Sample records for visible light active

  1. Transition metal-modified zinc oxides for UV and visible light photocatalysis.

    PubMed

    Bloh, J Z; Dillert, R; Bahnemann, D W

    2012-11-01

    In order to use photocatalysis with solar light, finding more active and especially visible light active photocatalysts is a very important challenge. Also, studies of these photocatalysts should employ a standardized test procedure so that their results can be accurately compared and evaluated with one another. A systematic study of transition metal-modified zinc oxide was conducted to determine whether they are suitable as visible light photocatalysts. The photocatalytic activity of ZnO modified with eight different transition metals (Cu, Co, Fe, Mn, Ni, Ru, Ti, Zr) in three different concentrations (0.01, 0.1, and 1 at.%) was investigated under irradiation with UV as well as with visible light. The employed activity test is the gas-phase degradation of acetaldehyde as described by the ISO standard 22197-2. The results suggest that the UV activity can be improved with almost any modification element and that there exists an optimal modification ratio at about 0.1 at.%. Additionally, Mn- and Ru-modified ZnO display visible light activity. Especially the Ru-modified ZnO is highly active and surpasses the visible light activity of all studied titania standards. These findings suggest that modified zinc oxides may be a viable alternative to titanium dioxide-based catalysts for visible light photocatalysis. Eventually, possible underlying mechanisms are proposed and discussed.

  2. Preparation of Ag deposited TiO2 (Ag/TiO2) composites and investigation on visible-light photocatalytic degradation activity in magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ma, C. H.; Wang, J.; Li, S. G.; Li, Y.

    2014-12-01

    In this study, Ag deposited TiO2 (Ag/TiO2) composites were prepared by three different methods (Ultraviolet Irradiation Deposition (UID), Vitamin C Reduction (VCR) and Sodium Borohydride Reduction (SBR)) for the visible-light photocatalytic degradation of organic dyes in magnetic field. And then the prepared Ag deposited TiO2 (Ag/TiO2) composites were characterized physically by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The visible-light photocatalytic activities of these three kinds of Ag deposited TiO2 (Ag/TiO2) composites were examined and compared through the degradation of several organic dyes under visible-light irradiation in magnetic field. In addition, some influence factors such as visible-light irradiation time, organic dye concentration, revolution speed, magnetic field intensity and organic dye kind on the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composite were reviewed. The research results showed that the presence of magnetic field significantly enhanced the visible-light photocatalytic activity of Ag deposited TiO2 (Ag/TiO2) composites and then contributed to the degradation of organic dyes.

  3. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity.

    PubMed

    Kim, Yeo Jin; Kim, Hyoung-June; Kim, Hye Lim; Kim, Hyo Jeong; Kim, Hyun Soo; Lee, Tae Ryong; Shin, Dong Wook; Seo, Young Rok

    2017-02-01

    The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Visible Light Responsive Catalyst for Air Water Purification Project

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Investigate and develop viable approaches to render the normally UV-activated TIO2 catalyst visible light responsive (VLR) and achieve high and sustaining catalytic activity under the visible region of the solar spectrum.

  5. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.

    PubMed

    Nolan, Michael

    2011-10-28

    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials. This journal is © the Owner Societies 2011

  6. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  7. 3D hierarchical structures MnO2/C: A highly efficient catalyst for purification of volatile organic compounds with visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Junli; Wu, Ming; Zhang, Yajun; Zhu, Chenguang; Fang, Yiwen; Li, Yongfeng; Yu, Lin

    2018-07-01

    This work mainly focuses on exploring carbon coated ε-MnO2 (ε-MnO2/C) with 3D hierarchical structures for degradation of gaseous toluene under visible light. Influence of C-coating on surface adsorption, visible-light activity and photocatalytic activities of C-coated MnO2 have been investigated. The results indicate that the C-coating behave as the adsorption and electron-transfer system, and the resulting C-coated ε-MnO2 could extend the optical response from UV to visible light region, which can generate more electron - hole pairs. The photocatalyst ε-MnO2/0.45C exhibited excellent visible-light photocatalytic activities, with degradation rate of toluene up to 87.34% in 70 min, but no photocatalytic activity could be observed for the pure ε-MnO2. The PL spectra and photocurrent response results indicate that the composite structure can not only enhance the utilization of visible light but also consequently reduce electron (e-)-hole (h+) pair recombination, which improve the photocatalytic efficiency of the composite photocatalyst. This work provides a facile and economic approach for fabricating photocatalysts with high efficiency for degradation of VOCs under visible light at room temperature.

  8. An efficient visible-light photocatalyst prepared by modifying AgBr particles with a small amount of activated carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Desong, E-mail: dswang06@126.com; Zhao, Mangmang; Luo, Qingzhi

    2016-04-15

    Highlights: • An efficient visible-light photocatalyst was prepared by modifying AgBr particles. • A small amount of activated carbon was used to modify AgBr particles. • The modified AgBr exhibited improved visible-light photocatalytic performances. - Abstract: An efficient visible-light photocatalyst was successfully prepared by modifying AgBr particles with a small amount of activated carbon (AC) via a simple chemical precipitation approach. The AC/AgBr composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV–vis diffuse reflection spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy. The photocatalytic performances of the AC/AgBr composite were investigated by evaluating photodegradation of methyl orange (MO)more » and phenol under visible light irradiation, and the effects of the AC content in the composite, concentrations of AC/AgBr composite and MO, carrier scavengers on MO photodegradation rate were systematically investigated. The results indicated that the modification of AC can hardly change the crystalline and crystal size of AgBr particles, while significantly improve their specific surface areas, visible-light absorption and separation efficiency of photogenerated electron–hole pairs. Compared with pure AgBr, the AC/AgBr composite exhibited drastically enhanced visible-light photocatalytic activity and stability. The photogenerated electrons and holes, hydroxyl radicals are responsible to the photodegradation of organic pollutants, and the photogenerated holes are the main active species. On the basis of the results and the properties of AC and AgBr, the visible-light photocatalytic mechanism of the AC/AgBr composite was discussed.« less

  9. Preparation of W and N, S-codoped titanium dioxide with enhanced photocatalytic activity under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Rui; Yang, Jing-Yu; Liu, You-Qin

    2016-04-15

    Highlights: • W, N, S codoped TiO{sub 2} nanoparticles were synthesized by precipitation-impregnation method. • New linkages N–Ti–O, Ti–O–S and Ti–O–W were formed. • The activity of 0.011W, 0.030(N,S)-TiO{sub 2} is 10 times higher than that of TiO{sub 2}. • The doping enhanced visible light absorbance and accelerated the charge carrier separation. - Abstract: In this work, the preparation and physiochemical characterization of tungsten, nitrogen and sulfur codoping TiO{sub 2} photocatalysts (W, N, S-TiO{sub 2}) was undertaken. W, N, S-TiO{sub 2} nanoparticles were synthesized via the precipitation-impregnation method. To investigate the structural, optical, and electronic properties, the as-prepared W, N,more » S-TiO{sub 2} photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectrum (DRS). W, N, S-TiO{sub 2} samples showed photo-absorption in the visible light region and higher visible light photocatalytic activity than TiO{sub 2}. 0.011W, 0.030(N, S)-TiO{sub 2} exhibited the highest visible light photocatalytic activity, and the photocatalyic degradation activity of 0.011W,0.030(N,S)-TiO{sub 2} is nearly 10 times higher than that of TiO{sub 2}. Compared with the undoped TiO{sub 2}, the improved photocatalytic activity of W, N, S-TiO{sub 2} samples under visible light irradiation is attributed to the increase of the visible light absorption and the reduction in photogenerated electron-hole recombination.« less

  10. Visible-Light-Responsive Catalyst Development for Volatile Organic Carbon Remediation Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Hintze, Paul E.; Coutts, Janelle

    2015-01-01

    Photocatalysis is a process in which light energy is used to 'activate' oxidation/reduction reactions. Unmodified titanium dioxide (TiO2), a common photocatalyst, requires high-energy UV light for activation due to its large band gap (3.2 eV). Modification of TiO2 can reduce this band gap, leading to visible-light-responsive (VLR) photocatalysts. These catalysts can utilize solar and/or visible wavelength LED lamps as an activation source, replacing mercury-containing UV lamps, to create a "greener," more energy-efficient means for air and water revitalization. Recently, KSC developed several VLR catalysts that, on preliminary evaluation, possessed high catalytic activity within the visible spectrum; these samples out-performed existing commercial VLR catalysts.

  11. Visible-light active conducting polymer nanostructures with superior photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouame, Natalie Amoin; Remita, Samy; Ramos, Laurence; Goubard, Fabrice; Aubert, Pierre-Henri; Dazzi, Alexandre; Deniset-Besseau, Ariane; Remita, Hynd

    2015-12-01

    The development of visible-light responsive photocatalysts would permit more efficient use of solar energy, and thus would bring sustainable solutions to many environmental issues. Conductive polymers appear as a new class of very active photocatalysts under visible light. Among them poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most promising conjugated polymer with a wide range of applications. PEDOT nanostructures synthesized in soft templates via chemical oxidative polymerization demonstrate unprecedented photocatalytic activities for water treatment without the assistance of sacrificial reagents or noble metal co-catalysts and turn out to be better than TiO2 as benchmark catalyst. The PEDOT nanostructures exhibit a narrow band gap (E = 1.69 eV) and are characterized by excellent ability to absorb light in visible and near infrared region. The novel PEDOT-based photocatalysts are very stable with cycling and can be reused without appreciable loss of activity. Interestingly, hollow micrometric vesicular structures of PEDOT are not effective photocatalysts as compared to nanometric spindles suggesting size and shape dependent photocatalytic properties. The visible-light active photocatalytic properties of the polymer nanostructures present promising applications in solar light harvesting and broader fields.

  12. Visible-Light-Induced Bactericidal Activity of a Nitrogen-Doped Titanium Photocatalyst against Human Pathogens

    PubMed Central

    Wong, Ming-Show; Chu, Wen-Chen; Sun, Der-Shan; Huang, Hsuan-Shun; Chen, Jiann-Hwa; Tsai, Pei-Jane; Lin, Nien-Tsung; Yu, Mei-Shiuan; Hsu, Shang-Feng; Wang, Shih-Lien; Chang, Hsin-Hou

    2006-01-01

    The antibacterial activity of photocatalytic titanium dioxide (TiO2) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO2 substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO2 and carbon-doped TiO2 substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO2 substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO2 substrates than by pure TiO2 substrates. These findings suggest that nitrogen-doped TiO2 has potential application in the development of alternative disinfectants for environmental and medical usages. PMID:16957236

  13. An ion exchange strategy to BiOI/CH3COO(BiO) heterojunction with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Han, Qiaofeng; Yang, Zhen; Wang, Li; Shen, Zichen; Wang, Xin; Zhu, Junwu; Jiang, Xiaohong

    2017-05-01

    It is very significant to develop CH3COO(BiO) (denoted as BiOAc) based photocatalysts for the removal of pollutants due to its non-toxicity and availability. We previously reported that BiOAc exhibited excellent photocatalytic activity for rhodamine B (RhB) degradation under UV light irradiation. Herein, by an ion exchange approach, BiOI/BiOAc heterojunction could be easily obtained. The as-prepared heterojunction possessed enhanced photodegradation activity for multiple dyes including RhB and methyl orange (MO) under visible light illumination in comparison with individual materials. Good visible-light photocatalytic activity of the heterojunction could be attributed to the increased visible light response, effective charge transfer from the modified band position and close interfacial contact due to partial ion exchange method.

  14. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  15. Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.

    PubMed

    Yang, He; Han, Chong; Xue, Xiangxin

    2014-07-01

    The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.

  16. Photocatalytic activity of attapulgite–BiOCl–TiO{sub 2} toward degradation of methyl orange under UV and visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lili, E-mail: zll@hytc.edu.cn; Zhang, Jiahui; Zhang, Weiguang

    2015-06-15

    Highlights: • Excellent photocatalyst was obtained by introducing BiOCl–TiO{sub 2} onto attapulgite. • 100 mg L{sup −1} methyl orange (MO) was totally decomposed under UV light within 70 min. • 92.6% of 10 mg L{sup −1} MO was decomposed within 120 min under visible light. • ATT–BiOCl–TiO{sub 2} show better activity than P{sub 25} especially under visible light. • Mechanism of photocatalytic activity enhancement was identified. - Abstract: An environmental friendly composite photocatalyst with efficient UV and visible light activity has been synthesized by introducing BiOCl–TiO{sub 2} hybrid oxide onto the surface of attapulgite (ATT) (denoted as ATT–BiOCl–TiO{sub 2}), usingmore » a simple in situ depositing technique. The obtained products were characterized by XRD, TEM, BET and UV–vis diffuse reflectance spectra measurements. Results showed that BiOCl–TiO{sub 2} composite particles were successfully loaded onto attapulgite fibers' surface without obvious aggregation. The photocatalytic activity of ATT–BiOCl–TiO{sub 2} was investigated by degradation of methyl orange under UV and visible light irradiation. It was found that 100 mg L{sup −1} methyl orange was totally decomposed under UV light within 70 min and 92.57% of 10 mg L{sup −1} methyl orange was decomposed under visible light within 120 min using ATT–BiOCl–TiO{sub 2} as photocatalyst. These results were quite better than that of P{sub 25}, especially under visible light irradiation. Possible mechanism for the enhancement was proposed.« less

  17. Visible light driven mineralization of spiramycin over photostructured N-doped TiO2 on up conversion phosphors.

    PubMed

    Sacco, Olga; Vaiano, Vincenzo; Sannino, Diana; Ciambelli, Paolo

    2017-04-01

    A novel visible light-active photocatalyst formulation (NdT/OP) was obtained by supporting N-doped TiO 2 (NdT) particles on up-conversion luminescent organic phosphors (OP). The photocatalytic activity of such catalysts was evaluated for the mineralization process of spiramycin in aqueous solution. The effect of NdT loading in the range 15-60wt.% on bulk and surface characteristics of NdT/OP catalysts was investigated by several chemico-physical characterization techniques. The photocatalytic performance of NdT/OP catalysts in the removal of spyramicin from aqueous solution was assessed through photocatalytic tests under visible light irradiation. Total organic carbon (TOC) of aqueous solution, and CO and CO 2 gas concentrations evolved during the photodegradation were analyzed. A dramatic enhancement of photocatalytic activity of the photostructured visible active NdT/OP catalysts, compared to NdT catalyst, was observed. Only CO 2 was detected in gas-phase during visible light irradiation, proving that the photocatalytic process is effective in the mineralization of spiramycin, reaching very high values of TOC removal. The photocatalyst NdT/OP at 30wt.% of NdT loading showed the highest photocatalytic activity (58% of TOC removed after 180min irradiation against only 31% removal after 300min of irradiation of NdT). We attribute this enhanced activity to the high effectiveness in the utilization of visible light through improved light harvesting and exploiting. OP particles act as "photoactive support", able to be excited by the external visible light irradiation, and reissue luminescence of wavelength suitable to promote NdT photomineralization activity. Copyright © 2016. Published by Elsevier B.V.

  18. Development and Progress in Enabling the Photocatalyst Ti02 Visible-Light-Active

    NASA Technical Reports Server (NTRS)

    Levine, Lanfang H.; Coutts, Janelle L.; Clausen, Christian A.

    2011-01-01

    Photocatalytic oxidation (PCO) of organic contaminants is a promising air and water quality management approach which offers energy and cost savings compared to thermal catalytic oxidation (TCO). The most widely used photocatalyst, anatase TiO2, has a wide band gap (3.2 eV) and is activated by UV photons. Since solar radiation consists of less than 4% UV, but contains 45% visible light, catalysts capable of utilizing these visible photons need to be developed to make peo approaches more efficient, economical, and safe. Researchers have attempted various approaches to enable TiO2 to be visible-light-active with varied degrees of success'. Strategies attempted thus far fall into three categories based on their electrochemical' mechanisms: 1) narrowing the band gap of TiO2 by implantation of transition metal elements or nonmetal elements such as N, S, and C, 2) modifying electron-transfer processes during PCO by adsorbing sensitizing dyes, and 3) employing light-induced interfacial electron transfer in the heteronanojunction systems consisting of narrow band gap semiconductors represented by metal sulfides and TiO2. There are diverse technical approaches to implement each of these strategies. This paper presents a review of these approaches and results of the photocatalytic activity and photonic efficiency of the end .products under visible light. Although resulting visible-light-active (VLA) photocatalysts show promise, there is often no comparison with unmodified TiO2 under UV. In a limited number of studies where such comparison was provided, the UV-induced catalytic activity of bare TiO2 is much greater than the visible-light-induced catalytic activity of the VLA catalyst. Furthermore, VLA-catalysts have much lower quantum efficiency compared to the approx.50% quantum efficiency of UV-catalysts. This stresses the need for continuing research in this area.

  19. Visible light driven multifunctional photocatalysis in TeO2-based semiconductor glass ceramics

    NASA Astrophysics Data System (ADS)

    Kushwaha, Himmat Singh; Thomas, Paramanandam; Vaish, Rahul

    2017-01-01

    Photocatalytic xCaCu3Ti4O12-(100-x)TeO2 (x=0.25 mol% to 3 mol%), glass nanocomposites were fabricated and investigated for wastewater treatment, self-cleaning surfaces, and photocatalytic hydrogen evolution. Visible light active crystals of Cu-doped TiO2 and TiTe3O8 were grown by optimized crystallization of as-quenched glasses. The visible light photocatalytic activity of glass samples was investigated for estrogenic pharmaceutical pollutants, and the degradation rate was obtained as 168.56 min-1 m-2. A higher photocatalytic H2 production rate was observed (135 μmole h-1 g-1) for the crystallized CaCu3Ti4O12-TeO2 (x=3. 0) glass plate under visible light. The self-cleaning performance was observed using contact angle measurements for water under dark and light conditions. These visible light active glass ceramics are a cost effective sustainable solution for water treatment and self-cleaning applications.

  20. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation.

    PubMed

    Sun, Jianhui; Qiao, Liping; Sun, Shengpeng; Wang, Guoliang

    2008-06-30

    In this paper, the degradation of an azo dye Orange G (OG) on nitrogen-doped TiO2 photocatalysts has been investigated under visible light and sunlight irradiation. Under visible light irradiation, the doped TiO2 nanocatalysts demonstrated higher activity than the commercial Dugussa P25 TiO2, allowing more efficient utilization of solar light, while under sunlight, P25 showed higher photocatalytic activity. According to the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis spectra analyses, it was found that both the nanosized anatase structure and the appearance of new absorption band in the visible region caused by nitrogen doping were responsible for the significant enhancement of OG degradation under visible light. In addition, the photosensitized oxidation mechanism originated from OG itself was also considered contributing to the higher visible-light-induced degradation efficiency. The effect of the initial pH of the solution and the dosage of hydrogen peroxide under different light sources was also investigated. Under visible light and sunlight, the optimal solution pH was both 2.0, while the optimal dosage of H2O2 was 5.0 and 15.0 mmol/l, respectively.

  1. A self-sacrifice template route to iodine modified BiOIO3: band gap engineering and highly boosted visible-light active photoreactivity.

    PubMed

    Feng, Jingwen; Huang, Hongwei; Yu, Shixin; Dong, Fan; Zhang, Yihe

    2016-03-21

    The development of high-performance visible-light photocatalysts with a tunable band gap has great significance for enabling wide-band-gap (WBG) semiconductors visible-light sensitive activity and precisely tailoring their optical properties and photocatalytic performance. In this work we demonstrate the continuously adjustable band gap and visible-light photocatalysis activation of WBG BiOIO3via iodine surface modification. The iodine modified BiOIO3 was developed through a facile in situ reduction route by applying BiOIO3 as the self-sacrifice template and glucose as the reducing agent. By manipulating the glucose concentration, the band gap of the as-prepared modified BiOIO3 could be orderly narrowed by generation of the impurity or defect energy level close to the conduction band, thus endowing it with a visible light activity. The photocatalytic assessments uncovered that, in contrast to pristine BiOIO3, the modified BiOIO3 presents significantly boosted photocatalytic properties for the degradation of both liquid and gaseous contaminants, including Rhodamine B (RhB), methyl orange (MO), and ppb-level NO under visible light. Additionally, the band structure evolution as well as photocatalysis mechanism triggered by the iodine surface modification is investigated in detail. This study not only provides a novel iodine surface-modified BiOIO3 for environmental application, but also provides a facile and general way to develop highly efficient visible-light photocatalysts.

  2. A Prussian blue/carbon dot nanocomposite as an efficient visible light active photocatalyst for C-H activation of amines.

    PubMed

    Maaoui, Houcem; Kumar, Pawan; Kumar, Anurag; Pan, Guo-Hui; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah; Jain, Suman L

    2016-10-05

    A Prussian blue/carbon dot (PB/CD) nanocomposite was synthesised and used as a visible-light active photocatalyst for the oxidative cyanation of tertiary amines to α-aminonitriles by using NaCN/acetic acid as a cyanide source and H 2 O 2 as an oxidant. The developed photocatalyst afforded high yields of products after 8 h of visible light irradiation at room temperature. The catalyst was recycled and reused several times without any significant loss in its activity.

  3. Erbium and nitrogen co-doped SrTiO{sub 3} with highly visible light photocatalytic activity and stability by solvothermal synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jing; Wei, Yuelin, E-mail: ylwei@hqu.edu.cn; Huang, Yunfang

    Highlights: • Er/N co-doped SrTiO{sub 3} was prepared by a solvothermal process at low temperature. • The co-doping induces the band gap narrowing and prominent absorbance in visible light region. • The samples show excellent catalytic activity and stability under visible light irradiation. - Abstract: Erbium–nitrogen co-doped SrTiO{sub 3} photocatalysts have been synthesized by a facile solvothermal method. The resulting samples were analyzed by FE-SEM, XRD, BET-surface area and UV–vis. The UV–vis absorption spectra of these powders indicated that erbium–nitrogen co-doped SrTiO{sub 3} possessed stronger absorption bands in the visible light region in comparison with that of pure SrTiO{sub 3}.more » The occurrence of the erbium–nitrogen co-doped cubic SrTiO{sub 3} induced the higher photocatalytic activities for the degradation of methyl orange (MO) under irradiation by ultraviolet light and visible light, respectively, being superior to that of pure SrTiO{sub 3} and commercial TiO{sub 2} (P-25) powders. In addition, the Er–N co-doped SrTiO{sub 3} (initial molar ratios of Sr/Er/N = 1:0.015:0.1, designated as S5) sample showed the best photocatalytic activity with the degradation rate as high as 98% after 30 min under the visible light irradiation. After five cycles, the photocatalytic activity of the S5 catalyst showed no significant decrease, which indicated that the photocatalysts were stable under visible light irradiation.« less

  4. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer compositemore » material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.« less

  5. Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis

    PubMed Central

    Cai, Aijun; Guo, Aiying; Ma, Zichuan

    2017-01-01

    TiO2 nanoparticles are immobilized on chlorella cells using the hydrothermal method. The morphology, structure, and the visible-light-driven photocatalytic activity of the prepared chlorella/TiO2 composite are investigated by various methods. The chlorella/TiO2 composite is found to exhibit larger average sizes and higher visible-light intensities. The sensitization of the photosynthesis pigment originating from chlorella cells provides the anatase TiO2 with higher photocatalytic activities under the visible-light irradiation. The latter is linked to the highly efficient charge separation of the electron/hole pairs. The results also suggest that the photocatalytic activity of the composite remains substantial after four cycles, suggesting a good stability. PMID:28772899

  6. Highly efficient temperature-induced visible light photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Han, Bing

    Photocatalysis is the acceleration of photoreaction in presence of a photocatalyst. Semiconductor photocatalysis has obtained much attention as a potential solution to the worldwide energy storage due to its promising ability to directly convert solar energy into chemical fuels. This dissertation research mainly employ three approaches to enhance photocatalytic activities, which includes (I) Modifying semiconductor nanomaterials for visible and near-IR light absorption; (II) Synthesis of light-diffuse-reflection-surface of SiO2 substrate to utilize scattered light; and (III) design of a hybrid system that combines light and heat to enhance visible light photocatalytic activity. Those approaches were applied to two systems: (1) hydrogen production from water; (2) carbon dioxide reforming of methane. The activity of noble metals such as platinum were investigated as co-catalysts and cheap earth abundant catalysts as alternatives to reduce cost were also developed. Stability, selectivity, mechanism were investigated. Great enhancement of visible light activity over a series of semiconductors/heterostructures were observed. Such extraordinary performance of artificial photosynthetic hydrogen production system would provide a novel approach for the utilization of solar energy for chemical fuel production.

  7. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response.

    PubMed

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400-700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions.

  8. Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications

    PubMed Central

    Ansari, Sajid Ali; Cho, Moo Hwan

    2016-01-01

    This paper reports that the introduction of elemental red phosphorus (RP) into TiO2 can shift the light absorption ability from the UV to the visible region, and confirmed that the optimal RP loading and milling time can effectively improve the visible light driven-photocatalytic activity of TiO2. The resulting RP-TiO2 nanohybrids were characterized systematically by a range of techniques and the photocatalytic ability of the RP-TiO2 photocatalysts was assessed further by the photodegradation of a model Rhodamine B pollutant under visible light irradiation. The results suggest that the RP-TiO2 has superior photodegradation ability for model contaminant decomposition compared to other well-known photocatalysts, such as TiO2 and other reference materials. Furthermore, as a photoelectrode, electrochemical impedance spectroscopy, differential pulse voltammetry, and linear scan voltammetry were also performed in the dark and under visible light irradiation. These photoelectrochemical performances of RP-TiO2 under visible light irradiation revealed more efficient photoexcited electron-hole separation and rapid charge transfer than under the dark condition, and thus improved photocatalytic activity. These findings show that the use of earth abundant and inexpensive red phosphorus instead of expensive plasmonic metals for inducing visible light responsive characteristics in TiO2 is an effective strategy for the efficient energy conversion of visible light. PMID:27146098

  9. Ag@AgHPW as a plasmonic catalyst for visible-light photocatalytic degradation of environmentally harmful organic pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenhui; Cao, Minhua, E-mail: caomh@bit.edu.cn; Li, Na

    2013-06-01

    Graphical abstract: Ag@Ag{sub x}H{sub 3−x}PW12O40 (Ag@AgHPW) nanoparticles (NPs), a new visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant, which show a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation. - Highlights: • A new visible-light driven photocatalyst Ag@Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} was designed. • The photocatalyst shows a high activity for the degradation of methyl blue. • The high activity can be ascribed to the synergy of photoexcited AgHPW and Ag. - Abstract: Ag@Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} (Ag@AgHPW) nanoparticles (NPs), a newmore » visible-light driven plasmonic photocatalyst, are prepared by a green photoreduction strategy without the addition of any surfactant. They show strong absorption in the visible region because of the localized surface plasmon resonance (LSPR) of Ag NPs. This plasmonic photocatalyst shows a high activity and stability for the degradation of methyl blue (MB) under visible light irradiation, which could be attributed to the highly synergy of photoexcited Ag{sub x}H{sub 3−x}PW{sub 12}O{sub 40} (AgHPW) and plasmon-excited Ag NPs and the confinement effects at interfaces between polyoxometalates (POMs) and silver. POM anions have redox ability and high photocatalytic activity, whereas Ag NPs could effectively accelerate the separation of electrons and holes, both of which contribute to their high activity.« less

  10. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of graphene

    NASA Astrophysics Data System (ADS)

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-01

    Visible light photocatalytic H2 production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet, which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H2-production rate of 7.42 μmol h-1 g-1, eight times more than the pure ZnS sample. This high visible-light photocatalytic H2 production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H2 evolution.

  11. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of grapheme.

    PubMed

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-28

    Visible light photocatalytic H(2) production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet,which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H(2)-production rate of 7.42 μmol h(−1) g(−1), eight times more than the pure ZnS sample. This high visible-light photocatalytic H(2) production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H(2) evolution.

  12. Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Khan, Matiullah; Cao, Wenbin

    2013-11-01

    To employ TiO2 as an efficient photocatalyst, high reactivity under visible light and improved separation of photoexcited carriers are required. An effective co-doping approach is applied to modify the photocatalytic properties of TiO2 by doping vanadium (transition metal) and yttrium (rare earth element). V and/or Y codoped TiO2 was prepared using hydrothermal method without any post calcination for crystallization. Based on density functional theory, compensated and noncompensated V, Y codoped TiO2 models were constructed and their structural, electronic, and optical properties were calculated. Through combined experimental characterization and theoretical modeling, V, Y codoped TiO2 exhibited high absorption coefficient with enhanced visible light absorption. All the prepared samples showed pure anatase phase and spherical morphology with uniform particle distribution. Electronic band structure demonstrates that V, Y codoping drastically reduced the band gap of TiO2. It is found that both the doped V and Y exist in the form of substitutional point defects replacing Ti atom in the lattice. The photocatalytic activity, evaluated by the degradation of methyl orange, displays that the codoped TiO2 sample exhibits enhanced visible light photocatalytic activity. The synergistic effects of V and Y drastically improved the Brunauer-Emmett-Teller specific surface area, visible light absorption, and electron-hole pair's separation leading to the enhanced visible light catalytic activity.

  13. Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation.

    PubMed

    El-Salamony, R A; Amdeha, E; Ghoneim, S A; Badawy, N A; Salem, K M; Al-Sabagh, A M

    2017-12-01

    Activated carbon (AC), prepared from sugarcane bagasse waste through a low-temperature chemical carbonization treatment, was used as a support for nano-TiO 2 . TiO 2 supported on AC (xTiO 2 -AC) catalysts (x = 10, 20, 50, and 70 wt.%) were prepared through a mechano-mixing method. The photocatalysts were characterized by Raman, X-ray diffraction analysis, FTIR, S BET , field emission scanning electron microscope, and optical technique. The adsorption and photo-activity of the prepared catalysts (xTiO 2 -AC) were evaluated using methylene blue (MB) dye. The photocatalytic degradation of MB was evaluated under UVC irradiation and visible light. The degradation percentage of the 100 ppm MB at neutral pH using 20TiO 2 -AC reaches 96 and 91 after 180 min under visible light and UV irradiation, respectively. In other words, these catalysts are more active under visible light than under UV light irradiation, opening the possibility of using solar light for this application.

  14. Synthesis and characterization of g-C{sub 3}N{sub 4}/Cu{sub 2}O composite catalyst with enhanced photocatalytic activity under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Biyu; Zhang, Shengsen; Yang, Siyuan

    2014-08-15

    The prepared g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited the enhanced photocatalytic activity under visible-light irradiation due to the stronger ability in separation of electron–hole pairs, which was proven by the transient photocurrent measurement. - Highlights: • The coupled Cu{sub 2}O with g-C{sub 3}N{sub 4} of narrow-band-gap semiconductor has been designed. • g-C{sub 3}N{sub 4}/Cu{sub 2}O is prepared via an alcohol-aqueous based on chemical precipitation method. • g-C{sub 3}N{sub 4}/Cu{sub 2}O exhibits the enhanced photocatalytic activity under visible-light. • The enhanced photocatalytic activity is proven by the transient photocurrent test. • A mechanism for the visible-light-driven photocatalysis of g-C{sub 3}N{sub 4}/Cu{submore » 2}O is revealed. - Abstract: To overcome the drawback of low photocatalytic efficiency brought by electron–hole pairs recombination and narrow photo-response range, a novel g-C{sub 3}N{sub 4}/Cu{sub 2}O composite photocatalyst was designed and prepared successfully. Compared with bare Cu{sub 2}O and g-C{sub 3}N{sub 4}, the g-C{sub 3}N{sub 4}/Cu{sub 2}O composite exhibited significantly enhanced photocatalytic activity for acid orange-II (AO-II) degradation under visible light irradiation. Based on energy band positions, the mechanism of enhanced visible-light photocatalytic activity was proposed.« less

  15. Innovative, energy-efficient lighting for New York state roadways : opportunities for incorporating mesopic visibility considerations into roadway lighting practice

    DOT National Transportation Integrated Search

    2008-04-01

    The present report outlines activities undertaken to assess the potential for implementing research on visibility at mesopic light levels into lighting practices for roadways in New York State. Through measurements of light levels at several roadway ...

  16. Visible Light Induces Melanogenesis in Human Skin through a Photoadaptive Response

    PubMed Central

    Randhawa, Manpreet; Seo, InSeok; Liebel, Frank; Southall, Michael D.; Kollias, Nikiforos; Ruvolo, Eduardo

    2015-01-01

    Visible light (400–700 nm) lies outside of the spectral range of what photobiologists define as deleterious radiation and as a result few studies have studied the effects of visible light range of wavelengths on skin. This oversight is important considering that during outdoors activities skin is exposed to the full solar spectrum, including visible light, and to multiple exposures at different times and doses. Although the contribution of the UV component of sunlight to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology in terms of inflammation, and limited information is available regarding the role of visible light on pigmentation. The purpose of this study was to determine the effect of visible light on the pro-pigmentation pathways and melanin formation in skin. Exposure to visible light in ex-vivo and clinical studies demonstrated an induction of pigmentation in skin by visible light. Results showed that a single exposure to visible light induced very little pigmentation whereas multiple exposures with visible light resulted in darker and sustained pigmentation. These findings have potential implications on the management of photo-aggravated pigmentary disorders, the proper use of sunscreens, and the treatment of depigmented lesions. PMID:26121474

  17. Inactivation of bacterial biofilms using visible-light-activated unmodified ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Aponiene, Kristina; Serevičius, Tomas; Luksiene, Zivile; Juršėnas, Saulius

    2017-09-01

    Various zinc oxide (ZnO) nanostructures are widely used for photocatalytic antibacterial applications. Since ZnO possesses a wide bandgap, it is believed that only UV light may efficiently assist bacterial inactivation, and diverse crystal lattice modifications should be applied in order to narrow the bandgap for efficient visible-light absorption. In this work we show that even unmodified ZnO nanorods grown by an aqueous chemical growth technique are found to possess intrinsic defects that can be activated by visible light (λ = 405 nm) and successfully applied for total inactivation of various highly resistant bacterial biofilms rather than more sensitive planktonic bacteria. Time-resolved fluorescence analysis has revealed that visible-light excitation creates long-lived charge carriers (τ > 1 μs), which might be crucial for destructive biochemical reactions achieving significant bacterial biofilm inactivation. ZnO nanorods covered with bacterial biofilms of Enterococcus faecalis MSCL 302 after illumination by visible light (λ = 405 nm) were inactivated by 2 log, and Listeria monocytogenes ATCL3C 7644 and Escherichia coli O157:H7 biofilms by 4 log. Heterogenic waste-water microbial biofilms, consisting of a mixed population of mesophilic bacteria after illumination with visible light were also completely destroyed.

  18. Self-doped Ti(3+)-TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation.

    PubMed

    Sasan, Koroush; Zuo, Fan; Wang, Yuan; Feng, Pingyun

    2015-08-28

    Self-doped TiO2 shows visible light photocatalytic activity, while commercial TiO2 (P25) is only UV responsive. The incorporation of Ti(3+) into TiO2 structures narrows the band gap (2.90 eV), leading to significantly increased photocatalytic activity for the reduction of CO2 into a renewable hydrocarbon fuel (CH4) in the presence of water vapour under visible light irradiation.

  19. Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H₂ Evolution.

    PubMed

    Fang, Zhibin; Weng, Sunxian; Ye, Xinxin; Feng, Wenhui; Zheng, Zuyang; Lu, Meiliang; Lin, Sen; Fu, Xianzhi; Liu, Ping

    2015-07-01

    ZnS is among the superior photocatalysts for H2 evolution, whereas the wide bandgap restricts its performance to only UV region. Herein, defect engineering and phase junction architecture from a controllable phase transformation enable ZnS to achieve the conflicting visible-light-driven activities for H2 evolution. On the basis of first-principle density functional theory calculations, electron spin resonance and photoluminescence results, etc., it is initially proposed that the regulated sulfur vacancies in wurtzite phase of ZnS play the key role of photosensitization units for charge generation in visible light and active sites for effective electron utilization. The symbiotic sphalerite-wurtzite phase junctions that dominate the charge-transfer kinetics for photoexciton separation are the indispensable configuration in the present systems. Neither ZnS samples without phase junction nor those without enough sulfur vacancies conduct visible-light photocatalytic H2 evolution, while the one with optimized phase junctions and maximum sulfur vacancies shows considerable photocatalytic activity. This work will not only contribute to the realization of visible light photocatalysis for wide-bandgap semiconductors but also broaden the vision on the design of highly efficient transition metal sulfide photocatalysts.

  20. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xuyao; Zhou, Xiaosong, E-mail: zxs801213@163.com; Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis lightmore » absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.« less

  1. Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol-gel method for photodegradion of methyl orange.

    PubMed

    Wang, Min; Che, Yinsheng; Niu, Chao; Dang, Mingyan; Dong, Duo

    2013-11-15

    Eu-B co-doped BiVO4 visible-light-driven photocatalysts have been synthesized using the sol-gel method. The resulting materials were characterized by a series of joint techniques, including XPS, XRD, SEM, BET, and UV-vis DRS analyses. Compared with BiVO4 and B-BiVO4 photocatalysts, the Eu-B-BiVO4 photocatalysts exhibited much higher photocatalytic activity for methyl orange (MO) degradation under visible light irradiation. The optimal Eu doping content is 0.8 mol%. It was revealed that boron and europium were doped into the lattice of BiVO4 and this led to more surface oxygen vacancies, high specific surface areas, small crystallite size, a narrower band gap and intense light absorbance in the visible region. The doped Eu(III) cations can help in the separation of photogenerated electrons. The synergistic effects of boron and europium in doped BiVO4 were the main reason for improving visible light photocatalytic activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria.

    PubMed

    Ananpattarachai, Jirapat; Boonto, Yuphada; Kajitvichyanukul, Puangrat

    2016-03-01

    The Ni-doped and N-doped TiO2 nanoparticles were investigated for their antibacterial activities on Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. Their morphological features and characteristics such as particle size, surface area, and visible light absorbing capacity were compared and discussed. Scanning electron microscopy, X-ray diffraction, and UV-visible spectrophotometry were used to characterize both materials. The inactivation of E. coli (as an example of Gram-negative bacteria) and S. aureus (as an example of Gram-positive bacteria) with Ni-doped and N-doped TiO2 was investigated in the absence and presence of visible light. Antibacterial activity tests were conducted using undoped, Ni-doped, and N-doped TiO2. The N-doped TiO2 nanoparticles show higher antibacterial activity than Ni-doped TiO2. The band gap narrowing of N-doped TiO2 can induce more visible light absorption and leads to the superb antibacterial properties of this material. The complete inactivation time for E. coli at an initial cell concentration of 2.7 × 10(4) CFU/mL was 420 min which is longer than the 360 min required for S. aureus inactivation. The rate of inactivation of S. aureus using the doped TiO2 nanoparticles in the presence of visible light is greater than that of E. coli. The median lethal dose (LD50) values of S. aureus and E. coli by antibacterial activity under an 18-W visible light intensity were 80 and 350 mg/ml for N-doped TiO2, respectively.

  3. Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    PubMed Central

    Huang, Hsin-Hsien; Wong, Ming-Show; Lin, Hung-Chi; Chang, Hsin-Hou

    2009-01-01

    Background Photocatalysis of titanium dioxide (TiO2) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO2 substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. Methodology/Principal Findings Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. Conclusion/Significance Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host. PMID:19132100

  4. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol

    PubMed Central

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2016-01-01

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region. PMID:28773363

  5. Controlled Defects of Zinc Oxide Nanorods for Efficient Visible Light Photocatalytic Degradation of Phenol.

    PubMed

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2016-03-28

    Environmental pollution from human and industrial activities has received much attention as it adversely affects human health and bio-diversity. In this work we report efficient visible light photocatalytic degradation of phenol using supported zinc oxide (ZnO) nanorods and explore the role of surface defects in ZnO on the visible light photocatalytic activity. ZnO nanorods were synthesized on glass substrates using a microwave-assisted hydrothermal process, while the surface defect states were controlled by annealing the nanorods at various temperatures and were characterized by photoluminescence and X-ray photoelectron spectroscopy. High performance liquid chromatography (HPLC) was used for the evaluation of phenol photocatalytic degradation. ZnO nanorods with high surface defects exhibited maximum visible light photocatalytic activity, showing 50% degradation of 10 ppm phenol aqueous solution within 2.5 h, with a degradation rate almost four times higher than that of nanorods with lower surface defects. The mineralization process of phenol during degradation was also investigated, and it showed the evolution of different photocatalytic byproducts, such as benzoquinone, catechol, resorcinol and carboxylic acids, at different stages. The results from this study suggest that the presence of surface defects in ZnO nanorods is crucial for its efficient visible light photocatalytic activity, which is otherwise only active in the ultraviolet region.

  6. Effects of N precursor on the agglomeration and visible light photocatalytic activity of N-doped TiO2 nanocrystalline powder.

    PubMed

    Hu, Yulong; Liu, Hongfang; Rao, Qiuhua; Kong, Xiaodong; Sun, Wei; Guo, Xingpeng

    2011-04-01

    N-doped TiO2 nanocrystalline powders were prepared by the sol-gel method using various N precursors, including triethylamine, hydrazine hydrate, ethylenediamine, ammonium hydroxide, and urea. The samples were characterized by X-ray diffraction, N2 adsorption isotherms, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of as-prepared samples under irradiation of visible light (lambda > 405 nm) were evaluated by photodecomposition of methyl orange. The alkalinity of N precursor was found to play a key role in the gel process. The N precursor with moderate alkalinity causes TiO2 nanoparticles to be sol-transformed into a loosely agglomerated gel. This transformation facilitates the preparation of an N-doped TiO2 powder with small nanocrystal size, large specific surface area, and high N doping level and results in high visible light photocatalytic activity. The N in TiO2 with N is binding energy at 399-400 eV may be assigned to the N-H species located in interstitial sites of TiO2 lattice which is the active N species responsible for the visible light photocatalytic activity. The N species of N 1s peak at 402 and 405 eV are ineffective to the visible light photocatalytic activity and may inhibit the photocatalytic activity. Moreover, a TiO2 nanoparticle powder with large specific area can be achieved by using urea as a template and then by using ammonium hydroxide to transform the sol into gel.

  7. g-C{sub 3}N{sub 4}/NaTaO{sub 3} organic–inorganic hybrid nanocomposite: High-performance and recyclable visible light driven photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Santosh; Kumar, Bharat; Surendar, T.

    2014-01-01

    Graphical abstract: High-performance and recyclable visible-light driven g-C{sub 3}N{sub 4}/NaTaO{sub 3} hybrid nanocomposite photocatalysts have been prepared by a facile ultrasonic dispersion method. The hybrid nanocomposite photocatalyst can be promising photocatalytic material for practical application in water splitting and environmental remediation. - Highlights: • Novel g-C{sub 3}N{sub 4}/NaTaO{sub 3} nanocomposites as a high performance and recyclable photocatalysts. • These catalysts exhibited significantly enhanced photocatalytic activity under UV–visible light irradiation. • More attractively, dramatic activity is generated under visible light irradiation due to the g-C{sub 3}N{sub 4} loaded. • Interestingly, the as-prepared hybrid nanocomposites possess high reusability. - Abstract: Novel g-C{submore » 3}N{sub 4}/NaTaO{sub 3} hybrid nanocomposites have been prepared by a facile ultrasonic dispersion method. Our results clearly show the formation of interface between NaTaO{sub 3} and g-C{sub 3}N{sub 4} and further loading of g-C{sub 3}N{sub 4} did not affect the crystal structure and morphology of NaTaO{sub 3}. The g-C{sub 3}N{sub 4}/NaTaO{sub 3} nanocomposites exhibited enhanced photocatalytic performance for the degradation of Rhodamine B under UV–visible and visible light irradiation compared to pure NaTaO{sub 3} and Degussa P25. Interestingly, the visible light photocatalytic activity is generated due to the loading of g-C{sub 3}N{sub 4}. A mechanism is proposed to discuss the enhanced photocatalytic activity based on trapping experiments of photoinduced radicals and holes. Under visible light irradiation, electron excited from the valance band (VB) to conduction band (CB) of g-C{sub 3}N{sub 4} could directly inject into the CB of NaTaO{sub 3}, making g-C{sub 3}N{sub 4}/NaTaO{sub 3} visible light driven photocatalyst. Since the as-prepared hybrid nanocomposites possess high reusability therefore it can be promising photocatalyst for environmental applications.« less

  8. Visible-Light Resin Curing Units.

    DTIC Science & Technology

    1984-03-01

    dental unit’s pilot or drive air pressure, and is activated via the foot control that also operates the high-speed and low-speed handpieces . For all...the Dental Investigation Sqtc* kvmtc)b Cini’cal Sciences Division, USAF School of Aerospace 114,~e Ameoae ~dical Division, APSC, Brooks Air force... Dental curing units White light activation II Visible-light activation 19. AISTRACT (Continue on ,werse if necenawy and identify by

  9. Structural Design Principle of Small-Molecule Organic Semiconductors for Metal-Free, Visible-Light-Promoted Photocatalysis.

    PubMed

    Wang, Lei; Huang, Wei; Li, Run; Gehrig, Dominik; Blom, Paul W M; Landfester, Katharina; Zhang, Kai A I

    2016-08-08

    Herein, we report on the structural design principle of small-molecule organic semiconductors as metal-free, pure organic and visible light-active photocatalysts. Two series of electron-donor and acceptor-type organic semiconductor molecules were synthesized to meet crucial requirements, such as 1) absorption range in the visible region, 2) sufficient photoredox potential, and 3) long lifetime of photogenerated excitons. The photocatalytic activity was demonstrated in the intermolecular C-H functionalization of electron-rich heteroaromates with malonate derivatives. A mechanistic study of the light-induced electron transport between the organic photocatalyst, substrate, and the sacrificial agent are described. With their tunable absorption range and defined energy-band structure, the small-molecule organic semiconductors could offer a new class of metal-free and visible light-active photocatalysts for chemical reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light.

    PubMed

    Shown, Indrajit; Samireddi, Satyanarayana; Chang, Yu-Chung; Putikam, Raghunath; Chang, Po-Han; Sabbah, Amr; Fu, Fang-Yu; Chen, Wei-Fu; Wu, Chih-I; Yu, Tsyr-Yan; Chung, Po-Wen; Lin, M C; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-12

    Photocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS 2 (SnS 2 -C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO 2 to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS 2 lattice, resulting in different photophysical properties as compared with undoped SnS 2 . This SnS 2 -C photocatalyst significantly enhances the CO 2 reduction activity under visible light, attaining a photochemical quantum efficiency of above 0.7%. The SnS 2 -C photocatalyst represents an important contribution towards high quantum efficiency artificial photosynthesis based on gas phase photocatalytic CO 2 reduction under visible light, where the in situ carbon-doped SnS 2 nanostructure improves the stability and the light harvesting and charge separation efficiency, and significantly enhances the photocatalytic activity.

