound (LFUS) irradiation induces morphological, optical and surface changes in the commercial nano-TiO(2)-based photocatalyst, Evonik-Degussa P-25. Low-temperature electron spin resonance (ESR) measurements performed on this material provided the first experimental evidence for the formation of oxygen vacancies (V(o)), which were also found responsible for the visible-light absorption. The V(o) surface defects might result from high-speed inter-particle collisions and shock waves generated by LFUS sonication impacting the TiO(2) particles. This is in contrast to a number of well-established technologies, where the formation of oxygen vacancies on the TiO(2) surface often requires harsh technological conditions and complicated procedures, such as annealing at high temperatures, radio-frequency-induced plasma or ion sputtering. Thus, this study reports for the first time the preparation of visible-light responsive TiO(2)-based photocatalysts by using a simple LFUS-based approach to induce oxygen vacancies at the nano-TiO(2) surface. These findings might open new avenues for synthesis of novel nano-TiO(2)-based photocatalysts capable of destroying water or airborne pollutants and microorganisms under visible light illumination. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  20. Effect of catalyst calcination temperature in the visible light photocatalytic oxidation of gaseous formaldehyde by multi-element doped titanium dioxide.

    PubMed

    de Luna, Mark Daniel G; Laciste, Maricris T; Tolosa, Nolan C; Lu, Ming-Chun

    2018-03-20

    The present study investigates the influence of calcination temperature on the properties and photoactivity of multi-element doped TiO 2 . The photocatalysts were prepared by incorporating silver (Ag), fluorine (F), nitrogen (N), and tungsten (W) into the TiO 2 structure via the sol-gel method. Spectroscopic techniques were used to elucidate the correlation between the structural and optical properties of the doped photocatalyst and its photoactivity. XRD results showed that the mean crystallite size increased for undoped photocatalysts and decreased for the doped photocatalysts when calcination was done at higher temperatures. UV-Vis spectra showed that the absorption cut-off wavelength shifted towards the visible light region for the as-synthesized photocatalysts and band gap narrowing was attributed to multi-element doping and calcination. FTIR spectra results showed the shifting of OH-bending absorption bands towards increasing wave numbers. The activity of the photocatalysts was evaluated in terms of gaseous formaldehyde removal under visible light irradiation. The highest photocatalytic removal of gaseous formaldehyde was found at 88%. The study confirms the effectiveness of multi-element doped TiO 2 to remove gaseous formaldehyde in air by visible light photocatalysis and the results have a lot of potential to extend the application to other organic air contaminants.

  1. UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Mavengere, Shielah; Kim, Jung-Sik

    2018-06-01

    In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.

  2. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  3. Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.

    PubMed

    Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng

    2016-02-10

    In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications

    PubMed Central

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-01-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light. PMID:27146098

  5. Synthesis, characterization and evaluation of the photocatalytic performance of Ag-CdMoO{sub 4} solar light driven plasmonic photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Rajesh; Malla, Shova; Gyawali, Gobinda

    2013-09-01

    Graphical abstract: - Highlights: • Ag-CdMoO{sub 4} solar light driven photocatalyst was successfully synthesized. • Photocatalyst exhibited strong absorption in the visible region. • Photocatalytic activity was significantly enhanced. • Enhanced activity was caused by the SPR effect induced by Ag nanoparticles. - Abstract: Ag-CdMoO{sub 4} plasmonic photocatalyst was synthesized in ethanol/water mixture by photo assisted co-precipitation method at room temperature. As synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Photocatalytic activity was evaluated by performing the degradation experiment over methylenemore » blue (MB) and indigo carmine (IC) as model dyes under simulated solar light irradiation. The results revealed that the Ag-CdMoO{sub 4} showed the higher photocatalytic performance as compared to CdMoO{sub 4} nanoparticles. Dispersion of Ag nanoparticles over the surface of CdMoO{sub 4} nanoparticles causes the surface plasmon resonance (SPR) and enhances the broad absorption in the entire visible region of the solar spectrum. Hence, dispersion of Ag nanoparticles over CdMoO{sub 4} nanoparticles could be the better alternative to enhance the absorption of visible light by scheelite crystal family for effective photocatalysis.« less

  6. PAMAM templated N,Pt co-doped TiO2 for visible light photodegradation of brilliant black.

    PubMed

    Nzaba, Sarre Kadia Myra; Ntsendwana, Bulelwa; Mamba, Bhekie Brilliance; Kuvarega, Alex Tawanda

    2018-05-01

    This study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal co-doped TiO 2 . N,Pt co-doped TiO 2 photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PG0) as a template and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet/visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25, revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO 2 was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180-min reaction time with an initial concentration of 50 ppm. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The N,Pt co-doped TiO 2 also exhibited pseudo-first-order kinetic behavior with half-life and rate constant of 0.37 and 0.01984 min -1 , respectively. The mechanism of the photodegradation of BB under the visible light irradiation was proposed. The obtained results prove that co-doping of TiO 2 with N and Pt contributed to the enhanced photocatalytic performances of TiO 2 for visible light-induced photodegradation of organic contaminants for environmental remediation. Therefore, this work provides a new approach to the synthesis of PAMAM templated N,Pt co-doped TiO 2 for visible light photodegradation of brilliant black.

  7. Probing the electronic structure and photoactivation process of nitrogen-doped TiO2 using DRS, PL, and EPR.

    PubMed

    Zhang, Zizhong; Long, Jinlin; Xie, Xiuqiang; Lin, Huan; Zhou, Yangen; Yuan, Rusheng; Dai, Wenxin; Ding, Zhengxin; Wang, Xuxu; Fu, Xianzhi

    2012-04-23

    The electronic structure and photoactivation process in N-doped TiO(2) is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat- and photoinduced N-doped TiO(2) catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti(3+) states are formed to enhance the optical absorption in the visible-light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N-doped TiO(2), the DRS absorption and PL emission in the visible spectral region of 450-700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (N(s)·, oxygen vacancies with one electron (V(o)·), and Ti(3+) ions are produced with light irradiation and the intensity of N(s)· species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO(2) corresponding to the main absorption band at 410 nm of N-doped TiO(2), but oxygen vacancies and Ti(3+) states as defects contribute to the visible-light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N-doped TiO(2) is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen-vacancy-related defects leads to quenching of paramagnetic N(s)· species but they stabilize the active nitrogen species N(s)(-). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime

    NASA Astrophysics Data System (ADS)

    Khan, A.; Ahmed, M. I.; Adam, A.; Azad, A.-M.; Qamar, M.

    2017-02-01

    Incorporation of foreign moiety in the lattice of semiconductors significantly alters their optoelectronic behavior and opens a plethora of new applications. In this paper, we report the synthesis of sulfur-doped zinc oxide (S-doped ZnO) nanorods by reacting ZnO nanorods with diammonium sulfide in vapor phase. Microscopic investigation revealed that the morphological features, such as, the length (2-4 μm) and width (100-250 nm) of the original hexagonal ZnO nanorods remained intact post-sulfidation. X-ray photoelectron spectroscopy analysis of the sulfide sample confirmed the incorporation of sulfur into ZnO lattice. The optical measurements suggested the extension of absorption threshold into visible region upon sulfidation. Photoelectrochemical (PEC) activities of pure and S-doped ZnO nanorods were compared for water oxidation in visible light (λ > 420 nm), which showed several-fold increment in the performance of S-doped ZnO sample; the observed amelioration in the PEC activity was rationalized in terms of preferred visible light absorption and low resistance of sulfide sample, as evidenced by optical and electrochemical impedance spectroscopy.

  9. Atomic structure, electronic properties, and band offsets of SrRuO3/TiO2 heterojunctions

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2015-03-01

    Photocatalytic water splitting by sunlight can in principle be an environmentally green approach to hydrogen fuel production, but at present photocatalytic conversion efficiencies remain too small. In titanium dioxide (TiO2) , the most commonly used photocatalyst, the biggest limitation arises from poor absorption of visible light. One way to increase the visible light absorption is to create a composite heterojunction by integrating TiO2 with a strongly light absorbing material. Inspired by experimental results demonstrating good light absorption in the correlated metal oxide Strontium Ruthenate (SrRuO3) , as well as enhanced photocatalytic activity of SrRuO3/TiO2 heterojunctions, we have carried out electronic structure calculations based on density functional theory to explain and improve on the observed properties of such heterojunctions. Our calculations present that this heterojunction exhibits type-II band alignment which is necessary to transport optically excited electrons from the SrRuO3 to the TiO2, with calculated work functions in good agreement with experimental measurements. Also, DFT calculations help to explain the origin of large light absorption in the correlated metal oxide, which arises from electronic excitations from O 2p levels into the Ru d-orbital quasiparticle states in the material. The use of correlated metal oxide/ TiO2 heterojunctions is a potentially interesting approach to improved photocatalytic activity.

  10. Polypyrrole coated phase-change contrast agents for sono-photoacoustic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, David S.; Yoon, Soon Joon; Matula, Thomas J.; O'Donnell, Matthew; Pozzo, Lilo D.

    2017-03-01

    A new light and sound sensitive nanoemulsion contrast agent is presented. The agents feature a low boiling point liquid perfluorocarbon core and a broad light spectrum absorbing polypyrrole (PPy) polymer shell. The PPy coated nanoemulsions can reversibly convert from liquid to gas phase upon cavitation of the liquid perfluorocarbon core. Cavitation can be initiated using a sufficiently high intensity acoustic pulse or from heat generation due to light absorption from a laser pulse. The emulsions can be made between 150 and 350 nm in diameter and PPy has a broad optical absorption covering both the visible spectrum and extending into the near-infrared spectrum (peak absorption 1053 nm). The size, structure, and optical absorption properties of the PPy coated nanoemulsions were characterized and compared to PPy nanoparticles (no liquid core) using dynamic light scattering, ultraviolet-visible spectrophotometry, transmission electron microscopy, and small angle X-ray scattering. The cavitation threshold and signal intensity were measured as a function of both acoustic pressure and laser fluence. Overlapping simultaneous transmission of an acoustic and laser pulse can significantly reduce the activation energy of the contrast agents to levels lower than optical or acoustic activation alone. We also demonstrate that simultaneous light and sound cavitation of the agents can be used in a new sono-photoacoustic imaging method, which enables greater sensitivity than traditional photoacoustic imaging.

  11. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  12. Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.

    2016-05-01

    In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.

  13. Preparation and characterization of ZnO-TiO{sub 2} nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karunakaran, C., E-mail: karunakaranc@rediffmail.com; Abiramasundari, G.; Gomathisankar, P.

    2011-10-15

    Highlights: {yields} ZnO-TiO{sub 2} nanocomposite, obtained by modified ammonia-evaporation-induced synthetic method, absorbs visible light. {yields} ZnO-TiO{sub 2} nanoparticles catalyze bacteria disinfection and cyanide detoxification under sunlight. {yields} ZnO-TiO{sub 2} nanocomposite is selective in photocatalysis. -- Abstract: ZnO-TiO{sub 2} nanocomposite was prepared by modified ammonia-evaporation-induced synthetic method. It was characterized by powder X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray, UV-visible diffuse reflectance, photoluminescence and electrochemical impedance spectroscopies. Incorporation of ZnO leads to visible light absorption, larger charge transfer resistance and lower capacitance. The nanocomposite effectively catalyzes the inactivation of E. coli under visible light. Further,more » the prepared nanocomposite displays selective photocatalysis. While its photocatalytic efficiency to detoxify cyanide with visible light is higher than that of TiO{sub 2} P25, its efficiency to degrade methylene blue, sunset yellow and rhodamine B dyes under UV-A light is less than that of TiO{sub 2} P25.« less

  14. Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TIO₂ as photocatalyst.

    PubMed

    Collazzo, Gabriela Carvalho; Foletto, Edson Luiz; Jahn, Sérgio Luiz; Villetti, Marcos Antônio

    2012-05-15

    The N-doped TiO(2) photocatalyst was prepared by calcination of a hydrolysis product composed of titanium (IV) isopropoxide with ammonia as the precipitator. X-ray diffraction, surface area, XPS and UV-vis spectra analyses showed a nanosized anatase structure and the appearance of a new absorption band in the visible region caused by nitrogen doping. The degradation of Direct Black 38 dye on the nitrogen-doped TiO(2) photocatalyst was investigated under visible light and sunlight irradiation. The N-doped anatase TiO(2) demonstrated excellent photocatalytic activity under visible light. Under sunlight irradiation, the N-doped sample showed slightly higher activity than that of the non-doped sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Physics of Marine Biology.

    ERIC Educational Resources Information Center

    Conn, Kathleen

    1992-01-01

    Discusses ways in which marine biology can be integrated into the physics classroom. Topics suggested for incorporation include the harmonic motion of ocean waves, ocean currents, the interaction of visible light with ocean water, pressure, light absorption, and sound transfer in water. (MDH)

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A.M.L.M., E-mail: anmlmc@gmail.com; Marinkovic, B.A.; Suguihiro, N.M.

    In this research nanostructured titanates, containing iron in the structure, were obtained through a single-step alkaline hydrothermal route aiming at reduction of band-gap energy. In the process, a Fe–Ti rich Brazilian mineral sand was mixed with 10 M of NaOH and then submitted to isothermal treatments at temperatures ranging from 110 to 190 °C in an autoclave. The as-obtained products were water-washed and then characterized by transmission electron and scanning transmission electron microscopies, X-ray photoelectron, Mössbauer and diffuse reflectance spectroscopies. Transmission electron microscopy analyses showed a morphological dependence of the product as a function of the temperature, i.e., titanate nanosheetsmore » were predominantly formed at lower temperatures (110 °C–150 °C), while nanoribbons, with some nanosheets and nanoparticles, were the main products at higher temperatures (> 150 °C). Using energy dispersive X-ray it was determined that iron was incorporated into nanosheets. On the other hand, the as-obtained nanoribbons were Fe-free, while iron was principally associated with nanoparticles attached to the nanoribbons. By means of X-ray photoelectron and Mössbauer spectroscopies, it was elucidated that iron adopted Fe{sup 3} {sup +} form in the as-prepared nanosheets, occupying octahedral sites inside the titanate lepidocrocite-like structure. Diffuse reflectance spectroscopy showed a change of absorption pattern from nanosheets to nanoribbon/nanoparticle assembly: nanosheets exhibited high absorption from ultraviolet up to the visible light range, while the nanoribbon/nanoparticle assembly demonstrated a drop in absorption in the visible light range. These results suggest that Fe{sup 3} {sup +} incorporation inside the titanate structure is responsible for enhancing the visible light absorption, making these nanosheets potentially suitable for applications in photoinduced processes. - Highlights: • Mineral sand has been used as the precursor for the synthesis of nanotitanates. • Fe-doped nanotitanates have been prepared in a single step wet chemistry route. • The morphology of the nanometric titanates is a function of the temperature. • Mössbauer spectroscopy reveals Fe{sup 3} {sup +} in octahedral sites inside nanosheets. • The Fe incorporation in nanosheets improved the visible light absorption.« less

  17. A star-pointing UV-visible spectrometer for remote-sensing of the stratosphere

    NASA Technical Reports Server (NTRS)

    Roscoe, Howard K.; Freshwater, Ray A.; Jones, Rod L.; Fish, Debbie J.; Harries, John E.; Wolfenden, Roger; Stone, Phillip

    1994-01-01

    We have constructed a novel instrument for ground-based remote sensing, by mounting a UV-visible spectrometer on a telescope and observing the absorption by atmospheric constituents of light from stars. Potentially, the instrument can observe stratospheric O3, NO3, NO2, and OClO.

  18. Complete erasing of ghost images on computed radiography plates and role of deeply trapped electrons

    NASA Astrophysics Data System (ADS)

    Ohuchi-Yoshida, Hiroko; Kondo, Yasuhiro

    2011-12-01

    Computed radiography (CR) plates made of europium-doped Ba(Sr)FBr(I) were simultaneously exposed to filtered ultraviolet light and visible light in order to erase ghost images, i.e., latent image that is unerasable with visible light (LIunVL) and reappearing one, which are particularly observed in plates irradiated with a high dose and/or cumulatively over-irradiated. CR samples showing LIunVLs were prepared by irradiating three different types of CR plates (Agfa ADC MD10, Kodak Directview Mammo EHRM2, and Fuji ST-VI) with 50 kV X-ray beams in the dose range 8.1 mGy-8.0 Gy. After the sixth round of simultaneous 6 h exposures to filtered ultraviolet light and visible light, all the LIunVLs in the three types of CR plates were erased to the same level as in an unirradiated plate and no latent images reappeared after storage at 0 °C for 14 days. With conventional exposure to visible light, LIunVLs consistently remained in all types of CR plates irradiated with higher doses of X-rays and latent images reappeared in the Agfa M10 plates after storage at 0 °C. Electrons trapped in deep centers cause LIunVLs and they can be erased by simultaneous exposures to filtered ultraviolet light and visible light. To study electrons in deep centers, the absorption spectra were examined in all types of irradiated CR plates by using polychromatic ultraviolet light from a deep-ultraviolet lamp. It was found that deep centers showed a dominant peak in the absorption spectra at around 324 nm for the Agfa M10 and Kodak EHRM2 plates, and at around 320 nm for the Fuji ST-VI plate, in each case followed by a few small peaks. The peak heights were dose-dependent for all types of CR samples, suggesting that the number of electrons trapped in deep centers increases with the irradiation dose.

  19. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  20. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    PubMed Central

    2013-01-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051

  1. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors.

    PubMed

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-26

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  2. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.

    PubMed

    Li, Qi; Shang, Jian Ku

    2009-12-01

    Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.

  3. Sensitivity of light interaction computer model to the absorption properties of skin

    NASA Astrophysics Data System (ADS)

    Karsten, A. E.; Singh, A.

    2011-06-01

    Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.

  4. Electronic and optical properties of Cr-, B-doped, and (Cr, B)-codoped SrTiO3

    NASA Astrophysics Data System (ADS)

    Wu, Jiao; Huang, Wei-Qing; Yang, Ke; Wei, Zeng-Xi; Peng, P.; Huang, Gui-Fang

    2017-04-01

    Energy band engineering of semiconductors plays a crucial role in exploring high-efficiency visible-light response photocatalysts. Herein, we systematically study the electronic properties and optical response of Cr-, B-doped SrTiO3, and (Cr, B)-codoped SrTiO3 by using first-principles calculations to explore the mechanism for its superior photocatalytic activities in the visible light region. Special emphasis is placed on uncovering the synergy effects of nonmetal B dopant with metal Cr dopant at different cation sites. It is found that the electronic properties and optical absorption of SrTiO3 can be dramatically engineered by mono- or co-doping. In particular, the intermediate levels lying in the bandgap of the codoped SrTiO3 relay on the Cr impurity doped at Sr or Ti cation sites. Moreover, the (Cr@Sr, B@O)-SrTiO3 retains the charge balancing without the generation of unexpected oxygen vacancies, and is more desirable for solar light harvesting due to its higher absorption than others in the entire visible light. The findings can rationalize the available experimental results and are helpful in designing SrTiO3-based photocatalysts with high-efficiency performance.

  5. Wavelength-dependent visible light response in vertically aligned nanohelical TiO2-based Schottky diodes

    NASA Astrophysics Data System (ADS)

    Kwon, Hyunah; Sung, Ji Ho; Lee, Yuna; Jo, Moon-Ho; Kim, Jong Kyu

    2018-01-01

    Enhancements in photocatalytic performance under visible light have been reported by noble metal functionalization on nanostructured TiO2; however, the non-uniform and discrete distribution of metal nanoparticles on the TiO2 surface makes it difficult to directly clarify the optical and electrical mechanisms. Here, we investigate the light absorption and the charge separation at the metal/TiO2 Schottky junctions by using a unique device architecture with an array of TiO2 nanohelixes (NHs) forming Schottky junctions both with Au-top and Pt-bottom electrodes. Wavelength-dependent photocurrent measurements through the Pt/TiO2 NHs/Au structures revealed that the origin of the visible light absorption and the separation of photogenerated carriers is the internal photoemission at the metal/nanostructured TiO2 Schottky junctions. In addition, a huge persistent photoconductivity was observed by the time-dependent photocurrent measurement, implying a long lifetime of the photogenerated carriers before recombination. We believe that the results help one to understand the role of metal functionalization on TiO2 and hence to enhance the photocatalytic efficiency by utilizing appropriately designed Schottky junctions.

  6. A UV-Vis photoacoustic spectrophotometer.

    PubMed

    Wiegand, Joseph R; Mathews, L Dalila; Smith, Geoffrey D

    2014-06-17

    A novel photoacoustic spectrophotometer (PAS) for the measurement of gas-phase and aerosol absorption over the UV-visible region of the spectrum is described. Light from a broadband Hg arc lamp is filtered in eight separate bands from 300 to 700 nm using bandpass interference filters (centered at 301 nm, 314 nm, 364 nm, 405 nm, 436 nm, 546 nm, 578 and 687 nm) and modulated with an optical chopper before entering the photoacoustic cell. All wavelength bands feature a 20-s detection limit of better than 3.0 Mm(-1) with the exception of the lower-intensity 687 nm band for which it is 10.2 Mm(-1). Validation measurements of gas-phase acetone and nigrosin aerosol absorption cross sections at several wavelengths demonstrate agreement to within 10% with those measured previously (for acetone) and those predicted by Mie theory (for nigrosin). The PAS instrument is used to measure the UV-visible absorption spectrum of ambient aerosol demonstrating a dramatic increase in the UV region with absorption increasing by 300% from 405 to 301 nm. This type of measurement throughout the UV-visible region and free from artifacts associated with filter-based methods has not been possible previously, and we demonstrate its promise for classifying and quantifying different types of light-absorbing ambient particles.

  7. Sunlight activated anodic freestanding ZrO2 nanotube arrays for Cr(VI) photoreduction.

    PubMed

    Bashirom, Nurulhuda; Tan, Wai Kian; Go, Kawamura; Matsuda, Atsunori; Abdul Razak, Khairunisak; Lockman, Zainovia

    2018-06-14

    Visible-light-active freestanding zirconia (ZrO2) nanotube (FSZNT) arrays were fabricated by a facile electrochemical anodization method in fluoride containing ethylene glycol electrolyte added to it 1 vol.% of potassium carbonate (K2CO3) at 60 V for 1 h. Poor adhesion at metal|oxide interface was induced by K2CO3 leading to formation of the FSZNT flakes. The effect of crystal structures of FSZNTs e.g., amorphous, amorphous/tetragonal, and tetragonal/monoclinic was investigated towards the photocatalytic reduction of 10 ppm hexavalent chromium, Cr(VI) at pH 2 under sunlight. The results demonstrate the amorphous FSZNTs exhibited the highest Cr(VI) removal efficiency than the crystalline FSZNTs (95 % versus 33 % after 5 h). The high photocatalytic activity of the amorphous FSZNTs can be attributed to enhanced Cr(VI) adsorption, high visible light absorption, and better charge carriers separation. The low photocatalytic activity of the crystalline FSZNTs annealed at 500 °C was mainly attributed to poor Cr(VI) adsorption, low visible light absorption, and less photoactive monoclinic-ZrO2. © 2018 IOP Publishing Ltd.

  8. Effect of surface plasmon resonance on the photocatalytic activity of Au/TiO2 under UV/visible illumination.

    PubMed

    Tseng, Yao-Hsuan; Chang, I-Guo; Tai, Yian; Wu, Kung-Wei

    2012-01-01

    In this study, gold-loaded titanium dioxide was prepared by an impregnation method to investigate the effect of surface plasmon resonance (SPR) on photoactivity. The deposited gold nanoparticles (NPs) absorb visible light because of SPR. The effects of both the gold content and the TiO2 size of Au/TiO2 on SPR and the photocatalytic efficiency were investigated. The morphology, crystal structure, light absorption, emission from the recombination of a photoexcited electron and hole, and the degree of aggregation were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-visible-diffuse reflectance spectra (UV-VIS-DRS), photoluminescence (PL) spectroscopy, and turbidimetry, respectively. Photocatalytic activity was evaluated by the decolorization of methyl orange solution over modified titania under UV and UV/GLED (green light emitting diode) illumination. Au/TiO2 NPs exhibited an absorption peak (530-570 nm) because of SPR. The results of our photocatalytic experiments indicated that the UV-inducedly photocatalytic reaction rate was improved by simultaneously using UV and green light illumination; this corresponds to the adsorption region of SPR. Au/TiO2 could use the enhanced electric field amplitude on the surface of the Au particle in the spectral vicinity of its plasmon resonance and thus improve the photoactivity. Experimental results show that the synergistic effect between UV and green light for the improvement of photoactivity increases with increasing the SPR absorption, which in turn is affected by the Au content and TiO2 size.

  9. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review.

    PubMed

    Sklar, Lindsay R; Almutawa, Fahad; Lim, Henry W; Hamzavi, Iltefat

    2013-01-01

    The effects of ultraviolet radiation, visible light, and infrared radiation on cutaneous erythema, immediate pigment darkening, persistent pigment darkening, and delayed tanning are affected by a variety of factors. Some of these factors include the depth of cutaneous penetration of the specific wavelength, the individual skin type, and the absorption spectra of the different chromophores in the skin. UVB is an effective spectrum to induce erythema, which is followed by delayed tanning. UVA induces immediate pigment darkening, persistent pigment darkening, and delayed tanning. At high doses, UVA (primarily UVA2) can also induce erythema in individuals with skin types I-II. Visible light has been shown to induce erythema and a tanning response in dark skin, but not in fair skinned individuals. Infrared radiation produces erythema, which is probably a thermal effect. In this article we reviewed the available literature on the effects of ultraviolet radiation, visible light, and infrared radiation on the skin in regards to erythema and pigmentation. Much remains to be learned on the cutaneous effects of visible light and infrared radiation.

  10. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    PubMed

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  11. A facile one-step electrochemical strategy of doping iron, nitrogen, and fluorine into titania nanotube arrays with enhanced visible light photoactivity.

    PubMed

    Hua, Zulin; Dai, Zhangyan; Bai, Xue; Ye, Zhengfang; Gu, Haixin; Huang, Xin

    2015-08-15

    Highly ordered iron, nitrogen, and fluorine tri-doped TiO2 (Fe, (N, F)-TiO2) nanotube arrays were successfully synthesized by a facile one-step electrochemical method in an NH4F electrolyte containing Fe ions. The morphology, structure, composition, and photoelectrochemical property of the as-prepared nanotube arrays were characterized by various methods. The photoactivities of the samples were evaluated by the degradation of phenol in an aqueous solution under visible light. Tri-doped TiO2 showed higher photoactivities than undoped TiO2 under visible light. The optimum Fe(3+) doping amount at 0.005M exhibited the highest photoactivity and exceeded that of undoped TiO2 by a factor of 20 times under visible light. The formation of N 2p level near the valence band (VB) contributed to visible light absorption. Doping fluorine and appropriate Fe(3+) ions reduced the photogenerated electrons-holes recombination rate and enhanced visible light photoactivity. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results indicated the presence of synergistic effects in Fe, N, and F tri-doped TiO2, which enhanced visible light photoactivity. The Fe, (N, F)-TiO2 photocatalyst exhibited high stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. UV/vis and NIR light-responsive spiropyran self-assembled monolayers.

    PubMed

    Ivashenko, Oleksii; van Herpt, Jochem T; Feringa, Ben L; Rudolf, Petra; Browne, Wesley R

    2013-04-02

    Self-assembled monolayers of a 6-nitro BIPS spiropyran (SP) modified with a disulfide-terminated aliphatic chain were prepared on polycrystalline gold surfaces and characterized by UV/vis absorption, surface-enhanced Raman scattering (SERS), and X-ray photoelectron spectroscopies (XPS). The SAMs obtained are composed of the ring-closed form (i.e., spiropyran) only. Irradiation with UV light results in conversion of the monolayer to the merocyanine form (MC), manifested in the appearance of an N(+) contribution in the N 1s region of the XPS spectrum of the SAMs, the characteristic absorption band of the MC form in the visible region at 555 nm, and the C-O stretching band in the SERS spectrum. Recovery of the initial state of the monolayer was observed both thermally and after irradiation with visible light. Several switching cycles were performed and monitored by SERS spectroscopy, demonstrating the stability of the SAMs during repeated switching between SP and MC states. A key finding in the present study is that ring-opening of the surface-immobilized spiropyrans can be induced by irradiation with continuous wave NIR (785 nm) light as well as by irradiation with UV light. We demonstrate that ring-opening by irradiation at 785 nm proceeds by a two-photon absorption pathway both in the SAMs and in the solid state. Hence, spiropyran SAMs on gold can undergo reversible photochemical switching from the SP to the MC form with both UV and NIR and the reverse reaction induced by irradiation with visible light or heating. Furthermore, the observation of NIR-induced switching with a continuous wave source holds important consequences in the study of photochromic switches on surfaces using SERS and emphasizes the importance of the use of multiple complementary techniques in characterizing photoresponsive SAMs.

  13. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  14. Highly efficient temperature-induced visible light photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Han, Bing

    Photocatalysis is the acceleration of photoreaction in presence of a photocatalyst. Semiconductor photocatalysis has obtained much attention as a potential solution to the worldwide energy storage due to its promising ability to directly convert solar energy into chemical fuels. This dissertation research mainly employ three approaches to enhance photocatalytic activities, which includes (I) Modifying semiconductor nanomaterials for visible and near-IR light absorption; (II) Synthesis of light-diffuse-reflection-surface of SiO2 substrate to utilize scattered light; and (III) design of a hybrid system that combines light and heat to enhance visible light photocatalytic activity. Those approaches were applied to two systems: (1) hydrogen production from water; (2) carbon dioxide reforming of methane. The activity of noble metals such as platinum were investigated as co-catalysts and cheap earth abundant catalysts as alternatives to reduce cost were also developed. Stability, selectivity, mechanism were investigated. Great enhancement of visible light activity over a series of semiconductors/heterostructures were observed. Such extraordinary performance of artificial photosynthetic hydrogen production system would provide a novel approach for the utilization of solar energy for chemical fuel production.

  15. Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

    DOE PAGES

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    2016-03-04

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  16. TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment

    PubMed Central

    2016-01-01

    Metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. Electrochemical and spectroscopic measurements provide experimental evidence for the type II band alignment necessary for favorable electron transfer from BiVO4 to TiO2. The host–guest nanowire architecture presented here allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent density of 2.1 mA/cm2 at 1.23 V vs RHE. PMID:27163032

  17. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO{sub 2}: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song

    2016-03-15

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less

  18. Broadband visible light source based on AllnGaN light emitting diodes

    DOEpatents

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  19. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably.

  20. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    PubMed Central

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably. PMID:26790759

  1. Recent advances in IR liquid crystal spatial light modulators

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Twieg, Robert J.; Wu, Shin-Tson

    2015-09-01

    Liquid crystal (LC) is an amazing class of electro-optic media; its applications span from visible to infrared, millimeter wave, and terahertz regions. In the visible and short-wavelength infrared (SWIR) regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, several key technical challenges have to be overcome: (1) low absorption loss, (2) high birefringence, (3) low operation voltage, and (4) fast response time. In the MWIR and LWIR regions, several fundamental molecular vibration bands and overtones exist, which contribute to high absorption loss. The absorbed light turns to heat and then alters the birefringence locally, which in turns causes spatially non-uniform phase modulation. To suppress the optical loss, several approaches have been investigated: (1) Employing thin cell gap by choosing a high birefringence LC mixture; (2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination, or chlorination; (3) Reducing the overtone absorption by using a short alkyl chain. In this paper, we report some recently developed chlorinated LC compounds and mixtures with low absorption loss in the SWIR and MWIR regions. To achieve fast response time, we demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms. Approaches to extend such a liquid crystal spatial light modulator to long-wavelength infrared will be discussed.

  2. Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lai, Xuesen; Li, Xitao; Lv, Xinding; Zheng, Yan-Zhen; Meng, Fanli; Tao, Xia

    2017-12-01

    Extending the spectral absorption of perovskite solar cells (PSCs) from visible into near-infrared (NIR) range is a promising strategy to minimize non-absorption loss of solar photons and enhance the cell photovoltaic performance. Herein, we report on for the first time a viable strategy of incorporating IR806 dye-sensitized upconversion nanocrystals (IR806-UCNCs) into planar PSC for broadband upconversion of NIR light (800-1000 nm) into perovskite absorber-responsive visible emissions. A smart trick is firstly adopted to prepare hydrophilic IR806-UCNCs via a NOBF4 assisted two-step ligand-exchange that allows incorporating with perovskite precursor for in-situ growth of upconverting planar perovskite film. Unlike typically reported upconverting nanoparticles with narrow NIR absorption, the as-prepared IR806-UCNCs are able to harvest NIR light broadly and then transfer the captured energy to the UCNCs for an efficient visible upconversion. The IR806-UCNCs-incorporated cell exhibits a power conversion efficiency of 17.49%, corresponding to 29% increment from that of the pristine cell (13.52%). This strategy provides a feasible way to enable the most efficient harvesting of NIR sunlight for solar cells and other optoelectric devices.

  3. An efficient visible-light photocatalyst prepared by modifying AgBr particles with a small amount of activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Desong, E-mail: dswang06@126.com; Zhao, Mangmang; Luo, Qingzhi

    2016-04-15

    Highlights: • An efficient visible-light photocatalyst was prepared by modifying AgBr particles. • A small amount of activated carbon was used to modify AgBr particles. • The modified AgBr exhibited improved visible-light photocatalytic performances. - Abstract: An efficient visible-light photocatalyst was successfully prepared by modifying AgBr particles with a small amount of activated carbon (AC) via a simple chemical precipitation approach. The AC/AgBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis diffuse reflection spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy. The photocatalytic performances of the AC/AgBr composite were investigated by evaluating photodegradation of methyl orange (MO)more » and phenol under visible light irradiation, and the effects of the AC content in the composite, concentrations of AC/AgBr composite and MO, carrier scavengers on MO photodegradation rate were systematically investigated. The results indicated that the modification of AC can hardly change the crystalline and crystal size of AgBr particles, while significantly improve their specific surface areas, visible-light absorption and separation efficiency of photogenerated electron–hole pairs. Compared with pure AgBr, the AC/AgBr composite exhibited drastically enhanced visible-light photocatalytic activity and stability. The photogenerated electrons and holes, hydroxyl radicals are responsible to the photodegradation of organic pollutants, and the photogenerated holes are the main active species. On the basis of the results and the properties of AC and AgBr, the visible-light photocatalytic mechanism of the AC/AgBr composite was discussed.« less

  4. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    PubMed

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  5. Gravity-induced absorption changes in Phycomyces blakesleeanus during parabolic flights: first spectral approach in the visible.

    PubMed

    Schmidt, Werner

    2006-12-01

    Gravity-induced absorption changes as experienced during a series of parabolas on the Airbus 300 Zero-G have been measured previously pointwise on the basis of dual-wavelength spectroscopy. Only the two wavelengths of 460 and 665 nm as generated by light-emitting diodes have been utilised during our first two parabolic-flight campaigns. In order to gain complete spectral information throughout the wavelength range from 400 to 900 nm, a miniaturized rapid scan spectrophotometer was designed. The difference of spectra taken at 0 g and 1.8 g presents the first gravity-induced absorption change spectrum measured on wild-type Phycomyces blakesleeanus sporangiophores, exhibiting a broad positive hump in the visible range and negative values in the near infrared with an isosbestic point near 735 nm. The control experiment performed with the stiff mutant A909 of Phycomyces blakesleeanus does not show this structure. These results are in agreement with those obtained with an array spectrophotometer. In analogy to the more thoroughly understood so-called light-induced absorption changes, we assume that gravity-induced absorption changes reflect redox changes of electron transport components such as flavins and cytochromes localised within the plasma membrane.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  7. ZnO/ZnSxSe1-x core/shell nanowire arrays as photoelectrodes with efficient visible light absorption

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Zhan, Xueying; Wang, Yajun; Safdar, Muhammad; Niu, Mutong; Zhang, Jinping; Huang, Ying; He, Jun

    2012-08-01

    ZnO/ZnSxSe1-x core/shell nanowires have been synthesized on n+-type silicon substrate via a two-step chemical vapor deposition method. Transmission electron microscopy reveals that ZnSxSe1-x can be deposited on the entire surface of ZnO nanowire, forming coaxial heterojunction along ZnO nanowire with very smooth shell surface and high shell thickness uniformity. The photoelectrode after deposition of the ternary alloy shell significantly improves visible light absorption efficiency. Electrochemical impedance spectroscopy results explicitly indicate that the introduction of ZnSxSe1-x shell to ZnO nanowires effectively improves the photogenerated charge separation process. Our finding opens up an efficient means for achieving high efficient energy conversion devices.

  8. Thiomersal photo-degradation with visible light mediated by graphene quantum dots: Indirect quantification using optical multipath mercury cold-vapor absorption spectrophotometry

    NASA Astrophysics Data System (ADS)

    Miranda-Andrades, Jarol R.; Khan, Sarzamin; Toloza, Carlos A. T.; Romani, Eric C.; Freire Júnior, Fernando L.; Aucelio, Ricardo Q.

    2017-12-01

    Thiomersal is employed as preservative in vaccines, cosmetic and pharmaceutical products due to its capacity to inhibit bacterial growth. Thiomersal contains 49.55% of mercury in its composition and its highly toxic ethylmercury degradation product has been linked to neurological disorders. The photo-degradation of thiomersal has been achieved by visible light using graphene quantum dots as catalysts. The generated mercury cold vapor (using adjusted experimental conditions) was detected by multipath atomic absorption spectrometry allowing the quantification of thiomersal at values as low as 20 ng L- 1 even in complex samples as aqueous effluents of pharmaceutical industry and urine. A kinetic study (pseudo-first order with k = 0.11 min- 1) and insights on the photo-degradation process are presented.

  9. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    PubMed

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV-vis light.

  10. A three-color absorption/scattering imaging technique for simultaneous measurements on distributions of temperature and fuel concentration in a spray

    NASA Astrophysics Data System (ADS)

    Qi, Wenyuan; Zhang, Yuyin

    2018-04-01

    A three-color imaging technique was proposed for simultaneous measurements on distributions of fuel/air mixture temperature and fuel vapor/liquid concentrations in evaporating sprays. The idea is based on that the vapor concentration is proportional to the absorption of vapor to UV light, the liquid-phase concentration is related to the light extinction due to scattering of droplet to visible light, and the mixture temperature can be correlated to the absorbance ratio at two absorbing wavelengths or narrow bands. For verifying the imaging system, the molar absorption coefficients of p-xylene at the three narrow bands, which were centered respectively at 265, 289, and 532 nm with FWHM of 10 nm, were measured in a specially designed calibration chamber at different temperatures (423-606 K) and pressure of 3.6 bar. It was found that the ratio of the molar absorption coefficients of p-xylene at the two narrow bands centered at the two UV wavelengths is sensitive to the mixture temperature. On the other hand, the distributions of fuel vapor/liquid concentrations can be obtained by use of absorbance due to ultraviolet absorption of vapor and visible light scattering of droplets. Combining these two methods, a simultaneous measurement on distributions of mixture temperature and fuel vapor/liquid concentrations can be realized. In addition, the temperature field obtained from the ratio of the two absorbing narrow bands can be further used to improve the measurement accuracy of vapor/liquid concentrations, because the absorption coefficients depend on temperature. This diagnostic was applied to an evaporating spray inside a high-temperature and high-pressure constant volume chamber.

  11. In(1-x)Ga(x)N@ZnO: a rationally designed and quantum dot integrated material for water splitting and solar harvesting applications.

    PubMed

    Rajaambal, Sivaraman; Mapa, Maitri; Gopinath, Chinnakonda S

    2014-09-07

    The highly desirable combination of the visible light absorption properties of In1-xGaxN Quantum dots (QD) along with the multifunctionality of ZnO into a single integrated material was prepared for solar harvesting. This is the first report on InGaN QD integrated with ZnO (InGaN@ZnO), synthesized by a highly reproducible, simple combustion method in 15 min. Structural, microstructural and electronic integration of the nitride and oxide components of InGaN@ZnO was demonstrated by appropriate characterization methods. Self-assembly of InGaN QD is induced in growing nascent zinc oxo nanoclusters taking advantage of the common wurtzite structure and nitrogen incorporation at the expense of oxygen vacancies. Direct integration brings about a single phase structure exhibiting extensive visible light absorption and high photostability. InGaN@ZnO suggests synergistic operation of light harvesting and charge conducting components for solar H2 generation without using any co-catalyst or sacrificial agent, and a promising photocurrent generation at 0 V under visible light illumination. The present study suggests a direct integration of QD with the host matrix and is a potential method to realize the advantages of QDs.