  11. Solvothermal synthesis of P25/Bi2WO6 nanocomposite photocatalyst and photocatalytic degradation of ethylene under visible light

    NASA Astrophysics Data System (ADS)

    Song, Xianliang; Wang, Haidan; Li, Yingying; Ye, Shengying; Dionysiou, Dionysios D.

    2018-05-01

    P25/Bi2WO6 nanocomposite photocatalysts were synthesized by solvothermal method, and their photocatalytic activities were evaluated for the degradation of ethylene under visible light irradiation. The results show that P25/Bi2WO6 nanocomposites have higher photocatalytic activity than P25 and pure Bi2WO6. When the loading amount of P25 is 35%, the photocatalytic degradation of ethylene under visible light is the highest, which is 4.5 and 2.2 times higher than that of P25 and Bi2WO6, respectively. The improvement of the photocatalytic activity of the nanocomposite is mainly due to the formation of the staggered heterojunctions in the contact interface of P25 and Bi2WO6. This can refine the grain and produce lattice defects in the interface of the composite, which could provide more active sites. Therefore, the separation efficiency of the photogenerated electron-hole pair is improved, and the spectral response range is extended to the visible light region, thereby the absorption and utilization of light energy is improved.

  12. Formation of bioactive N-doped TiO2 on Ti with visible light-induced antibacterial activity using NaOH, hot water, and subsequent ammonia atmospheric heat treatment.

    PubMed

    Kawashita, Masakazu; Endo, Naoko; Watanabe, Tomoaki; Miyazaki, Toshiki; Furuya, Maiko; Yokota, Kotoe; Abiko, Yuki; Kanetaka, Hiroyasu; Takahashi, Nobuhiro

    2016-09-01

    Titanium (Ti) treated with NaOH and hot water, and heated in an ammmonia (NH3) gas atmosphere for 1 or 3h exhibited in vitro apatite formation within 7days when soaked in simulated body fluid (SBF). Moreover, the treated Ti decomposed methylene blue and showed excellent bactericidal activity against Escherichia coli under visible light irradiation. The surface treatment resulted in the formation of a fine network of N-doped anatase-type titania (TiO2-xNx) on the Ti surface, which was responsible for both the apatite formation in SBF and the visible light-induced antibacterial activity. These preliminary results highlight the efficacy of our simple method for producing novel bioactive Ti with visible light-induced antibacterial activity, which could be applied to orthopaedic and dental implants without the risk of infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mild Deoxygenation of Sulfoxides over Plasmonic Molybdenum Oxide Hybrid with Dramatic Activity Enhancement under Visible Light.

    PubMed

    Kuwahara, Yasutaka; Yoshimura, Yukihiro; Haematsu, Kohei; Yamashita, Hiromi

    2018-06-17

    Harvesting solar light to boost commercially important organic synthesis still remains a challenge. Coupling of conventional noble metal catalysts with plasmonic oxide materials which exhibit intense plasmon absorption in the visible light region is a promising option for efficient solar energy utilization in catalysis. Herein we for the first time demonstrate that plasmonic hydrogen molybdenum bronze coupled with Pt nanoparticles (Pt/H x MoO 3-y ) shows a high catalytic performance in the deoxygenation of sulfoxides with 1 atm H 2 at room temperature, with dramatic activity enhancement under visible light irradiation relative to dark condition. The plasmonic molybdenum oxide hybrids with strong plasmon resonance peaks pinning at around 556 nm are obtained via a facile H-spillover process. Pt/H x MoO 3-y hybrid provides excellent selectivity for the deoxygenation of various sulfoxides as well as pyridine N-oxides, in which drastically improved catalytic efficiencies are obtained under the irradiation of visible light. Comprehensive analyses reveal that oxygen vacancies massively introduced via a H-spillover process are the main active sites, and reversible redox property of Mo atoms and strong plasmonic absorption play key roles in this reaction. The catalytic system works under extremely mild conditions and can boost the reaction by the assist of visible light, offering an ultimately greener protocol to produce sulfides from sulfoxides. Our findings may open up a new strategy for designing plasmon-based catalytic systems that can harness visible light efficiently.

  14. Solar Synthesis: Prospects in Visible Light Photocatalysis

    PubMed Central

    Schultz, Danielle M.; Yoon, Tehshik P.

    2015-01-01

    Chemists have long aspired to synthesize molecules the way that plants do — using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions. PMID:24578578

  15. Solar synthesis: prospects in visible light photocatalysis.

    PubMed

    Schultz, Danielle M; Yoon, Tehshik P

    2014-02-28

    Chemists have long aspired to synthesize molecules the way that plants do-using sunlight to facilitate the construction of complex molecular architectures. Nevertheless, the use of visible light in photochemical synthesis is fundamentally challenging because organic molecules tend not to interact with the wavelengths of visible light that are most strongly emitted in the solar spectrum. Recent research has begun to leverage the ability of visible light-absorbing transition metal complexes to catalyze a broad range of synthetically valuable reactions. In this review, we highlight how an understanding of the mechanisms of photocatalytic activation available to these transition metal complexes, and of the general reactivity patterns of the intermediates accessible via visible light photocatalysis, has accelerated the development of this diverse suite of reactions.

  16. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    PubMed

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  17. A facile hydrothermal approach to synthesize rGO/BiVO4 photocatalysts for visible light induced degradation of RhB dye

    NASA Astrophysics Data System (ADS)

    Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta

    2018-05-01

    RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.

  18. Fluorescein as a Visible-Light-Induced Oxidase Mimic for Signal-Amplified Colorimetric Assay of Carboxylesterase by an Enzymatic Cascade Reaction.

    PubMed

    Liu, Li; Sun, Chaoqun; Yang, Juan; Shi, Ying; Long, Yijuan; Zheng, Huzhi

    2018-04-20

    We have found that fluorescein possesses high visible-light-induced oxidase mimetic activity and could transform colorless 3,3',5,5'-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB) without unstable and destructive H 2 O 2 under visible-light illumination. Instead, fluorescein uses oxygen as a mild and green electron acceptor, and its activity can be easily controlled by the switching "on/off" of visible light. In addition, the visible-light-induced catalytic mechanism was elucidated in detail and, as the main reactive species h + and O 2 .- accounted for TMB oxidation. Based on the fact that fluorescein diacetate (FDA) possessed no activity and generated active fluorescein in situ in the presence of carboxylesterase (CaE), a signal-amplified sensing platform through a cascade reaction for CaE detection was constructed. Our proposed sensing system displayed excellent analytical performance for the detection of CaE in a wide linear range from 0.040 to 20 U L -1 with a low detection limit of 0.013 U L -1 . This work not only changes the conventional concept that fluorescein is generally considered to be photocatalytically inert, but also provides a novel sensing strategy by tailoring the enzyme mimetic activity of fluorescein derivatives with analyte. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and characterization of Sn-doped hematite as visible light photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Zhiqin; School of Materials Science and Engineering, Pan Zhihua University, Pan Zhihua 617000; Qin, Mingli, E-mail: qinml@mater.ustb.edu.cn

    2016-05-15

    Highlights: • Sn-doped hematite nanoparticles are prepared by SCS in one step. • The Sn doping have the ability to inhibit particle growth of hematite. • Sn can enhance visible light harvesting and e{sup −}/h{sup +} separation. • Sn-doped hematite degrades MB under visible light effectively. • The products with 5 mol% Sn have the highest photocatalytic activity. - Abstract: Sn-doped hematite nanoparticles are prepared by solution combustion synthesis. The products are characterized with various analytical and spectroscopic techniques to determine their structural, morphological, light absorption and photocatalytic properties. The results reveal that all the samples consist of nanocrystalline hematitemore » with mesoporous structures, and Sn has the ability to inhibit the growth of hematite particle. Compared to pure hematite, the doped hematite samples with appropriate amount of Sn show better activities for degradation of methylene blue under visible light irradiation. The highest activity is observed for 5% Sn doped hematite and this product has long-term stability and no selectivity for dye degradation. The enhanced performance of 5% Sn doped hematite is ascribed to the smaller particle size, increased ability to absorb in visible light, efficient charge separation as well as improved e{sup −} transfer associated with the effects of appropriate amount of Sn doped sample.« less

  20. Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3.

    PubMed

    Wu, Hongmin; Ma, Jinzhu; Zhang, Changbin; He, Hong

    2014-03-01

    Carbon-modified titanium dioxide (TiO2) was prepared by a sol-gel method using tetrabutyl titanate as precursor, with calcination at various temperatures, and tested for the photocatalytic oxidation (PCO) of gaseous NH3 under visible and UV light. The test results showed that no samples had visible light activity, while the TiO2 calcined at 400°C had the best UV light activity among the series of catalysts, and was even much better than the commercial catalyst P25. The catalysts were then characterized by X-ray diffractometry, Brunauer-Emmett-Teller adsorption analysis, Raman spectroscopy, thermogravimetry/differential scanning calorimetry coupled with mass spectrometry, ultraviolet-visible diffuse reflectance spectra, photoluminescence spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy. It was shown that the carbon species residuals on the catalyst surfaces induced the visible light adsorption of the samples calcined in the low temperature range (< 300°C). However, the surface acid sites played a determining role in the PCO of NH3 under visible and UV light over the series of catalysts. Although the samples calcined at low temperatures had very high SSA, good crystallinity, strong visible light absorption and also low PL emission intensity, they showed very low PCO activity due to their very low number of acid sites for NH3 adsorption and activation. The TiO2 sample calcined at 400°C contained the highest number of acid sites among the series of catalysts, therefore showing the highest performance for the PCO of NH3 under UV light. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Deng, Z. X.; Xiao, J. X.; Yang, G. W.

    2015-06-01

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  2. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    PubMed

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  3. Property Characterization and Photocatalytic Activity Evaluation of BiGdO₃ Nanoparticles under Visible Light Irradiation.

    PubMed

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-09-08

    BiGdO₃ nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO₃ was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO₃ crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO₃ was 5.465 angstrom. The band gap of BiGdO₃ was estimated to be 2.25 eV. BiGdO₃ showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO₃ was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO₃ demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min(-1) with BiGdO₃ as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO₃ particles were also discussed in detail. BiGdO₃/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment.

  4. Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3.

    PubMed

    Li, Guoqiang; Yan, Shicheng; Wang, Zhiqiang; Wang, Xiangyan; Li, Zhaosheng; Ye, Jinhua; Zou, Zhigang

    2009-10-28

    Polyhedron-shaped AgNbO3 photocatalysts were synthesized by solvothermal and liquid-solid methods. Their photocatalytic properties were evaluated from the photocatalytic O2 evolution under visible light irradiation. The polyhedron-shaped AgNbO3 was induced to grow by shaped silver particles followed by the free-growth model. The photocatalytic results indicate that the polyhedron-shaped morphology is favourable for the photocatalytic O2 evolution under visible light irradiation in comparison with the spherical one. Furthermore, the Cu doping on the surface would enhance the visible light photocatalytic activity significantly.

  5. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    PubMed

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  6. Oxalates as Activating Groups for Alcohols in Visible Light Photoredox Catalysis: Formation of Quaternary Centers by Redox-Neutral Fragment Coupling.

    PubMed

    Nawrat, Christopher C; Jamison, Christopher R; Slutskyy, Yuriy; MacMillan, David W C; Overman, Larry E

    2015-09-09

    Alkyl oxalates are new bench-stable alcohol-activating groups for radical generation under visible light photoredox conditions. Using these precursors, the first net redox-neutral coupling of tertiary and secondary alcohols with electron-deficient alkenes is achieved.

  7. Fabrication and visible-light photocatalytic activity of novel Ag/TiO2-xNx nanocatalyst

    EPA Science Inventory

    The efforts of the scientific community are directed towards the preparation of photocatalysts that are active under solar or artificial visible light irradiation. TiO2 is one of the most 15 widely used photocatalyst that is employed in self-cleaning coatings, photocatalytic proc...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yeping, E-mail: ypli@ujs.edu.cn; Huang, Liying; Xu, Jingbo

    Highlights: • Novel MoO{sub 3}–C{sub 3}N{sub 4} composite was prepared by a mixing-calcination method. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows remarkably enhanced absorption of visible light. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows superior visible-light photocatalytic activity. - Abstract: Composite photocatalyst of blue MoO{sub 3}/g-C{sub 3}N{sub 4} (denoted as MoO{sub 3}–C{sub 3}N{sub 4}) was prepared by a simple mixing-calcination method. The obtained MoO{sub 3}–C{sub 3}N{sub 4} composite contains a low amount of molybdenum blue and shows remarkably enhanced absorption of visible light and high efficiency for the degradation of methylene blue dye (MB) under visible light. Themore » enhancement of visible light photocatalytic activity in MoO{sub 3}–C{sub 3}N{sub 4} is attributed to the synergetic effect: (i) the strong and wide absorption of visible light, (ii) the high separation and easy transfer of photogenerated electron–hole pairs at the heterojunction interfaces derived from the match of band position between the g-C{sub 3}N{sub 4} and MoO{sub 3}.« less

  9. A Cu-Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor.

    PubMed

    Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro

    2018-04-17

    Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.

  10. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  11. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors

    PubMed Central

    2013-01-01

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail. PMID:24369051

  12. Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors.

    PubMed

    Zhang, Min; Yu, Xinluan; Lu, Dandan; Yang, Jianjun

    2013-12-26

    Zr/N co-doped TiO2 nanostructures were successfully synthesized using nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA precursors show significantly enhanced visible light absorption and much higher photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts of Zr/N co-doping on the morphologies, optical properties, and photocatalytic activities of the NTA precursor-based TiO2 were thoroughly investigated. The origin of the enhanced visible light photocatalytic activity is discussed in detail.

  13. Visible Light-Induced Photocatalytic and Antibacterial Activity of Li-Doped Bi0.5Na0.45K0.5TiO3-BaTiO3 Ferroelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Halder, Aditi; Jain, D.; Vaish, Rahul

    2015-11-01

    The visible light-active ferroelectric photocatalyst Bi0.5Na0.45Li0.05K0.5TiO3-BaTiO3 (BNKLBT) was synthesized by a solid-state method and its photocatalytic, photoelectrochemical, and antibacterial properties were investigated. In a chronoamperometric study the current density under visible light was 30 μA/cm2, which is three times more than that observed under dark conditions. The compound's visible light photocatalytic activity was investigated for degradation of an organic dye (methyl orange) and an estrogenic pollutant (estriol).The kinetic rate constants calculated for photocatalytic degradation of methyl orange and estriol were 0.007 and 0.056 min-1, respectively. High photocatalytic and photoelectrochemical activity was a result of effective separation of photo-generated charge carriers, because of the ferroelectric nature of the catalyst. The effect of different charge-trapping agents on photocatalytic degradation was studied to investigate the effect of active species and the degradation pathway. Antimicrobial activity was investigated for Escherichia coli and Aspergillus flavus. The anti-bacterial action of BNKLBT was compared with that of the commercial antibiotic kanamycin (k30).

  14. Visible-Light-Active Plasmonic Ag-SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity.

    PubMed

    Zhang, Qian; Huang, Yu; Xu, Lifeng; Cao, Jun-ji; Ho, Wingkei; Lee, Shun Cheng

    2016-02-17

    Harnessing inexhaustible solar energy for photocatalytic disposal of nitrogen oxides is of great significance nowadays. In this study, Ag-SrTiO3 nanocomposites (Ag-STO) were synthesized via one-pot solvothermal method for the first time. The deposition of Ag nanoparticles incurs a broad plasmonic resonance absorption in the visible light range, resulting in enhanced visible light driven activity on NO removal in comparison with pristine SrTiO3. The Ag loading amount has a significant influence on light absorption properties of Ag-STO, which further affects the photocatalytic efficiency. It was shown that 0.5% Ag loading onto SrTiO3 (in mass ratio) could remove 30% of NO in a single reaction path under visible light irradiation, which is twice higher than that achieved on pristine SrTiO3. Most importantly, the generation of harmful intermediate (NO2) is largely inhibited over SrTiO3 and Ag-STO nanocomposites, which can be ascribed to the basic surface property of strontium sites. As identified by electron spin resonance (ESR) spectra,·O2(-) and ·OH radicals are the major reactive species for NO oxidation. Essentially speaking, the abundance of reactive oxygen radicals produced over Ag-STO nanocomposites are responsible for the improved photocatalytic activity. This work provides a facile and controllable route to fabricate plasmonic Ag-SrTiO3 nanocomposite photocatalyst featuring high visible light activity and selectivity for NO abatement.

  15. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    PubMed

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises <10% of UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  16. Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol-Gel Approach

    NASA Astrophysics Data System (ADS)

    Than, Le Dien; Luong, Ngo Sy; Ngo, Vu Dinh; Tien, Nguyen Manh; Dung, Ta Ngoc; Nghia, Nguyen Manh; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-01-01

    A simple approach was explored to prepare N-doped anatase TiO2 nanoparticles (N-TiO2 NPs) from titanium chloride (TiCl4) and ammonia (NH3) via sol-gel method. The effects of important process parameters such as calcination temperatures, NH3/TiCl4 molar ratio ( R N) on crystallite size, structure, phase transformation, and photocatalytic activity of titanium dioxide (TiO2) were thoroughly investigated. The as-prepared samples were characterized by ultraviolet-visible spectroscopy, x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The photocatalytic activity of the samples was evaluated upon the degradation of methylene blue aqueous solution under visible-light irradiation. The results demonstrated that both calcination temperatures and NH3/TiCl4 molar ratios had significant impacts on the formation of crystallite nanostructures, physicochemical, as well as catalytic properties of the obtained TiO2. Under the studied conditions, calcination temperature of 600°C and NH3/TiCl4 molar ratio of 4.2 produced N-TiO2 with the best crystallinity and photocatalytic activity. The high visible light activity of the N-TiO2 nanomaterials was ascribed to the interstitial nitrogen atoms within TiO2 lattice units. These findings could provide a practical pathway capable of large-scale production of a visible light-active N-TiO2 photocatalyst.

  17. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition.

    PubMed

    Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen

    2009-03-15

    Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.

  18. Dye surface coating enables visible light activation of TiO2 nanoparticles leading to degradation of neighboring biological structures.

    PubMed

    Blatnik, Jay; Luebke, Lanette; Simonet, Stephanie; Nelson, Megan; Price, Race; Leek, Rachael; Zeng, Leyong; Wu, Aiguo; Brown, Eric

    2012-02-01

    Biologically and chemically modified nanoparticles are gaining much attention as a new tool in cancer detection and treatment. Herein, we demonstrate that an alizarin red S (ARS) dye coating on TiO2 nanoparticles enables visible light activation of the nanoparticles leading to degradation of neighboring biological structures through localized production of reactive oxygen species. Successful coating of nanoparticles with dye is demonstrated through sedimentation, spectrophotometry, and gel electrophoresis techniques. Using gel electrophoresis, we demonstrate that visible light activation of dye-TiO2 nanoparticles leads to degradation of plasmid DNA in vitro. Alterations in integrity and distribution of nuclear membrane associated proteins were detected via fluorescence confocal microscopy in HeLa cells exposed to perinuclear localized ARS-TiO2 nanoparticles that were photoactivated with visible light. This study expands upon previous studies that indicated dye coatings on TiO2 nanoparticles can serve to enhance imaging, by clearly showing that dye coatings on TiO2 nanoparticles can also enhance the photoreactivity of TiO2 nanoparticles by allowing visible light activation. The findings of our study suggest a therapeutic application of dye-coated TiO2 nanoparticles in cancer research; however, at the same time they may reveal limitations on the use of dye assisted visualization of TiO2 nanoparticles in live-cell imaging.

  19. Effect of flash lamp annealing on electrical activation in boron-implanted polycrystalline Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Woori; Jin, Won-Beom; Choi, Jungwan

    2014-10-15

    Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in themore » electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.« less

  20. Visible light active 2D C3N4-CdS hetero-junction photocatalyst for effective removal of azo dye by photodegradation

    NASA Astrophysics Data System (ADS)

    Ghosh Chaudhuri, Rajib; Chaturvedi, Ashwin; Iype, Eldhose

    2018-03-01

    A hetero-junction two dimensional photocatalyst that consists of organic semiconductor carbon nitride (C3N4) and inorganic semiconductor CdS, which acts as the light harvesting units and heterogeneous catalyst, was developed for the degradation of azo dye methyl orange (MO). Both materials are visible light active semiconductor. So the effective band gap of this heterojunction materials does not significantly change the visible light activity, but the injection of electrons from excited C3N4 to CdS increases the stability of hole-electron pair and that ultimately enhances the photocatalytic activity. This heterojunction catalyst finally can remove 97% of dyes and that is comparatively higher than individual pure materials. Finally, by using DFT analysis the band structure and the level diagrams of this photocatalyst are also analyzed.

  1. SHEDDING LIGHT ON CORALS HEALTH: INTERACTIONS OF CLIMATE CHANGE AND SOLAR RADIATION WITH BLEACHING

    EPA Science Inventory

    Coral bleaching and declines in coral reef health in recent years have been attributed in part to processes driven by UV and/or visible light. For coral assemblages, exposure to UV light is often an unavoidable consequence of having access to visible (photosynthetically active) ...

  2. Preparation, characterization and photocatalytic activity of visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaojuan, E-mail: lixiaojuan@fzu.edu.cn; Tang, Duanlian; Tang, Fan

    2014-08-15

    Highlights: • A plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst has been successfully synthesized. • Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibit high visible light photocatalytic activity. • Ag/AgBr/ZnFe{sub 2}O{sub 4} photocatalyst is stable and magnetically separable. - Abstract: A visible-light-driven plasmonic Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has been successfully synthesized via a deposition–precipitation and photoreduction through a novel one-pot process. X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy were employed to investigate the crystal structure, chemical composition, morphology, and optical properties of the as-prepared nanocomposites. The photocatalytic activities of the nanocomposites were evaluated by photodegradationmore » of Rhodamine B (RhB) and phenol under visible light. The results demonstrated that the obtained Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposites exhibited higher photocatalytic activity as compared to pure ZnFe{sub 2}O{sub 4}. In addition, the sample photoreduced for 20 min and calcined at 500 °C achieved the highest photocatalytic activity. Furthermore, the Ag/AgBr/ZnFe{sub 2}O{sub 4} nanocomposite has high stability under visible light irradiation and could be conveniently separated by using an external magnetic field.« less

  3. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO2 under visible-light

    NASA Astrophysics Data System (ADS)

    Kong, Lina; Wang, Changhua; Wan, Fangxu; Zheng, Han; Zhang, Xintong

    2017-02-01

    Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO2 under visible-light excitation. However, the performance of these co-catalysts assistant TiO2 photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO2. XPS and EPR analyses manifest that the oxygen vacancies (VOs) and Fe-species are simultaneously introduced to the surface of TiO2. The chemical state and photocatalytic activity of the Fe-species-grafted TiO2 - x is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO2, TiO2 - x, and Fe-TiO2, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface VOs and Fe-species co-catalyst, i.e. the VOs defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  4. Property Characterization and Photocatalytic Activity Evaluation of BiGdO3 Nanoparticles under Visible Light Irradiation

    PubMed Central

    Luan, Jingfei; Shen, Yue; Zhang, Lingyan; Guo, Ningbin

    2016-01-01

    BiGdO3 nanoparticles were prepared by a solid-state reaction method and applied in photocatalytic degradation of dyes in this study. BiGdO3 was characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, UV-Vis diffuse reflectance spectroscopy and transmission electron microscopy. The results showed that BiGdO3 crystallized well with the fluorite-type structure, a face-centered cubic crystal system and a space group Fm3m 225. The lattice parameter of BiGdO3 was 5.465 angstrom. The band gap of BiGdO3 was estimated to be 2.25 eV. BiGdO3 showed a strong optical absorption during the visible light region. Moreover, the photocatalytic activity of BiGdO3 was evaluated by photocatalytic degradation of direct dyes in aqueous solution under visible light irradiation. BiGdO3 demonstrated excellent photocatalytic activity in degrading Direct Orange 26 (DO-26) or Direct Red 23 (DR-23) under visible light irradiation. The photocatalytic degradation of DO-26 or DR-23 followed the first-order reaction kinetics, and the first-order rate constant was 0.0046 or 0.0023 min−1 with BiGdO3 as catalyst. The degradation intermediates of DO-26 were observed and the possible photocatalytic degradation pathway of DO-26 under visible light irradiation was provided. The effect of various operational parameters on the photocatalytic activity and the stability of BiGdO3 particles were also discussed in detail. BiGdO3/(visible light) photocatalysis system was confirmed to be suitable for textile industry wastewater treatment. PMID:27618018

  5. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

    PubMed

    Qi, Lifang; Yu, Jiaguo; Jaroniec, Mietek

    2011-05-21

    CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H(2) production from lactic acid aqueous solution under UV and visible-light (λ ≥ 420 nm) irradiation. It was shown that no photocatalytic H(2)-production activity was observed on the pure TiO(2) NSs under UV and/or visible-light irradiation. Deposition of CdS NPs on Pt/TiO(2) NSs caused significant enhancement of the UV and visible-light photocatalytic H(2)-production rates. The morphology of TiO(2) particles had also significant influence on the visible-light H(2)-production activity. Among TiO(2) NSs, P25 and the NPs studied, the CdS-sensitized Pt/TiO(2) NSs show the highest photocatalytic activity (13.9% apparent quantum efficiency obtained at 420 nm), exceeding that of CdS-sensitized Pt/P25 by 10.3% and that of Pt/NPs by 1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO(2) NSs did not show great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO(2) NSs system is stable and not photocorroded. © The Owner Societies 2011

  6. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    PubMed

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  7. From UV to Near-Infrared Light-Responsive Metal-Organic Framework Composites: Plasmon and Upconversion Enhanced Photocatalysis.

    PubMed

    Li, Dandan; Yu, Shu-Hong; Jiang, Hai-Long

    2018-05-15

    The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high-priority target yet grand challenge. In this work, for the first time, metal-organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near-infrared (NIR) region. In the core-shell structured upconversion nanoparticles (UCNPs)-Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of "bare and clean" Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g -1 h -1 ) under simulated solar light, and the involved mechanism of photocatalytic H 2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H 2 production by light harvesting in all UV, visible, and NIR regions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. CeVO4 nanofibers hybridized with g-C3N4 nanosheets with enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Li; Wang, Haoran; Wang, Xiong

    2018-01-01

    The g-C3N4/CeVO4 composites were successfully synthesized by hybridizing CeVO4 nanofibers with g-C3N4 nanosheets. The photocatalytic activity of g-C3N4/CeVO4 composites was evaluated for the photodegradation of methylene blue under visible light irradiation. Among them, the 50 wt% g-C3N4/CeVO4 composites presented the highest photocatalytic activity, about 2 and 3.2 times higher than those of CeVO4 and g-C3N4, respectively. The improved catalytic activity was owed to the hybridization, which facilitated the rapid separation of photoinduced carriers and enhanced the visible light harvesting. A possible photocatalytic mechanism was proposed.

  9. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.

    PubMed

    Wang, Dong-Hong; Wang, Lei; Xu, An-Wu

    2012-03-21

    Visible light photocatalytic H(2) production from water splitting is of great significance for its potential applications in converting solar energy into chemical energy. In this study, a series of Zn(1-x)Cd(x)S solid solutions with a nanoporous structure were successfully synthesized via a facile template-free method at room temperature. The obtained solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS) and N(2) adsorption-desorption analysis. The solid solutions show efficient photocatalytic activity for H(2) evolution from aqueous solutions containing sacrificial reagents S(2-) and SO(3)(2-) under visible-light irradiation without a Pt cocatalyst, and loading of the Pt cocatalyst further improves the visible-light photocatalytic activity. The optimal photocatalyst with x = 0.20 prepared at pH = 7.3 displays the highest activity for H(2) evolution. The bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S nanoparticles exhibit a high H(2) evolution rate of 193 μmol h(-1) and 458 μmol h(-1) under visible-light irradiation (λ ≥ 420 nm), respectively. In addition, the bare and 0.25 wt% Pt loaded Zn(0.80)Cd(0.20)S catalysts show a high H(2) evolution rate of 252 and 640 μmol h(-1) under simulated solar light irradiation, respectively. Moreover, the Zn(0.80)Cd(0.20)S catalyst displays a high photocatalytic stability for H(2) evolution under long-term light irradiation. The incorporation of Cd in the solid solution leads to the visible light absorption, and the high content of Zn in the solid solution results in a relatively negative conduction band, a modulated band gap and a rather wide valence bandwidth, which are responsible for the excellent photocatalytic performance of H(2) production and for the high photostability. This journal is © The Royal Society of Chemistry 2012

  10. Pseudo and true visible light photocatalytic activity of nanotube titanic acid/graphene composites

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Liu, Xiaogang; Xue, Xiaoxiao; Pan, Hui; Zhang, Min; Li, Qiuye; Yu, Laigui; Yang, Jianjun; Zhang, Zhijun

    2013-09-01

    Nanotube titanic acid/graphene (NTA/Gr) composites were prepared by an easy hydrothermal treatment of graphene oxide (GO) and NTA in a mixed solvent of ethanol-water. As-prepared NTA/Gr composites and GO were characterized by means of Fourier transform infrared spectrometry, X-ray diffraction, diffuse-reflection spectrometry, thermal analysis, and transmission electron microscopy. Besides, the photocatalytic activities of as-prepared NTA/Gr composites were evaluated by monitoring the degradation of methyl orange (MO) under visible light irradiation. It has been found that extending hydrothermal reaction time (24 h instead of 3 h) leads to great changes in the morphology and crystal structure of as-prepared composites. Namely, the orthorhombic NTA (ca. 10 nm in diameter) in the composite transformed to anatase TiO2 particle (ca. 20-30 nm in diameter) while the Gr sheets (with micrometers-long wrinkles) in it transformed to a few Gr fragments (ca. 50 nm in diameter). Correspondingly, the NTA/Gr composite transformed to titanium dioxide/graphene (TiO2/Gr) composite. In the meantime, pure GO only has adsorption effect but it has no photocatalytic activity in the visible light region. Nevertheless, increasing Gr ratio results in enhanced visible light absorption capability and photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites. This demonstrates that the true visible light photocatalytic activity of NTA/Gr composites as well as the TiO2/Gr composites for the degradation of MO is not as excellent as expected, and their high apparent activity is attributed to the strong adsorption of MO on the composites.

  11. Synthesis and characterization of ZnS with controlled amount of S vacancies for photocatalytic H2 production under visible light

    PubMed Central

    Wang, Gang; Huang, Baibiao; Li, Zhujie; Lou, Zaizhu; Wang, Zeyan; Dai, Ying; Whangbo, Myung-Hwan

    2015-01-01

    Controlling amount of intrinsic S vacancies was achieved in ZnS spheres which were synthesized by a hydrothermal method using Zn and S powders in concentrated NaOH solution with NaBH4 added as reducing agent. These S vacancies efficiently extend absorption spectra of ZnS to visible region. Their photocatalytic activities for H2 production under visible light were evaluated by gas chromatograph, and the midgap states of ZnS introduced by S vacancies were examined by density functional calculations. Our study reveals that the concentration of S vacancies in the ZnS samples can be controlled by varying the amount of the reducing agent NaBH4 in the synthesis, and the prepared ZnS samples exhibit photocatalytic activity for H2 production under visible-light irradiation without loading noble metal. This photocatalytic activity of ZnS increases steadily with increasing the concentration of S vacancies until the latter reaches an optimum value. Our density functional calculations show that S vacancies generate midgap defect states in ZnS, which lead to visible-light absorption and responded. PMID:25712901

  12. Visible light detoxification by 2,9,16,23-tetracarboxyl phthalocyanine copper modified amorphous titania

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Deng, Zhigang; Li, Xiaopei; Zhang, Jinlong; Zhao, Jincai

    2005-10-01

    Visible light detoxification of methyl orange (MO) was achieved with a photo-stable 2,9,16,23-tetracarboxyl phthalocyanine (TcPc)/amorphous TiO 2 hybrid photocatalyst. TcPc/amorphous TiO 2 exhibits an excellent photocatalytic activity under visible irradiation ( λ > 550 nm). Besides the active oxygen species, sensitizer radical cation, TcPc + rad , was also found to react with MO directly and induce the photodegradation of MO significantly for the first time in dye sensitized photocatalytic system.

  13. VERUCLAY – a new type of photo-adsorbent active in the visible light range: modification of montmorillonite surface with organic surfactant

    EPA Science Inventory

    Montmorillonite K10 was treated with VeruSOL-3, a biodegradable and food-grade surfactant mixture of coconut oil, castor oil and citrus extracts, to manufacture a benign catalytic adsorbent that is active in the visible light. Veruclay was characterized by SEM, XRD, TGA, UVDRS, a...

  14. Templated-synthesis of hierarchical Ag-AgBr hollow cubes with enhanced visible-light-responsive photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Kong, Chuncai; Ma, Bo; Liu, Ke; Pu, Fangzhao; Yang, Zhimao; Yang, Sen

    2018-06-01

    A facile Cu2O-templated approach is demonstrated for the synthesis of hierarchical Ag-AgBr hollow nanucubes. The structural and morphological characterizations show that the as-prepared hollow Ag-AgBr nanocubes consist of dense nanotips, which exhibited an excellent photocatalytic activity under visible light due to the strong surface plasmon resonance (SPR) of Ag nanosturctures and the synergistic effect between Ag and AgBr. The photodegradation ability was evaluated by the degradation of the methyl orange (MO) dye under visible-light irradiation, showing that more than 90% of the MO could be decomposed in 20 min.

  15. Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TIO₂ as photocatalyst.

    PubMed

    Collazzo, Gabriela Carvalho; Foletto, Edson Luiz; Jahn, Sérgio Luiz; Villetti, Marcos Antônio

    2012-05-15

    The N-doped TiO(2) photocatalyst was prepared by calcination of a hydrolysis product composed of titanium (IV) isopropoxide with ammonia as the precipitator. X-ray diffraction, surface area, XPS and UV-vis spectra analyses showed a nanosized anatase structure and the appearance of a new absorption band in the visible region caused by nitrogen doping. The degradation of Direct Black 38 dye on the nitrogen-doped TiO(2) photocatalyst was investigated under visible light and sunlight irradiation. The N-doped anatase TiO(2) demonstrated excellent photocatalytic activity under visible light. Under sunlight irradiation, the N-doped sample showed slightly higher activity than that of the non-doped sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria.

    PubMed

    Liou, Je-Wen; Chang, Hsin-Hou

    2012-08-01

    This review focuses on the antibacterial activities of visible light-responsive titanium dioxide (TiO(2)) photocatalysts. These photocatalysts have a range of applications including disinfection, air and water cleaning, deodorization, and pollution and environmental control. Titanium dioxide is a chemically stable and inert material, and can continuously exert antimicrobial effects when illuminated. The energy source could be solar light; therefore, TiO(2) photocatalysts are also useful in remote areas where electricity is insufficient. However, because of its large band gap for excitation, only biohazardous ultraviolet (UV) light irradiation can excite TiO(2), which limits its application in the living environment. To extend its application, impurity doping, through metal coating and controlled calcination, has successfully modified the substrates of TiO(2) to expand its absorption wavelengths to the visible light region. Previous studies have investigated the antibacterial abilities of visible light-responsive photocatalysts using the model bacteria Escherichia coli and human pathogens. The modified TiO(2) photocatalysts significantly reduced the numbers of surviving bacterial cells in response to visible light illumination. They also significantly reduced the activity of bacterial endospores; reducing their toxicity while retaining their germinating abilities. It is suggested that the photocatalytic killing mechanism initially damages the surfaces weak points of the bacterial cells, before totally breakage of the cell membranes. The internal bacterial components then leak from the cells through the damaged sites. Finally, the photocatalytic reaction oxidizes the cell debris. In summary, visible light-responsive TiO(2) photocatalysts are more convenient than the traditional UV light-responsive TiO(2) photocatalysts because they do not require harmful UV light irradiation to function. These photocatalysts, thus, provide a promising and feasible approach for disinfection of pathogenic bacteria; facilitating the prevention of infectious diseases.

  17. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

    PubMed Central

    2013-01-01

    Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176

  18. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity.

    PubMed

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-20

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO 3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO 3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer-Emmett-Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO 3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5-20 nm) were well distributed on the surface of the nanobelts. The UV-vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO 3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min -1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO 3 nanocomposites, the 3% (molar ratio) Au decorated AgVO 3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min -1 ) was almost two times higher than that of the pure AgVO 3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  19. Preparation of plasmonic porous Au@AgVO3 belt-like nanocomposites with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Haitao; Yang, Xiaohong; Zhang, Zhikui; Wang, Wenwen; An, Xizhong; Dong, Yu; Li, Xue

    2018-07-01

    This study reports a visible light-driven plasmonic photocatalyst of Au deposited AgVO3 nanocomposites prepared by a hydrothermal method, and further in situ modification of Au nanoparticles by a reducing agent of NaHSO3 in an aqueous solution at room temperature. Various characterization techniques, such as SEM, TEM, XRD, EDS, XPS, and Brunauer–Emmett–Teller, were used to reveal the morphology, composition, and related properties. The results show that belt-like AgVO3 nanoparticles with a width of ∼100 nm were successfully synthesized, and Au nanoparticles with controlled sizes (5–20 nm) were well distributed on the surface of the nanobelts. The UV–vis absorption spectra indicate that the decoration of Au nanoparticles can modulate the optical properties of the nanocomposites, namely, red shift occurs with the increase of Au content. The photocatalytic activities were measured by monitoring the degradation of Rhodamine B (RhB) with the presence of photocatalysts under visible light irradiation. The photodegradation results show that AgVO3 nanobelts exhibit good visible light photocatalytic activities with a degradation efficiency of 98% in 50 min and a reaction rate constant of 0.025 min‑1 towards 30 ppm RhB. With the modification of Au nanoparticles, photocatalytic activity basically increases with the molar ratio of Au to V. Among the Au@AgVO3 nanocomposites, the 3% (molar ratio) Au decorated AgVO3 nanobelts showed the highest photocatalytic activity, and the k (0.064 min‑1) was almost two times higher than that of the pure AgVO3 nanobelts. This can be attributed to several factors including specific surface areas, optical properties, and the energy band structure of the composites under visible light illumination. These findings may be useful for the practical use of visible light-driven photocatalysts with enhanced photocatalytic efficiencies for environmental remediation.

  20. Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications.

    PubMed

    Matsuo, Hiroki; Noguchi, Yuji; Miyayama, Masaru

    2017-08-08

    Photoferroelectrics offer unique opportunities to explore light energy conversion based on their polarization-driven carrier separation and above-bandgap voltages. The problem associated with the wide bandgap of ferroelectric oxides, i.e., the vanishingly small photoresponse under visible light, has been overcome partly by bandgap tuning, but the narrowing of the bandgap is, in principle, accompanied by a substantial loss of ferroelectric polarization. In this article, we report an approach, 'gap-state' engineering, to produce photoferroelectrics, in which defect states within the bandgap act as a scaffold for photogeneration. Our first-principles calculations and single-domain thin-film experiments of BiFeO 3 demonstrate that gap states half-filled with electrons can enhance not only photocurrents but also photovoltages over a broad photon-energy range that is different from intermediate bands in present semiconductor-based solar cells. Our approach opens a promising route to the material design of visible-light-active ferroelectrics without sacrificing spontaneous polarization.Overcoming the optical transparency of wide bandgap of ferroelectric oxides by narrowing its bandgap tends to result in a loss of polarization. By utilizing defect states within the bandgap, Matsuo et al. report visible-light-active ferroelectrics without sacrificing polarization.

  1. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun

    2018-04-01

    Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.

  2. Vertically oriented TiO(x)N(y) nanopillar arrays with embedded Ag nanoparticles for visible-light photocatalysis.

    PubMed

    Jiang, Weitao; Ullah, Najeeb; Divitini, Giorgio; Ducati, Caterina; Kumar, R Vasant; Ding, Yucheng; Barber, Zoe H

    2012-03-27

    We present a straightforward method to produce highly crystalline, vertically oriented TiO(x)N(y) nanopillars (up to 1 μm in length) with a band gap in the visible-light region. This process starts with reactive dc sputtering to produce a TiN porous film, followed by a simple oxidation process at elevated temperatures in oxygen or air. By controlling the oxidation conditions, the band gap of the prepared TiO(x)N(y) can be tuned to different wavelength within the range of visible light. Furthermore, in order to inhibit carrier recombination to enhance the photocatalytic activity, Ag nanoparticles have been embedded into the nanogaps between the TiO(x)N(y) pillars by photoinduced reduction of Ag(+) (aq) irradiated with visible light. Transmission electron microscopy reveals that the Ag nanoparticles with a diameter of about 10 nm are uniformly dispersed along the pillars. The prepared TiO(x)N(y) nanopillar matrix and Ag:TiO(x)N(y) network show strong photocatalytic activity under visible-light irradiation, evaluated via degradation of Rhodamine B. © 2012 American Chemical Society

  3. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.

    PubMed

    Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong

    2017-11-22

    Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.

  4. Pouous TiO2 nanofibers decorated CdS nanoparticles by SILAR method for enhanced visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Tian, Fengyu; Hou, Dongfang; Hu, Fuchao; Xie, Kui; Qiao, Xiuqing; Li, Dongsheng

    2017-01-01

    1D porous CdS nanoparticles/TiO2 nanofibers heterostructure has been fabricated via simple electrospinning and a successive ionic layer adsorption and reaction (SILAR) process. The morphology, composition, and optical properties of the resulting CdS/TiO2 heterostructures can be rationally tailored through changing the SILAR cycles. The photocatalytic hydrogen evolution and decomposition of rhodamine B (RhB) of the as-synthesized heterostructured photocatalysts were investigated under visible light irradiation. Compared to TiO2 nanofibers,the as-obtained CdS/TiO2 heterostructures exhibit enhanced photocatalytic activity for hydrogen production and decomposition of RhB under visible-light irradiation. The heterojunction system performs best with H2 generation rates of 678.61 μmol h-1 g-1 under visible light irradiation which benefits from the two effects: (a) the 1D porous nanofibrous morphology contributes to not only more active sites but also more efficient transfer of the photogenerated charges (b) the synergetic effect of heterojunction and photosensitization reducing the recombination of photogenerated electrons and holes.

  5. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity

    PubMed Central

    Peng, Fuchang; Gao, Honglin; Zhang, Genlin; Zhu, Zhongqi; Zhang, Jin; Liu, Qingju

    2017-01-01

    Mixed phase TiO2 nanoparticles with element doping by Sm and C were prepared via a facile sol-gel procedure. The UV-Vis light-diffuse reflectance spectroscopy analysis showed that the absorption region of co-doped TiO2 was shifted to the visible-light region, which was attributed to incorporation of samarium and carbon into the TiO2 lattice during high-temperature reaction. Samarium effectively decreased the anatase-rutile phase transformation. The grain size can be controlled by Sm doping to achieve a large specific surface area useful for the enhancement of photocatalytic activity. The photocatalytic activities under visible light irradiation were evaluated by photocatalytic degradation of methylene blue (MB). The degradation rate of MB over the Sm-C co-doped TiO2 sample was the best. Additionally, first-order apparent rate constants increased by about 4.3 times compared to that of commercial Degusssa P25 under the same experimental conditions. Using different types of scavengers, the results indicated that the electrons, holes, and •OH radicals are the main active species for the MB degradation. The high visible-light photocatalytic activity was attributed to low recombination of the photo-generated electrons and holes which originated from the synergistic effect of the co-doped ions and the heterostructure. PMID:28772569

  7. Visible-light sensitization of vinyl azides by transition-metal photocatalysis.

    PubMed

    Farney, Elliot P; Yoon, Tehshik P

    2014-01-13

    Irradiation of vinyl and aryl azides with visible light in the presence of Ru photocatalysts results in the formation of reactive nitrenes, which can undergo a variety of C-N bond-forming reactions. The ability to use low-energy visible light instead of UV in the photochemical activation of azides avoids competitive photodecomposition processes that have long been a significant limitation on the synthetic use of these reactions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rational Design of Zirconium-doped Titania Photocatalysts with Synergistic Brønsted Acidity and Photoactivity.

    PubMed

    Ma, Runyuan; Wang, Liang; Zhang, Bingsen; Yi, Xianfeng; Zheng, Anmin; Deng, Feng; Yan, Xuhua; Pan, Shuxiang; Wei, Xiao; Wang, Kai-Xue; Su, Dang Sheng; Xiao, Feng-Shou

    2016-10-06

    The preparation of photocatalysts with high activities under visible-light illumination is challenging. We report the rational design and construction of a zirconium-doped anatase catalyst (S-Zr-TiO 2 ) with Brønsted acidity and photoactivity as an efficient catalyst for the degradation of phenol under visible light. Electron microscopy images demonstrate that the zirconium sites are uniformly distributed on the sub-10 nm anatase crystals. UV-visible spectrometry indicates that the S-Zr-TiO 2 is a visible-light-responsive catalyst with narrower band gap than conventional anatase. Pyridine-adsorption infrared and acetone-adsorption 13 C NMR spectra confirm the presence of Brønsted acidic sites on the S-Zr-TiO 2 sample. Interestingly, the S-Zr-TiO 2 catalyst exhibits high catalytic activity in the degradation of phenol under visible-light illumination, owing to a synergistic effect of the Brønsted acidity and photoactivity. Importantly, the S-Zr-TiO 2 shows good recyclability. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Visible-light-driven Bi 2 O 3 /WO 3 composites with enhanced photocatalytic activity

    DOE PAGES

    Adhikari, Shiba P.; Dean, Hunter; Hood, Zachary D.; ...

    2015-10-19

    Semiconductor heterojunctions (composites) have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from electron–hole recombination and narrow photo-response range. We prepared a novel visible-light-driven Bi 2O 3/WO 3 composite photocatalyst by hydrothermal synthesis. The composite was characterized by scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and electrochemical impedance spectroscopy (EIS) to better understand the structures, compositions, morphologies and optical properties. Bi 2O 3/WO 3 heterojunction was found to exhibit significantly higher photocatalyticmore » activity towards the decomposition of Rhodamine B (RhB) and 4-nitroaniline (4-NA) under visible light irradiation compared to that of Bi 2O 3 and WO 3. A tentative mechanism for the enhanced photocatalytic activity of the heterostructured composite is discussed based on observed activity, band position calculations, photoluminescence, and electrochemical impedance data. Our study provides a new strategy for the design of composite materials with enhanced visible light photocatalytic performance.« less

  10. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    PubMed

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV-vis light.

  11. Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Razi, P.; Hoseinifard, S.; Jabbari, V.