  12. Tuning Cu dopant of Zn 0.5 Cd 0.5 S nanocrystals enables high-performance photocatalytic H 2 evolution from water splitting under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zongwei; Zhang, Bingkai; Zheng, Jiaxin

    2016-08-01

    Cu-doping into Zn1-xCdxS can greatly enhance the photocatalytic H2 evolution from water splitting under visible-light irradiation. However, it is still controversial for how the Cu-dopant improves this performance. Here, we report that appropriate Cu-doped Zn0.5Cd0.5S nanocrystals reach 21.4 mmol/h/g of H2 evolution rate without cocatalyst in the visible-light region, which is also 2.8 times as high as that of the undoped counterpart, and the corresponding apparent quantum efficiency is 18.8% at 428 nm. It is firstly confirmed that the Cu2+ changes into Cu+ after being doped by soft X-ray absorption spectroscopy (sXAS). We theoretically propose that the transformation of 2Cu2+more » to 2Cu+ results in one adjacent S2- vacancy (VS) in host during the doping process, while the Cu+-dopant and VS attract the photoexcited holes and electrons, respectively. Accordingly, the photocatalytic activity is improved due to the enhanced separation of photoexcited carriers accompanied with the enhanced light absorption resulting from the Cu+-dopant and 2Cu+/VS complex as possible active site for photocatalytic H2 evolution.« less

  13. Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO₂ Nanospheres and Sn₃O₄ Nanoparticles.

    PubMed

    Hu, Jianling; Tu, Jianhai; Li, Xingyang; Wang, Ziya; Li, Yan; Li, Quanshui; Wang, Fengping

    2017-10-19

    Novel TiO₂/Sn₃O₄ heterostructure photocatalysts were ingeniously synthesized via a scalable two-step method. The impressive photocatalytic abilities of the TiO₂/Sn₃O₄ sphere nanocomposites were validated by the degradation test of methyl orange and •OH trapping photoluminescence experiments under ultraviolet (UV) and visible light irradiation, respectively. Especially under the visible light, the TiO₂/Sn₃O₄ nanocomposites demonstrated a superb photocatalytic activity, with 81.2% of methyl orange (MO) decomposed at 30 min after irradiation, which greatly exceeded that of the P25 (13.4%), TiO₂ (0.5%) and pure Sn₃O₄ (59.1%) nanostructures. This enhanced photocatalytic performance could be attributed to the mesopore induced by the monodispersed TiO₂ cores that supply sufficient surface areas and accessibility to reactant molecules. This exquisite hetero-architecture facilitates extended UV-visible absorption and efficient photoexcited charge carrier separation.

  14. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination.

    PubMed

    Saravanan, R; Karthikeyan, S; Gupta, V K; Sekaran, G; Narayanan, V; Stephen, A

    2013-01-01

    The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV-visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  16. Hierarchical assembly of AgCl@Sn-TiO2 microspheres with enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Ganeshraja, Ayyakannu Sundaram; Zhu, Kaixin; Nomura, Kiyoshi; Wang, Junhu

    2018-05-01

    The hierarchical silver chloride loaded tin-doped titania (AgCl@Sn-TiO2) microspheres were first time prepared by a hydrothermal method and annealing at different temperatures. The catalyst showed the enhanced visible light photocatalytic activity as compared to the plasmonic photocatalysts of AgCl and Ag/AgCl, and commercial Degussa P25 (TiO2). The improved efficiency is considered to local surface plasmonic resonance (AgCl could reduce to Ag0 during photocatalytic reaction) in enhanced broad band visible light absorption in addition to the characteristics of heterojunction between Sn-TiO2 and AgCl NPs. Moreover, the surface and bulk properties of as-synthesized samples were analyzed by 119Sn Mössbauer spectroscopy. The magnetic property of the bulk was studied as a function of magnetic field with different temperatures. These results signify the clear details of the magnetic and visible light photocatalytic activities of hierarchical AgCl@Sn-TiO2 microspheres.

  17. Cobalt Oxide Nanoclusters on Rutile Titania as Bifunctional Units for Water Oxidation Catalysis and Visible Light Absorption: Understanding the Structure-Activity Relationship.

    PubMed

    Maeda, Kazuhiko; Ishimaki, Koki; Okazaki, Megumi; Kanazawa, Tomoki; Lu, Daling; Nozawa, Shunsuke; Kato, Hideki; Kakihana, Masato

    2017-02-22

    The structure of cobalt oxide (CoO x ) nanoparticles dispersed on rutile TiO 2 (R-TiO 2 ) was characterized by X-ray diffraction, UV-vis-NIR diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray absorption fine-structure spectroscopy, and X-ray photoelectron spectroscopy. The CoO x nanoparticles were loaded onto R-TiO 2 by an impregnation method from an aqueous solution containing Co(NO 3 ) 2 ·6H 2 O followed by heating in air. Modification of the R-TiO 2 with 2.0 wt % Co followed by heating at 423 K for 1 h resulted in the highest photocatalytic activity with good reproducibility. Structural analyses revealed that the activity of this photocatalyst depended strongly on the generation of Co 3 O 4 nanoclusters with an optimal distribution. These nanoclusters are thought to interact with the R-TiO 2 surface, resulting in visible light absorption and active sites for water oxidation.

  18. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    PubMed

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  19. Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Karmakar, Keshab; Sarkar, Ayan; Mandal, Kalyan; Gopal Khan, Gobinda

    2017-08-01

    The effective utilization of abundant visible solar light for photoelectrochemical water splitting is a green approach for energy harvesting, to reduce the enormous rise of carbon content in the atmosphere. Here, a novel efficient design strategy for p-n type nano-heterojunction photoanodes is demonstrated, with the goal of improving water splitting efficiency by growing low band gap p-CuFeO2 nanolayers on n-ZnO nanorods by an easy and scalable electrochemical route. The photoconversion efficiency of p-n CuFeO2/ZnO photoanodes is found to be ˜450% higher than that of pristine ZnO nanorod electrodes under visible solar light illumination (λ > 420 nm, intensity 10 mW cm-2). The p-n CuFeO2/ZnO nano-engineering not only boosts the visible light absorption but also resolves limitations regarding effective charge carrier separation and transportation due to interfacial band alignment. This photoanode also shows remarkably enhanced stability, where the formation of p-n nano-heterojunction enhances the easy migration of holes to the electrode/electrolyte interface, and of electrons to the counter electrode (Pt) for hydrogen generation. Therefore, this work demonstrates that p-n nano-engineering is a potential strategy to design light-harvesting electrodes for water splitting and clean energy generation.

  20. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  1. Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-Type and Visible Light-Sensing p-Type Polymers

    PubMed Central

    Han, Hyemi; Nam, Sungho; Seo, Jooyeok; Lee, Chulyeon; Kim, Hwajeong; Bradley, Donal D. C.; Ha, Chang-Sik; Kim, Youngkyoo

    2015-01-01

    We report ‘broadband light-sensing’ all-polymer phototransistors with the nanostructured bulk heterojunction (BHJ) layers of visible (VIS) light-sensing electron-donating (p-type) polymer and near infrared (NIR) light-sensing electron-accepting (n-type) polymer. Poly[{2,5-bis-(2-ethylhexyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2′-(2,1,3-benzothiadiazole)]-5,5′-diyl}] (PEHTPPD-BT), which is synthesized via Suzuki coupling and employed as the n-type polymer, shows strong optical absorption in the NIR region (up to 1100 nm) in the presence of weak absorption in the VIS range (400 ~ 600 nm). To strengthen the VIS absorption, poly(3-hexylthiophene) (P3HT) is introduced as the p-type polymer. All-polymer phototransistors with the BHJ (P3HT:PEHTPPD-BT) layers, featuring a peculiar nano-domain morphology, exhibit typical p-type transistor characteristics and efficiently detect broadband (VIS ~ NIR) lights. The maximum corrected responsivity (without contribution of dark current) reaches up to 85 ~ 88% (VIS) and 26 ~ 40% (NIR) of theoretical responsivity. The charge separation process between P3HT and PEHTPPD-BT components in the highest occupied molecular orbital is proposed as a major working mechanism for the effective NIR sensing. PMID:26563576

  2. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    PubMed

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  3. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  4. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.

    PubMed

    Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang

    2015-04-14

    In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.

  5. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    PubMed

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  6. A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics

    NASA Astrophysics Data System (ADS)

    Hayashi, Daiyu; van Dongen, Anne Marie; Boerekamp, Jack; Spoor, Sandra; Lucassen, Gerald; Schleipen, Jean

    2017-06-01

    Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitting diode (LED) source consisting of a blue LED for optical excitation, Lu3Al5O12:Ce3+,Cr3+ luminescent garnet for visible to near infrared emissions, and Bismuth doped GeO2 luminescent glass for near-infrared to short-wave infrared emissions. It emits broad-band light emissions continuously in 470-1600 nm with a spectral gap at 900-1000 nm. In comparison to the currently available broadband light sources like halogen lamps, high-pressure discharge lamps and super continuum lasers, the light sources of this paper has significant advantages for spectral tissue diagnostics in high-spectral stability, improved light coupling to optical fibers, potential in low light source cost and enabling battery-drive.

  7. Solvothermal synthesis of P25/Bi2WO6 nanocomposite photocatalyst and photocatalytic degradation of ethylene under visible light

    NASA Astrophysics Data System (ADS)

    Song, Xianliang; Wang, Haidan; Li, Yingying; Ye, Shengying; Dionysiou, Dionysios D.

    2018-05-01

    P25/Bi2WO6 nanocomposite photocatalysts were synthesized by solvothermal method, and their photocatalytic activities were evaluated for the degradation of ethylene under visible light irradiation. The results show that P25/Bi2WO6 nanocomposites have higher photocatalytic activity than P25 and pure Bi2WO6. When the loading amount of P25 is 35%, the photocatalytic degradation of ethylene under visible light is the highest, which is 4.5 and 2.2 times higher than that of P25 and Bi2WO6, respectively. The improvement of the photocatalytic activity of the nanocomposite is mainly due to the formation of the staggered heterojunctions in the contact interface of P25 and Bi2WO6. This can refine the grain and produce lattice defects in the interface of the composite, which could provide more active sites. Therefore, the separation efficiency of the photogenerated electron-hole pair is improved, and the spectral response range is extended to the visible light region, thereby the absorption and utilization of light energy is improved.

  8. L(alpha)-induced two-photon absorption of visible light emitted from an O-type star by H2(+) ions located near the surface of the Stromgren sphere surrounding the star: A possible explanation for the diffuse interstellar absorption bands (DIDs)

    NASA Technical Reports Server (NTRS)

    Glownia, James H.; Sorokin, Peter P.

    1994-01-01

    In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).

  9. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    PubMed Central

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-01-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet–visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films. PMID:26156001

  10. Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO{sub 2} photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindan, Kadarkarai, E-mail: govindanmu@gmail.com; Water Chemistry Lab, Water Institute, Karunya University, Coimbatore 641 114; Murugesan, Sepperumal

    Graphical abstract: Schematic representation for the visible light photocatalytic process of N and F codoped TiO{sub 2}. Highlights: ► Visible light sensitive N-F-codoped TiO{sub 2}. ► Photocatalytic degradation of pentachlorophenol. ► Effect of oxidants on photocatalytic degradation of pentachlorophenol. ► PMS is a more efficient oxidant for the photodegradation of PCP. - Abstract: In this present study, N-F-codoped titanium dioxide nanocatalyst (NFTO) has been synthesized by simple sol–gel assisted solvothermal method for the effective utilization of visible light in photocatalytic reactions. Structural characterization of the photocatalyst is analyzed by XRD, UV–vis diffuse reflectance spectra (DRS), SEM and TEM. Moreover themore » chemical statuses of NFTO are gathered by X-ray photoelectron spectroscopy (XPS). The results show that a high surface area with photoactive anatase phase crystalline is obtained. In addition, nitrogen and fluorine atoms are doped into TiO{sub 2} crystal lattice to extend the visible light absorption and higher photocatalytic activity. The photocatalytic degradation of pentachlorophenol in aqueous solution is examined under visible light irradiation, the addition of oxidants such as PMS, PDS and H{sub 2}O{sub 2} is analyzed in detail. The rate of photocatalytic degradation of pentachlorophenol is obtained in the following order: PMS > PDS > H{sub 2}O{sub 2}.« less

  11. Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light

    NASA Astrophysics Data System (ADS)

    Wong, Ming-Show; Chen, Chun-Wei; Hsieh, Chia-Chun; Hung, Shih-Che; Sun, Der-Shan; Chang, Hsin-Hou

    2015-07-01

    Photocatalysts produce free radicals upon receiving light energy; thus, they possess antibacterial properties. Silver (Ag) is an antibacterial material that disrupts bacterial physiology. Our previous study reported that the high antibacterial property of silver nanoparticles on the surfaces of visible light-responsive nitrogen-doped TiO2 photocatalysts [TiO2(N)] could be further enhanced by visible light illumination. However, the major limitation of this Ag-TiO2 composite material is its durability; the antibacterial property decreased markedly after repeated use. To overcome this limitation, we developed TiO2(N)/Ag/TiO2(N) sandwich films in which the silver is embedded between two TiO2(N) layers. Various characteristics, including silver and nitrogen amounts, were examined in the composite materials. Various analyses, including electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and ultraviolet-visible absorption spectrum and methylene blue degradation rate analyses, were performed. The antibacterial properties of the composite materials were investigated. Here we revealed that the antibacterial durability of these thin films is substantially improved in both the dark and visible light, by which bacteria, such as Escherichia coli, Streptococcus pyogenes, Staphylococcus aureus, and Acinetobacter baumannii, could be efficiently eliminated. This study demonstrated a feasible approach to improve the visible-light responsiveness and durability of antibacterial materials that contain silver nanoparticles impregnated in TiO2(N) films.

  12. Architecture, development and implementation of a SWIR to visible integrated up-conversion imaging device

    NASA Astrophysics Data System (ADS)

    Sarusi, Gabby; Templeman, Tzvi; Hechster, Elad; Nissim, Nimrod; Vitenberg, Vladimir; Maman, Nitzan; Tal, Amir; Solodar, Assi; Makov, Guy; Abdulhalim, Ibrahim; Visoly-Fisher, Iris; Golan, Yuval

    2016-04-01

    A new concept of short wavelength infrared (SWIR) to visible upconversion integrated imaging device is proposed, modeled and some initial measured results are presented. The device is a hybrid inorganic-organic device that comprises six nano-metric scale sub-layers grown on n-type GaAs substrates. The first layer is a ~300nm thick PbSe nano-columnar absorber layer grown in (111) orientation to the substrate plan (100), with a diameter of 8- 10nm and therefore exhibit quantum confinement effects parallel to the substrate and bulk properties perpendicular to it. The advantage of this structure is the high oscillator strength and hence absorption to incoming SWIR photons while maintaining the high bulk mobility of photo-excited charges along the columns. The top of the PbSe absorber layer is coated with 20nm thick metal layer that serves as a dual sided mirror, as well as a potentially surface plasmon enhanced absorption in the PbSe nano-columns layer. The photo-excited charges (holes and electrons in opposite directions) are drifted under an external applied field to the OLED section (that is composed of a hole transport layer, an emission layer and an electron transport layer) where they recombine with injected electron from the transparent cathode and emit visible light through this cathode. Due to the high absorption and enhanced transport properties this architecture has the potential of high quantum efficiency, low cost and easy implementation in any optical system. As a bench-mark, alternative concept where InGaAs/InP heterojunction couple to liquid crystal optical spatial light modulator (OSLM) structure was built that shows a full upconversion to visible of 1550nm laser light.

  13. Synthesis and characterization of Sn-doped hematite as visible light photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zhiqin; School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua 617000; Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn

    2016-05-15

    Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematitemore » with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.« less

  14. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less

  15. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE PAGES

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; ...

    2017-10-26

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less

  16. Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties.

    PubMed

    Zhang, Jin; Wang, Bing; Li, Chuang; Cui, Hao; Zhai, Jianping; Li, Qin

    2014-09-01

    To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiVO4 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline phases. The XPS results showed that Ce was present as both Ce(4+) and Ce(3+) oxidation states in CeO2 and dispersed on the surface of BiVO4 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment. Copyright © 2014. Published by Elsevier B.V.

  17. Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity

    NASA Astrophysics Data System (ADS)

    König, Tobias A. F.; Ledin, Petr A.; Russell, Michael; Geldmeier, Jeffrey A.; Mahmoud, Mahmoud. A.; El-Sayed, Mostafa A.; Tsukruk, Vladimir V.

    2015-03-01

    We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging.We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06430e

  18. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties.

    PubMed

    Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun

    2017-11-16

    Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.

  19. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability.

    PubMed

    Li, Jie; Liu, Yuan; Zhu, Zhijian; Zhang, Guozhu; Zou, Tao; Zou, Zhijun; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2013-01-01

    A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300-1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice.

  20. Deep seawater inherent optical properties in the Southern Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  1. TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan

    2018-01-01

    An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.

  2. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy

    PubMed Central

    2017-01-01

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933

  3. Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy.

    PubMed

    Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther

    2017-09-20

    Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.

  4. Using the shortwave infrared to image middle ear pathologies

    PubMed Central

    Valdez, Tulio A.; Bruns, Oliver T.; Bawendi, Moungi G.

    2016-01-01

    Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. Imaging with shortwave infrared light (SWIR, 1–2 μm) shares many advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features. However, the clinical potential of this approach has been largely unexplored because suitable detectors, until recently, have been either unavailable or cost prohibitive. Here, taking advantage of newly available detector technology, we demonstrate the potential of SWIR light to improve diagnostics through the development of a medical otoscope for determining middle ear pathologies. We show that SWIR otoscopy has the potential to provide valuable diagnostic information complementary to that provided by visible pneumotoscopy. We show that in healthy adult human ears, deeper tissue penetration of SWIR light allows better visualization of middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani. In addition, we investigate the potential for detection of middle ear fluid, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. Middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling straightforward fluid detection in a model using the SWIR otoscope. Moreover, our device is easily translatable to the clinic, as the ergonomics, visual output, and operation are similar to a conventional otoscope. PMID:27551085

  5. Porphyrin-based polymeric nanostructures for light harvesting applications: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Orellana, Walter

    The capture and conversion of solar energy into electricity is one of the most important challenges to the sustainable development of mankind. Among the large variety of materials available for this purpose, porphyrins concentrate great attention due to their well-known absorption properties in the visible range. However, extended materials like polymers with similar absorption properties are highly desirable. In this work, we investigate the stability, electronic and optical properties of polymeric nanostructures based on free-base porphyrins and phthalocyanines (H2P, H2Pc), within the framework of the time-dependent density functional perturbation theory. The aim of this work is the stability, electronic, and optical characterization of polymeric sheets and nanotubes obtained from H2P and H2Pc monomers. Our results show that H2P and H2Pc sheets exhibit absorption bands between 350 and 400 nm, slightly different that the isolated molecules. However, the H2P and H2Pc nanotubes exhibit a wide absorption in the visible and near-UV range, with larger peaks at 600 and 700 nm, respectively, suggesting good characteristic for light harvesting. The stability and absorption properties of similar structures obtained from ZnP and ZnPc molecules is also discussed. Departamento de Ciencias Físicas, República 220, 037-0134 Santiago, Chile.

  6. Family of BODIPY Photocages Cleaved by Single Photons of Visible/Near-Infrared Light.

    PubMed

    Peterson, Julie A; Wijesooriya, Chamari; Gehrmann, Elizabeth J; Mahoney, Kaitlyn M; Goswami, Pratik P; Albright, Toshia R; Syed, Aleem; Dutton, Andrew S; Smith, Emily A; Winter, Arthur H

    2018-06-13

    Photocages are light-sensitive chemical protecting groups that provide external control over when, where, and how much of a biological substrate is activated in cells using targeted light irradiation. Regrettably, most popular photocages (e.g., o-nitrobenzyl groups) absorb cell-damaging ultraviolet wavelengths. A challenge with achieving longer wavelength bond-breaking photochemistry is that long-wavelength-absorbing chromophores have shorter excited-state lifetimes and diminished excited-state energies. However, here we report the synthesis of a family of BODIPY-derived photocages with tunable absorptions across the visible/near-infrared that release chemical cargo under irradiation. Derivatives with appended styryl groups feature absorptions above 700 nm, yielding photocages cleaved with the highest known wavelengths of light via a direct single-photon-release mechanism. Photorelease with red light is demonstrated in living HeLa cells, Drosophila S2 cells, and bovine GM07373 cells upon ∼5 min irradiation. No cytotoxicity is observed at 20 μM photocage concentration using the trypan blue exclusion assay. Improved B-alkylated derivatives feature improved quantum efficiencies of photorelease ∼20-fold larger, on par with the popular o-nitrobenzyl photocages (εΦ = 50-100 M -1 cm -1 ), but absorbing red/near-IR light in the biological window instead of UV light.

  7. Perfect absorption of modified-molybdenum-disulfide-based Tamm plasmonic structures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Wang, Jicheng; Hu, Zheng-Da; Sang, Tian; Feng, Yan

    2018-06-01

    The two-dimensional semiconductor materials of transition metal molybdenum disulfide display various special optical properties in the interaction of matter and light. In this work, we study the strong coupling between the two-dimensional materials’ excitons and Tamm plasmon polaritons (TPPs). To enhance the interaction between light and matter, we introduce the grating modulation in the traditional Tamm structure. By adjusting the structure parameters of the grating-modified Tamm system, we achieve perfect absorption in the visible region. Our research results will pave the way for the application of ultrathin polarization optical devices.

  8. U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.

    PubMed

    Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis

    2017-12-25

    In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.

  9. Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.

    2017-10-01

    Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.

  10. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  11. Exploring the origin of high optical absorption in conjugated polymers.

    PubMed

    Vezie, Michelle S; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dörling, Bernhard; Ashraf, Raja Shahid; Goñi, Alejandro R; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C; Campoy-Quiles, Mariano; Nelson, Jenny

    2016-07-01

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  12. Cube-like Cu{sub 2}MoS{sub 4} photocatalysts for visible light-driven degradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ke; Chen, Wenxing; Chen, Haiping

    2015-07-15

    Cube-like Cu{sub 2}MoS{sub 4} nanoparticles with low-index facets and high crystallinity were fabricated via a hydrothermal method. The as-obtained nanocubes with an average size of 40-60 nm are composed of stacking-Cu{sub 2}MoS{sub 4} layers separated by a weak Van der Waals gap of 0.5 nm. A strong absorption at visible light region is observed in the nanocube aqueous solution, indicating its optical-band gap of 1.78 eV. The photocatalytic measurements reveal that the nanocubes can thoroughly induce the degradation of methyl orange under visible light irradiation with good structural stability. Our finding may provide a way in design and fabrication ofmore » transition metal dichalcogenide nanostructures for practical applications.« less

  13. Protective Effect of Fucoxanthin Isolated from Laminaria japonica against Visible Light-Induced Retinal Damage Both in Vitro and in Vivo.

    PubMed

    Liu, Yixiang; Liu, Meng; Zhang, Xichun; Chen, Qingchou; Chen, Haixiu; Sun, Lechang; Liu, Guangming

    2016-01-20

    With increasingly serious eye exposure to light stresses, such as light-emitting diodes, computers, and widescreen mobile phones, efficient natural compounds for preventing visible light-induced retinal damages are becoming compelling needs in the modern society. Fucoxanthin, as the main light absorption system in marine algae, may possess an outstanding bioactivity in vision protection because of its filtration of blue light and excellent antioxidative activity. In this work, both in vitro and in vivo simulated visible light-induced retinal damage models were employed. The in vitro results revealed that fucoxanthin exhibited better bioactivities than lutein, zeaxanthin, and blueberry anthocyanins in inhibiting overexpression of vascular endothelial growth factor, resisting senescence, improving phagocytic function, and clearing intracellular reactive oxygen species in retinal pigment epithelium cells. The in vivo experiment also confirmed the superiority of fucoxanthin than lutein in protecting retina against photoinduced damage. This excellent bioactivity may be attributed to its unique structural features, including allenic, epoxide, and acetyl groups. Fucoxanthin is expected to be an important ocular nutrient in the future.

  14. Room-Temperature and Aqueous-Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visible-Light-Enhanced Hydrogen Generation.

    PubMed

    Shi, Jiayuan; Kuwahara, Yasutaka; Wen, Meicheng; Navlani-García, Miriam; Mori, Kohsuke; An, Taicheng; Yamashita, Hiromi

    2016-09-06

    A straightforward aqueous synthesis of MoO3-x nanoparticles at room temperature was developed by using (NH4 )6 Mo7 O24 ⋅4 H2 O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as-prepared products are nanoparticles with diameters of 90-180 nm. The diffuse reflectance UV-visible-near-IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible-light and near-infrared region, such nanostructures exhibit an enhancement of activity toward visible-light catalytic hydrogen generation. MoO3-x nanoparticles synthesized with a molar ratio of Mo(VI) /Mo(V) 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as-prepared plasmonic MoO3-x nanoparticles, which reveals its potential application in visible-light catalytic hydrogen production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    NASA Astrophysics Data System (ADS)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  16. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    PubMed

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO 2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi 2 S 3 , to improve the photocathodic protection property of TiO 2 for metals under visible light. Bi 2 S 3 /TiO 2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi 2 S 3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO 2 and orthorhombic Bi 2 S 3 and exhibited a high visible light response. The photocurrent density of Bi 2 S 3 /TiO 2 was significantly higher than that of pure TiO 2 under visible light. The sensitization of Bi 2 S 3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO 2 . The Bi 2 S 3 /TiO 2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  17. MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhao, Fenfen; Rong, Yuefei; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2018-03-01

    MoS2 quantum dots (QDs) that are 5 nm in size were deposited on the surface of ultrathin TiO2 nanotubes (TNTs) with 5 nm wall thickness by using an improved hydrothermal method to form a MoS2 QDs@TNT visible-light photocatalyst. The ultrathin TNTs with high percentage of photocatalytic reactive facets were fabricated by the commercially available TiO2 nanoparticles (P25) through an improved hydrothermal method, and the MoS2 QDs were acquired by using a surfactant-assisted technique. The novel MoS2 QDs@TNT photocatalysts showed excellent photocatalytic activity with a decolorization rate of 92% or approximately 3.5 times more than that of pure TNTs for the high initial concentration of methylene blue solution (20 mg l-1) within 40 min under visible-light irradiation. MoS2 as the co-catalysts favored the broadening of TNTs into the visible-light absorption scope. The quantum confinement and edge effects of the MoS2 QDs and the heterojunction formed between the MoS2 QDs and TNTs efficiently extended the lifetime of photoinduced charges, impeded the recombination of photoexcited electron-hole pairs, and improved the visible-light-driven high-efficiency photocatalysis.

  18. Zinc oxide nanostructures and its nano-compounds for efficient visible light photo-catalytic processes

    NASA Astrophysics Data System (ADS)

    Adam, Rania E.; Alnoor, Hatim; Elhag, Sami; Nur, Omer; Willander, Magnus

    2017-02-01

    Zinc oxide (ZnO) in its nanostructure form is a promising material for visible light emission/absorption and utilization in different energy efficient photocatalytic processes. We will first present our recent results on the effect of varying the molar ratio of the synthesis nutrients on visible light emission. Further we will use the optimized conditions from the molar ration experiments to vary the synthesis processing parameters like stirring time etc. and the effect of all these parameters in order to optimize the efficiency and control the emission spectrum are investigated using different complementary techniques. Cathodoluminescence (CL) is combined with photoluminescence (PL) and electroluminescence (EL) as the techniques to investigate and optimizes visible light emission from ZnO/GaN light emitting diodes. We will then show and discuss our recent finding of the use of high quality ZnO nanoparticles (NPs) for efficient photo-degradation of toxic dyes using the visible spectra, namely with a wavelength up to 800 nm. In the end, we show how ZnO nanorods (NRs) are used as the first template to be transferred to bismuth zinc vanadate (BiZn2VO6). The BiZn2VO6 is then used to demonstrate efficient and cost effective hydrogen production through photoelectrochemical water splitting using solar radiation.

  19. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.

    PubMed

    Liou, Je-Wen; Chang, Hsin-Hou

    2012-08-01

    This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.

  20. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  1. Interference-enhanced infrared-to-visible upconversion in solid-state thin films sensitized by colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Mengfei; Jean, Joel; Bulović, Vladimir; Baldo, Marc A.

    2017-05-01

    Infrared-to-visible photon upconversion has potential applications in photovoltaics, sensing, and bioimaging. We demonstrate a solid-state thin-film device that utilizes sensitized triplet-triplet exciton annihilation, converting infrared photons absorbed by colloidal lead sulfide nanocrystals (NCs) into visible photons emitted from a luminescent dopant in rubrene at low incident light intensities. A typical bilayer device consisting of a monolayer of NCs and a doped film of rubrene is limited by low infrared absorption in the thin NC film. Here, we augment the bilayer with an optical spacer layer and a silver-film back reflector, resulting in interference effects that enhance the optical field and thus the absorption in the NC film. The interference-enhanced device shows an order-of-magnitude increase in the upconverted emission at the wavelength of λ = 610 nm when excited at λ = 980 nm. At incident light intensities above 1.1 W/cm2, the device attains maximum efficiency, converting (1.6 ± 0.2)% of absorbed infrared photons into higher-energy singlet excitons in rubrene.

  2. Computational study of interfacial charge transfer complexes of 2-anthroic acid adsorbed on a titania nanocluster for direct injection solar cells

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Kotsis, Konstantinos

    2016-09-01

    Adsorption and light absorption properties of interfacial charge transfer complexes of 2-anthroic acid and titania, promising for direct-injection solar cells, are studied ab initio. The formation of interfacial charge transfer bands is observed. The intensity of visible absorption is relatively low, highlighting a key challenge facing direct injection cells. We show that the popular strategy of using a lower level of theory for geometry optimization followed by single point calculations of adsorption or optical properties introduces significant errors which have been underappreciated: by up to 3 eV in adsorption energies, by up to 5 times in light absorption intensity.

  3. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2014-10-01

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (Vth). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  4. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles (NPs) and TiO2 nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag2S NPs and TiO2 NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag2S NPs on TiO2 NWs was created. Due to the coupling with such a low bandgap material as Ag2S, the TiO2 nanocomposites could have a visible-light absorption capability much higher than that of pure TiO2. As a result, the synthesized Ag2S/TiO2 nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO2 (Degussa P25, Germany) under visible light.

  5. A visible light-curable yet visible wavelength-transparent resin for stereolithography 3D printing

    NASA Astrophysics Data System (ADS)

    Park, Hong Key; Shin, Mikyung; Kim, Bongkyun; Park, Jin Woo; Lee, Haeshin

    2018-04-01

    Herein, a new polymeric resin for stereolithography (SLA) three-dimensional printing (SLA-3DP) is reported. An ultraviolet (UV) or visible (VIS) light source is critical for SLA printing technology. UV light can be used to manufacture 3D objects in SLA-3DP, but there are significant occupational safety and health issues (particularly for eyes). These issues prevent the widespread use of SLA-3DP at home or in the office. Through the use of VIS light, the safety and health issues can largely be solved, but only non-transparent 3D objects can be manufactured, which prevents the application of 3DP to the production of various common transparent consumer products. For these reasons, we developed a VIS light-curable yet visibly transparent resin for SLA-3DP, which also retains UV curability. The key was to identify the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (DPTBP). DPTBP was originally designed as a UV photoinitiator, but we found that VIS light irradiation is sufficient to split DPTBP and generate radicals due to its slight VIS light absorption up to 420 nm. The cured resin displays high transparency and beautiful transparent colors by incorporating various dyes; additionally, its mechanical properties are superior to those of commercial resins (Arario 410) and photoinitiators (Irgacure 2959).

  6. Light absorption properties of brown carbon over the southeastern Tibetan Plateau.

    PubMed

    Zhu, Chong-Shu; Cao, Jun-Ji; Huang, Ru-Jin; Shen, Zhen-Xing; Wang, Qi-Yuan; Zhang, Ning-Ning

    2018-06-01

    We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (b abs365 ) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC 365 ) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han

    2016-12-01

    In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.

  8. Visible light assisted degradation of organic dye using Ag{sub 3}PO{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanabal, R.; Bose, A. Chandra, E-mail: acbose@nitt.edu; Velmathi, S.

    2015-06-24

    The study of visible light photodegradation of organic dye Methylene Blue (MB) have been investigated using silver phosphate (Ag{sub 3}PO{sub 4}) as a photocatalyst which is good efficient material for photocatalytic reaction. The simple ion-exchange method is used to prepare Ag{sub 3}PO{sub 4}. The structure of the material have been confirmed using X-ray diffraction which shows cubic structure of Ag{sub 3}PO{sub 4}. The functional group of the Ag{sub 3}PO{sub 4} has been verified by Fourier transform infrared spectroscopy. The bandgap of Ag{sub 3}PO{sub 4} is calculated using kubelka-munk function from the ultra violet-visible diffuse reflectance spectroscopy, the absorption of Ag{submore » 3}PO{sub 4} starts from 470 nm. Under simulated visible light irradiation, Ag{sub 3}PO{sub 4} catalyst exhibits good catalytic ability for degrading MB dye.« less

  9. Supercritical-assistant liquid crystal template approach to synthesize mesoporous titania/multiwalled carbon nanotube composites with high visible-light driven photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chen; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng

    2014-12-15

    Graphical abstract: We investigate the influence of mesoporous titania content upon the visible-light driven photocatalytic performance of MPT/MWCNTs in phenol degradation. - Highlights: • MPT/MWCNTs were fabricated by liquid-crystal template in supercritical CO{sub 2}. • MPT/MWCNTs show high visible-light driven photoactivity for phenol degradation. • MPT/MWCNTs also show high reusable photoactivity under visible irradiation. • MPT content can control visible-light driven photoactivity of MPT/MWCNTs. • MPT is not easily broken away from from MPT/MWCNT composites. - Abstract: Mesoporous titania (MPT) was deposited onto multiwalled carbon nanotubes (MWCNTs) by deposition of titanium sol containing liquid-crystal template with assistant of supercritical CO{submore » 2}. The products were characterized with various analytical techniques to determine their structural, morphological, optical absorption and photocatalytic properties. The results indicate that in photocatalytic degradation of phenol under visible light, the mixtures or composites of MPT and MWCNT show the high efficiency because of synergies between absorbing visible light, releasing electrons and facilitating transfer of charge carriers of MWCNTs and providing activated centers of MPT. Because of the mutual constraint between MPT and MWCNTs on the photocatalytic efficiency, the optimal loading of MPT in MPT/MWCNT-3 for phenol degradation is 48%. Because the intimate contact between MWCNTs and MPT is more beneficial to electron transformation, photoactivity of mixture is lower than that of composites with high reusable performance. The optimum conditions of phenol degradation were obtained.« less

  10. Visible Light-Driven Photocatalytic Performance of N-Doped ZnO/g-C3N4 Nanocomposites.

    PubMed

    Kong, Ji-Zhou; Zhai, Hai-Fa; Zhang, Wei; Wang, Shan-Shan; Zhao, Xi-Rui; Li, Min; Li, Hui; Li, Ai-Dong; Wu, Di

    2017-09-06

    N-doped ZnO/g-C 3 N 4 composites have been successfully prepared via a facile and cost-effective sol-gel method. The nanocomposites were systematically characterized by XRD, FE-SEM, HRTEM, FT-IR, XPS, and UV-vis DRS. The results indicated that compared with the pure N-doped ZnO, the absorption edge of binary N-doped ZnO/g-C 3 N 4 shifted to a lower energy with increasing the visible-light absorption and improving the charge separation efficiency, which would enhance its photocatalytic activity. Compared with the pure g-C 3 N 4 , ZnO, N-doped ZnO and the composite ZnO/g-C 3 N 4 , the as-prepared N-doped ZnO/g-C 3 N 4 exhibits a greatly enhanced photocatalytic degradation of methylene blue and phenol under visible-light irradiation. Meanwhile, N-doped ZnO/g-C 3 N 4 possesses a high stability. Finally, a proposed mechanism for N-doped ZnO/g-C 3 N 4 is also discussed. The improved photocatalysis can be attributed to the synergistic effect between N-doped ZnO and g-C 3 N 4 , including the energy band structure and enhanced charge separation efficiency.

  11. [Spectral Analysis of CdZnSe Ternary Quantum Dots Sensitized TiO2 Tubes and Its Application in Visible-Light Photocatalysis].

    PubMed

    Han, Zhi-zhong; Ren, Li-li; Pan, Hai-bo; Li, Chun-yan; Chen, Jing-hua; Chen, Jian-zhong

    2015-11-01

    In this work, cadmium nitrate hexahydrate [Cd(NO₃)₂ · 6H₂O] is as a source of cadmium, zinc nitrate [Zn(NO₃)₂] as a source of zinc source, and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH₄). Then water-soluble Cd₁₋xZnxSe ternary quantum dots with different component were prepared by colloid chemistry. The as-prepared Cd₁₋xZnx Se ternary quantum dots exhibit stable fluorescent property in aqueous solution, and can still maintain good dispersivity at room temperature for four months. Powder X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd₁₋xZnxSe. It is found that the as-prepared ternary quantum dots are cubic phase, show as sphere, and the average of particle size is approximate 4 nm. The spectral properties and energy band structure of the as-prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd. Compared with binary quantum dots CdSe and ZnSe, the ultraviolet-visible (UV-Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red-shift. The composites (Cd₀.₅ Zn₀.₅ Se@TNTs) of Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes (TNTs) were prepared by directly immerging TNTs into quantum dots dispersive solution for 5 hours. TEM image shows that the Cd₀.₅ Zn₀.₅ Se ternary quantum dots were closely combined to nanotube surface. The infrared spectra show that the Ti-Se bond was formed between Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes, which improve the stability of the composite. Compared to pristine TNTs, UV-Visible absorption spectrum of the composites is significantly enhanced in the visible region of light. And the absorption band edge of Cd₀.₅Zn₀.₅ Se@TNTs red-shift from 400 to 700 nm. The recombination of the photogenerated electron-hole pairs was restrained with the as-prepared ternary quantum dots. Therefore, the visible-light photocatalytic efficiency was greatly improved. After visible-light irradiation for 60 min, the degradation of Cd₀.₅ Zn₀.₅ Se@TNTs photocatalysts for RhB is nearly 100%, which is about 3. 3 times of that of pristine TNTs and 2. 5 times of that of pure Cd₀.₅ Zn₀.₅ Se ternary quantum dots, respectively.

  12. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    PubMed Central

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  13. Photochemical Construction of Carbonitride Structures for Red-Light Redox Catalysis.

    PubMed

    Yang, Pengju; Wang, Ruirui; Zhou, Min; Wang, Xinchen

    2018-05-22

    Metal-free carbonitride(CN) semiconductors are appealing light-transducers for photocatalytic redox reactions owing to the unique band gap and stability. To harness solar energy efficiently, CN catalysts that are active over a wider range of the visible spectrum are desired. Now a photochemical approach has been used to prepare a new-type triazine-based CN structure. The obtained CN shows extraordinary light-harvesting characteristics, with suitable semiconductor-redox potentials. The light absorption edge of the CN reaches up to 735 nm, which is significantly longer than that of the conventional CN semiconductor at about 460 nm. As expected, the CN can efficiently catalyze oxidation of alcohols and reduction of CO 2 with visible light, even under red-light irradiation. The results represent an important step toward the development of red-light-responsive triazine-based structures for solar applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhanced light trapping by focused ion beam (FIB) induced self-organized nanoripples on germanium (100) surface

    NASA Astrophysics Data System (ADS)

    Kamaliya, Bhaveshkumar; Mote, Rakesh G.; Aslam, Mohammed; Fu, Jing

    2018-03-01

    In this paper, we demonstrate enhanced light trapping by self-organized nanoripples on the germanium surface. The enhanced light trapping leading to high absorption of light is confirmed by the experimental studies as well as the numerical simulations using the finite-difference time-domain method. We used gallium ion (Ga+) focused ion beam to enable the formation of the self-organized nanoripples on the germanium (100) surface. During the fabrication, the overlap of the scanning beam is varied from zero to negative value and found to influence the orientation of the nanoripples. Evolution of nanostructures with the variation of beam overlap is investigated. Parallel, perpendicular, and randomly aligned nanoripples with respect to the scanning direction are obtained via manipulation of the scanning beam overlap. 95% broadband absorptance is measured in the visible electromagnetic region for the nanorippled germanium surface. The reported light absorption enhancement can significantly improve the efficiency of germanium-silicon based photovoltaic systems.

  15. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    PubMed

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  16. Nanoparticle-enhanced x-ray therapy for cancer

    NASA Astrophysics Data System (ADS)

    Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.

    2016-03-01

    Photothermal therapies of nanophotohyperthermia and nanophotothermolysis utilize the light absorptive properties of nanoparticles to create heat and free radicals in a small localized region. Conjugating nanoparticles with various biomolecules allows for targeted delivery to specific tissues or even specific cells, cancerous cells being of particular interest. Previous studies have investigated nanoparticles at visible and infrared wavelengths where surface plasmon resonance leads to unique absorption characteristics. However, issues such as poor penetration depth of the visible light through biological tissues limits the effectiveness of delivery by noninvasive means. In other news, various nanoparticles have been investigated as contrast agents for traditional X-ray procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance contrast of the detected X-ray image. Using X-rays to power photothermal therapies has three main advantages over visiblespectra wavelengths: the high penetration depth of X-rays through biological media makes noninvasive treatments very feasible; the high energy of individual photons means nanoparticles can be heated to desired temperatures with lower beam intensities, or activated to produce the free radicals; and X-ray sources are already common throughout the medical industry, making future implementation on existing equipment possible. This paper uses Lorenz-Mie theory to investigate the light absorption properties of various size gold nanoparticles over photon energies in the 1-100 keV range. These absorption values are then plugged into a thermal model to determine the temperatures reached by the nanoparticles for X-ray exposures of differing time and intensity. The results of these simulations are discussed in relation to the effective implementation of nanophotohyperthermia and nanophotothermolysis treatments.

  17. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.

    PubMed

    Sohrabnezhad, Sh; Zanjanchi, M A; Razavi, M

    2014-09-15

    Metal-semiconductor compounds, such as Ag/AgX (X=Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that O2- and OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: key information from ultrafast electronic spectroscopy.

    PubMed

    Kar, Prasenjit; Sardar, Samim; Alarousu, Erkki; Sun, Jingya; Seddigi, Zaki S; Ahmed, Saleh A; Danish, Ekram Y; Mohammed, Omar F; Pal, Samir Kumar

    2014-08-11

    Protoporphyrin IX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days

    NASA Astrophysics Data System (ADS)

    See, S. W.; Balasubramanian, R.; Wang, W.

    2006-05-01

    Many Southeast Asian countries have been constantly plagued by recurring smoke haze episodes as a result of traditional slash-and-burn practices in agricultural areas to clear crop lands or uncontrolled forest fires. However, our current knowledge on the physiochemical and optical properties of ambient aerosols associated with regional haze phenomenon is still fairly limited. Therefore a comprehensive field study was carried out in Singapore from March 2001 to March 2002 under varying weather conditions to gain a better understanding of the characteristics. The physical (size distribution of mass and number concentrations), chemical (mass concentrations of chemical components: 14 ions, 24 metals, elemental carbon (EC) and organic carbon (OC)), and optical (light absorption (bap) and scattering (bsp) by particles) characteristics of ambient aerosol particles were investigated. The results are reported separately for clear and hazy days by categorizing the days as clear or hazy on the basis of visibility data. It was observed that the average concentrations of PM2.5 and most chemical components increased approximately by a factor of 2 on hazy days. Backward air trajectories together with the hot spot distributions in the region indicated that the degradation in Singapore's air quality on hazy days was attributable to large-scale forest fires in Sumatra. This visibility degradation was quantitatively measured on the basis of the light absorption and scattering by particles. As expected, scattering rather than absorption controlled atmospheric visibility, and PM2.5 particles present on hazy days were more efficient at scattering light than those found on clear days.

  20. Fjord light regime: Bio-optical variability, absorption budget, and hyperspectral light availability in Sognefjord and Trondheimsfjord, Norway

    NASA Astrophysics Data System (ADS)

    Mascarenhas, V. J.; Voß, D.; Wollschlaeger, J.; Zielinski, O.

    2017-05-01

    Optically active constituents (OACs) in addition to water molecules attenuate light via processes of absorption and scattering and thereby determine underwater light availability. An analysis of their optical properties helps in determining the contribution of each of these to light attenuation. With an aim to study the bio-optical variability, absorption budget and 1% spectral light availability, hydrographical (temperature and salinity), and hyperspectral optical (downwelling irradiance and upwelling radiance) profiles were measured along fjord transects in Sognefjord and Trondheimsfjord, Norway. Optical water quality observations were also performed using Secchi disc and Forel-Ule scale. In concurrence, water samples were collected and analyzed via visible spectrophotometry, fluorometry, and gravimetry to quantify and derive inherent optical properties of the water constituents. An absorption model (R2 = 0.91, n = 36, p < 0.05) as a function of OACs is developed for Sognefjord using multiple regression analysis. Influenced by glacial meltwater, Sognefjord had higher concentration of inorganic suspended matter, while Trondheimsfjord had higher concentrations of CDOM. Increase in turbidity caused increased attenuation of light upstream, as a result of which the euphotic depth decreased from outer to inner fjord sections. Triangular representation of absorption budget revealed dominant absorption by CDOM at 443-555 nm, while that by phytoplankton at 665 nm. Sognefjord however exhibited much greater optical complexity. A significantly strong correlation between salinity and acdom440 is used to develop an algorithm to estimate acdom440 using salinity in Trondheimsfjord.

  1. Visible Light-Induced Degradation of Methylene Blue in the Presence of Photocatalytic ZnS and CdS Nanoparticles

    PubMed Central

    Soltani, Nayereh; Saion, Elias; Hussein, Mohd Zobir; Erfani, Maryam; Abedini, Alam; Bahmanrokh, Ghazaleh; Navasery, Manizheh; Vaziri, Parisa

    2012-01-01

    ZnS and CdS nanoparticles were prepared by a simple microwave irradiation method under mild conditions. The obtained nanoparticles were characterized by XRD, TEM and EDX. The results indicated that high purity of nanosized ZnS and CdS was successfully obtained with cubic and hexagonal crystalline structures, respectively. The band gap energies of ZnS and CdS nanoparticles were estimated using UV-visible absorption spectra to be about 4.22 and 2.64 eV, respectively. Photocatalytic degradation of methylene blue was carried out using physical mixtures of ZnS and CdS nanoparticles under a 500-W halogen lamp of visible light irradiation. The residual concentration of methylene blue solution was monitored using UV-visible absorption spectrometry. From the study of the variation in composition of ZnS:CdS, a composition of 1:4 (by weight) was found to be very efficient for degradation of methylene blue. In this case the degradation efficiency of the photocatalyst nanoparticles after 6 h irradiation time was about 73% with a reaction rate of 3.61 × 10−3 min−1. Higher degradation efficiency and reaction rate were achieved by increasing the amount of photocatalyst and initial pH of the solution. PMID:23202896

  2. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    PubMed

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  3. Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Yu, Han; Yu, Hongbing

    2017-01-01

    Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.

  4. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  5. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light

    PubMed Central

    2011-01-01

    WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3. PMID:21774800

  6. S-Doped Sb2O3 Nanocrystal: an Efficient Visible-Light Catalyst for Organic Degradation

    NASA Astrophysics Data System (ADS)

    Xue, Hun; Lin, Xinyi; Chen, Qinghua; Qian, Qingrong; Lin, Suying; Zhang, Xiaoyan; Yang, Da-Peng; Xiao, Liren

    2018-04-01

    The S-doped Sb2O3 nanocrystals were successfully synthesized using SbCl3 and thioacetamide (TAA) as precursors via a facile one-step hydrothermal method. The effects of pH of the precursor reaction solution on the product composition and property were determined. The results indicated that the doping amount of S could be tuned by adjusting the pH of the precursor solution. Furthermore, the S entered into the interstitial site of Sb2O3 crystals as S2-, which broadened the absorption wavelength range of the Sb2O3 nanocrystal. The S-doped Sb2O3 exhibited an excellent visible-light-driven photocatalytic activity in the decomposition of methyl orange and 4-phenylazophenol. Last, a possible photocatalytic mechanism of the S-doped Sb2O3 under visible light irradiation was proposed.

  7. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2-xNx derived from the ethylenediamine-based complex

    NASA Astrophysics Data System (ADS)

    Jiang, Zheng; Kong, Liang; Alenazey, Feraih Sh.; Qian, Yangdong; France, Liam; Xiao, Tiancun; Edwards, Peter P.

    2013-05-01

    A facile solvent evaporation induced self-assembly (SEISA) strategy was developed to synthesize mesoporous N-doped anatase TiO2 (SE-meso-TON) using a single organic complex precursor derived in situ from titanium butoxide and ethylenediamine in ethanol solution. After the evaporation of ethanol in a fume hood and subsequent calcinations at 450 °C, the obtained N-doped TiO2 (meso-TON) anatase was of finite crystallite size, developed porosity, large surface area (101 m2 g-1) and extended light absorption in the visible region. This SE-meso-TON also showed superior photocatalytic activity to the SG-meso-TON anatase prepared via sol-gel synthesis. On the basis of characterization results from XRD, XPS, N2 adsorption-desorption and ESR, the enhanced visible-light-responsive photocatalytic activity of SE-meso-TON was assigned to its developed mesoporosity and reduced oxygen vacancies.

  8. Biomass in the upwelling areas along the northwest coast of Africa as viewed with ERTS-1

    NASA Technical Reports Server (NTRS)

    Szekielda, K.; Curran, R. J.

    1973-01-01

    Light penetration in water is affected by plankton, algae, and dissolved and suspended matter. As a consequence, the composition of backscattered light from below the air-sea interface is determined by the nature of the constituents in the water column. In contrast to the absorption spectrum of chemically pure chlorophyll in solution, algae suspensions absorb and scatter light more uniformly throughout the visible part of the electromagnetic spectrum. Because of their spectral absorption and scattering properties plankton concentration can be estimated by measuring the spectral backscattered radiance over water. Experiments using this approach were performed in upwelling regions along the northwest coast of Africa.

  9. Infrared to visible image up-conversion using optically addressed spatial light modulator utilizing liquid crystal and InGaAs photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solodar, A., E-mail: asisolodar@gmail.com; Arun Kumar, T.; Sarusi, G.

    2016-01-11

    Combination of InGaAs/InP heterojunction photodetector with nematic liquid crystal (LC) as the electro-optic modulating material for optically addressed spatial light modulator for short wavelength infra-red (SWIR) to visible light image conversion was designed, fabricated, and tested. The photodetector layer is composed of 640 × 512 photodiodes array based on heterojunction InP/InGaAs having 15 μm pitch on InP substrate and with backside illumination architecture. The photodiodes exhibit extremely low, dark current at room temperature, with optimum photo-response in the SWIR region. The photocurrent generated in the heterojunction, due to the SWIR photons absorption, is drifted to the surface of the InP,more » thus modulating the electric field distribution which modifies the orientation of the LC molecules. This device can be attractive for SWIR to visible image upconversion, such as for uncooled night vision goggles under low ambient light conditions.« less

  10. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals

    NASA Astrophysics Data System (ADS)

    Silvi, Mattia; Verrier, Charlie; Rey, Yannick P.; Buzzetti, Luca; Melchiorre, Paolo

    2017-09-01

    Chiral iminium ions—generated upon condensation of α,β-unsaturated aldehydes and amine catalysts—are used extensively by chemists to make chiral molecules in enantioenriched form. In contrast, their potential to absorb light and promote stereocontrolled photochemical processes remains unexplored. This is despite the fact that visible-light absorption by iminium ions is a naturally occurring event that triggers the mechanism of vision in higher organisms. Herein we demonstrate that the direct excitation of chiral iminium ions can unlock unconventional reaction pathways, enabling enantioselective catalytic photochemical β-alkylations of enals that cannot be realized via thermal activation. The chemistry uses readily available alkyl silanes, which are recalcitrant to classical conjugate additions, and occurs under illumination by visible-light-emitting diodes. Crucial to success was the design of a chiral amine catalyst with well-tailored electronic properties that can generate a photo-active iminium ion while providing the source of stereochemical induction. This strategy is expected to offer new opportunities for reaction design in the field of enantioselective catalytic photochemistry.

  11. The physical properties of black carbon and other light-absorbing material emitted from prescribed fires in the United States

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kreidenweis, S. M.; Yokelson, R. J.; Sullivan, A. P.; Lee, T.; Collett, J. L.; Fortner, E.; Onasch, T. B.; Akagi, S. K.; Taylor, J.; Coe, H.

    2012-12-01

    Black carbon (BC) aerosol emitted from fires absorbs light, leading to visibility degradation as well as regional and global climate impacts. Fires also emit a wide range of trace gases and particulates that can interact with emitted BC and alter its optical properties and atmospheric lifetime. Non-BC particulate species emitted by fires can also scatter and absorb light, leading to additional effects on visibility. Recent work has shown that certain organic species can absorb light strongly at shorter wavelengths, giving it a brown or yellow color. This material has been classified as brown carbon, though it is not yet well defined. Land managers must find a balance between the negative impacts of prescribed fire emissions on visibility and air quality and the need to prevent future catastrophic wildfire as well as manage ecosystems for habitat restoration or other purposes. This decision process requires accurate assessments of the visibility impacts of fire emissions, including BC and brown carbon, which in turn depend on their optical properties. We present recent laboratory and aircraft measurements of black carbon and aerosol optical properties emitted from biomass burning. All measurement campaigns included a single particle soot photometer (SP2) instrument capable of providing size-resolved measurements of BC mass and number distributions and mixing state, which are needed to separate the BC and brown carbon contributions to total light absorption. The laboratory experiments also included a three-wavelength photoacoustic spectrometer that provided accurate measurements of aerosol light absorption. The laboratory systems also characterized emissions after they had been treated with a thermal denuder to remove semi-volatile coatings, allowing an assessment of the role of non-BC coatings on bulk aerosol optical properties. Emissions were also aged in an environmental smog chamber to examine the role of secondary aerosol production on aerosol optical properties.

  12. Enhanced performance of dye-sensitized solar cells based on TiO{sub 2} with NIR-absorption and visible upconversion luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Li; Yulin, Yang, E-mail: ylyang@hit.edu.cn; Mi, Zhou

    2013-02-15

    TiO{sub 2} with NIR-absorption and visible upconversion luminescence (UC-TiO{sub 2}) is prepared by a sol-gel method and calcined at 700 Degree-Sign C for 6 h. The material broadens the response region of dye sensitized solar cells (DSSCs) from an ultraviolet-visible region to the whole region of the solar spectrum. It shifts NIR sunlight to visible light which matches the strong absorbing region of the dye (N719). DSSCs based on UC-TiO{sub 2} achieved higher conversion efficiency than that on raw TiO{sub 2}. UC-TiO{sub 2} was mixed with commercial raw TiO{sub 2} as additive, and the short-circuit current density, open-circuit voltage andmore » conversion efficiency of the DSSC reached to the optimum values 13.38 mA/cm{sup 2}, 0.78 V and 6.63% (AM1.5 global), comparing with the blank values: 7.99 mA/cm{sup 2}, 0.75 V and 4.07%, respectively. Also the mechanisms of upconversion by multiphoton absorption and energy transfer processes are interpreted in this paper. - Graphical abstract: By introducing TiO{sub 2} with NIR-absorption and visible up-conversion luminescence into DSSC, a signal reflection was explored from ultra-violet region to visible region, and to near-IR region. Highlights: Black-Right-Pointing-Pointer TiO{sub 2} with NIR-absorption and visible up-conversion luminescence (UC-TiO{sub 2}) was prepared by a sol-gel method. Black-Right-Pointing-Pointer A systematic characterization and analysis was carried out to discuss the mechanism. Black-Right-Pointing-Pointer A significantly enhanced performance of DSSC was explored by using UC-TiO{sub 2} as an additive.« less

  13. Syntheses, structural characterization, and basic properties of unsymmetrically substituted biphenoquinones

    NASA Astrophysics Data System (ADS)

    Fujii, Ryotaro; Sugiura, Ken-ichi

    2018-03-01

    Unsymmetrically substituted biphenoquinones, 3,5-dimethyl-3‧,5‧-diphenylbiphenoquinone and 3,5-di-tert-butyl-3‧,5‧-diphenylbiphenoquinone, were prepared by a mixed oxidative coupling reaction of the corresponding phenols with potassium permanganate in CHCl3. The properties of the quinones such as reduction potential and visible light absorption were measured and positively shifted reduction potentials and bathochromic shifts as a result of light absorption were found to be characteristic of the π-expanded quinones. We also carried out single-crystal diffraction study and uncovered a unique packing motif attributable to their unsymmetrical structures.

  14. Retrieval of profile information from airborne multiaxis UV-visible skylight absorption measurements.

    PubMed

    Bruns, Marco; Buehler, Stefan A; Burrows, John P; Heue, Klaus-Peter; Platt, Ulrich; Pundt, Irene; Richter, Andreas; Rozanov, Alexej; Wagner, Thomas; Wang, Ping

    2004-08-01

    A recent development in ground-based remote sensing of atmospheric constituents by UV-visible absorption measurements of scattered light is the simultaneous use of several horizon viewing directions in addition to the traditional zenith-sky pointing. The different light paths through the atmosphere enable the vertical distribution of some atmospheric absorbers, such as NO2, BrO, or O3, to be retrieved. This approach has recently been implemented on an airborne platform. This novel instrument, the airborne multiaxis differential optical absorption spectrometer (AMAXDOAS), has been flown for the first time. In this study, the amount of profile information that can be retrieved from such measurements is investigated for the trace gas NO2. Sensitivity studies on synthetic data are performed for a variety of representative measurement conditions including two wavelengths, one in the UV and one in the visible, two different surface spectral reflectances, various lines of sight (LOSs), and for two different flight altitudes. The results demonstrate that the AMAXDOAS measurements contain useful profile information, mainly at flight altitude and below the aircraft. Depending on wavelength and LOS used, the vertical resolution of the retrieved profiles is as good as 2 km near flight altitude. Above 14 km the profile information content of AMAXDOAS measurements is sparse. Airborne multiaxis measurements are thus a promising tool for atmospheric studies in the troposphere and the upper troposphere and lower stratosphere region.

  15. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2017-06-14

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  16. Methods and apparatus for transparent display using scattering nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-05-10

    Transparent displays enable many useful applications, including heads-up displays for cars and aircraft as well as displays on eyeglasses and glass windows. Unfortunately, transparent displays made of organic light-emitting diodes are typically expensive and opaque. Heads-up displays often require fixed light sources and have limited viewing angles. And transparent displays that use frequency conversion are typically energy inefficient. Conversely, the present transparent displays operate by scattering visible light from resonant nanoparticles with narrowband scattering cross sections and small absorption cross sections. More specifically, projecting an image onto a transparent screen doped with nanoparticles that selectively scatter light at the image wavelength(s) yields an image on the screen visible to an observer. Because the nanoparticles scatter light at only certain wavelengths, the screen is practically transparent under ambient light. Exemplary transparent scattering displays can be simple, inexpensive, scalable to large sizes, viewable over wide angular ranges, energy efficient, and transparent simultaneously.

  17. VO2 microcrystals as an advanced smart window material at semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.

  18. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jingsong, E-mail: weijingsong@siom.ac.cn; Wang, Rui; University of Chinese Academy of Sciences, Beijing 100049

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thinmore » film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.« less

  19. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingting, E-mail: tingtingli1983@hotmail.com; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082; Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area,more » strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup −}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.« less

  20. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  1. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; ...

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  2. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  3. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE PAGES

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon; ...

    2017-08-26

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  4. Detection of wavelengths in the visible range using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Díaz, Leonardo; Morales, Yailteh; Mattos, Lorenzo; Torres, Cesar O.

    2013-11-01

    This paper shows the design and implementation of a fiber optic sensor for detecting and identifying wavelengths in the visible range. The system consists of a diffuse optical fiber, a conventional laser diode 650nm, 2.5mW of power, an ambient light sensor LX1972, a PIC 18F2550 and LCD screen for viewing. The principle used in the detection of the lambda is based on specular reflection and absorption. The optoelectronic device designed and built used the absorption and reflection properties of the material under study, having as active optical medium a bifurcated optical fiber, which is optically coupled to an ambient light sensor, which makes the conversion of light signals to electricas, procedure performed by a microcontroller, which acquires and processes the signal. To verify correct operation of the assembly were utilized the color cards of sewing thread and nail polish as samples for analysis. This optoelectronic device can be used in many applications such as quality control of industrial processes, classification of corks or bottle caps, color quality of textiles, sugar solutions, polymers and food among others.

  5. A full-sunlight-driven photocatalyst with super long-persistent energy storage ability

    PubMed Central

    Li, Jie; Liu, Yuan; Zhu, Zhijian; Zhang, Guozhu; Zou, Tao; Zou, Zhijun; Zhang, Shunping; Zeng, Dawen; Xie, Changsheng

    2013-01-01

    A major drawback of traditional photocatalysts like TiO2 is that they can only work under illumination, and the light has to be UV. As a solution for this limitation, visible-light-driven energy storage photocatalysts have been developed in recent years. However, energy storage photocatalysts that are full-sunlight-driven (UV-visible-NIR) and possess long-lasting energy storage ability are lacking. Here we report, a Pt-loaded and hydrogen-treated WO3 that exhibits a strong absorption at full-sunlight spectrum (300–1,000 nm), and with a super-long energy storage time of more than 300 h to have formaldehyde degraded in dark. In this new material system, the hydrogen treated WO3 functions as the light harvesting material and energy storage material simultaneously, while Pt mainly acts as the cocatalyst to have the energy storage effect displayed. The extraordinary full-spectrum absorption effect and long persistent energy storage ability make the material a potential solar-energy storage and an effective photocatalyst in practice. PMID:23934407

  6. Rational tuning of high-energy visible light absorption for panchromatic small molecules by a two-dimensional conjugation approach

    DOE PAGES

    He, B.; Zherebetskyy, D.; Wang, H.; ...

    2016-02-29

    We have demonstrated a rational two-dimensional (2D) conjugation approach towards achieving panchromatic absorption of small molecules. Furthermore, by extending the conjugation on two orthogonal axes of an electron acceptor, namely, bay-annulated indigo (BAI), the optical absorptions could be tuned independently in both high- and low-energy regions. The unconventional modulation of the high-energy absorption is rationalized by density functional theory (DFT) calculations. Finally, we determine that a 2D tuning strategy provides novel guidelines for the design of molecular materials with tailored optoelectronic properties.

  7. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur.

    PubMed

    Shamjad, P M; Tripathi, S N; Thamban, Navaneeth M; Vreeland, Heidi

    2016-11-24

    Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  8. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    PubMed Central

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-01-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species. PMID:27883083

  9. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.

  10. Effect of some operational parameters on the hydrogen generation efficiency of Ni-ZnO/PANI composite under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsib, Mohamed Faouzi, E-mail: Mohamed.faouzi.ncib@gmail.com; National School of Engineers; Naffati, Naima

    2015-10-15

    Graphical abstract: UV–vis spectra of PANI, ZnO, Ni{sub 0.01}Zn{sub 0.99}O, Ni{sub 0.01}Zn{sub 0.99}O/PANI3 and Ni{sub 0.1}Zn{sub 0.9}O/PANI{sub 10} nanocomposites. - Highlights: • Ni{sub x}Zn{sub 1−x}O/PANI{sub y} photocatalysts are synthesized by the impregnation method. • Ni{sup 2+} amount control the morphology of ZnO and enhances its photoactivity. • Both Ni{sup 2+} and PANI extend the light absorption of ZnO toward the visible region. • Both Ni{sup 2+} and PANI enhance the electron–hole separation. - Abstract: Ni{sub x}Zn{sub 1−x}O/Polyaniline hybrid photocatalysts are synthesized and used for the experiments of hydrogen production from water-splitting under visible irradiation. XRD, UV–vis DRS and SEM aremore » used to characterize the prepared materials. It is shown that the Ni{sup 2+} amount doped into ZnO controls its morphology and enhances its photoactivity for H{sub 2} generation. Polyaniline (PANI) is shown to sensitize ZnO and to extend its light absorption toward the visible region. The hybrid photocatalyst with 10 mol% Ni{sup 2+} and 10 wt.% PANI shows the maximum photocatalytic H{sub 2} production for one hour of visible irradiation: ∼558 μmol while only ∼178 μmol in the presence of pure ZnO. Additives like sacrificial electron donors and carbonate salts are found to play a key role in the improvement of H{sub 2} evolution. Thus, the hydrogen photoproduction efficiency increases in the order: thiosulfate > sulfide > propanol and HCO{sub 3}{sup −} > CO{sub 3}{sup 2−}.« less

  11. Hot electron induced NIR detection in CdS films.

    PubMed

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-03-11

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.

  12. Two-dimensional porous architecture of protonated GCN and reduced graphene oxide via electrostatic self-assembly strategy for high photocatalytic hydrogen evolution under visible light

    NASA Astrophysics Data System (ADS)

    Pu, Chenchen; Wan, Jun; Liu, Enzhou; Yin, Yunchao; Li, Juan; Ma, Yongning; Fan, Jun; Hu, Xiaoyun

    2017-03-01

    Herein, porous protonated graphitic carbon nitride (pGCN) is prepared from bulk g-C3N4 (GCN) directly by acidic cutting and hydrothermal process. The holey structure not only provides a lot of bounds on the accelerated and photo induced charge transfer and thus reduce the aggregation, but also endows the GCN with more exposure to the active site. The pGCN is obtained with an increased band gap of 2.91 eV together with a higher specific surface area of 82.76 m2g-1. Meanwhile, the positively charged GCN resulted from the protonation pretreatment is beneficial for improving the interaction with negatively charged GO sheets. Compared with GCN, pGCN-rGO displays a significant decrease of PL intensities and an apparently enhancement of visible-light absorption, resulting a lower charge recombination rate and a better light absorption. Besides, the enhanced charge separation is demonstrated by photoluminescence emission spectroscopy and the transient photocurrent measurement. The photocatalytic performance studies for the degradation of MB indicate that pGCN-rGO exhibits the highest adsorption ability towards dye molecules. In addition, the pGCN-5 wt% rGO composite shows the optimal photocatalytic activity, the photodegradation rate of MB is 99.4% after 80 min of irradiation and the H2 evolution performance up to 557 μmol g-1h-1 under visible light, which is much higher than the other control samples.

  13. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less

  14. Ag@AgHPW as a plasmonic catalyst for visible-light photocatalytic degradation of environmentally harmful organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenhui; Cao, Minhua, E-mail: caomh@bit.edu.cn; Li, Na

    2013-06-01

    Graphical abstract: Ag@Ag{sub x}H{sub 3−x}PW12O40 (Ag@AgHPW) nanoparticles (NPs), a new visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant, which show a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation. - Highlights: • A new visible-light driven photocatalyst Ag@Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} was designed. • The photocatalyst shows a high activity for the degradation of methyl blue. • The high activity can be ascribed to the synergy of photoexcited AgHPW and Ag. - Abstract: Ag@Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} (Ag@AgHPW) nanoparticles (NPs), a newmore » visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant. They show strong absorption in the visible region because of the localized surface plasmon resonance (LSPR) of Ag NPs. This plasmonic photocatalyst shows a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation, which could be attributed to the highly synergy of photoexcited Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} (AgHPW) and plasmon-excited Ag NPs and the confinement effects at interfaces between polyoxometalates (POMs) and silver. POM anions have redox ability and high photocatalytic activity, whereas Ag NPs could effectively accelerate the separation of electrons and holes, both of which contribute to their high activity.« less

  15. Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria.

    PubMed

    Ananpattarachai, Jirapat; Boonto, Yuphada; Kajitvichyanukul, Puangrat

    2016-03-01

    The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV-visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7 × 10(4) CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.

  16. Analytical modeling of light transport in scattering materials with strong absorption.

    PubMed

    Meretska, M L; Uppu, R; Vissenberg, G; Lagendijk, A; Ijzerman, W L; Vos, W L

    2017-10-02

    We have investigated the transport of light through slabs that both scatter and strongly absorb, a situation that occurs in diverse application fields ranging from biomedical optics, powder technology, to solid-state lighting. In particular, we study the transport of light in the visible wavelength range between 420 and 700 nm through silicone plates filled with YAG:Ce 3+ phosphor particles, that even re-emit absorbed light at different wavelengths. We measure the total transmission, the total reflection, and the ballistic transmission of light through these plates. We obtain average single particle properties namely the scattering cross-section σ s , the absorption cross-section σ a , and the anisotropy factor µ using an analytical approach, namely the P3 approximation to the radiative transfer equation. We verify the extracted transport parameters using Monte-Carlo simulations of the light transport. Our approach fully describes the light propagation in phosphor diffuser plates that are used in white LEDs and that reveal a strong absorption (L/l a > 1) up to L/l a = 4, where L is the slab thickness, l a is the absorption mean free path. In contrast, the widely used diffusion theory fails to describe this parameter range. Our approach is a suitable analytical tool for industry, since it provides a fast yet accurate determination of key transport parameters, and since it introduces predictive power into the design process of white light emitting diodes.

  17. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.

    2015-06-01

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  18. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    PubMed

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  19. Graphitic Carbon-Based Nanostructures for Energy and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Chan, Ka Long Donald

    This thesis focuses on the synthesis and characterization of graphitic carbonbased photocatalytic nanostructures for energy and environmental applications. The preparation of carbon- and oxygen-rich graphitic carbon nitride with enhanced photocatalytic hydrogen evolution property was investigated. Composite materials based on graphene quantum dots were also prepared. These composites were used for photocatalytic degradation of organic pollutants and photoelectrocatalytic disinfection. The first part of this thesis describes a facile method for the preparation of carbon- and oxygen-rich graphitic carbon nitride by thermal condensation. Incorporation of carbon and oxygen enhanced the photoresponse of carbon nitride in the visible-light region. After exfoliation, the product was c.a. 45 times more active than bulk graphitic carbon nitride in photocatalytic hydrogen evolution under visible-light irradiation. In the second part, a simple approach to enhance the photocatalytic activity of red phosphorus was developed. Mechanical ball milling was applied to reduce the size of red phosphorus and to deposit graphene quantum dots (GQDs) onto red phosphorus. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of Rhodamine B. The incorporation of GQDs in titanium dioxide could also extend the absorption spectrum of TiO2 into the visible-light range. The third part of this thesis reports on the fabrication of a visible-light-driven composite photocatalyst of TiO2 nanotube arrays (TNAs) and GQDs. Carboxyl-containing GQDs were covalently coupled to amine-modified TNAs. The product exhibited enhanced photocurrent and high photoelectrocatalytic performance in the inactivation of E. coli under visible-light irradiation. The role of various reactive species in the photoelectrocatalytic process was investigated.

  20. Property Characterization and Photocatalytic Activity Evaluation of BiGdO₃ Nanoparticles under Visible Light Irradiation.

    PubMed

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-09-08

    BiGdO₃ nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO₃ was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO₃ crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO₃ was 5.465 angstrom. The band gap of BiGdO₃ was estimated to be 2.25 eV. BiGdO₃ showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO₃ was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO₃ demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min(-1) with BiGdO₃ as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO₃ particles were also discussed in detail. BiGdO₃/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment.

  1. Magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles for visible light photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Suresh D., E-mail: suresh.dk@manipal.edu; Kumbar, Sagar; Menon, Samvit G.

    Highlights: • Phase pure, magnetic ZnFe{sub 2}O{sub 4}@ZnO nanoparticles synthesized with excellent yield. • ZnFe{sub 2}O{sub 4}@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe{sub 2}O{sub 4}@ZnO. • Excellent reusability of ZnFe{sub 2}O{sub 4}@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area ofmore » 41 m{sup 2}/g and visible light absorption make ZnFe{sub 2}O{sub 4}@ZnO nanoparticles a good solar photocatalyst. ZnFe{sub 2}O{sub 4}@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe{sub 2}O{sub 4}@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.« less

  2. Visible light photoreactivity from Carbon nitride bandgap states in Nb and Ti oxides

    NASA Astrophysics Data System (ADS)

    Lee, Hosik; Ohno, Takahisa; Icnsee Team

    2011-03-01

    Lamellar niobic and titanic solid acids (HNb3O8 , H2Ti4O9) are photocatalysts which can be used for environmental cleanup application and hydrogen production through water splitting. To increase their efficiency, bandgap adjustment which can induce visible light reactivity in addition to ultraviolet light has been one of hot issue in this kinds of photo-catalytic materials. Nitrogen-doping was one of the direction and its microscopic structures are disputed in this decade. In this work, we calculate the layered niobic and titanic solid acids structure and bandgap. Bandgap reduction by carbon nitride absorption are observed computationally. It is originated from localized nitrogen state which is consistent with previous experiments.

  3. Two-dimensional assembly structure of graphene and TiO2 nanosheets from titanic acid with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Hao, Rong; Guo, Shien; Wang, Xiuwen; Feng, Tong; Feng, Qingmao; Li, Mingxia; Jiang, Baojiang

    2016-06-01

    The titanic acid sheets were prepared by one-step hydrazine hydrate-assisted hydrothermal process. Then the reduced graphite oxide (rGO)@TiO2 nanosheet composites were finally obtained through ultrasonic exfoliation and following calcination treatment process. rGO@TiO2 nanosheet composites show excellent hydrogen production performance under AM1.5 light source. The highest hydrogen evolution yield (923.23 μmol) is nearly two times higher than that of pure TiO2, mainly due to the special electron structure and more active sites for TiO2 nanosheet. The introduction of graphene could improve the TiO2 nanosheet stability and extend visible-light absorption range.

  4. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  5. Highly efficient visible-light driven photochromism: developments towards a solid-state molecular switch operating through a triplet-sensitised pathway.

    PubMed

    Brayshaw, Simon K; Schiffers, Stephanie; Stevenson, Anna J; Teat, Simon J; Warren, Mark R; Bennett, Robert D; Sazanovich, Igor V; Buckley, Alastair R; Weinstein, Julia A; Raithby, Paul R

    2011-04-11

    We introduce a new highly efficient photochromic organometallic dithienylethene (DTE) complex, the first instance of a DTE core symmetrically modified by two Pt(II) chromophores [Pt(PEt(3))(2)(C≡C)(DTE)(C≡C)Pt(PEt(3))(2)Ph] (1), which undergoes ring-closure when activated by visible light in solvents of different polarity, in thin films and even in the solid state. Complex 1 has been synthesised and fully photophysically characterised by (resonance) Raman and transient absorption spectroscopy complemented by calculations. The ring-closing photoconversion in a single crystal of 1 has been followed by X-ray crystallography. This process occurs with the extremely high yield of 80%--considerably outperforming the other DTE derivatives. Remarkably, the photocyclisation of 1 occurs even under visible light (>400 nm), which is not absorbed by the non-metallated DTE core HC≡C(DTE)C≡CH (2) itself. This unusual behaviour and the high photocyclisation yields in solution are attributed to the presence of a heavy atom in 1 that enables a triplet-sensitised photocyclisation pathway, elucidated by transient absorption spectroscopy and DFT calculations. The results of resonance Raman investigation confirm the involvement of the alkynyl unit in the frontier orbitals of both closed and open forms of 1 in the photocyclisation process. The changes in the Raman spectra upon cyclisation have permitted the identification of Raman marker bands, which include the acetylide stretching vibration. Importantly, these bands occur in the spectral region unobstructed by other vibrations and can be used for non-destructive monitoring of photocyclisation/photoreversion processes and for optical readout in this type of efficiently photochromic thermally stable systems. This study indicates a strategy for generating efficient solid-state photoswitches in which modification of the Pt(II) units has the potential to tune absorption properties and hence operational wavelength across the visible range. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Engineering the Complex-Valued Constitutive Parameters of Metamaterials for Perfect Absorption

    NASA Astrophysics Data System (ADS)

    Wang, Pengwei; Chen, Naibo; Tang, Chaojun; Chen, Jing; Liu, Fanxin; Sheng, Saiqian; Yan, Bo; Sui, Chenghua

    2017-04-01

    We theoretically studied how to directly engineer the constitutive parameters of metamaterials for perfect absorbers of electromagnetic waves. As an example, we numerically investigated the necessary refractive index n and extinction coefficient k and the relative permittivity ɛ and permeability μ of a metamaterial anti-reflection layer, which could cancel the reflection from a hydrogenated amorphous silicon (α-Si:H) thin film on a metal substrate, within the visible wavelength range from 300 to 800 nm. We found that the metamaterial anti-reflection layer should have a negative refractive index ( n < 0) for short-wavelength visible light but have a positive refractive index ( n > 0) for long-wavelength visible light. The relative permittivity ɛ and permeability μ could be fitted by the Lorentz model, which exhibited electric and magnetic resonances, respectively.

  7. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  8. Nanocomposite of exfoliated bentonite/g-C3N4/Ag3PO4 for enhanced visible-light photocatalytic decomposition of Rhodamine B.

    PubMed

    Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar

    2016-11-01

    Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode

    NASA Astrophysics Data System (ADS)

    Qin, Yanyan; Li, Yilian; Tian, Zhen; Wu, Yangling; Cui, Yanping

    2016-01-01

    A constant current deposition method was selected to load highly dispersed Pt nanoparticles on TiO2 nanotubes in this paper, to extend the excited spectrum range of TiO2-based photocatalysts to visible light. The morphology, elemental composition, and light absorption capability of as-obtained Pt/TiO2 nanotubes electrodes were characterized by FE-SEM, energy dispersive spectrometer (EDS), X-ray photoelectron spectrometer (XPS), and UV-vis spectrometer. The photocatalytic and photoelectrocatalytic oxidation of As(III) using a Pt/TiO2 nanotube arrays electrode under visible light ( λ > 420 nm) irradiation were investigated in a divided anode/cathode electrolytic tank. Compared with pure TiO2 which had no As(III) oxidation capacity under visible light, Pt/TiO2 nanotubes exhibited excellent visible-light photocatalytic performance toward As(III), even at dark condition. In anodic cell, As(III) could be oxidized with high efficiency by photoelectrochemical process with only 1.2 V positive biasing. Experimental results showed that photoelectrocatalytic oxidation process of As(III) could be well described by pseudo-first-order kinetic model. Rate constants depended on initial concentration of As(III), applied bias potential and solution pH. At the same time, it was interesting to find that in cathode cell, As(III) was also continuously oxidized to As(V). Furthermore, high-arsenic groundwater sample (25 m underground) with 0.32 mg/L As(III) and 0.35 mg/L As(V), which was collected from Daying Village, Datong basin, Northern China, could totally transform to As(V) after 200 min under visible light in this system.

  10. Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3.

    PubMed

    Wu, Hongmin; Ma, Jinzhu; Zhang, Changbin; He, Hong

    2014-03-01

    Carbon-modified titanium dioxide (TiO2) was prepared by a sol-gel method using tetrabutyl titanate as precursor, with calcination at various temperatures, and tested for the photocatalytic oxidation (PCO) of gaseous NH3 under visible and UV light. The test results showed that no samples had visible light activity, while the TiO2 calcined at 400°C had the best UV light activity among the series of catalysts, and was even much better than the commercial catalyst P25. The catalysts were then characterized by X-ray diffractometry, Brunauer-Emmett-Teller adsorption analysis, Raman spectroscopy, thermogravimetry/differential scanning calorimetry coupled with mass spectrometry, ultraviolet-visible diffuse reflectance spectra, photoluminescence spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy. It was shown that the carbon species residuals on the catalyst surfaces induced the visible light adsorption of the samples calcined in the low temperature range (< 300°C). However, the surface acid sites played a determining role in the PCO of NH3 under visible and UV light over the series of catalysts. Although the samples calcined at low temperatures had very high SSA, good crystallinity, strong visible light absorption and also low PL emission intensity, they showed very low PCO activity due to their very low number of acid sites for NH3 adsorption and activation. The TiO2 sample calcined at 400°C contained the highest number of acid sites among the series of catalysts, therefore showing the highest performance for the PCO of NH3 under UV light. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chong, Shau Poh; Bernucci, Marcel T.; Borycki, Dawid; Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2017-02-01

    Visible light is absorbed by intrinsic chromophores such as photopigment, melanin, and hemoglobin, and scattered by subcellular structures, all of which are potential retinal disease biomarkers. Recently, high-resolution quantitative measurement and mapping of hemoglobin concentrations was demonstrated using visible light Optical Coherence Tomography (OCT). Yet, most high-resolution visible light OCT systems adopt free-space, or bulk, optical setups, which could limit clinical applications. Here, the construction of a multi-functional fiber-optic OCT system for human retinal imaging with <2.5 micron axial resolution is described. A detailed noise characterization of two supercontinuum light sources with differing pulse repetition rates is presented. The higher repetition rate, lower noise, source is found to enable a sensitivity of 87 dB with 0.1 mW incident power at the cornea and a 98 microsecond exposure time. Using a broadband, asymmetric, fused single-mode fiber coupler designed for visible wavelengths, the sample arm is integrated into an ophthalmoscope platform, rendering it portable and suitable for clinical use. In vivo anatomical, Doppler, and spectroscopic imaging of the human retina is further demonstrated using a single oversampled B-scan. For spectroscopic fitting of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) content in the retinal vessels, a noise bias-corrected absorbance spectrum is estimated using a sliding short-time Fourier transform of the complex OCT signal and fit using a model of light absorption and scattering. This yielded path length (L) times molar concentration, LCHbO2 and LCHb. Based on these results, we conclude that high-resolution visible light OCT has potential for depth-resolved functional imaging of the eye.