    2013-11-01

    In order to search for an efficient photocatalysts working under visible light illumination, we have investigated the effect of metal and nonmetal ions (In, S) codoping on the photocatalytic activity of TiO2 nanoparticles (TiO2 NPs) prepared by combining of sol-gel (SG) and photodeposition (PD) methods using titanium tetra isopropoxide (TTIP), indium nitrate (In(NO3)3) and thiourea as precursors. In this regard, at first three different percentage of S (0.05, 0.2 and 0.5) doped into the TiO2 by SG method, and then different amount of In(III) loaded on the surface of the prepared samples by PD technique. The results showed that the In, S-codoped TiO2 (In, S-TiO2) with a spheroidal shape demonstrates a smaller grain size than the pure TiO2. Meanwhile, the UV-vis DRS of In, S-TiO2 showed a considerable red shift to the visible region. Finally, the photocatalytic activity of In, S-TiO2 photocatalysts were evaluated by photooxidative degradation of methyl orange (MO) solution under UV and visible light illumination. As a result, it was found that 0.05%S-0.5%In/TiO2, 0.2%S-1.5%In/TiO2 and 0.5%S-0.5%In/TiO2 had the highest catalytic activity under visible light in each group and among these samples 0.2%S-1.5%In/TiO2 showed the best photocatalytic performance under visible light and decomposes more than 95% MO in only 90 min.

  12. Conducting polymer nanostructures for photocatalysis under visible light

    NASA Astrophysics Data System (ADS)

    Ghosh, Srabanti; Kouamé, Natalie A.; Ramos, Laurence; Remita, Samy; Dazzi, Alexandre; Deniset-Besseau, Ariane; Beaunier, Patricia; Goubard, Fabrice; Aubert, Pierre-Henri; Remita, Hynd

    2015-05-01

    Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

  13. Visible light-induced degradation of acetone over SO42-/MoOx/MgF2 catalysts.

    PubMed

    He, Yiming; Sheng, Tianlu; Wu, Ying; Chen, Jianshan; Fu, Ruibiao; Hu, Shengming; Wu, Xintao

    2009-08-30

    A visible light active photodegration catalyst was prepared by doping MoO(3) into MgF(2) matrix. The addition of SO(4)(2-) into MoO(x)/MgF(2) could improve the catalytic activity greatly and an acetone conversion of 96.1% under visible light was obtained on the SO(4)(2-)/5%MoO(x)/MgF(2) (SMM) catalyst. By BET, XRD, Raman, FT-IR, XPS, UV-vis technology the specific area, structure and photoadsorption ability of the catalysts were characterized. The high photocatlaytic activity of the SMM catalyst is attributed to its large specific area, the high dispersal of MoO(3) domains in MgF(2) and the inhibiting effect of MgF(2) matrix on the electron-hole pair recombination.

  14. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  15. Dispersed-nanoparticle loading synthesis for monodisperse Au-titania composite particles and their crystallization for highly active UV and visible photocatalysts.

    PubMed

    Sakamoto, Takeshi; Nagao, Daisuke; Noba, Masahiro; Ishii, Haruyuki; Konno, Mikio

    2014-06-24

    Submicrometer-sized amorphous titania spheres incorporating Au nanoparticles (NPs) were prepared in a one-pot synthesis consisting of a sol-gel reaction of titanium(IV) isopropoxide in the presence of chloroauric acid and a successive reduction with sodium borohydride in a mixed solvent of ethanol/acetonitrile. The synthesis was allowed to prepare monodisperse titania spheres that homogeneously incorporated Au NPs with sizes of ca. 7 nm. The Au NP-loaded titania spheres underwent different crystallization processes, including 500 °C calcination in air, high-temperature hydrothermal treatment (HHT), and/or low-temperature hydrothermal treatment (LHT). Photocatalytic experiments were conducted with the Au NP-loaded crystalline titania spheres under irradiation of UV and visible light. A combined process of LHT at 80 °C followed by calcination at 500 °C could effectively crystallize titania spheres maintaining the dispersion state of Au NPs, which led to photocatalytic activity higher than that of commercial P25 under UV irradiation. Under visible light irradiation, the Au NP-titania spheres prepared with a crystallization process of LHT at 80 °C for 6 h showed photocatalytic activity much higher than a commercial product of visible light photocatalyst. Structure analysis of the visible light photocatalysts indicates the importance of prevention of the Au NPs aggregation in the crystallization processes for enhancement of photocatalytic activity.

  16. Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.

    2014-12-01

    A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.

  17. CdS nanoparticles/CeO2 nanorods composite with high-efficiency visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    You, Daotong; Pan, Bao; Jiang, Fan; Zhou, Yangen; Su, Wenyue

    2016-02-01

    Different mole ratios of CdS nanoparticles (NPs)/CeO2 nanorods (NRs) composites with effective contacts were synthesized through a two-step hydrothermal method. The crystal phase, microstructure, optical absorption properties, electrochemical properties and photocatalytic H2 production activity of these composites were investigated. It was concluded that the photogenerated charge carriers in the CdS NPs/CeO2 NRs composite with a proper mole ratio (1:1) exhibited the longest lifetime and highest separation efficiency, which was responsible for the highest H2-production rate of 8.4 mmol h-1 g-1 under visible-light irradiation (λ > 420 nm). The superior photocatalytic H2 evolution properties are attributed to the transfer of visible-excited electrons of CdS NPs to CeO2 NRs, which can effectively extend the light absorption range of wide-band gap CeO2 NRs. This work provides feasible routes to develop visible-light responsive CeO2-based nanomaterial for efficient solar utilization.

  18. Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity.

    PubMed

    Singh, Mandeep; Jampaiah, Deshetti; Kandjani, Ahmad E; Sabri, Ylias M; Della Gaspera, Enrico; Reineck, Philipp; Judd, Martyna; Langley, Julien; Cox, Nicholas; van Embden, Joel; Mayes, Edwin L H; Gibson, Brant C; Bhargava, Suresh K; Ramanathan, Rajesh; Bansal, Vipul

    2018-03-29

    Oxygen vacancies in inorganic semiconductors play an important role in reducing electron-hole recombination, which may have important implications in photocatalysis. Cuprous oxide (Cu2O), a visible light active p-type semiconductor, is a promising photocatalyst. However, the synthesis of photostable Cu2O enriched with oxygen defects remains a challenge. We report a simple method for the gram-scale synthesis of highly photostable Cu2O nanoparticles by the hydrolysis of a Cu(i)-triethylamine [Cu(i)-TEA] complex at low temperature. The oxygen vacancies in these Cu2O nanoparticles led to a significant increase in the lifetimes of photogenerated charge carriers upon excitation with visible light. This, in combination with a suitable energy band structure, allowed Cu2O nanoparticles to exhibit outstanding photoactivity in visible light through the generation of electron-mediated hydroxyl (OH˙) radicals. This study highlights the significance of oxygen defects in enhancing the photocatalytic performance of promising semiconductor photocatalysts.

  19. Hierarchical assembly of AgCl@Sn-TiO2 microspheres with enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Ganeshraja, Ayyakannu Sundaram; Zhu, Kaixin; Nomura, Kiyoshi; Wang, Junhu

    2018-05-01

    The hierarchical silver chloride loaded tin-doped titania (AgCl@Sn-TiO2) microspheres were first time prepared by a hydrothermal method and annealing at different temperatures. The catalyst showed the enhanced visible light photocatalytic activity as compared to the plasmonic photocatalysts of AgCl and Ag/AgCl, and commercial Degussa P25 (TiO2). The improved efficiency is considered to local surface plasmonic resonance (AgCl could reduce to Ag0 during photocatalytic reaction) in enhanced broad band visible light absorption in addition to the characteristics of heterojunction between Sn-TiO2 and AgCl NPs. Moreover, the surface and bulk properties of as-synthesized samples were analyzed by 119Sn Mössbauer spectroscopy. The magnetic property of the bulk was studied as a function of magnetic field with different temperatures. These results signify the clear details of the magnetic and visible light photocatalytic activities of hierarchical AgCl@Sn-TiO2 microspheres.

  20. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N.

    PubMed

    Hoang, Son; Berglund, Sean P; Hahn, Nathan T; Bard, Allen J; Mullins, C Buddie

    2012-02-29

    We report a synergistic effect involving hydrogenation and nitridation cotreatment of TiO(2) nanowire (NW) arrays that improves the water photo-oxidation performance under visible light illumination. The visible light (>420 nm) photocurrent of the cotreated TiO(2) is 0.16 mA/cm(2) and accounts for 41% of the total photocurrent under simulated AM 1.5 G illumination. Electron paramagnetic resonance (EPR) spectroscopy reveals that the concentration of Ti(3+) species in the bulk of the TiO(2) following hydrogenation and nitridation cotreatment is significantly higher than that of the sample treated solely with ammonia. It is believed that the interaction between the N-dopant and Ti(3+) is the key to the extension of the active spectrum and the superior visible light water photo-oxidation activity of the hydrogenation and nitridation cotreated TiO(2) NW arrays. © 2012 American Chemical Society

  1. Novel solar light driven photocatalyst, zinc indium vanadate for photodegradation of aqueous phenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahapure, Sonali A.; Rane, Vilas H.; Ambekar, Jalindar D.

    2011-05-15

    Graphical abstract: Novel photocatalyst, zinc indium vanadate (ZnIn{sub 2}V{sub 2}O{sub 9}) demonstrated and showed an excellent photocatalytic activity for phenol degradation under visible light. Research highlights: {yields} Designing and identification of a photocatalyst having prospective potential application to be used in visible light (400-800 nm). {yields} Successful synthesis of novel ZnIn{sub 2}V{sub 2}O{sub 9} by solid state route. {yields} Confirmation of the designed product using characterization techniques. {yields} Application study comprising photodegradation of aqueous phenol at visible light despite of UV radiations. -- Abstract: In the present investigation, we have demonstrated the synthesis of novel photocatalyst, zinc indium vanadate (ZIV)more » by solid-solid state route using respective oxides of zinc, indium and vanadium. This novel photocatalyst was characterized using XRD, FESEM, UV-DRS and FTIR in order to investigate its structural, morphological and optical properties. XRD clearly shows the formation of phase pure ZIV of triclinic crystal structure with good crystallinity. FESEM micrographs showed the clustered morphology having particle size between 0.5 and 1 {mu}m. Since, optical study showed the band gap around 2.8 eV, i.e. in visible region, we have performed the photocatalytic activity of phenol degradation under visible light irradiation. The photodecomposition of phenol by ZIV is studied for the first time and an excellent photocatalytic activity was obtained using this novel photocatalyst. Considering the band gap of zinc indium vanadate in visible region, it will also be the potential candidate for water splitting.« less

  2. Visible light-induced photocatalytic degradation of Reactive Blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis.

    PubMed

    Kalikeri, Shankramma; Kamath, Nidhi; Gadgil, Dhanashri Jayant; Shetty Kodialbail, Vidya

    2018-02-01

    Polyaniline-TiO 2 (PANI-TiO 2 ) nanocomposite was prepared by in situ polymerisation method. X-ray diffractogram (XRD) showed the formation of PANI-TiO 2 nanocomposite with the average crystallite size of 46 nm containing anatase TiO 2 . The PANI-TiO 2 nanocomposite consisted of short-chained fibrous structure of PANI with spherical TiO 2 nanoparticles dispersed at the tips and edge of the fibres. The average hydrodynamic diameter of the nanocomposite was 99.5 nm. The band gap energy was 2.1 eV which showed its ability to absorb light in the visible range. The nanocomposite exhibited better visible light-mediated photocatalytic activity than TiO 2 (Degussa P25) in terms of degradation of Reactive Blue (RB-19) dye. The photocatalysis was favoured under initial acidic pH, and complete degradation of 50 mg/L dye could be achieved at optimum catalyst loading of 1 g/L. The kinetics of degradation followed the Langmuir-Hinshelhood model. PANI-TiO 2 nanocomposite showed almost similar photocatalytic activity under UV and visible light as well as in the solar light which comprises of radiation in both UV and visible light range. Chemical oxygen demand removal of 86% could also be achieved under visible light, confirming that simultaneous mineralization of the dye occurred during photocatalysis. PANI-TiO 2 nanocomposites are promising photocatalysts for the treatment of industrial wastewater containing RB-19 dye.

  3. Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity.

    PubMed

    Zhao, Haixin; Cui, Shu; Yang, Lan; Li, Guodong; Li, Nan; Li, Xiaotian

    2018-02-15

    Photocatalysts with a hierarchically porous structure have attracted considerable attention owing to their wide pore size distribution and high surface area, which enhance the efficiency of transporting species to active sites. In this study, hierarchically meso-macroporous TiO 2 photocatalysts decorated with highly dispersed CdS nanoparticles were synthesized via hydrolysis, followed by a hydrothermal treatment. The textural mesopores and interconnected pore framework provided more accessible active sites and efficient mass transport for the photocatalytic process. The light collection efficiency was enhanced because of multiple scattering of incident light in the macropores. Moreover, the formation of a heterojunction between the CdS and TiO 2 nanoparticles extended the photoresponse of TiO 2 to the visible-light range and enhanced the charge separation efficiency. Therefore, the hierarchically meso-macroporous TiO 2 /CdS photocatalysts exhibited excellent photocatalytic activity for the degradation of rhodaming B under visible-light irradiation. Trapping experiments demonstrated that superoxide radicals (O 2 - ) and hydroxyl radicals (OH) were the main active species in photocatalysis. A reasonable photocatalytic mechanism of TiO 2 /CdS heterojunction photocatalysts was also presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Visible Light Assisted Photocatalytic Hydrogen Generation by Ta 2O 5/Bi 2O 3, TaON/Bi 2O 3, and Ta 3N 5/Bi 2O 3 Composites

    DOE PAGES

    Adhikari, Shiba; Hood, Zachary D.; More, Karren Leslie; ...

    2015-06-15

    Composites comprised of two semiconducting materials with suitable band gaps and band positions have been reported to be effective at enhancing photocatalytic activity in the visible light region of the electromagnetic spectrum. Here, we report the synthesis, complete structural and physical characterizations, and photocatalytic performance of a series of semiconducting oxide composites. UV light active tantalum oxide (Ta2O5) and visible light active tantalum oxynitride (TaON) and tantalum nitride (Ta 3N 5) were synthesized, and their composites with Bi 2O 3 were prepared in situ using benzyl alcohol as solvent. The composite prepared using equimolar amounts of Bi 2O 3 andmore » Ta 2O 5 leads to the formation of the ternary oxide, bismuth tantalate (BiTaO 4) upon calcination at 1000 °C. The composites and single phase bismuth tantalate formed were characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) surface area measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy, and photoluminescence. The photocatalytic activities of the catalysts were evaluated for generation of hydrogen using aqueous methanol solution under visible light irradiation (λ ≥ 420 nm). The results show that as-prepared composite photocatalysts extend the light absorption range and restrict photogenerated charge-carrier recombination, resulting in enhanced photocatalytic activity compared to individual phases. The mechanism for the enhanced photocatalytic activity for the heterostructured composites is elucidated based on observed activity, band positions calculations, and photoluminescence data.« less

  5. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance

    NASA Astrophysics Data System (ADS)

    Yu, Jiaguo; Yang, Bin; Cheng, Bei

    2012-03-01

    Visible light photocatalytic H2 production from water splitting using solar light is of great importance from the viewpoint of solar energy conversion and storage. In this study, a novel visible-light-driven photocatalyst multiwalled carbon nanotube modified Cd0.1Zn0.9S solid solution (CNT/Cd0.1Zn0.9S) was prepared by a simple hydrothermal method. The prepared samples exhibited enhanced photocatalytic H2-production activity under visible light. CNT content had a great influence on photocatalytic activity and an optimum amount of CNT was determined to be ca. 0.25 wt%, at which the CNT/Cd0.1Zn0.9S displayed the highest photocatalytic activity under visible light, giving an H2-production rate of 78.2 μmol h-1 with an apparent quantum efficiency (QE) of 7.9% at 420 nm, even without any noble metal cocatalysts, exceeding that of pure Cd0.1Zn0.9S by more than 3.3 times. The enhanced photocatalytic activity was due to CNT as an excellent electron acceptor and transporter, thus reducing the recombination of charge carriers and enhancing the photocatalytic activity. Furthermore, the prepared sample was photostable and no photocorrosion was observed after photocatalytic recycling. Our findings demonstrated that CNT/Cd0.1Zn0.9S composites were a promising candidate for the development of high-performance photocatalysts in photocatalytic H2 production. This work not only shows a possibility for the utilization of low cost CNT as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also for the first time shows a significant enhancement in the H2-production activity by using metal-free carbon materials as effective co-catalysts.

  6. Photoactivation of imatinib-antibody conjugate using low-energy visible light from Ru(ii)-polypyridyl cages.

    PubMed

    Rohrabaugh, Thomas N; Rohrabaugh, Ashley M; Kodanko, Jeremy J; White, Jessica K; Turro, Claudia

    2018-05-17

    Ru(ii)-polypyridyl cages with sterically bulky bidentate ligands provide efficient photochemical release of the anticancer drug imatinib using low energy visible light, imparting spatiotemporal control over drug bioavailability. The light-activated drug release is maintained when the Ru(ii) cage is covalently coupled to an antibody, which is expected to localize selectively on the tumor.

  7. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity.

    PubMed

    Yu, Jiaguo; Qi, Lifang

    2009-09-30

    Hierarchically flower-like tungsten trioxide assemblies were fabricated on a large scale by a simple hydrothermal treatment of sodium tungstate in aqueous solution of nitric acid. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and N(2) adsorption-desorption measurements. The photocatalytic activity was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that the three-dimensional tungsten trioxide assemblies were constructed from two-dimensional layers, which were further composed of a large number of interconnected lathy nanoplates with different sizes. Such flower-like assemblies exhibited hierarchically porous structure and higher visible-light photocatalytic activity than the samples without such hierarchical structures due to their specific hierarchical pores that served as the transport paths for light and reactants. After five recycles for the photodegradation of RhB, the catalyst did not exhibit any great loss in activity, confirming hierarchically flower-like tungsten trioxide was stability and not photocorroded. This study may provide new insight into environmentally benign preparation and design of novel photocatalytic materials and enhancement of photocatalytic activity.

  8. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zhong, Liansheng; Hu, Chaohao; Zhuang, Jing; Zhong, Yan; Wang, Dianhui; Zhou, Huaiying

    2018-06-01

    AgBr/MgBi2O6 heterostructured photocatalysts were synthesized by the deposition-precipitation method. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and UV-Visible diffuse reflectance spectroscopy (UV-Vis DRS) were employed to examine the phase structure, morphology and optical properties of the as-prepared samples. The photocatalytic activity was investigated by decomposing methylene blue (MB) solution under visible light irradiation (λ > 420 nm). AgBr/MgBi2O6 composites exhibited significantly enhanced visible-light-driven photocatalytic properties in comparison with pure MgBi2O6 and AgBr. When the molar ratio of AgBr to MgBi2O6 was 3:1, the composite catalyst showed the optimal photocatalytic activity and excellent stability. The enhanced photocatalytic activity of AgBr/MgBi2O6 composites was attributed to the formation of p-n heterojunction between AgBr and MgBi2O6, thereby resulting in the effective separation and transfer of photogenerated electrons-hole pairs.

  9. Effect of SiO2 addition on photocatalytic activity, water contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method

    NASA Astrophysics Data System (ADS)

    Momeni, Mansour; Saghafian, Hasan; Golestani-Fard, Farhad; Barati, Nastaran; Khanahmadi, Amirhossein

    2017-01-01

    Nanostructured N doped TiO2/20%SiO2 thin films were developed on steel surface via sol gel method using a painting airbrush. Thin films then were calcined at various temperatures in a range of 400-600 °C. The effect of SiO2 addition on phase composition and microstructural evolution of N doped TiO2 films were studied using XRD and FESEM. Optical properties, visible light photocatalytic activity, hydrophilic behavior, and mechanical behavior of the films were also investigated by DRS, methylene blue degradation, water contact angle measurements, and nanoscratch testing. Results indicated that the band gap energy of N doped TiO2/SiO2 was increased from 2.93 to 3.09 eV. Crack formation during calcination was also significantly promoted in the composite films. All composite films demonstrated weaker visible light photocatalytic activities and lower mechanical stability in comparison with N doped TiO2 films. Moreover, the N doped TiO2/SiO2 film calcined at 600 °C showed undesirable hydrophilic behavior with a water contact angle of 57° after 31 h of visible light irradiation. Outcomes of the present study reveal some different results to previous reports on TiO2/SiO2 films. In general, we believe the differences in substrate material as well as application in visible light are the main reasons for the above mentioned contradiction.

  10. Visible-light-driven photocatalytic activation of peroxymonosulfate by Cu2(OH)PO4 for effective decontamination.

    PubMed

    Liu, Guoshuai; Zhou, Yanan; Teng, Jie; Zhang, Jinna; You, Shijie

    2018-06-01

    The advanced oxidation process (AOP) based on SO 4 - radicals draws an increasing interest in water and wastewater treatment. Producing SO 4 - radicals from the activation of peroxymonosulfate (PMS) by transition metal ions or oxides may be problematic due to high operational cost and potential secondary pollution caused by metal leaching. To address this challenge, the present study reports the efficient production of SO 4 - radicals through visible-light-driven photocatalytic activation (VL-PCA) of PMS by using Cu 2 (OH)PO 4 single crystal for enhanced degradation of a typical recalcitrant organic pollutant, i.e., 2,4-dichlorophenol (2,4-DCP). It took only 7 min to achieve almost 100% removal of 2,4-DCP in the Cu 2 (OH)PO 4 /PMS system under visible-light irradiation and pH-neutral condition. The 2,4-DCP degradation was positively correlated to the amount of Cu 2 (OH)PO 4 and PMS. Both OH and SO 4 - radicals were responsible for enhanced degradation performance, indicated by radical scavenger experiments and electron spin resonance (ESR) measurements. The Cu 2 (OH)PO 4 single crystal exhibited good cyclic stability and negligible metal leaching. According to density functional theory (DFT) calculations, the visible-light-driven transformation of two copper states between trigonal bipyramidal sites and octahedral sites in the crystal structure of Cu 2 (OH)PO 4 facilitates the generation of OH and SO 4 - radicals from the activation of PMS and cleavage of O-O bonds. This study provides the proof-in-concept demonstration of activation of PMS driven by visible light, making the SO 4 - radicals-based AOPs much easier, more economical and more sustainable in engineering applications for water and wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Metal-free g-C{sub 3}N{sub 4} photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ligang; University of Chinese Academy of Sciences, Beijing 100049; Liu, Di

    2014-11-15

    Highlights: • A novel visible-light-driven acid-modified g-C{sub 3}N{sub 4} was prepared. • The texture, electronic and surface property were tuned by acid modification. • Acid-modified g-C{sub 3}N{sub 4} shows much higher activity for photocatalytic activity. • Acid sites on the surface of g-C{sub 3}N{sub 4} favor efficient charge separation. - Abstract: In this work, modification of graphitic carbon nitride photocatalyst with acid was accomplished with a facile method through reflux in different acidic substances. The g-C{sub 3}N{sub 4}-based material was found to be a metal-free photocatalyst useful for the selective oxidation of benzyl alcohol with dioxygen as the oxidant undermore » visible light irradiation. Acid modification had a significant influence on the photocatalytic performance of g-C{sub 3}N{sub 4}. Among all acid tested, sulfuric acid-modified g-C{sub 3}N{sub 4} showed the highest catalytic activity and gave benzaldehyde in 23% yield for 4 h under visible light irradiation, which was about 2.5 times higher than that of g-C{sub 3}N{sub 4}. The acid modification effectively improved surface area, reduced structural size, enlarged band gap, enhanced surface chemical state, and facilitated photoinduced charge separation, contributing to the enhanced photocatalytic activity. It is hoped that our work can open promising prospects for the utilization of metal free g-C{sub 3}N{sub 4}-based semiconductor as visible-light photocatalyst for selective organic transformation.« less

  12. Electronic, optical and photocatalytic behavior of Mn, N doped and co-doped TiO{sub 2}: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ya Fei; Li, Can, E-mail: canli1983@gmail.com; Lu, Song

    2016-03-15

    The crystal phase structure, surface morphology, chemical states and optical properties of Mn, N mono-doped and co-doped TiO{sub 2} nanoparticles were investigated by X-ray powder diffractometry, Raman spectra, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectroscopy. Meanwhile, geometry structures, formation energies, electronic and optical properties of all systems have been also analyzed by density functional theory. The results showed that the band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and themore » carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light. Especially, the photocatalytic activity of Mn-2N co-doped TiO{sub 2} beyond three-fold than that of pure TiO{sub 2} under visible-light. - Graphical abstract: The ILs formed by N-2p orbital in N single doped specimen lie above the VB, while the ILs formed by Mn-3d orbital in Mn single doped specimen appear below the CB. However, a large amount of ILs formed by N-2p orbital and Mn-3d orbital in N and Mn codoped specimens. The band gap values and the carrier mobility in the valence band, conduction band and impurity levels have a synergetic influence on the visible-light absorption and photocatalytic activity of the doped TiO{sub 2}. The number and the carrier mobility of impurity level jointly influence the photocatalytic activity of catalyst under visible-light.« less

  13. Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: effects of catalyst structure.

    PubMed

    Ji, Sang Min; Borse, Pramod H; Kim, Hyun Gyu; Hwang, Dong Won; Jang, Jum Suk; Bae, Sang Won; Lee, Jae Sung

    2005-03-21

    Nitrogen-doped perovskite type materials, Sr2Nb2O7-xNx (0, 1.5 < x < 2.8), have been studied as visible light-active photocatalysts for hydrogen production from methanol-water mixtures. Nitrogen doping in Sr2Nb2O7 red-shifted the light absorption edge into the visible light range and induced visible light photocatalytic activity. There existed an optimum amount of nitrogen doping that showed the maximum rate of hydrogen production. Among the potential variables that might cause this activity variation, the crystal structure appeared to be the most important. Thus, as the extent of N-doping increased, the original orthorhombic structure of the layered perovskite was transformed into an unlayered cubic oxynitride structure. The most active catalytic phase was an intermediate phase still maintaining the original layered perovskite structure, but with a part of its oxygen replaced by nitrogen and oxygen vacancy to adjust the charge difference between oxygen and doped nitrogen. These experimental observations were explained by density functional theory calculations. Thus, in Sr2Nb2O7-xNx, N2p orbital was the main contributor to the top of the valence band, causing band gap narrowing while the bottom of conduction band due to Nb 4d orbital remained almost unchanged.

  14. Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation.

    PubMed

    Peiris, Sunari; Sarina, Sarina; Han, Chenhui; Xiao, Qi; Zhu, Huai-Yong

    2017-08-15

    Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO 2 and Al 2 O 3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO 2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.

  15. Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.

    PubMed

    Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang

    2015-04-14

    In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.

  16. Fabrication of PAN@TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Shi, Yongzheng; Yang, Dongzhi; Li, Yuan; Qu, Jin; Yu, Zhong-Zhen

    2017-12-01

    Although TiO2-based photocatalysts have exhibited a great potential for degradation of organic pollutants, it is still necessary to simultaneously enhance their visible-light-driven photocatalytic efficiency and physical recyclability. Herein, highly efficient, visible-light-driven photocatalytically active, and recyclable nanofibrous membranes with thin TiO2/Ag heterojunction layer are prepared using electrospun polyacrylonitrile (PAN) nanofibrous membrane as the substrate. By regulating the concentration and hydrolysis process of Ti precursors, TiO2 nanoparticles steadily grow on the PAN nanofibers with high-specific surface area to form a continuous mesoporous shell with the thickness of 20 nm for efficient degradation of organic pollutants. Furthermore, to form a stable heterojunction structure, Ag nanoparticles are deposited on the TiO2 surface by using dopamine as a binder and reductant. The presence of Ag nanoparticles leads to an obvious red-shift from 380 nm to 490 nm, which improves the utilization efficiency of visible light, and reduces the electron/hole recombination rate simultaneously. The resulting PAN@TiO2/Ag membranes hold enhanced photocatalytic activity for methylene blue degradation within 1 h under visible light irradiation, and satisfactory recyclability, which endow them with a great potential for adsorption and photocatalytic applications.

  17. Physicochemcial characteristic of CdS-anchored porous WS2 hybrid in the photocatalytic degradation of crystal violet under UV and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Ngo, Ich-Long; Byon, Chan

    2016-11-01

    In this work, we report the synthesis of CdS-incorporated porous WS2 by a simple hydrothermal method. The structural, morphological, and optical properties of the samples were examined by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), high resolution X-ray photoelectron spectroscopy (XPS) and UV-visible spectrometry. The photocatalytic activities were established for degradation of crystal violet (CV) under UV and visible light irradiation. The CdS-incorporated porous WS2 hybrid demonstrated high photocatalytic activity for degradation of CV pollutant compared to pure CdS nanoparticles and porous WS2 sheets. This result implies that the CdS-incorporated porous WS2 promoted more electron-hole pair transformation under UV and visible light irradiation. This significant enhancement of photocatalytic efficiency of CdS-incorporated porous WS2 photocatalyst under visible light can be ascribed to the presence of CdS nanospheres on the meshed-like WS2 sheets which potentially improves absorption in the visible range enabled by surface plasmon resonance effect of CdS nanospheres. The photostability and reusability of the CdS-porous WS2 were examined through recycling experiments.

  18. Crystallization-mediated amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions with visible light enhanced and ultraviolet light restrained photocatalytic dye degradation performance

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Cai, Yun; Zhou, Jian; Fang, Jun; Yang, Yang

    2017-04-01

    We report simple and cost-effective fabrication of amorphous CuxO (x = 1, 2)/crystalline CuI p-p type heterojunctions based on crystallization-mediated approaches including antisolvent crystallization and crystal reconstruction. Starting from CuI acetonitrile solution, large crystals in commercial CuI can be easily converted to aggregates consisting of small particles by the crystallization processes while the spontaneous oxidation of CuI by atmospheric/dissolved oxygen can induce the formation of trace CuxO on CuI surface. As a proof of concept, the as-fabricated CuxO/CuI heterojunctions exhibit effective photocatalytic activity towards the degradation of methyl blue and other organic pollutants under visible light irradiation, although the wide band-gap semiconductor CuI is insensible to visible light. Unexpectedly, the CuxO/CuI heterojunctions exhibit restrained photocatalytic activity when ultraviolet light is applied in addition to the visible. It is suggested that the CuxO/CuI interface can enhance the spatial separation of the electron-hole pairs with the excitation of CuxO under visible light and prolong the lifetime of photogenerated charges with high redox ability. The present work represents a critically important step in advancing the crystallization technique for potential mass production of semiconductor heterojunctions in a mild manner.

  19. Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO₂ Nanospheres and Sn₃O₄ Nanoparticles.

    PubMed

    Hu, Jianling; Tu, Jianhai; Li, Xingyang; Wang, Ziya; Li, Yan; Li, Quanshui; Wang, Fengping

    2017-10-19

    Novel TiO₂/Sn₃O₄ heterostructure photocatalysts were ingeniously synthesized via a scalable two-step method. The impressive photocatalytic abilities of the TiO₂/Sn₃O₄ sphere nanocomposites were validated by the degradation test of methyl orange and •OH trapping photoluminescence experiments under ultraviolet (UV) and visible light irradiation, respectively. Especially under the visible light, the TiO₂/Sn₃O₄ nanocomposites demonstrated a superb photocatalytic activity, with 81.2% of methyl orange (MO) decomposed at 30 min after irradiation, which greatly exceeded that of the P25 (13.4%), TiO₂ (0.5%) and pure Sn₃O₄ (59.1%) nanostructures. This enhanced photocatalytic performance could be attributed to the mesopore induced by the monodispersed TiO₂ cores that supply sufficient surface areas and accessibility to reactant molecules. This exquisite hetero-architecture facilitates extended UV-visible absorption and efficient photoexcited charge carrier separation.

  20. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination.

    PubMed

    Saravanan, R; Karthikeyan, S; Gupta, V K; Sekaran, G; Narayanan, V; Stephen, A

    2013-01-01

    The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV-visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Visible Light Crosslinking of Methacrylated Hyaluronan Hydrogels for Injectable Tissue Repair

    PubMed Central

    Fenn, Spencer L.; Oldinski, Rachael A.

    2015-01-01

    Tissue engineering hydrogels are primarily cured in situ using ultraviolet (UV) radiation which limits the use of hydrogels as drug or cell carriers. Visible green light activated crosslinking systems are presented as a safe alternative to UV photocrosslinked hydrogels, without compromising material properties such as viscosity and stiffness. The objective of this study was to fabricate and characterize photocrosslinked hydrogels with well-regulated gelation kinetics and mechanical properties for the repair or replacement of soft tissue. An anhydrous methacrylation of hyaluronan (HA) was performed to control the degree of modification (DOM) of HA, verified by 1H-NMR spectroscopy. UV activated crosslinking was compared to visible green light activated crosslinking. While the different photocrosslinking techniques resulted in varied crosslinking times, comparable mechanical properties of UV and green light activated crosslinked hydrogels were achieved using each photocrosslinking method by adjusting time of light exposure. Methacrylated HA (HA-MA) hydrogels of varying molecular weight, DOM and concentration exhibited compressive moduli ranging from 1 kPa to 116 kPa, for UV crosslinking, and 3 kPa to 146 kPa, for green light crosslinking. HA-MA molecular weight and concentration were found to significantly influence moduli values. HA-MA hydrogels did not exhibit any significant cytotoxic affects towards human mesenchymal stem cells. Green light activated crosslinking systems are presented as a viable method to form natural-based hydrogels in situ. PMID:26097172

  2. Visible light exposure reduces the drip loss of fresh-cut watermelon.

    PubMed

    Wang, Yubin; Li, Wu; Cai, Wenqian; Ma, Yue; Xu, Yong; Zhao, Xiaoyan; Zhang, Chao

    2018-05-01

    Drip loss of fresh-cut watermelon has become a concern for both producers and consumers. The effect of visible light exposure on the drip loss of fresh-cut watermelon was evaluated. Visible light treatments of 3000 and 10 Lux were applied to fresh-cut watermelon at 4 °C during the shelf life for 5 days, with light exposure of 150 Lux as the control. The drip loss of the fresh-cut watermelon at 3000 Lux was 74.8% of that at 150 Lux on the fifth day, and the moisture evaporation at 3000 Lux was 1.89 times that at 150 Lux. Moreover, the light exposure of 3000 Lux reduced the activity of polygalacturonase, which is a key hydrolase related to cell wall degradation. The cell wall degradation ratio of the fresh-cut watermelon at 3000 Lux was 81.7% of that at 150 Lux on the fifth day. Overall, light exposure of 3000 Lux reduced drip loss by accelerating moisture evaporation in fresh-cut watermelon, as well as by reducing the activity of polygalacturonase and the ratio of cell wall degradation. Hence, exposing the fresh-cut watermelon to visible light of 3000 Lux during the shelf life was a feasible way of reducing drip loss.

  3. Photodegradation of methyl red under visible light by mesoporous carbon nitride

    NASA Astrophysics Data System (ADS)

    Hu, Yueyue; Zhang, Min; Xiao, Zaozao; Jiang, Tao; Yan, Bing; Li, Jian

    2018-02-01

    Mesoporous carbon nitride (mpg-C3N4) with tunable microstructure has been successfully prepared through a simple polymerization reaction of cyanamide by a nano hard-templating approach. The obtained materials have been characterized using X-ray diffraction (XRD), N2 adsorption, and Fourier transform infrared (FT-IR) spectroscopy. The results show that the pore diameter of the mpg-C3N4 materials can be easily tuned from 3.8 to 10.5 nm. The mpg-C3N4 materials are demonstrated to exhibit much higher visible light photocatalytic activity than that of g-C3N4 for the degradation of aqueous methyl red (MR). The high surface areas and large pore volume contributed to the efficient visible light photocatalytic activity.

  4. Hydrothermal fabrication of N-doped (BiO)2CO3: Structural and morphological influence on the visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dong, Fan; Wang, Rui; Li, Xinwei; Ho, Wing-Kei

    2014-11-01

    Various 3D N-doped (BiO)2CO3 (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N2 adsorption-desorption isotherms and UV-vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO)2CO3 samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO)2CO3 hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO)2CO3 and TiO2-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  5. Visible light induced photobleaching of methylene blue over melamine-doped TiO2 nanocatalyst

    EPA Science Inventory

    TiO2 doping with N-rich melamine produced a stable, active and visible light sentisized nanocatalyst that showed a remarkable efficiency towards the photobleaching of a model compound – methylene blue (MB) in aqueous solution. The photobleaching followed a mixed reaction order ki...

  6. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NO{sub x} abatement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobaldi, D.M., E-mail: david.tobaldi@ua.pt; Pullar, R.C.; Gualtieri, A.F.

    2015-11-15

    Titanium dioxide (TiO{sub 2}) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO{sub 2} has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO{sub 2} to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO{sub 2} lattice using our green sol–gel nanosynthesis method, used to create 10 nm TiO{sub 2} NPs. Two parallel routesmore » were studied to produce nitrogen-modified TiO{sub 2} nanoparticles (NPs), using HNO{sub 3}+NH{sub 3} (acid-precipitated base-peptised) and NH{sub 4}OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NO{sub x}) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NO{sub x} abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO{sub 2} NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects of four simultaneous occurrences: (i) loss of OH groups and water adsorbed on the photocatalyst surface; (ii) growth of crystalline domain sizes with decrease in specific surface area; (iii) onset and progress of the ART; (iv) the increasing instability of the nitrogen in the titania lattice. - Graphical abstract: Nitrogen modified TiO{sub 2} synthesised via a green aqueous sol–gel method showed to degrade nitrogen oxides (NO{sub x}) under visible white-light (indoor artificial lighting), with a photocatalytic activity double than that of the standard P25 TiO{sub 2} NPs. - Highlights: • N–TiO{sub 2} synthesised via a green aqueous sol–gel method. • Advanced X-ray methods used to detect both crystalline and amorphous contents. • Microstructure fully addressed via XRPD and whole powder pattern modelling. • Photocatalytic NO{sub x} removal assessed using both solar and visible-light lamps.« less

  7. First-principles prediction of new photocatalyst materials with visible-light absorption and improved charge separation: surface modification of rutile TiO₂ with nanoclusters of MgO and Ga₂O₃.

    PubMed

    Nolan, Michael

    2012-11-01

    Titanium dioxide is an important and widely studied photocatalytic material, but to achieve photocatalytic activity under visible-light absorption, it needs to have a narrower band gap and reduced charge carrier recombination. First-principles simulations are presented in this paper to show that heterostructures of rutil TiO₂ modified with nanoclusters of MgO and Ga₂O₃ will be new photocatalytically active materials in the UV (MgO-TiO₂) and visible (Ga₂O₃-TiO₂) regions of the solar spectrum. In particular, our investigations of a model of the excited state of the heterostructures demonstrate that upon light excitation electrons and holes can be separated onto the TiO₂ surface and the metal oxide nanocluster, which will reduce charge recombination and improve photocatalytic activity. For MgO-modified TiO₂, no significant band gap change is predicted, but for Ga₂O₃-modified TiO₂ we predict a band gap change of up to 0.6 eV, which is sufficient to induce visible light absorption. Comparisons with unmodified TiO₂ and other TiO₂-based photocatalyst structures are presented.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities ofmore » lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors.« less

  9. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO2 Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies.

    PubMed

    Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming

    2018-02-01

    Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New insights into how RGO influences the photocatalytic performance of BiOIO3/RGO nanocomposites under visible and UV irradiation.

    PubMed

    Xiong, Ting; Dong, Fan; Zhou, Ying; Fu, Min; Ho, Wing-Kei

    2015-06-01

    Reduced graphene oxide (RGO) has been demonstrated to be effective in enhancing the photocatalytic activity of various semiconductors. However, an important issue that has been overlooked is the role of RGO in UV-induced photocatalysis of RGO-based nanocomposites. In the present work, novel BiOIO3/RGO nanocomposites were prepared by a simple one-pot hydrothermal method, during which BiOIO3 nanoplates were formed in situ on RGO sheets resulting from partial reduction of RGO. The two components of the composite displayed intimate interfacial contact. The as-prepared BiOIO3/RGO nanocomposites exhibited highly enhanced visible photocatalytic activity, relative to that of pure BiOIO3, toward removal of NO from air. However, the BiOIO3/RGO nanocomposites showed only slightly increased photocatalytic activity, relative to pure, under UV irradiation. The limited enhancement of UV activity can be ascribed to the fact that BiOIO3 would be expected to compete with RGO with regard to absorption and utilization of UV light. Evidence shows that RGO can act as a semiconductor rather than a photosensitizer or electron reservoir in BiOIO3/RGO nano-composites. In addition, the active species responsible for photoactivity have been investigated by a DMPO spin-trapping electron spin resonance technique. Photo-generated holes were found to be the main active species inducing the photo-oxidation of NO under visible light, whereas holes and OH radicals are considered to be responsible for photo-activity under UV light. This work points to BiOIO3/RGO nano-composites as new and efficient visible light photocatalysts for environmental remediation applications, and also as a source of new insights into the pivotal role of RGO in photocatalysis of RGO-based nanocomposites under visible as well as UV light. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [TiO2-Induced Photodegradation of Levofloxacin by Visible Light and Its Mechanism].

    PubMed

    Guo, Hong-sheng; Liu, Ya-nan; Qiao, Qi; Wei, Hong; Dong, Cheng-xing; Xue, Jie; Li, Ke-bin

    2015-05-01

    Levofloxacin is an emerging pollutant. Single levofloxacin and TiO2 have no visible-light activity. However, photodegradation of levofloxacin dramatically enhanced in the presence of TiO2 under visible light irradiation. Considering this finding, he photodegradation of levofloxacin over TiO2 was investigated under visible light irradiation. Effects of TiO2 dosage, levofloxacin concentration, and solution pH on levofloxacin photodegradation were examined by monitoring its concentration decay with time. The results showed that levofloxacin photodegradation fitted the Langmuir-Hinshelwood kinetic model. Solution pH, TiO2 dose, and levofloxacin concentration had significant effects on the photodegradation rates. In addition, batch adsorption experiments revealed that adsorption of levofloxacin on TiO2 conformed to the pseudo-second-order kinetics and the Langmuir isotherm. DRS spectrum of levofloxacin-adsorbed TiO2 suggested that a surface complex was formed between levofloxacin and TiO2. Addition of radical scavengers and N2-degassing affecting levofloxacin photodegradation indicated that the superoxide ion radical was mainly active species. UV-Vis spectra of a deaerated TiO2 and levofloxacin suspensions further confirmed that the electron injection into TiO2 conduction band took place under visible light irradiation. Based on these results, a charge-transfer mechanism initiated by photoexcitation of TiO2/ levofloxacin surface complex was proposed for levofloxacin photocatalytic degradation over TiO2 under visible light. This study indicates that the charge-transfer-complex-mediated photocatalytic technique has promising applications in the removal of colorless organic pollutants.

  12. Graphitic Carbon-Based Nanostructures for Energy and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Chan, Ka Long Donald

    This thesis focuses on the synthesis and characterization of graphitic carbonbased photocatalytic nanostructures for energy and environmental applications. The preparation of carbon- and oxygen-rich graphitic carbon nitride with enhanced photocatalytic hydrogen evolution property was investigated. Composite materials based on graphene quantum dots were also prepared. These composites were used for photocatalytic degradation of organic pollutants and photoelectrocatalytic disinfection. The first part of this thesis describes a facile method for the preparation of carbon- and oxygen-rich graphitic carbon nitride by thermal condensation. Incorporation of carbon and oxygen enhanced the photoresponse of carbon nitride in the visible-light region. After exfoliation, the product was c.a. 45 times more active than bulk graphitic carbon nitride in photocatalytic hydrogen evolution under visible-light irradiation. In the second part, a simple approach to enhance the photocatalytic activity of red phosphorus was developed. Mechanical ball milling was applied to reduce the size of red phosphorus and to deposit graphene quantum dots (GQDs) onto red phosphorus. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of Rhodamine B. The incorporation of GQDs in titanium dioxide could also extend the absorption spectrum of TiO2 into the visible-light range. The third part of this thesis reports on the fabrication of a visible-light-driven composite photocatalyst of TiO2 nanotube arrays (TNAs) and GQDs. Carboxyl-containing GQDs were covalently coupled to amine-modified TNAs. The product exhibited enhanced photocurrent and high photoelectrocatalytic performance in the inactivation of E. coli under visible-light irradiation. The role of various reactive species in the photoelectrocatalytic process was investigated.

  13. Photocatalytic Pre-Oxidation of Arsenic (III) in Groundwater by a Visible-Light-Driven System with Magnetic Separating Characteristic

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Liu, Y.; Peng, L.; Qin, Y.

    2017-12-01

    Arsenic was a typical toxic metalloid element and its contamination in groundwater was widely recognized as a global health problem, especially in north China, where people depended on groundwater as water resource. Arsenic was existed as As(III) in underground water, and has low affinity to the surface of various minerals and more toxic and more difficultly to be removed compared with As(V), so a pre-oxidation technology by transforming As (III) to As (V) is highly desirable. Electrochemical and oxidizing agents were traditional technology, which usually causes secondary pollution. A novel methodology is presented here, using prepared magnetic visible-light-driven nanomaterials as recyclable media to investigate As(III) pre-oxidation processing. Ag@AgCl core-shell nanowires were first synthesized by oxidation of Ag nanowires with moderate FeCl3, and exhibited excellent photocatalytic activity to As(III) with visible-light. The ratio of chloridization was proved to act as key effect on photocatalytic oxidation efficiency. Testing with simulated groundwater condition proved that pH, ionic strength and concentration of humic acid have obvious effects on Ag@AgCl photocatalytic ability. h+ and ·O2- were confirmed to be the main active species during the visible-light driven photocatalytic oxidation process for As(III) by trapping experiments with radical scavengers. Then Fe0 was introduced to prepare Fe-Ag nanowire and chloridized into Fe-Ag@AgCl to provide magnetic characteristic. The magnetic recycling and re-chloride experiments validated this visible-light-driven material has excellent stable and high reused ability as photocatalyst under visible light irradiation.

  14. Comparative studies on the lethal, mutagenic, and recombinogenic effects of ultraviolet -A, -B, -C, and visible light with and without 8-methoxypsoralen in Saccharomyces cerevisiae.

    PubMed

    Mondon, P; Shahin, M M

    1992-05-01

    Genetic effects of UV-A, UV-B, UV-C, and the combination of 8-methoxypsoralen (8-MOP) with UV-A or visible light were studied in the haploid strain XV185-14C and diploid strain D5 of Saccharomyces cerevisiae. The induction of his+, lys+, and hom+ reverse mutations was measured in strain XV185-14C. In strain D5 we measured the induction of genetically altered colonies, particularly twin spot colonies arising from a mitotic crossing-over. UV-C and UV-B induced point mutations at the three loci in the haploid strain and mitotic crossing-over and other genetic alterations in the diploid strain. UV-C was more mutagenic and recombinogenic than UV-B. UV-A or visible light alone did not induce genotoxic effects at the doses tested. However, UV-A plus 8-MOP produced lethal and mutagenic effects in the haploid strain XV185-14C, although mutagenic activity was less than that of UV-B. Visible light plus 8-MOP also induced genotoxic effects in strain XV185-14C. In the diploid strain D5, UV-A plus 8-MOP induced a higher frequency of genetic alterations than UV-B at comparative doses. Visible light plus 8-MOP was also genetically active in strain D5. The haploid strain was more sensitive to the lethal effects of UV-C, UV-B, UV-A, and impure visible light plus 8-MOP than the diploid strain.