  12. Constructing Ordered Three-Dimensional TiO2 Channels for Enhanced Visible-Light Photocatalytic Performance in CO2 Conversion Induced by Au Nanoparticles.

    PubMed

    Xue, Hairong; Wang, Tao; Gong, Hao; Guo, Hu; Fan, Xiaoli; Gao, Bin; Feng, Yaya; Meng, Xianguang; Huang, Xianli; He, Jianping

    2018-03-02

    As a typical photocatalyst for CO 2 reduction, practical applications of TiO 2 still suffer from low photocatalytic efficiency and limited visible-light absorption. Herein, a novel Au-nanoparticle (NP)-decorated ordered mesoporous TiO 2 (OMT) composite (OMT-Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO 2 shows high photocatalytic performance for CO 2 reduction under visible light. The ordered mesoporous TiO 2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three-dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO 2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO 2 reduction under visible light by constructing OMT-based Au-SPR-induced photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hot Carrier Generation and Extraction of Plasmonic Alloy Nanoparticles

    PubMed Central

    2017-01-01

    The conversion of light to electrical and chemical energy has the potential to provide meaningful advances to many aspects of daily life, including the production of energy, water purification, and optical sensing. Recently, plasmonic nanoparticles (PNPs) have been increasingly used in artificial photosynthesis (e.g., water splitting) devices in order to extend the visible light utilization of semiconductors to light energies below their band gap. These nanoparticles absorb light and produce hot electrons and holes that can drive artificial photosynthesis reactions. For n-type semiconductor photoanodes decorated with PNPs, hot charge carriers are separated by a process called hot electron injection (HEI), where hot electrons with sufficient energy are transferred to the conduction band of the semiconductor. An important parameter that affects the HEI efficiency is the nanoparticle composition, since the hot electron energy is sensitive to the electronic band structure of the metal. Alloy PNPs are of particular importance for semiconductor/PNPs composites, because by changing the alloy composition their absorption spectra can be tuned to accurately extend the light absorption of the semiconductor. This work experimentally compares the HEI efficiency from Ag, Au, and Ag/Au alloy nanoparticles to TiO2 photoanodes for the photoproduction of hydrogen. Alloy PNPs not only exhibit tunable absorption but can also improve the stability and electronic and catalytic properties of the pure metal PNPs. In this work, we find that the Ag/Au alloy PNPs extend the stability of Ag in water to larger applied potentials while, at the same time, increasing the interband threshold energy of Au. This increasing of the interband energy of Au suppresses the visible-light-induced interband excitations, favoring intraband excitations that result in higher hot electron energies and HEI efficiencies. PMID:29354665

  14. 3D nanostructured N-doped TiO2 photocatalysts with enhanced visible absorption.

    PubMed

    Cho, Sumin; Ahn, Changui; Park, Junyong; Jeon, Seokwoo

    2018-05-24

    Considering the environmental issues, it is essential to develop highly efficient and recyclable photocatalysts in purification systems. Conventional TiO2 nanoparticles have strong intrinsic oxidizing power and high surface area, but are difficult to collect after use and rarely absorb visible light, resulting in low photocatalytic efficiency under sunlight. Here we develop a new type of highly efficient and recyclable photocatalyst made of a three-dimensional (3D) nanostructured N-doped TiO2 monolith with enhanced visible light absorption. To prepare the sample, an ultrathin TiN layer (∼10 nm) was conformally coated using atomic layer deposition (ALD) on 3D nanostructured TiO2. Subsequent thermal annealing at low temperature (550 °C) converted TiN to anatase phase N-doped TiO2. The resulting 3D N-doped TiO2 showed ∼33% enhanced photocatalytic performance compared to pure 3D TiO2 of equivalent thickness under sunlight due to the reduced bandgap, from 3.2 eV to 2.75 eV through N-doping. The 3D N-doped TiO2 monolith could be easily collected and reused at least 5 times without any degradation in photocatalytic performance.

  15. Visible light responsive Cu2MoS4 nanosheets incorporated reduced graphene oxide for efficient degradation of organic pollutant

    NASA Astrophysics Data System (ADS)

    Rameshbabu, R.; Vinoth, R.; Navaneethan, M.; Harish, S.; Hayakawa, Y.; Neppolian, B.

    2017-10-01

    Visible light active copper molybdenum sulfide (Cu2MoS4) nanosheets were successfully anchored on reduced graphene oxide (rGO) using facile hydrothermal method. During the hydrothermal reaction, reduction of graphene oxide into rGO and the formation of Cu2MoS4 nanosheets were successfully obtained. The charge transfer interaction between the rGO sheets and Cu2MoS4 nanosheets extended the absorption to visible region in comparison with bare Cu2MoS4 nanosheets i.e without rGO sheets. Furthermore, the notable photoluminescence quenching observed for Cu2MoS4/rGO nanocomposite revealed the effective role of rGO towards the significant inhibition of electron-hole pair recombination. The photocatalytic efficiencies of bare Cu2MoS4 and Cu2MoS4/rGO nanocomposite was evaluated for the degradation of methyl orange dye under visible irradiation (λ > 420 nm). A maximum photodegradation efficiency of 99% was achieved for Cu2MoS4/rGO nanocomposite, while only 64% photodegradation was noted for bare Cu2MoS4. The enhanced optical absorption in visible region, high surface area, and low charge carrier recombination in the presence of rGO sheets were the main reasons for the enhancement in photodegardation of MO dye. In addition, the resultant Cu2MoS4/rGO nanocomposite was found to be reusable for five successive cycles without significant loss in its photocatalytic performance.

  16. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  17. [Research progress and direction of atmospheric brown carbon].

    PubMed

    Yan, Cai-Qing; Zheng, Mei; Zhang, Yuan-Hang

    2014-11-01

    Organic aerosol is one of the most important components of atmospheric aerosols. In recent years, organic aerosol has been found and proved to be light absorbing in UV-Visible region. Light absorbing organic carbon (also named as brown carbon) has been one of the forefronts in the field of atmospheric research. Its light absorption contributions to radiative forcing, regional air quality, and global climate change have drawn much attention. Regional air pollution is complex in China. Frequent visibility decline and severe regional haze episodes occurred since January 2013. Previous studies showed high amount of estimated columnar light-absorbing organic carbon in China, and according to current research findings, major sources of fine particulate matter in China (e. g. biomass burning and fossil fuel combustion) were also recognized as the main sources for brown carbon. Considering the high abundance of brown carbon in atmosphere, there is a great need to reconsider and reevaluate contributions of organic aerosol to light absorption, especially its role in haze formation and radiative forcing. However, up to now, basic researches on light absorbing organic carbon are still limited in China. This study aimed to elucidate the need for basic research on brown carbon, summarize previous studies and research progress from different aspects such as sources, composition, measurement, mass concentration distribution, optical property, radiative forcing of brown carbon, point out the existing problems and deficiencies, and put forward suggestions for future study.

  18. UV-Visible reflectance of Phobos from SPICAM and OMEGA and comparison with Deimos

    NASA Astrophysics Data System (ADS)

    Gondet, Brigitte; Bertaux, Jean-Loup; Montmessin, Franck; Reberarc, Aurelie

    2016-04-01

    Mars Express made several encounters with Phobos and a few with Deimos since 2004. Observations with SPICAM and OMEGA imaging spectrometers on board Mars Express covers the range from UV (110-312 nm) to visible and mid IR up to 5 μm. In the following we consider the ultraviolet (UV) channel of SPICAM and only the visible channel of OMEGA and its small UV extension down to 390 nm, in order to compare with SPICAM. Preliminary results were presented already in the past [1]. Since then, a more detailed analysis was carried out, subtracting some internally scattered light affecting the SPICAM UV retrieved reflectance. The combined spectrum of Radiance Factor from SPICAM and OMEGA suggests the presence of a deep absorption feature. Both instruments, taken separately, support also this absorption feature. In the visible part of CRISM [2] on board MRO, one feature is centered at 0.65 μm, with an absorption depth varying from 0 to 4%, an other one is centered at 2.8μm. These two Visible IR features were interpreted [2] either to highly desiccated Fe-phyllosilicate minerals indigenous to the bodies, or to a surface process involving Rayleigh scattering and absorption of small iron particles formed by exogenic space weathering processing. In this rather uncertain situation, the UV band detected by SPICAM and OMEGA on board Mars Express is of great importance to attempt discriminating between the two scenarios proposed above to explain the Visible-IR reflectance spectra of Phobos. [1] Bertaux J.L. et al. (2011) EPSC/DPS conference abstract, Nantes, November 2011, [5] Freaman A.A. et al. (2014) Icarus, 229 , 196-205.

  19. Role of Short-Range Chemical Ordering in (GaN) 1–x (ZnO) x for Photodriven Oxygen Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dennis P.; Neuefeind, Joerg C.; Koczkur, Kallum M.

    (GaN)1–x(ZnO)x (GZNO) is capable of visible-light driven water splitting, but its bandgap at x ≤ 0.15 (>2.7 eV) results in poor visible-light absorption. Unfortunately, methods to narrow its bandgap by incorporating higher ZnO concentrations are accompanied by extensive Urbach tailing near the absorption-edge, which is indicative of structural disorder or chemical inhomogeneities. We evaluated whether this disorder is intrinsic to the bond-length distribution in GZNO or is a result of defects introduced from the loss of Zn during nitridation. Here, the synthesis of GZNO derived from layered double hydroxide (LDH) precursors is described which minimizes Zn loss and chemical inhomogeneitiesmore » and enhances visible-light absorption. The average and local atomic structures of LDH-derived GZNO were investigated using X-ray and neutron scattering and are correlated with their oxygen evolution rates. An isotope-contrasted neutron-scattering experiment was conducted in conjunction with reverse Monte Carlo (RMC) simulations. We showed that a bond-valence bias in the RMC refinements reproduces the short-range ordering (SRO) observed in structure refinements using isotope-contrasted neutron data. The findings suggest that positional disorder of cation–anion pairs in GZNO partially arises from SRO and influences local bond relaxations. Furthermore, particle-based oxygen evolution reactions (OERs) in AgNO3 solution reveal that the crystallite size of GZNO correlates more than positional disorder with oxygen evolution rate. These findings illustrate the importance of examining the local structure of multinary photocatalysts to identify dominant factors in particulate-based photodriven oxygen evolution.« less

  20. Study of cylindrical optical micro-structure technology used in infrared laser protection

    NASA Astrophysics Data System (ADS)

    Sun, Yanjun; Liu, Shunrui; Wang, Zhining; Zhao, Yixuan; Wu, Boqi; Leng, Yanbing; Wang, Li

    2016-10-01

    The paper aimed at the problem that strong absorption in visible wavelengths and equipment or operator injury caused by specular reflection exist in infrared laser protection technology to propose an infrared laser non-specular reflection optical micro-structure formed from optical window surface. It has the function of little effect on visible light transmission and large-angle scattering to 1064nm infrared laser in order to enable laser protection. The paper uses light track method to design double-side micro-cylindrical lens arrays with dislocation construction. Array period T and curvature radius of lens units R should meet the condition:0

  1. Visible light emission measurements from a dense electrothermal launcher plasma

    NASA Astrophysics Data System (ADS)

    Hankins, O. E.; Bourham, M. A.; Earnhart, J.; Gilligan, J. G.

    1993-01-01

    Measurements of the visible light emission from dense, weakly non-ideal plasmas have been performed on the experimental electrothermal launcher device 'SIRENS'. The plasma is created by the ablation or a Lexan insulator in the source, which then flows through a cylindrical barrel which serves as the material sample. Visible light emission spectra have been observed both in-bore and from the muzzle flash or the barrel, and from the flash or the source. Due to high plasma opacity (the plasma emits as a near blackbody) and absorption by the molecular components of the vapor shield, the hotter core or the arc has been difficult to observe. Recent measurements along the axis or the device indicate time-averaged plasma temperatures in the barrel or about 1 eV for lower energy shots, which agree with experimental measurements of the average heat flux and plasma conductivity along the barrel. Measurements or visible emission from the source indicate time averaged temperatures of 1 to 2 eV which agree with the theoretical estimates derived from ablated mass measurements and calculated estimates derived from plasma conductivity measurements.

  2. Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation

    PubMed Central

    Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.

    2009-01-01

    We performed multiplexed sensing on nanohole array devices to simultaneously obtain information on molecular absorption, scattering, and refractive-index change, which were distinguished by using different array structures with distinct optical behavior. Up to 25 arrays were fabricated within a 65 μm × 50 μm area to provide real-time information of the local surface environment. The performance of multiplexed sensing was examined by flowing NaCl, coomassie blue, bovine serum albumin, and liposome solutions that exhibit different visible light absorption / scattering properties and different refractive indices. Experimental artifacts from light source fluctuation, sample injections, and light scattering induced by aggregates in solutions were detected by monitoring superwavelength holes or nanohole arrays with different periodicity and hole diameters. PMID:19157848

  3. Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials

    NASA Astrophysics Data System (ADS)

    Cai, Dengke; Neyer, Andreas; Kuckuk, Rüdiger; Heise, H. Michael

    2010-07-01

    Special siloxane polymers have been produced via an addition reaction from commercially available two-component addition materials by thermal curing. Polydimethylsiloxane (PDMS) based polymers have already been used in the optical communication field, where passive polymer multimode waveguides are required for short-distance datacom optical applications. For such purpose, materials with low intrinsic absorption losses within the spectral region of 600-900 nm wavelengths are essential. For vibrational absorption band assignments, especially in the visible and short-wave near-infrared region, the mid-infrared and Raman spectra were investigated for fundamental vibrations of the siloxane materials, shedding light onto the chemistry before and after material polymerization. Within the near-infrared and long-wave visible spectral range, vibrational C sbnd H stretching overtone and combination bands dominate the spectra, rendering an optical characterization of core and clad materials. Such knowledge also provides information for the synthesis and optical characterization, e.g., of deuterated derivatives with less intrinsic absorption losses from molecular vibrations compared to the siloxane materials studied.

  4. Optical properties of Y and Ti co-substituted BiFeO{sub 3} multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vikash, E-mail: rk.dwivedi@jiit.ac.in; Sharma, Subhash, E-mail: rk.dwivedi@jiit.ac.in; Kumar, Manoj, E-mail: rk.dwivedi@jiit.ac.in

    2014-04-24

    Pure and co substituted Bi{sub 1−x}Y{sub x}Fe{sub 1−x}Ti{sub x}O{sub 3} (x ≤ 0.24) ceramics were synthesized by solid state reaction method. X-ray diffraction patterns of Y and Ti codoped samples have shown single phase formation. Increasing Y and Ti concentration reveals structural transition from rhombohedral phase (R3c) for x ≤ 0.16 to orthorhombic phase (Pnma) for x = 0.24. FT-IR spectra exhibit broad absorption bands, which may be due to the overlapping of Fe-O and Bi-O vibrations. UV-visible spectroscopy results show strong absorption of light in the spectral range of 400-720 nm, indicating optical band gap in the visible regionmore » for these samples. These interesting optical properties of co-substituted BFO samples in visible region may find potential applications in optoelectronic devices.« less

  5. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications

    NASA Astrophysics Data System (ADS)

    Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo

    2015-08-01

    Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.

  6. Broadband optical properties of biomass burning aerosol and identification of brown carbon chromophores

    NASA Astrophysics Data System (ADS)

    Rudich, Y.; Bluvshtein, N.; Lin, P.; Flores, J. M.; Segey, L.; Tas, E.; Snider, G.; Weagle, C. L. M.; Brown, S. S.; Laskin, J.; Laskin, A.

    2017-12-01

    Accurate modeling of the radiative effects of smoke aerosols requires wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols from 300 to 650 nm wavelengths during a regional nighttime bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the single scattering albedo from a background level of 0.95 to 0.7. In addition, PM2.5 filter samples were collected for detailed chemical analysis of the water soluble organics that contribute to light absorption. Nitroaromatic compounds were identified as major organic species responsible for the 50-80% of the total visible light absorption (> 400 nm). Typical chromophores include 4-nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, and known products of lignin pyrolysis. Our results suggests that night time chemistry of nitrogen oxides with particles may play a significant role in atmospheric transformations of brown carbon.

  7. Synthesis of carbon-doped nanosheets m-BiVO4 with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property

    NASA Astrophysics Data System (ADS)

    Zhao, Deqiang; Zong, Wenjuan; Fan, Zihong; Fang, Yue-Wen; Xiong, Shimin; Du, Mao; Wu, Tianhui; Ji, Fangying; Xu, Xuan

    2017-04-01

    To achieve an efficient visible-light absorption and degradation of bismuth vanadate (BiVO4), in this paper, a carbon-doped (C-doped) nanosheets monoclinic BiVO4 (m-BiVO4), with thicknesses within 19.86 ± 8.48 nm, was synthesized using polyvinylpyrrolidone K-30 (PVP) as a template and l-carbonic as the carbon source by one-step hydrothermal synthesis method. This C-doped BiVO4 in three-dimensional (3D) hierarchical structure enjoys high visible-light photocatalytic property. The samples were characterized using x-ray diffraction, scanning electron microscope, Raman spectra, energy dispersive spectrometer, transmission electron microscope, x-ray photoelectron spectroscopy, UV-Vis diffused reflectance spectroscopy, specific surface area, electron spin resonance, and transient photocurrent response, photoluminescence spectra, and incident-photon-to-current conversion efficiency, respectively. What is more, we studied the C-doping effect on the band-gap energy of BiVO4 based on First-principles. X-ray diffraction analysis showed that all photocatalysts were in the same single monoclinic scheelite structure. According to the other characterization results, the element C was successfully doped in BiVO4, resulting in the 3D hierarchical structure of C-doped BiVO4 (P-L-BiVO4). We speculated that it could be the directional coalescence mechanism by which the l-cysteine promoted the two-dimensional growth and C-doping process of BiVO4, thus leading to the formation of nanosheets which were then promoted into 3D self-assembly by PVP and the shortening of the band gap. Among all samples, P-L-BiVO4 can make the highest removal ratio of rhodamine B under visible-light irradiation. The stability of P-L-BiVO4 was verified by recycle experiments. It showed that P-L-BiVO4 had strong visible-light absorption behavior and high electron-hole separation efficiency and stability, making a significant advantage in actual situation.

  8. Magnetically separable {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core-shell nanocomposites: Fabrication and visible-light-driven photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minqiang, E-mail: jbmwgkc@126.com; Li, Di; Jiang, Deli

    2012-08-15

    Novel visible-light-induced {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts capable of magnetic separation have been synthesized by a facile sol-gel and after-annealing process. The as-obtained core-shell nanocomposite is composed of a central {gamma}-Fe{sub 2}O{sub 3} core with a strong response to external fields, an interlayer of SiO{sub 2}, and an outer layer of Ce-doped TiO{sub 2} nanocrystals. UV-vis spectra analysis indicates that Ce doping in the compound results in a red-shift of the absorption edge, thus offering increased visible light absorption. We show that such a {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite with appreciated Ce doping amount exhibitsmore » much higher visible-light photocatalytic activity than bare TiO{sub 2} and undoped {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-TiO{sub 2} core-shell nanocomposite toward the degradation of rhodamine B (RhB). Moreover, the {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts could be easily separated and reused from the treated water under application of an external magnetic field. - Graphical abstract: Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core/shell nanocomposite photocatalysts with enhanced photocatalytic activity and fast magnetic separability were prepared. Highlights: Black-Right-Pointing-Pointer Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core/shell composite photocatalysts were prepared. Black-Right-Pointing-Pointer The resulting core/shell composite show high visible light photocatalytic activity. Black-Right-Pointing-Pointer The nanocomposite photocatalysts can be easily recycled with excellent durability.« less

  9. Numerical and experimental investigation of light trapping effect of nanostructured diatom frustules

    NASA Astrophysics Data System (ADS)

    Chen, Xiangfan; Wang, Chen; Baker, Evan; Sun, Cheng

    2015-07-01

    Recent advances in nanophotonic light-trapping technologies offer promising solutions in developing high-efficiency thin-film solar cells. However, the cost-effective scalable manufacturing of those rationally designed nanophotonic structures remains a critical challenge. In contrast, diatoms, the most common type of phytoplankton found in nature, may offer a very attractive solution. Diatoms exhibit high solar energy harvesting efficiency due to their frustules (i.e., hard porous cell wall made of silica) possessing remarkable hierarchical micro-/nano-scaled features optimized for the photosynthetic process through millions of years of evolution. Here we report numerical and experimental studies to investigate the light-trapping characteristic of diatom frustule. Rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods are employed to investigate the light-trapping characteristics of the diatom frustules. In simulation, placing the diatom frustules on the surface of the light-absorption materials is found to strongly enhance the optical absorption over the visible spectrum. The absorption spectra are also measured experimentally and the results are in good agreement with numerical simulations.

  10. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  11. Multiple resonant absorber with prism-incorporated graphene and one-dimensional photonic crystals in the visible and near-infrared spectral range

    NASA Astrophysics Data System (ADS)

    Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.

    2018-04-01

    A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.

  12. On the accuracy of aerosol photoacoustic spectrometer calibrations using absorption by ozone

    NASA Astrophysics Data System (ADS)

    Davies, Nicholas W.; Cotterell, Michael I.; Fox, Cathryn; Szpek, Kate; Haywood, Jim M.; Langridge, Justin M.

    2018-04-01

    In recent years, photoacoustic spectroscopy has emerged as an invaluable tool for the accurate measurement of light absorption by atmospheric aerosol. Photoacoustic instruments require calibration, which can be achieved by measuring the photoacoustic signal generated by known quantities of gaseous ozone. Recent work has questioned the validity of this approach at short visible wavelengths (404 nm), indicating systematic calibration errors of the order of a factor of 2. We revisit this result and test the validity of the ozone calibration method using a suite of multipass photoacoustic cells operating at wavelengths 405, 514 and 658 nm. Using aerosolised nigrosin with mobility-selected diameters in the range 250-425 nm, we demonstrate excellent agreement between measured and modelled ensemble absorption cross sections at all wavelengths, thus demonstrating the validity of the ozone-based calibration method for aerosol photoacoustic spectroscopy at visible wavelengths.

  13. Near infrared spectrum simulation applied to human skin for diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao

    2007-11-01

    This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.

  14. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj

    2018-05-01

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible lightmore » absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.« less

  15. Property Characterization and Photocatalytic Activity Evaluation of BiGdO3 Nanoparticles under Visible Light Irradiation

    PubMed Central

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-01-01

    BiGdO3 nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO3 was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO3 crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO3 was 5.465 angstrom. The band gap of BiGdO3 was estimated to be 2.25 eV. BiGdO3 showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO3 was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO3 demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min−1 with BiGdO3 as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO3 particles were also discussed in detail. BiGdO3/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment. PMID:27618018

  16. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    PubMed

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  17. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2013-08-01

    Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood burning OC.

  18. Dynamic light absorption of biomass-burning organic carbon photochemically aged under natural sunlight

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Jang, M.

    2014-02-01

    Wood-burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH) and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC) was measured over the course of photooxidation using a UV-visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross section (integrated between 280 and 600 nm) of OC increased by 11-54% (except high RH) in the morning and then gradually decreased by 19-68% in the afternoon. This dynamic change in light absorption of wood-burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs), rapidly decreased with time, indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of primary organic aerosol with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood-burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line wildfire in Florida. We conclude that the biomass-burning OC becomes less light absorbing after 8-9 h sunlight exposure compared to fresh wood-burning OC.

  19. The influence of UV laser radiation on the absorption and luminescence of photothermorefractive glasses containing silver ions

    NASA Astrophysics Data System (ADS)

    Ignat'ev, A. I.; Ignat'ev, D. A.; Nikonorov, N. V.; Sidorov, A. I.

    2015-08-01

    It is experimentally shown that irradiation of silver-containing glasses by nanosecond laser pulses with a wavelength of 248 nm leads to the formation of unstable point defects (having absorption bands in the UV and visible spectral ranges) in the irradiated region and causes the transition of ions and charged molecular silver clusters to the neutral state, which is accompanied by an increase in the luminescence intensity in the visible spectral range. The influence of pulsed laser irradiation is compared with the effect of exposure to cw UV light of a mercury lamp. Some models are proposed to explain the influence of the laser effect on the optical properties of glasses.

  20. Synthesis and optical properties of Pr and Ti doped BiFeO{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vikash, E-mail: vikash.singh@abes.ac.in; Applied Science and Humanities, ABES EC, Ghaziabad; Sharma, Subhash

    2016-05-23

    Bi{sub 1-x}Pr{sub x}Fe{sub 1-x}Ti{sub x}O{sub 3} ceramics with x = 0.00, 0.10 and 0.20 were synthesized by solid state reaction method. Rietveld fitting of diffraction data reveals structural transition from rhombohedral phase (R{sub 3C}) for x ≤ 0.10 to orthorhombic phase (P{sub nma}) for x = 0.20. FTIR spectra exhibit broad absorption bands, which may be due to the overlapping of Fe-O and Bi-O vibrations in these ceramics. UV-visible spectroscopy results show strong absorption of light in the spectral range of 400-600 nm, indicating optical band gap in the visible region for these samples.

  1. Sunlight assisted direct amide formation via a charge-transfer complex.

    PubMed

    Cohen, Irit; Mishra, Abhaya K; Parvari, Galit; Edrei, Rachel; Dantus, Mauricio; Eichen, Yoav; Szpilman, Alex M

    2017-09-12

    We report on the use of charge-transfer complexes between amines and carbon tetrachloride, as a novel way to activate the amine for photochemical reactions. This principle is demonstrated in a mild, transition metal free, visible light assisted, dealkylative amide formation from feedstock carboxylic acids and amines. The low absorption coefficient of the complex allows deep light penetration and thus scale up to a gram scale.

  2. Synthesis and photocatalytic degradation study of methylene blue dye under visible light irradiation by Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0)

    NASA Astrophysics Data System (ADS)

    Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.

    2018-05-01

    The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.

  3. Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route, controllable Mn doping and application in UV and near-visible light detection.

    PubMed

    Li, Dong; Xing, Guanjie; Tang, Shilin; Li, Xiaohong; Fan, Louzhen; Li, Yunchao

    2017-10-12

    We report herein a heat-triggered precursor slow releasing route for the one-pot synthesis of ultrathin ZnSe nanowires (NWs), which relies on the gradual dissolving of Se powder into oleylamine containing a soluble Zn precursor under heating. This route allows the reaction system to maintain a high monomer concentration throughout the entire reaction process, thus enabling the generation of ZnSe NWs with diameter down to 2.1 nm and length approaching 400 nm. The size-dependent optical properties and band-edge energy levels of the ZnSe NWs were then explored in depth by UV-visible spectroscopy and cyclic voltammetry, respectively. Considering their unique absorption properties, these NWs were specially utilized for fabricating photoelectrochemical-type photodetectors (PDs). Impressively, the PDs based on the ZnSe NWs with diameters of 2.1 and 4.5 nm exhibited excellent responses to UVA and near-visible light, respectively: both possessed ultrahigh on/off ratios (5150 for UVA and 4213 for near-visible light) and ultrawide linear response ranges (from 2.0 to 9000 μW cm -2 for UVA and 5.0 to 8000 μW cm -2 for near-visible light). Furthermore, these ZnSe NWs were selectively doped with various amounts of Mn 2+ to tune their emission properties. As a result, ZnSe NW film-based photochromic cards were creatively developed for visually detecting UVA and near-visible radiation.

  4. Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf

    1995-03-01

    The light-scattering properties of dental enamel and dentin were measured at 543, 632, and 1053 nm. Angularly resolved scattering distributions for these materials were measured from 0 deg to 180 deg using a rotating goniometer. Surface scattering was minimized by immersing the samples in an index-matching bath. The scattering and absorption coefficients and the scattering phase function were deduced by comparing the measured scattering data with angularly resolved Monte Carlo light-scattering simulations. Enamel and dentin were best represented by a linear combination of a highly forward-peaked Henyey-Greenstein (HG) phase function and an isotropic phase function. Enamel weakly scatters light between 543 nm and 1.06 mu m, with the scattering coefficient ( mu s) ranging from mu s = 15 to 105 cm-1. The phase function is a combination of a HG function with g = 0.96 and a 30-60% isotropic phase function. For enamel, absorption is negligible. Dentin scatters strongly in the visible and near IR ( mu s approximately equals 260 cm-1) and absorbs weakly ( mu a approximately equals 4 cm-1). The scattering phase function for dentin is described by a HG function with g = 0.93 and a very weak isotropic scattering component ( approximately 2%).

  5. CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light

    NASA Astrophysics Data System (ADS)

    Mohamed, R. M.; Shawky, Ahmed

    2018-03-01

    Hexagonal ZnO nanoparticles doped with Mn and supported with a minor amount of carbon nanotubes (CNTs) were synthesized through a simple coprecipitation-ultrasonication process with high yield. The effect of Mn doping, as well as CNTs addition on structure, surface morphology and texture, optical and electronic properties, was studied. We found that just 1% Mn doping and 1% CNT addition on ZnO showed the best crystallinity, highest surface area, improved visible light absorption, and a lowest estimated band gap of 2.6 eV with minimum charge recombination as revealed from photoluminescence spectra. The application of the optimum composition of the synthesized sample for the photodegradation of malachite green dye showed enhanced photocatalytic activity > 95% under visible light irradiation within 120 min at a minimum dosage of 0.1 g L-1 without any using of hole scavenger or changing the pH. This work highlighting the humble preparation procedure and develops photocatalysis research for real industrial applications.

  6. Light, Molecules, Action: Using Ultrafast Uv-Visible and X-Ray Spectroscopy to Probe Excited State Dynamics in Photoactive Molecules

    NASA Astrophysics Data System (ADS)

    Sension, R. J.

    2017-06-01

    Light provides a versatile energy source capable of precise manipulation of material systems on size scales ranging from molecular to macroscopic. Photochemistry provides the means for transforming light energy from photon to process via movement of charge, a change in shape, a change in size, or the cleavage of a bond. Photochemistry produces action. In the work to be presented here ultrafast UV-Visible pump-probe, and pump-repump-probe methods have been used to probe the excited state dynamics of stilbene-based molecular motors, cyclohexadiene-based switches, and polyene-based photoacids. Both ultrafast UV-Visible and X-ray absorption spectroscopies have been applied to the study of cobalamin (vitamin B_{12}) based compounds. Optical measurements provide precise characterization of spectroscopic signatures of the intermediate species on the S_{1} surface, while time-resolved XANES spectra at the Co K-edge probe the structural changes that accompany these transformations.

  7. Facile fabrication of BiOI decorated NaNbO3 cubes: A p-n junction photocatalyst with improved visible-light activity

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Yan, Qing; Shao, Yu; Wang, Changqian; Yan, Tao; Ji, Pengge; Du, Bin

    2017-09-01

    To enhance the separation efficiency of photo-generated carriers, a p-n junction photocatalyst BiOI/NaNbO3 has been fabricated by a facile method. The obtained samples were characterized by XRD, SEM, TEM, HRTEM, PL, N2 sorption-desorption and DRS. DRS results showed that the light absorption edges of BiOI/NaNbO3 hybrids were red-shifted with the increase of BiOI content. The SEM and TEM images revealed that the BiOI was widely decorated over the surfaces of NaNbO3 cubes. The formation of p-n heterojunction at their interfaces was proved by the HRTEM image. The visible light-driven photocatalytic activity was evaluated by the degradation of methylene blue (MB) in aqueous solution. Compared with single NaNbO3 and BiOI, the BiOI/NaNbO3 hybrid photocatalysts have exhibited significantly enhanced activities. Meanwhile, the mass ratio of BiOI/NaNbO3 displayed important influence on the MB degradation. The hybrid photocatalyst with BiOI content of 40% performed the optimal activity. This activity enhancement should be attributed to the strong visible light absorption, the high migration and separation efficiency of photo-induced carriers. The photocurrent and PL measurements confirmed that the interfacial charge separation efficiency was greatly improved by coupling BiOI with NaNbO3. Controlled experiments proved that the degradation of pollutants was mainly attributed to the oxidizing ability of the generated holes (h+), ·O2-, and ·OH radicals.

  8. Hydrogen generation from water/methanol under visible light using aerogel prepared strontium titanate (SrTiO3) nanomaterials doped with ruthenium and rhodium metals

    NASA Astrophysics Data System (ADS)

    Kuo, Yenting; Klabunde, Kenneth J.

    2012-07-01

    Nanostructured strontium titanate visible-light-driven photocatalysts containing rhodium and ruthenium were synthesized by a modified aerogel synthesis using ruthenium chloride and rhodium nitrate as dopant precursors, and titanium isopropoxide and strontium metal as the metal sources. The well-defined crystalline SrTiO3 structure was confirmed by means of x-ray diffraction. After calcination at 500 °C, diffuse reflectance spectroscopy shows an increase in light absorption at 370 nm due to the presence of Rh3 + ; however an increase of the calcination temperature to 600 °C led to a decrease in intensity, probably due to a loss of surface area. An increase in the rhodium doping level also led to an increase in absorption at 370 nm however, the higher amounts of dopant lowered the photocatalytic activity. The modified aerogel synthesis allows greatly enhanced H2 production performance from an aqueous methanol solution under visible light irradiation compared with lower surface area conventional materials. We believe that this enhanced activity is due to the higher surface areas while high quality nanocrystalline materials are still obtained. Furthermore, the surface properties of these nanocrystalline aerogel materials are different, as exhibited by the higher activities in alkaline solutions, while conventional materials (obtained via high temperature solid-state synthesis methods) only exhibit reasonable hydrogen production in acidic solutions. Moreover, an aerogel synthesis approach gives the possibility of thin-film formation and ease of incorporation into practical solar devices.

  9. Response of a 2DEG to Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Moreau, S.; Fedorych, O. M.; Sadowski, M. L.; Potemski, M.; Studenikin, S.; Austing, G.; Sachrajda, A. S.; Saku, T.; Hirayama, Y.

    In this paper, we study the behavior of a high mobility two dimensional electron gas under microwave irradiation by means of magneto-photoluminescence (PL) and absorption measurements. The high mobility sample investigated is a 15nm wide GaAs/AlGaAs quantum well with an electron concentration between 1-2×1011cm-2, tunable by visible-light illumination. Structures in the microwave absorption at 40-60GHz are identified as geometrically confined magneto-plasmons.

  10. Ab initio studies of Nb–N–S tri-doped TiO{sub 2} with enhanced visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Dahua; Cheng, Junxia; Cheng, Xinlu, E-mail: chengxl@scu.edu.cn

    2016-06-15

    The electronic and optical properties of Nb–N–S tri-doped anatase TiO{sub 2} were investigated within the frame of the density functional theory (DFT) plus U method. Results show that a significant red-shift effect and improvement of visible-light absorption for Nb–N–S tri-doped TiO{sub 2} are observed with respect to pure TiO{sub 2} and S–N codoped TiO{sub 2}. At the same time, the enhanced visible-light photocatalytic activity of tri-doped TiO{sub 2} is derived from the narrowing band gap, the appearance of Nb 4d state at the bottom of conduction band and the mixture of N 2p, S 3p states forming new defect levelsmore » at the top of valance band, which is excellently consistent with the previous experiment. Moreover, S ion leads to the lattice distortion and promotes the visible-light photocatalytic activity. Furthermore, the absorbance of 1.39NbNS–TiO{sub 2} accords well with the experimental result in the visible region. It is also found that the 2.78NbNS–TiO{sub 2} can be easily grown under O-rich condition and have the strongest absorbance from 2.0 to 4.2 eV among four models.« less

  11. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods.

    PubMed

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2017-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products.

  12. Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange.

    PubMed

    Kadam, Abhijit; Dhabbe, Rohant; Gophane, Anna; Sathe, Tukaram; Garadkar, Kalyanrao

    2016-01-01

    A simple and effective route for the synthesis of ZnO/Ag2O nanocomposites with different weight ratios (4:1 to 4:4) have been successfully obtained by combination of thermal decomposition and precipitation technique. The structure, composition, morphology and optical properties of the as-prepared ZnO/Ag2O composites were characterized by XRD, FT-IR, EDS, SEM, TEM, UV-Vis DRS and PL, respectively. The photocatalytic performance of the photocatalysts was evaluated towards the degradation of a methyl orange (MO) under UV and visible light. More specifically, the results showed that the photocatalytic activity with highest rate constant of MO degradation over ZnO/Ag2O (4:2) nanocomposites is more than 22 and 4 times than those of pure ZnO and Ag2O under visible light irradiation, respectively. An improved photocatalytic activity was attributed to the formation of heterostructure between Ag2O and ZnO, the strong visible light absorption and more separation efficiency of photoinduced electron-hole pairs. Moreover, the ZnO/Ag2O (4:2) nanocomposite showed excellent stability towards the photodegradation of MO under visible light. Finally, a possible mechanism for enhanced charge separation and photodegrdation is proposed. Genotoxicity of MO before and after photodegradation was also evaluated by simple comet assay technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods

    PubMed Central

    Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2017-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products. PMID:29261711

  14. A visible light-induced photocatalytic silver enhancement reaction for gravimetric biosensors.

    PubMed

    Ko, Wooree; Yim, Changyong; Jung, Namchul; Joo, Jinmyoung; Jeon, Sangmin; Seo, Hyejung; Lee, Soo Suk; Park, Jae Chan

    2011-10-07

    We have developed a novel microgravimetric immunosensor using a WO(3) nanoparticle-modified immunoassay and a silver enhancement reaction. When the nanoparticles in silver ion solution (i.e.  AgNO(3)) are exposed to visible light, the silver ions are photocatalytically reduced and form a metallic silver coating on the nanoparticles. This silver coating consequently induces changes in the mass and light absorption spectrum. Although photocatalytic reduction reactions can be achieved using ultraviolet (UV) light and TiO(2) nanoparticles as described in our previous publication (Seo et al 2010 Nanotechnology 21 505502), the use of UV light in biosensing applications has drawbacks in that UV light can damage proteins. In addition, conventional quartz crystal substrates must be passivated to prevent undesirable silver ion reduction on their gold-coated sensing surfaces. We addressed these problems by adopting a visible light-induced photocatalytic silver enhancement method using WO(3) nanoparticles and lateral field excited (LFE) quartz crystals. As a proof-of-concept demonstration of the technique, streptavidin was adsorbed onto an LFE quartz crystal, and its mass was enhanced with biotinylated WO(3) nanoparticles, this being followed by a photocatalytic silver enhancement reaction. The mass change due to the enhancement was found to be > 30 times greater than the mass change obtained with the streptavidin alone.

  15. Enhanced absorption in two-dimensional materials via Fano-resonant photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenyi; Klots, Andrey; Bolotin, Kirill I.

    2015-05-04

    The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and near-infrared regimes monolayer MoS{sub 2} and graphene absorb only ∼10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonant photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77%more » within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ∼0.2 μm adjacent to the graphene/electrode interface.« less

  16. Cd/In-Codoped TiO2 nanochips for high-efficiency photocatalytic dye degradation.

    PubMed

    Liu, Dongliang; Huang, Peng; Liu, Yong; Wu, Zhou; Li, Dongsheng; Guo, Jun; Wu, Tao

    2018-05-01

    Titanium dioxide has been widely investigated in the field of photocatalysis research. However, the wide bandgap (3.2 eV) greatly limits its practical applications because only ultraviolet light can be absorbed by bare TiO2. Herein, we report a facile approach to prepare Cd/In-codoped TiO2 nanochips with the capability of visible light absorption. Such bimetallic-doped TiO2 was synthesized through a two-step process: Cd/In/S-TiO2 gels were first synthesized by mixing the preformed Cd-In-S supertetrahedral nanoclusters with a titanium source, and the subsequent pyrolytic process effectively converted the gels into Cd/In-TiO2 nanochips with a thickness of ∼2.19 nm and a uniform diameter of ∼10.60 nm. Interestingly, the absorption band of Cd/In-TiO2 nanochips was adjusted by pyrolysis temperature, which further regulated the photocatalytic efficiency of dye degradation under visible light. Current research demonstrates that doping TiO2 by multimetallic sulfide nanoclusters opens up a new door to further enrich the dopants in TiO2 and broaden their potential applications.

  17. Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory

    NASA Astrophysics Data System (ADS)

    Loiko, Pavel; Volokitina, Anna; Mateos, Xavier; Dunina, Elena; Kornienko, Alexey; Vilejshikova, Elena; Aguiló, Magdalena; Díaz, Francesc

    2018-04-01

    The spectroscopic properties of Tb3+ ions in monoclinic KLu(WO4)2 double tungstate crystal are studied with polarized light. The absorption spectra in the visible, near- and mid-IR including the transitions to all lower-lying 7FJ (J = 0 … 5) excited states are measured. The maximum absorption cross-section for the 7F6 → 5D4 transition is 3.42 × 10-21 cm2 at 486.7 nm for light polarization E || Nm. The transition probabilities for Tb3+ ions are calculated within the Judd-Ofelt theory modified for the case of an intermediate configuration interaction (ICI). The radiative lifetime of the 5D4 state is 450 μs and the luminescence quantum yield is >90%. The polarized stimulated-emission cross-section spectra for all 5D4 → 7FJ (J = 0 … 6) emission channels are evaluated. The maximum σSE is 11.4 × 10-21 cm2 at 549.4 nm (for E || Nm). Tb3+:KLu(WO4)2 features high transition cross-sections for polarized light being promising for color-tunable visible lasers and imaging.

  18. In situ construction of g-C3N4/TiO2 heterojunction films with enhanced photocatalytic activity over magnetic-driven rotating frame

    NASA Astrophysics Data System (ADS)

    Pan, Chao; Jia, Jia; Hu, Xiaoyun; Fan, Jun; Liu, Enzhou

    2018-02-01

    Corn-shaped TiO2 nanofilms were fabricated by a glycerol-assisted hydrothermal method, and then g-C3N4 was deposited on the surface of TiO2 films using melamine as precursor under air atmosphere by an in site microwave-heating technique. The investigations indicate that microwave-heating process is a facile strategy to obtain g-C3N4 by thermal polymerization of melamine, which can achieve in situ constructing of g-C3N4/TiO2 heterojunction films with high stability. The as-prepared TiO2 films with crack and holes have visible light scattering capability, and the scattering light overlaps with the intrinsic absorption of g-C3N4, leading to an absorption plateau in the range of 400-550 nm. Besides, a magnetic-driven rotating frame was developed to enhance the mass transfer processes during the photocatalytic water splitting. The result shows that g-C3N4/TiO2 films exhibit excellent activities under simulated-sunlight irradiation, in addition to the enhanced mass transfer, the overlapped visible light absorption, stable contact and effective charge transfer between g-C3N4 and TiO2 can facilitate the hydrogen production and light utilization efficiency as well. The hydrogen production rate can reach 13.8 mmol h-1 m-2 over g-C3N4/TiO2 films prepared using 0.5 g of melamine and 16.0 cm2 of TiO2.

  19. Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities.

    PubMed

    Tan, Chuan Fu; Ong, Wei Li; Ho, Ghim Wei

    2015-07-28

    Utilizing solar energy for environmental and energy remediations based on photocatalytic hydrogen (H2) generation and water cleaning poses great challenges due to inadequate visible-light power conversion, high recombination rate, and intermittent availability of solar energy. Here, we report an energy-harvesting technology that utilizes multiple energy sources for development of sustainable operation of dual photocatalytic reactions. The fabricated hybrid cell combines energy harvesting from light and vibration to run a power-free photocatalytic process that exploits novel metal-semiconductor branched heterostructure (BHS) of its visible light absorption, high charge-separation efficiency, and piezoelectric properties to overcome the aforementioned challenges. The desirable characteristics of conductive flexible piezoelectrode in conjunction with pronounced light scattering of hierarchical structure originate intrinsically from the elaborate design yet facile synthesis of BHS. This self-powered photocatalysis system could potentially be used as H2 generator and water treatment system to produce clean energy and water resources.

  20. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  1. Efficient Photochemical Dihydrogen Generation Initiated by a Bimetallic Self-Quenching Mechanism

    DOE PAGES

    Chambers, Matthew B.; Kurtz, Daniel A.; Pitman, Catherine L.; ...

    2016-09-27

    Artificial photosynthesis relies on coupling light absorption with chemical fuel generation. A mechanistic study of visible light-driven H 2 production from [Cp*Ir(bpy)H] + (1) has revealed a new, highly efficient pathway for integrating light absorption with bond formation. The net reaction of 1 with a proton source produces H 2, but the rate of excited state quenching is surprisingly acid-independent and displays no observable deuterium kinetic isotopic effect. Time-resolved photoluminescence and labeling studies are consistent with diffusion-limited bimetallic self-quenching by electron transfer. Accordingly, the quantum yield of H 2 release nearly reaches unity as the concentration of 1 increases. Furthermore,more » this unique pathway for photochemical H 2 generation provides insight into transformations catalyzed by 1.« less

  2. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE PAGES

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle; ...

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  3. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide.

    PubMed

    Wheeler, Lance M; Moore, David T; Ihly, Rachelle; Stanton, Noah J; Miller, Elisa M; Tenent, Robert C; Blackburn, Jeffrey L; Neale, Nathan R

    2017-11-23

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer-composed of a metal halide perovskite-methylamine complex-from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning the absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. This work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.

  4. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Moore, David T.; Ihly, Rachelle

    Materials with switchable absorption properties have been widely used for smart window applications to reduce energy consumption and enhance occupant comfort in buildings. In this work, we combine the benefits of smart windows with energy conversion by producing a photovoltaic device with a switchable absorber layer that dynamically responds to sunlight. Upon illumination, photothermal heating switches the absorber layer - composed of a metal halide perovskite-methylamine complex - from a transparent state (68% visible transmittance) to an absorbing, photovoltaic colored state (less than 3% visible transmittance) due to dissociation of methylamine. After cooling, the methylamine complex is re-formed, returning themore » absorber layer to the transparent state in which the device acts as a window to visible light. The thermodynamics of switching and performance of the device are described. In conclusion, this work validates a photovoltaic window technology that circumvents the fundamental tradeoff between efficient solar conversion and high visible light transmittance that limits conventional semitransparent PV window designs.« less

  5. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts

    NASA Astrophysics Data System (ADS)

    Naghizadeh-Alamdari, Sara; Habibi-Yangjeh, Aziz; Pirhashemi, Mahsa

    2015-02-01

    Ultrasonic-assisted method was applied for preparation of Ag/AgCl sensitized ZnO nanostructures by one-pot procedure in water without using any post preparation treatments. The resultant nanocomposites were characterized by XRD, EDX, SEM, DRS, XPS, BET, and PL techniques. In the nanocomposites, ZnO and AgCl have wurtzite hexagonal and cubic crystalline phases, respectively and their surface morphologies remarkably change with increasing mole fraction of silver chloride. The EDX and XPS techniques show that the prepared samples are extremely pure. Ability of the nanocomposites for absorption of visible-light irradiation enhanced with increasing AgCl content. Photocatalytic examination of the nanocomposites was carried out using aqueous solution of methylene blue under visible-light irradiation. The degradation rate constant on the nancomposite rapidly increases with mole fraction of silver chloride up to 0.237. Enhancing activity of the nanocomposite was attributed to its ability for absorbing visible light and separation of electron-hole pairs. Furthermore, influence of ultrasonic irradiation time, calcination temperature, catalyst weight, pH of solution, and scavengers of reactive species on the degradation activity was investigated and the results were discussed. Finally, the photocatalyst has good activity after five successive cycles.

  6. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  7. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    PubMed Central

    Peng, Fuchang; Gao, Honglin; Zhang, Genlin; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-01-01

    Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB). The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure. PMID:28772569

  8. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai

    2017-01-01

    The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.

  9. Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: effects of catalyst structure.

    PubMed

    Ji, Sang Min; Borse, Pramod H; Kim, Hyun Gyu; Hwang, Dong Won; Jang, Jum Suk; Bae, Sang Won; Lee, Jae Sung

    2005-03-21

    Nitrogen-doped perovskite type materials, Sr2Nb2O7-xNx (0, 1.5 < x < 2.8), have been studied as visible light-active photocatalysts for hydrogen production from methanol-water mixtures. Nitrogen doping in Sr2Nb2O7 red-shifted the light absorption edge into the visible light range and induced visible light photocatalytic activity. There existed an optimum amount of nitrogen doping that showed the maximum rate of hydrogen production. Among the potential variables that might cause this activity variation, the crystal structure appeared to be the most important. Thus, as the extent of N-doping increased, the original orthorhombic structure of the layered perovskite was transformed into an unlayered cubic oxynitride structure. The most active catalytic phase was an intermediate phase still maintaining the original layered perovskite structure, but with a part of its oxygen replaced by nitrogen and oxygen vacancy to adjust the charge difference between oxygen and doped nitrogen. These experimental observations were explained by density functional theory calculations. Thus, in Sr2Nb2O7-xNx, N2p orbital was the main contributor to the top of the valence band, causing band gap narrowing while the bottom of conduction band due to Nb 4d orbital remained almost unchanged.

  10. 12 years of Phobos observations by Omega and Spicam on board MEX

    NASA Astrophysics Data System (ADS)

    Gondet, Brigitte; Bertaux, Jean-Loup; Omega Team, Spicam Team

    2016-10-01

    Mars Express made several encounters with Phobos and a few with Deimos since 2004. Observations with SPICAM and OMEGA imaging spectrometers on board Mars Express covers the range from UV (110-312 nm) to visible and mid IR up to 5 µm. In the following we consider the ultraviolet (UV) channel of SPICAM and only the visible channel of OMEGA and its small UV extension down to 390 nm, in order to compare with SPICAM. Preliminary results were presented already in the past [1]. Since then, a more detailed analysis was carried out, subtracting some internally scattered light affecting the SPICAM UV retrieved reflectance.The combined spectrum of Radiance Factor from SPICAM and OMEGA suggests the presence of a deep absorption feature. Both instruments, taken separately, support also this absorption feature.In the visible part of CRISM [2] on board MRO and recently confirmed by Omega, one feature is centered at 0.65 µm, with an absorption depth varying from 0 to 4%, an other one is centered at 2.8µm. These two Visible IR features were interpreted [2] either to highly desiccated Fe-phyllosilicate minerals indigenous to the bodies, or to a surface process involving Rayleigh scattering and absorption of small iron particles formed by exogenic space weathering processing.In this rather uncertain situation, the UV band detected by SPICAM and OMEGA on board Mars Express is of great importance to attempt discriminating between the two scenarios proposed above to explain the Visible-IR reflectance spectra of Phobos.[1] Bertaux J.L. et al. (2011) EPSC/DPS conference abstract, Nantes, November 2011. [[2] Freaman A.A. et al. (2014) Icarus, 229 , 196-205.

  11. Variable waveband infrared imager

    DOEpatents

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  12. Diffusion in the Formation of Photopolymer Holograms

    DTIC Science & Technology

    1992-04-01

    based on the reactions of acrylic acid and related compounds that can be dye-sensitized to polymerize under the influence of visible light. 1. Acrylic...rates in what is known as the sector method [36]. The photopolymerizable system is exposed to light of intensity I through a 50% duty cycle rotating...such as methylene blue, with a sulfinic compound [53]. Methylene blue exists as a positive ion in solution; its narrow absorption band peaks in the

  13. Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy.

    PubMed

    Shin, Hee Jun; Lim, Min-Cheol; Park, Kisang; Kim, Sae-Hyung; Choi, Sung-Wook; Ok, Gyeongsik

    2017-12-06

    We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm) exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transparent in the visible spectrum. From these results, we successfully demonstrate security printing and reading by using photoresist materials and the terahertz technique. This investigation would provide a new insight into anti-counterfeiting applications in fields that need security.

  14. In situ optical measurements of bacterial endospore breakdown in a shock tube

    NASA Astrophysics Data System (ADS)

    McCartt, A. D.; Gates, S.; Lappas, P.; Jeffries, J. B.; Hanson, R. K.

    2012-03-01

    The interaction of endospore-laden bioaerosols and shock waves is monitored with a combination of laser absorption and scattering. Tests are performed in the Stanford aerosol shock tube for post-shock temperatures ranging from 400-1100 K. In situ laser measurements at 266 and 665 nm provide a real-time monitor of endospore morphology. Scatter of visible light measures the integrity of endospore structure, while absorption of UV light provides a monitor of biochemicals released by endospore rupture. For post-shock temperatures greater than 750 K endospore morphological breakdown is observed. A simple theoretical model is employed to quantify the optical measurements, and mechanisms leading to the observed data are discussed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less

  16. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2014-04-01

    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  17. Visible light driven photocatalyst of vanadium (V3+) doped TiO2 synthesized using sonochemical method

    NASA Astrophysics Data System (ADS)

    Aini, N.; Ningsih, R.; Maulina, D.; Lami’, F. F.; Chasanah, S. N.

    2018-03-01

    TiO2 has been widely investigated due to its superior photocatalytic activity under ultraviolet irradiation among the photocatalyst materials. In this research, vanadium (V3+) was doped into TiO2 to enhance its light response under visible irradiation for wider application. Vanadium was introduced into TiO2 lattice at various concentration respectively 0.3, 0.5, 0.7 and 0.9% using simple and fast sonochemical method. X-Ray Diffraction data show that vanadium doped TiO2 crystallized in anatase phase with I41amd space group. X-Ray Diffraction pattern shifted to lower value of 2θ due to vanadium dopant. It indicated that V3+ was incorporated into anatase lattice. UV-Vis Diffuse Reflectance Spectra was revealed that the doped TiO2 has lowered reflectance and enhanced absorption coefficient in visible region than undoped TiO2 and commercial anatase TiO2. Band gap energy for undoped and doped TiO2 were respectively 3.22, 3.05, 2.93, 3.03 and 2.40 eV. Therefore vanadium doped TiO2 had potential to be applied under visible light.

  18. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity

    PubMed Central

    Wang, Yuting; Cheng, Jing; Yu, Suye; Alcocer, Enric Juan; Shahid, Muhammad; Wang, Ziyuan; Pan, Wei

    2016-01-01

    Here we report a high efficiency photocatalyst, i.e., Mn2+-doped and N-decorated ZnO nanofibers (NFs) enriched with vacancy defects, fabricated via electrospinning and a subsequent controlled annealing process. This nanocatalyst exhibits excellent visible-light photocatalytic activity and an apparent quantum efficiency up to 12.77%, which is 50 times higher than that of pure ZnO. It also demonstrates good stability and durability in repeated photocatalytic degradation experiments. A comprehensive structural analysis shows that high density of oxygen vacancies and nitrogen are introduced into the nanofibers surface. Hence, the significant enhanced visible photocatalytic properties for Mn-ZnO NFs are due to the synergetic effects of both Mn2+ doping and N decorated. Further investigations exhibit that the Mn2+-doping facilitates the formation of N-decorated and surface defects when annealing in N2 atmosphere. N doping induce the huge band gap decrease and thus significantly enhance the absorption of ZnO nanofibers in the range of visible-light. Overall, this paper provides a new approach to fabricate visible-light nanocatalysts using both doping and annealing under anoxic ambient. PMID:27600260

  19. The modification of spectral characteristics of cytostatics by optical beams

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail Lucian; Brezeanu, Mihail; Carstocea, Benone D.; Voicu, Letitia; Gazdaru, Doina M.; Smarandache, Adriana A.

    2004-10-01

    Besides the biochemical action of methotrexate (MTX) and 5-fluorouracil (FU) their effect in destroying cancer tumours could be enhanced by exposure to light at different doses. Absorption, excitation and emission spectra of 10-4M - 10-5M MTX solutions in natural saline and sodium hydroxide at pH = 8.4 were measured, while their exposure to coherent and uncoherent light in the visible and near ultraviolet (UV) spectral ranges was made (Hg lamps and Nitrogen pulsed laser radiation were used). Absorption spectra exhibit spectral bands in the range 200 nm - 450 nm. The 200 - 450 nm excitation spectra were measured with emission centered on 470 nm; MTX fluorescence excitation was measured at 390 nm and the emission was detected between 400 nm and 600 nm showing a maximum at 470 nm. Spectra modifications, nonlinearly depending on exposure time (varying from 1 min to 20 min), evidenced MTX photo-dissociation to the fluorescent compound 2,4 diamino-formylpteridine. In the 5-FU case the absorption spectra exhibit bands between 200 nm and 450 nm. The emission fluorescence spectra were measured between 400 nm and 600 nm, with λex = 350 nm for UV Hg lamp and with λex = 360 nm for laser irradiated samples; at irradiation with N2 laser emitted radiation the excitation spectra were measured in the range of 200 nm - 400 nm, with λem = 440 nm. New vascularity rapid destruction was observed for conjunctive impregnated with 5-FU solution whilst exposed to incoherent UV and visible light.

  20. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    PubMed Central

    Bustam, Mohamad Azmi; Chong, Fai Kait; Man, Zakaria B.; Khan, Muhammad Saqib; Shariff, Azmi M.

    2014-01-01

    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion. PMID:25105158

  1. CuI as Hole-Transport Channel for Enhancing Photoelectrocatalytic Activity by Constructing CuI/BiOI Heterojunction.

    PubMed

    Sun, Mingjuan; Hu, Jiayue; Zhai, Chunyang; Zhu, Mingshan; Pan, Jianguo

    2017-04-19

    In this paper, CuI, as a typical hole-transport channel, was used to construct a high-performance visible-light-driven CuI/BiOI heterostructure for photoelectrocatalytic applications. The heterostructure combines the broad visible absorption of BiOI and high hole mobility of CuI. Compared to pure BiOI, the CuI/BiOI heterostructure exhibited distinctly enhanced photoelectrocatalytic performance for the oxidation of methanol and organic pollutants under visible-light irradiation. The photogenerated electron-hole pairs of the excited BiOI can be separated efficiently through CuI, in which the CuI acts as a superior hole-transport channel to improve photoelectrocatalytic oxidization of methanol and organic pollutants. The outstanding photoelectrocatalytic activity shows that the p-type CuI works as a promising hole-transport channel to improve the photocatalytic performance of traditional semiconductors.

  2. Visible-light-assisted SLCs template synthesis of sea anemone-like Pd/PANI nanocomposites with high electrocatalytic activity for methane oxidation in acidic medium

    NASA Astrophysics Data System (ADS)

    Tan, De-Xin; Wang, Yan-Li

    2018-03-01

    Sea anemone-like palladium (Pd)/polyaniline (PANI) nanocomposites were synthesized via visible-light-assisted swollen liquid crystals (SLCs) template method. The resulting samples were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometer (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV–vis) absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, respectively. The electrocatalytic properties of Pd/PANI nanocomposites modified glass carbon electrode (GCE) for methane oxidation were investigated by cycle voltammetry (CV) and chronoamperometry. Those dispersed sea anemone-like Pd/PANI nanocomposites had an average diameter of 320 nm. The obtained Pd nanoparticles with an average diameter of about 45 nm were uniformly distributed in PANI matrix. Sea anemone-like Pd/PANI nanocomposites exhibited excellent electrocatalytic activity and stability for oxidation of methane (CH4).

  3. Optical properties of humic substances and CDOM: effects of borohydride reduction.

    PubMed

    Ma, Jiahai; Del Vecchio, Rossana; Golanoski, Kelli S; Boyle, Erin S; Blough, Neil V

    2010-07-15

    Treatment of Suwanee River humic (SRHA) and fulvic (SRFA) acids, a commercial lignin (LAC), and a series of solid phase extracts (C18) from the Middle Atlantic Bight (MAB extracts) with sodium borohydride (NaBH(4)), a selective reductant of carbonyl-containing compounds including quinones and aromatic ketones, produces a preferential loss of visible absorption (> or = 50% for SRFA) and substantially enhanced, blue-shifted fluorescence emission (2- to 3-fold increase). Comparison of the results with those obtained from a series of model quinones and hydroquinones demonstrates that these spectral changes cannot be assigned directly to the absorption and emission of visible light by quinones/hydroquinones. Instead, these results are consistent with a charge transfer model in which the visible absorption is due primarily to charge transfer transitions arising among hydroxy- (methoxy-) aromatic donors and carbonyl-containing acceptors. Unlike most of the model hydroquinones, the changes in optical properties of the natural samples following NaBH(4) reduction were largely irreversible in the presence of air and following addition of a Cu(2+) catalyst, providing tentative evidence that aromatic ketones (or other similar carbonyl-containing structures) may play a more important role than quinones in the optical properties of these materials.

  4. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    PubMed

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability. This journal is © The Royal Society of Chemistry 2012

  5. Human infrared vision is triggered by two-photon chromophore isomerization

    PubMed Central

    Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz; Bircher, Martin P.; Salom, David; Komar, Katarzyna; Zhang, Jianye; Cascella, Michele; Wojtkowski, Maciej; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments. PMID:25453064

  6. Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.

    PubMed

    Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan

    2017-08-16

    Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.

  7. Photodegradation of microcystin-LR catalyzed by metal phthalocyanines immobilized on TiO2-SiO2 under visible-light irradiation.

    PubMed

    Peng, Guotao; Fan, Zhengqiu; Wang, Xiangrong; Sui, Xin; Chen, Chen

    2015-01-01

    Microcystins (MCs) are a group of monocyclic heptapeptide toxins produced by species of cyanobacteria. Since MCs exhibit acute and chronic effects on humans and wildlife by damaging the liver, they are of increasing concern worldwide. In this study, we investigated the ability of the phthalocyanine compound (ZnPc-TiO2-SiO2) to degrade microcystin-LR (MC-LR) in the presence of visible light. X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were utilized to characterize the crystalline phase and the absorption behavior of this catalyst. According to the results, XRD spectra of ZnPc-TiO2-SiO2 powders taken in the 2θ configuration exhibited the peaks characteristic of the anatase phase. UV-Vis DRS showed that the absorption band wavelength shifted to the visible range when ZnPc was supported on the surface of TiO2-SiO2. Subsequently, several parameters including catalyst dose, MC-LR concentrations and pH were investigated. The MC-LR was quantified in each sample through high-performance liquid chromatography (HPLC). The maximum MC-LR degradation rate of 80.2% can be obtained within 300 minutes under the following conditions: catalyst dose of 7.50 g/L, initial MC-LR concentration of 17.35 mg/L, pH 6.76 and the first cycling run of the photocatalytic reaction. Moreover, the degradation process fitted well with the pseudo-first-order kinetic model.

  8. Highly Efficient visible-light-induced photoactivity of magnetically retrievable Fe3O4@SiO2@Bi2WO6@g-C3N4 hierarchical microspheres for the degradation of organic pollutant and production of hydrogen

    NASA Astrophysics Data System (ADS)

    Lu, Dingze; Wang, Hongmei; Shen, Qingqing; Kondamareddy, Kiran Kumar; Neena D

    2017-07-01

    The new multifunctional composite Fe3O4@SiO2@Bi2WO6@g-C3N4 (FSBG) hierarchical microspheres with Bi2WO6/g-C3N4 heterostructure as an outer shell and Fe3O4@SiO2 as a magnetic core have been synthesized and characterized for photocatalytic applications. An efficient and adoptable approach of synthesizing magnetic Bi2WO6/g-C3N4 hierarchical microspheres of grape-like morphology is realized. The as-synthesized structures exhibit highly efficient visible-light absorption and separation efficiency of photo-induced charge. The visible-light-induced photocatalytic activity of g-C3N4, Fe3O4@SiO2@Bi2WO6, and FSBG is evaluated by investigating the photodegradation of Rhodamine B (RhB) and hydrogen (H2) out of water. The comparative study reveals that the FSBG microspheres exhibit an optimum visible-light-induced photocatalytic activity in degrading Rhodamin B (RhB), which is 3.06 and 1.92 times to that of g-C3N4 and Fe3O4@SiO2@Bi2WO6 systems respectively and 3.89 and 2.31 times in the production of hydrogen (H2) out of water, respectively. The FSBG composite microspheres also exhibit good magnetic recoverability. An alternate mechanism for the enhanced visible-light photocatalytic activity is given in the present manuscript.

  9. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun

    2013-09-01

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  10. Creating Graphitic Carbon Nitride Based Donor-π-Acceptor-π-Donor Structured Catalysts for Highly Photocatalytic Hydrogen Evolution.

    PubMed

    Li, Kui; Zhang, Wei-De

    2018-03-01

    Conjugated polymers with tailored donor-acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g-C 3 N 4 ) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor-π-acceptor-π-donor polymers are prepared by incorporating 4,4'-(benzoc 1,2,5 thiadiazole-4,7-diyl) dianiline (BD) into the g-C 3 N 4 framework (UCN-BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN-BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN-BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN-BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h -1 g -1 ), which is nearly six times of that of the pristine g-C 3 N 4 . In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g-C 3 N 4 -based D-π-A-π-D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.

    PubMed

    Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong

    2017-11-22

    Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.

  12. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  13. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide

    NASA Astrophysics Data System (ADS)

    Li, Guilian; Zhang, Shouhao; Guo, Chongshen; Liu, Shaoqin

    2016-05-01

    In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions.In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09147k

  14. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation.

    PubMed

    Jo, Wan-Kuen; Kim, Yeong-Gyeong; Tonda, Surendar

    2018-05-22

    Herein, highly efficient composite photocatalysts comprising black Cu-doped TiO 2 nanoparticles (BCT) encapsulated within hierarchical flower-like NiAl-layered double hydroxide (LDH) microspheres were fabricated via a one-step hydrothermal route. Cu-doping and subsequent reduction treatment led to extended visible-light absorption of TiO 2 in the resulting composites, as confirmed by ultraviolet-visible diffuse reflectance spectral analysis. Moreover, thorough investigations confirmed the strong interactions between LDH and BCT in the resulting BCT/LDH composites. Notably, the BCT/LDH composites exhibited remarkable performance in the degradation of hazardous materials (methyl orange and isoniazid), superior to that of the individual components, reference P25, and P25/LDH under visible-light irradiation. Moreover, the BCT/LDH composite containing 30 wt% of BCT displayed the highest photocatalytic performance among the synthesized photocatalysts and also exhibited high stability during recycling tests with no obvious change in the activity. The superior photodegradation activity of the BCT/LDH composites was primarily attributed to efficient transfer and separation of the photoinduced charge carriers, resulting from the intimate contact interfaces between LDH and BCT. This approach represents a promising route for the rational design of highly efficient and visible-light-active LDH-based composite photocatalysts for application in energy harvesting and environmental protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-10-01

    Bi2S3/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi2S3/ZnS composite. The results shown that Bi2S3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi2S3/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi2S3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi2S3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi2S3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  16. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption

    DOE PAGES

    Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...

    2017-03-29

    In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX 3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs 2AgBiBr 6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyedmore » perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH 3NH 3)PbI 3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX 3 absorbers.« less

  17. First-principles study on codoping effect to enhance photocatalytic activity of anatase TiO2

    NASA Astrophysics Data System (ADS)

    Bai, Yujie; Zhang, Qinfang; Zheng, Fubao; Yang, Yun; Meng, Qiangqiang; Zhu, Lei; Wang, Baolin

    2017-03-01

    Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.

  18. Visible-Light-Induced Nickel-Catalyzed Negishi Cross-Couplings by Exogenous-Photosensitizer-Free Photocatalysis.

    PubMed

    Abdiaj, Irini; Fontana, Alberto; Gomez, M Victoria; de la Hoz, Antonio; Alcázar, Jesús

    2018-03-22

    The merging of photoredox and transition-metal catalysis has become one of the most attractive approaches for carbon-carbon bond formation. Such reactions require the use of two organo-transition-metal species, one of which acts as a photosensitizer and the other one as a cross-coupling catalyst. We report herein an exogenous-photosensitizer-free photocatalytic process for the formation of carbon-carbon bonds by direct acceleration of the well-known nickel-catalyzed Negishi cross-coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross-coupling chemistry that involve the direct visible-light absorption of organometallic catalytic complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    DOE PAGES

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; ...

    2017-01-05

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (Qmore » X) absorption bands of the RC allow energy transfer via a Fo¨rster mechanism, with an efficiency of 40±10%. Finally, this proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.« less

  20. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    PubMed Central

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.

    2017-01-01

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40±10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis. PMID:28054547

  1. Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre

    NASA Astrophysics Data System (ADS)

    Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia; Qian, Pu; Dilbeck, Preston; Martin, Elizabeth C.; Hitchcock, Andrew; Vasilev, Cvetelin; Yuen, Jonathan M.; Niedzwiedzki, Dariusz M.; Leggett, Graham J.; Holten, Dewey; Kirmaier, Christine; Neil Hunter, C.

    2017-01-01

    Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP-RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40+/-10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis.

  2. Light Absorption and Excitation-Emission Fluorescence of Urban Organic Aerosol Components and Their Relationship to Chemical Structure.

    PubMed

    Chen, Qingcai; Ikemori, Fumikazu; Mochida, Michihiro

    2016-10-18

    The present study used a combination of solvent and solid-phase extractions to fractionate organic compounds with different polarities from total suspended particulates in Nagoya, Japan, and their optical characteristics were obtained on the basis of their UV-visible absorption spectra and excitation-emission matrices (EEMs). The relationship between their optical characteristics and chemical structures was investigated based on high-resolution aerosol mass spectra (HR-AMS spectra), soft ionization mass spectra and Fourier transform infrared (FT-IR) spectra. The major light-absorption organics were less polar organic fractions, which tended to have higher mass absorption efficiencies (MAEs) and lower wavelength dependent Ångström exponents (Å) than the more polar organic fractions. Correlation analyses indicate that organic compounds with O and N atoms may contribute largely to the total light absorption and fluorescence of the organic aerosol components. The extracts from the aerosol samples were further characterized by a classification of the EEM profiles using a PARAFAC model. Different fluorescence components in the aerosol organic EEMs were associated with specific AMS ions and with different functional groups from the FT-IR analysis. These results may be useful to determine and further classify the chromophores in atmospheric organic aerosols using EEM spectroscopy.

  3. Enhanced Absorption in 2D Materials Via Fano- Resonant Photonic Crystals

    DOE PAGES

    Wang, Wenyi; Klotz, Andrey; Yang, Yuanmu; ...

    2015-05-01

    The use of two-dimensional (2D) materials in optoelectronics has attracted much attention due to their fascinating optical and electrical properties. For instance, graphenebased devices have been employed for applications such as ultrafast and broadband photodetectors and modulators while transition metal dichalcogenide (TMDC) based photodetectors can be used for ultrasensitive photodetection. However, the low optical absorption of 2D materials arising from their atomic thickness limits the maximum attainable external quantum efficiency. For example, in the visible and NIR regimes monolayer MoS 2 and graphene absorb only ~10% and 2.3% of incoming light, respectively. Here, we experimentally demonstrate the use of Fano-resonantmore » photonic crystals to significantly boost absorption in atomically thin materials. Using graphene as a test bed, we demonstrate that absorption in the monolayer thick material can be enhanced to 77% within the telecommunications band, the highest value reported to date. We also show that the absorption in the Fano-resonant structure is non-local, with light propagating up to 16 μm within the structure. This property is particularly beneficial in harvesting light from large areas in field-effect-transistor based graphene photodetectors in which separation of photo-generated carriers only occurs ~0.2 μm adjacent to the graphene/electrode interface.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Fei; Gao, Jie; Luk, Ting S.

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  5. Growth, properties, and applications of potassium niobate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, G.; Fay, W.R.; Alekel, T. III

    1994-12-31

    Production refinements and pragmatic optical properties of the frequency converter crystal KNbO{sub 3} (KN) are highlighted regarding its commercialization. The growth, morphological orientation, and processing of KN crystals into devices are outlined. Passive absorption data are presented that define the effective window range for KN devices. An absorption band at 2.85 {mu}m is attributed to the presence of OH groups in the crystal, and its vibrational strength varies with crystal growth conditions and incident polarized light orientation. Although blue light induced infrared absorption (BLIRA) can reduce second harmonic generation (SHG) efficiency at high power, single-pass conversion efficiencies of 1%/W{center_dot}cm maymore » be achieved with incident fundamental powers of 10 W. The ability of KN to non-critically phasematch by temperature tuning provides blue-green wavelengths; together with critical angle-tuned phasematching, the entire visible spectrum may be accessed with efficient SHG conversion.« less

  6. Photocatalytic activity of silicon-based nanoflakes for the decomposition of nitrogen monoxide.

    PubMed

    Itahara, Hiroshi; Wu, Xiaoyong; Imagawa, Haruo; Yin, Shu; Kojima, Kazunobu; Chichibu, Shigefusa F; Sato, Tsugio

    2017-07-04

    The photocatalytic decomposition of nitrogen monoxide (NO) was achieved for the first time using Si-based nanomaterials. Nanocomposite powders composed of Si nanoflakes and metallic particles (Ni and Ni 3 Si) were synthesized using a simple one-pot reaction of layered CaSi 2 and NiCl 2 . The synthesized nanocomposites have a wide optical absorption band from the visible to the ultraviolet. Under the assumption of a direct transition, the photoabsorption behavior is well described and an absorption edge of ca. 1.8 eV is indicated. Conventional Si and SiO powders with indirect absorption edges of 1.1 and 1.4 eV, respectively, exhibit considerably low photocatalytic activities for NO decomposition. In contrast, the synthesized nanocomposites exhibited photocatalytic activities under irradiation with light at wavelengths >290 nm (<4.28 eV). The photocatalytic activities of the nanocomposites were confirmed to be constant and did not degrade with the light irradiation time.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Manvendra; Aiken, Allison; Berg, Larry K.

    We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passedmore » through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.« less

  8. The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants

    NASA Astrophysics Data System (ADS)

    Saravanakumar, K.; Muthuraj, V.; Jeyaraj, M.

    2018-01-01

    In this paper, we report a novel visible light driven Ag/CdO photocatalyst, fabricated for the first time via one pot hydrothermal method and further applied for the photodegradation of two important exemplar water contaminants, Malachite green and Acid Orange 7. The microstructure, composition and optical properties of Ag/CdO nanocomposites were thoroughly investigated by various techniques. Scanning electron microscopy clearly shows that Ag NPs were strongly embedded between the CdO nanoparticles. Among the series of synthesized Ag/CdO nanocomposites, (5%) Ag/CdO nanocomposite possesses enhanced photocatalytic activity. This result was attributed to the synergistic effect between Ag and CdO, and mainly Ag NPs can act as an electron trap site, which could reduce the recombination of the electron-hole and induce the visible light absorption. The active species trapping experiments implicate radOH and O2rad - radicals as the respective primary and secondary reactive species responsible for oxidative photodegradation of organic pollutants. On the basis of the results, a possible photocatalytic mechanism has also been proposed.

  9. Ultrasonic chemical synthesis of CdS-reduced graphene oxide nanocomposites with an enhanced visible light photoactivity

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chen; Tsai, Du-Cheng; Chang, Zue-Chin; Shieu, Fuh-Sheng

    2018-05-01

    In this study, we report a facile ultrasonic method to prepare a series of CdS and reduced graphene oxide (CdS/rGO) composites with different weight ratios of graphene at temperature as low as 70 °C for 20 min by employing ammonia as a complexing agent of Cd2+ ions and reducing agent of graphene oxide (GO). Pure CdS particles had a poor crystallinity and aggregated to large particles size. As GO was incorporated into CdS, a uniform dispersion of CdS particles with high crystallinity on rGO sheets was clearly observed. The as-prepared CdS/rGO composites have a wide and strong photo absorption in the visible region and display a substantially improved photocatalytic activity for the degradation of methylene blue under visible light irradiation by forming a heterojunction of rGO and CdS. However, too much rGO will shield the light of the active sites for the CdS nanoparticle surface and thus limit further improvement in the photocatalytic efficiency.

  10. Enhancing Photocatalytic Activity on (MnO@TNTAs):Mn2+ with a Hierarchical Sandwich-Like Nanostructure via a Two-Step Procedure

    NASA Astrophysics Data System (ADS)

    Kong, Junhan; Zhang, Wei; Zhang, Yubo; Xia, Minghao; Wu, Xiuling; Wang, Yongqian

    2018-02-01

    Several semiconductor nanomaterial devices are increasingly being applied in a variety of fields, especially in the treating of environmental pollutants. We have fabricated (MnO@TNTAs):Mn2+ with sandwich-like nanostructures composed of TiO2 nanotube arrays (TNTAs), Mn-doped TNTAs and MnO. The experimental procedure was a two-step synthesis: first, using anodic oxidation methods and then hydrothermal methods. We carried out many characterizations of the "sandwiches" in the nanoscale. From the field emission scanning electron microscopy images we found nanofibers lying on the highly-ordered nanotube arrays. The diameter of the nanotubes was about 50 nm but the size of the nanofibers varied. Energy dispersive spectroscopy demonstrated that the nanofibers contained a manganese element and x-ray diffraction patterns showed the peak of the manganosite phase. From ultraviolet-visible light spectra, it was found that the nanostructures had strong absorption activities under both ultraviolet and visible light radiation, while pure TNTAs had absorption only under ultraviolet light. The photodegradation experiments proved that the sandwich-like nanostructures had an excellent photocatalytic activity (92.5% after 240 min), which was a great improvement compared with pure TNTAs. In this way, the structures as a device at the nanoscale have a huge potential in controlling environmental pollution.

  11. A short-wave infrared otoscope for middle ear disease diagnostics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Carr, Jessica A.; Valdez, Tulio; Bruns, Oliver; Bawendi, Moungi

    2016-02-01

    Otitis media, a range of inflammatory conditions of the middle ear, is the second most common illness diagnosed in children. However, the diagnosis can be challenging, particularly in pediatric patients. Otitis media is commonly over-diagnosed and over-treated and has been identified as one of the primary factors in increased antibiotic resistance. We describe the development of a short-wave infrared (SWIR) otoscope for objective middle ear effusion diagnosis. The SWIR otoscope can unambiguously detect the presence of middle ear fluid based on its strong light absorption in the SWIR. This absorption causes a stark, visual contrast between the presence and absence of fluid behind the tympanic membrane. Additionally, when there is no middle ear fluid, the deeper tissue penetration of SWIR light allows the SWIR otoscope to better visualize middle ear anatomy through the tympanic membrane than is possible with visible light. We demonstrate that in healthy, adult human ears, SWIR otoscopy can image a range of middle ear anatomy, including landmarks of the entire ossicular chain, the promontory, the round window niche, and the chorda tympani. We suggest that SWIR otoscopy can provide valuable diagnostic information complementary to that provided by visible pneumotoscopy in the diagnosis of middle ear effusions, otitis media, and other maladies of the middle ear.

  12. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  13. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity.

    PubMed

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-20

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO 3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO 3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO 3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO 3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min -1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO 3 nanocomposites, the 3% (molar ratio) Au decorated AgVO 3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min -1 ) was almost two times higher than that of the pure AgVO 3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  14. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-01

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer–Emmett–Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5–20 nm) were well distributed on the surface of the nanobelts. The UV–vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min‑1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min‑1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  15. Recent advancements in plasmon-enhanced promising third-generation solar cells

    NASA Astrophysics Data System (ADS)

    Thrithamarassery Gangadharan, Deepak; Xu, Zhenhe; Liu, Yanlong; Izquierdo, Ricardo; Ma, Dongling

    2017-01-01

    The unique optical properties possessed by plasmonic noble metal nanostructures in consequence of localized surface plasmon resonance (LSPR) are useful in diverse applications like photovoltaics, sensing, non-linear optics, hydrogen generation, and photocatalytic pollutant degradation. The incorporation of plasmonic metal nanostructures into solar cells provides enhancement in light absorption and scattering cross-section (via LSPR), tunability of light absorption profile especially in the visible region of the solar spectrum, and more efficient charge carrier separation, hence maximizing the photovoltaic efficiency. This review discusses about the recent development of different plasmonic metal nanostructures, mainly based on Au or Ag, and their applications in promising third-generation solar cells such as dye-sensitized solar cells, quantum dot-based solar cells, and perovskite solar cells.

  16. Multispectral selective near-perfect light absorption by graphene monolayer using aperiodic multilayer microstructures

    NASA Astrophysics Data System (ADS)

    Zand, Iman; Dalir, Hamed; Chen, Ray T.; Dowling, Jonathan P.

    2018-03-01

    We investigate one-dimensional aperiodic multilayer microstructures in order to achieve near-total absorptions at preselected wavelengths in a graphene monolayer. The proposed structures are designed using a genetic optimization algorithm coupled to a transfer matrix code. Coupled-mode-theory analysis, consistent with transfer matrix method results, indicates the existence of a critical coupling in the graphene monolayer for perfect absorptions. Our findings show that the near-total-absorption peaks are highly tunable and can be controlled simultaneously or independently in a wide range of wavelengths in the near-infrared and visible ranges. The proposed approach is metal-free, does not require surface texturing or patterning, and can be also applied for other two-dimensional materials.

  17. Diatom-templated TiO2 with enhanced photocatalytic activity: biomimetics of photonic crystals

    NASA Astrophysics Data System (ADS)

    He, Jiao; Chen, Daomei; Li, Yongli; Shao, Junlong; Xie, Jiao; Sun, Yuejuan; Yan, Zhiying; Wang, Jiaqiang

    2013-11-01

    The siliceous frustules with sophisticated optical structure endow diatoms with superior solar light-harvesting abilities for effective photosynthesis. The preserved frustules of diatom ( Cocconeis placentula) cells, as biophotonic crystals, were thus employed as both hard templates and silicon resources to synthesize TiO2 photocatalyst. Characterizations by a combination of physicochemical techniques proved that the bio-inspired sample is TiO2-coated SiO2 with biogenic C self-doped in. It was found that the synthesized composites exhibited similar morphologies to the original diatom templates. In comparison with commercial Degussa P25 TiO2, the C-doped TiO2/SiO2 catalyst exhibited more light absorption in the visible region and higher photocatalytic efficiency for photodegradation of rhodamine B under visible light due to the biomorphic hierarchical structures, TiO2 coating and C-doping.