  15. Highly efficient visible-light driven photocatalytic hydrogen production from a novel Z-scheme Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite

    NASA Astrophysics Data System (ADS)

    Wang, Guowei; Ma, Xue; Wei, Shengnan; Li, Siyi; Qiao, Jing; Wang, Jun; Song, Youtao

    2018-01-01

    In this work, the preparation of a novel Z-scheme photocatalyst, Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite, for visible-light photocatalytic hydrogen production is reported for the first time. In this photocatalyst, Au nanoparticles as conduction band co-catalyst provide more active sites to enrich electrons. Ta2O5-V5+||Fe3+-TiO2 as composite redox cycle system thoroughly separates the photo-generated electrons and holes. In addition, Er3+:YAlO3 as up-conversion luminescence agent (from visible-light to ultraviolet-light) provides enough ultraviolet-light for satisfying the energy demand of wide band-gap semiconductors (TiO2 and Ta2O5). The photocatalytic hydrogen production can be achieved from methanol as sacrificial agent (electron donor) under visible-light irradiation. The main influence factors such as initial solution pH and molar ratio of TiO2 and Ta2O5 on visible-light photocatalytic hydrogen production activity of Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite are discussed in detail. The results show that the Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite with 1.0:0.5 M ratio of TiO2 and Ta2O5 in methanol aqueous solution at pH = 6.50 displays the highest photocatalytic hydrogen production activity. Furthermore, a high level of photocatalytic activity can be still maintained within three cycles under the same conditions. It implies that the prepared Z-scheme Er3+:YAlO3/Ta2O5-V5+||Fe3+-TiO2/Au coated composite may be a promising photocatalyst utilizing solar energy for hydrogen production.

  16. An enhancing effect of visible light and UV radiation on phenolic compounds and various antioxidants in broad bean seedlings.

    PubMed

    Younis, Mahmoud El-Baz; Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed

    2010-10-01

    Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV-radiation. © 2010 Landes Bioscience

  17. An enhancing effect of visible light and UV radiation on phenolic compounds and various antioxidants in broad bean seedlings

    PubMed Central

    Hasaneen, Mohammed Naguib Abdel-Ghany; Abdel-Aziz, Heba Mahmoud Mohammed

    2010-01-01

    Exposure of dark- or ambient visible light-grown broad bean seedlings to low (LL) and high (HL) visible light intensities, UV-A or UV-C, either alone or in combination, induced significant increases in total phenolic compounds as well as in anthocyanins content, throughout the germination period, as compared with the respective levels in control seedlings. In general, as compared with control levels, exposure of both dark- or light-grown broad bean seedlings to LL, HL, UV-A or UV-C, induced significant increases in the contents of non-enzymatic antioxidants (total ascorbate; ASA-DASA and total glutathione; GSSG-GSH) and enzymatic antioxidant activities (superoxide dismutase; SOD, catalase; CAT, ascorbate peroxidase; APO and glutathione reductase; GR). The obtained results are discussed in relation to induced mechanisms of protection and repair from the inevitable exposure to damaging visible light and UV radiation. PMID:20505357

  18. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations.

    PubMed

    Yu, Yang; Wen, Wei; Qian, Xin-Yue; Liu, Jia-Bin; Wu, Jin-Ming

    2017-01-24

    To magnify anatase/rutile phase junction effects through appropriate Au decorations, a facile solution-based approach was developed to synthesize Au/TiO 2 nanoforests with controlled Au locations. The nanoforests cons®isted of anatase nanowires surrounded by radially grown rutile branches, on which Au nanoparticles were deposited with preferred locations controlled by simply altering the order of the fabrication step. The Au-decoration increased the photocatalytic activity under the illumination of either UV or visible light, because of the beneficial effects of either electron trapping or localized surface plasmon resonance (LSPR). Gold nanoparticles located preferably at the interface of anatase/rutile led to a further enhanced photocatalytic activity. The appropriate distributions of Au nanoparticles magnify the beneficial effects arising from the anatase/rutile phase junctions when illuminated by UV light. Under the visible light illumination, the LSPR effect followed by the consecutive electron transfer explains the enhanced photocatalysis. This study provides a facile route to control locations of gold nanoparticles in one-dimensional nanostructured arrays of multiple-phases semiconductors for achieving a further increased photocatalytic activity.

  19. Ab initio studies of Nb–N–S tri-doped TiO{sub 2} with enhanced visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Dahua; Cheng, Junxia; Cheng, Xinlu, E-mail: chengxl@scu.edu.cn

    2016-06-15

    The electronic and optical properties of Nb–N–S tri-doped anatase TiO{sub 2} were investigated within the frame of the density functional theory (DFT) plus U method. Results show that a significant red-shift effect and improvement of visible-light absorption for Nb–N–S tri-doped TiO{sub 2} are observed with respect to pure TiO{sub 2} and S–N codoped TiO{sub 2}. At the same time, the enhanced visible-light photocatalytic activity of tri-doped TiO{sub 2} is derived from the narrowing band gap, the appearance of Nb 4d state at the bottom of conduction band and the mixture of N 2p, S 3p states forming new defect levelsmore » at the top of valance band, which is excellently consistent with the previous experiment. Moreover, S ion leads to the lattice distortion and promotes the visible-light photocatalytic activity. Furthermore, the absorbance of 1.39NbNS–TiO{sub 2} accords well with the experimental result in the visible region. It is also found that the 2.78NbNS–TiO{sub 2} can be easily grown under O-rich condition and have the strongest absorbance from 2.0 to 4.2 eV among four models.« less

  20. Template free synthesis of ZnO/Ag2O nanocomposites as a highly efficient visible active photocatalyst for detoxification of methyl orange.

    PubMed

    Kadam, Abhijit; Dhabbe, Rohant; Gophane, Anna; Sathe, Tukaram; Garadkar, Kalyanrao

    2016-01-01

    A simple and effective route for the synthesis of ZnO/Ag2O nanocomposites with different weight ratios (4:1 to 4:4) have been successfully obtained by combination of thermal decomposition and precipitation technique. The structure, composition, morphology and optical properties of the as-prepared ZnO/Ag2O composites were characterized by XRD, FT-IR, EDS, SEM, TEM, UV-Vis DRS and PL, respectively. The photocatalytic performance of the photocatalysts was evaluated towards the degradation of a methyl orange (MO) under UV and visible light. More specifically, the results showed that the photocatalytic activity with highest rate constant of MO degradation over ZnO/Ag2O (4:2) nanocomposites is more than 22 and 4 times than those of pure ZnO and Ag2O under visible light irradiation, respectively. An improved photocatalytic activity was attributed to the formation of heterostructure between Ag2O and ZnO, the strong visible light absorption and more separation efficiency of photoinduced electron-hole pairs. Moreover, the ZnO/Ag2O (4:2) nanocomposite showed excellent stability towards the photodegradation of MO under visible light. Finally, a possible mechanism for enhanced charge separation and photodegrdation is proposed. Genotoxicity of MO before and after photodegradation was also evaluated by simple comet assay technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Low cost synthesis of TiO2-C nanocomposite powder for high efficiency visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Nayak, J.

    2018-04-01

    Titanium dioxide-carbon nanocomposite powder was synthesized via a low cost chemical route using oleic acid and titanium tetra-isopropoxide. Since the carbon remained mainly on the surface of the TiO2 nanoparticles, the powder had black color. The composition of the powder was analyzed by X-ray photoelectron spectroscopy and the structure was studied with X-ray diffraction and transmission electron microscopy. The visible photocatalytic activity of the black TiO2 powder was investigated by studying the photo-bleaching of methylene blue under visible light. Our experimental observation showed that the black-TiO2 powder had a higher visible photocatalytic activity compared to the commercial TiO2 powder (P25 Degussa).

  2. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NOx abatement

    NASA Astrophysics Data System (ADS)

    Tobaldi, D. M.; Pullar, R. C.; Gualtieri, A. F.; Otero-Irurueta, G.; Singh, M. K.; Seabra, M. P.; Labrincha, J. A.

    2015-11-01

    Titanium dioxide (TiO2) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO2 has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO2 to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO2 lattice using our green sol-gel nanosynthesis method, used to create 10 nm TiO2 NPs. Two parallel routes were studied to produce nitrogen-modified TiO2 nanoparticles (NPs), using HNO3+NH3 (acid-precipitated base-peptised) and NH4OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NOx) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NOx abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO2 NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects of four simultaneous occurrences: (i) loss of OH groups and water adsorbed on the photocatalyst surface; (ii) growth of crystalline domain sizes with decrease in specific surface area; (iii) onset and progress of the ART; (iv) the increasing instability of the nitrogen in the titania lattice.

  3. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation.

    PubMed

    Li, Zhiquan; Zou, Xiucheng; Zhu, Guigang; Liu, Xiaoya; Liu, Ren

    2018-05-09

    Developing efficient unimolecular visible light-emitting diode (LED) light photoinitiators (PIs) with photobleaching capability, which are essential for various biomedical applications and photopolymerization of thick materials, remains a great challenge. Herein, we demonstrate the synthesis of a series of novel PIs, containing coumarin moieties as chromophores and oxime ester groups as initiation functionalities and explore their structure-activity relationship. The investigated oxime esters can effectively induce acrylates and thiol-based click photopolymerization under 450 nm visible LED light irradiation. The initiator O-3 exhibited excellent photobleaching capability and enabled photopolymerization of thick materials (∼4.8 mm). The efficient unimolecular photobleachable initiators show great potential in dental materials and 3D printings.

  4. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  5. Preparation, characterization and photocatalytic behavior of WO3-fullerene/TiO2 catalysts under visible light

    PubMed Central

    2011-01-01

    WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the photocatalytic activity. Excellent photocatalytic degradation of a MO solution was observed using the WO3-fullerene, fullerene-TiO2, and WO3-fullerene/TiO2 composites under visible light. An increase in photocatalytic activity was observed, and WO3-fullerene/TiO2 has the best photocatalytic activity; it may attribute to the increase of the photo-absorption effect by the fullerene and the cooperative effect of the WO3. PMID:21774800

  6. Enhanced visible light-induced photocatalytic activity of surface-modified BiOBr with Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Meng, Xiangchao; Li, Zizhen; Chen, Jie; Xie, Hongwei; Zhang, Zisheng

    2018-03-01

    Palladium nanoparticles well-dispersed on BiOBr surfaces were successfully prepared via a two-step process, namely hydrothermal synthesis of BiOBr followed by photodeposition of palladium. Surface-exposed palladium nanoparticles may improve the harvesting capacity of visible light photons via the surface plasmonic resonance effect to produce extra electrons. Palladium is an excellent electron acceptor, and therefore favours the separation of photogenerated electron/hole pairs. As a result, palladium significantly improves the photocatalytic activity of BiOBr in the removal of organic pollutants (phenol) under visible light irradiation. In addition to as-prepared samples which were comprehensively characterized, the mechanism for the enhancement via the deposition of palladium nanoparticles was also proposed based on results. This work may serve as solid evidence to confirm that surface-deposited palladium nanoparticles are capable of improving photocatalytic activity, and that photodeposition may be an effective approach to load metal nanoparticles onto a surface.

  7. Enhanced visible light activity of nano-titanium dioxide doped with multiple ions: Effect of crystal defects

    NASA Astrophysics Data System (ADS)

    Jaimy, Kanakkanmavudi B.; Ghosh, Swapankumar; Gopakumar Warrier, Krishna

    2012-12-01

    Titanium dioxide photocatalysts co-doped with iron(III) and lanthanum(III) have been prepared through a modified sol-gel method. Doping with Fe3+ resulted in a relatively lower anatase to rutile phase transformation temperature, while La3+ addition reduced the crystal growth and thus retarded the phase transformation of titania nanoparticles. The presence of Fe3+ ions shifted the absorption profile of titania to the longer wavelength side of the spectrum and enhanced the visible light activity. On the other hand, La3+ addition improved the optical absorption of titania nanoparticles. Both the dopants improved the life time of excitons by proper transferring and trapping of photoexcited charges. In the present work, considerable enhancement in photocatalytic activity under visible light was achieved through synergistic effect of optimum concentrations of the two dopants and associated crystal defects.

  8. Nanofibrillated Cellulose-Assisted Synthesis of Fiber-Like ZnO-ZnFe2O4 Composites with Enhanced Visible-Light-Driven Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Cai, Aijun; Guo, Aiying; Du, Liqiang; Chang, Yongfang; Wang, Xiuping

    2018-05-01

    In this article, fiber-like ZnO-ZnFe2O4 composites are obtained by using nanofibrillated cellulose as a biotemplate. The as-prepared composites exhibit strong absorbance in the visible-light region. The ZnO-ZnFe2O4 composites exhibit a similar bandgap (1.88 eV) compared with the ZnFe2O4 (1.85 eV). The ZnO-ZnFe2O4 composites can be easily collected by an external magnet, which contributes to improving the utilization efficiency of the photocatalysts. The photocatalytic activity of the ZnO-ZnFe2O4 catalysts was evaluated by photodegrading rhodamine B (RhB) under visible-light irradiation. Compared with ZnO and ZnFe2O4, the ZnO-ZnFe2O4 catalysts show higher photocatalytic activity due to the efficient electron-hole separation.

  9. Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2-xNx derived from the ethylenediamine-based complex

    NASA Astrophysics Data System (ADS)

    Jiang, Zheng; Kong, Liang; Alenazey, Feraih Sh.; Qian, Yangdong; France, Liam; Xiao, Tiancun; Edwards, Peter P.

    2013-05-01

    A facile solvent evaporation induced self-assembly (SEISA) strategy was developed to synthesize mesoporous N-doped anatase TiO2 (SE-meso-TON) using a single organic complex precursor derived in situ from titanium butoxide and ethylenediamine in ethanol solution. After the evaporation of ethanol in a fume hood and subsequent calcinations at 450 °C, the obtained N-doped TiO2 (meso-TON) anatase was of finite crystallite size, developed porosity, large surface area (101 m2 g-1) and extended light absorption in the visible region. This SE-meso-TON also showed superior photocatalytic activity to the SG-meso-TON anatase prepared via sol-gel synthesis. On the basis of characterization results from XRD, XPS, N2 adsorption-desorption and ESR, the enhanced visible-light-responsive photocatalytic activity of SE-meso-TON was assigned to its developed mesoporosity and reduced oxygen vacancies.

  10. Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst

    NASA Astrophysics Data System (ADS)

    Han, Lei; Wang, Ping; Zhu, Chengzhou; Zhai, Yueming; Dong, Shaojun

    2011-07-01

    In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability.In this paper, a stable and highly efficient plasmonic photocatalyst, Ag@AgCl, with cube-like morphology, has been successfully prepared via a simple hydrothermal method. Using methylene dichloride as chlorine source in the synthesis can efficiently control the morphology of Ag@AgCl, due to the low release rate of chloride ions. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-vis diffuse reflectance spectra were used to characterize the obtained product. The photocatalytic activity of the obtained product was evaluated by the photodegradation of methyl orange (MO) under visible light irradiation, and it was found, interestingly, that Ag@AgCl exhibits high visible light photocatalytic activity and good stability. Electronic supplementary information (ESI) available: SEM images of the AgCl samples synthesized by changing the addition amount of PVP and AgNO3. See DOI: 10.1039/c1nr10247h

  11. Synthesis of N-doped TiO2 Using Guanidine Nitrate: An Excellent Visible Light Photocatalyst

    EPA Science Inventory

    An excellent visible light active nitrogen-rich TiO2 photocatalyst have been synthesized by using guanidine nitrate as the doping material. The catalytic efficiency of the catalyst has been demonstrated by the decomposition of the dye, methyl orange (MO), and the pollutant, 2,4 d...

  12. Visible light activity of Ag-loaded and guanidine nitrate-doped nano-TiO2: Degradation of dichlorophenol and antibacterial properties

    EPA Science Inventory

    To utilize visible light, co-doped nano-TiO2 was prepared via “one pot” synthesis using mild reaction conditions and benign precursors. Synthesis was optimized using an appropriate experimental design taking into account silver content and calcination temperature. The optimized ...

  13. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  14. Synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles and nanowires

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh

    2010-01-01

    We present the synthesis and visible-light-induced catalytic activity of Ag2S-coupled TiO2 nanoparticles (NPs) and TiO2 nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag2S NPs and TiO2 NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag2S NPs on TiO2 NWs was created. Due to the coupling with such a low bandgap material as Ag2S, the TiO2 nanocomposites could have a visible-light absorption capability much higher than that of pure TiO2. As a result, the synthesized Ag2S/TiO2 nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO2 (Degussa P25, Germany) under visible light.

  15. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    PubMed

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.

    PubMed

    Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu

    2014-01-01

    Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photocatalytic properties of Au-deposited mesoporous SiO{sub 2}–TiO{sub 2} photocatalyst under simultaneous irradiation of UV and visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuno, T., E-mail: t093507@edu.imc.tut.ac.jp; Kawamura, G., E-mail: gokawamura@ee.tut.ac.jp; Muto, H., E-mail: muto@ee.tut.ac.jp

    Mesoporous SiO{sub 2} templates deposited TiO{sub 2} nanocrystals are synthesized via a sol–gel route, and Au nanoparticles (NPs) are deposited in the tubular mesopores of the templates by a photodeposition method (Au/SiO{sub 2}–TiO{sub 2}). The photocatalytic characteristics of Au/SiO{sub 2}–TiO{sub 2} are discussed with the action spectra of photoreactions of 2-propanol and methylene blue. Photocatalytic activities of SiO{sub 2}–TiO{sub 2} under individual ultraviolet (UV) and visible (Vis) light illumination are enhanced by deposition of Au NPs. Furthermore, Au/SiO{sub 2}–TiO{sub 2} shows higher photocatalytic activities under simultaneous irradiation of UV and Vis light compared to the activity under individual UV andmore » Vis light irradiation. Since the photocatalytic activity under simultaneous irradiation is almost the same as the total activities under individual UV and Vis light irradiation, it is concluded that the electrons and the holes generated by lights of different wavelengths are efficiently used for photocatalysis without carrier recombination. - Graphical abstract: This graphic shows the possible charge behavior in Au/SiO{sub 2}–TiO{sub 2} under independent light irradiation of ultraviolet and visible light irradiation. Both reactions under independent UV and Vis light irradiation occurred in parallel when Au/SiO{sub 2}–TiO{sub 2} photocatalyst was illuminated UV and Vis light simultaneously, and then photocatalytic activity is improved by simultaneous irradiation. - Highlights: • Au nanoparticles were deposited in mesoporous SiO{sub 2}–TiO{sub 2} by a photodeposition method. • Photocatalytic activity under UV and Vis light was enhanced by deposition of Au. • Photocatalytic activity of Au/SiO{sub 2}–TiO{sub 2} was improved by simultaneous irradiation.« less

  18. Nanocomposite of exfoliated bentonite/g-C3N4/Ag3PO4 for enhanced visible-light photocatalytic decomposition of Rhodamine B.

    PubMed

    Ma, Jianfeng; Huang, Daiqin; Zhang, Wenyi; Zou, Jing; Kong, Yong; Zhu, Jianxi; Komarneni, Sridhar

    2016-11-01

    Novel visible-light-driven heterojunction photocatalyst comprising exfoliated bentonite, g-C3N4 and Ag3PO4 (EB/g-C3N4/Ag3PO4) was synthesized by a facile and green method. The composites EB/g-C3N4/Ag3PO4 were characterized by X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectroscopy, UV-Vis diffuse reflectance spectroscopy and the Brunauer, Emmett, and Teller (BET) surface area method. Under visible light irradiation, EB/g-C3N4/Ag3PO4 composites displayed much higher photocatalytic activity than that of either pure g-C3N4 or pure Ag3PO4 in the degradation of Rhodamine B (RhB). Among the hybrid photocatalysts, EB/g-C3N4/Ag3PO4 composite containing 20 wt% Ag3PO4 exhibited the highest photocatalytic activity for the decolorization of RhB. Under the visible-light irradiation, the RhB dye was completely decolorized in less than 60 min. The enhanced photocatalytic performance is attributed to the stable structure, enlarged surface area, strong adsorbability, strong light absorption ability, and high-efficiency separation rate of photoinduced electron-hole pairs. Our finding paves a way to design highly efficient and stable visible-light-induced photocatalysts for practical applications in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Visible-light-driven activity and synergistic mechanism of TiO2@g-C3N4 heterostructured photocatalysts fabricated through a facile and green procedure for various toxic pollutants removal.

    PubMed

    Xiao, Gang; Xu, Shengnan; Li, Peifeng; Su, Haijia

    2018-08-03

    Heterostructured photocatalysts based on g-C 3 N 4 and TiO 2 represent a promising kind of photocatalyst in environmental fields, but the synthesis methods are always complex and not green. In the present paper, a facile and green one-step calcination procedure at lower temperature (450 °C) with the assistance of water is developed to synthesize a visible-light-active TiO 2 @g-C 3 N 4 heterostructured photocatalyst, which shows higher visible-light-driven activity (k = 0.014 min -1 ) than pure g-C 3 N 4 (k = 0.0036 min -1 ) and TiO 2 (k = 0.0067 min -1 ) for methyl orange degradation. Excellent performance (over 90% conversion) was also observed for the removal of rhodamine B, phenol, and Cr(VI) under visible light. The heterostructured photocatalyst showed favorable reusability, preserving 86% of its activity after five successive cycles. A mechanism study demonstrates that the enhanced photocatalytic activity results from the efficient separation of the photo-generated charge carriers through the intimate interface between the two semiconductors based on their appropriate band structures and light-induced mechanism. The heterostructured photocatalyst will certainly find wide applications in the treatment of various toxic pollutants in wastewater using abundant solar energy. Furthermore, this facile and green procedure and the proposed synergistic mechanism will provide guidelines in designing other g-C 3 N 4 based organic-inorganic composite photocatalysts for various applications.

  20. In situ polymerization synthesis of Z-scheme tungsten trioxide/polyimide photocatalyst with enhanced visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Meng, Pengcheng; Heng, Huimin; Sun, Yanhong; Liu, Xia

    2018-01-01

    A novel direct Z-scheme P-containing tungsten trioxide/polyimide (PWO/PI) photocatalyst was synthesized by an in-situ solid-state polymerization strategy to enhance the visible-light photocatalytic oxidation capacity of PI. The effects of polymerization temperature and PWO content on the physicochemical properties of PWO/PI composites and photocatalytic degradation efficiency of imidacloprid were investigated. The photocatalysts were characterized by X-ray powder diffraction, Fourier transformed infrared spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-vis diffused reflection spectra and N2 adsorption-desorption isothermals. The results showed that the photocatalysts with visible-light photocatalytic activity can already be prepared at 300 °C. The PWO/PI composites exhibited a lamellar structure and PWO was wrapped by PI. After PWO was introduced, there was a significant interaction between PWO and PI, and the visible light response of photocatalysts was also improved. The visible-light photocatalytic degradation efficiency of imidacloprid on 3% PWO/PI-300 composite was about 3.2 times of commercial P25, and the corresponding pseudo-first-order rate constant was about 2.9 times of pristine PI. The Z-scheme photocatalytic system of PWO/PI composites was confirmed by the electron spin resonance technology, terephthalic acid photoluminescence probing technique, reactive species trapping experiments, X-ray photoelectron spectroscopy and photoluminescence of PWO/PI composites and pristine photocatalysts.

  1. Can visible light impact litter decomposition under pollution of ZnO nanoparticles?

    PubMed

    Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong

    2017-11-01

    ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Design and development of a new generation of UV-visible-light-driven nanosized codoped titanium dioxide photocatalysts and biocides/sporocides, and environmental applications

    NASA Astrophysics Data System (ADS)

    Hamal, Dambar B.

    For solar environmental remediation, a new generation of nanosized (< 10 nm) titanium dioxide photocatalysts codoped with metals and nonmetals, or metals only were prepared by the xero-gel and aero-gel methods. For silver or cobalt-based xero-gel titanium dioxide photocatalysts, photoactivities tests revealed that codoping of titanium dioxide with a metal (1% Ag or 2% Co) and nonmetals (carbon and sulfur) is necessary to achieve high-activities for acetaldehyde degradation under visible light (wavelength > 420 nm). It was concluded that high visible-light-activities for acetaldehyde degradation over codoped titanium dioxide were attributed to an interplay of anatase crystallinity, high-surface area, reduced band-gap (< 3.0 eV), uniform dispersion of doped metal ions, and suppressed recombination rate of photogenerated electronhole pairs. Moreover, the nature and amount of codoped metals play a significant role in visible-light-induced photocatalysis. Metals (Al, Ga, and In) doped/codoped titanium dioxide photocatalysts were prepared by the aero-gel method. The photocatalytic studies showed that activities of metal doped/codoped photocatalysts under UV light (wavelength < 400 nm) were found to be dependent on pollutants. Indium demonstrated beneficial effects in both textural and photocatalytic properties. Gallium and indium codoped titanium dioxide photocatalysts displayed even better performance in the CO oxidation reaction under UV light. Notably, titanium dioxide codoped with Ga, In, and Pt, exhibited unique photoactivities for the CO oxidation under both UV and visible light irradiation, indicating that this system could have promise for the water-gas shift reaction for hydrogen production. Silver-based nanostructured titanium dioxide samples were developed for killing human pathogens (Escherichia coli cells and Bacillus subtilis spores). Biocidal tests revealed that silver, carbon, and sulfur codoped titanium dioxide nanoparticles (< 10 nm) possess very strong antimicrobial actions on both E. coli (logarithmic kill > 8) and B. subtilis spores (logarithmic kill > 5) for 30 minute exposures in dark conditions compared with Degussa P25. It was believed that the carbon and sulfur codoped titanium dioxide support and Ag species acted synergistically during deactivation of both E. coli and B. subtilis spores. Thus, titanium dioxide codoped with silver, carbon, sulfur can serve as a multifunctional generic biocide and a visible-light-active photocatalyst.

  3. ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light

    NASA Astrophysics Data System (ADS)

    Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2016-08-01

    We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.

  4. ZnCr2S4: Highly effective photocatalyst converting nitrate into N2 without over-reduction under both UV and pure visible light.

    PubMed

    Yue, Mufei; Wang, Rong; Cheng, Nana; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2016-08-03

    We propose several superiorities of applying some particular metal sulfides to the photocatalytic nitrate reduction in aqueous solution, including the high density of photogenerated excitons, high N2 selectivity (without over-reduction to ammonia). Indeed, ZnCr2S4 behaved as a highly efficient photocatalyst, and with the assistance of 1 wt% cocatalysts (RuOx, Ag, Au, Pd, or Pt), the efficiency was greatly improved. The simultaneous loading of Pt and Pd led to a synergistic effect. It offered the highest nitrate conversion rate of ~45 mg N/h together with the N2 selectivity of ~89%. Such a high activity remained steady after 5 cycles. The optimal apparent quantum yield at 380 nm was 15.46%. More importantly, with the assistance of the surface plasma resonance effect of Au, the visible light activity achieved 1.352 mg N/h under full arc Xe-lamp, and 0.452 mg N/h under pure visible light (λ > 400 nm). Comparing to the previous achievements in photocatalytic nitrate removal, our work on ZnCr2S4 eliminates the over-reduction problem, and possesses an extremely high and steady activity under UV-light, as well as a decent conversion rate under pure visible light.

  5. Facile synthesis of flake-like TiO2/C nano-composites for photocatalytic H2 evolution under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Baolin; Zhou, Juan; Liang, Xiaoyu; Song, Kainan; Su, Xintai

    2017-01-01

    The production of H2 by photocatalytic water splitting has become a promising approach for clean, economical, and renewable evolution of H2 by using solar energy. In spite of tremendous efforts, the present challenge for materials scientists is to build a highly active photocatalytic system with high efficiency and low cost. Here we report a facile method for the preparation of TiO2/C nano-flakes, which was used as an efficient visible-light photocatalyst for H2 evolution. This composite material was prepared by using a phase-transfer strategy combined with salt-template calcination treatment. The results showed that anatase TiO2 nanoparticles with the diameter of ∼10 nm were uniformly dispersed on the carbon nano-flakes. In addition, the samples prepared at 600 °C (denoted as T600) endowed a larger surface area of 196 m2 g-1 and higher light absorption, resulting in enhanced photocatalytic activity. Further, the T600 product reached a high H2 production rate of 57.2 μmol h-1 under visible-light irradiation. This unusual photocatalytic activity arose from the positive synergetic effect between the TiO2 and carbon in this hybrid catalyst. This work highlights the potential of TiO2/C nano-flakes in the field of photocatalytic H2 evolution under visible-light irradiation.

  6. Highly Efficient visible-light-induced photoactivity of magnetically retrievable Fe3O4@SiO2@Bi2WO6@g-C3N4 hierarchical microspheres for the degradation of organic pollutant and production of hydrogen

    NASA Astrophysics Data System (ADS)

    Lu, Dingze; Wang, Hongmei; Shen, Qingqing; Kondamareddy, Kiran Kumar; Neena D

    2017-07-01

    The new multifunctional composite Fe3O4@SiO2@Bi2WO6@g-C3N4 (FSBG) hierarchical microspheres with Bi2WO6/g-C3N4 heterostructure as an outer shell and Fe3O4@SiO2 as a magnetic core have been synthesized and characterized for photocatalytic applications. An efficient and adoptable approach of synthesizing magnetic Bi2WO6/g-C3N4 hierarchical microspheres of grape-like morphology is realized. The as-synthesized structures exhibit highly efficient visible-light absorption and separation efficiency of photo-induced charge. The visible-light-induced photocatalytic activity of g-C3N4, Fe3O4@SiO2@Bi2WO6, and FSBG is evaluated by investigating the photodegradation of Rhodamine B (RhB) and hydrogen (H2) out of water. The comparative study reveals that the FSBG microspheres exhibit an optimum visible-light-induced photocatalytic activity in degrading Rhodamin B (RhB), which is 3.06 and 1.92 times to that of g-C3N4 and Fe3O4@SiO2@Bi2WO6 systems respectively and 3.89 and 2.31 times in the production of hydrogen (H2) out of water, respectively. The FSBG composite microspheres also exhibit good magnetic recoverability. An alternate mechanism for the enhanced visible-light photocatalytic activity is given in the present manuscript.

  7. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi; Liu, Bin; Cao, Baocheng

    2014-08-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO2 thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  8. Montmorillonite-supported Ag/TiO(2) nanoparticles: an efficient visible-light bacteria photodegradation material.

    PubMed

    Wu, Tong-Shun; Wang, Kai-Xue; Li, Guo-Dong; Sun, Shi-Yang; Sun, Jian; Chen, Jie-Sheng

    2010-02-01

    Montmorillonite (MMT)-supported Ag/TiO(2) composite (Ag/TiO(2)/MMT) has been prepared through a one-step, low-temperature solvothermal technique. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) reveal that the Ag particles coated with TiO(2) nanoparticles are well-dispersed on the surface of MMT in the composite. As a support for the Ag/TiO(2) composite, the MMT prevents the loss of the catalyst during recycling test. This Ag/TiO(2)/MMT composite exhibits high photocatalytic activity and good recycling performance in the degradation of E. coli under visible light. The high visible-light photocatalytic activity of the Ag/TiO(2)/MMT composite is ascribed to the increase in surface active centers and the localized surface plasmon effect of the Ag nanoparticles. The Ag/TiO(2)/MMT materials with excellent stability, recyclability, and bactericidal activities are promising photocatalysts for application in decontamination.

  9. Achieving significantly enhanced visible-light photocatalytic efficiency using a polyelectrolyte: the composites of exfoliated titania nanosheets, graphene, and poly(diallyl-dimethyl-ammonium chloride)

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; An, Qi; Luan, Xinglong; Huang, Hongwei; Li, Xiaowei; Meng, Zilin; Tong, Wangshu; Chen, Xiaodong; Chu, Paul K.; Zhang, Yihe

    2015-08-01

    A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency.A high-performance visible-light-active photocatalyst is prepared using the polyelectrolyte/exfoliated titania nanosheet/graphene oxide (GO) precursor by flocculation followed by calcination. The polyelectrolyte poly(diallyl-dimethyl-ammonium chloride) serves not only as an effective binder to precipitate GO and titania nanosheets, but also boosts the overall performance of the catalyst significantly. Unlike most titania nanosheet-based catalysts reported in the literature, the composite absorbs light in the UV-Vis-NIR range. Its decomposition rate of methylene blue is 98% under visible light. This novel strategy of using a polymer to enhance the catalytic performance of titania nanosheet-based catalysts affords immense potential in designing and fabricating next-generation photocatalysts with high efficiency. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03256c

  10. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    NASA Astrophysics Data System (ADS)

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-04-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  11. Unique bar-like sulfur-doped C3N4/TiO2 nanocomposite: Excellent visible light driven photocatalytic activity and mechanism study

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu

    2018-04-01

    In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.

  12. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections.

    PubMed

    Leyland, Nigel S; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J; Quilty, Brid; Pillai, Suresh C

    2016-04-21

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.

  13. Highly Efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections

    PubMed Central

    Leyland, Nigel S.; Podporska-Carroll, Joanna; Browne, John; Hinder, Steven J.; Quilty, Brid; Pillai, Suresh C.

    2016-01-01

    Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces. PMID:27098010

  14. Postmodification of MOF-5 using secondary complex formation using 8- hydroxyquinoline (HOQ) for the development of visible light active photocatalysts

    NASA Astrophysics Data System (ADS)

    Thakare, Sanjay R.; Ramteke, Shruti M.

    2018-05-01

    A novel HOQ@MOF-5 compound photocatalyst was successfully constructed by interacting 8- Hydroxyquinoline with MOF-5 synthesized through a room temperature method. The secondary complex formation between the Zn cluster with 8-Hydroxyquinoline harnessed visible light and acted as a mediator to transfer photoinduced electrons to MOF-5 for enhancing the photocatalytic reaction rate with visible light. HOQ@MOF-5 was characterized by various spectroscopic techniques, such as XRD showing the crystalline nature of compound, UV-Visible spectroscopy showing the 2.54 eV band gap of HOQ@MOF-5 and morphological analysis tools, such as the nanoparticle nature of the compound with 9.561 nm particle size. The photocatalytic effect was estimated using the photocatalytic degradation of phenol as a representative organic pollutant under visible light irradiation. This work provides a new compound acting as source of electrons transfer for the development of efficient photocatalysts for remediation of environmental pollution.

  15. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    PubMed

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts

    NASA Astrophysics Data System (ADS)

    Naghizadeh-Alamdari, Sara; Habibi-Yangjeh, Aziz; Pirhashemi, Mahsa

    2015-02-01

    Ultrasonic-assisted method was applied for preparation of Ag/AgCl sensitized ZnO nanostructures by one-pot procedure in water without using any post preparation treatments. The resultant nanocomposites were characterized by XRD, EDX, SEM, DRS, XPS, BET, and PL techniques. In the nanocomposites, ZnO and AgCl have wurtzite hexagonal and cubic crystalline phases, respectively and their surface morphologies remarkably change with increasing mole fraction of silver chloride. The EDX and XPS techniques show that the prepared samples are extremely pure. Ability of the nanocomposites for absorption of visible-light irradiation enhanced with increasing AgCl content. Photocatalytic examination of the nanocomposites was carried out using aqueous solution of methylene blue under visible-light irradiation. The degradation rate constant on the nancomposite rapidly increases with mole fraction of silver chloride up to 0.237. Enhancing activity of the nanocomposite was attributed to its ability for absorbing visible light and separation of electron-hole pairs. Furthermore, influence of ultrasonic irradiation time, calcination temperature, catalyst weight, pH of solution, and scavengers of reactive species on the degradation activity was investigated and the results were discussed. Finally, the photocatalyst has good activity after five successive cycles.

  17. [VISIBLE LIGHT AND HUMAN SKIN (REVIEW)].

    PubMed

    Tsibadze, A; Chikvaidze, E; Katsitadze, A; Kvachadze, I; Tskhvediani, N; Chikviladze, A

    2015-09-01

    Biological effect of a visible light depends on extend of its property to penetrate into the tissues: the greater is a wavelength the more is an effect of a radiation. An impact of a visible light on the skin is evident by wave and quantum effects. Quanta of a visible radiation carry more energy than infrared radiation, although an influence of such radiation on the skin is produced by the light spectrum on the boarder of the ultraviolet and the infrared rays and is manifested by thermal and chemical effects. It is determined that large doses of a visible light (405-436 nm) can cause skin erythema. At this time, the ratio of generation of free radicals in the skin during an exposure to the ultraviolet and the visible light range from 67-33% respectively. Visible rays of 400-500 nm length of wave cause an increase of the concentration of oxygen's active form and mutation of DNA and proteins in the skin. The urticaria in 4-18% of young people induced by photodermatosis is described. As a result of a direct exposure to sunlight photosensitive eczema is more common in elderly. Special place holds a hereditary disease - porphyria, caused by a visible light. In recent years, dermatologists widely use phototherapy. The method uses polychromatic, non-coherent (wavelength of 515-1200 nm) pulsating beam. During phototherapy/light treatment a patient is being exposed to sunlight or bright artificial light. Sources of visible light are lasers, LEDs and fluorescent lamps which have the full range of a visible light. Phototherapy is used in the treatment of acne vulgaris, seasonal affective disorders, depression, psoriasis, eczema and neurodermities. LED of the red and near infrared range also is characterized by the therapeutic effect. They have an ability to influence cromatophores and enhance ATP synthesis in mitochondria. To speed up the healing of wounds and stimulate hair growth light sources of a weak intensity are used. The light of blue-green spectrum is widely used for the treatment of neonatal hyperbilirubinemy. A photodynamic therapy takes a special place. The third generation of the blue (410 nm), yellow (595 nm) and red photosensitors are used. Photodynamic therapy is used in the treatment of cancer as well.

  18. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  19. Gold-plasmon enhanced photocatalytic performance of anatase titania nanotubes under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bingyang; He, Dawei, E-mail: dwhe@bjtu.edu.cn; Wang, Wenshuo

    2016-02-15

    Highlights: • APTMS/(TNTs-Au) was synthesized using a deposition-precipitation process. • APTMS/(TNTs-Au) showed superior visible light activity for the degradation of methylene blue. • The electromagnetic field distribution at the interface between TNTs and Au NPs were estimated by the 3D finite-difference time domain simulation. • The working mechanism of the photocatalytic activity of APTMS/(TNTs-Au) was illustrated. - Abstract: [3-Aminopropyl]trimethoxysilane-modified titania nanotubes decorated with Au nanoparticles (APTMS/(TNTs-Au)) nanocomposites were synthesized using a deposition-precipitation process. The results showed that Au nanoparticles (NPs) in the metallic state were firmly adhered to the surface of the anatase TNTs. APTMS/(TNTs-Au) exhibited great photocatalytic activities whichmore » were evaluated from the degradation rate of methylene blue aqueous solution under visible light irradiation. 3D finite-difference time domain simulation was performed to estimate the electromagnetic field distribution at the interface between TNTs and Au NPs. The visible photocatalytic activity of APTMS/(TNTs-Au) was largely attributed to the surface plasmon absorption of metallic Au NPs, which generated and transferred hot electrons to the CB of TNTs. In addition, the hot electrons on the surface of TNTs also suppressed the radiative electron–hole recombination and consequently enhanced the photocatalytic activity.« less

  20. Increased visible-light photocatalytic activity of TiO2 via band gap manipulation

    NASA Astrophysics Data System (ADS)

    Pennington, Ashley Marie

    Hydrogen gas is a clean burning fuel that has potential applications in stationary and mobile power generation and energy storage, but is commercially produced from non-renewable fossil natural gas. Using renewable biomass as the hydrocarbon feed instead could provide sustainable and carbon-neutral hydrogen. We focus on photocatalytic oxidation and reforming of methanol over modified titanium dioxide (TiO2) nanoparticles to produce hydrogen gas. Methanol is used as a model for biomass sugars. By using a photocatalyst, we aim to circumvent the high energy cost of carrying out endothermic reactions at commercial scale. TiO2 is a semiconductor metal oxide of particular interest in photocatalysis due to its photoactivity under ultraviolet illumination and its stability under catalytic reaction conditions. However, TiO2 primarily absorbs ultraviolet light, with little absorption of visible light. While an effective band gap for absorbance of photons from visible light is 1.7 eV, TiO2 polymorphs rutile and anatase, have band gaps of 3.03 eV and 3.20 eV respectively, which indicate ultraviolet light. As most of incident solar radiation is visible light, we hypothesize that decreasing the band gap of TiO2 will increase the efficiency of TiO2 as a visible-light active photocatalyst. We propose to modify the band gap of TiO2 by manipulating the catalyst structure and composition via metal nanoparticle deposition and heteroatom doping in order to more efficiently utilize solar radiation. Of the metal-modified Degussa P25 TiO2 samples (P25), the copper and nickel modified samples, 1%Cu/P25 and 1%Ni/P25 yielded the lowest band gap of 3.05 eV each. A difference of 0.22 eV from the unmodified P25. Under visible light illumination 1%Ni/P25 and 1%Pt/P25 had the highest conversion of methanol of 9.9% and 9.6%, respectively.

  1. Synthesis and visible light photoactivity of anatase Ag, and garlic loaded TiO2 nanocrystalline catalyst

    EPA Science Inventory

    An excellent visible light activated Ag and S doped TiO2 nanocatalyst was prepared by using AgNO3 and garlic (Allium sativum) as Ag+ and sulfur sources, respectively. The catalyst resisted the change from anatase to rutile phase even at calcination at 700 oC. The photocatalytic e...

  2. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light.

    PubMed

    Yang, Chih-Chi; Doong, Ruey-An; Chen, Ku-Fan; Chen, Giin-Shan; Tsai, Yung-Pin

    2018-01-01

    This study develops a low-energy rotating photocatalytic contactor (LE-RPC) that has Cu-doped TiO 2 films coated on stainless-steel rotating disks, to experimentally evaluate the efficiency of the degradation and decolorization of methylene blue (MB) under irradiation from different light sources (visible 430 nm, light-emitting diode [LED] 460 nm, and LED 525 nm). The production of hydroxyl radicals is also examined. The experimental results show that the photocatalytic activity of TiO 2 that is doped with Cu 2+ is induced by illumination with visible light and an LED. More than 90% of methylene blue at a 10 mg/L concentration is degraded after illumination by visible light (430 nm) for 4 hr at 20 rpm. This study also demonstrates that the quantity of hydroxyl radicals produced is directly proportional to the light energy intensity. The greater the light energy intensity, the greater is the number of hydroxyl radicals produced. The CuO-doped anatase TiO 2 powder was successfully synthesized in this study by a sol-gel method. The catalytic abilities of the stainless-steel film were enhanced in the visible light regions. This study has successfully modified the nano-photocatalytic materials to drop band gap and has also successfully fixed the nano-photocatalytic materials on a substratum to effectively treat dye wastewater in the range of visible light. The results can be useful to the development of a low-energy rotating photocatalytic contactor for decontamination purposes.

  3. Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction

    NASA Astrophysics Data System (ADS)

    Xin, Gang; Pan, Hongfei; Chen, Dan; Zhang, Zhihua; Wen, Bin

    2013-02-01

    N-doped TiO2 was synthesized by calcining a mixture of titanic acid and graphitic carbon nitride (g-C3N4) at temperatures above 500 °C. The final samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and UV-vis diffuse reflectance spectra. The photocatalytic activity of N-doped TiO2 was studied by assessing the degradation of methylene blue in an aqueous solution, under visible light and UV light irradiation. It was found that the N-doped TiO2 displayed higher photocatalytic activity than pure TiO2, under both visible and UV light.

  4. Preparation and photocatalytic activity of magnetic samarium-doped mesoporous titanium dioxide at the decomposition of methylene blue under visible light

    NASA Astrophysics Data System (ADS)

    Shi, Zhongliang; Lai, Hong; Yao, Shuhua

    2012-08-01

    Preparation of samarium-doped mesoporous titanium dioxide (Sm/MTiO2) coated magnetite (Fe3O4) photocatalysts (Sm/MTiO2/Fe3O4) and their activities under visible light were reported. The catalysts with Sm/MTiO2 shell and a Fe3O4 core were prepared by coating photoactive Sm/MTiO2 onto a magnetic Fe3O4 core through the hydrolysis of tetrabutyltitanate (Ti(OBu)4, TBT) with precursors of Sm(NO3)3 and TBT in the presence of Fe3O4 nanoparticles. The morphological, structural and optical properties of the prepared samples were characterized by BET surface area, transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-vis absorption spectroscopy. The effect of Sm ion content on the photocatalytic activity was studied. The photocatalytic activities of obtained photocatalysts under visible light were estimated by measuring the decomposition rate of methylene blue (MB, 50 mg/L) in an aqueous solution. The results showed that the prepared photocatalyst was activated by visible light and used as effective catalyst in photooxidation reactions. In addition, the possibility of cyclic usage of the prepared photocatalyst was also confirmed. Moreover, Sm/MTiO2 was tightly bound to Fe3O4 and could be easily recovered from the medium by a simple magnetic process. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.

  5. Hierarchical flower-like NiAl-layered double hydroxide microspheres encapsulated with black Cu-doped TiO2 nanoparticles: Highly efficient visible-light-driven composite photocatalysts for environmental remediation.

    PubMed

    Jo, Wan-Kuen; Kim, Yeong-Gyeong; Tonda, Surendar

    2018-05-22

    Herein, highly efficient composite photocatalysts comprising black Cu-doped TiO 2 nanoparticles (BCT) encapsulated within hierarchical flower-like NiAl-layered double hydroxide (LDH) microspheres were fabricated via a one-step hydrothermal route. Cu-doping and subsequent reduction treatment led to extended visible-light absorption of TiO 2 in the resulting composites, as confirmed by ultraviolet-visible diffuse reflectance spectral analysis. Moreover, thorough investigations confirmed the strong interactions between LDH and BCT in the resulting BCT/LDH composites. Notably, the BCT/LDH composites exhibited remarkable performance in the degradation of hazardous materials (methyl orange and isoniazid), superior to that of the individual components, reference P25, and P25/LDH under visible-light irradiation. Moreover, the BCT/LDH composite containing 30 wt% of BCT displayed the highest photocatalytic performance among the synthesized photocatalysts and also exhibited high stability during recycling tests with no obvious change in the activity. The superior photodegradation activity of the BCT/LDH composites was primarily attributed to efficient transfer and separation of the photoinduced charge carriers, resulting from the intimate contact interfaces between LDH and BCT. This approach represents a promising route for the rational design of highly efficient and visible-light-active LDH-based composite photocatalysts for application in energy harvesting and environmental protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment

    NASA Astrophysics Data System (ADS)

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-01

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable ‘brick-and-mortar’ nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  7. Solvothermal synthesis of stable nanoporous polymeric bases-crystalline TiO2 nanocomposites: visible light active and efficient photocatalysts for water treatment.

    PubMed

    Liu, Fujian; Kong, Weiping; Wang, Liang; Noshadi, Iman; Zhang, Zhonghua; Qi, Chenze

    2015-02-27

    Visible light active and stable nanoporous polymeric base-crystalline TiO2 nanocomposites were solvothermally synthesized from in situ copolymerization of divinylbenzene (DVB) with 1-vinylimidazolate (VI) or 4-vinylpyridine (Py) in the presence of tetrabutyl titanate without the use of any other additives (PDVB-VI-TiO2-x, PDVB-Py-TiO2-x, where x stands for the molar ratio of TiO2 to VI or Py), which showed excellent activity with respect to catalyzing the degradation of organic pollutants of p-nitrophenol (PNP) and rhodamine-B (RhB). TEM and SEM images show that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x have abundant nanopores, and TiO2 nanocrystals with a high degree of crystallinity were homogeneously embedded in the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x, forming a stable 'brick-and-mortar' nanostructure. PDVB-VI and PDVB-Py supports act as the glue linking TiO2 nanocrystals to form nanopores and constraining the agglomeration of TiO2 nanocrystals. XPS spectra show evidence of unique interactions between TiO2 and basic sites in these samples. UV diffuse reflectance shows that PDVB-VI-TiO2-x and PDVB-Py-TiO2-x exhibit a unique response to visible light. Catalytic tests show that the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were active in catalyzing the degradation of PNP and RhB organic pollutants under visible light irradiation. The enhanced activities of the PDVB-VI-TiO2-x and PDVB-Py-TiO2-x were ascribed to synergistic effects between abundant nanopores and the unique optical adsorption of visible light in the samples.

  8. Synthesis of metal free ultrathin graphitic carbon nitride sheet for photocatalytic dye degradation of Rhodamine B under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu

    2018-04-01

    In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.

  9. Photocatalytic water oxidation by a pyrochlore oxide upon irradiation with visible light: rhodium substitution into yttrium titanate.

    PubMed

    Kiss, Borbala; Didier, Christophe; Johnson, Timothy; Manning, Troy D; Dyer, Matthew S; Cowan, Alexander J; Claridge, John B; Darwent, James R; Rosseinsky, Matthew J

    2014-12-22

    A stable visible-light-driven photocatalyst (λ≥450 nm) for water oxidation is reported. Rhodium substitution into the pyrochlore Y2 Ti2 O7 is demonstrated by monitoring Vegard's law evolution of the unit-cell parameters with changing rhodium content, to a maximum content of 3 % dopant. Substitution renders the solid solutions visible-light active. The overall rate of oxygen evolution is comparable to WO3 but with superior light-harvesting and surface-area-normalized turnover rates, making Y2 Ti1.94 Rh0.06 O7 an excellent candidate for use in a Z-scheme water-splitting system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Visible Light-Driven H 2 Production over Highly Dispersed Ruthenia on Rutile TiO 2 Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy

    2016-01-04

    The immobilization of miniscule quantities of RuO 2 (~0.1%) onto one-dimensional (1D) TiO 2 nanorods (NRs) allows H 2 evolution from water under visible light irradiation. Rod-like rutile TiO 2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO 2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO 2(110) grown as 1D nanowires on rutile TiO 2(110), which occurs only at extremely low loads of RuO 2, leads to the formation of a heterointerface that efficientlymore » adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers« less

  11. Visible Light-Driven H 2 Production over Highly Dispersed Ruthenia on Rutile TiO 2 Nanorods

    DOE PAGES

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy; ...

    2015-12-02

    The immobilization of miniscule quantities of RuO 2 (~0.1%) onto one-dimensional (1D) TiO 2 nanorods (NRs) allows H 2 evolution from water under visible light irradiation. In addition, rod-like rutile TiO 2 structures, exposing preferentially (110) surfaces, are shown to be critical for the deposition of RuO 2 to enable photocatalytic activity in the visible region. The superior performance is rationalized on the basis of fundamental experimental studies and theoretical calculations, demonstrating that RuO 2(110) grown as 1D nanowires on rutile TiO 2(110), which occurs only at extremely low loads of RuO 2, leads to the formation of a heterointerfacemore » that efficiently adsorbs visible light. The surface defects, band gap narrowing, visible photoresponse, and favorable upward band bending at the heterointerface drastically facilitate the transfer and separation of photogenerated charge carriers.« less

  12. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    PubMed

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  13. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins.

    PubMed

    Arikawa, Hiroyuki; Takahashi, Hideo; Kanie, Takahito; Ban, Seiji

    2009-07-01

    The purpose of this study was to investigate effects of various visible light photoinitiators on the polymerization efficiency and color of the light-activated resins. Four photoinitiators, including camphorquinone, phenylpropanedione, monoacrylphosphine oxide (TPO), and bisacrylphosphine oxide (Ir819), were used. Each photoinitiator was dissolved in a Bis-GMA and TEGDMA monomer mixture. Materials were polymerized using dental quartz-tungsten halogen lamp (QTH), plasma-ark lamp and blue LED light-curing units, and a custom-made violet LED light unit. The degree of monomer conversion and CIE L*a*b* color values of the resins were measured using a FTIR and spectral transmittance meter. The degree of monomer conversions of TPO- and Ir819-containing resins polymerized with the violet-LED unit were higher than camphorquinone-containing resin polymerized with the QTH light-curing unit. The lowest color values were observed for the TPO-containing resin. Our results indicate that the TPO photoinitiator and the violet-LED light unit may provide a useful and improved photopolymerization system for dental light-activated resins.

  14. Synthesis and photocatalytic degradation study of methylene blue dye under visible light irradiation by Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0)

    NASA Astrophysics Data System (ADS)

    Bera, Ganesh; Reddy, V. R.; Mal, Priyanath; Das, Pradip; Turpu, G. R.

    2018-05-01

    The novel hetero-structures Fe1-xBixVO4 solid solutions (0 ≤ x ≤ 1.0) with the two dissimilar end member of FeVO4 - BiVO4, were successfully synthesized by the standard solid state reaction method. The structural and chemical properties of as prepared photo-catalyst samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR) and UV-visible absorption spectroscopy techniques. It is confirmed from the results of XRD, Raman and FT-IR that FeVO4 and BiVO4 are in triclinic (space group P-1 (2)) and monoclinic (space group I2/b (15)) phases respectively. The Bi incorporation into Fe site of FeVO4 emerges as hetero-structures of both the end members of the solid solutions. In addition, the photocatalytic activity in the degradation of methylene blue (MB) dye under visible light irradiation was carried out through UV-visible spectroscopy measurement of photo-catalysts FeVO4, BiVO4 and mixed phases of both photo-catalyst. The results indicate that under visible light irradiation the photocatalytic activity of mixed phases were very effective and higher than the both single phases of the solid solutions. The composition x= 0.25 exhibits an excellent photocatalytic property for the degradation of MB solution under visible light irradiation rather than other.

  15. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials.

    PubMed

    Li, Bei; Zhao, Yufei; Zhang, Shitong; Gao, Wa; Wei, Min

    2013-10-23

    A visible-light responsive photocatalyst was fabricated by anchoring NiTi-layered double hydroxide (NiTi-LDH) nanosheets to the surface of reduced graphene oxide sheets (RGO) via an in situ growth method; the resulting NiTi-LDH/RGO composite displays excellent photocatalytic activity toward water splitting into oxygen with a rate of 1.968 mmol g(-1) h(-1) and a quantum efficiency as high as 61.2% at 500 nm, which is among the most effective visible-light photocatalysts. XRD patterns and SEM images indicate that the NiTi-LDH nanosheets (diameter: 100-200 nm) are highly dispersed on the surface of RGO. UV-vis absorption spectroscopy exhibits that the introduction of RGO enhances the visible-light absorption range of photocatalysts, which is further verified by the largely decreased band gap (∼1.78 eV) studied by cyclic voltammetry measurements. Moreover, photoluminescence (PL) measurements indicate a more efficient separation of electron-hole pairs; electron spin resonance (ESR) and Raman scattering spectroscopy confirm the electrons transfer from NiTi-LDH nanosheets to RGO, accounting for the largely enhanced carrier mobility and the resulting photocatalytic activity in comparison with pristine NiTi-LDH material. Therefore, this work demonstrates a facile approach for the fabrication of visible-light responsive NiTi-LDH/RGO composite photocatalysts, which can be used as a promising candidate in solar energy conversion and environmental science.

  16. Heterogeneous Decomposition of Volatile Organic Compounds by Visible-Light Activated N, C, S-Embedded Titania.

    PubMed

    Chun, Ho-Hwan; Jo, Wan-Kuen

    2016-05-01

    In this study, a N-, C-, and S-doped titania (NCS-TiO2) composite was prepared by combining the titanium precursor with a single dopant source, and the photocatalytic activity of this system for the decomposition of volatile organic compounds (VOCs) at indoor-concentration levels, under exposure to visible light, was examined. The NCS-TiO2 composite and the pure TiO2 photocatalyst, used as a reference, were characterized via X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The average efficiencies of benzene, toluene, ethyl benzene, and o-xylene decomposition using NCS-TiO2 for were 70, 87, -100, and -100%, respectively, whereas the values obtained using the pure TiO2 powder were -0, 18, 49, and 51%, respectively. These results suggested that, for the photocatalytic decomposition of toxic VOCs under visible-light exposure conditions, NCS-TiO2 was superior to the reference photocatalyst. The decomposition efficiencies of the target VOCs were inversely related to the initial concentration and relative humidity as well as to the air-flow rate. The decomposition efficiencies of the target chemicals achieved with a conventional lamp/NCS-TiO2 system were higher than those achieved with a light emitting diode/NCS-TiO2 system. Overall, NCS-TiO2 can be used for the efficient decomposition of VOCs under visible-light exposure, if the operational conditions are optimized.

  17. Layered MoSe2/Bi2WO6 composite with P-N heterojunctions as a promising visible-light induced photocatalyst

    NASA Astrophysics Data System (ADS)

    Xie, Taiping; Liu, Yue; Wang, Haiqiang; Wu, Zhongbiao

    2018-06-01

    In this paper, layered MoSe2/Bi2WO6 composites were fabricated by a simple bath sonication method for photocatalytic applications. Their photocatalytic performances were then investigated via the photocatalytic oxidation of gaseous toluene under visible-light irradiation. As a result, 1.5%-MoSe2/Bi2WO6 catalyst showed the highest activity with a degradation rate of nearly 80% during three-hour visible-light irradiation. The k value determined of 1.5%-MoSe2/Bi2WO6 was approximately 6 times higher than that of pure Bi2WO6 and 7 times higher compared with pure MoSe2. After a series of characterizations, it was concluded that the p-n heterojunctions of MoSe2/Bi2WO6 composites with strong interlayer interactions could effectively prolong the life time of photoinduced electron-hole pairs. And both the contents of surface superoxide and hydroxyl radicals were thereby increased, benefitting the photocatalytic process. Furthermore, the hydroxyl radicals and holes were found to be the major active species. This work provided a way to design photocatalyst with enhanced visible-light driven photoactivity toward indoor air pollutants purification.

  18. Synthesis of AG@AgCl Core-Shell Structure Nanowires and Its Photocatalytic Oxidation of Arsenic (III) Under Visible Light.

    PubMed

    Qin, Yanyan; Cui, Yanping; Tian, Zhen; Wu, Yangling; Li, Yilian

    2017-12-01

    Ag@AgCl core-shell nanowires were synthesized by oxidation of Ag nanowires with moderate FeCl 3 , which exhibited excellent photocatalytic activity for As(III) oxidation under visible light. It was proved that the photocatalytic oxidation efficiency was significantly dependent on the mole ratio of Ag:AgCl. The oxidation rate of As(III) over Ag@AgCl core-shell nanowires first increased with the decrease of Ag 0 percentage, up until the optimized synthesis mole ratio of Ag nanowires:FeCl 3 was 2.32:2.20, with 0.023 mg L -1  min -1 As(III) oxidation rate; subsequently, the oxidation rate dropped with the further decrease of Ag 0 percentage. Effects of the pH, ionic strength, and concentration of humic acid on Ag@AgCl photocatalytic ability were also studied. Trapping experiments using radical scavengers confirmed that h + and ·O 2 - acted as the main active species during the visible-light-driven photocatalytic process for As(III) oxidation. The recycling experiments validated that Ag@AgCl core-shell nanowires were a kind of efficient and stable photocatalyst for As(III) oxidation under visible-light irradiation.

  19. Enhanced photocatalytic activity of nanocellulose supported zinc oxide composite for RhB dye as well as ciprofloxacin drug under sunlight/visible light

    NASA Astrophysics Data System (ADS)

    Tavker, Neha; Sharma, Manu

    2018-05-01

    Zinc oxide nanoparticles were synthesised from zinc acetate di-hydrate via co-precipitation method. Nanocellulose was isolated from agrowaste using chemo-mechanical treatments and characterized. Nanocellulose supported zinc oxide composites were prepared through in-situ method by adding different amounts of nanocellulose. The photocatalytic efficiency of pure Zno and nanocellulose supported ZnO was calculated using RhB dye under visible light and sun light. The composites which had nanocellulose in greater ratio showed higher degradation efficiency in sunlight rather than visible light for both; dye and drug. All the composites showed high rate of photodegradation compared to bare ZnO and bare nanocellulose. The enhancement in photocatalytic activity was observed maximum where the amount of cellulose was maximum. The maximum observed rate was 0.025 min-1 using Ciprofloxacin drug due to the increase in lifetime of Z4 sample delaying the electron and hole pair recombination. The degrading efficiency of nanocellulose supported zinc oxide (NC/ZnO) composite for RhB was found to be 35% in visible, 76% in sunlight and 75% for ciprofloxacin under sunlight.

  20. Graphene oxide coated coordination polymer nanobelt composite material: a new type of visible light active and highly efficient photocatalyst for Cr(VI) reduction.

    PubMed

    Shi, Gui-Mei; Zhang, Bin; Xu, Xin-Xin; Fu, Yan-Hong

    2015-06-28

    A visible light active photocatalyst was synthesized successfully by coating graphene oxide (GO) on a coordination polymer nanobelt (CPNB) using a simple colloidal blending process. Compared with neat CPNB, the resulting graphene oxide coated coordination polymer nanobelt composite material (GO/CPNB) exhibits excellent photocatalytic efficiency in the reduction of K2Cr2O7 under visible light irradiation. In the composite material, GO performs two functions. Firstly, it cuts down the band gap (E(g)) of the photocatalyst and extends its photoresponse region from the ultraviolet to visible light region. Secondly, GO exhibits excellent electron transportation ability that impedes its recombination with holes, and this can enhance photocatalytic efficiency. For GO, on its surface, the number of functional groups has a great influence on the photocatalytic performance of the resulting GO/CPNB composite material and an ideal GO"coater" to obtain a highly efficient GO/CPNB photocatalyst has been obtained. As a photocatalyst that may be used in the treatment of Cr(VI) in wastewater, GO/CPNB exhibited outstanding stability during the reduction of this pollutant.

  1. Photocatalytic degradation of pentachlorophenol in aqueous solution by visible light sensitive N-F-codoped TiO{sub 2} photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindan, Kadarkarai, E-mail: govindanmu@gmail.com; Water Chemistry Lab, Water Institute, Karunya University, Coimbatore 641 114; Murugesan, Sepperumal

    Graphical abstract: Schematic representation for the visible light photocatalytic process of N and F codoped TiO{sub 2}. Highlights: ► Visible light sensitive N-F-codoped TiO{sub 2}. ► Photocatalytic degradation of pentachlorophenol. ► Effect of oxidants on photocatalytic degradation of pentachlorophenol. ► PMS is a more efficient oxidant for the photodegradation of PCP. - Abstract: In this present study, N-F-codoped titanium dioxide nanocatalyst (NFTO) has been synthesized by simple sol–gel assisted solvothermal method for the effective utilization of visible light in photocatalytic reactions. Structural characterization of the photocatalyst is analyzed by XRD, UV–vis diffuse reflectance spectra (DRS), SEM and TEM. Moreover themore » chemical statuses of NFTO are gathered by X-ray photoelectron spectroscopy (XPS). The results show that a high surface area with photoactive anatase phase crystalline is obtained. In addition, nitrogen and fluorine atoms are doped into TiO{sub 2} crystal lattice to extend the visible light absorption and higher photocatalytic activity. The photocatalytic degradation of pentachlorophenol in aqueous solution is examined under visible light irradiation, the addition of oxidants such as PMS, PDS and H{sub 2}O{sub 2} is analyzed in detail. The rate of photocatalytic degradation of pentachlorophenol is obtained in the following order: PMS > PDS > H{sub 2}O{sub 2}.« less

  2. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals

    NASA Astrophysics Data System (ADS)

    Silvi, Mattia; Verrier, Charlie; Rey, Yannick P.; Buzzetti, Luca; Melchiorre, Paolo

    2017-09-01

    Chiral iminium ions—generated upon condensation of α,β-unsaturated aldehydes and amine catalysts—are used extensively by chemists to make chiral molecules in enantioenriched form. In contrast, their potential to absorb light and promote stereocontrolled photochemical processes remains unexplored. This is despite the fact that visible-light absorption by iminium ions is a naturally occurring event that triggers the mechanism of vision in higher organisms. Herein we demonstrate that the direct excitation of chiral iminium ions can unlock unconventional reaction pathways, enabling enantioselective catalytic photochemical β-alkylations of enals that cannot be realized via thermal activation. The chemistry uses readily available alkyl silanes, which are recalcitrant to classical conjugate additions, and occurs under illumination by visible-light-emitting diodes. Crucial to success was the design of a chiral amine catalyst with well-tailored electronic properties that can generate a photo-active iminium ion while providing the source of stereochemical induction. This strategy is expected to offer new opportunities for reaction design in the field of enantioselective catalytic photochemistry.

  3. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

    PubMed Central

    Bora, Tanujjal; Zoepfl, David; Dutta, Joydeep

    2016-01-01

    Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by following the phonon modes of ZnO. Under the resonant excitation the temperature at the surface of the Au-ZnO NRs reaches up to about 300 °C, resulting in almost 6 times higher apparent quantum yield (AQY) for photocatalytic degradation of methylene blue (MB) compared to the bare ZnO NRs. Under solar light irradiation the Au-ZnO NRs demonstrated visible light photocatalytic activity twice that of what was achieved with bare ZnO NRs, while significantly reduced the activation energy required for the photocatalytic reactions allowing the reactions to occur at a faster rate. PMID:27242172

  4. Synthesis and visible light photocatalytic properties of iron oxide–silver orthophosphate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Febiyanto,; Eliani, Irma Vania; Riapanitra, Anung

    2016-04-19

    The iron oxide-silver orthophosphate composites were successfully synthesized by co-precipitation method using Fe(NO{sub 3}){sub 3}.9H{sub 2}O, AgNO{sub 3}, and Na{sub 2}HPO{sub 4}.12 H{sub 2}O, followed by calcination at 500°C for 5 hours. The Fe/Ag mole ratios of iron oxide-silver orthophosphate composites were designed at 0, 0.1, 0.2, 0.3 and 0.4. The samples were characterized using X-ray Diffraction, Diffuse Reflectance Spectroscopy, Scanning Electron Microscopy and Specific Surface Area. The photocatalytic activities were evaluated using Rhodamine B degradation under visible light irradiation. The iron oxide-silver orthophosphate composite with the Fe/Ag mole ratio of 0.2 exhibited higher photocatalytic activity compared to the puremore » Ag{sub 3}PO{sub 4} under visible light irradiation. The enhanced photocatalytic activity could be attributed to the effective separation of hole (+) and electron pairs in the iron oxide-silver orthophosphate composite.« less

  5. Synthesis of CdS/BiOBr nanosheets composites with efficient visible-light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cui, Haojie; Zhou, Yawen; Mei, Jinfeng; Li, Zhongyu; Xu, Song; Yao, Chao

    2018-01-01

    The efficient charge separation action and visible-light responding could enhance the photocatalytic property of photocatalysts. In the present study, novel CdS/BiOBr nanosheets composites were synthesized by a three-step process. The as-prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), diffuse reflection spectroscopy (DRS), Raman spectroscopy and photoluminescence (PL). Under visible-light irradiation, the as-prepared CdS nanoparticles decorated BiOBr nanosheets exhibited the excellent photocatalytic activity and high stability for malachite green (MG) degradation. The photodegradation achieved maximum degradation efficiency (99%) using CdS/BiOBr-3 composites as photocatalyst. Furthermore, the possible photocatalytic mechanism upon CdS/BiOBr composites was also discussed through radical and holes trapping experiments. The heterostructure between CdS and BiOBr improved photocatalytic activity dramatically, which greatly promoted migration rate of the photoinduced electrons besides limiting the recombination of photogenerated electron-hole pairs.

  6. BiVO4 /N-rGO nano composites as highly efficient visible active photocatalyst for the degradation of dyes and antibiotics in eco system.

    PubMed

    Appavu, Brindha; Thiripuranthagan, Sivakumar; Ranganathan, Sudhakar; Erusappan, Elangovan; Kannan, Kathiravan

    2018-04-30

    Herein, we report the synthesis of novel nitrogen doped reduced graphene oxide/ BiVO 4 photo catalyst by single step hydrothermal method. The physicochemical properties of the catalysts were characterized using XRD, N 2 adsorption-desorption, Raman, XPS, SEM TEM, DRS-UV and EIS techniques. The synthesized catalysts were tested for their catalytic activity in the photo degradation of some harmful textile dyes (methylene blue & congo red) and antibiotics (metronidazole and chloramphenicol) under visible light irradiation. Reduced charge recombination and enhanced photocatalytic activity were observed due to the concerted effect between BiVO 4 and nitrogen-rGO. The degradation efficiency of BiVO 4 /N-rGO in the degradation of CR and MB was remarkably high i.e 95% and 98% under visible light irradiation. Similarly 95% of MTZ and 93% of CAP were degraded under visible light irradiation. HPLC studies implied that both the dyes and antibiotics were degraded to the maximum extent. The plausible photocatalytic mechanism on the basis of experimental results was suggested. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. A novel fabrication methodology for sulfur-doped ZnO nanorods as an active photoanode for improved water oxidation in visible-light regime

    NASA Astrophysics Data System (ADS)

    Khan, A.; Ahmed, M. I.; Adam, A.; Azad, A.-M.; Qamar, M.

    2017-02-01

    Incorporation of foreign moiety in the lattice of semiconductors significantly alters their optoelectronic behavior and opens a plethora of new applications. In this paper, we report the synthesis of sulfur-doped zinc oxide (S-doped ZnO) nanorods by reacting ZnO nanorods with diammonium sulfide in vapor phase. Microscopic investigation revealed that the morphological features, such as, the length (2-4 μm) and width (100-250 nm) of the original hexagonal ZnO nanorods remained intact post-sulfidation. X-ray photoelectron spectroscopy analysis of the sulfide sample confirmed the incorporation of sulfur into ZnO lattice. The optical measurements suggested the extension of absorption threshold into visible region upon sulfidation. Photoelectrochemical (PEC) activities of pure and S-doped ZnO nanorods were compared for water oxidation in visible light (λ > 420 nm), which showed several-fold increment in the performance of S-doped ZnO sample; the observed amelioration in the PEC activity was rationalized in terms of preferred visible light absorption and low resistance of sulfide sample, as evidenced by optical and electrochemical impedance spectroscopy.

  8. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  9. Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis

    PubMed Central

    Zhang, Yin; Guo, Jun; Shi, Lin; Zhu, Yanfei; Hou, Ke; Zheng, Yonglong; Tang, Zhiyong

    2017-01-01

    A simple and effective strategy is developed to realize visible light–driven heterogeneous asymmetric catalysis. A chiral organic molecule, which only has very weak catalytic activity in asymmetric α-alkylation of aldehydes under visible light, is utilized as the ligand to coordinate with different types of metal ions, including Zn2+, Zr4+, and Ti4+, for construction of crystalline metal organic frameworks (MOFs). Impressively, when used as heterogeneous catalysts, all of the synthesized MOFs exhibit markedly enhanced activity. Furthermore, the asymmetric catalytic performance of these MOFs could be easily altered by selecting different metal ions, owing to the tunable electron transfer property between metal ions and chiral ligands. This work will provide a new approach for fabrication of heterogeneous catalysts and trigger more enthusiasm to conduct the asymmetric catalysis driven by visible light. PMID:28835929

  10. One-pot synthesis of hierarchical Cu{sub 2}O/Cu hollow microspheres with enhanced visible-light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianjie; Tao, Feifei, E-mail: feifeitao@usx.edu.cn; Lin, Jiudong

    2015-08-15

    The hierarchical Cu{sub 2}O/Cu hollow microspheres have been fabricated by the one-pot solvothermal redox method, which is one-step approach without any surfactant and template. By using the HRTEM, XRD, XPS and UV–vis spectroscopy, the as-prepared product is composed of Cu{sub 2}O and Cu with energy band gap of 1.72 eV. Based on the time-dependent experiments, the content of Cu{sub 2}O and Cu compositions can be effectively controlled by adjusting the reaction time and a possible mechanism is proposed. In addition, using various dye molecules to stimulate pollutants, the hierarchical Cu{sub 2}O/Cu hollow microspheres reacted for 8 h exhibit excellent visible-lightmore » photocatalytic activities, which is much higher than those of the Cu{sub 2}O/Cu catalysts formed at the shorter reaction time, commercial Cu{sub 2}O powder and the mixture of alone Cu{sub 2}O and Cu. This enhanced photocatalytic performance makes these hierarchical Cu{sub 2}O/Cu hollow microspheres a kind of efficient visible-light photocatalyst in removing some organic compounds in wastewater. - Graphical abstract: The hierarchical Cu{sub 2}O/Cu hollow microspheres with adjustable components have been synthesized by one-step solvothermal redox approach. The special structures and composition lead to the excellent visible-light photocatalytic activity. - Highlights: • The hierarchical Cu{sub 2}O/Cu hollow microspheres are fabricated by one-step approach. • The content of Cu{sub 2}O and Cu can be controlled by adjusting the reaction time. • The material exhibits a better visible-light photocatalytic activity and stability. • Degradation kinetics of MO by Cu{sub 2}O/Cu fits the pseudo first-order model.« less

  11. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  12. Novel high potential visible-light-active photocatalyst of CNT/Mo, S-codoped TiO2 hetero-nanostructure

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Shamshiri, M.; Jabbari, V.

    2014-10-01

    The current study deals with synthesize of novel nanophotocatalysts of CNT/Mo,S-codoped TiO2 by reacting between titanium isopropoxide (Ti(OC3H7)4) and CNT in aqueous ammonia and subsequent calcining of hydrolysis of the products. The prepared catalysts were characterized by N2 adsorption-desorption measurements, XRD, SEM, TEM, EDX, FT-IR, and UV-vis DRS spectroscopy. SEM and TEM images exhibited uniform coverage of CNT with anatase TiO2 nanoclusters. It was also demonstrated that the presence of S and Mo within the TiO2 acts as electrons traps and prevents the charge recombination and also enables the TiO2 photocatalyst to be active in visible-light region. Moreover, the CNT/Mo,S-doped TiO2 nanohybrids has been proven to has a excellent photocatalytic performance in photodecomposition of Congored (CR), at which the rate of decomposition reaches 100% in only 20 and 30 min under UV and visible-light irradiation, respectively. The enhanced photocatalytic activity was ascribed to the synergetic effects of excellent electrical property of CNT and metal-non-metal codoping. Finally, which to best of our knowledge is done for the first time, we have demonstrated that Mo- and S-doped TiO2 decorated over CNT, or CNT/Mo,S-codoped TiO2, may have high potential applications in photocatalysis and environmental protection with superior catalytic activity under visible-light illumination.

  13. Probing the Effects of Templating on the UV and Visible Light Photocatalytic Activity of Porous Nitrogen-Modified Titania Monoliths for Dye Removal.

    PubMed

    Nursam, Natalita M; Wang, Xingdong; Tan, Jeannie Z Y; Caruso, Rachel A

    2016-07-13

    Porous nitrogen-modified titania (N-titania) monoliths with tailored morphologies were prepared using phase separation and agarose gel templating techniques. The doping and templating process were simultaneously carried out in a one-pot step using alcohol amine-assisted sol-gel chemistry. The amount of polymer used in the monoliths that were prepared using phase separation was shown to affect both the physical and optical properties: higher poly(ethylene glycol) content increased the specific surface area, porosity, and visible light absorption of the final materials. For the agarose-templated monoliths, the infiltration conditions affected the monolith morphology. A porous monolith with high surface area and the least shrinkage was obtained when the N containing alkoxide precursor was infiltrated into the agarose scaffolds at 60 °C. The effect of the diverse porous morphologies on the photocatalytic activity of N-titania was studied for the decomposition of methylene blue (MB) under visible and UV light irradiation. The highest visible light activity was achieved by the agarose-templated N-titania monolith, in part due to higher N incorporation. This sample also showed better UV activity, partly because of the higher specific surface area (up to 112 m(2) g(-1)) compared to the phase separation-induced monoliths (up to 103 m(2) g(-1)). Overall, agarose-templated, porous N-titania monoliths provided better features for effectively removing the MB contaminant.

  14. Low-temperature solid-state preparation of ternary CdS/g-C3N4/CuS nanocomposites for enhanced visible-light photocatalytic H2-production activity

    NASA Astrophysics Data System (ADS)

    Cheng, Feiyue; Yin, Hui; Xiang, Quanjun

    2017-01-01

    Low-temperature solid-state method were gradually demonstrated as a high efficiency, energy saving and environmental protection strategy to fabricate composite semiconductor materials. CdS-based multiple composite photocatalytic materials have attracted increasing concern owning to the heterostructure constituents with tunable band gaps. In this study, the ternary CdS/g-C3N4/CuS composite photocatalysts were prepared by a facile and novel low-temperature solid-state strategy. The optimal ternary CdS/g-C3N4/CuS composite exhibits a high visible-light photocatalytic H2-production rate of 57.56 μmol h-1 with the corresponding apparent quantum efficiency reaches 16.5% at 420 nm with Na2S/Na2SO3 mixed aqueous solution as sacrificial agent. The ternary CdS/g-C3N4/CuS composites show the enhanced visible-light photocatalytic H2-evolution activity comparing with the binary CdS-based composites or simplex CdS. The enhanced photocatalytic activity is ascribed to the heterojunctions and the synergistic effect of CuS and g-C3N4 in promotion of the charge separation and charge mobility. This work shows that the low-temperature solid-state method is efficient and environmentally benign for the preparation of CdS-based multiple composite photocatalytic materials with enhanced visible-light photocatalytic H2-production activity.

  15. Characterization and activity of visible-light-driven TiO 2 photocatalyst codoped with lanthanum and iodine

    NASA Astrophysics Data System (ADS)

    Li, Ling; Zhuang, Huisheng; Bu, Dan

    2011-08-01

    The novel visible-light-activated La/I/TiO 2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO 2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO 2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO 2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.

  16. Sunlight activated anodic freestanding ZrO2 nanotube arrays for Cr(VI) photoreduction.

    PubMed

    Bashirom, Nurulhuda; Tan, Wai Kian; Go, Kawamura; Matsuda, Atsunori; Abdul Razak, Khairunisak; Lockman, Zainovia

    2018-06-14

    Visible-light-active freestanding zirconia (ZrO2) nanotube (FSZNT) arrays were fabricated by a facile electrochemical anodization method in fluoride containing ethylene glycol electrolyte added to it 1 vol.% of potassium carbonate (K2CO3) at 60 V for 1 h. Poor adhesion at metal|oxide interface was induced by K2CO3 leading to formation of the FSZNT flakes. The effect of crystal structures of FSZNTs e.g., amorphous, amorphous/tetragonal, and tetragonal/monoclinic was investigated towards the photocatalytic reduction of 10 ppm hexavalent chromium, Cr(VI) at pH 2 under sunlight. The results demonstrate the amorphous FSZNTs exhibited the highest Cr(VI) removal efficiency than the crystalline FSZNTs (95 % versus 33 % after 5 h). The high photocatalytic activity of the amorphous FSZNTs can be attributed to enhanced Cr(VI) adsorption, high visible light absorption, and better charge carriers separation. The low photocatalytic activity of the crystalline FSZNTs annealed at 500 °C was mainly attributed to poor Cr(VI) adsorption, low visible light absorption, and less photoactive monoclinic-ZrO2. © 2018 IOP Publishing Ltd.

  17. Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst.

    PubMed

    Xu, Zhihui; Zhang, Ming; Wu, Jingyu; Liang, Jianru; Zhou, Lixiang; L, Bo

    2013-01-01

    In this study, a novel TiO2/β-FeOOH composite photocatalyst was synthesized by a hydrothermal method. X-ray diffraction, Fourier transform infrared spectrum, UV-vis diffuse reflectance spectra and scanning electron microscopy (SEM) were used to characterize the composite photocatalyst. The photocatalytic activity of the prepared composite photocatalyst was evaluated in a heterogeneous photo-Fenton-like process using methyl orange (MO) as target pollutant. The TiO2/β-FeOOH composites exhibited higher photocatalytic activity than pure β-FeOOH and TiO2 under visible-light irradiation. The enhanced photocatalytic activity can be ascribed to the formation of TiO2/β-FeOOH heterostructure, which plays an important role in expanding the photoactivity to the visible light region and in effectively prolonging the lifetime of photoinduced electrons and holes. Further investigation revealed that the 25TiO2/β-FeOOH composite synthesized with the TiO2/Fe(3+) in a mole ratio of 25:75 showed the highest catalytic activity.

  18. Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers

    NASA Astrophysics Data System (ADS)

    Wu, Yeqiu; He, Tao

    2018-06-01

    The synthesis and photocatalytic activities of Ag-SrTiO3 nanofibers were reported in this work. The fabricated Ag-SrTiO3 nanofibers were characterized by TG-DSC, XRD, IR, XPS, SEM, TEM, DRS and ESR techniques. The XRD and IR results show that Ag-SrTiO3 nanofibers have a perovskite structure after the heat treatment at 700 °C. The XPS result shows that Ag element exists as Ag0 in the fabricated Ag-SrTiO3 nanofibers. The SEM and TEM images indicate the obtaining of nanofibers with porous structure. The photocatalytic activity of Ag-SrTiO3 nanofibers was evaluated by degrading RhB and MB under visible light irradiation. The Ag-SrTiO3 nanofibers show excellent photocatalytic activity under visible light irradiation because of the surface plasmon resonance effect of Ag0. In the photocatalysis process of RhB and MB, lots of hydroxyl radicals were generated, which plays the key role in the decomposition of organic pollutants.

  19. Ag loading induced visible light photocatalytic activity for pervoskite SrTiO3 nanofibers.

    PubMed

    Wu, Yeqiu; He, Tao

    2018-06-15

    The synthesis and photocatalytic activities of Ag-SrTiO 3 nanofibers were reported in this work. The fabricated Ag-SrTiO 3 nanofibers were characterized by TG-DSC, XRD, IR, XPS, SEM, TEM, DRS and ESR techniques. The XRD and IR results show that Ag-SrTiO 3 nanofibers have a perovskite structure after the heat treatment at 700°C. The XPS result shows that Ag element exists as Ag 0 in the fabricated Ag-SrTiO 3 nanofibers. The SEM and TEM images indicate the obtaining of nanofibers with porous structure. The photocatalytic activity of Ag-SrTiO 3 nanofibers was evaluated by degrading RhB and MB under visible light irradiation. The Ag-SrTiO 3 nanofibers show excellent photocatalytic activity under visible light irradiation because of the surface plasmon resonance effect of Ag 0 . In the photocatalysis process of RhB and MB, lots of hydroxyl radicals were generated, which plays the key role in the decomposition of organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Hydrothermal synthesis of Bi2WO6 and photocatalytic reduction of aqueous Cr(VI) under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Jing; Shi, Qingzhu; Chen, Yan; Song, Ming

    2017-12-01

    Bi2WO6 was synthesized via a facile hydrothermal method using different inorganic acid or alkali varied pH of the solution at 180℃ for 12 h, and characterized by X-ray diffraction, FESEM and photocurrent. Furthermore, the photocatalytic activity of Bi2WO6 was investigated in the reduction of aqueous Cr(VI) under visible light (λ > 420 nm) irradiation. As a result, assynthesized Bi2WO6 was an orthorhombic phase, and well-crystallized with 3D hierarchical structure constructed by arranged 2D layers of nanoplates. All the as-synthesized Bi2WO6 exhibited the visible light photocatalytic activities on aqueous Cr(VI), and Bi2WO6-(2) exhibited the highest photocatalytic reduction efficiency based on much higher separation and transfer efficiency of photogenerated electrons and holes.

  1. Experimental study of the visible-light photocatalytic activity of oxygen-deficient TiO2 prepared with Ar/H2 plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Nakano, Takuma; Yazawa, Shota; Araki, Shota; Kogoshi, Sumio; Katayama, Noboru; Kudo, Yusuke; Nakanishi, Tetsuya

    2015-01-01

    Oxygen-deficient TiO2 (TiO2-x) has been proposed as a visible-light-responsive photocatalyst. TiO2-x thin films were prepared by Ar/H2 plasma surface treatment, applying varying levels of microwave input power and processing times. The highest visible light photocatalytic activity was observed when using an input power of 200 W, a plasma processing time of 10 min, and a 1:1 \\text{Ar}:\\text{H}2 ratio, conditions that generate an electron temperature of 5.7(±1.0) eV and an electron density of 8.5 × 1010 cm-3. The maximum formaldehyde (HCHO) removal rate of the TiO2-x film was 2.6 times higher than that obtained from a TiO2-xNx film under the same test conditions.

  2. Green-Light-Sensitive BODIPY Photoprotecting Groups for Amines

    PubMed Central

    2018-01-01

    We describe a series of easily accessible, visible-light-sensitive (λ > 500 nm) BODIPY (boron-dipyrromethene)-based photoprotecting groups (PPGs) for primary and secondary amines, based on a carbamate linker. The caged compounds are stable under aqueous conditions for 24 h and can be efficiently uncaged in vitro with visible light (λ = 530 nm). These properties allow efficient photodeprotection of amines, rendering these novel PPGs potentially suitable for various applications, including the delivery of caged drugs and their remote activation. PMID:29369628

  3. A comparison study of rhodamine B photodegradation over nitrogen-doped lamellar niobic acid and titanic acid under visible-light irradiation.

    PubMed

    Li, Xiukai; Kikugawa, Naoki; Ye, Jinhua

    2009-01-01

    A solid-state reaction method with urea as a nitrogen precursor was used to prepare nitrogen-doped lamellar niobic and titanic solid acids (i.e., HNb(3)O(8) and H(2)Ti(4)O(9)) with different acidities for visible-light photocatalysis. The photocatalytic activities of the nitrogen-doped solid acids were evaluated for rhodamine B (RhB) degradation and the results were compared with those obtained over the corresponding nitrogen-doped potassium salts. Techniques such as XRD, BET, SEM, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy were adopted to explore the nature of the materials as well as the characteristics of the doped nitrogen species. It was found that the intercalation of the urea precursor helped to stabilize the layered structures of both lamellar solid acids and enabled easier nitrogen doping. The effects of urea intercalation were more significant for the more acidic HNb(3)O(8) sample than for the less acidic H(2)Ti(4)O(9). Compared with the nitrogen-doped KNb(3)O(8) and K(2)Ti(4)O(9) samples, the nitrogen-doped HNb(3)O(8) and H(2)Ti(4)O(9) solid acids absorb more visible light and exhibit a superior activity for RhB photodegradation under visible-light irradiation. The nitrogen-doped HNb(3)O(8) sample performed the best among all the samples. The results of the current study suggest that the protonic acidity of the lamellar solid-acid sample is a key factor that influences nitrogen doping and the resultant visible-light photocatalysis.

  4. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    NASA Astrophysics Data System (ADS)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  5. Cytotoxicity of All-Trans-Retinal Increases Upon Photodegradation†

    PubMed Central

    Różanowska, Małgorzata; Handzel, Kinga; Boulton, Michael E.; Różanowski, Bartosz

    2013-01-01

    All-trans-retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time-resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ~330 nm. Toxicity of dAtRal was concentration-dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored. PMID:22515697

  6. Copper NPs decorated titania: A novel synthesis by high energy US with a study of the photocatalytic activity under visible light.

    PubMed

    Stucchi, Marta; Bianchi, Claudia L; Pirola, Carlo; Cerrato, Giuseppina; Morandi, Sara; Argirusis, Christos; Sourkouni, Georgia; Naldoni, Alberto; Capucci, Valentino

    2016-07-01

    The most important drawback of the use of TiO2 as photocatalyst is its lack of activity under visible light. To overcome this problem, the surface modification of commercial micro-sized TiO2 by means of high-energy ultrasound (US), employing CuCl2 as precursor molecule to obtain both metallic copper as well as copper oxides species at the TiO2 surface, is here. We have prepared samples with different copper content, in order to evaluate its impact on the photocatalytic performances of the semiconductor, and studied in particular the photodegradation in the gas phase of some volatile organic molecules (VOCs), namely acetone and acetaldehyde. We used a LED lamp in order to have only the contribution of the visible wavelengths to the TiO2 activation (typical LED lights have no emission in the UV region). We employed several techniques (i.e., HR-TEM, XRD, FT-IR and UV-Vis) in order to characterize the prepared samples, thus evidencing different sample morphologies as a function of the various copper content, with a coherent correlation between them and the photocatalytic results. Firstly, we demonstrated the possibility to use US to modify the TiO2, even when it is commercial and micro-sized as well; secondly, by avoiding completely the UV irradiation, we confirmed that pure TiO2 is not activated by visible light. On the other hand, we showed that copper metal and metal oxides nanoparticles strongly and positively affect its photocatalytic activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Studies on novel BiyXz-TiO2/SrTiO3 composites: Surface properties and visible light-driven photoactivity

    NASA Astrophysics Data System (ADS)

    Marchelek, Martyna; Grabowska, Ewelina; Klimczuk, Tomasz; Lisowski, Wojciech; Giamello, Elio; Zaleska-Medynska, Adriana

    2018-03-01

    A series of novel BiyXz-TiO2/SrTiO3 composites were prepared by multistep synthesis route. The as-prepared photocatalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FT-IR), Raman spectra and BET analysis. The photocatalytic activity test was performed in aqueous solution of phenol under the irradiation of visible light range (λ ≥ 420 nm). Obtained results revealed that the BiOI_TiO2/SrTiO3 sample exhibit the highest photocatalytic activity under visible irradiation (0.6 μmol/dm3/min). Thus, it was demonstrated that modification of the TiO2/SrTiO3 microspheres by flowers-like structure made of bismuth oxyiodide resulted in enhancement of photocatalytic activity under visible light. The role of active species during the decomposition process of organic compound was investigated using different types of active species scavengers as well as electron paramagnetic resonance analysis (EPR). The study showed that in the BiOI_TiO2/SrTiO3/Vis system the holes (h+) plays relevant role in phenol decomposition. Furthermore, the stability and recyclable properties of obtained BiOI_TiO2/SrTiO3 sample were confirmed during three consecutive processes.

  8. CubeSat Nighttime Earth Observations

    NASA Astrophysics Data System (ADS)

    Pack, D. W.; Hardy, B. S.; Longcore, T.

    2017-12-01

    Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.

  9. First use of a divalent lanthanide for visible-light-promoted photoredox catalysis† †Electronic supplementary information (ESI) available. CCDC 1539923. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc02479g

    PubMed Central

    Jenks, Tyler C.; Bailey, Matthew D.; Hovey, Jessica L.; Fernando, Shanilke; Basnayake, Gihan; Cross, Michael E.; Li, Wen

    2017-01-01

    We report the first catalytic use of a divalent lanthanide in visible-light-promoted bond-forming reactions. Our new precatalyst uses europium in the +2 oxidation state and is active in the presence of blue light from light-emitting diodes. The use of low-energy visible light reduces the occurrence of potential side reactions that might be induced by higher-energy UV light. The system described here uses zinc metal as a sacrificial reductant and is tolerant to wet, protic solvents. The catalyst can be made in situ from relatively inexpensive and air-stable EuCl3·6H2O, and the ligand can be synthesized in large quantities in two steps. With 0.5% loading of precatalyst, an average of 120 turnovers was observed in six hours for reductive coupling of benzyl chloride. We expect that the results will initiate the study of visible-light-promoted photoredox catalysis using divalent europium in a variety of reactions. PMID:29675173

  10. Two-dimensional TiO2-based nanosheets co-modified by surface-enriched carbon dots and Gd2O3 nanoparticles for efficient visible-light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Lu, Dingze; Fang, Pengfei; Ding, Junqian; Yang, Minchen; Cao, Yufei; Zhou, Yawei; Peng, Kui; Kondamareddy, Kiran Kumar; Liu, Min

    2017-02-01

    Two-dimensional TiO2-based nanosheets (TNSs) co-modified by surface-enriched carbon dots (CDs) and Gd2O3 nanoparticles: (Gd-C-TNSs), capable of exhibiting visible-light-driven photo catalysis were synthesized using a two-pot hydrothermal route. The samples had a sheet-like structure, thickness of approximately 3.6 nm, large specific surface area of 240-350 cm2/g. The CDs (2-3 nm) and Gd2O3 nanoparticles (1-2 nm) were highly dispersed over the surface of the nanosheets. The co-modification by Gd2O3 nanoparticles and CDs influenced the crystallinity, crystal structure, and surface area of the TNSs, and improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be improved by an appropriate amount of modification. A very high efficiency was obtained using 0.5 at% Gd/Ti and 3.0 g/L of CDs. The visible-light-induced photocatalytic activity is enhanced under the isolated Cr(VI) system, isolated Rhodamin B (RhB) system, and the synergism between RhB degradation and Cr(VI) reduction for the Gd-C-TNSs photocatalysts. Initially, the photocatalytic activity gradually increased with an increase in the amount of CDs, and then decreased after attaining a maximum, in the case where 0.5 at% Gd/Ti and 3.0 g/L of CDs were used. The enhancement in the photocatalytic activity was attributed to the synergetic effect of the Gd2O3 nanoparticles, TNSs, and CDs in the Gd-C-TNSs composites. The effect led to a fast separation and slow recombination of photo-induced electron-hole pairs. An alternate mechanism for enhanced visible-light photocatalytic activity was also considered.