  18. Donor-acceptor-pair emission in fluorescent 4H-SiC grown by PVT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xi, E-mail: liuxi@mail.sic.ac.cn; Zhuo, Shi-Yi; Gao, Pan

    Fluorescent SiC, which contains donor and acceptor impurities with optimum concentrations, can work as a phosphor for visible light emission by donor-acceptor-pair (DAP) recombination. In this work, 3 inch N-B-Al co-doped fluorescent 4H-SiC crystals are prepared by PVT method. The p-type fluorescent 4H-SiC with low aluminum doping concentration can show intensive yellow-green fluorescence at room temperature. N-B DAP peak wavelength shifts from 578nm to 525nm and weak N-Al DAP emission occurred 403/420 nm quenches, when the temperature increases from 4K to 298K. The aluminum doping induces higher defect concentration in the fluorescent crystal and decreases optical transmissivity of the crystalmore » in the visible light range. It triggers more non-radiative recombination and light absorption losses in the crystal.« less

  19. Multiband and Broadband Absorption Enhancement of Monolayer Graphene at Optical Frequencies from Multiple Magnetic Dipole Resonances in Metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Xie, Ningyan; Tang, Huang; Zhu, Xiaoqin; Park, Gun-sik

    2018-05-01

    It is well known that a suspended monolayer graphene has a weak light absorption efficiency of about 2.3% at normal incidence, which is disadvantageous to some applications in optoelectronic devices. In this work, we will numerically study multiband and broadband absorption enhancement of monolayer graphene over the whole visible spectrum, due to multiple magnetic dipole resonances in metamaterials. The unit cell of the metamaterials is composed of a graphene monolayer sandwiched between four Ag nanodisks with different diameters and a SiO2 spacer on an Ag substrate. The near-field plasmon hybridizations between individual Ag nanodisks and the Ag substrate form four independent magnetic dipole modes, which result into multiband absorption enhancement of monolayer graphene at optical frequencies. When the resonance wavelengths of the magnetic dipole modes are tuned to approach one another by changing the diameters of the Ag nanodisks, a broadband absorption enhancement can be achieved. The position of the absorption band in monolayer graphene can be also controlled by varying the thickness of the SiO2 spacer or the distance between the Ag nanodisks. Our designed graphene light absorber may find some potential applications in optoelectronic devices, such as photodetectors.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J., E-mail: zhj@ynu.edu.cn; School of Physical Science and Technology, Yunnan University, Kunming 650091; Xu, L.J., E-mail: 825891915@qq.com

    Highlights: • The (Yb, N)-TiO{sub 2} nanoparticles were prepared and characterized. • The spectrum absorption region of (Yb, N)-TiO{sub 2} is red-shifted to visible light. • The recombination of the photo-generated electron–hole pairs of (Yb, N)-TiO{sub 2} is suppressed. • The photocatalytic activity of (Yb, N)-TiO{sub 2} is more higher than that of TiO{sub 2}-P25, N-TiO{sub 2} and the Yb-TiO{sub 2}. - Abstract: (Yb, N)-TiO{sub 2} photocatalyst has been synthesized by sol–gel method combined with microwave chemical synthesis. Also, the efficiency of the (Yb, N)-TiO{sub 2} as a photocatalyst for the degradation of methylene blue (MB) using visible light irradiationmore » has been evaluated. The prepared samples were characterized by XRD, TEM, XPS, UV–vis-DRS and PL. The results show that the (Yb, N)-TiO{sub 2} photocatalyst has the anatase TiO{sub 2} crystalline phase. The TEM micrograph demonstrated that the average particle size of the sample was about 12 nm. The band-gap energy absorption edge shifted to longer wavelength as compared to commercial TiO{sub 2}-P25, N-TiO{sub 2} and the Yb-TiO{sub 2} prepared by our group. Results of degradation revealed that the (Yb, N)-TiO{sub 2} has shown much more higher photocatalytic activity than that of the TiO{sub 2}-P25, the N-TiO{sub 2} and the Yb-TiO{sub 2} under the visible light.« less

  1. Single-layer group IV-V and group V-IV-III-VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis

    NASA Astrophysics Data System (ADS)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2017-07-01

    Recently, single-layer group III monochalcogenides have attracted both theoretical and experimental interest at their potential applications in photonic devices, electronic devices, and solar energy conversion. Excited by this, we theoretically design two kinds of highly stable single-layer group IV-V (IV =Si ,Ge , and Sn; V =N and P) and group V-IV-III-VI (IV =Si ,Ge , and Sn; V =N and P; III =Al ,Ga , and In; VI =O and S) compounds with the same structures with single-layer group III monochalcogenides via first-principles simulations. By using accurate hybrid functional and quasiparticle methods, we show the single-layer group IV-V and group V-IV-III-VI are indirect bandgap semiconductors with their bandgaps and band edge positions conforming to the criteria of photocatalysts for water splitting. By applying a biaxial strain on single-layer group IV-V, single-layer group IV nitrides show a potential on mechanical sensors due to their bandgaps showing an almost linear response for strain. Furthermore, our calculations show that both single-layer group IV-V and group V-IV-III-VI have absorption from the visible light region to far-ultraviolet region, especially for single-layer SiN-AlO and SnN-InO, which have strong absorption in the visible light region, resulting in excellent potential for solar energy conversion and visible light photocatalytic water splitting. Our research provides valuable insight for finding more potential functional two-dimensional semiconductors applied in optoelectronics, solar energy conversion, and photocatalytic water splitting.

  2. Organic matters removal from landfill leachate by immobilized Phanerochaete chrysosporium loaded with graphitic carbon nitride under visible light irradiation.

    PubMed

    Hu, Liang; Liu, Yutang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Zeng, Yunxiong; Wang, Longlu; Wu, Haipeng; Xu, Piao; Zhang, Chen; Cheng, Min; Hu, Tianjue

    2017-10-01

    This study investigated the technical applicability of a combination of Phanerochaete chrysosporium (P. chrysosporium) with photocatalyst graphitic carbon nitride (g-C 3 N 4 ) for organic matters removal from landfill leachate under visible light irradiation. Photocatalyst g-C 3 N 4 was well immobilized on the hyphae surface of P. chrysosporium by calcium alginate. The typical absorption edge in visible light region for g-C 3 N 4 was at about 460 nm, and the optical absorption bandgap of g-C 3 N 4 was estimated to be 2.70 eV, demonstrating the great photoresponsive ability of g-C 3 N 4 . An optimized g-C 3 N 4 content of 0.10 g in immobilized P. chrysosporium and an optimized immobilized P. chrysosporium dosage of 1.0 g were suitable for organic matters removal. The removal efficiency of total organic carbon (TOC) reached 74.99% in 72 h with the initial TOC concentration of 100 mg L -1 . In addition, the gas chromatography coupled with mass spectrometry (GC-MS) measurements showed that immobilized P. chrysosporium presented an outstanding removal performance for almost all organic compounds in landfill leachate, especially for the volatile fatty acids and long-chain hydrocarbons. The overall results indicate that the combination P. chrysosporium with photocatalyst g-C 3 N 4 for organic matters removal from landfill leachate may provide a more comprehensive potential for the landfill leachate treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin A.; Platt, Ulrich

    2017-05-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800-900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  4. The use of visible-channel data from NOAA satellites to measure total ozone amount over Antarctica

    NASA Technical Reports Server (NTRS)

    Boime, Robert D.; Warren, Steven G.; Gruber, Arnold

    1994-01-01

    Accurate, detailed maps of total ozone were not available until the launch of the Total Ozone Mapping Spectrometer (TOMS) in late 1978. However, the Scanning Radiometer (SR), an instrument on board the NOAA series satellites during the 1970s, had a visible channel that overlapped closely with the Chappuis absorption band of ozone. We are investigating whether data from the SR can be used to map Antarctic ozone prior to 1978. The method is being developed with 1980s data from the Advanced Very High Resolution Radiometer (AVHRR), which succeeded the SR on the NOAA polar-orbiting satellites. Visible-derived total ozone maps can then be compared able on the NOAA satellites, which precludes the use of a differential absorption technique to measure ozone. Consequently, our method works exclusively over scenes whose albedos are large and unvarying, i.e. scenes that contain ice sheets and/or uniform cloud-cover. Initial comparisons of time series for October-December 1987 at locations in East Antarctica show that the visible absorption by ozone in measurable and that the technique may be usable for the 1970s, but with much less accuracy than TOMS. This initial test assumes that clouds, snow, and ice all reflect the same percentage of visible light towards the satellite, regardless of satellite position or environmental conditions. This assumption is our greatest source of error. To improve the accuracy of ozone retrievals, realistic anisotropic reflectance factors are needed, which are strongly influenced by cloud and snow surface features.

  5. Hybrid Lead Halide Layered Perovskites with Silsesquioxane Interlayers.

    PubMed

    Kataoka, Sho; Kaburagi, Wako; Mochizuki, Hiroyuki; Kamimura, Yoshihiro; Sato, Kazuhiko; Endo, Akira

    2018-01-01

    Hybrid organic-lead halide perovskites exhibit remarkable properties as semiconductors and light absorbers. Here, we report the formation of silsesquioxane-lead halide hybrid layered perovskites. We prepared silsesquioxane with a cubic cage-like structure and fabricated hybrid silsesquioxane-lead halide layered perovskites in a self-assembled manner. It is demonstrated that the silsesquioxane maintain their cage-like structure between lead halide perovskite layers. The silsesquioxane-lead halide perovskites also show excitonic absorption and emission in the visible light region similar to typical lead halide layered perovskites.

  6. Graphene quantum dots with visible light absorption of the carbon core: insights from single-particle spectroscopy and first principles based theory

    NASA Astrophysics Data System (ADS)

    Ghosh, Siddharth; Awasthi, Manohar; Ghosh, Moumita; Seibt, Michael; Niehaus, Thomas A.

    2016-12-01

    Luminescent carbon nanodots (CND) are a recent addition to the family of carbon nanostructures. Interestingly, a large group of CNDs are fluorescent in the visible spectrum and possess single dipole emitters with potential applications in super-resolution microscopy, quantum information science, and optoelectronics. There is a large diversity of CND’s size as well as a strong variability of edge topology and functional groups in real samples. This hampers a direct comparison of experimental and theoretical findings that is necessary to understand the unusual photophysics of these systems. Here, we derive atomistic models of finite sized (<2.5 nm) CNDs from high resolution transmission electron microscopy (HRTEM) which are studied using approximate time-dependent density functional theory. The atomistic models are found to be primarily two-dimensional (2D) and can hence be categorised as graphene quantum dots (GQD). The GQD model structures that are presented here show excitation energies in the visible spectrum matching previous single GQD level photoluminescence studies. We also present the effect of edge hydroxyl and carboxyl functional groups on the absorption spectrum. Overall, the study reveals the atomistic origin of CNDs photoluminescence in the visible range.

  7. PM2.5 soluble brown-carbon measured in contrasting urban and rural environments

    NASA Astrophysics Data System (ADS)

    Weber, R.; Zhang, X.

    2011-12-01

    An instrument was developed to continuously measure the light absorption spectra and carbon mass of soluble PM2.5 components by coupling a particle-into-liquid sampler (PILS), UV-VIS (200-800nm) spectrophotometer with long-path absorption cell and total organic carbon (TOC) analyzer. The analytical system has also been used to measure brown carbon in aqueous extracts from integrated filters. Measurements have been conducted at a number of locations, including urban sites in Los Angeles, Atlanta and smaller urban and rural locations in the southeastern US. At all locations a characteristic brown carbon absorption spectra was observed, where soluble chromophores produce an increasing absorption with decreasing wavelength, starting from mid-visible and extending into the near UV. Incomplete combustion from biomass and fossil fuel burning and secondary processes have been identified as sources of soluble brown carbon. During summer when biomass burning impacts were minimal, mass absorption efficiencies calculated relative to ambient particle water-soluble organic carbon (WSOC) were highest in Los Angeles and correlated with the daily production of secondary organic aerosol. Nitro-aromatics were identified as a component of the brown carbon. In contrast, the Atlanta secondary aerosol was significantly less light-absorbing, and unlike Los Angeles the diurnal trend in brown carbon largely tracked primary sources. Absorption Angstrom exponents varied between 3 and 7 with fresh Los Angeles secondary organic aerosol associated with smaller exponents, indicting greater absorption into the visible spectrum. The southeastern US regional/rural brown carbon was the least absorbing per WSOC mass in the UV and with largest Angstrom exponents (7) the least absorbing at higher wavelengths. A correlation between the regional brown carbon and fine particle oxalate suggested an aqueous phase heterogeneous source for these chromophores. Compared to pure black carbon, brown carbon was optically significant at low wavelengths (365 nm) and most important in rural regions due to low black carbon concentrations.

  8. Photochemical quenching of aqueous methylene blue by N, Nb co-doped TiO2 nanomaterials under visible light: a confirmatory UV/LC-MS study

    NASA Astrophysics Data System (ADS)

    Gupta, Kamini; Pandey, Ashutosh; Singh, R. P.

    2017-12-01

    Nanodimensional un-doped, Nb doped, N doped and N,Nb co-doped TiO2 particles have been prepared by the sol-gel procedure. Phase identification of the anatase particles was done by X-ray powder diffraction and Deby-Scherrer calculations revealed their particle sizes to range from 20 to 30 nm. The band gap energies of the samples were measured by UV-Vis-diffuse reflectance (UV-DRS) spectra. While un-doped TiO2 showed wide optical absorption in the UV region. The co-doped TiO2 particles exhibited narrow band gaps of ~2.7 eV, which showed absorption in the visible region. A decline in charge carrier recombination rates in the prepared samples was confirmed through photoluminescence (PL). The morphological appearances of the particles have been examined by scanning electron microscopy. X-ray photoelectron spectroscopy (XPS) of the samples confirmed the incorporations of N and Nb into the TiO2 matrices. The photocatalytic efficiencies of the prepared particles have been determined by the degradation of the non-biodegradable dye methylene blue (MB) under electromagnetic radiation. The co-doped sample showed superior photocatalytic activity under the visible light (λ  >  400) over the other samples. Photochemical quenching of aqueous MB was further analysed by UV/LC-MS which confirmed the attenuation of methylene blue.

  9. Four Ways to See Saturn

    NASA Image and Video Library

    2004-04-22

    A montage of Cassini images, taken in four different regions of the spectrum from ultraviolet to near-infrared, demonstrates that there is more to Saturn than meets the eye. The pictures show the effects of absorption and scattering of light at different wavelengths by both atmospheric gas and clouds of differing heights and thicknesses. They also show absorption of light by colored particles mixed with white ammonia clouds in the planet's atmosphere. Contrast has been enhanced to aid visibility of the atmosphere. Cassini's narrow-angle camera took these four images over a period of 20 minutes on April 3, 2004, when the spacecraft was 44.5 million kilometers (27.7 million miles) from the planet. The image scale is approximately 267 kilometers (166 miles) per pixel. All four images show the same face of Saturn. In the upper left image, Saturn is seen in ultraviolet wavelengths (298 nanometers); at upper right, in visible blue wavelengths (440 nanometers); at lower left, in far red wavelengths just beyond the visible-light spectrum (727 nanometers; and at lower right, in near-infrared wavelengths (930 nanometers). The sliver of light seen in the northern hemisphere appears bright in the ultraviolet and blue (top images) and is nearly invisible at longer wavelengths (bottom images). The clouds in this part of the northern hemisphere are deep, and sunlight is illuminating only the cloud-free upper atmosphere. The shorter wavelengths are consequently scattered by the gas and make the illuminated atmosphere bright, while the longer wavelengths are absorbed by methane. Saturn's rings also appear noticeably different from image to image, whose exposure times range from two to 46 seconds. The rings appear dark in the 46-second ultraviolet image because they inherently reflect little light at these wavelengths. The differences at other wavelengths are mostly due to the differences in exposure times. http://photojournal.jpl.nasa.gov/catalog/PIA05388

  10. Photoinduced Glycerol Oxidation over Plasmonic Au and AuM (M = Pt, Pd and Bi) Nanoparticle-Decorated TiO2 Photocatalysts

    PubMed Central

    Jedsukontorn, Trin; Saito, Nagahiro; Hunsom, Mali

    2018-01-01

    In this study, sol-immobilization was used to prepare gold nanoparticle (Au NP)-decorated titanium dioxide (TiO2) photocatalysts at different Au weight % (wt. %) loading (Aux/TiO2, where x is the Au wt. %) and Au–M NP-decorated TiO2 photocatalysts (Au3M3/TiO2), where M is bismuth (Bi), platinum (Pt) or palladium (Pd) at 3 wt. %. The Aux/TiO2 photocatalysts exhibited a stronger visible light absorption than the parent TiO2 due to the localized surface plasmon resonance effect. Increasing the Au content from 1 wt. % to 7 wt. % led to increased visible light absorption due to the increasing presence of defective structures that were capable of enhancing the photocatalytic activity of the as-prepared catalyst. The addition of Pt and Pd coupled with the Au3/TiO2 to form Au3M3/TiO2 improved the photocatalytic activity of the Au3/TiO2 photocatalyst by maximizing their light-absorption property. The Au3/TiO2, Au3Pt3/TiO2 and Au3Pd3/TiO2 photocatalysts promoted the formation of glyceraldehyde from glycerol as the principle product, while Au3Bi3/TiO2 facilitated glycolaldehyde formation as the major product. Among all the prepared photocatalysts, Au3Pd3/TiO2 exhibited the highest photocatalytic activity with a 98.75% glycerol conversion at 24 h of reaction time. PMID:29690645

  11. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu; Gan, Bo J.; Clark, Evan

    2012-09-15

    Highlights: ► A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ► The fuel cell decomposes environmentally hazardous materials to produce electricity. ► Doping the anode with a transition metal oxide increases the visible light sensitivity. ► Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of puremore » Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.« less

  12. Optical properties and aging of light-absorbing secondary organic aerosol

    DOE PAGES

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander; ...

    2016-10-14

    The light-absorbing organic aerosol (OA) commonly referred to as “brown carbon” (BrC) has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various volatile organic carbon (VOC) precursors, NO x concentrations, photolysis time, and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber-generated SOA samples, especially aromatic SOA, was found to increase with NO x concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficient (MAC) value is observed from toluene SOA products formed under high-NO x conditions at moderate RH, in which nitro-aromatics were previously identified as the major light-absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organic nitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible (Vis) and ultraviolet (UV) light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  13. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  14. Gold-plasmon enhanced photocatalytic performance of anatase titania nanotubes under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bingyang; He, Dawei, E-mail: dwhe@bjtu.edu.cn; Wang, Wenshuo

    2016-02-15

    Highlights: • APTMS/(TNTs-Au) was synthesized using a deposition-precipitation process. • APTMS/(TNTs-Au) showed superior visible light activity for the degradation of methylene blue. • The electromagnetic field distribution at the interface between TNTs and Au NPs were estimated by the 3D finite-difference time domain simulation. • The working mechanism of the photocatalytic activity of APTMS/(TNTs-Au) was illustrated. - Abstract: [3-Aminopropyl]trimethoxysilane-modified titania nanotubes decorated with Au nanoparticles (APTMS/(TNTs-Au)) nanocomposites were synthesized using a deposition-precipitation process. The results showed that Au nanoparticles (NPs) in the metallic state were firmly adhered to the surface of the anatase TNTs. APTMS/(TNTs-Au) exhibited great photocatalytic activities whichmore » were evaluated from the degradation rate of methylene blue aqueous solution under visible light irradiation. 3D finite-difference time domain simulation was performed to estimate the electromagnetic field distribution at the interface between TNTs and Au NPs. The visible photocatalytic activity of APTMS/(TNTs-Au) was largely attributed to the surface plasmon absorption of metallic Au NPs, which generated and transferred hot electrons to the CB of TNTs. In addition, the hot electrons on the surface of TNTs also suppressed the radiative electron–hole recombination and consequently enhanced the photocatalytic activity.« less

  15. Efficient visible-light photocatalytic degradation of sulfadiazine sodium with hierarchical Bi₇O₉I₃under solar irradiation.

    PubMed

    Xu, MengMeng; Zhao, YaLei; Yan, QiShe

    2015-01-01

    Bi₇O₉I₃, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi₇O₉I₃. The result of SEM observation shows that the as-synthesized Bi₇O₉I₃ consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi₇O₉I₃ at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO(3)(-) and SO(4)(2-) of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi₇O₉I₃. The as-synthesized Bi₇O₉I₃exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunach, M.; Marti, T.; Khorana, H.G.

    The light-dark adaptation reactions of a set of bacteriorhodopsin (bR) mutants that affect function and color of the chromophore were examined by using visible absorption spectroscopy. The absorbance spectra of the mutants Arg-82 in equilibrium Ala (Gln), Asp-85 in equilibrium Ala (Asn, Glu), Tyr-185 in equilibrium Phe, and Asp-212 in equilibrium Ala (Asn, Glu) were measured at different pH values during and after illumination. None of these mutants exhibited a normal dark-light adaptation, which in wild-type bR causes a red shift of the visible absorption maximum from 558 nm (dark-adapted bR) to 568 nm (light-adapted bR). Instead a reversible lightmore » reaction occurs in the Asp-85 and Asp-212 mutants from a blue form with lambda max near 600 nm to a pink form with lambda max near 480 nm. This light-induced shift explains the appearance of a reversed light adaptation previously observed for the Asp-212 mutants. In the case of the Tyr-185 and Arg-82 mutants, light causes a purple-to-blue transformation similar to the effect of lowering the pH. However, the blue forms observed in these mutants are not identical to those formed by acid titration or deionization of wild-type bR. It is suggested that in all of these mutants, the chromophore has lost the ability to undergo the normal 13-cis, 15-syn to all-trans, 15-anti light-driven isomerization, which occurs in native bR. Instead these mutants may have as stable forms all-trans,syn and 13-cis,anti chromophores, which are not allowed in native bR, except transiently.« less

  17. The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky

    NASA Astrophysics Data System (ADS)

    Zuidema, Paquita; Sedlacek, Arthur J.; Flynn, Connor; Springston, Stephen; Delgadillo, Rodrigo; Zhang, Jianhao; Aiken, Allison C.; Koontz, Annette; Muradyan, Paytsar

    2018-05-01

    Observations from June to October 2016, from a surface-based ARM Mobile Facility deployment on Ascension Island (8°S, 14.5°W) indicate that refractory black carbon (rBC) is almost always present within the boundary layer. The rBC mass concentrations, light absorption coefficients, and cloud condensation nuclei concentrations vary in concert and synoptically, peaking in August. Light absorption coefficients at three visible wavelengths as a function of rBC mass are approximately double that calculated from black carbon in lab studies. A spectrally-flat absorption angstrom exponent suggests most of the light absorption is from lens-coated black carbon. The single-scattering-albedo increases systematically from August to October in both 2016 and 2017, with monthly means of 0.78 ± 0.02 (August), 0.81 ± 0.03 (September), and 0.83 ± 0.03 (October) at the green wavelength. Boundary layer aerosol loadings are only loosely correlated with total aerosol optical depth, with smoke more likely to be present in the boundary layer earlier in the biomass burning season, evolving to smoke predominantly present above the cloud layers in September-October, typically resting upon the cloud top inversion. The time period with the campaign-maximum near-surface light absorption and column aerosol optical depth, on 13-16 August 2016, is investigated further. Backtrajectories that indicate more direct boundary layer transport westward from the African continent is central to explaining the elevated surface aerosol loadings.

  18. UV and visible activation of Cr(III)-doped TiO2 catalyst prepared by a microwave-assisted sol-gel method during MCPA degradation.

    PubMed

    Mendiola-Alvarez, S Y; Guzmán-Mar, J L; Turnes-Palomino, G; Maya-Alejandro, F; Hernández-Ramírez, A; Hinojosa-Reyes, L

    2017-05-01

    Photocatalytic degradation of 4-chloro-2-methylphenoxyacetic acid (MCPA) in aqueous solution using Cr(III)-doped TiO 2 under UV and visible light was investigated. The semiconductor material was synthesized by a microwave-assisted sol-gel method with Cr(III) doping contents of 0.02, 0.04, and 0.06 wt%. The catalyst was characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), nitrogen physisorption, UV-Vis diffuse reflectance spectroscopy (DRS), and atomic absorption spectroscopy (AAS). The photocatalytic activity for the photodegradation of MCPA was followed by reversed-phase high-performance liquid chromatography (HPLC) and total organic carbon (TOC) analysis. The intermediates formed during degradation were identified using gas chromatography-mass spectrometry (GC-MS). Chloride ion evolution was measured by ion chromatography. Characterization results showed that Cr(III)-doped TiO 2 materials possessed a small crystalline size, high surface area, and mesoporous structure. UV-Vis DRS showed enhanced absorption in the visible region as a function of the Cr(III) concentration. The Cr(III)-doped TiO 2 catalyst with 0.04 wt% of Cr(III) was more active than bare TiO 2 for the degradation of MCPA under both UV and visible light. The intermediates identified during MCPA degradation were 4-chloro-2-methylphenol (CMP), 2-(4-hydroxy-2-methylphenoxy) acetic acid (HMPA), and 2-hydroxybuta-1,3-diene-1,4-diyl-bis (oxy)dimethanol (HBDM); the formation of these intermediates depended on the radiation source.

  19. Molecular Engineering of UV/Vis Light-Emitting Diode (LED)-Sensitive Donor-π-Acceptor-Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties.

    PubMed

    Wu, Xingyu; Jin, Ming; Xie, Jianchao; Malval, Jean-Pierre; Wan, Decheng

    2017-11-07

    A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Photocatalysis using a Wide Range of the Visible Light Spectrum: Hydrogen Evolution from Doped AgGaS2.

    PubMed

    Yamato, Kohei; Iwase, Akihide; Kudo, Akihiko

    2015-09-07

    Doping of nickel into AgGaS2 yields a new absorption band, at a wavelength longer than the intrinsic absorption band of the AgGaS2 host. The doped nickel forms an electron donor level in a forbidden band of AgGaS2 . The nickel-doped AgGaS2 with rhodium co-catalyst shows photocatalytic activity for sacrificial H2 evolution under the light of up to 760 nm due to the transition from the electron donor level consisting of Ni(2+) to the conduction band of AgGaS2 . Apparent quantum yields for the sacrificial H2 evolution at 540-620 nm are about 1 %. Moreover, the nickel-doped AgGa0.75 In0.25 S2 also responds to near-IR light, up to 900 nm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi

    2014-11-07

    The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σmore » increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σ{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, σ{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.« less

  2. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  3. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    NASA Astrophysics Data System (ADS)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  4. Smartphone Based Platform for Colorimetric Sensing of Dyes

    NASA Astrophysics Data System (ADS)

    Dutta, Sibasish; Nath, Pabitra

    We demonstrate the working of a smartphone based optical sensor for measuring absorption band of coloured dyes. By integration of simple laboratory optical components with the camera unit of the smartphone we have converted it into a visible spectrometer with a pixel resolution of 0.345 nm/pixel. Light from a broadband optical source is allowed to transmit through a specific dye solution. The transmitted light signal is captured by the camera of the smartphone. The present sensor is inexpensive, portable and light weight making it an ideal handy sensor suitable for different on-field sensing.

  5. Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Yu, Hongwen; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-01

    A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi2WO6 microspheres (GO/Bi2WO6) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi2WO6. The UV-vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi2WO6 composites own more intensive absorption in the visible light range compared with pure Bi2WO6. These characteristic structural and optical properties endow GO/Bi2WO6 composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi2WO6 is attributed predominantly to the synergetic effect between GO and Bi2WO6, causing rapid generation and separation of photo-generated charge carriers.

  6. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

    PubMed Central

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-01-01

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h−1 g−1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy. PMID:28165021

  7. In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light.

    PubMed

    Bhirud, Ashwini P; Sathaye, Shivaram D; Waichal, Rupali P; Ambekar, Jalindar D; Park, Chan-J; Kale, Bharat B

    2015-03-21

    Highly monodispersed nitrogen doped TiO2 nanoparticles were successfully deposited on graphene (N-TiO2/Gr) by a facile in-situ wet chemical method for the first time. N-TiO2/Gr has been further used for photocatalytic hydrogen production using a naturally occurring abundant source of energy i.e. solar light. The N-TiO2/Gr nanocomposite composition was optimized by varying the concentrations of dopant nitrogen and graphene (using various concentrations of graphene) for utmost hydrogen production. The structural, optical and morphological aspects of nanocomposites were studied using XRD, UV-DRS, Raman, XPS, FESEM, and TEM. The structural study of the nanocomposite shows existence of anatase N-TiO2. Further, the details of the components present in the composition were confirmed with Raman and XPS. The morphological study shows that very tiny, 7-10 nm sized, N-TiO2 nanoparticles are deposited on the graphene sheet. The optical study reveals a drastic change in absorption edge and consequent total absorption due to nitrogen doping and presence of graphene. Considering the extended absorption edge to the visible region, these nanocomposites were further used as a photocatalyst to transform hazardous H2S waste into eco-friendly hydrogen using solar light. The N-TiO2/Gr nanocomposite with 2% graphene exhibits enhanced photocatalytic stable hydrogen production i.e. ∼5941 μmol h(-1) under solar light irradiation using just 0.2 gm nanocomposite, which is much higher as compared to P25, undoped TiO2 and TiO2/Gr nanocomposite. The enhancement in the photocatalytic activity is attributed to 'N' doping as well as high specific surface area and charge carrier ability of graphene. The recycling of the photocatalyst shows a good stability of the nanocomposites. This work may provide new insights to design other semiconductor deposited graphene novel nanocomposites as a visible light active photocatalyst.

  8. Novel dynamic tuning of broadband visible metamaterial perfect absorber using graphene

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou; Yuan, Chengxun; Meng, Qingxin; Zhou, Zhongxiang

    2016-07-01

    We present a novel dynamic tuning of a broadband visible metamaterial absorber consisting of a multilayer-graphene-embedded nano-cross elliptical hole (MGENCEH) structure. It has multiple effects, including excitation of surface plasmon polaritons and extraordinary optical transmission in the first two metal layers. A numerical simulation shows that the MGENCEH structure can realize broadband perfect absorption (BPA) from 5.85 × 1014 to 6.5 × 1014 Hz over a wide incident angle range for transverse magnetic polarized light if the chemical potential of graphene (uc) is tuned to 1.0 eV. Furthermore, it has high broadband absorption (above 96%) from 4.6 × 1014 to 6.6 × 1014 Hz and three areas of narrowband perfect absorption around 4.65 × 1014, 5.1 × 1014, and 5.6 × 1014 Hz. The changes in the absorption spectra as a function of uc can be classically explained by simply considering plasmons as damped harmonic oscillators. This BPA is broader than the result of Zhou et al. [Opt. Express 23, A413-A418 (2015)] and is particularly desirable for various potential applications such as solar energy absorbers.

  9. Müller cells separate between wavelengths to improve day vision with minimal effect upon night vision

    NASA Astrophysics Data System (ADS)

    Labin, Amichai M.; Safuri, Shadi K.; Ribak, Erez N.; Perlman, Ido

    2014-07-01

    Vision starts with the absorption of light by the retinal photoreceptors—cones and rods. However, due to the ‘inverted’ structure of the retina, the incident light must propagate through reflecting and scattering cellular layers before reaching the photoreceptors. It has been recently suggested that Müller cells function as optical fibres in the retina, transferring light illuminating the retinal surface onto the cone photoreceptors. Here we show that Müller cells are wavelength-dependent wave-guides, concentrating the green-red part of the visible spectrum onto cones and allowing the blue-purple part to leak onto nearby rods. This phenomenon is observed in the isolated retina and explained by a computational model, for the guinea pig and the human parafoveal retina. Therefore, light propagation by Müller cells through the retina can be considered as an integral part of the first step in the visual process, increasing photon absorption by cones while minimally affecting rod-mediated vision.

  10. Two-Column Aerosol Project: Aerosol Light Extinction Measurements Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, Manvendra; Aiken, Allison; Berg, Larry

    We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passedmore » through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.« less

  11. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  12. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE PAGES

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; ...

    2017-09-08

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  13. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  14. Investigation of Carbonaceous Aerosol Optical Properties to Understand Impacts on Air Quality and Composition

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.

    The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. The optical properties of carbonaceous aerosols were investigated to understand the impact source emissions and ambient particulate matter (PM) have on atmospheric radiative forcing. Black carbon (BC) is a strong absorber of visible light and contributes highly to atmospheric radiative forcing, therefore it is important to link BC properties to combustion emission sources. Brown carbon (BrC) is poorly understood and may be an important contributor to both positive and negative radiative forcing. The research investigates these primary knowledge gaps. Multiple methods were developed and applied to quantify the mass absorption cross-section (MAC) at multiple wavelengths of source and ambient samples. The MAC of BC was determined to be approximately 7.5 m2g-1 at 520nm. However, the MAC was highly variable with OC fraction and wavelength. The BrC MAC was similar for all sources, with the highest absorption in the UV at 370nm; the MAC quickly decreases at larger wavelengths. In the UV, the light absorption by BrC could exceed BC contribution by over 100 times, but only when the OC fraction is large (>90%) as compared to the total carbon. BrC was investigated by measuring the light absorption of solvent extracted fractions in water, dichloromethane, and methanol. Source emissions exhibited greater light absorption in methanol extractions as compared to water and DCM extracts. The BrC MAC was 2.4 to 3.7 m2g-1 at 370nm in methanol. Ambient samples showed similar MACs for the water and methanol extracts. Dichloromethane extracts did not have a significant light absorption characteristics for ambient samples. BrC and BC were measured in Beijing, China. Both were reduced significantly when restrictive air pollution controls were put in place. The industrial regions south and east of Beijing were the highest contributors to ambient BrC and BC. The controls reduced BrC more than BC as compared to observations during the regions heating period. Using the color characteristics of ambient PM, a model was developed to estimate elemental and organic carbon (EC/OC). The method will allow fast and cost effective quantification of PM composition in combination with large climate and health studies, especially in the developing world.

  15. Non-contact detection of cardiac rate based on visible light imaging device

    NASA Astrophysics Data System (ADS)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  16. Enhancement of optical absorption of Si (100) surfaces by low energy N+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dipak; Karmakar, Prasanta

    2018-05-01

    The increase of optical absorption efficiency of Si (100) surface by 7 keV and 8 keV N+ ions bombardment has been reported here. A periodic ripple pattern on surface has been observed as well as silicon nitride is formed at the ion impact zones by these low energy N+ ion bombardment [P. Karmakar et al., J. Appl. Phys. 120, 025301 (2016)]. The light absorption efficiency increases due to the presence of silicon nitride compound as well as surface nanopatterns. The Atomic Force Microscopy (AFM) study shows the formation of periodic ripple pattern and increase of surface roughness with N+ ion energy. The enhancement of optical absorption by the ion bombarded Si, compared to the bare Si have been measured by UV - visible spectrophotometer.

  17. Microwave assisted synthesis of sheet-like Cu/BiVO{sub 4} and its activities of various photocatalytic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006; Li, Li, E-mail: qqhrll@163.com

    2015-09-15

    The Cu/BiVO{sub 4} photocatalyst with visible-light responsivity was prepared by the microwave-assisted hydrothermal method. The phase structures, chemical composition and surface physicochemical properties were well-characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance absorption (UV–vis/DRS), scanning electron microscopy (SEM), and N{sub 2} adsorption–desorption tests. Results indicate that the crystal structure of synthetic composite materials is mainly monoclinic scheelite BiVO{sub 4}, which is not changed with the increasing doping amount of Cu. In addition, the presence of Cu not only enlarges the range of the composite materials under the visible-light response, but also increases the BET value significantly.more » Compared to pure BiVO{sub 4}, 1% Cu/BiVO{sub 4}-160 performs the highest photocatalytic activity to degrade methylene blue under the irradiation of ultraviolet, visible and simulated sunlight. In addition, the capture experiments prove that the main active species was superoxide radicals during photocatalytic reaction. Moreover, the 1% Cu/BiVO{sub 4}-160 composite shows good photocatalytic stability after three times of recycling. - Graphical abstract: A series of BiVO{sub 4} with different amounts of Cu doping were prepared by the microwave-assisted method, moreover, which performed the high photocatalytic activities to degrade methylene blue under multi-mode. - Highlights: • A series of Cu/BiVO{sub 4} with different amounts of Cu doping were prepared by microwave-assisted synthesis. • The morphologies of as-samples were different with the amount of Cu doping increased. • Compared with pure BiVO{sub 4}, as-Cu/BiVO{sub 4} showed stronger absorption in the visible light region obviously. • 1% Cu/BiVO{sub 4}-160 performed the high photocatalytic activities to degrade methylene blue under multi-mode. • OH{sup •} and h{sup +} both play important roles in the photocatalytic reaction.« less

  18. Visible laser and UV-A radiation impact on a PNP degrading Moraxella strain and its rpoS mutant.

    PubMed

    Nandakumar, Kanavillil; Keeler, Werden; Schraft, Heidi; Leung, Kam T

    2006-07-05

    The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms. (c) 2006 Wiley Periodicals, Inc.

  19. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pala, Ragip A.; Butun, Serkan; Aydin, Koray

    2016-09-19

    Light trapping in planar ultrathin-film solar cells is limited due to a small number of optical modes available in the thin-film slab. A nanostructured thin-film design could surpass this limit by providing broadband increase in the local density of states in a subwavelength volume and maintaining efficient coupling of light. Here we report a broadband metasurface design, enabling efficient and broadband absorption enhancement by direct coupling of incoming light to resonant modes of subwavelength scale Mie nanoresonators defined in the thin-film active layer. Absorption was investigated both theoretically and experimentally in prototypes consisting of lithographically patterned, two-dimensional periodic arrays ofmore » silicon nanoresonators on silica substrates. A crossed trapezoid resonator shape of rectangular cross section is used to excite broadband Mie resonances across visible and near-IR spectra. Our numerical simulations, optical absorption measurements and photocurrent spectral response measurements demonstrate that crossed trapezoidal Mie resonant structures enable angle-insensitive, broadband absorption. A short circuit current density of 12.0 mA/cm 2 is achieved in 210 nm thick patterned Si films, yielding a 4-fold increase compared to planar films of the same thickness. As a result, it is suggested that silicon metasurfaces with Mie resonator arrays can provide useful insights to guide future ultrathin-film solar cell designs incorporating nanostructured thin active layers.« less

  20. Colloidal silver nanoparticles prepared by UV-light induced citrate reduction technique for the quantitative detection of uric acid

    NASA Astrophysics Data System (ADS)

    Maity, Anupam; Panda, Sovan Kumar

    2018-04-01

    Reddish-yellow color colloid consisting of silver nanoparticles (Ag NPs) has been synthesized by reducing aqueous AgNO3 solution by photo-induced citrate reduction technique under UV light. As prepared colloid exhibits single and intense plasmonic absorption peak in the violet region of the visible spectra with the peak centered at 405 nm. The NPs are fine and spherical with diameter ranging from 5 to 10 nm. These colloidal NPs have been used for the quantitative detection of uric acid by UV-VIS spectroscopy. A linear red shifting of the characteristics Plasmonic absorption peak of Ag NPs is observed with uric acid concentration. Uric acid can be detected by UV-VIS spectroscopy down to 5 nM limit using the prepared colloid.

  1. H2 Production Under Visible Light Irradiation from Aqueous Methanol Solution on CaTiO3:Cu Prepared by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sung Nam; Song, Shin Ae; Jeong, Yong-Cheol; Kang, Hyun Woo; Park, Seung Bin; Kim, Ki Young

    2017-10-01

    Perovskite-type photocatalysts of CaCu x Ti1- x O3 (0 ≤ x ≤ 0.02) powder were prepared by spray pyrolysis of aqueous solution or aqueous solution with polymeric additive. The effects of the amount of copper ions doped in the photocatalyst and the precursor type on the photocatalytic activity under visible-light irradiation were investigated. The crystal structure, oxidation state, and light adsorption properties of the prepared photocatalysts were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, and diffuse reflectance spectroscopy, respectively. The doping of copper ions in CaTiO3 allowed visible-light absorption owing to a narrowing of the band gap energy of the host material through the formation of a new donor level for copper ions. Among the doped samples prepared from the aqueous precursor, CaTiO3 doped with 1 mol.% copper ions had the highest hydrogen evolution rate (140.7 μmol g-1 h-1). Notably, the hydrogen evolution rate of the photocatalyst doped with 1 mol.% copper ions prepared from the aqueous precursor with polymeric additive (295.0 μmol g-1 h-1) was two times greater than that prepared from the aqueous precursor, due to the morphology effect.

  2. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  3. Hybrid silicon–carbon nanostructures for broadband optical absorption

    DOE PAGES

    Yang, Wen -Hua; Lu, Wen -Cai; Ho, K. M.; ...

    2017-01-25

    Proper design of nanomaterials for broadband light absorption is a key factor for improving the conversion efficiency of solar cells. Here we present a hybrid design of silicon–carbon nanostructures with silicon clusters coated by carbon cages, i.e., Si m@C 2n for potential solar cell application. The optical properties of these hybrid nanostructures were calculated based on time dependent density function theory (TDDFT). The results show that the optical spectra of Si m@C 2n are very different from those of pure Si m and C 2n clusters. While the absorption spectra of pure carbon cages and Si m clusters exhibit peaksmore » in the UV region, those of the Si m@C 2n nanostructures exhibit a significant red shift. Superposition of the optical spectra of various Si m@C 2n nanostructures forms a broad-band absorption, which extends to the visible light and infrared regions. As a result, the broadband adsorption of the assembled Si m@C 2n nanoclusters may provide a new approach for the design of high efficiency solar cell nanomaterials.« less

  4. Sulfonated graphene oxide-ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light.

    PubMed

    Gao, Peng; Ng, Kokseng; Sun, Darren Delai

    2013-11-15

    Synthesis of efficient visible-light-driven photocatalyst is urgent but challenging for environmental remediation. In this work, for the first time, the hierarchical plasmonic sulfonated graphene oxide-ZnO-Ag (SGO-ZnO-Ag) composites were prepared through nanocrystal-seed-directed hydrothermal method combining with polyol-reduction process. The results indicated that SGO-ZnO-Ag exhibited much faster rate in photodegradation of Rhodamine B (RhB) and disinfection of Escherichia coli (E. coli), than ZnO, SGO-ZnO and ZnO-Ag. SGO-ZnO-Ag totally degraded RhB dye and kill 99% of E. coli within 20 min under visible light irradiation. The outstanding performances of SGO-ZnO-Ag were attributed to the synergetic merits of SGO sheets, ZnO nanorod arrays and Ag nanoparticles. Firstly, the light absorption ability of SGO-ZnO-Ag composite in the visible region was enhanced due to the surface plasmon resonance of Ag. In addition, the hierarchical structure of SGO-ZnO-Ag composite improved the incident light scattering and reflection. Furthermore, SGO sheets facilitated charge transfer and reduce electron-hole recombination rate. Finally, the tentative mechanism was proposed and verified by the photoluminescence (PL) measurement as well as the theoretical finite-difference time-domain (FDTD) simulation. In view of above, this work paves the way for preparation of multi-component plasmonic composites and highlights the potential applications of SGO-ZnO-Ag in photocatalytic wastewater treatment field. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination.

    PubMed

    Jiang, Haiyan; Meng, Xue; Dai, Hongxing; Deng, Jiguang; Liu, Yuxi; Zhang, Lei; Zhao, Zhenxuan; Zhang, Ruzhen

    2012-05-30

    Monoclinic BiVO(4) single-crystallites with a polyhedral, spherical or porous octapod-like morphology were selectively prepared using the triblock copolymer P123 (HO(CH(2)CH(2)O)(20)(CH(2)CH(CH(3))O)(70)(CH(2)CH(2)O)(20)H)-assisted hydrothermal method with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The BiVO(4) materials were well characterized and their photocatalytic activities were evaluated for the removal of methylene blue (MB) and phenol in the presence of a small amount of H(2)O(2) under visible-light illumination. It is shown that the pH value of the precursor solution, surfactant, and hydrothermal temperature had an important impact on particle architecture of the BiVO(4) product. The introduction of P123 favored the generation of BiVO(4) with porous structures. The BiVO(4) derived hydrothermally with P123 at pH 3 or 6 possessed good optical absorption performance both in UV- and visible-light regions and hence showed excellent photocatalytic activities for the degradation of MB and phenol. It is concluded that the high visible-light-driven catalytic performance of the porous octapod-like BiVO(4) single-crystallites is associated with the higher surface area, porous structure, lower band gap energy, and unique particle morphology. Such porous BiVO(4) materials are useful in the solar-light-driven photocatalytic treatment of organic-containing wastewater. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A contribution of black and brown carbon to the aerosol light absorption

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.

  7. Broad-band and polarization-independent perfect absorption in graphene-gold cylinder arrays at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Zheng, G. G.; Xu, L. H.; Xian, F. L.; Lai, M.

    2018-07-01

    A wavelength tunable perfect absorber with graphene-hexagonal gold (Au) cylinder array on a ground plate is investigated theoretically. The interactions between electromagnetic (EM) waves and monolayer graphene are analyzed through the field distributions and spectral responses in detail. The finite-difference-time-domain (FDTD) method is used to investigate the tunable properties of the absorber. It is demonstrated that in an optimized configuration, monolayer graphene can interact with light via critical coupling, and the absorptance can be greatly enhanced and reach to 100% for both transverse magnetic (TM) and transverse electronic (TE) polarizations. Furthermore, the influence of geometrical parameters of the structure on the response of the hybrid structure is studied. It is expected that the proposed graphene perfect absorbers can be applied for many applications in the visible (VIS) and the near-infrared (NIR) spectral ranges such as wavelength selective infrared photodetectors and plasmonic sensors.

  8. Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3 - A new optically transparent magnetic material

    NASA Astrophysics Data System (ADS)

    Ziolo, Ronald F.; Giannelis, Emmanuel P.; Weinstein, Bernard A.; O'Horo, Michael P.; Ganguly, Bishwanath N.; Mehrotra, Vivek; Russell, Michael W.; Huffman, Donald R.

    1992-07-01

    A magnetic material with appreciable optical transmission in the visible region at room temperature is isolated as a gamma-Fe2O3/polymer nanocomposite. The synthesis is carried out in an ion-exchange resin at 60 C. Magnetization and susceptibility data demonstrate loading-dependent saturation moments as high as 46 electromagnetic units per gram and superparamagnetism for lower loadings where particle sizes are less than 100 angstroms. Optical absorption studies show that the small-particle form of gamma-Fe2O3 is considerably more transparent to visible light than the single-crystal form. The difference in absorption ranges from nearly an order of magnitude in the 'red' spectral region to a factor of 3 at 5400 angstroms. The magnetization of the nanocomposite is greater by more than an order of magnitude than those of the strongest room-temperature transparent magnets, FeBO3 and FeF3.

  9. 640x512 pixel InGaAs FPAs for short-wave infrared and visible light imaging

    NASA Astrophysics Data System (ADS)

    Shao, Xiumei; Yang, Bo; Huang, Songlei; Wei, Yang; Li, Xue; Zhu, Xianliang; Li, Tao; Chen, Yu; Gong, Haimei

    2017-08-01

    The spectral irradiance of moonlight and air glow is mainly in the wavelength region from visible to short-wave infrared (SWIR) band. The imaging over the wavelength range of visible to SWIR is of great significance for applications such as civil safety, night vision, and agricultural sorting. In this paper, 640×512 visible-SWIR InGaAs focal plane arrays (FPAs) were studied for night vision and SWIR imaging. A special epitaxial wafer structure with etch-stop layer was designed and developed. Planar-type 640×512 InGaAs detector arrays were fabricated. The photosensitive arrays were bonded with readout circuit through Indium bumps by flip-chip process. Then, the InP substrate was removed by mechanical thinning and chemical wet etching. The visible irradiance can reach InGaAs absorption layer and then to be detected. As a result, the detection spectrum of the InGaAs FPAs has been extended toward visible spectrum from 0.5μm to 1.7μm. The quantum efficiency is approximately 15% at 0.5μm, 30% at 0.7μm, 50% at 0.8μm, 90% at 1.55μm. The average peak detectivity is higher than 2×1012 cm·Hz1/2/W at room temperature with an integrated time of 10 ms. The Visible-SWIR InGaAs FPAs were applied to an imaging system for SWIR and visible light imaging.

  10. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO3: a First-Principles Study

    NASA Astrophysics Data System (ADS)

    Wang, Yue-Qin; Liu, Yin; Zhang, Ming-Xu; Min, Fan-Fei

    2018-01-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 51474011, the Postdoctoral Science Foundation of China under Grant No 2014M550337, and the Key Technologies R&D Program of Anhui Province of China under Grant No 1604a0802122.

  11. Excited Electronic States, Photochemistry and Photophysics of Carotenoids

    NASA Astrophysics Data System (ADS)

    Frank, Harry A.; Christensen, Ronald L.

    The most striking characteristic of carotenoids is their palette of colours. Absorption of light in the visible region of the electromagnetic spectrum by molecules such as β-carotene (3) and lycopene (31) not only readily accounts for their colours but also signals the ability of these long-chain polyenes to serve as antenna pigments in diverse photosynthetic systems [1-4].

  12. The effect of porphyrins on normal and transformed mouse cell lines in the presence of visible light.

    PubMed

    Tita, S P; Perussi, J R

    2001-10-01

    Photodynamic therapy consists of the uptake of a photosensitizing dye, often a porphyrin, by tumor tissue and subsequent irradiation of the tumor with visible light of an appropriate wavelength matched to the absorption spectrum of the photosensitizing dye. This class of molecules produces reactive oxygen species when activated by light, resulting in a direct or indirect cytotoxic effect on the target cells. Photodynamic therapy has been used in the treatment of cancer but the technology has a potential for the treatment of several disease conditions mainly because of its selectivity. However, it is not clear why the porphyrins are retained preferentially by abnormal tissue. This paper describes a study of the effect of the association of porphyrin and visible light on two mouse fibroblast cell lines: A31, normal cells and B61, an EJ-ras transformed variant of A31. Two water-soluble porphyrins were used, a positively charged one, tetra(N-methyl-4-pyridyl)porphyrin chloride, and a negatively charged one, tetra(4-sulfonatophenyl)porphyrin-Na salt (TPPS4) in order to assess the effect on cell survival. The results suggest that the B61 cell line is more sensitive to incubation with the anionic porphyrin (TPPS4) followed by light irradiation and that the anionic porphyrin is more efficient in killing the cells than the cationic porphyrin.

  13. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin

    2018-05-01

    A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.

  14. High solar-light photocatalytic activity of using Cu3Se2/rGO nanocomposites synthesized by a green co-precipitation method

    NASA Astrophysics Data System (ADS)

    Nouri, Morteza; Saray, Abdolali Moghaddam; Azimi, H. R.; Yousefi, Ramin

    2017-11-01

    Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.

  15. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    NASA Astrophysics Data System (ADS)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  16. N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lv, Jun; Sheng, Tong; Su, Lili; Xu, Guangqing; Wang, Dongmei; Zheng, Zhixiang; Wu, Yucheng

    2013-11-01

    Using TiCl4 as the titanium source, urea as the precipitating agent, nano-TiO2/fly ash beads composite materials were prepared by hydrolysis-precipitation method. Using (NH2)2CO and (NH2)2SC as the N and S source respectively, N and S co-doped TiO2/fly ash beads composite materials were prepared by grinding them together according to a certain proportion and calcined at 500 °C for 2 h. The composite materials were characterized by SEM, EDS, XPS, and UV-vis spectrophotometer methods. The UV-vis absorption spectra results show that the absorption edge of un-doped composites is 390 nm while that of doped composites red-shifts to 500 nm. The photocatalytic activity of composite materials was evaluated by degradation of methyl orange under visible light irradiation (halogen lamp, 250 W). The results showed that after irradiation for 1 h, degradation rate of N, S co-doped-TiO2/fly ash beads composite material can reach 65%, while the degradation rate of un-doped sample and P25 were just 10% and 6%, respectively. The composite material also showed excellent recycling properties.

  17. One-step in situ synthesis of graphene–TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Mingxuan, E-mail: mingxuansun@sues.edu.cn; Li, Weibin; Sun, Shanfu

    2015-01-15

    Chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with superior dispersity were synthesized by a one-step in situ hydrothermal method using graphene oxide (GO) and TiO{sub 2} (P25) as the starting materials. The as-prepared samples were characterized by XRD, XPS, TEM, FE-SEM, EDX, Raman, N{sub 2} adsorption, and UV–vis DRS techniques. Enhanced light absorption and a red shift of absorption edge were observed for the composites in the ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS). Their effective photocatalytic activity was evaluated by the photodegradation of methylene blue under visible light irradiation. An enhancement of photocatalytic performance was observed over graphene/TiO{sub 2} nanorodmore » hybrid composite photocatalysts, as 3.7 times larger than that of pristine TiO{sub 2} nanorods. This work demonstrated that the synthesis of TiO{sub 2} nanorods and simultaneous conversion of GO to graphene “without using reducing agents” had shown to be a rapid, direct and clean approach to fabricate chemically bonded graphene/TiO{sub 2} nanorod hybrid composites with enhanced photocatalytic performance.« less

  18. Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.

    PubMed

    Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi

    2015-08-03

    A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water.

    PubMed

    Kuehnel, Moritz F; Sahm, Constantin D; Neri, Gaia; Lee, Jonathan R; Orchard, Katherine L; Cowan, Alexander J; Reisner, Erwin

    2018-03-07

    A precious metal and Cd-free photocatalyst system for efficient CO 2 reduction in water is reported. The hybrid assembly consists of ligand-free ZnSe quantum dots (QDs) as a visible-light photosensitiser combined with a phosphonic acid-functionalised Ni(cyclam) catalyst, NiCycP. This precious metal-free photocatalyst system shows a high activity for aqueous CO 2 reduction to CO (Ni-based TON CO > 120), whereas an anchor-free catalyst, Ni(cyclam)Cl 2 , produced three times less CO. Additional ZnSe surface modification with 2-(dimethylamino)ethanethiol (MEDA) partially suppresses H 2 generation and enhances the CO production allowing for a Ni-based TON CO of > 280 and more than 33% selectivity for CO 2 reduction over H 2 evolution, after 20 h visible light irradiation ( λ > 400 nm, AM 1.5G, 1 sun). The external quantum efficiency of 3.4 ± 0.3% at 400 nm is comparable to state-of-the-art precious metal photocatalysts. Transient absorption spectroscopy showed that band-gap excitation of ZnSe QDs is followed by rapid hole scavenging and very fast electron trapping in ZnSe. The trapped electrons transfer to NiCycP on the ps timescale, explaining the high performance for photocatalytic CO 2 reduction. With this work we introduce ZnSe QDs as an inexpensive and efficient visible light-absorber for solar fuel generation.

  20. Up-conversion in rare-earth doped micro-particles applied to new emissive two-dimensional displays

    NASA Astrophysics Data System (ADS)

    Milliez, Anne Janet

    Up-conversion (UC) in rare-earth co-doped fluorides to convert diode laser light in the near infrared to red, green and blue visible light is applied to make possible high performance emissive displays. The infrared-to-visible UC in the materials we study is a sequential form of non-linear two photon absorption in which a strong absorbing constituent absorbs two low energy photons and transfers this energy to another constituent which emits visible light. Some of the UC emitters' most appealing characteristics for displays are: a wide color gamut with very saturated colors, very high brightness operation without damage to the emitters, long lifetimes and efficiencies comparable to those of existing technologies. Other advantages include simplicity of fabrication, versatility of operating modes, and the potential for greatly reduced display weight and depth. Thanks to recent advances in material science and diode laser technology at the excitation wavelength, UC selected materials can be very efficient visible emitters. However, optimal UC efficiencies strongly depend on chosing proper operating conditions. In this thesis, we studied the conditions required for optimization. We demonstrated that high efficiency UC depends on high pump irradiance, low temperature and low scattering. With this understanding we can predict how to optimally use UC emitters in a wide range of applications. In particular, we showed how our very efficient UC emitters can be applied to make full color displays and very efficient white light sources.

  1. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    PubMed

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  2. Preparation and photocatalytic activity of magnetic samarium-doped mesoporous titanium dioxide at the decomposition of methylene blue under visible light

    NASA Astrophysics Data System (ADS)

    Shi, Zhongliang; Lai, Hong; Yao, Shuhua

    2012-08-01

    Preparation of samarium-doped mesoporous titanium dioxide (Sm/MTiO2) coated magnetite (Fe3O4) photocatalysts (Sm/MTiO2/Fe3O4) and their activities under visible light were reported. The catalysts with Sm/MTiO2 shell and a Fe3O4 core were prepared by coating photoactive Sm/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with precursors of Sm(NO3)3 and TBT in the presence of Fe3O4 nanoparticles. The morphological, structural and optical properties of the prepared samples were characterized by BET surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of Sm ion content on the photocatalytic activity was studied. The photocatalytic activities of obtained photocatalysts under visible light were estimated by measuring the decomposition rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Sm/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by a simple magnetic process. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.

  3. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NOx abatement

    NASA Astrophysics Data System (ADS)

    Tobaldi, D. M.; Pullar, R. C.; Gualtieri, A. F.; Otero-Irurueta, G.; Singh, M. K.; Seabra, M. P.; Labrincha, J. A.

    2015-11-01

    Titanium dioxide (TiO2) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO2 has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO2 to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO2 lattice using our green sol-gel nanosynthesis method, used to create 10 nm TiO2 NPs. Two parallel routes were studied to produce nitrogen-modified TiO2 nanoparticles (NPs), using HNO3+NH3 (acid-precipitated base-peptised) and NH4OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NOx) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NOx abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO2 NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects of four simultaneous occurrences: (i) loss of OH groups and water adsorbed on the photocatalyst surface; (ii) growth of crystalline domain sizes with decrease in specific surface area; (iii) onset and progress of the ART; (iv) the increasing instability of the nitrogen in the titania lattice.

  4. Visible Light Assisted Photocatalytic Hydrogen Generation by Ta 2O 5/Bi 2O 3, TaON/Bi 2O 3, and Ta 3N 5/Bi 2O 3 Composites

    DOE PAGES

    Adhikari, Shiba; Hood, Zachary D.; More, Karren Leslie; ...

    2015-06-15

    Composites comprised of two semiconducting materials with suitable band gaps and band positions have been reported to be effective at enhancing photocatalytic activity in the visible light region of the electromagnetic spectrum. Here, we report the synthesis, complete structural and physical characterizations, and photocatalytic performance of a series of semiconducting oxide composites. UV light active tantalum oxide (Ta2O5) and visible light active tantalum oxynitride (TaON) and tantalum nitride (Ta 3N 5) were synthesized, and their composites with Bi 2O 3 were prepared in situ using benzyl alcohol as solvent. The composite prepared using equimolar amounts of Bi 2O 3 andmore » Ta 2O 5 leads to the formation of the ternary oxide, bismuth tantalate (BiTaO 4) upon calcination at 1000 °C. The composites and single phase bismuth tantalate formed were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) surface area measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy, and photoluminescence. The photocatalytic activities of the catalysts were evaluated for generation of hydrogen using aqueous methanol solution under visible light irradiation (λ ≥ 420 nm). The results show that as-prepared composite photocatalysts extend the light absorption range and restrict photogenerated charge-carrier recombination, resulting in enhanced photocatalytic activity compared to individual phases. The mechanism for the enhanced photocatalytic activity for the heterostructured composites is elucidated based on observed activity, band positions calculations, and photoluminescence data.« less

  5. Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity

    PubMed Central

    Liu, Yazi; Xu, Jian; Wang, Liqiong; Zhang, Huayang; Xu, Ping; Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin

    2017-01-01

    Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO) oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O2 evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure, a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized for the degradation of various industrial dyes under natural sunlight irradiation which is of high significance for the remediation of industrial wastewater in the future. PMID:28336897

  6. Effect of boron and phosphorus codoping on the electronic and optical properties of graphitic carbon nitride monolayers: First-principle simulations

    NASA Astrophysics Data System (ADS)

    Yousefi, Mahdieh; Faraji, Monireh; Asgari, Reza; Moshfegh, Alireza Z.

    2018-05-01

    We study the effect of boron (B) and phosphorous (P) doping and B/P codoping on electronic and optical properties of graphitic carbon nitride (g-C3N4 or GCN) monolayers using density functional simulations. The energy band structure indicates that the incorporation of both B and P into a hexagonal lattice of GCN reduces the energy band gap from 3.1 for pristine GCN to 1.9 eV, thus extending light absorption toward the visible region. Moreover, on the basis of calculating absorption spectra and dielectric function, the codoped system exhibits an improved absorption intensity in the visible region and more electronic transitions, which named π* electronic transitions that occurred and were prohibited in the pristine GCN. These transitions can be attributed to charge redistribution upon doping, caused by distorted configurable B/P-codoped GCN confirmed by both electron density and Mulliken charge population. Therefore, B/P-codoped GCN is expected to be an auspicious candidate to be used as a promising photoelectrode in photoelectrochemical water splitting reactions leading to efficient solar H2 production.

  7. Variations of polycyclic aromatic hydrocarbons in ambient air during haze and non-haze episodes in warm seasons in Hangzhou, China.

    PubMed

    Lu, Hao; Wang, Shengsheng; Wu, Zuliang; Yao, Shuiliang; Han, Jingyi; Tang, Xiujuan; Jiang, Boqiong

    2017-01-01

    To investigate the characteristics of polycyclic aromatic hydrocarbons (PAHs) during haze episodes in warm seasons, daily PM 2.5 and gaseous samples were collected from March to September 2015 in Hangzhou, China. Daily samples were further divided into four groups by the definition of haze according to visibility and relative humidity (RH), including non-haze (visibility, >10 km), light haze (visibility, 8-10 km, RH <90 %), medium haze (visibility, 5-8 km, RH <90 %), and heavy haze (visibility, <5 km, RH <90 %). Significantly higher concentrations of PM 2.5 -bound PAHs were found in haze days, but the mean PM 2.5 -bound PAH concentrations obviously decreased with the aggravation of haze pollution from light to heavy. The gas/particle partitioning coefficients of PAHs decreased from light-haze to heavy-haze episodes, which indicated that PM 2.5 -bound PAHs were restricted to adhere to the particulate phase with the aggravation of haze pollution. Absorption was considered the main mechanism of gas/particle partitioning of PAHs from gaseous to particulate phase. Analysis of air mass transport indicated that the PM 2.5 -bound PAH pollution in haze days was largely from regional sources but also significantly affected by long-range air mass transport. The inhalation cancer risk associated with PAHs exceeded the acceptable risk level markedly in both haze and non-haze days.

  8. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.

    PubMed

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi

    2012-09-01

    Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).

  9. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    USGS Publications Warehouse

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  10. Sandwiched ZnO@Au@CdS nanorod arrays with enhanced visible-light-driven photocatalytical performance

    NASA Astrophysics Data System (ADS)

    Ren, Shoutian; Wang, Yingying; Fan, Guanghua; Gao, Renxi; Liu, Wenjun

    2017-11-01

    The development of high-performance photocatalysts is central to efforts focused on taking advantage of solar energy to overcome environmental and energy crises. Integrating different functional materials artfully into nanostructures can deliver more efficient photocatalytic activity. Here, sandwiched ZnO@Au@CdS nanorod films were synthesized via successive ZnO nanorod electrodeposition, Au sputtering and CdS electrodeposition. The as-synthesized composites were characterized by UV-vis spectrophotometer, x-ray diffractometer, scanning and transmission electron microscopy. Their photocatalytic activity was assessed by degrading Rhodamine B solution under visible light irradiation. ZnO@Au@CdS exhibited better photocatalytic performance than ZnO@CdS throughout the visible light region, and the corresponding enhancement factor of Au nanoparticles was measured as a function of CdS loading amount, and it could reach 190% with CdS deposition for 1 min. The normalized rate constant could reach 0.387 h-1 for ZnO@Au@CdS-1min, which was equivalent to or better than results in reference photocatalysts. The enhancement mechanism of Au nanoparticles was estimated by comparing the monochromatic photocatalytic action spectra with the absorption spectrum of ZnO@Au@CdS, and it was mainly determined by incident photon energy. With selective excitation of Au nanoparticles by incident photons, the excited hot electrons in Au NPs are transferred to the conduction band of ZnO to boost photocatalytic reaction. With selective excitation of CdS, the enhanced interband absorption of CdS and relay station effect of Au nanoparticles should be responsible for the enhanced photocatalytic performance. Our work not only opens the door to the design of efficient supported photocatalysts, but also helps to understand the enhancement mechanism of LSPR effect on the photoelectric conversion of semiconductors.

  11. Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films.

    PubMed

    Hahn, Nathan T; Hoang, Son; Self, Jeffrey L; Mullins, C Buddie

    2012-09-25

    Bismuth oxy-iodide is a potentially interesting visible-light-active photocatalyst; yet there is little research regarding its photoelectrochemical properties. Herein we report the synthesis of BiOI nanoplatelet photoelectrodes by spray pyrolysis on fluorine-doped tin oxide substrates at various temperatures. The films exhibited n-type conductivity, most likely due to the presence of anion vacancies, and optimized films possessed incident photon conversion efficiencies of over 20% in the visible range for the oxidation of I(-) to I(3)(-) at 0.4 V vs Ag/AgCl in acetonitrile. Visible-light photons (λ > 420 nm) contributed approximately 75% of the overall photocurrent under AM1.5G illumination, illustrating their usefulness under solar light illumination. A deposition temperature of 260 °C was found to result in the best performance due to the balance of morphology, crystallinity, impurity levels, and optical absorption, leading to photocurrents of roughly 0.9 mA/cm(2) at 0.4 V vs Ag/AgCl. Although the films performed stably in acetonitrile, their performance decreased significantly upon extended exposure to water, which was apparently caused by a loss of surface iodine and subsequent formation of an insulating bismuth hydroxide layer.

  12. High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization.

    PubMed

    Qianqian, Zhai; Tang, Bo; Guoxin, Hu

    2011-12-30

    A series of graphene/titanate nanotubes (TNTs) photocatalysts using graphene and nanoscale TiO(2) or P25 as original materials were fabricated by hydrothermal method. Both low hydrothermal temperature and proper amount of graphene are propitious to better photoactivity. The photocatalytic activities of these nanocomposites far exceed that of P25, pure TNTs and reported TiO(2)-based nanocomposites for the degradation of Rhodamine-B under visible-light irradiation. These prepared photocatalysts were characterized by TEM, XRD, XPS, BET, FTIR and UV-vis diffuse reflection spectra, and the results indicate that the outstanding photoactivities in visible-light region result from sensitization effect of graphene rather than impurity level in the band gap of TNTs. Furthermore, large BET surface areas of these photocatalysts (almost 10 times larger than that of previously reported graphene/TiO(2) nanoparticles) evidently enhance their absorption abilities and photocatalytic performances (the rate constants of degrading Rhodamine-B are at least 5 times higher than that of previously reported photocatalysts). These photocatalysts show good stability, and their photoactivities do not obviously decrease after four times of repeated uses. A detailed photocatalytic mechanism is suggested, as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light.

    PubMed

    Parida, Kulamani; Mohapatra, Lagnamayee

    2012-01-28

    A series of novel photocatalysts Zn/Cr LDH with different Zn/Cr molar ratios (2 : 1, 3 : 1, 4 : 1 and 2 : 1-CO(3)) were fabricated by a co-precipitation method and evaluated for photodecomposition of water using visible light irradiation. Various characterization methods were employed to investigate the structures, morphologies and photocatalytic properties. In comparison to Zn/Cr (2 : 1) LDH, Zn/Cr-CO(3) (2 : 1) LDH extends the absorption edges to the visible region and exhibits good photocatalytic activity, even without the assistance of co-catalysts. The visible light photocatalytic activity is ascribed to the charge transfer spectra of octahedral Cr ions in LDH. Zn/Cr-CO(3) LDH shows enhanced photocatalytic activities compared to Zn/Cr LDH as carbonate ions oxidise by holes to form carbonate radicals, inhibit the rapid recombination of e(-) and h(+) charge carriers and thereby suppress the backward reaction to some extent. This work provides a detailed understanding of the semiconductor properties of LDHs for photocatalytical hydrogen evolution.

  14. The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants.

    PubMed

    Saravanakumar, K; Muthuraj, V; Jeyaraj, M

    2018-01-05

    In this paper, we report a novel visible light driven Ag/CdO photocatalyst, fabricated for the first time via one pot hydrothermal method and further applied for the photodegradation of two important exemplar water contaminants, Malachite green and Acid Orange 7. The microstructure, composition and optical properties of Ag/CdO nanocomposites were thoroughly investigated by various techniques. Scanning electron microscopy clearly shows that Ag NPs were strongly embedded between the CdO nanoparticles. Among the series of synthesized Ag/CdO nanocomposites, (5%) Ag/CdO nanocomposite possesses enhanced photocatalytic activity. This result was attributed to the synergistic effect between Ag and CdO, and mainly Ag NPs can act as an electron trap site, which could reduce the recombination of the electron-hole and induce the visible light absorption. The active species trapping experiments implicate OH and O 2 - radicals as the respective primary and secondary reactive species responsible for oxidative photodegradation of organic pollutants. On the basis of the results, a possible photocatalytic mechanism has also been proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Preparation and characterization of Bi-doped TiO{sub 2} and its solar photocatalytic activity for the degradation of isoproturon herbicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu

    Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less

  16. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light

    PubMed Central

    Yuan, Xiaoya; Zhou, Chao; Jing, Qiuye; Tang, Qi; Mu, Yuanhua; Du, An-ke

    2016-01-01

    Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers. PMID:28335301

  17. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  18. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    PubMed

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  19. Facile fabrication of transparent TiO2-C@TiO2-C free-standing film for visible-light photocatalytic application

    NASA Astrophysics Data System (ADS)

    Hu, Luyang; Zhang, Yumin; Zhang, Shanmei; Li, Benxia

    2017-02-01

    A transparent TiO2-C@TiO2-C free-standing film has been synthesized by two-step hydrothermal method and subsequent thermal annealing. The chemical composition and morphological features of the TiO2-C@TiO2-C film are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and N2 adsorption-desorption measurement. The results indicate that the flower-like micro/nanostructure TiO2-C particle layers are intimately inhered to porous TiO2-C fibers. The fibers in film are interconnected each other to form a three-dimensional reticulate microstructure, and exhibit intense visible light absorption and high adsorptivity of dye molecules. The interaction between TiO2 and its surface carbon layer in TiO2-C particle promotes the generation of Ti-O-C bonds, which leads to effective charge transfer. Under visible-light irradiation, TiO2-C@TiO2-C film presents enhanced photocatalytic activity for degradation of methylene blue. This work may provide a new viewpoint for designing transparent photocatalytic film for promising applications in heterogeneous photocatalysis.

  20. Optical transmission radiation damage and recovery stimulation of DSB: Ce3+ inorganic scintillation material

    NASA Astrophysics Data System (ADS)

    Borisevich, A.; Dormenev, V.; Korjik, M.; Kozlov, D.; Mechinsky, V.; Novotny, R. W.

    2015-02-01

    Recently, a new scintillation material DSB: Ce3+ was announced. It can be produced in a form of glass or nano-structured glass ceramics with application of standard glass production technology with successive thermal annealing. When doped with Ce3+, material can be applied as scintillator. Light yield of scintillation is near 100 phe/MeV. Un-doped material has a wide optical window from 4.5eV and can be applied to detect Cherenkov light. Temperature dependence of the light yield LY(T) is 0.05% which is 40 times less than in case of PWO. It can be used for detectors tolerant to a temperature variation between -20° to +20°C. Several samples with dimensions of 15x15x7 mm3 have been tested for damage effects on the optical transmission under irradiation with γ-quanta. It was found that the induced absorption in the scintillation range depends on the doping concentration and varies in range of 0.5-7 m-1. Spontaneous recovery of induced absorption has fast initial component. Up to 25% of the damaged transmission is recuperated in 6 hours. Afterwards it remains practically constant if the samples are kept in the dark. However, induced absorption is reduced by a factor of 2 by annealing at 50°C and completely removed in a short time when annealing at 100°C. A significant acceleration of the induced absorption recovery is observed by illumination with visible and IR light. This effect is observed for the first time in a Ce-doped scintillation material. It indicates, that radiation induced absorption in DSB: Ce scintillation material can be retained at the acceptable level by stimulation with light in a strong irradiation environment of collider experiments.

  1. Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad

    NASA Astrophysics Data System (ADS)

    Zafar, Qayyum; Fatima, Noshin; Karimov, Khasan S.; Ahmed, Muhammad M.; Sulaiman, Khaulah

    2017-02-01

    Herein, we demonstrate a solution-processed visible wavelength organic photodiode (OPD) using donor/acceptor dyad of zinc phthalocyanine (ZnPc) and [6,6]-phenyl-C71-butyric-acid methyl ester (PC71BM), respectively. The synergic absorption profiles of both ZnPc and PC71BM moieties have been exploited to realize broader (350 and 800 nm) and consistent absorption spectrum of the photoactive film. The optimum loading ratio (by volume) of D/A dyad has been estimated to be 1:0.8, via quenching phenomenon in ZnPc photoluminescence spectrum. The performance of the OPD has been evaluated by detecting the photocurrent density with respect to varied illumination levels (0-150 mW/cm2) of impinging light at different reverse bias conditions. Under identical reverse bias mode, the photocurrent density has shown significant upsurge as the incident intensity of light is increased; ultimately leading to the significantly higher responsivity (162.4 μA/W) of the fabricated diode. The light to dark current density ratio (Jph/Jd) of the device at 3 V reverse bias has been calculated to be ∼20.12. The transient photocurrent density response of the fabricated OPD has also been characterized at -4 V operational bias under switch ON/OFF illumination. The measured response and recovery time for the fabricated OPD are ∼200 and 300 ms, respectively.

  2. Visible-Light Organic Photocatalysis for Latent Radical-Initiated Polymerization via 2e–/1H+ Transfers: Initiation with Parallels to Photosynthesis

    PubMed Central

    2015-01-01

    We report the latent production of free radicals from energy stored in a redox potential through a 2e–/1H+ transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e–/1H+ shuttle mechanism, as opposed to the 1e– transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the “storage” of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes. PMID:24786755

  3. Visible-light organic photocatalysis for latent radical-initiated polymerization via 2e⁻/1H⁺ transfers: initiation with parallels to photosynthesis.

    PubMed

    Aguirre-Soto, Alan; Lim, Chern-Hooi; Hwang, Albert T; Musgrave, Charles B; Stansbury, Jeffrey W

    2014-05-21

    We report the latent production of free radicals from energy stored in a redox potential through a 2e(-)/1H(+) transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e(-)/1H(+) shuttle mechanism, as opposed to the 1e(-) transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the "storage" of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes.

  4. Presence of exclusively bacteriochlorophyll-c containing substrain in the culture of green sulfur photosynthetic bacterium Chlorobium vibrioforme strain NCIB 8327 producing bacteriochlorophyll-d.

    PubMed

    Saga, Yoshitaka; Oh-oka, Hirozo; Hayashi, Takashi; Tamiaki, Hitoshi

    2003-12-01

    The light-dependent composition change of light harvesting bacteriochlorophyll(BChl)s in the present culture of a green sulfur photosynthetic bacterium Chlorobium (Chl.) vibrioforme f. sp. thiosulfatophilum strain NCIB 8327 was investigated by visible absorption spectroscopy and HPLC analyses. When the culture was repeatedly grown in liquid media under a low light condition, both the Soret and Qy absorption bands of the in vivo spectrum were shifted to longer wavelengths. Analysis of the extracted pigments by HPLC revealed that the ratio of the amount of BChl-c to that of BChl-d molecules gradually increased during repeated cultivation. In contrast, when the culture grown under a low light intensity was transferred to a high light condition and continued to be grown, the absorption bands were shifted to shorter wavelengths and the ratio of BChls-c/d decreased finally to the almost original value. Colonies were prepared on solid agar media from the liquid culture containing both BChls-c and d, which was grown under a low light intensity. Each colony obtained was found to contain either BChl-c or d, but not both of them. Two types of cells isolated in this study were derived from the same clone, judged from their genetic analyses. The variation of pigment composition in our liquid culture observed here could be ascribed to the difference of growth rates between two substrains containing BChl-c and BChl-d, respectively, depending on light conditions.

  5. Refractive index measurements in absorbing media with white light spectral interferometry.

    PubMed

    Arosa, Yago; Lago, Elena López; de la Fuente, Raúl

    2018-03-19

    White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.

  6. Surface plasmon resonance enhanced light absorption and wavelength tuneable in gold-coated iron oxide spherical nanoparticle

    NASA Astrophysics Data System (ADS)

    Dasri, Thananchai; Chingsungnoen, Artit

    2018-06-01

    Surface plasmon in nano-sized particles, such as gold, silver, copper and their composites, has recently attracted a great deal of attention due to its possible uses in many applications, especially in life sciences. It is desirable for application devices with a tenability of surface plasmon wavelength and optical properties enhancement. This article presents enhanced optical light absorption and tunable wavelength in gold-coated magnetite (Fe3O4@Au core-shell) nanoparticles embedded in water using the theoretical method of discrete dipole approximation (DDA). The absorption spectra in the wavelengths from 350 to 900 nm were found to be the spectra obtained from Fe3O4@Au core-shell nanoparticles, and when compared with pure Fe3O4 nanoparticles, the surface plasmon resonance can be enhanced and tuned over the entire visible spectrum (viz. 350-800 nm) of the electromagnetic spectrum by varying the Au shell thickness (2-5 nm). Similarly, the Faraday rotation spectra can also be obtained.

  7. Algorithm for Cosmic Noise Suppression in Free Space Optical Communications

    NASA Astrophysics Data System (ADS)

    Yuvaraj, George; Himani Sharma, Goyal, Dr.

    2017-08-01

    This article describes an algorithm to reduce cosmic noise in free space optical communication system. This method is intended to increase communication system’s performance and to increase the sustainability of the communication system by means of image processing technique. Apart from these, methods employed in testing the model are also presented for the communication system that uses either terrestrial or extraterrestrial medium to propagate message using optics or visible light without considering environmental impact that is turbulence, atmospheric absorption, beam dispersion and light intensity on its performance.

  8. Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites.

    PubMed

    Booker, Edward P; Thomas, Tudor H; Quarti, Claudio; Stanton, Michael R; Dashwood, Cameron D; Gillett, Alexander J; Richter, Johannes M; Pearson, Andrew J; Davis, Nathaniel J L K; Sirringhaus, Henning; Price, Michael B; Greenham, Neil C; Beljonne, David; Dutton, Siân E; Deschler, Felix

    2017-12-27

    We investigate the origin of the broadband visible emission in layered hybrid lead-halide perovskites and its connection with structural and photophysical properties. We study ⟨001⟩ oriented thin films of hexylammonium (HA) lead iodide, (C 6 H 16 N) 2 PbI 4 , and dodecylammonium (DA) lead iodide, (C 12 H 28 N) 2 PbI 4 , by combining first-principles simulations with time-resolved photoluminescence, steady-state absorption and X-ray diffraction measurements on cooling from 300 to 4 K. Ultrafast transient absorption and photoluminescence measurements are used to track the formation and recombination of emissive states. In addition to the excitonic photoluminescence near the absorption edge, we find a red-shifted, broadband (full-width at half-maximum of about 0.4 eV), emission band below 200 K, similar to emission from ⟨110⟩ oriented bromide 2D perovskites at room temperature. The lifetime of this sub-band-gap emission exceeds that of the excitonic transition by orders of magnitude. We use X-ray diffraction measurements to study the changes in crystal lattice with temperature. We report changes in the octahedral tilt and lattice spacing in both materials, together with a phase change around 200 K in DA 2 PbI 4 . DFT simulations of the HA 2 PbI 4 crystal structure indicate that the low-energy emission is due to interstitial iodide and related Frenkel defects. Our results demonstrate that white-light emission is not limited to ⟨110⟩ oriented bromide 2D perovskites but a general property of this class of system, and highlight the importance of defect control for the formation of low-energy emissive sites, which can provide a pathway to design tailored white-light emitters.

  9. Microwave assisted synthesis of porous ZnO/SnS heterojunction and its application in visible light degradation of ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Makama, A. B.; Salmiaton, A.; Saion, E. B.; Choong, T. S. Y.; Abdullah, N.

    2016-07-01

    Porous ZnO/SnS heterojunctions were successfully synthesized via microwave-assisted heating of aqueous solutions containing different amounts of SnS precursors (SnCl2 and Na2S) in the presence of fixed amount of ZnCO3 nanoparticles. The experimental results revealed that the heterojunctions exhibited much higher visible light-driven photocatalytic activity for the degradation of the ciprofloxacin than pure SnS nanocrystals. The photocatalytic degradation efficiency (1-Ct/C0) of the pollutant for the most active heterogeneous nanostructure is about four times more efficient than pure SnS. The enhanced photocatalytic efficiency is ascribed to the synergic effect of high photon absorption and reduction in the recombination of electrons and holes because of efficient separation and electron transfer from the SnS to ZnO nanoparticles.

  10. Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane.

    PubMed

    Ong, Wee-Jun; Tan, Lling-Lling; Chai, Siang-Piao; Yong, Siek-Ting

    2015-01-18

    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.