  11. Synthesis and energy applications of mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the intrinsic modification of titania by doping, graphene quantum dot sensitization in mesoporous titania film was also investigated for visible light photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered mesoporous titania films showed synergistic effect in water splitting due to high surface area, band gap reduction, enhanced visible light absorption, and efficient charge separation and transport. This study suggests that plasma based doping and graphene quantum dot sensitization are promising strategies to reduce band gap and enhance visible light absorption of high surface area surfactant templated mesoporous titania films, leading to superior visible-light driven photoelectrochemical hydrogen production. The results demonstrate the importance of designing and manipulating the energy band alignment in composite nanomaterials for fundamentally improving visible light absorption, charge separation and transport, and thereby photoelectrochemical properties.

  12. 33 CFR 88.12 - Public safety activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; traffic control; salvage; firefighting; medical assistance; assisting disabled vessels; and search and... alternately flashing red and yellow light signal. This identification light signal must be located so that it does not interfere with the visibility of the vessel's navigation lights. The identification light...

  13. 33 CFR 88.12 - Public safety activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; traffic control; salvage; firefighting; medical assistance; assisting disabled vessels; and search and... alternately flashing red and yellow light signal. This identification light signal must be located so that it does not interfere with the visibility of the vessel's navigation lights. The identification light...

  14. The influence of visible light on transparent zinc tin oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Görrn, P.; Lehnhardt, M.; Riedl, T.; Kowalsky, W.

    2007-11-01

    The characteristics of transparent zinc tin oxide thin film transistors (TTFTs) upon illumination with visible light are reported. Generally, a reversible decrease of threshold voltage Vth, saturation field effect mobility μsat, and an increase of the off current are found. The time scale of the recovery in the dark is governed by the persistent photoconductivity in the semiconductor. Devices with tuned [Zn]:[Sn] ratio show a shift of Vth of less 2V upon illumination at 5mW/cm2 (brightness >30000cd/m2) throughout the visible spectrum. These results demonstrate TTFTs which are candidates as pixel drivers in transparent active-matrix organic light emitting diode displays.

  15. Two-Photon Activation of p-Hydroxyphenacyl Phototriggers: Toward Spatially Controlled Release of Diethyl Phosphate and ATP.

    PubMed

    Houk, Amanda L; Givens, Richard S; Elles, Christopher G

    2016-03-31

    Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.

  16. Novel MoSe2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes.

    PubMed

    Dai, Chu; Qing, Enping; Li, Yong; Zhou, Zhaoxin; Yang, Chao; Tian, Xike; Wang, Yanxin

    2015-12-21

    Advanced oxidation processes as a green technology have been adopted by combining the semiconductor catalyst MoSe2 with H2O2 under visible radiation. And novel three-dimensional self-assembled molybdenum diselenide (MoSe2) hierarchical microspheres from nanosheets were produced by using organic, selenium cyanoacetic acid sodium (NCSeCH2COONa) as the source of Se. The obtained products possess good crystallinity and present hierarchical structures with the average diameter of 1 μm. The band gap of MoSe2 microspheres is 1.68 eV and they present excellent photocatalytic activity under visible light irradiation in the MoSe2-H2O2 system. This effective photocatalytic mechanism was investigated in this study and can be attributed to visible-light-driven advanced oxidation processes.

  17. Supercritical-assistant liquid crystal template approach to synthesize mesoporous titania/multiwalled carbon nanotube composites with high visible-light driven photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chen; Li, Youji, E-mail: bcclyj@163.com; Xu, Peng

    2014-12-15

    Graphical abstract: We investigate the influence of mesoporous titania content upon the visible-light driven photocatalytic performance of MPT/MWCNTs in phenol degradation. - Highlights: • MPT/MWCNTs were fabricated by liquid-crystal template in supercritical CO{sub 2}. • MPT/MWCNTs show high visible-light driven photoactivity for phenol degradation. • MPT/MWCNTs also show high reusable photoactivity under visible irradiation. • MPT content can control visible-light driven photoactivity of MPT/MWCNTs. • MPT is not easily broken away from from MPT/MWCNT composites. - Abstract: Mesoporous titania (MPT) was deposited onto multiwalled carbon nanotubes (MWCNTs) by deposition of titanium sol containing liquid-crystal template with assistant of supercritical CO{submore » 2}. The products were characterized with various analytical techniques to determine their structural, morphological, optical absorption and photocatalytic properties. The results indicate that in photocatalytic degradation of phenol under visible light, the mixtures or composites of MPT and MWCNT show the high efficiency because of synergies between absorbing visible light, releasing electrons and facilitating transfer of charge carriers of MWCNTs and providing activated centers of MPT. Because of the mutual constraint between MPT and MWCNTs on the photocatalytic efficiency, the optimal loading of MPT in MPT/MWCNT-3 for phenol degradation is 48%. Because the intimate contact between MWCNTs and MPT is more beneficial to electron transformation, photoactivity of mixture is lower than that of composites with high reusable performance. The optimum conditions of phenol degradation were obtained.« less

  18. Microwave-assisted solvothermal synthesis of flower-like Ag/AgBr/BiOBr microspheres and their high efficient photocatalytic degradation for p-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tingting, E-mail: tingtingli1983@hotmail.com; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082; Department of Environment and Chemical Engineering, Key Laboratory of Jiangxi Province for Ecological Diagnosis, Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063

    Flower-like Ag/AgBr/BiOBr microspheres were successfully fabricated by the approach of microwave-assisted solvothermal and in situ photo-assisted reduction. A reactive ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) was employed as Br source in the presence of surfactant polyvinylpyrrolidone (PVP). The photocatalytic activity of Ag/AgBr/BiOBr towards the decomposition of p-nitrophenol under visible light irradiation was evaluated. The results indicated that Ag/AgBr/BiOBr showed enhanced photocatalytic activity towards p-nitrophenol, comparing with P25, BiOBr and Ag/AgBr. More than 96% of p-nitrophenol was decomposed in 3.5 h under visible-light irradation. The excellent photocatalytic activity of flower-like Ag/AgBr/BiOBr microspheres can be attributed to the large specific surface area,more » strong visible-light absorption, suitable energy band structure and surface plasmon resonance effect of Ag nanoparticles. The possible photocatalytic mechanism was proposed based on the active species test and band gap structure analysis. - Graphical abstract: The photocatalytic reaction mechanisms of the as-prepared Ag/AgBr/BiOBr. Display Omitted - Highlights: • Successful synthesis of flower-like Ag/AgBr/BiOBr microspheres. • The Ag/AgBr/BiOBr showed much higher photocatalytic activity towards p-nitrophenol as compared to BiOBr and Ag/AgBr. • The reasons for the excellent photocatalytic activity are the large specific surface area, strong visible-light absorption and surface plasmon resonance effect of Ag nanoparticles. • The O{sub 2}·{sup −}, Br{sup 0} and photogenerated h{sup +} play key roles in the photocatalytic degradation process.« less

  19. Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

    PubMed Central

    Endo, Maya; Wei, Zhishun; Wang, Kunlei; Karabiyik, Baris; Yoshiiri, Kenta; Rokicka, Paulina; Ohtani, Bunsho

    2018-01-01

    Commercial titania photocatalysts were modified with silver and gold by photodeposition, and characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). It was found that silver co-existed in zero valent (core) and oxidized (shell) forms, whereas gold was mainly zero valent. The obtained noble metal-modified samples were examined with regard to antibacterial (Escherichia coli (E. coli)) and antifungal (Aspergillus niger (A. niger), Aspergillus melleus (A. melleus), Penicillium chrysogenum (P. chrysogenum), Candida albicans (C. albicans)) activity under visible-light irradiation and in the dark using disk diffusion, suspension, colony growth (“poisoned food”) and sporulation methods. It was found that silver-modified titania, besides remarkably high antibacterial activity (inhibition of bacterial proliferation), could also decompose bacterial cells under visible-light irradiation, possibly due to an enhanced generation of reactive oxygen species and the intrinsic properties of silver. Gold-modified samples were almost inactive against bacteria in the dark, whereas significant bactericidal effect under visible-light irradiation suggested that the mechanism of bacteria inactivation was initiated by plasmonic excitation of titania by localized surface plasmon resonance of gold. The antifungal activity tests showed efficient suppression of mycelium growth by bare titania, and suppression of mycotoxin generation and sporulation by gold-modified titania. Although, the growth of fungi was hardly inhibited through disc diffusion (inhibition zones around discs), it indicates that gold does not penetrate into the media, and thus, a good stability of plasmonic photocatalysts has been confirmed. In summary, it was found that silver-modified titania showed superior antibacterial activity, whereas gold-modified samples were very active against fungi, suggesting that bimetallic photocatalysts containing both gold and silver should exhibit excellent antimicrobial properties. PMID:29600144

  20. Microcarbon-based facial creams activate aerial oxygen under light to reactive oxygen species damaging cell

    NASA Astrophysics Data System (ADS)

    Maity, Sheli; Pakhira, Bholanath; Ghosh, Subrata; Saha, Royina; Sarkar, Ripon; Barui, Ananya; Sarkar, Sabyasachi

    2017-11-01

    Nanosized reduced graphene oxide (rGO) is found in active microcarbon used in popular face cream from the manufacturers like Ponds, Nevia, and Garnier which, under visible light exposure, gets activated by aerial oxygen to generate reactive oxygen species (ROS) harmful to skin.

  1. Harvesting visible light with MoO3 nanorods modified by Fe(iii) nanoclusters for effective photocatalytic degradation of organic pollutants.

    PubMed

    Alam, U; Kumar, S; Bahnemann, D; Koch, J; Tegenkamp, C; Muneer, M

    2018-02-07

    The photocatalytic performance of MoO 3 is limited due to its weak visible light absorption ability and quick recombination of charge carriers. In the present work, we report the facile synthesis of Fe(iii)-grafted MoO 3 nanorods using a hydrothermal method followed by an impregnation technique with the aim of enhancing the light harvesting ability and photocatalytic efficiency of MoO 3 . The prepared samples were characterized through the standard analytical techniques of XRD, SEM-EDS, TEM, XPS, UV-Vis-DRS, FT-IR, TG-DTA and PL spectrophotometry. XPS and TEM analyses reveal that Fe(iii) ions are successfully grafted onto the surface of the MoO 3 nanorod with intimate interfacial contact. The photocatalytic performances of the prepared samples were investigated by studying the degradation of methylene blue (MB), rhodamine B (RhB) and 4-nitrophenol (4-NP) under visible light irradiation. The surface-modified MoO 3 with Fe(iii) ions showed excellent photocatalytic activity towards the degradation of the above-mentioned pollutants, where Fe(iii) ions act as effective cocatalytic sites to produce hydroxyl radicals through multi-electron reduction of oxygen molecules. The improved photocatalytic activity could be ascribed to the effective separation of charge carriers and efficient production of hydroxyl radicals via the rapid capture of electrons by Fe(iii) through a well-known photoinduced interfacial charge transfer mechanism. Based on scavenger analysis study, a mechanism for the enhanced photocatalytic activity has been discussed and proposed. The concept of surface grafting onto large bandgap semiconductors with ubiquitous elements opens up a new avenue for the development of visible-light-responsive photocatalysts with excellent photocatalytic activity.

  2. Preparation and characterization of Bi-doped TiO{sub 2} and its solar photocatalytic activity for the degradation of isoproturon herbicide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu

    Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis ofmore » X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.« less

  3. Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H 2 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Shiba P.; Hood, Zachary D.; Lachgar, Abdou

    Semiconductor-based heterojunctions have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from a high rate of electron-hole recombination and narrow photo-response range. In this study, we report on the study of heterojunctions made from visible light active, graphitic carbon nitride, g-C 3N 4), and UV light active, strontium pyroniobate, Sr 2Nb 2O 7. Heterojunctions made from a combination of g-C 3N 4 and nitrogen-doped Sr 2Nb 2O 7 obtained at different temperatures were also studied to determine the effect of N doping. The photocatalytic performance was evaluated by using photocatalytic hydrogenmore » evolution reaction (HER)from water g under visible light irradiation. It was found that the photocatalytic activities of as prepared heterojunctions are significantly higher than that of individual components under similar conditions. Heterojunction formed from g-C 3N 4 and N-doped Sr 2Nb 2O 7 at 700 °C (CN/SNON-700) showed better performance than heterojunction made from g-C 3N 4 and Sr 2Nb 2O 7 (CN/SNO). Finally, a plausible mechanism for the heterojunction enhanced photocatalytic activity is proposed based on, relative band positions, and photoluminescence data.« less

  4. Preparation of TiO2/(TiO2-V2O5)/polypyrrole nanocomposites and a study on catalytic activities of the hybrid materials under UV/Visible light and in the dark

    NASA Astrophysics Data System (ADS)

    Piewnuan, C.; Wootthikanokkhan, J.; Ngaotrakanwiwat, P.; Meeyoo, V.; Chiarakorn, S.

    2014-11-01

    Hybrid metal oxides/polymer nanocomposites, namely TiO2/(TiO2-V2O5)/polypyrrole (PPy), were synthesized via in situ polymerization. Structures of the products were characterized by SEM-EDX, XRD, and FTIR techniques. The light absorbance and band gap energy values of the materials were evaluated by UV/Visible spectroscopy. The catalytic activity of the materials was determined from a degradation of methylene blue. It was found that, regardless of the polymerization time, the absorbance of TiO2/(TiO2-V2O5)/PPy was greater than those of TiO2/PPy and the neat TiO2, respectively. This was in accordance with the decrease in the band gap energy of the materials. The catalytic activity of TiO2/(TiO2-V2O5) was also observed in the dark. After polymerization, the catalytic activity of nanocomposite under UV/Visible light and in the dark was compromised. The above effects are discussed in the light of the energy storage ability of V2O5 and capability of the polymer in acting as a binder for the system.

  5. Semiconductor Heterojunctions for Enhanced Visible Light Photocatalytic H 2 Production

    DOE PAGES

    Adhikari, Shiba P.; Hood, Zachary D.; Lachgar, Abdou

    2018-04-17

    Semiconductor-based heterojunctions have been shown to be effective photocatalytic materials to overcome the drawbacks of low photocatalytic efficiency that results from a high rate of electron-hole recombination and narrow photo-response range. In this study, we report on the study of heterojunctions made from visible light active, graphitic carbon nitride, g-C 3N 4), and UV light active, strontium pyroniobate, Sr 2Nb 2O 7. Heterojunctions made from a combination of g-C 3N 4 and nitrogen-doped Sr 2Nb 2O 7 obtained at different temperatures were also studied to determine the effect of N doping. The photocatalytic performance was evaluated by using photocatalytic hydrogenmore » evolution reaction (HER)from water g under visible light irradiation. It was found that the photocatalytic activities of as prepared heterojunctions are significantly higher than that of individual components under similar conditions. Heterojunction formed from g-C 3N 4 and N-doped Sr 2Nb 2O 7 at 700 °C (CN/SNON-700) showed better performance than heterojunction made from g-C 3N 4 and Sr 2Nb 2O 7 (CN/SNO). Finally, a plausible mechanism for the heterojunction enhanced photocatalytic activity is proposed based on, relative band positions, and photoluminescence data.« less

  6. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays

    NASA Astrophysics Data System (ADS)

    Shuang, Shuang; Lv, Ruitao; Xie, Zheng; Zhang, Zhengjun

    2016-05-01

    The low quantum yields and lack of visible light utilization hinder the practical application of TiO2 in high-performance photocatalysis. Herein, we present a design of TiO2 nanopillar arrays (NPAs) decorated with both Au and Pt nanoparticles (NPs) directly synthesized through successive ion layer adsorption and reaction (SILAR) at room temperature. Au/Pt NPs with sizes of ~4 nm are well-dispersed on the TiO2 NPAs as evidenced by electron microscopic analyses. The present design of Au/Pt co-decoration on the TiO2 NPAs shows much higher visible and ultraviolet (UV) light absorption response, which leads to remarkably enhanced photocatalytic activities on both the dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 21 and 13 times higher than that of pure TiO2 sample under UV-vis and visible light, respectively. This great enhancement can be attributed to the synergy of electron-sink function of Pt and surface plasmon resonance (SPR) of Au NPs, which significantly improves charge separation of photoexcited TiO2. Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities initiated by UV-light, and thus realize more effectively utilization of the whole solar spectrum for energy conversion.

  7. Surface Defects Enhanced Visible Light Photocatalytic H2 Production for Zn-Cd-S Solid Solution.

    PubMed

    Zhang, Xiaoyan; Zhao, Zhao; Zhang, Wanwan; Zhang, Guoqiang; Qu, Dan; Miao, Xiang; Sun, Shaorui; Sun, Zaicheng

    2016-02-10

    In order to investigate the defect effect on photocatalytic performance of the visible light photocatalyst, Zn-Cd-S solid solution with surface defects is prepared in the hydrazine hydrate. X-ray photoelectron spectra and photoluminescence results confirm the existence of defects, such as sulfur vacancies, interstitial metal, and Zn and Cd in the low valence state on the top surface of solid solutions. The surface defects can be effectively removed by treating with sulfur vapor. The solid solution with surface defect exhibits a narrower band gap, wider light absorption range, and better photocatalytic perfomance. The optimized solid solution with defects exhibits 571 μmol h(-1) for 50 mg photocatalyst without loading Pt as cocatalyst under visible light irradiation, which is fourfold better than that of sulfur vapor treated samples. The wavelength dependence of photocatalytic activity discloses that the enhancement happens at each wavelength within the whole absorption range. The theoretical calculation shows that the surface defects induce the conduction band minimum and valence band maximum shift downward and upward, respectively. This constructs a type I junction between bulk and surface of solid solution, which promotes the migration of photogenerated charges toward the surface of nanostructure and leads to enhanced photocatalytic activity. Thus a new method to construct highly efficient visible light photocatalysts is opened. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation.

    PubMed

    Chen, Xiaoqing; Wu, Zhansheng; Gao, Zhenzhen; Ye, Bang-Ce

    2017-09-05

    In order to enhance the photodegradation of methyl orange (MO) by ZnO under visible light irradiation, ZnO nanoparticles co-doped with Ag and N and supported on activated carbon (AC) with different properties were synthesized through the sol-gel method. The prepared photocatalysts were characterized in terms of the structure and properties through X-ray diffraction, N₂ adsorption-desorption, ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, and electron spin resonance. The photocatalytic activities of these photocatalysts followed the order: Ag-N-ZnO/ACs > Ag-N-ZnO > N, or Ag single-doped ZnO > commercial ZnO. This result was attributed to the small particle size, large surface area, narrow band gap, and high charge separation of Ag-N-ZnO/ACs. The Ag-N-ZnO/coconut husk activated carbon (Ag-N-ZnO/CHAC) exhibited the highest degradation efficiency of 98.82% for MO under visible light irradiation. This outcome was due to the abundant pore structure of Ag-N-ZnO/CHAC, resulting in stronger adsorption than that of other Ag-N-ZnO/ACs. Moreover, the degradation of MO on photocatalysis followed first order kinetics. The reactive species ·OH and ·O₂ - played more important roles in the photocatalytic degradation of MO over composite photocatalyst. Ag-N-ZnO/CHAC photocatalyst exhibited higher photocatalytic activity than unsupported Ag-N-ZnO after five recycling runs.

  9. The evolution of adult light emission color in North American fireflies

    PubMed Central

    Hall, David W.; Sander, Sarah E.; Pallansch, Jennifer C.; Stanger-Hall, Kathrin F.

    2016-01-01

    Firefly species (Lampyridae) vary in the color of their adult bioluminescence. It has been hypothesized that color is selected to enhance detection by conspecifics. One mechanism to improve visibility of the signal is to increase contrast against ambient light. High contrast implies that fireflies active early in the evening will emit yellower luminescence to contrast against ambient light reflected from green vegetation, especially in habitats with high vegetation cover. Another mechanism to improve visibility is to use reflection off the background to enhance the light signal. Reflectance predicts that sedentary females will produce greener light to maximize reflection off the green vegetation on which they signal. To test these predictions, we recorded over 7500 light emission spectra and determined peak emission wavelength for 675 males, representing 24 species, at 57 field sites across the Eastern United States. We found support for both hypotheses: males active early in more vegetated habitats produced yellower flashes in comparison to later-active males with greener flashes. Further, in 2 of the 8 species with female data, female light emissions were significantly greener as compared to males. PMID:27412777

  10. Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity

    PubMed Central

    Liu, Yazi; Xu, Jian; Wang, Liqiong; Zhang, Huayang; Xu, Ping; Duan, Xiaoguang; Sun, Hongqi; Wang, Shaobin

    2017-01-01

    Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and UV light irradiations for methyl orange (MO) oxidation. The reaction rate of MO degradation on BiOI/BiOCl was 2.1 times higher than that on pure BiOI under visible light. Moreover, BiOI/BiOCl exhibited enhanced water oxidation efficiency for O2 evolution which was 1.5 times higher than BiOI. The enhancement of photocatalytic activity could be attributed to the formation of a heterojunction between BiOI and BiOCl, with a nanoporous structure, a larger SSA, and a stronger light absorbance capacity especially in the visible-light region. The in situ electron paramagnetic resonance (EPR) revealed that BiOI/BiOCl composites could effectively evolve superoxide radicals and hydroxyl radicals for photodegradation, and the superoxide radicals are the dominant reactive species. The superb photocatalytic activity of BiOI/BiOCl could be utilized for the degradation of various industrial dyes under natural sunlight irradiation which is of high significance for the remediation of industrial wastewater in the future. PMID:28336897

  11. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO{sub 4} inverse opals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Liang, E-mail: lfang@suda.edu.cn, E-mail: dawei.cao@tu-ilmenau.de; Nan, Feng; Yang, Ying

    2016-02-29

    BiVO{sub 4} photonic crystal inverse opals (io-BiVO{sub 4}) with highly dispersed Ag nanoparticles (NPs) were prepared by the nanosphere lithography method combining the pulsed current deposition method. The incorporation of the Ag NPs can significantly improve the photoelectrochemical and photocatalytic activity of BiVO{sub 4} inverse opals in the visible light region. The photocurrent density of the Ag/io-BiVO{sub 4} sample is 4.7 times higher than that of the disordered sample without the Ag NPs, while the enhancement factor of the corresponding kinetic constant in photocatalytic experiment is approximately 3. The improved photoelectrochemical and photocatalytic activity is benefited from two reasons: onemore » is the enhanced light harvesting owing to the coupling between the slow light and localized surface plasmon resonance effect; the other is the efficient separation of charge carriers due to the Schottky barriers.« less

  12. Multi-electron oxygen reduction by a hybrid visible-light-photocatalyst consisting of metal-oxide semiconductor and self-assembled biomimetic complex.

    PubMed

    Naya, Shin-ichi; Niwa, Tadahiro; Negishi, Ryo; Kobayashi, Hisayoshi; Tada, Hiroaki

    2014-12-08

    Adsorption experiments and density functional theory (DFT) simulations indicated that Cu(acac)2 is chemisorbed on the monoclinic sheelite (ms)-BiVO4 surface to form an O2-bridged binuclear complex (OBBC/BiVO4) like hemocyanin. Multi-electron reduction of O2 is induced by the visible-light irradiation of the OBBC/BiVO4 in the same manner as a blue Cu enzyme. The drastic enhancement of the O2 reduction renders ms-BiVO4 to work as a good visible-light photocatalyst without any sacrificial reagents. As a model reaction, we show that this biomimetic hybrid photocatalyst exhibits a high level of activity for the aerobic oxidation of amines to aldehydes in aqueous solution and imines in THF solution at 25 °C giving selectivities above 99% under visible-light irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Chu, Haipeng; Liu, Xinjuan; Liu, Jiaqing; Lei, Wenyan; Li, Jinliang; Wu, Tianyang; Li, Ping; Li, Huili; Pan, Likun

    2017-01-01

    Exploring novel visible light responsive photocatalysts is one of greatly significant issues from the viewpoint of using solar energy. Here we report the yellow-orange emitting α-Si3N4-doped Lu3Al5O12:Ce3+ (Lu3Al5-xSixO12-xNx:Ce3+) phosphors as a noble-metal-free co-catalyst for enhanced visible light photocatalytic activity of ZnO. The results show that ZnO-Lu3Al5-xSixO12-xNx:Ce3+ hybrid photocatalysts using a fast microwave-assisted approach exhibits a 91% methylene blue (MB) degradation under visible light irradiation at 240 min, which evidence the synergistic effect of ZnO and Lu3Al5-xSixO12-xNx:Ce3+ that suppress the rate of charge recombination and increase the self-sensitized degradation of MB. ZnO-down conversion phosphors can be envisaged as potential candidate in environmental engineering and solar energy applications.

  14. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.

    PubMed

    Wang, Xinchen; Yu, Jimmy C; Chen, Yilin; Wu, Ling; Fu, Xianzhi

    2006-04-01

    Mesoporous nanocrystalline TiO2-xNx and TiO2-xNx/ZrO2 visible-light photocatalysts have been prepared by a sol-gel method. The photocatalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS, UV/Vis, and IR spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of ethylene in air under visible light (lambda > 450 nm) illumination. Results revealed that nitrogen was doped into the lattice of TiO2 by the thermal treatment of NH3-adsorbed TiO2 hydrous gels, converting the TiO2 into a visible-light responsive catalyst. The introduction of ZrO2 into TiO2-xNx considerably inhibits the undesirable crystal growth during calcination. Consequently, the ZrO2-modified TiO2-xNx displays higher porosity, higher specific surface area, and an improved thermal stability over the corresponding unmodified TiO2-xNx samples.

  15. Template synthesis of Ag/AgCl microrods and their efficient visible light-driven photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hua; Xiao, Liang; Huang, Jianhua, E-mail: jhhuang@zstu.edu.cn

    2014-09-15

    Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine Bmore » and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.« less

  16. Construction of AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets photoelectrode and its enhanced visible light driven photocatalytic and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyong; Zhang, Huixuan; Guo, Ruonan; Cheng, Xiuwen; Cheng, Qingfeng

    2018-05-01

    In the study, AgBr nano-cakes decorated Ti3+ self-doped TiO2 nanorods/nanosheets (AgBr-Ti3+/TiO2 NRs/NSs) photoelectrode with enhanced visible light driven photocatalytic (PC) and photoelectrochemical (PECH) performance has been successfully fabricated by hydrothermal reaction, followed by sodium borohydride reduction and then successive ionic layer adsorption and reaction (SILAR) treatment. Afterwards, series of characterizations were conducted to study the physicochemical properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Results indicated that AgBr nano-cakes with sizes varying from 110 to 180 nm were uniformly decorated on the surface of Ti3+/TiO2 NRs/NSs to form AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Moreover, PC activity of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode was measured by degradation of methylene blue (MB). It was found that AgBr-Ti3+/TiO2 NRs/NSs photoelectrode exhibited higher PC activity (98.7%) than that of other samples within 150 min visible light illumination, owing to the enhancement of visible light harvesting and effective separation of photoproduced charges. Thus, AgBr nano-cakes and Ti3+ exerted a huge influence on the PC and PECH properties of AgBr-Ti3+/TiO2 NRs/NSs photoelectrode. Furthermore, the possible enhanced visible light driven PC mechanism of AgBr-Ti3+/TiO2 NRs/NSs was proposed and confirmed.

  17. Plasmon-assisted degradation of methylene blue with Ag/AgCl/montmorillonite nanocomposite under visible light.

    PubMed

    Sohrabnezhad, Sh; Zanjanchi, M A; Razavi, M

    2014-09-15

    Metal-semiconductor compounds, such as Ag/AgX (X=Cl, Br, I), enable visible light absorption and separation of photogenerated electron-hole through surface plasmon resonance (SPR) effect. However, the electron-hole generated and separated by light are vulnerable in Ag/AgX phase because of the occurrence of secondary recombined. In order to more effectively utilize the SPR photocatalytic effect, nanoparticles are located in a matrix. In this article, Ag/AgCl nanoparticles were synthesized in montmorillonite (MMT) matrix using dispersion method and light irradiation. The structure, composition and optical properties of such material were investigated by transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), X-ray diffraction (XRD) and FTIR. Powder X-ray diffraction showed intercalation of Ag/AgCl nanoparticles into the clay layers. The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of methylene blue (MB) under visible light. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that O2- and OH- are the main reactive species for the degradation of MB under visible light irradiation. The studies showed that 20 min illumination under visible light can complete degradation of methylene blue (MB), and indicate a high stability of photocatalytic degradation. The mechanism of separation of the photo-generated electrons and holes at the Ag/AgCl-MMT nanocomposite was discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ag{sub 3}PO{sub 4}/ZnO: An efficient visible-light-sensitized composite with its application in photocatalytic degradation of Rhodamine B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; School of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000; Wang, Mingliang, E-mail: wangmlchem@263.net

    2013-01-15

    Graphical abstract: The free OH radicals generated in the VB of ZnO play the primary role in the visible-light photocatalytic degradation of RhB in Ag{sub 3}PO{sub 4}/ZnO system. The accumulated electrons in the CB of Ag{sub 3}PO{sub 4} can be transferred to O{sub 2} adsorbed on the surface of the composite semiconductors and H{sub 2}O{sub 2} yields. H{sub 2}O{sub 2} reacts with electrons in succession to produce active ·OH to some extent. Display Omitted Highlights: ► Efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites were successfully prepared. ► Effect of Ag{sub 3}PO{sub 4} content on the catalytic activity of Ag{sub 3}PO{sub 4}/ZnOmore » is studied in detail. ► Rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of Ag{sub 3}PO{sub 4}. ► The active species in RhB degradation are examined by adding a series of scavengers. ► Visible light degradation mechanism of RhB over Ag{sub 3}PO{sub 4}/ZnO is systematically studied. -- Abstract: The efficient visible-light-sensitized Ag{sub 3}PO{sub 4}/ZnO composites with various weight percents of Ag{sub 3}PO{sub 4} were prepared by a facile ball milling method. The photocatalysts were characterized by XRD, DRS, SEM, EDS, XPS, and BET specific area. The ·OH radicals produced during the photocatalytic reaction was detected by the TA–PL technique. The photocatalytic property of Ag{sub 3}PO{sub 4}/ZnO was evaluated by photocatalytic degradation of Rhodamine B under visible light irradiation. Significantly, the results revealed that the photocatalytic activity of the composites was much higher than that of pure Ag{sub 3}PO{sub 4} and ZnO. The rate constant of RhB degradation over Ag{sub 3}PO{sub 4}(3.0 wt.%)/ZnO is 3 times that of single-phase Ag{sub 3}PO{sub 4}. The optimal percentage of Ag{sub 3}PO{sub 4} in the composite is 3.0 wt.%. It is proposed that the ·OH radicals produced in the valence band of ZnO play the leading role in the photocatalytic degradation of Rhodamine B by Ag{sub 3}PO{sub 4}/ZnO systems under visible light irradiation.« less

  19. MoS2 Nanosheet-Modified CuInS2 Photocatalyst for Visible-Light-Driven Hydrogen Production from Water.

    PubMed

    Yuan, Yong-Jun; Chen, Da-Qin; Huang, Yan-Wei; Yu, Zhen-Tao; Zhong, Jia-Song; Chen, Ting-Ting; Tu, Wen-Guang; Guan, Zhong-Jie; Cao, Da-Peng; Zou, Zhi-Gang

    2016-05-10

    Exploiting photocatalysts respond to visible light is of huge challenge for photocatalytic H2 production. Here, we synthesize a new composite material consisting of few-layer MoS2 nanosheets grown on CuInS2 surface as an efficient photocatalyst for solar H2 generation. The photocatalytic results demonstrate that the 3 wt % MoS2 /CuInS2 photocatalyst exhibits the highest H2 generation rate of 316 μmol h(-1)  g(-1) under visible light irradiation, which is almost 28 times higher than that of CuInS2 . Importantly, the MoS2 /CuInS2 photocatalyst shows a much higher photocatalytic activity than that of Pt-loaded CuInS2 photocatalyst. The enhanced photocatalytic activities of MoS2 /CuInS2 photocatalysts can be attributed to the improved charge separation at the interface of MoS2 and CuInS2, which is demonstrated by the significant enhancement of photocurrent responses in MoS2 /CuInS2 photoelectrodes. This work presents a noble-metal-free photocatalyst that responds to visible light for solar H2 generation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  1. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  2. Asymmetric photoredox transition-metal catalysis activated by visible light.

    PubMed

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-06

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the 'green' synthesis of non-racemic chiral molecules.

  3. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  4. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    NASA Astrophysics Data System (ADS)

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably.

  5. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    PubMed Central

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably. PMID:26790759

  6. MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Zhao, Fenfen; Rong, Yuefei; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2018-03-01

    MoS2 quantum dots (QDs) that are 5 nm in size were deposited on the surface of ultrathin TiO2 nanotubes (TNTs) with 5 nm wall thickness by using an improved hydrothermal method to form a MoS2 QDs@TNT visible-light photocatalyst. The ultrathin TNTs with high percentage of photocatalytic reactive facets were fabricated by the commercially available TiO2 nanoparticles (P25) through an improved hydrothermal method, and the MoS2 QDs were acquired by using a surfactant-assisted technique. The novel MoS2 QDs@TNT photocatalysts showed excellent photocatalytic activity with a decolorization rate of 92% or approximately 3.5 times more than that of pure TNTs for the high initial concentration of methylene blue solution (20 mg l-1) within 40 min under visible-light irradiation. MoS2 as the co-catalysts favored the broadening of TNTs into the visible-light absorption scope. The quantum confinement and edge effects of the MoS2 QDs and the heterojunction formed between the MoS2 QDs and TNTs efficiently extended the lifetime of photoinduced charges, impeded the recombination of photoexcited electron-hole pairs, and improved the visible-light-driven high-efficiency photocatalysis.

  7. Metal oxide semiconductors for dye degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Sangeeta; Sarkar, Debasish, E-mail: dsarkar@nitrkl.ac.in

    2015-12-15

    Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO{sub 3} nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO{sub 3}–ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO{sub 3}. • WO{sub 3} assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO{sub 3}–ZnO photocatalystsmore » under both UV and visible light irradiation. Two different sets of WO{sub 3} nanostructures namely, monoclinic WO{sub 3} (m-WO{sub 3}) and hexagonal WO{sub 3} (h-WO{sub 3}) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO{sub 3} and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO{sub 3} shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO{sub 3}. Symmetrical monoclinic WO{sub 3} assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO{sub 3} with ZnO proves to be a promising photocatalyst in both wavelengths.« less

  8. Facile synthesis of a conjugation-grafted-TiO2 nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    NASA Astrophysics Data System (ADS)

    Guo, Yanru; Zhang, Min; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun

    2016-08-01

    A conjugation-grafted-TiO2 nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO2 through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO2 and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA's pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron-hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO2 nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  9. A Plasmonic Colloidal Photocatalyst Composed of a Metal-Organic Framework Core and a Gold/Anatase Shell for Visible-Light-Driven Wastewater Purification from Antibiotics and Hydrogen Evolution.

    PubMed

    Tilgner, Dominic; Kempe, Rhett

    2017-03-02

    Porous coordination polymers (PCP) or metal- organic frameworks (MOF) are promising materials for the generation of photocatalytically active composite materials. Here, a novel synthesis concept is reported, which permits the formation of PCP/MOF-core-Au/anatase-shell materials. These materials are photocatalysts for wastewater purification and hydrogen generation from water under visible-light illumination. MIL-101 (Cr) is utilized as the core material, which directs the size of the core-shell compound and ensures the overall stability. In addition, its excellent reversible large molecule sorption behavior allows the materials synthesis. The crystalline anatase shell is generated stepwise under mild conditions using titanium(IV) isopropoxide as a precursor. The high degree of control of the vapor phase deposition process permits the precise anatase shell formation. The generation of plasmonic active gold particles on the TiO 2 shell leads to an efficient material for visible-light-driven photocatalysis with a higher activity than gold-decorated P25 (Degussa). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fabrication of Ag-decorated BiOBr-mBiVO4 dual heterojunction composite with enhanced visible light photocatalytic performance for degradation of malachite green

    NASA Astrophysics Data System (ADS)

    Regmi, Chhabilal; Dhakal, Dipesh; Kim, Tae-Ho; Yamaguchi, Takutaro; Wohn Lee, Soo

    2018-04-01

    A visible light active Ag-decorated BiVO4-BiOBr dual heterojunction photocatalyst was prepared using a facile hydrothermal method, followed by the photodeposition of Ag. The photocatalytic activity of the synthesized samples was investigated by monitoring the change in malachite green (MG) concentration upon visible light irradiation. The synthesized sample was highly effective for the degradation of non-biodegradable MG. The enhanced activity observed was ascribed to the efficient separation and transfer of charge carriers across the dual heterojunction structure as verified by photoluminescence measurements. The removal of MG was primarily initiated by hydroxyl radicals and holes based on scavenger’s effect. To gain insight into the degradation mechanism, both high performance liquid chromatography and high resolution-quantitative time of flight, electrospray ionization mass spectrometry measurements during the degradation process were carried out. The degradation primarily followed the hydroxylation and N-demethylation process. A possible reaction pathway is proposed on the basis of all the information obtained under various experimental conditions.

  11. Surface photoelectric and visible light driven photocatalytic properties of zinc antimonate-based photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shaojun; Li, Guoqiang; Zhang, Yang

    2013-03-15

    Highlights: ► N-doped and pristine ZnSb{sub 2}O{sub 6} photocatalysts were synthesized by a facile method. ► N-doped ZnSb{sub 2}O{sub 6} shows a significant enhanced visible light photocatalytic activity. ► The N-doped ZnSb{sub 2}O{sub 6} shows the reduced surface photovoltage signals. - Abstract: The N-doped and pristine ZnSb{sub 2}O{sub 6} photocatalysts were synthesized by a facile method. The samples were characterized by X-ray diffraction (XRD), UV–vis spectroscopy, surface photovoltage spectroscopy and scanning electron microscopy. The photocatalytic activities of the prepared samples were evaluated from the degradation of rhodamine B (RhB) under full arc and visible light irradiation of Xe lamp. Themore » XRD and UV–vis results indicated that the N-doping did not change the crystal structure, but decrease the band gap in comparison with the pristine one. The N-doped ZnSb{sub 2}O{sub 6} shows the reduced surface photovoltage signals and the significantly enhanced photocatalytic activity under two irradiation conditions.« less

  12. Photocatalytic oxidation of organic dyes with visible-light-driven codoped TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Dongfang; Zeng, Fanbin

    2011-06-01

    A novel copper (II) and zinc (II) codoped TiO2 photocatalyst was synthesized by a modified sol-gel method using titanium (IV) isopropoxide, Zn(NO3)2 · 6H2O and copper(Il) nitrate as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and photo-luminescence spectra (PL). The XRD results showed undoped and Zn, Cu-codoped TiO2 nanoparticles mainly including anatase phase and a tiny amount of Zn- and Cu-oxides exist in the mixed system, which is attributed to the decomposition of copper and zinc nitrates in the TiO2 gel to form CuO and ZnO and randomly dispersed on the TiO2 surface. On the basis of the optical characterization results, we found that the codoping of copper (II) and zinc (II) resulted a red shift of adsorption and lower recombination probability between electrons and holes, which were the reasons for high photocatalytic activity of Zn, Cu-codoped TiO2 nanoparticles under visible light (λ > 400 nm). The photocatalytic activity of samples was tested for degradation of methyl orange (MO) in solutions. The results indicated that the visible-light driven capability of the codoped catalyst were much higher than that of the pure TiO2 catalyst under visible irradiation. Because of the synergetic effect of copper (II) and zinc (II) element, the Zn, Cu-codoped TiO2 catalyst will show higher quantum yield and enhance absorption of visible light. In the end, a key mechanism was proposed in order to account for the enhanced activity.

  13. Enhanced photocatalytic properties of the 3D flower-like Mg-Al layered double hydroxides decorated with Ag{sub 2}CO{sub 3} under visible light illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ao, Yanhui, E-mail: andyao@hhu.edu.cn; Wang, Dandan; Wang, Peifang

    Highlights: • 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite was prepared. • The nanocomposites exhibited high photocatalytic activities on different organic pollutants. • The mechanism of the enhanced activity were investigated. - Abstract: A facile anion-exchange precipitation method was employed to synthesize 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite photocatalyst. Results showed that Ag{sub 2}CO{sub 3} nanoparticles dispersed uniformly on the petals of the flower-like Mg-Al LDH. The obtained nanocomposites exhibited high photocatalytic activities on different organic pollutants (cationic and anionic dyes, phenol) under visible light illumination. The high photocatalytic activity can be ascribed to themore » special structure which accomplishes the wide-distribution of Ag{sub 2}CO{sub 3} nanoparticles on the surfaces of the 3D flower-like nanocomposites. Therefore, it can provide much more active sites for the degradation of organic pollutant. Then the photocatalytic mechanism was also verified by reactive species trapping experiments in detail. The work would pave a facile way to prepare LDHs based hierarchical photocatalysts with high activity for the degradation of wide range organic pollutants under visible light irradiation.« less

  14. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  15. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  16. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  17. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  18. 33 CFR 88.11 - Law enforcement vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... display a flashing blue light when engaged in direct law enforcement or public safety activities. This light must be located so that it does not interfere with the visibility of the vessel's navigation lights. (b) The blue light described in this section may be displayed by law enforcement vessels of the...

  19. Photocatalytic Degradation of DIPA Using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation

    PubMed Central

    Bustam, Mohamad Azmi; Chong, Fai Kait; Man, Zakaria B.; Khan, Muhammad Saqib; Shariff, Azmi M.

    2014-01-01

    Bimetallic Cu-Ni/TiO2 photocatalysts were synthesized using wet impregnation (WI) method with TiO2 (Degussa-P25) as support and calcined at different temperatures (180, 200, and 300°C) for the photodegradation of DIPA under visible light. The photocatalysts were characterized using TGA, FESEM, UV-Vis diffuse reflectance spectroscopy, fourier transform infrared spectroscopy (FTIR) and temperature programmed reduction (TPR). The results from the photodegradation experiments revealed that the Cu-Ni/TiO2 photocatalysts exhibited much higher photocatalytic activities compared to bare TiO2. It was found that photocatalyst calcined at 200°C had the highest photocatalyst activities with highest chemical oxygen demand (COD) removal (86.82%). According to the structural and surface analysis, the enhanced photocatalytic activity could be attributed to its strong absorption into the visible region and high metal dispersion. PMID:25105158

  20. Computational Modeling of Photocatalysts for CO2 Conversion Applications

    NASA Astrophysics Data System (ADS)

    Tafen, De; Matranga, Christopher

    2013-03-01

    To make photocatalytic conversion approaches efficient, economically practical, and industrially scalable, catalysts capable of utilizing visible and near infrared photons need to be developed. Recently, a series of CdSe and PbS quantum dot-sensitized TiO2 heterostructures have been synthesized, characterized, and tested for reduction of CO2 under visible light. Following these experiments, we use density functional theory to model these heterostructured catalysts and investigate their CO2 catalytic activity. In particular, we study the nature of the heterostructure interface, charge transport/electron transfer, active sites and the electronic structures of these materials. The results will be presented and compared to experiments. The improvement of our understanding of the properties of these materials will aid not only the development of more robust, visible light active photocatalysts for carbon management applications, but also the development of quantum dot-sensitized semiconductor solar cells with high efficiencies in solar-to-electrical energy conversion.

  1. Enhancing the visibility of injuries with narrow-banded beams of light within the visible light spectrum.

    PubMed

    Limmen, Roxane M; Ceelen, Manon; Reijnders, Udo J L; Joris Stomp, S; de Keijzer, Koos C; Das, Kees

    2013-03-01

    The use of narrow-banded visible light sources in improving the visibility of injuries has been hardly investigated, and studies examining the extent of this improvement are lacking. In this study, narrow-banded beams of light within the visible light spectrum were used to explore their ability in improving the visibility of external injuries. The beams of light were induced by four crime-lites(®) providing narrow-banded beams of light between 400 and 550 nm. The visibility of the injuries was assessed through specific long-pass filters supplied with the set of crime-lites(®) . Forty-three percent of the examined injuries improved in visibility by using the narrow-banded visible light. In addition, injuries were visualized that were not visible or just barely visible to the naked eye. The improvements in visibility were particularly marked with the use of crime-lites(®) "violet" and "blue" covering the spectrum between 400-430 and 430-470 nm. The simple noninvasive method showed a great potential contribution in injury examination. © 2012 American Academy of Forensic Sciences.

  2. Photodegradation of malachite green dye catalyzed by Keggin-type polyoxometalates under visible-light irradiation: Transition metal substituted effects

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Guang; Zheng, Ting; Liu, Shuang; Zhang, Han-Yu

    2016-04-01

    In the present paper, Keggin-type polyoxometalates (POMs) (NH4)3[PW12O40] and its mono-transition-metal-substituted species (NH4)5[{PW11O39}MII(H2O)] (M = Mn, Fe, Co, Ni, Cu, Zn) have been synthesized and used as photocatalyst to activate O2 for the degradation of dye molecule under visible-light irradiation. Because of the strong adsorption on the surface of POM catalyst, malachite green (MG) molecule was employed as a molecular probe to test their photocatalytic activity. The photodegradation study shows that introduction of transition metal ion leads to an increase in the degradation of MG in the following order: Mn < Fe < Co < [PW12O40]3- < Ni < Cu < Zn, which indicates that the photocatalytic activity of these POMs is sensitive to the transition metal substituted effects. Electronic structure analysis based on the density functional theory calculations shows that a moderate decrease of oxidizing ability of POM catalyst may improve the photocatalytic activity in the degradation of dye molecule under visible-light irradiation. Meanwhile, intermediate products about the photocatalytic oxidation of MG molecule were proposed on the basis of gas chromatograph mass spectrometer analysis.

  3. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    PubMed

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  4. Room-Temperature and Aqueous-Phase Synthesis of Plasmonic Molybdenum Oxide Nanoparticles for Visible-Light-Enhanced Hydrogen Generation.

    PubMed

    Shi, Jiayuan; Kuwahara, Yasutaka; Wen, Meicheng; Navlani-García, Miriam; Mori, Kohsuke; An, Taicheng; Yamashita, Hiromi

    2016-09-06

    A straightforward aqueous synthesis of MoO3-x nanoparticles at room temperature was developed by using (NH4 )6 Mo7 O24 ⋅4 H2 O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as-prepared products are nanoparticles with diameters of 90-180 nm. The diffuse reflectance UV-visible-near-IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible-light and near-infrared region, such nanostructures exhibit an enhancement of activity toward visible-light catalytic hydrogen generation. MoO3-x nanoparticles synthesized with a molar ratio of Mo(VI) /Mo(V) 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as-prepared plasmonic MoO3-x nanoparticles, which reveals its potential application in visible-light catalytic hydrogen production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tannic Acid/Fe3+/Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity.