  11. Al decorated ZnO thin-film photoanode for SPR-enhanced photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Li, Hongxia; Li, Xin; Dong, Wei; Xi, Junhua; Wu, Xin

    2018-06-01

    Photoelectrochemical (PEC) water splitting has been considered to be a promising approach to ease the energy and environmental crisis. Herein, Al decorated ZnO thin films are successfully achieved through a facile dc magnetron-sputtering method followed with Al evaporation for further enhanced PEC performance. The Al/ZnO thin film with 60 s Al evaporating time exhibits the highest photocurrent density under AM1.5G and visible light irradiation, which are more than 5 and 3 times as the pure ZnO film, respectively. Such surface modification by Al not only enlarges the visible light absorption based on surface plasmonic resonance effect, but facilitates the charge separation and transportation at the electrode/electrolyte interface. Finally, a possible mechanism is proposed for the photocatalytic activity enhancement of Al/ZnO thin film photoanode.

  12. Photocatalytic activity of silver oxide capped Ag nanoparticles constructed by air plasma irradiation

    NASA Astrophysics Data System (ADS)

    Fang, Yingcui; Wu, Qingmeng; Li, Huanhuan; Zhang, Bing; Yan, Rong; Chen, Junling; Sun, Mengtao

    2018-04-01

    We construct a kind of structure of silver oxide capped silver nanoparticles (AgNPs) by cost-efficient air plasma irradiation, and study its visible-light driven photocatalytic activity (PA). By controlling the oxidization time, the relationship between the intensity of the localized surface plasmon resonance (LSPR) and the PA is well established. The PA reaches the maximum when the LSPR of AgNPs is nearly completely damped (according to absorption spectra); however, under this condition, the LSPR still works, confirmed with the high efficient selective transformation of p-Aminothiophenol (PATP) to p, p'-dimercaptoazobenzene (DMAB) under visible light. The mechanism of the LSPR damping induced PA improvement is discussed. We not only provide a cost-efficient approach to construct a LSPR strong damping structure but also promote the understanding of LSPR strong damping and its relationship with photocatalysis.

  13. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers λ up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (λ = 365 nm) and visible (λ = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  14. Structure and high photocatalytic activity of (N, Ta)-doped TiO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, N. T. H.; Lam, V. D.; Manh, D. H.

    2016-10-14

    A hydrothermal method was used to prepare three nano-crystalline samples of TiO{sub 2} (S1), N-doped TiO{sub 2} (S2), and (N, Ta)-codoped TiO{sub 2} (S3) with average crystallite sizes (D) of 13–25 nm. X-ray diffraction studies confirmed a single phase of the samples with a tetragonal/anatase structure. A slight increase in the lattice parameters was observed when N and/or Ta dopants were doped into the TiO{sub 2} host lattice. Detailed analyses of extended X-ray absorption spectra indicated that N- and/or Ta-doping into TiO{sub 2} nanoparticles influenced the co-ordination number and radial distance (R) of Ti ions in the anatase structure. Concerning theirmore » absorption spectra, (N, Ta)-doping narrowed the band gap (E{sub g}) of TiO{sub 2} from 3.03 eV for S1 through 2.94 eV for S2 to 2.85 eV for S3. Such results revealed the applicability of these nanoparticles in the photocatalytic field working in the ultraviolet (UV)-visible region. Among these, photocatalytic activity of S3 was the strongest. By using S3 as a catalyst powder, the degradation efficiency of methylene blue solution was about 99% and 93% after irradiation of UV-visible light for 75 min and visible-light for 180 min, respectively.« less

  15. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Dongfang; Zeng, Fanbin

    2011-06-01

    A novel copper (II) and zinc (II) codoped TiO2 photocatalyst was synthesized by a modified sol-gel method using titanium (IV) isopropoxide, Zn(NO3)2 · 6H2O and copper(Il) nitrate as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and photo-luminescence spectra (PL). The XRD results showed undoped and Zn, Cu-codoped TiO2 nanoparticles mainly including anatase phase and a tiny amount of Zn- and Cu-oxides exist in the mixed system, which is attributed to the decomposition of copper and zinc nitrates in the TiO2 gel to form CuO and ZnO and randomly dispersed on the TiO2 surface. On the basis of the optical characterization results, we found that the codoping of copper (II) and zinc (II) resulted a red shift of adsorption and lower recombination probability between electrons and holes, which were the reasons for high photocatalytic activity of Zn, Cu-codoped TiO2 nanoparticles under visible light (λ > 400 nm). The photocatalytic activity of samples was tested for degradation of methyl orange (MO) in solutions. The results indicated that the visible-light driven capability of the codoped catalyst were much higher than that of the pure TiO2 catalyst under visible irradiation. Because of the synergetic effect of copper (II) and zinc (II) element, the Zn, Cu-codoped TiO2 catalyst will show higher quantum yield and enhance absorption of visible light. In the end, a key mechanism was proposed in order to account for the enhanced activity.

  16. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  17. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity

    NASA Astrophysics Data System (ADS)

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K.; Wiltshire, Benjamin D.; Kisslinger, Ryan; Shankar, Karthik

    2018-01-01

    Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  18. Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite

    NASA Astrophysics Data System (ADS)

    Chandra, M. Ravi; Siva Prasada Reddy, P.; Rao, T. Siva; Pammi, S. V. N.; Siva Kumar, K.; Vijay Babu, K.; Kiran Kumar, Ch.; Hemalatha, K. P. J.

    2017-06-01

    The polythiophene supported tin doped titanium nanocomposites (PTh/Sn-TiO2) were synthesized by modified sol-gel process through oxidative polymerization of thiophene. The fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-DRS) analysis confirms the existence of synergetic interaction between metal oxide and polymer along with extension of absorption edge to visible region. The composites are found to be in spherical form with core-shell structure, which is confirmed by scanning electron spectroscopy (SEM) and transmission electron microscopy (TEM) images, the presence of all respective elements of composite are proven by energy-dispersive X-ray spectroscopy (EDX) analysis. The importance of polythiophene on surface of metal oxide has been were studied as a function of photocatalytic activity for degradation of organic pollutant congo red and gas sensor behavior towards liquid petroleum gas (LPG). All the composites are photocatalytically active and the composite with 1.5 wt% thiophene degrades the pollutant congo red within 120 min when compared to remaining catalysts under visible light irradiation. On the other hand, same composite have shown potential gas sensor properties towards LPG at 300 °C. Considering all the results, it can be noted that polythiophene acts as good sensitizer towards LPG and supporter for the tin doped titania that improve the photocatalytic activity under visible light.

  19. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity.

    PubMed

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K; Wiltshire, Benjamin D; Kisslinger, Ryan; Shankar, Karthik

    2018-01-05

    Anodically formed, vertically oriented, self-organized cylindrical TiO 2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO 2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  20. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications

    PubMed Central

    Mahy, Julien G.; Cerfontaine, Vincent; Devred, François; Gaigneaux, Eric M.; Heinrichs, Benoît; Lambert, Stéphanie D.

    2018-01-01

    In this paper, TiO2 prepared with an aqueous sol-gel synthesis by peptization process is doped with nitrogen precursor to extend its activity towards the visible region. Three N-precursors are used: urea, ethylenediamine and triethylamine. Different molar N/Ti ratios are tested and the synthesis is adapted for each dopant. For urea- and trimethylamine-doped samples, anatase-brookite TiO2 nanoparticles of 6–8 nm are formed, with a specific surface area between 200 and 275 m2·g−1. In ethylenediamine-doped samples, the formation of rutile phase is observed, and TiO2 nanoparticles of 6–8 nm with a specific surface area between 185 and 240 m2·g−1 are obtained. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements show the incorporation of nitrogen in TiO2 materials through Ti–O–N bonds allowing light absorption in the visible region. Photocatalytic tests on the remediation of water polluted with p-nitrophenol show a marked improvement for all doped catalysts under visible light. The optimum doping, taking into account cost, activity and ease of synthesis, is up-scaled to a volume of 5 L and compared to commercial Degussa P25 material. This up-scaled sample shows similar properties compared to the lab-scale sample, i.e., a photoactivity 4 times higher than commercial P25. PMID:29642626

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Xian; Li, Yan, E-mail: liyan-nwnu@163.com; Yan, Jian-Jun

    Highlights: • Kesterite CZTS nanocrystal powder was synthesized by one-pot method. • First successful use CZTS nanocrystal powder as photocatalyst. • CZTS shows an efficient photocatalysis under visible light irradiation. • CZTS photocatalyst having excellent stability. - Abstract: Cu{sub 2}ZnSnS{sub 4}, as a very promising p-type semiconductor material, has been extensively used in the study of solar cells owing to its suitable band gap (1.1–1.5 eV), large absorption coefficient of 10{sup 4} cm{sup −1} in the visible spectrum, good photo stability, nontoxicity and relative abundance of the component elements. In this paper, we have successfully synthesized p-type kesterite Cu{sub 2}ZnSnS{submore » 4} nanocrystal powder by facile one-pot method, and made our first successful attempt to use Cu{sub 2}ZnSnS{sub 4} nanocrystal powder as a photocatalyst to degradation methyl orange under visible-light irradiation. The exciting results show that in the visible light region, Cu{sub 2}ZnSnS{sub 4} nanocrystal powder possesses an excellent photocatalytic performance of K = 0.0317 min{sup −1}, nearly about 6 times of well known commercial P25 titania powder performance under the same conditions, which suggests that the p-type kesterite Cu{sub 2}ZnSnS{sub 4} nanocrystal would be a promising candidate of photocatalyst.« less

  2. Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2 over Nanostructured Pd@Nb2O5.

    PubMed

    Jia, Jia; O'Brien, Paul G; He, Le; Qiao, Qiao; Fei, Teng; Reyes, Laura M; Burrow, Timothy E; Dong, Yuchan; Liao, Kristine; Varela, Maria; Pennycook, Stephen J; Hmadeh, Mohamad; Helmy, Amr S; Kherani, Nazir P; Perovic, Doug D; Ozin, Geoffrey A

    2016-10-01

    The reverse water gas shift (RWGS) reaction driven by Nb 2 O 5 nanorod-supported Pd nanocrystals without external heating using visible and near infrared (NIR) light is demonstrated. By measuring the dependence of the RWGS reaction rates on the intensity and spectral power distribution of filtered light incident onto the nanostructured Pd@Nb 2 O 5 catalyst, it is determined that the RWGS reaction is activated photothermally. That is the RWGS reaction is initiated by heat generated from thermalization of charge carriers in the Pd nanocrystals that are excited by interband and intraband absorption of visible and NIR light. Taking advantage of this photothermal effect, a visible and NIR responsive Pd@Nb 2 O 5 hybrid catalyst that efficiently hydrogenates CO 2 to CO at an impressive rate as high as 1.8 mmol gcat -1 h -1 is developed. The mechanism of this photothermal reaction involves H 2 dissociation on Pd nanocrystals and subsequent spillover of H to the Nb 2 O 5 nanorods whereupon adsorbed CO 2 is hydrogenated to CO. This work represents a significant enhancement in our understanding of the underlying mechanism of photothermally driven CO 2 reduction and will help guide the way toward the development of highly efficient catalysts that exploit the full solar spectrum to convert gas-phase CO 2 to valuable chemicals and fuels.

  3. Fabrication of a dye-doped liquid crystal light shutter by thermal curing of polymer

    NASA Astrophysics Data System (ADS)

    Yu, Byeong-Hun; Ji, Seong-Min; Kim, Jin-Hun; Huh, Jae-Won; Yoon, Tae-Hoon

    2017-07-01

    We report a thermal curing method for fabrication of a dye-doped polymer-stabilized liquid crystal (PSLC) light shutter, which can prevent the decrease in absorption and discoloration of the dye caused by the UV curing process. We found that the measured transmittance in the opaque state of a dye-doped PSLC cell fabricated by thermal curing was approximately 35% lower than that of a dye-doped PSLC cell fabricated by UV curing. Thermal curing can be an alternative approach for fabrication of a dye-doped PSLC light shutter which can be used to provide high visibility of a see-through display.

  4. Particle size analysis in a turbid media with a single-fiber, optical probe while using a visible spectrometer

    DOEpatents

    Canpolat, Murat; Mourant, Judith R.

    2003-12-09

    Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.

  5. Photo-oxidation of Nitrophenols in the Aqueous Phase: Reaction Kinetics, Mechanistic Insights, and Evolution of Light Absorption

    NASA Astrophysics Data System (ADS)

    Hems, R.; Abbatt, J.

    2017-12-01

    Nitrophenols are a class of water soluble, light absorbing compounds which can make up a significant fraction of biomass burning brown carbon. The atmospheric lifetime and aging of these compounds can have important implications for their impact on climate through the aerosol direct effect. Recent studies have shown that brown carbon aerosols can be bleached of their colour by direct photolysis and photo-oxidation reactions on the timescale of hours to days. However, during aqueous phase photo-oxidation of nitrophenol compounds light absorption is sustained or enhanced, even after the parent nitrophenol molecule has been depleted. In this work, we use online aerosol chemical ionization mass spectrometry (aerosol-CIMS) to investigate the aqueous phase photo-oxidation mechanism and determine the second order rate constants for the reaction of OH radicals with three commonly detected nitrophenol compounds: nitrocatechol, nitroguaiacol, and dinitrophenol. These nitrophenol compounds are found to have aqueous phase lifetimes with respect to oxidation by the OH radical ranging between 5 - 11 hours. Our results indicate that functionalization of the parent nitrophenol molecule by addition of hydroxyl groups leads to the observed absorption enhancement. Further photo-oxidation forms breakdown products that no longer absorb significantly in the visible light range.

  6. Facile one-pot synthesis of visible light-responsive BiPO4/nitrogen doped graphene hydrogel for fabricating label-free photoelectrochemical tetracycline aptasensor.

    PubMed

    Ge, Lan; Li, Henan; Du, Xiaojiao; Zhu, Mingyue; Chen, Wei; Shi, Tingyan; Hao, Nan; Liu, Qian; Wang, Kun

    2018-07-15

    It is fundamental to develop highly efficient visible light-responsive photoelectrochemical (PEC) performance material for fabricating PEC biosensor. Herein, BiPO 4 /three-dimensional nitrogen doped graphene hydrogel (3DNGH) nanocomposites were prepared for the first time via a facile one-pot hydrothermal route. In this nanoarchitecture, the BiPO 4 nanorods were anchored onto the porous structure of 3DNGH. Compared with pristine BiPO 4 , the absorption of BiPO 4 /3DNGH has been extend to visible-light region, and the energy band gap of BiPO 4 /3DNGH was calculated to be 2.10 eV, which was greatly narrower than that of pristine BiPO 4 with a band gap of 3.85 eV. Under visible light irradiation, the photocurrent signal of the as-prepared BiPO 4 /3DNGH was 847.2-fold, 4.1-fold and 2.3-fold enhanced comparing to pristine BiPO 4 , BiPO 4 functionalized reduced graphene oxide and BiPO 4 /nitrogen doped graphene. The enhancement of such photocurrent signal was attributed to the introduction of 3DNGH, which was capable to improve the charge transfer rate and also the efficiency of visible-light utilization of BiPO 4 . Based on the excellent PEC properties of BiPO 4 /3DNGH, a label-free PEC aptasensor for selectivity and sensitivity detection of tetracycline (Tc) was successfully established by using Tc aptamer as a biorecognition element. Under optimized conditions, the proposed PEC aptasensor exhibited a wide linear in the range from 0.1 nmol L -1 to 1 μmol L -1 as well as a low detection limit of 0.033 nmol L -1 (S/N = 3). The prepared BiPO 4 /3DNGH nanocomposites would serve as a promising visible light-responsive photoactive material for fabrication of PEC biosensors with high performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 3D Aerogel of Graphitic Carbon Nitride Modified with Perylene Imide and Graphene Oxide for Highly Efficient Nitric Oxide Removal under Visible Light.

    PubMed

    Hu, Jundie; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2018-05-01

    3D materials are considered promising for photocatalytic applications in air purification because of their large surface areas, controllability, and recyclability. Here, a series of aerogels consisting of graphitic-carbon nitride (g-C 3 N 4 ) modified with a perylene imide (PI) and graphene oxide (GO) are prepared for nitric oxide (NO) removal under visible-light irradiation. All of the photocatalysts exhibit excellent activity in NO removal because of the strong light absorption and good planarity of PI-g-C 3 N 4 coupled with the favorable charge transport properties of GO, which slow the recombination of electron-hole pairs. The aerogel containing thiophene displays the most efficient NO removal of the aerogel series, with a removal ratio of up to 66%. Density functional theory calculations are conducted to explain this result and recycling experiments are carried out to verify the stability and recyclability of these photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Automatic Suppression of Intense Monochromatic Light in Electro-Optical Sensors

    PubMed Central

    Ritt, Gunnar; Eberle, Bernd

    2012-01-01

    Electro-optical imaging sensors are widely distributed and used for many different tasks. Due to technical improvements, their pixel size has been steadily decreasing, resulting in a reduced saturation capacity. As a consequence, this progress makes them susceptible to intense point light sources. Developments in laser technology have led to very compact and powerful laser sources of any wavelength in the visible and near infrared spectral region, offered as laser pointers. The manifold of wavelengths makes it difficult to encounter sensor saturation over the complete operating waveband by conventional measures like absorption or interference filters. We present a concept for electro-optical sensors to suppress overexposure in the visible spectral region. The key element of the concept is a spatial light modulator in combination with wavelength multiplexing. This approach allows spectral filtering within a localized area in the field of view of the sensor. The system offers the possibility of automatic reduction of overexposure by monochromatic laser radiation. PMID:23202039

  9. Zn x Cd1-x S tunable band structure-directing photocatalytic activity and selectivity of visible-light reduction of CO2 into liquid solar fuels

    NASA Astrophysics Data System (ADS)

    Tang, Lanqin; Kuai, Libang; Li, Yichang; Li, Haijin; Zhou, Yong; Zou, Zhigang

    2018-02-01

    A series of Zn x Cd1-x S monodispersed nanospheres were successfully synthesized with tunable band structures. As-prepared Zn x Cd1-x S solid solutions show much enhanced photocatalytic efficiency for CO2 photoreduction in aqueous solutions under visible light irradiation, relative to pure CdS analog. Methanol (CH3OH) and acetaldehyde (CH3CHO) are the major products of CO2 photoreduction for the solid solutions with x = 0, 0.2, and 0.5. Interestingly, Zn0.8Cd0.2S photocatalyst with a wide band gap can also additionally generate ethanol (CH3CH2OH) besides CH3OH and CH3CHO. The balance between the band structure-directing redox capacity and light absorption should be considered to influence both product yield and selectivity of CO2 photoreduction. The possible photoreduction mechanism was tentatively proposed.

  10. Synthesis of MoS2/rGO nanosheets hybrid materials for enhanced visible light assisted photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-04-01

    A facile hydrothermal method has been adopted to synthesize pure MoS2 nanosheets and MoS2/rGO nanosheets hybrid. The samples were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET). The photocatalytic performance and reusability of MoS2 nanosheets and MoS2/rGO hybrids was evaluated by discoloring of RhB under visible light irradiation. Results indicated that MoS2/rGO photocatalysts with large surface area of 69.5 m2 g-1 could completely degrade 50 mL of 8 mg L-1 RhB aqueous solution in 90 min with excellent recycling and structural stability as compared with pure MoS2 nanosheets (53%). Such enhanced performance could be explained due to the high surface area, enhanced light absorption and the increased dye adsorptivity and reduced electron-hole pair recombination with the presence of rGO.

  11. Noble-metal-free NiO@Ni-ZnO/reduced graphene oxide/CdS heterostructure for efficient photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Wang, Xuewen; Zhang, Rongbin

    2017-11-01

    Noble-metal-free semiconductor materials are widely used for photocatalytic hydrogen generation because of their low cost. ZnO-based heterostructures with synergistic effects exhibit an effective photocatalytic activity. In this work, NiO@Ni-ZnO/reduced graphene oxide (rGO)/CdS heterostructures are synthesized by a multi-step method. rGO nanosheets and CdS nanoparticles were introduced into the heterostructures via a redox reaction and light-assisted growth, respectively. A novel Ni-induced electrochemical growth method was developed to prepare ZnO rods from Zn powder. NiO@Ni-ZnO/rGO/CdS heterostructures with a wide visible-light absorption range exhibited highly photocatalytic hydrogen generation rates under UV-vis and visible light irradiation. The enhanced photocatalytic activity is attributed to the Ni nanoparticles that act as cocatalysts for capturing photoexcited electrons and the improved synergistic effect between ZnO and CdS due to the rGO nanosheets acting as photoexcited carrier transport channels.

  12. Hubble Tracks Clouds on Uranus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997.

    The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.)

    At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors.

    In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below.

    The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are almost as large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color.

    The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring.

    Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. HUBBLE TRACKS CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997. The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.) At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors. In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below. The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are almost as large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color. The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring. Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites. Credits: Erich Karkoschka (University of Arizona), and NASA.

  14. Electroluminescence in CdSe/PVA nanocomposites

    NASA Astrophysics Data System (ADS)

    Kumari, Sarita; Ramrakhiani, M.; Khare, P. K.

    2018-05-01

    The synthesis of II-VI nanocrystal into the polymer matrix to form nanocomposites with adjustable nanocrystal is of great interest size is a big challenge to the scientific community. In present work semiconducting CdSe/PVA thin film were synthesized by single step solution method with different concentration of CdSe. The as-prepared products were characterized by UV-Visible absorption spectra and FESEM. Absorption spectra of CdSe/PVA nanocomposites indicated that the position of absorption edge shifts to smaller wavelength by increasing the concentration of CdSe. For Electroluminescence a turn on voltage is required for light emission and brightness increases with voltage. Turn on voltage is found to decrease as CdSe concentration is increased. The voltage-current curve represents ohmic nature for all EL cells.

  15. A synthesis of light absorption properties of the Pan-Arctic Ocean: application to semi-analytical estimates of dissolved organic carbon concentrations from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2013-11-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aφ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific aφ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC vs. CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  16. A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2014-06-01

    In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite ocean color data.

  17. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  18. Hybrid density functional study on the mechanism for the enhanced photocatalytic properties of the ultrathin hybrid layered nanocomposite g-C3N4/BiOCl

    NASA Astrophysics Data System (ADS)

    Yao, Wenzhi; Zhang, Jihua; Wang, Yuanxu; Ren, Fengzhu

    2018-03-01

    To investigate the origin of the high photocatalytic performance of experimentally synthesized g-C3N4/ BiOCl, we studied its geometry structure, electronic structure, and photocatalytic properties by means of hybrid density-functional theory (DFT). The calculated band alignment of g-C3N4 and few-layer BiOCl sheets clearly shows that g-C3N4/ BiOCl is a standard type-II nanocomposite. The density of states, Bader charge, partial charge density, charge density difference, and the effective masses show that electron-hole pair can be effectively separated in the g-C3N4/BiOCl interface. The calculated absorption coefficients indicate an obvious redshift of the absorption edge. The band gap of g-C3N4/BiOCl can be modulated by external electric field, and a semiconductor-semimetal transition is observed. The type-II vdW heterostructure is still maintained during the changes of external electric field. Especially, when the electric field reaches to +0.7 V/Å, the impurity states have been eliminated with the band gap of 2.3 eV. An analysis of optical properties shows that the absorption coefficient in the visible-light region is enhanced considerably as the electric-field strength increases. Our calculation results suggest that the ultrathin hybrid layered g-C3N4/BiOCl nanocomposite may have significant advantages for visible-light photocatalysis.

  19. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    NASA Astrophysics Data System (ADS)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  20. Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Kuriakose, Sini; Sahu, Kavita; Khan, Saif A.; Tripathi, A.; Avasthi, D. K.; Mohapatra, Satyabrata

    2017-02-01

    Au-ZnO plasmonic nanohybrids were synthesized by a facile two step process. In the first step, nanostructured ZnO thin films were prepared by carbothermal evaporation followed by thermal annealing in oxygen atmosphere. Deposition of ultrathin Au films onto the nanostructured ZnO thin films by sputtering combined with thermal annealing resulted in the formation of Au-ZnO plasmonic nanohybrid thin films. The structural, optical, plasmonic and photocatalytic properties of the Au-ZnO nanohybrid thin films were studied. XRD studies on the Au-ZnO hybrid thin films revealed the presence of Au and ZnO nanostructures. UV-visible absorption studies showed two peaks corresponding to the excitonic absorption of ZnO nanostructures in the UV region and the surface plasmon resonance (SPR) absorption of Au nanoparticles in the visible region. The Au-ZnO nanohybrid thin films annealed at 400 °C showed enhanced photocatalytic activity as compared to nanostructrured ZnO thin films towards sun light driven photocatalytic degradation of methylene blue (MB) dye in water. The observed enhanced photocatalytic activity of Au-ZnO plasmonic nanohybrids is attributed to the efficient suppression of the recombination of photogenerated charge carriers in ZnO due to the strong electron scavenging action of Au nanoparticles combined with the improved sun light utilization capability of Au-ZnO nanohybrids coming from the plasmonic response of Au nanoparticles decorating ZnO nanostructures.

  1. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    NASA Astrophysics Data System (ADS)

    Asriza, Ristika O.; Arcana, I. Made

    2015-09-01

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm-1 indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of the absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.

  2. Synthesis of cobalt stearate as oxidant additive for oxo-biodegradable polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asriza, Ristika O.; Arcana, I Made, E-mail: arcana@chem.itb.ac.id

    Cobalt stearate is an oxidant additives that can initiate a process of degradation in high density polyethylene (HDPE). To determine the effect of cobalt stearate in HDPE, oxo-biodegradable polyethylene film was given an irradiation with UV light or heating at various temperature. After given a heating, the FTIR spectra showed a new absorption peak at wave number 1712 cm{sup −1} indicating the presence of carbonyl groups in polymers, whereas after irradiation with UV light is not visible the presence of this absorption peak. The increase concentration of cobalt stearate added in HDPE and the higher heating temperature, the intensity of themore » absorption peak of the carbonyl group increased. The increasing intensity of the carbonyl group absorption is caused the presence of damage in the film surface after heating, and this result is supported by analysis the surface properties of the film with using SEM. Biodegradation tests were performed on oxo-biodegradable polyethylene film which has been given heating or UV light with using activated sludge under optimal conditions the growth of microorganisms. After biodegradation, the maximum weight decreased by 23% in the oxo-biodegradable polyethylene film with a cobalt stearate concentration of 0.2% and after heating at a temperature of 75 °C for 10 days, and only 0.69% in the same film after irradiation UV light for 10 days. Based on the results above, cobalt stearate additive is more effective to initiate the oxidative degradation of HDPE when it is initiated by heating compared to irradiation with UV light.« less

  3. Increased short circuit current in an azafullerene-based organic solar cell.

    PubMed

    Cambarau, Werther; Fritze, Urs F; Viterisi, Aurélien; Palomares, Emilio; von Delius, Max

    2015-01-21

    We report the synthesis of a solution-processable, dodecyloxyphenyl-substituted azafullerene monoadduct (DPC59N) and its application as electron acceptor in bulk heterojunction organic solar cells (BHJ-OSCs). Due to its relatively strong absorption of visible light, DPC59N outperforms PC60BM in respect to short circuit current (JSC) and external quantum efficiency (EQE) in blends with donor P3HT.

  4. Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers.

    PubMed

    Demos, Stavros G; Ehrmann, Paul R; Qiu, S Roger; Schaffers, Kathleen I; Suratwala, Tayyab I

    2014-11-17

    We investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions.

  5. The change in color matches with retinal angle of incidence of the colorimeter beams.

    PubMed

    Alpern, M; Kitahara, H; Fielder, G H

    1987-01-01

    Differences between W.D.W. chromaticities of monochromatic lights obtained with all colorimeter beams incident on the retina "off-axis" and those found for lights striking the retina normally have been studied throughout the visible spectrum on 4 normal trichromats. The results are inconsistent with: (i) the assumption in Weale's theories of the Stiles-Crawford hue shift that the sets of absorption spectra of the visual pigments catching normally and obliquely incident photons are identical, and (ii) "self-screening" explanations for the change in color with angle of incidence on the retina. The color matching functions of a protanomalous trichromat are inconsistent with the hypothesis that the absorption spectra of the visual pigments catching normally incident photons in his retina are those catching obliquely incident photons in the normal retina.

  6. Synthesis by combustion in solution of Zn2TiO4+Ag for photocatalytic and photodynamic applications in the visible

    NASA Astrophysics Data System (ADS)

    Lopera, A. A.; Velásquez, A. M.; Chavarriaga, E. A.; Ocampo, S.; Zaghete, M. A.; Graminha, M. A.; Garcia, C. P.

    2017-12-01

    Zn2TiO4 + Ag compounds were synthesized by the solution combustion path seeking to enhance their photocatalytic and photodynamic response in the visible. X-ray diffraction tests confirmed the formation of the phase and the presence of metallic silver. Field emission electron microscopy evidenced the formation of aggregates formed by grains lower than 100nm. The diffuse reflectance tests allowed to detect compound absorption in the visible region and activation energy of 2.8eV. The evaluation of the photocatalytic properties was performed by the degradation of methylene blue while the photodynamic response in biological systems was performed by the antilesihmanicidal response of the compounds in promastigotes of Leishmania amazonensis. Indirect measurement of ROS species confirmed the formation of oxygen singlets and OH radicals of the compounds when subjected to the action of visible light.

  7. Bodipy-C60 triple hydrogen bonding assemblies as heavy atom-free triplet photosensitizers: preparation and study of the singlet/triplet energy transfer.

    PubMed

    Guo, Song; Xu, Liang; Xu, Kejing; Zhao, Jianzhang; Küçüköz, Betül; Karatay, Ahmet; Yaglioglu, Halime Gul; Hayvali, Mustafa; Elmali, Ayhan

    2015-07-01

    Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives ( B-1 , B-2 and B-3 , which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C 60 was used as the complementary hydrogen bonding module ( C-1 ), in which the C 60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references ( B-1-Me , B-2-Me and B-3-Me ), which are unable to form strong H-bonds with C-1 . Triple H-bonds are formed between each Bodipy antenna ( B-1 , B-2 and B-3 ) and the C 60 module ( C-1 ). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C 60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C 60 module (for assembly B-1·C-1 ), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1 ). Intra-assembly forward-backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet-triplet annihilation upconversion.

  8. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  9. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Ultrafast dynamics in co-sensitized photocatalysts under visible and NIR light irradiation.

    PubMed

    Patwari, Jayita; Chatterjee, Arka; Sardar, Samim; Lemmens, Peter; Pal, Samir Kumar

    2018-04-18

    Co-sensitization to achieve a broad absorption window is a widely accepted technique in light harvesting nanohybrid synthesis. Protoporphyrin (PPIX) and squaraine (SQ2) are two organic sensitizers absorbing in the visible and NIR wavelength regions of the solar spectrum, respectively. In the present study, we have sensitized zinc oxide (ZnO) nanoparticles using PPIX and SQ2 simultaneously for their potential use in broad-band solar light harvesting in photocatalysis. Förster resonance energy transfer (FRET) from PPIX to SQ2 in close proximity to the ZnO surface has been found to enhance visible light photocatalysis. In order to confirm the effect of intermolecular FRET in photocatalysis, the excited state lifetime of the energy donor dye PPIX has been modulated by inserting d10 (ZnII) and d7 (CoII) metal ions in the central position of the dye (PP(Zn) and PP(Co)). In the case of PP(Co)-SQ2, extensive photo-induced ligand to metal charge transfer counteracts the FRET efficiency while efficient FRET has been observed for the PP(Zn)-SQ2 pair. This observation has been justified by the comparison of the visible light photocatalysis of the respective nanohybrids with several control studies. We have also investigated the NIR photocatalysis of the co-sensitized nanohybrids which reveals that reduced aggregation of SQ2 due to co-sensitization of PPIX increases the NIR photocatalysis. However, core-metalation of PPIX reduces the NIR photocatalytic efficacy, most probably due to excited state charge transfer from SQ2 to the metal centre of PP(Co)/PP(Zn) through the conduction band of the host ZnO nanoparticles.

  11. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Jia, Tiekun; Fu, Fang; Yu, Dongsheng; Cao, Jianliang; Sun, Guang

    2018-02-01

    Ultrafine anatase N-doped TiO2 nanocrystals modified with carbon (denoted as N-doped TiO2/C) were successfully prepared via a facile and low-cost approach, using titanium tetrachloride, aqueous ammonia and urea as starting materials. The phase composition, surface chemical composition, morphological structure, electronic and optical properties of the as-prepared photocatalysts were well characterized and analyzed. On the basis of Raman spectral characterization combining with the results of X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM), it could be concluded that N dopant ions were successfully introduced into TiO2 crystal lattice and carbon species were modified on the surface or between the nanoparticles to form N-doped TiO2/C nanocomposites. Compared with that of bare TiO2, the adsorption band edge of N-doped TiO2/C nanocomposites were found to have an evident red-shift toward visible light region, implying that the bandgap of N-doped TiO2/C nanocomposites is narrowed and the visible light absorption capacity is significantly enhanced due to N doping and carbon modification. The photoactivity of the as-prepared photocatalytsts was tested by the degradation of Rhodamine B (RhB) under visible light (λ > 420 nm), and the results showed that the N-doped TiO2/C nanocomposites exhibited much higher photodegradation rate than pure TiO2 and N-doped TiO2, which was mainly attributed to the synergistic effect of the enhanced light harvesting, augmented catalytic active sites and efficient separation of photogenerated electron-hole pairs.

  12. Harvesting visible light with MoO3 nanorods modified by Fe(iii) nanoclusters for effective photocatalytic degradation of organic pollutants.

    PubMed

    Alam, U; Kumar, S; Bahnemann, D; Koch, J; Tegenkamp, C; Muneer, M

    2018-02-07

    The photocatalytic performance of MoO 3 is limited due to its weak visible light absorption ability and quick recombination of charge carriers. In the present work, we report the facile synthesis of Fe(iii)-grafted MoO 3 nanorods using a hydrothermal method followed by an impregnation technique with the aim of enhancing the light harvesting ability and photocatalytic efficiency of MoO 3 . The prepared samples were characterized through the standard analytical techniques of XRD, SEM-EDS, TEM, XPS, UV-Vis-DRS, FT-IR, TG-DTA and PL spectrophotometry. XPS and TEM analyses reveal that Fe(iii) ions are successfully grafted onto the surface of the MoO 3 nanorod with intimate interfacial contact. The photocatalytic performances of the prepared samples were investigated by studying the degradation of methylene blue (MB), rhodamine B (RhB) and 4-nitrophenol (4-NP) under visible light irradiation. The surface-modified MoO 3 with Fe(iii) ions showed excellent photocatalytic activity towards the degradation of the above-mentioned pollutants, where Fe(iii) ions act as effective cocatalytic sites to produce hydroxyl radicals through multi-electron reduction of oxygen molecules. The improved photocatalytic activity could be ascribed to the effective separation of charge carriers and efficient production of hydroxyl radicals via the rapid capture of electrons by Fe(iii) through a well-known photoinduced interfacial charge transfer mechanism. Based on scavenger analysis study, a mechanism for the enhanced photocatalytic activity has been discussed and proposed. The concept of surface grafting onto large bandgap semiconductors with ubiquitous elements opens up a new avenue for the development of visible-light-responsive photocatalysts with excellent photocatalytic activity.

  13. Novel chromium doped perovskites A2ZnTiO6 (A = Pr, Gd): Synthesis, crystal structure and photocatalytic activity under simulated solar light irradiation

    NASA Astrophysics Data System (ADS)

    Zhu, Hekai; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Chen, Kai; Guan, Ming; Tang, Chao; Zhang, Lina; Wang, Meng

    2017-01-01

    Double perovskite related oxides A2ZnTiO6 (A = Pr, Gd) have been successfully synthesized by solid state reaction and investigated as photocatalysts for the first time. The two layered titanates mainly demonstrate absorbances under UV irradiation, except for several sharp absorption bands above 400 nm for Pr2ZnTiO6. Therefore, a series of photocatalysts by doping A2ZnTiO6 (A = Pr, Gd) with Cr have been developed in the hope to improve their absorption in the visible light region. The successful incorporation of Cr was detected by XRD and XPS, and the prepared samples have also been characteriazed by SEM, UV-vis DRS and PL. The characterization results suggested that Cr was present mainly in the form of Cr3+, with only a small amount of Cr6+ species. It served as an efficient dopant for the extension of visible light absorbance and improved photocatalytic activities under solar light irradiation. For both Pr2ZnTiO6 and Gd2ZnTiO6, the valence band (VB) was composed of hybridized states of the Zn 3d, O 2p and the conduction band (CB) has major contribution from Zn 4s, Ti 3d orbitals. For Cr doped samples, the newly formed spin-polarized valence band in the middle of the band gap that primarily arises from Cr 3d orbitals was responsible for the improved optical and photocatalytic properties.

  14. Application of Ni-Oxide@TiO₂ Core-Shell Structures to Photocatalytic Mixed Dye Degradation, CO Oxidation, and Supercapacitors.

    PubMed

    Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku

    2016-12-20

    Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.

  15. Time-of-flight range imaging for underwater applications

    NASA Astrophysics Data System (ADS)

    Merbold, Hannes; Catregn, Gion-Pol; Leutenegger, Tobias

    2018-02-01

    Precise and low-cost range imaging in underwater settings with object distances on the meter level is demonstrated. This is addressed through silicon-based time-of-flight (TOF) cameras operated with light emitting diodes (LEDs) at visible, rather than near-IR wavelengths. We find that the attainable performance depends on a variety of parameters, such as the wavelength dependent absorption of water, the emitted optical power and response times of the LEDs, or the spectral sensitivity of the TOF chip. An in-depth analysis of the interplay between the different parameters is given and the performance of underwater TOF imaging using different visible illumination wavelengths is analyzed.

  16. Tailoring growth conditions for efficient tuning of band edge of CdS nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susha, N.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com; Aravind, P. B.

    2015-06-24

    CdS nanoparticles are successively synthesized by chemical precipitation method. The samples prepared at different reaction time and temperature are characterized by X-ray diffraction, Diffuse reflectance spectroscopy, Photoluminescence spectroscopy ans Energy dispersive x-ray analysis. Visible color variation is noted from light yellow to orange, indicates the quantum confinement effect and the results are again got confirmed from the optical studies. A shift in absorption peak is observed towards the lower region of the visible spectra - the “blue shift”- upon decrease in reaction time and temperature. Blue emission observed in the photoluminescence spectrum confirms the grain size induced confinement.

  17. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging.

    PubMed

    Nooshabadi, Fatemeh; Yang, Hee-Jeong; Bixler, Joel N; Kong, Ying; Cirillo, Jeffrey D; Maitland, Kristen C

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU.

  18. Intravital Fluorescence Excitation in Whole-Animal Optical Imaging

    PubMed Central

    Bixler, Joel N.; Kong, Ying; Cirillo, Jeffrey D.; Maitland, Kristen C.

    2016-01-01

    Whole-animal fluorescence imaging with recombinant or fluorescently-tagged pathogens or cells enables real-time analysis of disease progression and treatment response in live animals. Tissue absorption limits penetration of fluorescence excitation light, particularly in the visible wavelength range, resulting in reduced sensitivity to deep targets. Here, we demonstrate the use of an optical fiber bundle to deliver light into the mouse lung to excite fluorescent bacteria, circumventing tissue absorption of excitation light in whole-animal imaging. We present the use of this technology to improve detection of recombinant reporter strains of tdTomato-expressing Mycobacterium bovis BCG (Bacillus Calmette Guerin) bacteria in the mouse lung. A microendoscope was integrated into a whole-animal fluorescence imager to enable intravital excitation in the mouse lung with whole-animal detection. Using this technique, the threshold of detection was measured as 103 colony forming units (CFU) during pulmonary infection. In comparison, the threshold of detection for whole-animal fluorescence imaging using standard epi-illumination was greater than 106 CFU. PMID:26901051

  19. Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution.

    PubMed

    Wang, Yang; Liu, Xueqin; Liu, Jia; Han, Bo; Hu, Xiaoqin; Yang, Fan; Xu, Zuwei; Li, Yinchang; Jia, Songru; Li, Zhen; Zhao, Yanli

    2018-05-14

    Graphite carbon nitride (g-C 3 N 4 ) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g-C 3 N 4 nanotubes were synthesized by thermal polymerization of freeze-dried urea and CQDs precursor. The CQD-implanted g-C 3 N 4 nanotubes (CCTs) could simultaneously facilitate photoelectron transport and suppress charge recombination through their specially coupled heterogeneous interface. The electronic structure and morphology were optimized in the CCTs, contributing to greater visible light absorption and a weakened barrier of the photocarrier transfer. As a result, the CCTs exhibited efficient photocatalytic performance under light irradiation with a high H 2 production rate of 3538.3 μmol g -1  h -1 and a notable quantum yield of 10.94 % at 420 nm. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

Top