    PubMed

    Xu, Ziqiang; Wang, Xiuhua; Liu, Xiangmei; Cui, Zhenduo; Yang, Xianjin; Yeung, Kelvin Wai Kwok; Chung, Jonathan Chiyuen; Chu, Paul K; Wu, Shuilin

    2017-11-15

    Silver nanoparticles (AgNPs) enwrapped in the biologically safe tannic acid (TA)/Fe 3+ nanofilm are synthesized by an ultrafast, green, simple, and universal method. The physical antibacterial activity and photodynamic antibacterial therapy (PAT) efficacy of the TA/Fe 3+ /AgNPs nanofilm were investigated for the first time, which exhibited a strong physical antibacterial activity as well as great biocompatibility, through in vitro and in vivo studies. The results disclosed that this hybrid coating could possess high PAT capabilities upon irradiation under a visible light of 660 nm, which is longer than those of previously reported green and blue sensitization light, thus allowing deeper light penetration into biological tissues. Electron spin resonance (ESR) spectra proved that the PAT efficacy of the TA/Fe 3+ /AgNPs nanofilm was associated with the yields of singlet oxygen ( 1 O 2 ) under the irradiation of visible light (660 nm). A higher PAT efficiency of 100 and 94% against Escherichia coli and Staphylococcus aureus could be achieved within 20 min of illumination under 660 nm visible light, whereas the innate physical antibacterial activity of AgNPs could endow the implants with long-term prevention of bacterial infection. The mechanism of PAT may be associated with the formation of oxidative stress and oxidative damage to key biomolecules (proteins and lipids) in bacteria. Our results reveal that the synergistic action of both PAT and physical action of AgNPs in this hybrid nanofilm is an effective way to inactivate bacteria, with minimal side effects.

  6. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO{sub 2} into methanol under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingtian; Luo, Deliang; Yang, Chengju

    2013-07-15

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a bandmore » gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup −1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II) imidazolate frameworks were first applied in the photo-reduction of CO{sub 2}. • The photocatalytic activities of the frameworks depend on their band gap and phase structures. • The photocatalytic activity of orthorhombic frameworks is 3 times that of monoclinic frameworks. • The degradation kinetics of MB over three photocatalysts followed the first-order rate equation. • The largest yield for reduction of CO{sub 2} into methanol on green framworks was 1712.7 μmol/g over 5 h.« less

  7. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse.

  8. CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light

    NASA Astrophysics Data System (ADS)

    Mohamed, R. M.; Shawky, Ahmed

    2018-03-01

    Hexagonal ZnO nanoparticles doped with Mn and supported with a minor amount of carbon nanotubes (CNTs) were synthesized through a simple coprecipitation-ultrasonication process with high yield. The effect of Mn doping, as well as CNTs addition on structure, surface morphology and texture, optical and electronic properties, was studied. We found that just 1% Mn doping and 1% CNT addition on ZnO showed the best crystallinity, highest surface area, improved visible light absorption, and a lowest estimated band gap of 2.6 eV with minimum charge recombination as revealed from photoluminescence spectra. The application of the optimum composition of the synthesized sample for the photodegradation of malachite green dye showed enhanced photocatalytic activity > 95% under visible light irradiation within 120 min at a minimum dosage of 0.1 g L-1 without any using of hole scavenger or changing the pH. This work highlighting the humble preparation procedure and develops photocatalysis research for real industrial applications.

  9. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  10. Protective Effect of Fucoxanthin Isolated from Laminaria japonica against Visible Light-Induced Retinal Damage Both in Vitro and in Vivo.

    PubMed

    Liu, Yixiang; Liu, Meng; Zhang, Xichun; Chen, Qingchou; Chen, Haixiu; Sun, Lechang; Liu, Guangming

    2016-01-20

    With increasingly serious eye exposure to light stresses, such as light-emitting diodes, computers, and widescreen mobile phones, efficient natural compounds for preventing visible light-induced retinal damages are becoming compelling needs in the modern society. Fucoxanthin, as the main light absorption system in marine algae, may possess an outstanding bioactivity in vision protection because of its filtration of blue light and excellent antioxidative activity. In this work, both in vitro and in vivo simulated visible light-induced retinal damage models were employed. The in vitro results revealed that fucoxanthin exhibited better bioactivities than lutein, zeaxanthin, and blueberry anthocyanins in inhibiting overexpression of vascular endothelial growth factor, resisting senescence, improving phagocytic function, and clearing intracellular reactive oxygen species in retinal pigment epithelium cells. The in vivo experiment also confirmed the superiority of fucoxanthin than lutein in protecting retina against photoinduced damage. This excellent bioactivity may be attributed to its unique structural features, including allenic, epoxide, and acetyl groups. Fucoxanthin is expected to be an important ocular nutrient in the future.

  11. Effect of Different Activated Carbon as Carrier on the Photocatalytic Activity of Ag-N-ZnO Photocatalyst for Methyl Orange Degradation under Visible Light Irradiation

    PubMed Central

    Chen, Xiaoqing; Gao, Zhenzhen; Ye, Bang-Ce

    2017-01-01

    In order to enhance the photodegradation of methyl orange (MO) by ZnO under visible light irradiation, ZnO nanoparticles co-doped with Ag and N and supported on activated carbon (AC) with different properties were synthesized through the sol-gel method. The prepared photocatalysts were characterized in terms of the structure and properties through X-ray diffraction, N2 adsorption-desorption, ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, photoluminescence, and electron spin resonance. The photocatalytic activities of these photocatalysts followed the order: Ag-N-ZnO/ACs > Ag-N-ZnO > N, or Ag single-doped ZnO > commercial ZnO. This result was attributed to the small particle size, large surface area, narrow band gap, and high charge separation of Ag-N-ZnO/ACs. The Ag-N-ZnO/coconut husk activated carbon (Ag-N-ZnO/CHAC) exhibited the highest degradation efficiency of 98.82% for MO under visible light irradiation. This outcome was due to the abundant pore structure of Ag-N-ZnO/CHAC, resulting in stronger adsorption than that of other Ag-N-ZnO/ACs. Moreover, the degradation of MO on photocatalysis followed first order kinetics. The reactive species ·OH and ·O2− played more important roles in the photocatalytic degradation of MO over composite photocatalyst. Ag-N-ZnO/CHAC photocatalyst exhibited higher photocatalytic activity than unsupported Ag-N-ZnO after five recycling runs. PMID:28872593

  12. Synergistic effect of N-decorated and Mn2+ doped ZnO nanofibers with enhanced photocatalytic activity

    PubMed Central

    Wang, Yuting; Cheng, Jing; Yu, Suye; Alcocer, Enric Juan; Shahid, Muhammad; Wang, Ziyuan; Pan, Wei

    2016-01-01

    Here we report a high efficiency photocatalyst, i.e., Mn2+-doped and N-decorated ZnO nanofibers (NFs) enriched with vacancy defects, fabricated via electrospinning and a subsequent controlled annealing process. This nanocatalyst exhibits excellent visible-light photocatalytic activity and an apparent quantum efficiency up to 12.77%, which is 50 times higher than that of pure ZnO. It also demonstrates good stability and durability in repeated photocatalytic degradation experiments. A comprehensive structural analysis shows that high density of oxygen vacancies and nitrogen are introduced into the nanofibers surface. Hence, the significant enhanced visible photocatalytic properties for Mn-ZnO NFs are due to the synergetic effects of both Mn2+ doping and N decorated. Further investigations exhibit that the Mn2+-doping facilitates the formation of N-decorated and surface defects when annealing in N2 atmosphere. N doping induce the huge band gap decrease and thus significantly enhance the absorption of ZnO nanofibers in the range of visible-light. Overall, this paper provides a new approach to fabricate visible-light nanocatalysts using both doping and annealing under anoxic ambient. PMID:27600260

  13. Bottom-up production of meta-atoms for optical magnetism in visible and NIR light

    NASA Astrophysics Data System (ADS)

    Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe

    2018-02-01

    Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.

  14. Roadway lighting : an investigation and evaluation of three different light sources

    DOT National Transportation Integrated Search

    2003-05-01

    Nighttime visibility has been shown to be influenced by the lamp type used for roadway lighting, because the lamp's spectral output can influence sensors in the retina that are active at night. This report investigates the nature of these spectral ef...

  15. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhixin, E-mail: czx@fzu.edu.cn; Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002; Xu, Jingjing

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4}more » prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.« less

  16. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    NASA Astrophysics Data System (ADS)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  17. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  18. The preparation and photocatalytic activity of CdS/(Cal-Ta2O5-SiO2) composite photocatalyst under visible light

    NASA Astrophysics Data System (ADS)

    Li, Juxia

    2018-02-01

    CdS/(Cal-Ta2O5-SiO2) composite photocatalyst has been successfully fabricated via wet chemistry method. Ta2O5-SiO2 with multi-step Ta2O5 deposition on SiO2 has more Ta2O5 on SiO2 to ensure the active sites. Trough multi-step calcination, Ta2O5 can load on SiO2 with uniform and stable, which make it have high photocatalytic activity. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis) and photoluminescence spectroscopy (PL). Without any co-catalysts, the as-prepared CdS/(Cal-Ta2O5-SiO2) exhibited remarkable photocatalytic activity and recyclability both in the degradation of rhodamine B and in the hydrogen production from water splitting under visible light.

  19. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    PubMed

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-04-01

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO 2 (PDs-TiO 2 ) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO 4 ) 2 . Under visible light irradiation, the PDs-TiO 2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO 2 is 3.6 and 9.5 times higher than that of pure TiO 2 and commercial P25, respectively. In addition, the PDs-TiO 2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO 2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO 2 , therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Laterally injected light-emitting diode and laser diode

    DOEpatents

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  1. Preparation of ordered mesoporous Ag/WO3 and its highly efficient degradation of acetaldehyde under visible-light irradiation.

    PubMed

    Sun, Songmei; Wang, Wenzhong; Zeng, Shaozhong; Shang, Meng; Zhang, Ling

    2010-06-15

    A highly active photocatalyst, silver loaded mesoporous WO(3), was successfully synthesized by an ultrasound assisted insertion method. The photodegradation of a common air pollutant acetaldehyde was adopted to evaluate the photocatalytic performance of the as-prepared sample under visible-light irradiation. The photocatalytic activity was about three and six times higher than that of pure mesoporous WO(3) and nitrogen-doped TiO(2), respectively. The photocatalytic mechanism was investigated to understand the much enhanced photocatalytic activity, which was mainly attributed to the largely improved electron-hole separation in the Ag-WO(3) heterojunction. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Magnetically separable {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core-shell nanocomposites: Fabrication and visible-light-driven photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minqiang, E-mail: jbmwgkc@126.com; Li, Di; Jiang, Deli

    2012-08-15

    Novel visible-light-induced {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts capable of magnetic separation have been synthesized by a facile sol-gel and after-annealing process. The as-obtained core-shell nanocomposite is composed of a central {gamma}-Fe{sub 2}O{sub 3} core with a strong response to external fields, an interlayer of SiO{sub 2}, and an outer layer of Ce-doped TiO{sub 2} nanocrystals. UV-vis spectra analysis indicates that Ce doping in the compound results in a red-shift of the absorption edge, thus offering increased visible light absorption. We show that such a {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite with appreciated Ce doping amount exhibitsmore » much higher visible-light photocatalytic activity than bare TiO{sub 2} and undoped {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-TiO{sub 2} core-shell nanocomposite toward the degradation of rhodamine B (RhB). Moreover, the {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts could be easily separated and reused from the treated water under application of an external magnetic field. - Graphical abstract: Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core/shell nanocomposite photocatalysts with enhanced photocatalytic activity and fast magnetic separability were prepared. Highlights: Black-Right-Pointing-Pointer Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core/shell composite photocatalysts were prepared. Black-Right-Pointing-Pointer The resulting core/shell composite show high visible light photocatalytic activity. Black-Right-Pointing-Pointer The nanocomposite photocatalysts can be easily recycled with excellent durability.« less

  3. The evolution of adult light emission color in North American fireflies.

    PubMed

    Hall, David W; Sander, Sarah E; Pallansch, Jennifer C; Stanger-Hall, Kathrin F

    2016-09-01

    Firefly species (Lampyridae) vary in the color of their adult bioluminescence. It has been hypothesized that color is selected to enhance detection by conspecifics. One mechanism to improve visibility of the signal is to increase contrast against ambient light. High contrast implies that fireflies active early in the evening will emit yellower luminescence to contrast against ambient light reflected from green vegetation, especially in habitats with high vegetation cover. Another mechanism to improve visibility is to use reflection off the background to enhance the light signal. Reflectance predicts that sedentary females will produce greener light to maximize reflection off the green vegetation on which they signal. To test these predictions, we recorded over 7500 light emission spectra and determined peak emission wavelength for 675 males, representing 24 species, at 57 field sites across the Eastern United States. We found support for both hypotheses: males active early in more vegetated habitats produced yellower flashes in comparison to later-active males with greener flashes. Further, in two of the eight species with female data, female light emissions were significantly greener as compared to males. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency.

    PubMed

    Li, Hua; Li, Fei; Zhang, Biaobiao; Zhou, Xu; Yu, Fengshou; Sun, Licheng

    2015-04-08

    A highly active supramolecular system for visible light-driven water oxidation was developed with cyclodextrin-modified ruthenium complex as the photosensitizer, phenyl-modified ruthenium complexes as the catalysts, and sodium persulfate as the sacrificial electron acceptor. The catalysts were found to form 1:1 host-guest adducts with the photosensitizer. Stopped-flow measurement revealed the host-guest interaction is essential to facilitate the electron transfer from catalyst to sensitizer. As a result, a remarkable quantum efficiency of 84% was determined under visible light irradiation in neutral aqueous phosphate buffer. This value is nearly 1 order of magnitude higher than that of noninteraction system, indicating that the noncovalent incorporation of sensitizer and catalyst is an appealing approach for efficient conversion of solar energy into fuels.

  5. Photo-Modulated Therapeutic Protein Release from a Hydrogel Depot Using Visible Light.

    PubMed

    Basuki, Johan S; Qie, Fengxiang; Mulet, Xavier; Suryadinata, Randy; Vashi, Aditya V; Peng, Yong Y; Li, Lingli; Hao, Xiaojuan; Tan, Tianwei; Hughes, Timothy C

    2017-01-19

    The use of biomacromolecular therapeutics has revolutionized disease treatment, but frequent injections are required owing to their short half-life in vivo. Thus there is a need for a drug delivery system that acts as a reservoir and releases the drug remotely "on demand". Here we demonstrate a simple light-triggered local drug delivery system through photo-thermal interactions of polymer-coated gold nanoparticles (AuNPs) inside an agarose hydrogel as therapeutic depot. Localized temperature increase induced by the visible light exposure caused reversible softening of the hydrogel matrix to release the pre-loaded therapeutics. The release profile can be adjusted by AuNPs and agarose concentrations, light intensity and exposure time. Importantly, the biological activity of the released bevacizumab was highly retained. In this study we demonstrate the potential application of this facile AuNPs/hydrogel system for ocular therapeutics delivery through its versatility to release multiple biologics, compatibility to ocular cells and spatiotemporal control using visible light. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Efficient Solar Energy Conversion Using CaCu3Ti4O12 Photoanode for Photocatalysis and Photoelectrocatalysis

    NASA Astrophysics Data System (ADS)

    Kushwaha, H. S.; Madhar, Niyaz A.; Ilahi, B.; Thomas, P.; Halder, Aditi; Vaish, Rahul

    2016-01-01

    A highly efficient third generation catalyst, CaCu3Ti4O12 (CCTO) shows excellent photoelectrochemical (PEC) and photocatalytic ability. As only 4% part of the solar spectrum covers UV light, thus it is highly desirable to develop visible light active photocatalyst materials like CCTO for effective solar energy conversion. A direct band transition with a narrow band gap (1.5 eV) was observed. Under light irradiation, high photocurrent density was found to be 0.96 mA/cm2, indicating the visible light induced photocatalytic ability of CCTO. Visible light mediated photocatalytic and photoelectrocatalytic degradation efficiency of CaCu3Ti4O12 pellets (CCTO) was investigated for three classes of pharmaceutical waste: erythrosin (dye), ciprofloxacin (antibiotic) and estriol (steroid). It is found that the degradation process follows first order kinetic reaction in electrocatalysis, photocatalysis and photoelectrocatalysis and high kinetic rate constant was observed in photoelectrocatalysis. This was quite high in comparison to previously reported methods.

  7. Efficient Solar Energy Conversion Using CaCu3Ti4O12 Photoanode for Photocatalysis and Photoelectrocatalysis.

    PubMed

    Kushwaha, H S; Madhar, Niyaz A; Ilahi, B; Thomas, P; Halder, Aditi; Vaish, Rahul

    2016-01-04

    A highly efficient third generation catalyst, CaCu3Ti4O12 (CCTO) shows excellent photoelectrochemical (PEC) and photocatalytic ability. As only 4% part of the solar spectrum covers UV light, thus it is highly desirable to develop visible light active photocatalyst materials like CCTO for effective solar energy conversion. A direct band transition with a narrow band gap (1.5 eV) was observed. Under light irradiation, high photocurrent density was found to be 0.96 mA/cm(2), indicating the visible light induced photocatalytic ability of CCTO. Visible light mediated photocatalytic and photoelectrocatalytic degradation efficiency of CaCu3Ti4O12 pellets (CCTO) was investigated for three classes of pharmaceutical waste: erythrosin (dye), ciprofloxacin (antibiotic) and estriol (steroid). It is found that the degradation process follows first order kinetic reaction in electrocatalysis, photocatalysis and photoelectrocatalysis and high kinetic rate constant was observed in photoelectrocatalysis. This was quite high in comparison to previously reported methods.

  8. Efficient Solar Energy Conversion Using CaCu3Ti4O12 Photoanode for Photocatalysis and Photoelectrocatalysis

    PubMed Central

    Kushwaha, H. S.; Madhar, Niyaz A; Ilahi, B.; Thomas, P.; Halder, Aditi; Vaish, Rahul

    2016-01-01

    A highly efficient third generation catalyst, CaCu3Ti4O12 (CCTO) shows excellent photoelectrochemical (PEC) and photocatalytic ability. As only 4% part of the solar spectrum covers UV light, thus it is highly desirable to develop visible light active photocatalyst materials like CCTO for effective solar energy conversion. A direct band transition with a narrow band gap (1.5 eV) was observed. Under light irradiation, high photocurrent density was found to be 0.96 mA/cm2, indicating the visible light induced photocatalytic ability of CCTO. Visible light mediated photocatalytic and photoelectrocatalytic degradation efficiency of CaCu3Ti4O12 pellets (CCTO) was investigated for three classes of pharmaceutical waste: erythrosin (dye), ciprofloxacin (antibiotic) and estriol (steroid). It is found that the degradation process follows first order kinetic reaction in electrocatalysis, photocatalysis and photoelectrocatalysis and high kinetic rate constant was observed in photoelectrocatalysis. This was quite high in comparison to previously reported methods. PMID:26725655

  9. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light.

    PubMed

    Sahoo, Chittaranjan; Gupta, Ashok K

    2015-01-01

    Commercially available microcrystalline TiO2 was doped with silver, ferrous and ferric ion (1.0 mol %) using silver nitrate, ferrous sulfate and ferric nitrate solutions following the liquid impregnation technology. The catalysts prepared were characterised by FESEM, XRD, FTIR, DRS, particle size and micropore analysis. The photocatalytic activity of the prepared catalysts was tested on the degradation of two model dyes, methylene blue (3,7-bis (Dimethylamino)-phenothiazin-5-ium chloride, a cationic thiazine dye) and methyl blue (disodium;4-[4-[[4-(4-sulfonatoanilino)phenyl]-[4-(4-sulfonatophenyl)azaniumylidenecyclohexa-2,5-dien-1-ylidene]methyl]anilino]benzene sulfonate, an anionic triphenyl methane dye) under irradiation by UV and visible light in a batch reactor. The efficiency of the photocatalysts under UV and visible light was compared to ascertain the light range for effective utilization. The catalysts were found to have the anatase crystalline structure and their particle size is in a range of 140-250 nm. In the case of Fe(2+) doped TiO2 and Fe(3+) doped TiO2, there was a greater shift in the optical absorption towards the visible range. Under UV light, Ag(+) doped TiO2 was the most efficient catalyst and the corresponding decolorization was more than 99% for both the dyes. Under visible light, Fe(3+) doped TiO2 was the most efficient photocatalyst with more than 96% and 90% decolorization for methylene blue and methyl blue, respectively. The kinetics of the reaction under both UV and visible light was investigated using the Langmuir-Hinshelwood pseudo-first-order kinetic model. Kinetic measurements confirmed that, Ag(+) doped TiO2 was most efficient in the UV range, while Fe(3+) doped TiO2 was most efficient in the visible range.

  10. A chemical bath deposition route to facet-controlled Ag{sub 3}PO{sub 4} thin films with improved visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunjakar, Jayavant L.; Jo, Yun Kyung; Kim, In Young

    A facile, economic, and reproducible chemical bath deposition (CBD) method is developed for the fabrication of facet-controlled Ag{sub 3}PO{sub 4} thin films with enhanced visible light photocatalytic activity. The fine-control of bath temperature, precursor, complexing agent, substrate, and solution pH is fairly crucial in preparing the facet-selective thin film of Ag{sub 3}PO{sub 4} nanocrystal. The change of precursor from silver nitrate to silver acetate makes possible the tailoring of the crystal shape of Ag{sub 3}PO{sub 4} from cube to rhombic dodecahedron and also the bandgap tuning of the deposited films. The control of [Ag{sup +}]/[phosphate] ratio enables to maximize themore » loading amount of Ag{sub 3}PO{sub 4} crystals per the unit area of the deposited film. All the fabricated Ag{sub 3}PO{sub 4} thin films show high photocatalytic activity for visible light-induced degradation of organic molecules, which can be optimized by tailoring the crystal shape of the deposited crystals. This CBD method is also useful in preparing the facet-controlled hybrid film of Ag{sub 3}PO{sub 4}–ZnO photocatalyst. The present study clearly demonstrates the usefulness of the present CBD method for fabricating facet-controlled thin films of metal oxosalt and its nanohybrid. - Highlights: • The crystal facet of Ag{sub 3}PO{sub 4} films can be tuned by chemical bath deposition. • The crystal shape of Ag{sub 3}PO{sub 4} is tailorable from cube to rhombic dodecahedron. • Facet-tuned Ag{sub 3}PO{sub 4} film shows enhanced visible light photocatalyst activity.« less

  11. Novel ternary g-C3N4/Ag3VO4/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications

    NASA Astrophysics Data System (ADS)

    Barzegar, Javid; Habibi-Yangjeh, Aziz; Akhundi, Anise; Vadivel, S.

    2018-04-01

    Novel visible-light-induced photocatalysts were fabricated by integration of Ag3VO4 and AgBr semiconductors with graphitic carbon nitride (g-C3N4) through a facile refluxing method. The fabricated photocatalysts were extensively characterized by XRD, EDX, SEM, TEM, FT-IR, UV-vis DRS, BET, TGA, and PL instruments. The photocatalytic performance of these samples was studied by degradations of three dye contaminants under visible-light exposure. Among the ternary photocatalysts, the g-C3N4/Ag3VO4/AgBr (10%) nanocomposite displayed the maximum activity for RhB degradation with rate constant of 1366.6 × 10-4 min-1, which is 116, 7.23, and 38.5 times as high as those of the g-C3N4, g-C3N4/AgBr (10%), and g-C3N4/Ag3VO4 (30%) photocatalysts, respectively. The effects of synthesis time and calcination temperature were also investigated and discussed. Furthermore, according to the trapping experiments, it was found that superoxide anion radicals were the predominant reactive species in this system. Finally, the ternary photocatalyst displayed superlative activity in removal of the contaminants under visible-light exposure, displaying great potential of this ternary photocatalyst for environmental remediation, because of a facile synthesis route and outstanding photocatalytic performance.

  12. Novel applications of diagnostic x-rays in activating photo-agents through x-ray induced visible luminescence from rare-earth particles: an in vitro study

    NASA Astrophysics Data System (ADS)

    Abliz, Erkinay; Collins, Joshua E.; Friedberg, Joseph S.; Kumar, Ajith; Bell, Howard; Waynant, Ronald W.; Tata, Darrell B.

    2010-02-01

    Photodynamic agents such as Photofrin II (Photo II) utilized in photodynamic therapy (PDT) possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through visible light photon absorption, the agents exert their cellular cytotoxicity through type II and type I mechanistic pathways through extensive generation of reactive oxygen species (ROS): singlet oxygen 1O2, superoxide anion O2 -, and hydrogen peroxide H2O2, within the intratumoral environment. Unfortunately, due to shallow visible light penetration depth (~2mm to 5mm) in tissues, the PDT strategy currently has largely been restricted to the treatments of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. In this communication, we report on a novel strategy in utilizing "soft" energy diagnostic X-rays to indirectly activate Photo II through X-ray induced luminescence from Gadolinium oxysulfide (20 micron dimension) particles doped with Terbium: Gd2O2S:Tb. X-ray induced visible luminescence from Gd2O2S:Tb particles was spectroscopically characterized and the ROS production levels from clinically relevant concentration (10 μg/ml) of Photo II was quantified through changes in the Vitamin C absorbance. ROS kinetics through X-ray induced luminescence was found to be similar to the ROS kinetics from red He-Ne laser exposures used in the clinics. Taken together, in-vitro findings herein provide the basis for future studies in determining the safety and efficacy of this non-invasive X-ray induced luminescence strategy in activating photo-agent in deep seated tumors.

  13. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-05-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  14. Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs.

    PubMed

    Kumar, Ashutosh; Khan, Musharib; Fang, Liping; Lo, Irene M C

    2017-07-24

    TiO 2 -based photocatalysis offers certain advantages like rapid degradation and mineralization of organic compounds. However, the practical applicability of photocatalysts in degradation of pharmaceuticals and personal care products (PPCPs) is still restricted by challenges including their limited photocatalytic activity under visible light and difficulty in their separation from suspension. To overcome these challenges, a visible-light-driven magnetic N-TiO 2 @SiO 2 @Fe 3 O 4 nanophotocatalyst was developed through fine-tuning the pertinent factors (calcination temperature, Fe 3 O 4 loading, and nitrogen doping) involved during synthesis process, on the basis of degradation of ibuprofen (a typical PPCP). The TEM-EDX, XRD and XPS analyses confirmed the successful synthesis of nanophotocatalyst. By comparing nanophotocatalyst's performance on ibuprofen under two visible light sources, i.e., compact fluorescent lamps (CFLs) and light emitting diodes (LEDs) of similar irradiance, CFLs of irradiance 320μWcm -2 and peak emissive wavelength 543nm served as a better source, resulting in 94% degradation. Furthermore, 93% of benzophenone-3 within 5h and 71% of carbamazepine within 9h was degraded under visible light emitted by CFLs. The superparamagnetic behavior of the nanophotocatalyst enabled its successful magnetic separation (95% efficiency) from the suspension within 20-25min under an electromagnetic field of ∼200mT. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite

    NASA Astrophysics Data System (ADS)

    Chandra, M. Ravi; Siva Prasada Reddy, P.; Rao, T. Siva; Pammi, S. V. N.; Siva Kumar, K.; Vijay Babu, K.; Kiran Kumar, Ch.; Hemalatha, K. P. J.

    2017-06-01

    The polythiophene supported tin doped titanium nanocomposites (PTh/Sn-TiO2) were synthesized by modified sol-gel process through oxidative polymerization of thiophene. The fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-DRS) analysis confirms the existence of synergetic interaction between metal oxide and polymer along with extension of absorption edge to visible region. The composites are found to be in spherical form with core-shell structure, which is confirmed by scanning electron spectroscopy (SEM) and transmission electron microscopy (TEM) images, the presence of all respective elements of composite are proven by energy-dispersive X-ray spectroscopy (EDX) analysis. The importance of polythiophene on surface of metal oxide has been were studied as a function of photocatalytic activity for degradation of organic pollutant congo red and gas sensor behavior towards liquid petroleum gas (LPG). All the composites are photocatalytically active and the composite with 1.5 wt% thiophene degrades the pollutant congo red within 120 min when compared to remaining catalysts under visible light irradiation. On the other hand, same composite have shown potential gas sensor properties towards LPG at 300 °C. Considering all the results, it can be noted that polythiophene acts as good sensitizer towards LPG and supporter for the tin doped titania that improve the photocatalytic activity under visible light.

  16. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics

    PubMed Central

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479

  17. The synergistic effect of phase heterojunction and surface heterojunction to improve photocatalytic activity of VO •-TiO2: the co-catalytic effect of H3PW12O40

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Cai, Shengnan; Yang, Pengfei; Bai, Yan; Dang, Dongbin

    2018-06-01

    With nanotube titanic acid (abbreviated as NTA) and the 12-tungstophosphoric acid (H3PW12O40• xH2O, denoted as HPW) as start materials, respectively, according to a simple hydrothermal process in acid medium, we successfully prepared HPW modified VO •-TiO2 composite photocatalysts. During heat treatment companied by the transformation of NTA to TiO2, a kind of single-electron-trapped oxygen vacancy (VO •) could be formed contributing to the visible light absorption of catalysts. The morphology, phase and chemical structure, optical and electronic properties, and so on of the produced catalysts with various HPW loadings are characterized. The size range of synthesized photocatalyst nanoparticles are about 10 50 nm. Taking aqueous rhodamine B (RhB) dye as model pollutant, we carried out photocatalytic activity test of the achieved catalysts, revealing that the hybrid photocatalysts display significantly enhanced visible light-driven ( λ ≥ 420 nm) photocatalytic activity for degradation of RhB. Among various catalysts, HPWN-0.1-120 composite with nominal loading of 0.1 g HPW and heat treatment temperature of 120 °C possesses the highest photocatalytic performance in visible light, which is closely related to the co-effect of phase heterojunction of rutile/anatase, surface heterojunction of anatase/HPW, and oxygen vacancy (VO •). The two types of heterojunction promote greatly the separation efficiency of photoelectrons and photoholes and oxygen vacancy lures response of catalysts to visible light.

  18. Green laser light activates the inner ear

    NASA Astrophysics Data System (ADS)

    Wenzel, Gentiana I.; Balster, Sven; Zhang, Kaiyin; Lim, Hubert H.; Reich, Uta; Massow, Ole; Lubatschowski, Holger; Ertmer, Wolfgang; Lenarz, Thomas; Reuter, Guenter

    2009-07-01

    The hearing performance with conventional hearing aids and cochlear implants is dramatically reduced in noisy environments and for sounds more complex than speech (e. g. music), partially due to the lack of localized sensorineural activation across different frequency regions with these devices. Laser light can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. We sought to assess whether visible light with parameters that could induce an optoacoustic effect (532 nm, 10-ns pulses) would activate the cochlea. Auditory brainstem responses (ABRs) were recorded preoperatively in anesthetized guinea pigs to confirm normal hearing. After opening the bulla, a 50-μm core-diameter optical fiber was positioned in the round window niche and directed toward the basilar membrane. Optically induced ABRs (OABRs), similar in shape to those of acoustic stimulation, were elicited with single pulses. The OABR peaks increased with energy level (0.6 to 23 μJ/pulse) and remained consistent even after 30 minutes of continuous stimulation at 13 μJ, indicating minimal or no stimulation-induced damage within the cochlea. Our findings demonstrate that visible light can effectively and reliably activate the cochlea without any apparent damage. Further studies are in progress to investigate the frequency-specific nature and mechanism of green light cochlear activation.

  19. Lethal effects of short-wavelength visible light on insects.

    PubMed

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-09

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  20. Lethal effects of short-wavelength visible light on insects

    NASA Astrophysics Data System (ADS)

    Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino

    2014-12-01

    We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.

  1. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, nature of the quantum dots, and dosage of quantum dots.

  2. Improved waste water treatment by bio-synthesized Graphene Sand Composite.

    PubMed

    Poornima Parvathi, V; Umadevi, M; Bhaviya Raj, R

    2015-10-01

    The photocatalytic and antibacterial properties of graphene biosynthesized from sugar and anchored on sand particles has been focused here. The morphology and composition of the synthesized Graphene Sand Composite (GSC) was investigated by means of X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDAX), Fourier Transform Infra-red Spectroscopy (FTIR) and UV-Visible spectroscopy. SEM images show wrinkly edges. This is characteristic of graphenic morphology. Three types of waste water samples namely, textile waste (TW), sugarcane industrial waste water (SW) and domestic waste water from a local purification center at Kodaikanal (KWW) were collected and treated. Adsorption experiments showed effective removal of impurities at 0.2 g of GSC. Photocatalytic activity was analyzed under visible and ultraviolet irradiation. The rate constant for TW increased to 0.0032/min for visible light irradiation from 0.0029/min under UV irradiation. SW showed similar improved activity with rate constant as 0.0023/min in visible irradiation compared to 0.0016/min under UV irradiation. For KWW enhanced activity was seen only in visible light irradiation with rate constant 0.0025/min. GSC showed an inhibition zone of 20 mm against the bacterium Escherichia coli. Results suggest development of economic and effective waste water management systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zielińska-Jurek, Anna; Wei, Zhishun; Wysocka, Izabela; Szweda, Piotr; Kowalska, Ewa

    2015-10-01

    Ag-Pt-modified TiO2 nanocomposites were synthesized using the sol-gel method. Bimetallic modified TiO2 nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO2 and Pt/TiO2 nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts' characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m2/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO2 and Ag-Pt/TiO2 nanocomposites.

  4. Activation of sperm EGFR by light irradiation is mediated by reactive oxygen species.

    PubMed

    Shahar, Shiran; Hillman, Pnina; Lubart, Rachel; Ickowicz, Debby; Breitbart, Haim

    2014-01-01

    To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive-oxygen-species (ROS), Ca(2+) influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS-dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS-mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS-dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin-severing protein, gelsolin, and causes actin-depolymerization in human sperm. Light-stimulated tyrosine phosphorylation of Src-dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src-mediated actin polymerization. Light-stimulated HAM and in vitro-fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM. © 2014 The American Society of Photobiology.

  5. UV-vis light activated Ag decorated monodisperse TiO2 for treatment of pharmaceuticals in water

    EPA Science Inventory

    Recently, many researchers have made a lot of effort to utilize the visible light portion of the solar spectrum to activate TiO2 photocatalyst for environmental applications, such as water, air, and soil remediation. The deposition of noble metals on photocatalysts is of great in...

  6. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  7. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE PAGES

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng; ...

    2017-04-25

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  8. Visible light assisted photodecolorization of eosin-Y in aqueous solution using hesperidin modified TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Suganthi, A.; Rajarajan, M.; Sakthivadivel, R.

    2012-03-01

    Hesperidin a flavanoid, modified TiO2 nanoparticles (Hes-TiO2) was synthesized to improve the visible light driven photocatalytic performance of TiO2. The synthesized nanoparticles were characterized by UV-visible diffuse reflectance spectroscopy (UV-vis-DRS), FT-IR, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activity of Hes-TiO2 was investigated based on the decolorization of eosin-Y under visible light irradiation. Hes-TiO2 showed high efficiency for the decolorization of eosin-Y. The influences of various reaction parameters like effect of pH, catalyst dosage and initial dye concentration on the photocatalytic efficiency were investigated. The adsorption of eosin-Y on Hes-TiO2 was found favorable by the Langmuir approach. The removal percentage of chemical oxygen demand (COD) was determined to evaluate the mineralization of eosin-Y during photodecolorization. Based on the intermediates obtained in the GC-MS spectroscopic technique, a probable degradation mechanism has been proposed.

  9. Doping effect on monolayer MoS2 for visible light dye degradation - A DFT study

    NASA Astrophysics Data System (ADS)

    Cheriyan, Silpa; Balamurgan, D.; Sriram, S.

    2018-04-01

    The electronic and optical properties of, Nitrogen (N), Cobalt (Co), and Co-N co-doped monolayers of MoS2 has been studied by using density functional theory (DFT) for visible light photocatalytic activity. From the calculations, it has been observed that the band gap of monolayer MoS2 has been reduced while doping. However, the band gaps of pristine and N doped MoS2 monolayers only falls in the visible region while for Co and Co-N co-doped systems, the band gap shifted to IR region. The optical calculation also confirms the results. The formation energy values of the doped system reaveal that MoS2 monolayer drops its stability while doping. To evaluate the photocatalytic response, band edge potentials of pristine and N-MoS2 are calculated, and the observed results show that compared to N-doped MoS2 monolayer, pure MoS2 is highly suitable for visible light photocatalytic dye degradation.

  10. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Ismael, Chiamenti; Francesca, Bonfigli; Anderson, S. L. Gomes; Rosa, Maria Montereali; Larissa, N. da Costa; Hypolito, J. Kalinowski

    2014-01-01

    Broadband waveguiding through light-emitting strips directly written in a blank lithium fluoride crystal with a femtosecond laser is reported. Light guiding was observed at several optical wavelengths, from blue, 458 nm, to near-infrared, at 1550 nm. Visible photoluminescence spectra of the optically active F2 and F3+ color centers produced by the fs laser writing process were measured. The wavelength-dependent refractive index increase was estimated to be in the order of 10-3-10-4 in the visible and near-infrared spectral intervals, which is consistent with the stable formation of point defects in LiF.

  11. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less

  12. Recent progress in the development of carbonate-intercalated Zn/Cr LDH as a novel photocatalyst for hydrogen evolution aimed at the utilization of solar light.

    PubMed

    Parida, Kulamani; Mohapatra, Lagnamayee

    2012-01-28

    A series of novel photocatalysts Zn/Cr LDH with different Zn/Cr molar ratios (2 : 1, 3 : 1, 4 : 1 and 2 : 1-CO(3)) were fabricated by a co-precipitation method and evaluated for photodecomposition of water using visible light irradiation. Various characterization methods were employed to investigate the structures, morphologies and photocatalytic properties. In comparison to Zn/Cr (2 : 1) LDH, Zn/Cr-CO(3) (2 : 1) LDH extends the absorption edges to the visible region and exhibits good photocatalytic activity, even without the assistance of co-catalysts. The visible light photocatalytic activity is ascribed to the charge transfer spectra of octahedral Cr ions in LDH. Zn/Cr-CO(3) LDH shows enhanced photocatalytic activities compared to Zn/Cr LDH as carbonate ions oxidise by holes to form carbonate radicals, inhibit the rapid recombination of e(-) and h(+) charge carriers and thereby suppress the backward reaction to some extent. This work provides a detailed understanding of the semiconductor properties of LDHs for photocatalytical hydrogen evolution.

  13. Silica supported TiO{sub 2} nanostructures for highly efficient photocatalytic application under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, A.; Jana, T.K.; Chatterjee, K., E-mail: kuntal2k@gmail.com

    2016-04-15

    Highlights: • Synthesis of silica–titania nanocomposite by simple and facile chemical route and characterization of the materials. • Excellent catalytic activity on organic pollutant methylene blue under the visible light irradiation. • Photocatalytic rate is much higher than commercial P25 TiO{sub 2} catalyst powder. • The higher activity is attributed to the special structure and synergistic effect of the materials which has immense application potential. - Abstract: Titanium dioxide decorated silica nanospheres have been synthesized by a simple wet chemical approach. X-ray diffraction, electron microscopy and energy dispersive X-ray analysis revealed that anatase phase of TiO{sub 2} nanostructures, with exposedmore » {0 0 1} and {1 0 1} facets, are anchored onto the amorphous silica spheres of ∼60 nm diameter. The photocatalytic activity of the sample under visible light irradiation was examined. It is found that photocatalytic efficiency of the material is better than commercial P25 TiO{sub 2} photocatalyst and the result is attributed to the unique synergistic effect of SiO{sub 2}–TiO{sub 2} nanocomposite structure resulting enhanced charge separation and charge transfer.« less

  14. Visible-light photochemical activity of heterostructured core-shell materials composed of selected ternary titanates and ferrites coated by tiO2.

    PubMed

    Li, Li; Liu, Xuan; Zhang, Yiling; Nuhfer, Noel T; Barmak, Katayun; Salvador, Paul A; Rohrer, Gregory S

    2013-06-12

    Heterostructured photocatalysts comprised of microcrystalline (mc-) cores and nanostructured (ns-) shells were prepared by the sol-gel method. The ability of titania-coated ATiO3 (A = Fe, Pb) and AFeO3 (A = Bi, La, Y) catalysts to degrade methylene blue in visible light (λ > 420 nm) was compared. The catalysts with the titanate cores had enhanced photocatalytic activities for methylene blue degradation compared to their components alone, whereas the catalysts with ferrite cores did not. The temperature at which the ns-titania shell is crystallized influences the photocatalytic dye degradation. mc-FeTiO3/ns-TiO2 annealed at 500 °C shows the highest reaction rate. Fe-doped TiO2, which absorbs visible light, did not show enhanced photocatalytic activity for methylene blue degradation. This result indicates that iron contamination is not a decisive factor in the reduced reactivity of the titania coated ferrite catalysts. The higher reactivity of materials with the titanate cores suggests that photogenerated charge carriers are more easily transported across the titanate-titanate interface than the ferrite-titanate interface and this provides guidance for materials selection in composite catalyst design.

  15. A facile photoassisted route to synthesis N, F-codoped oxygen-deficient TiO2 with enhanced photocatalytic performance under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kang, Xiaolan; Han, Ying; Song, Xuezhi; Tan, Zhenquan

    2018-03-01

    Herein, we report a facile and economical photoassisted strategy for synthesizing the highly active N, F-codoped oxygen-deficient TiO2 with coexposed {001} and {101} facets. NH4TiOF3 mesocrystals were used to act as the resource of dopants and the intermediate to fabricate TiO2 with highly active {001} facets. Comprehensive analysis based on X-ray photoelectron spectroscopy, transmission electron microscopy and electron spin resonances manifested that F, N and oxygen vacancies were simultaneously introduced to TiO2 through the photoassisted process. The test of phenol and Rhodamine B (RhB) degradation under visible light demonstrates that the as-prepared N, F codoped oxygen-deficient TiO2 exhibits higher photocatalytic activity than its references. The increased photocatalytic performances results from the synergetic effect of the induced Vo's and N, F codoping in TiO2 with co-exposed {001} and {101} facets, favoring the visible light utilization as well as the separation of photogenerated carriers. This strategy is expected to provide a new insight into the design of high performance photocatalysts.

  16. Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light

    PubMed Central

    Yuan, Xiaoya; Zhou, Chao; Jing, Qiuye; Tang, Qi; Mu, Yuanhua; Du, An-ke

    2016-01-01

    Graphitic-C3N4 nanosheets (CN)/ZnO photocatalysts (CN/ZnO) with different CN loadings were successfully prepared via a simple precipitation-calcination in the presence of exfoliated C3N4 nanosheets. Their morphology and structure were thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL). The results showed that hexagonal wurzite-phase ZnO nanoparticles were randomly distributed onto the CN nanosheets with a well-bonded interface between the two components in the CN/ZnO composites. The performance of the photocatalytic Cr(VI) reduction indicated that CN/ZnO exhibited better photocatalytic activity than pure ZnO under visible-light irradiation and the photocatalyst composite with a lower loading of CN sheets eventually displayed higher activity. The enhanced performance of CN/ZnO photocatalysts could be ascribed to the increased absorption of the visible light and the effective transfer and separation of the photogenerated charge carriers. PMID:28335301

  17. Enhanced visible light photocatalytic activity of copper-doped titanium oxide-zinc oxide heterojunction for methyl orange degradation

    NASA Astrophysics Data System (ADS)

    Dorraj, Masoumeh; Alizadeh, Mahdi; Sairi, Nor Asrina; Basirun, Wan Jefrey; Goh, Boon Tong; Woi, Pei Meng; Alias, Yatimah

    2017-08-01

    A novel Cu-doped TiO2 coupled with ZnO nanoparticles (Cu-TiO2/ZnO) was prepared by sol-gel method and subsequent precipitation for methyl orange (MO) photodegradation under visible light irradiation. The compositions and shapes of the as-prepared Cu-TiO2/ZnO nanocomposites were characterized by photoluminescence spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, UV-vis diffuse reflectance spectra and Brunauer-Emmett-Teller adsorption isotherm techniques. The Cu-TiO2/ZnO nanocomposites showed considerably higher photocatalytic activity for MO removal from water under visible light irradiation than that of single-doped semiconductors. The effects of Cu-TiO2 and ZnO mass ratios on the photocatalytic reaction were also studied. A coupling percentage of 30% ZnO exhibited the highest photocatalytic activity. The enhanced photocatalytic activity of the Cu-TiO2/ZnO nanocomposites was mainly attributed to heterojunction formation, which allowed the efficient separation of photoinduced electron-hole pairs at the interface. Moreover, these novel nanocomposites could be recycled during MO degradation in a three-cycle experiment without evident deactivation, which is particularly important in environmental applications.

  18. Photocatalytic degradation properties of V-doped TiO2 to automobile exhaust.

    PubMed

    Wang, Tong; Shen, Dongya; Xu, Tao; Jiang, Ruiling

    2017-05-15

    To improve the photocatalytic degradation properties of titanium dioxide (TiO 2 ) used as raw materials for purifying automobile exhaust (AE), the vanadium (V)-doped TiO 2 samples were prepared. The photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were evaluated under ultraviolet (UV) and visible light irradiation, respectively. Results indicated that the photocatalytic activity of V-doped TiO 2 to AE was higher than that of pure TiO 2 , and the optimal V dopant content of TiO 2 was 1.0% under UV light irradiation. The degradation efficiencies of V-doped TiO 2 to NOx and HC were higher than those to CO 2 and CO in AE because of the reversible reaction between CO 2 and CO. In addition, it was found that the photocatalytic degradation efficiencies of V-doped TiO 2 to each component in AE were also increased under visible light irradiation. The V-doped TiO 2 also showed higher degradation efficiencies to NOx and HC than those to CO 2 and CO under visible light irradiation. The V doped TiO 2 presented higher photocatalytic activity to CO 2 than that to CO, but the reversible reaction between CO and CO 2 was not found under visible light irradiation. The photocatalytic reactions of pure and V-doped TiO 2 samples to each component in AE followed the first order kinetic pathway under the two light irradiations. It is concluded that the V doping is a feasible method to improve the photocatalytic degradation properties of TiO 2 to AE for air purification, developing a sustainable environmental purification technology based on TiO 2 materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. High-performance porous spherical or octapod-like single-crystalline BiVO4 photocatalysts for the removal of phenol and methylene blue under visible-light illumination.

    PubMed

    Jiang, Haiyan; Meng, Xue; Dai, Hongxing; Deng, Jiguang; Liu, Yuxi; Zhang, Lei; Zhao, Zhenxuan; Zhang, Ruzhen

    2012-05-30

    Monoclinic BiVO(4) single-crystallites with a polyhedral, spherical or porous octapod-like morphology were selectively prepared using the triblock copolymer P123 (HO(CH(2)CH(2)O)(20)(CH(2)CH(CH(3))O)(70)(CH(2)CH(2)O)(20)H)-assisted hydrothermal method with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The BiVO(4) materials were well characterized and their photocatalytic activities were evaluated for the removal of methylene blue (MB) and phenol in the presence of a small amount of H(2)O(2) under visible-light illumination. It is shown that the pH value of the precursor solution, surfactant, and hydrothermal temperature had an important impact on particle architecture of the BiVO(4) product. The introduction of P123 favored the generation of BiVO(4) with porous structures. The BiVO(4) derived hydrothermally with P123 at pH 3 or 6 possessed good optical absorption performance both in UV- and visible-light regions and hence showed excellent photocatalytic activities for the degradation of MB and phenol. It is concluded that the high visible-light-driven catalytic performance of the porous octapod-like BiVO(4) single-crystallites is associated with the higher surface area, porous structure, lower band gap energy, and unique particle morphology. Such porous BiVO(4) materials are useful in the solar-light-driven photocatalytic treatment of organic-containing wastewater. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Up-conversion luminescence coupled to plasmonic gold nanorods for light harvesting and hydrogen production.

    PubMed

    AlGhamdi, H; Katsiev, K; Wahab, A K; Llorca, J; Idriss, H

    2017-12-05

    The conversion of infrared light to visible-light which allows a larger fraction of sun-light to be used is needed to improve light-harvesting. In this work a tri-functional material composed of an up-converter (NaYF 4 -Yb-Tm), plasmonic gold nanorods and CdS was made photocatalytically active using 980 nm wavelength light for the reduction of H + to H 2 .

  1. Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles.

    PubMed

    Yu, Sungju; Wilson, Andrew J; Heo, Jaeyoung; Jain, Prashant K

    2018-04-11

    Artificial photosynthesis relies on the availability of synthetic photocatalysts that can drive CO 2 reduction in the presence of water and light. From the standpoint of solar fuel production, it is desirable that these photocatalysts perform under visible light and produce energy-rich hydrocarbons from CO 2 reduction. However, the multistep nature of CO 2 -to-hydrocarbon conversion poses a significant kinetic bottleneck when compared to CO production and H 2 evolution. Here, we show that plasmonic Au nanoparticle photocatalysts can harvest visible light for multielectron, multiproton reduction of CO 2 to yield C 1 (methane) and C 2 (ethane) hydrocarbons. The light-excitation attributes influence the C 2 and C 1 selectivity. The observed trends in activity and selectivity follow Poisson statistics of electron harvesting. Higher photon energies and flux favor simultaneous harvesting of more than one electron from the photocharged Au nanoparticle catalyst, inducing the C-C coupling required for C 2 production. These findings elucidate the nature of plasmonic photocatalysis, which involves strong light-matter coupling, and set the stage for the controlled chemical bond formation by light excitation.

  2. PAMAM templated N,Pt co-doped TiO2 for visible light photodegradation of brilliant black.

    PubMed

    Nzaba, Sarre Kadia Myra; Ntsendwana, Bulelwa; Mamba, Bhekie Brilliance; Kuvarega, Alex Tawanda

    2018-05-01

    This study examined the photocatalytic degradation of an azo dye brilliant black (BB) using non-metal/metal co-doped TiO 2 . N,Pt co-doped TiO 2 photocatalysts were prepared by a modified sol-gel method using amine-terminated polyamidoamine dendrimer generation 0 (PG0) as a template and source of nitrogen. Structural, morphological, and textural properties were evaluated using scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM/EDX), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), Raman spectroscopy (RS), photoluminescence (PL) and ultra-violet/visible spectroscopy (UV-Vis). The synthesized photocatalysts exhibited lower band gap energies as compared to the Degussa P-25, revealing a red shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO 2 was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180-min reaction time with an initial concentration of 50 ppm. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The N,Pt co-doped TiO 2 also exhibited pseudo-first-order kinetic behavior with half-life and rate constant of 0.37 and 0.01984 min -1 , respectively. The mechanism of the photodegradation of BB under the visible light irradiation was proposed. The obtained results prove that co-doping of TiO 2 with N and Pt contributed to the enhanced photocatalytic performances of TiO 2 for visible light-induced photodegradation of organic contaminants for environmental remediation. Therefore, this work provides a new approach to the synthesis of PAMAM templated N,Pt co-doped TiO 2 for visible light photodegradation of brilliant black.

  3. Synthesis, characterization and evaluation of the photocatalytic performance of Ag-CdMoO{sub 4} solar light driven plasmonic photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikari, Rajesh; Malla, Shova; Gyawali, Gobinda

    2013-09-01

    Graphical abstract: - Highlights: • Ag-CdMoO{sub 4} solar light driven photocatalyst was successfully synthesized. • Photocatalyst exhibited strong absorption in the visible region. • Photocatalytic activity was significantly enhanced. • Enhanced activity was caused by the SPR effect induced by Ag nanoparticles. - Abstract: Ag-CdMoO{sub 4} plasmonic photocatalyst was synthesized in ethanol/water mixture by photo assisted co-precipitation method at room temperature. As synthesized powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Photocatalytic activity was evaluated by performing the degradation experiment over methylenemore » blue (MB) and indigo carmine (IC) as model dyes under simulated solar light irradiation. The results revealed that the Ag-CdMoO{sub 4} showed the higher photocatalytic performance as compared to CdMoO{sub 4} nanoparticles. Dispersion of Ag nanoparticles over the surface of CdMoO{sub 4} nanoparticles causes the surface plasmon resonance (SPR) and enhances the broad absorption in the entire visible region of the solar spectrum. Hence, dispersion of Ag nanoparticles over CdMoO{sub 4} nanoparticles could be the better alternative to enhance the absorption of visible light by scheelite crystal family for effective photocatalysis.« less

  4. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.

    PubMed

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Nomoto, Toyokazu; Yagi, Shinya

    2015-06-01

    The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1⩽x⩽2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Novel Three-Dimensional Semiconducting Materials Based on Hybrid d10 Transition Metal Halogenides as Visible Light-Driven Photocatalysts.

    PubMed

    Yue, Cheng-Yang; Hu, Bing; Lei, Xiao-Wu; Li, Rui-Qing; Mi, Fu-Qi; Gao, Hui; Li, Yan; Wu, Fan; Wang, Chun-Lei; Lin, Na

    2017-09-18

    The development of new visible light-driven photocatalysts based on semiconducting materials remains a greatly interesting and challenging task for the purpose of solving the energy crisis and environmental issues. By using photosensitive [(Me) 2 -2,2'-bipy] 2+ (1,1'-dimethyl-2,2'-bipyridinium) cation as template, we synthesized one new type of inorganic-organic hybrid cuprous and silver halogenides of [(Me) 2 -2,2'-bipy]M 8 X 10 (M = Cu, Ag, X = Br, I). The compounds feature a three-dimensional anionic [M 8 X 10 ] 2- network composed of a one-dimensional [M 8 X 12 ] chain based on MX 4 tetrahedral units. The photosensitization of organic cationic templates results in narrow band gaps of hybrid compounds (1.66-2.06 eV), which feature stable visible light-driven photodegradation activities for organic pollutants. A detailed study of the photocatalytic mechanism, including the photoelectric response, photoluminescence spectra, and theoretical calculations, shows that the organic cationic template effectively inhibits the recombination of photoinduced electron-hole pairs leading to excellent photocatalytic activities and photochemical stabilities.

  6. The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants

    NASA Astrophysics Data System (ADS)

    Saravanakumar, K.; Muthuraj, V.; Jeyaraj, M.

    2018-01-01

    In this paper, we report a novel visible light driven Ag/CdO photocatalyst, fabricated for the first time via one pot hydrothermal method and further applied for the photodegradation of two important exemplar water contaminants, Malachite green and Acid Orange 7. The microstructure, composition and optical properties of Ag/CdO nanocomposites were thoroughly investigated by various techniques. Scanning electron microscopy clearly shows that Ag NPs were strongly embedded between the CdO nanoparticles. Among the series of synthesized Ag/CdO nanocomposites, (5%) Ag/CdO nanocomposite possesses enhanced photocatalytic activity. This result was attributed to the synergistic effect between Ag and CdO, and mainly Ag NPs can act as an electron trap site, which could reduce the recombination of the electron-hole and induce the visible light absorption. The active species trapping experiments implicate radOH and O2rad - radicals as the respective primary and secondary reactive species responsible for oxidative photodegradation of organic pollutants. On the basis of the results, a possible photocatalytic mechanism has also been proposed.

  7. Ultrasonic chemical synthesis of CdS-reduced graphene oxide nanocomposites with an enhanced visible light photoactivity

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Chen; Tsai, Du-Cheng; Chang, Zue-Chin; Shieu, Fuh-Sheng

    2018-05-01

    In this study, we report a facile ultrasonic method to prepare a series of CdS and reduced graphene oxide (CdS/rGO) composites with different weight ratios of graphene at temperature as low as 70 °C for 20 min by employing ammonia as a complexing agent of Cd2+ ions and reducing agent of graphene oxide (GO). Pure CdS particles had a poor crystallinity and aggregated to large particles size. As GO was incorporated into CdS, a uniform dispersion of CdS particles with high crystallinity on rGO sheets was clearly observed. The as-prepared CdS/rGO composites have a wide and strong photo absorption in the visible region and display a substantially improved photocatalytic activity for the degradation of methylene blue under visible light irradiation by forming a heterojunction of rGO and CdS. However, too much rGO will shield the light of the active sites for the CdS nanoparticle surface and thus limit further improvement in the photocatalytic efficiency.

  8. TiO2 supported gold nanoparticles: An efficient photocatalyst for oxidation of alcohol to aldehyde and ketone in presence of visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gogoi, Nibedita; Borah, Geetika; Gogoi, Pradip K.; Chetia, Tridip Ranjan

    2018-01-01

    An efficient heterogeneous photocatalyst composed of Au nanoparticle supported on TiO2 (anatase) is prepared by sol-gel method. This prepared nanocomposite showed good catalytic activity in the oxidation of various alcohols to aldehyde and ketone under irradiation of visible light. Various spectroscopic techniques including UV-Visible absorption spectral studies and photoluminescence study are employed to characterize the catalyst. It was also characterized by XRD, TEM, BET, XPS and ICP-AES analysis. In contrast to air and H2O2, use of TBHP as oxidant gave good yield. The reaction conditions with respect to solvent and amount of catalyst are optimized.

  9. Dual-Band Modulation of Visible and Near-Infrared Light Transmittance in an All-Solution-Processed Hybrid Micro-Nano Composite Film.

    PubMed

    Liang, Xiao; Chen, Mei; Guo, Shumeng; Zhang, Lanying; Li, Fasheng; Yang, Huai

    2017-11-22

    Smart windows with controllable visible and near-infrared light transmittance can significantly improve the building's energy efficiency and inhabitant comfort. However, most of the current smart window technology cannot achieve the target of ideal solar control. Herein, we present a novel all-solution-processed hybrid micronano composite smart material that have four optical states to separately modulate the visible and NIR light transmittance through voltage and temperature, respectively. This dual-band optical modulation was achieved by constructing a phase-separated polymer framework, which contains the microsized liquid crystals domains with a negative dielectric constant and tungsten-doped vanadium dioxide (W-VO 2 ) nanocrystals (NCs). The film with 2.5 wt % W-VO 2 NCs exhibits transparency at normal condition, and the passage of visible light can be reversibly and actively regulated between 60.8% and 1.3% by external applied voltage. Also, the transmittance of NIR light can be reversibly and passively modulated between 59.4% and 41.2% by temperature. Besides, the film also features easy all-solution processability, fast electro-optical (E-O) response time, high mechanical strength, and long-term stability. The as-prepared film provides new opportunities for next-generation smart window technology, and the proposed strategy is conductive to engineering novel hybrid inorganic-organic functional matters.

  10. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  11. CuI as Hole-Transport Channel for Enhancing Photoelectrocatalytic Activity by Constructing CuI/BiOI Heterojunction.

    PubMed

    Sun, Mingjuan; Hu, Jiayue; Zhai, Chunyang; Zhu, Mingshan; Pan, Jianguo

    2017-04-19

    In this paper, CuI, as a typical hole-transport channel, was used to construct a high-performance visible-light-driven CuI/BiOI heterostructure for photoelectrocatalytic applications. The heterostructure combines the broad visible absorption of BiOI and high hole mobility of CuI. Compared to pure BiOI, the CuI/BiOI heterostructure exhibited distinctly enhanced photoelectrocatalytic performance for the oxidation of methanol and organic pollutants under visible-light irradiation. The photogenerated electron-hole pairs of the excited BiOI can be separated efficiently through CuI, in which the CuI acts as a superior hole-transport channel to improve photoelectrocatalytic oxidization of methanol and organic pollutants. The outstanding photoelectrocatalytic activity shows that the p-type CuI works as a promising hole-transport channel to improve the photocatalytic performance of traditional semiconductors.

  12. Visible-light-assisted SLCs template synthesis of sea anemone-like Pd/PANI nanocomposites with high electrocatalytic activity for methane oxidation in acidic medium

    NASA Astrophysics Data System (ADS)

    Tan, De-Xin; Wang, Yan-Li

    2018-03-01

    Sea anemone-like palladium (Pd)/polyaniline (PANI) nanocomposites were synthesized via visible-light-assisted swollen liquid crystals (SLCs) template method. The resulting samples were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometer (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV–vis) absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, respectively. The electrocatalytic properties of Pd/PANI nanocomposites modified glass carbon electrode (GCE) for methane oxidation were investigated by cycle voltammetry (CV) and chronoamperometry. Those dispersed sea anemone-like Pd/PANI nanocomposites had an average diameter of 320 nm. The obtained Pd nanoparticles with an average diameter of about 45 nm were uniformly distributed in PANI matrix. Sea anemone-like Pd/PANI nanocomposites exhibited excellent electrocatalytic activity and stability for oxidation of methane (CH4).

  13. High Efficient Visible-Light Photocatalytic Performance of Cu/ZnO/rGO Nanocomposite for Decomposing of Aqueous Ammonia and Treatment of Domestic Wastewater.

    PubMed

    He, Shiying; Hou, Pengfu; Petropoulos, Evangelos; Feng, Yanfang; Yu, Yingliang; Xue, Lihong; Yang, Linzhang

    2018-01-01

    Photocatalytic removal of ammonium-nitrogen ( NH 4 + -N) from water using solar energy is an approach of high interest and applicability due to the convenience in application. ZnO has a great potential in photocatalytic decomposition of NH 4 + -N and conversion of this nutrient to under visible light irradiations. However the applicability of pristine ZnO though is limited due to its reduced capacity to utilize light from natural light. Herein, we report a two-step ZnO-modified strategy (Cu-doped ZnO nanoparticles, immobilized on reduced graphene oxide (rGO) sheets) for the promotion of photocatalytic degradation of NH 4 + -N under visible light. UV-Vis spectra showed that the Cu/ZnO/rGO can be highly efficient in the utilization of photons from the visible region. Hence, Cu/ZnO/rGO managed to demonstrate adequate photocatalytic activity and effective NH 4 + -N removal from water under visible light compared to single ZnO. Specifically, up to 83.1% of NH 4 + -N (initial concentration 50 mg·L -1 , catalyst dosage 2 g·L -1 , pH 10) was removed within 2 h retention time under Xe lamp irradiation. From the catalysis, the major by-product was N 2 . The high ammonia degradation efficiency from the ZnO/Cu/rGO is attributed to the improvement of the reactive oxygen species (ROSs) production efficiency and the further activation of the interfacial catalytic sites. This study also demonstrated that such nanocomposite is a recyclable agent. Its NH 4 + -N removal capacity remained effective even after five batch cycles. In addition, Cu/ZnO/rGO was applied to treat real domestic wastewater, and it was found that chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal efficiencies can reach 84.3, 80.7, and 90.3%, respectively. Thus, Cu/ZnO/rGO in the presence of solar light can be a promising photocatalyst in the field of wastewater treatment.

  14. Visible Light Responsive Catalysts Using Quantum Dot-Modified Ti02 for Air and Water Purification

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Levine, Lanfang H.; Richards, Jeffrey T.; Hintze, paul; Clausen, Christian

    2012-01-01

    The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; > 400 nm) or highly efficient LEDs (with wavelengths > 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.

  15. Visible-Light-Promoted Trifluoromethylthiolation of Styrenes by Dual Photoredox/Halide Catalysis.

    PubMed

    Honeker, Roman; Garza-Sanchez, R Aleyda; Hopkinson, Matthew N; Glorius, Frank

    2016-03-18

    Herein, we report a new visible-light-promoted strategy to access radical trifluoromethylthiolation reactions by combining halide and photoredox catalysis. This approach allows for the synthesis of vinyl-SCF3 compounds of relevance in pharmaceutical chemistry directly from alkenes under mild conditions with irradiation from household light sources. Furthermore, alkyl-SCF3-containing cyclic ketone and oxindole derivatives can be accessed by radical-polar crossover semi-pinacol and cyclization processes. Inexpensive halide salts play a crucial role in activating the trifluoromethylthiolating reagent towards photoredox catalysis and aid the formation of the SCF3 radical. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn{sub 2}S{sub 4} microspheres and their visible light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zhixin, E-mail: czx@fzu.edu.cn; Analysis and Test Center, Fuzhou University, Fuzhou 350002; Li Danzhen

    Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 Degree-Sign C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn{sub 2}S{sub 4}, which shows that the ZnIn{sub 2}S{submore » 4} sample synthesized at 195 Degree-Sign C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a fast microwave-assisted hydrothermal method at 80-195 Degree-Sign C with a very short reaction time of 10 min. The as-prepared ZnIn{sub 2}S{sub 4} sample can be used as visible light photocatalyst for degradation of organic dyes. Highlights: Black-Right-Pointing-Pointer ZnIn{sub 2}S{sub 4} microspheres were synthesized by microwave-assisted hydrothermal method. Black-Right-Pointing-Pointer The crystal structure and optical property of the products were almost the same. Black-Right-Pointing-Pointer Increment of the temperature renders high surface area due to the bubbling effect. Black-Right-Pointing-Pointer The ZnIn{sub 2}S{sub 4} synthesized at 195 Degree-Sign C shows the best visible catalytic activity for MO.« less

  17. Facile fabrication of BiOI decorated NaNbO3 cubes: A p-n junction photocatalyst with improved visible-light activity

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Yan, Qing; Shao, Yu; Wang, Changqian; Yan, Tao; Ji, Pengge; Du, Bin

    2017-09-01

    To enhance the separation efficiency of photo-generated carriers, a p-n junction photocatalyst BiOI/NaNbO3 has been fabricated by a facile method. The obtained samples were characterized by XRD, SEM, TEM, HRTEM, PL, N2 sorption-desorption and DRS. DRS results showed that the light absorption edges of BiOI/NaNbO3 hybrids were red-shifted with the increase of BiOI content. The SEM and TEM images revealed that the BiOI was widely decorated over the surfaces of NaNbO3 cubes. The formation of p-n heterojunction at their interfaces was proved by the HRTEM image. The visible light-driven photocatalytic activity was evaluated by the degradation of methylene blue (MB) in aqueous solution. Compared with single NaNbO3 and BiOI, the BiOI/NaNbO3 hybrid photocatalysts have exhibited significantly enhanced activities. Meanwhile, the mass ratio of BiOI/NaNbO3 displayed important influence on the MB degradation. The hybrid photocatalyst with BiOI content of 40% performed the optimal activity. This activity enhancement should be attributed to the strong visible light absorption, the high migration and separation efficiency of photo-induced carriers. The photocurrent and PL measurements confirmed that the interfacial charge separation efficiency was greatly improved by coupling BiOI with NaNbO3. Controlled experiments proved that the degradation of pollutants was mainly attributed to the oxidizing ability of the generated holes (h+), ·O2-, and ·OH radicals.

  18. Photochemical Construction of Carbonitride Structures for Red-Light Redox Catalysis.

    PubMed

    Yang, Pengju; Wang, Ruirui; Zhou, Min; Wang, Xinchen

    2018-05-22

    Metal-free carbonitride(CN) semiconductors are appealing light-transducers for photocatalytic redox reactions owing to the unique band gap and stability. To harness solar energy efficiently, CN catalysts that are active over a wider range of the visible spectrum are desired. Now a photochemical approach has been used to prepare a new-type triazine-based CN structure. The obtained CN shows extraordinary light-harvesting characteristics, with suitable semiconductor-redox potentials. The light absorption edge of the CN reaches up to 735 nm, which is significantly longer than that of the conventional CN semiconductor at about 460 nm. As expected, the CN can efficiently catalyze oxidation of alcohols and reduction of CO 2 with visible light, even under red-light irradiation. The results represent an important step toward the development of red-light-responsive triazine-based structures for solar applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers.

    PubMed

    Dong, Fan; Sun, Yanjuan; Fu, Min; Wu, Zhongbiao; Lee, S C

    2012-06-15

    This research represents a highly enhanced visible light photocatalytic removal of 450 ppb level of nitric oxide (NO) in air by utilizing flower-like hierarchical porous BiOI/BiOCl composites synthesized by a room temperature template free method for the first time. The facile synthesis method avoids high temperature treatment, use of organic precursors and production of undesirable organic byproducts during synthesis process. The result indicated that the as-prepared BiOI/BiOCl composites samples were solid solution and were self-assembled hierarchically with single-crystal nanoplates. The aggregation of the self-assembled nanoplates resulted in the formation of 3D hierarchical porous architecture containing tri-model mesopores. The coupling to BiOI with BiOCl led to down-lowered valence band (VB) and up-lifted conduction band (CB) in contrast to BiOI, making the composites suitable for visible light excitation. The BiOI/BiOCl composites samples exhibited highly enhanced visible light photocatalytic activity for removal of NO in air due to the large surface areas and pore volume, hierarchical structure and modified band structure, exceeding that of P25, BiOI, C-doped TiO(2) and Bi(2)WO(6). This research results could provide a cost-effective approach for the synthesis of porous hierarchical materials and enhancement of photocatalyst performance for environmental and energetic applications owing to its low cost and easy scaling up. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-01

    Monoclinic-phase bismuth vanadate (BiVO4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO3 to BiVO4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO4/Ag+. Superior photocatalytic performance was obtained when BiVO4 was mixed with 0.01%(w/v) AgNO3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO4 or AgNO3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron-hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag+ and the formation of a BiVO4/Ag heterojunction. The synergic effect between BiVO4 and Ag+ was discovered to be unique. BiVO4/Ag+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO4 and a R6G solution to detect Ag+ ions in water was discovered.

  1. Photoactive chitosan switching on bone-like apatite deposition.

    PubMed

    Chiono, Valeria; Gentile, Piergiorgio; Boccafoschi, Francesca; Carmagnola, Irene; Ninov, Momchil; Georgieva, Ventsislava; Georgiev, George; Ciardelli, Gianluca

    2010-02-08

    The work was focused on the synthesis and characterization of the chitosan-g-fluorescein (CHFL) conjugate polymer as a biocompatible amphiphilic water-soluble photosensitizer, able to stimulate hydroxyapatite deposition upon visible light irradiation. Fluorescein (FL) grafting to chitosan (CH) chains was confirmed by UV-vis analysis of water solutions of FL and CHFL and by Fourier transform infrared spectroscopy (FTIR-ATR) analysis of CHFL and CH. Smooth CHFL cast films with 4 microm thickness were obtained by solvent casting. Continuous exposure to visible light for 7 days was found to activate the deposition of calcium phosphate crystals from a conventional simulated body fluid (SBF 1.0x) on the surface of CHFL cast films. EDX and FTIR-ATR analyses confirmed the apatite nature of the deposited calcium phosphate crystals. CHFL films preincubated in SBF (1.0x) solution under visible light irradiation and in the dark for 7 days were found to support the in vitro adhesion and proliferation of MG63 osteoblast-like cells (MTT viability test; 1-3 days culture time). On the other hand, the mineralization ability of MG63 osteoblast-like cells was significantly improved on CHFL films preincubated under visible light exposure (alkaline phosphatase activity (ALP) test for 1, 3, 7, and 14 days). The use of photoactive biocompatible conjugate polymer, such as CHFL, may lead to new therapeutic options in the field of bone/dental repair, exploiting the photoexcitation mechanism as a tool for biomineralization.

  2. Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhixin; Li, Danzhen; Xiao, Guangcan; He, Yunhui; Xu, Yi-Jun

    2012-02-01

    Marigold-like ZnIn2S4 microspheres were synthesized by a microwave-assisted hydrothermal method with the temperature ranging from 80 to 195 °C. X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen sorption analysis, UV-visible spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperatures were almost the same. The degradation of methyl orange (MO) under the visible light irradiation has been used as a probe reaction to investigate the photocatalytic activity of as-prepared ZnIn2S4, which shows that the ZnIn2S4 sample synthesized at 195 °C shows the best photocatalytic activity for MO degradation. In addition, the photocatalytic activities of all the samples prepared by the microwave-assisted hydrothermal method are better than those prepared by a normal hydrothermal method, which could be attributed to the formation of more defect sites during the microwave-assisted hydrothermal treatment.

  3. Modified microwave method for the synthesis of visible light-responsive TiO2/MWCNTs nanocatalysts

    PubMed Central

    2013-01-01

    Recently, TiO2/multi-walled carbon nanotube (MWCNT) hybrid nanocatalysts have been a subject of high interest due to their excellent structures, large surface areas and peculiar optical properties, which enhance their photocatalytic performance. In this work, a modified microwave technique was used to rapidly synthesise a TiO2/MWCNT nanocatalyst with a large surface area. X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller measurements were used to characterise the structure, morphology and the surface area of the sample. The photocatalytic activity of the hybrid nanocatalysts was evaluated through a comparison of the degradation of methylene blue dye under irradiation with ultraviolet and visible light. The results showed that the TiO2/MWCNT hybrid nanocatalysts degraded 34.9% of the methylene blue (MB) under irradiation with ultraviolet light, whereas 96.3% of the MB was degraded under irradiation with visible light. PMID:23919496

  4. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor.

    PubMed

    Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung

    2018-03-23

    Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works.

  5. Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor

    PubMed Central

    Kim, Dong Seop; Arsalan, Muhammad; Park, Kang Ryoung

    2018-01-01

    Recent developments in intelligence surveillance camera systems have enabled more research on the detection, tracking, and recognition of humans. Such systems typically use visible light cameras and images, in which shadows make it difficult to detect and recognize the exact human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this problem. However, such instruments require a separate NIR illuminator, or are prohibitively expensive. Existing research on shadow detection in images captured by visible light cameras have utilized object and shadow color features for detection. Unfortunately, various environmental factors such as illumination change and brightness of background cause detection to be a difficult task. To overcome this problem, we propose a convolutional neural network-based shadow detection method. Experimental results with a database built from various outdoor surveillance camera environments, and from the context-aware vision using image-based active recognition (CAVIAR) open database, show that our method outperforms previous works. PMID:29570690

  6. Constructing Ordered Three-Dimensional TiO2 Channels for Enhanced Visible-Light Photocatalytic Performance in CO2 Conversion Induced by Au Nanoparticles.

    PubMed

    Xue, Hairong; Wang, Tao; Gong, Hao; Guo, Hu; Fan, Xiaoli; Gao, Bin; Feng, Yaya; Meng, Xianguang; Huang, Xianli; He, Jianping

    2018-03-02

    As a typical photocatalyst for CO 2 reduction, practical applications of TiO 2 still suffer from low photocatalytic efficiency and limited visible-light absorption. Herein, a novel Au-nanoparticle (NP)-decorated ordered mesoporous TiO 2 (OMT) composite (OMT-Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO 2 shows high photocatalytic performance for CO 2 reduction under visible light. The ordered mesoporous TiO 2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three-dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO 2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO 2 reduction under visible light by constructing OMT-based Au-SPR-induced photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Three-dimensional ruthenium-doped TiO 2 sea urchins for enhanced visible-light-responsive H 2 production

    DOE PAGES

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy; ...

    2016-05-23

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  8. Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+

    NASA Astrophysics Data System (ADS)

    Wu, Xi; Jiang, Shujuan; Song, Shaoqing; Sun, Chuanzhi

    2018-02-01

    Due to the inherent defects of precursor molecular structure, the limited effect of structure in the formed g-C3N4 will weaken the extension of delocalization of π electrons between the adjacent tri-s-triazine or heptazine units of g-C3N4, which thus leads to poor visible-light absorption, low utilization efficiency of charge carrier. Herein, P-introduced g-C3N4 (PC3N4) photocatalysts were constructed by partially replacing C with tributyl phosphate as precursor, and the as-designed PC3N4 photocatalysts were used to eliminate aqueous uranyl ion by photocatalytic reduction technology under visible-light irradiation. Experimental and DFT revealed that introduction of P into g-C3N4 significantly modified its electronic structure, as reflected by the narrowed band gap, enhanced visible-light absorption as well as improved transfer capability of photogenerated charge. Therefore, photocatalytic activity of PC3N4 was much better than that of pristine g-C3N4 and conventional reducing-type photocatalysts. This study suggests an efficient strategy for construct effective visible-light-responsive photocatalysts for radioactive environmental remediation.

  9. High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO₂ photocatalyst for the removal of microcystin-LR under visible light irradiation.

    PubMed

    El-Sheikh, Said M; Zhang, Geshan; El-Hosainy, Hamza M; Ismail, Adel A; O'Shea, Kevin E; Falaras, Polycarpos; Kontos, Athanassios G; Dionysiou, Dionysios D

    2014-09-15

    Carbon, nitrogen and sulfur (C, N and S) doped mesoporous anatase-brookite nano-heterojunction titania photocatalysts have been synthesized through a simple sol-gel method in the presence of triblock copolymer Pluronic P123. XRD and Raman spectra revealed the formation of anatase and brookite mixed phases. XPS spectra indicated the presence of C, N and S dopants. The TEM images demonstrated the formation of almost monodisperse titania nanoparticles with particle sizes of approximately 10nm. N2 isotherm measurements confirmed that both doped and undoped titania anatase-brookite materials have mesoporous structure. The photocatalytic degradation of the cyanotoxin microcystin-LR (MC-LR) has been investigated using these novel nanomaterials under visible light illumination. The photocatalytic efficiency of the mesoporous titania anatase-brookite photocatalyst dramatically increased with the addition of the C, N and S non-metal, achieving complete degradation (∼ 100 %) of MC-LR. The results demonstrate the advantages of the synthetic approach and the great potential of the visible light activated C, N, and S doped titania photocatalysts for the treatment of organic micropollutants in contaminated waters under visible light. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Removal of Nonylphenol by using Fe-doped NaBiO3 compound as an efficient visible-light-heterogeneous Fenton-like catalyst.

    PubMed

    An, Junjian; Huang, Mengxuan; Wang, Mengling; Chen, Jiali; Wang, Peng

    2018-04-12

    Fe-doped NaBiO 3 nanoscaled compounds were prepared by hydrothermal method and evaluated as a highly efficient photo-Fenton-like catalyst under visible light irradiation. The Fe-doped NaBiO 3 compound had a specific surface area of 41.42 m 2  g -1 , which is considerably larger than that of NaBiO 3 nanoparticles (28.81 m 2  g -1 ). The compound exhibited an excellent visible light-Fenton-like catalysis activity, which is influenced by the iron content of the compound and the pH value of the solution. Under the optimal conditions, the Fe-doped NaBiO 3 compound led to fast degradation of Nonylphenol with an apparent rate constant of 5.71 × 10 -2 min -1 , which was 8.23-fold of that achieved by using NaBiO 3 . The significantly enhanced visible light-Fenton-like catalytic property of the Fe-doped NaBiO 3 was attributed to the large surface area and the high adsorption capacity of the compound, and the Fenton catalytic ability of iron in the compound.

  11. A B-C-N hybrid porous sheet: an efficient metal-free visible-light absorption material.

    PubMed

    Lu, Ruifeng; Li, Feng; Salafranca, Juan; Kan, Erjun; Xiao, Chuanyun; Deng, Kaiming

    2014-03-07

    The polyphenylene network, known as porous graphene, is one of the most important and widely studied two-dimensional materials. As a potential candidate for photocatalysis and photovoltaic energy generation, its application has been limited by the low photocatalytic activity in the visible-light region. State-of-the-art hybrid density functional theory investigations are presented to show that an analogous B-C-N porous sheet outperforms the pristine polyphenylene network with significantly enhanced visible-light absorption. Compared with porous graphene, the calculated energy gap of the B-C-N hybrid crystal shrinks to 2.7 eV and the optical absorption peak remarkably shifts to the visible light region. The redox potentials of water splitting are well positioned in the middle of the band gap. Hybridizations among B_p, N_p and C_p orbitals are responsible for these findings. Valence and conduction band calculations indicate that the electrons and holes can be effectively separated, reducing charge recombination and improving the photoconversion efficiency. Moreover, the band gap and optical properties of the B-C-N hybrid porous sheet can be further finely engineered by external strain.

  12. Graphitic-C(3)N(4)-hybridized TiO(2) nanosheets with reactive {001} facets to enhance the UV- and visible-light photocatalytic activity.

    PubMed

    Gu, Liuan; Wang, Jingyu; Zou, Zhijuan; Han, Xijiang

    2014-03-15

    AnataseTiO(2)nanosheets with dominant {001} facets were hybridized with graphitic carbon nitride (g-C(3)N(4)) using a facile solvent evaporation method. On top of the superior photocatalytic performance of highly reactive {001} facets, the hybridization with g-C(3)N(4) is confirmed to further improve the reactivity through degrading a series of organic molecules under both UV- and visible-light irradiation. It is proposed that an effective charge separation between g-C(3)N(4) and TiO2 exists in the photocatalytic process, i.e., the transferring of photogenerated holes from the valence band (VB) of TiO(2) to the highest occupied molecular orbital (HOMO) of g-C(3)N(4), and the injecting of electrons from the lowest unoccupied molecular orbital (LUMO) of g-C(3)N(4) to the conduction band (CB) of TiO(2). Due to this synergistic effect, the enhancement of UV- and visible-light photoactivity over the hybrid is achieved. Furthermore, it has been revealed that holes were the main factor for the improved photoactivity under UV-light, while the OH radicals gained the predominance for degrading organic molecules under visible-light. Overall, this work would be significant for fabricating efficient UV-/visible-photocatalysts and providing deeper insight into the enhanced mechanisms of π-conjugated molecules hybridized semiconductors. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope

    PubMed Central

    Sundaramoorthy, Sriramkumar; Badaracco, Adrian Garcia; Hirsch, Sophia M.; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C.; Canman, Julie C.

    2017-01-01

    The combination of near infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25,000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically-encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (~2 µm versus ~8 µm beam broadening respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast S. cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and visible light paths on a light microscope. PMID:28221018

  14. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.

    PubMed

    Wang, Ying; Liang, Mingxing; Fang, Jiasheng; Fu, Jun; Chen, Xiaochun

    2017-09-01

    In this study, α-FeOOH on reduced graphene oxide (rGO-α-FeOOH) supported on an Al-doped MCM-41 catalyst (RFAM) was optimized for the visible-light photo-Fenton oxidation of phenol at neutral pH. The stability of the catalysts, effect of bubbling aeration, and degradation intermediates were investigated. Results indicated that RFAM with a large Brunauer-Emmett-Teller (BET) area and mesoporous structure displayed excellent catalytic activity for the visible-light-driven (VLD) photo-Fenton process. Phenol degradation was well described by a pseudo-first-order reaction kinetics model. Raman analysis demonstrated that an rGO-α-FeOOH (RF) composite is formed during the ferrous-ion-induced self-assembly process. Al-MCM-41 could uniformly disperse RF nanosheets and promote the mobility and diffusion of matter. The activity of the main catalyst α-FeOOH was enhanced after the incorporation of rGO nanosheets. The α-FeOOH crystal in RFAM showed catalytic activity superior to those of Fe 3 O 4 and Fe 2 O 3 . The RFAM catalyst, with an optimal GO-Fe 2+ mass ratio of 2.33, exhibited a larger BET area, pore size, and pore volume, and thus exhibited high performance and energy utilization efficiency in the VLD photo-Fenton reaction with remarkable stability. Bubbling N 2 inhibited catalytic performance, while bubbling O 2 or air only slightly accelerated the phenol degradation. Visible light played an important role in accelerating the formation of reactive oxygen species (·OH) for the highly efficient phenol degradation. Analysis of degradation intermediates indicated a high phenol mineralization level and the formation of low-molecular-weight organic acids. This work would be helpful in providing an insight into a new type of catalyst assembly and a possible route to a promising heterogeneous catalyst applicable in the visible light photo-Fenton process for effective wastewater remediation at neutral pH. Copyright © 2017. Published by Elsevier Ltd.

  15. Efficient degradation of Methylene Blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light.

    PubMed

    Rahman, Qazi Inamur; Ahmad, Musheer; Misra, Sunil Kumar; Lohani, Minaxi

    2012-09-01

    Visible light induced photocatalysts of Cu doped SrTiO3 (Cu/SrTiO3) nanoparticles with the size -60-75 nm were prepared via facile sol-gel method. The morphological, optical, crystalline properties and compositions of synthesized Cu/SrTiO3 nanoparticles were thoroughly characterized by field emission scanning electron microscopy (FE-SEM), powder X-ray diffraction (XRD), ultra violet-visible spectroscopy (UV-Vis) and energy dispersive X-ray (EDX). A significant red shift in the UV-diffused reflectance spectrum was observed and the absorption edge shifted to visible region by the Cu doping. Surprisingly, the band gap of SrTiO3 was changed from 3.2 eV drop to 2.96 eV. The photocatalytic activity of the synthesized Cu/SrTiO3 nanoparticles was demonstrated for the degradation of Methylene Blue dye under visible light irradiation. The formation of new acceptor region in Cu/SrTiO3 was responsible for high photocatalytic activity of Cu/SrTiO3 nanoparticles. The results showed that the Methylene Blue dye was degraded by -66% within time span of 2 h over the Cu/SrTiO3 nanoparticles. This dye degradation reaction followed the Langmuir-Hinshelwood kinetics and also exhibited first order reaction rate. The calculated rate constant for the degradation reaction following first order kinetics was k = 0.0016 min(-1).

  16. Synthesis, crystal structure, photodegradation kinetics and photocatalytic activity of novel photocatalyst ZnBiYO4.

    PubMed

    Cui, Yanbing; Luan, Jingfei

    2015-03-01

    ZnBiYO4 was synthesized by a solid-state reaction method for the first time. The structural and photocatalytic properties of ZnBiYO4 were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis diffuse reflectance. ZnBiYO4 crystallized with a tetragonal spinel structure with space group I41/A. The lattice parameters for ZnBiYO4 were a=b=11.176479Å and c=10.014323Å. The band gap of ZnBiYO4 was estimated to be 1.58eV. The photocatalytic activity of ZnBiYO4 was assessed by photodegradation of methyl orange under visible light irradiation. The results showed that ZnBiYO4 had higher catalytic activity compared with N-doped TiO2 under the same experimental conditions using visible light irradiation. The photocatalytic degradation of methyl orange with ZnBiYO4 or N-doped TiO2 as catalyst followed first-order reaction kinetics, and the first-order rate constant was 0.01575 and 0.00416 min(-1) for ZnBiYO4 and N-doped TiO2, respectively. After visible light irradiation for 220 min with ZnBiYO4 as catalyst, complete removal and mineralization of methyl orange were observed. The reduction of total organic carbon, formation of inorganic products, SO4(2-) and NO3-, and evolution of CO2 revealed the continuous mineralization of methyl orange during the photocatalytic process. The intermediate products were identified using liquid chromatography-mass spectrometry. The ZnBiYO4/(visible light) photocatalysis system was found to be suitable for textile industry wastewater treatment and could be used to solve other environmental chemical pollution problems. Copyright © 2015. Published by Elsevier B.V.

  17. Mussel-inspired green synthesis of polydopamine-Ag-AgCl composites with efficient visible-light-driven photocatalytic activity.

    PubMed

    Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang

    2016-09-01

    Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts. Copyright © 2016. Published by Elsevier B.V.

  18. Fabrication of uniformly dispersed Ag nanoparticles loaded TiO{sub 2} nanotube arrays for enhancing photoelectrochemical and photocatalytic performances under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Junhui; Zhang, Shengsen; Wang, Hongjuan

    2014-12-15

    Graphical abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method, which exhibited the enhanced photoelectrochemical and photocatalytic performances under visible-light irradiation due to the more effective separation of photo-generated electron–hole pairs and faster interfacial charge transfer. - Highlights: • Highly dispersed Ag nanoparticles (NPs) are successfully prepared by polyol method. • Ag NPs are uniformly loaded on the surface of the TiO{sub 2} nanotube arrays (NTs). • Ag/TiO{sub 2}-NTs exhibit the enhanced photocatalytic activity under visible-light. • The enhanced photocurrent ismore » explained by electrochemical impedance spectroscopy. - Abstract: Uniformly dispersed Ag nanoparticles (NPs) were successfully loaded on both the outer and inner surface of the TiO{sub 2} nanotube arrays (NTs) through a simple polyol method. The as-prepared Ag/TiO{sub 2}-NTs were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV–vis diffusion reflectance spectroscopy. Photoelectrochemical behaviors were investigated via photocurrent response and electrochemical impedance spectroscopy (EIS). Photocatalytic activity of Ag/TiO{sub 2}-NTs was evaluated by degradation of acid orange II under visible light irradiation. The results showed that photocatalytic efficiency of Ag/TiO{sub 2}-NTs is more than 5 times higher than that of pure TiO{sub 2} NTs. Comparing with the electrochemical deposition method, the photocatalytic activity of Ag/TiO{sub 2}-NTs prepared by polyol method has been obviously increased.« less

  19. High speed line-scan confocal imaging of stimulus-evoked intrinsic optical signals in the retina

    PubMed Central

    Li, Yang-Guo; Liu, Lei; Amthor, Franklin; Yao, Xin-Cheng

    2010-01-01

    A rapid line-scan confocal imager was developed for functional imaging of the retina. In this imager, an acousto-optic deflector (AOD) was employed to produce mechanical vibration- and inertia-free light scanning, and a high-speed (68,000 Hz) linear CCD camera was used to achieve sub-cellular and sub-millisecond spatiotemporal resolution imaging. Two imaging modalities, i.e., frame-by-frame and line-by-line recording, were validated for reflected light detection of intrinsic optical signals (IOSs) in visible light stimulus activated frog retinas. Experimental results indicated that fast IOSs were tightly correlated with retinal stimuli, and could track visible light flicker stimulus frequency up to at least 2 Hz. PMID:20125743

  20. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    NASA Astrophysics Data System (ADS)

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-07-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h-1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles.

  1. The orderly nano array of truncated octahedra Cu2O nanocrystals with the enhancement of visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wei, Xiaofeng; Pan, Jiaqi; Mei, Jie; Zheng, Yingying; Cui, Can; Li, Chaorong

    2018-07-01

    The orderly nano array is able to improve the light utilization efficiency and has been thought to be a promising way for advancing photocatalysis. The orderly nano array of truncated octahedra Cu2O nanocrystals have been successfully fabricated by the facile solution-based one-step reduction and self-assembly method. The results of XRD, SEM and TEM indicate that the Cu2O nano array is successfully assembled on the Si substrate. The photocatalytic activity of the Cu2O orderly nano array is investigated under visible light irradiation, and it is demonstrated to be significantly enhanced after the Cu2O is self-assembled orderly. Furthermore, the surface orderly structure of the nano array is considered as the main reason for the enhancement.

  2. Controlled synthesis of BiVO{sub 4} with multiple morphologies via an ethylenediamine-assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xuemei, E-mail: qixuemei@shiep.edu.cn; School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090; Zhu, Xinyuan

    2014-11-15

    Graphical abstract: BiVO{sub 4} samples with various morphologies were synthesized via a simple ethylenediamine (EN) assisted hydrothermal route. One of the mixed crystal phase with spherical and porous morphology showed excellent photocatalytic activity and about 90% Rhodamine B was degraded after 140 min visible light irradiation. - Highlights: • BiVO{sub 4} samples with various morphologies were synthesized by hydrothermal method. • Ethylenediamine mainly acts as alkaline source to adjust pH values of precursor. • BiVO{sub 4} with spherical morphology has excellent photocatalytic activity. - Abstract: In this work, BiVO{sub 4} particles with different crystal structures and morphologies including hexahedral, sphericalmore » porous and hyperbranched ones were fabricated in the presence of ethylenediamine by hydrothermal process. The as-fabricated samples were well characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and ultraviolet–visible absorption spectroscopy. The results showed that the morphology and crystal structure of BiVO{sub 4} particles could be well controlled by only changing the ethylenediamine content in the deionized water solution. Photocatalytic activity of the samples was evaluated by the degradation of Rhodamine B under visible-light irradiation. It was shown that BiVO{sub 4} sample with spherical porous morphology and mixed crystal phase exhibited the best photocatalytic performance after optimizing the ethylenediamine content. The best degradation ratio of Rhodamine B could reach about 87% after 140 min visible-light irradiation.« less

  3. Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: no evidence of enhanced algal toxicity under UV pre-irradiation.

    PubMed

    Lee, Woo-Mi; An, Youn-Joo

    2013-04-01

    Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO2 NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Disparity in Cutaneous Pigmentary Response to LED vs Halogen Incandescent Visible Light: Results from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    PubMed

    Soleymani, Teo; Cohen, David E; Folan, Lorcan M; Okereke, Uchenna R; Elbuluk, Nada; Soter, Nicholas A

    2017-11-01

    Background: While most of the attention regarding skin pigmentation has focused on the effects of ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. The purpose of this study was to investigate the cutaneous pigmentary response to pure visible light irradiation, examine the difference in response to different sources of visible light irradiation, and determine a minimal pigmentary dose of visible light irradiation in melanocompetent subjects with Fitzpatrick skin type III - VI. The study was designed as a single arm, non-blinded, split-side dual intervention study in which subjects underwent visible light irradiation using LED and halogen incandescent light sources delivered at a fluence of 0.14 Watts/cm2 with incremental dose progression from 20 J/cm2 to 320 J/cm2. Pigmentation was assessed by clinical examination, cross-polarized digital photography, and analytic colorimetry. Immediate, dose-responsive pigment darkening was seen with LED light exposure in 80% of subjects, beginning at 60 Joules. No pigmentary changes were seen with halogen incandescent light exposure at any dose in any subject. This study is the first to report a distinct difference in cutaneous pigmentary response to different sources of visible light, and the first to demonstrate cutaneous pigment darkening from visible LED light exposure. Our findings raise the concern that our increasing daily artificial light surroundings may have clandestine effects on skin biology.

    J Drugs Dermatol. 2017;16(11):1105-1110.

    .

  5. Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV-vis light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Hailong; Gao, Yan; Xiong, Zhuo; Liao, Chen; Shih, Kaimin

    2018-05-01

    A series of Au-g-C3N4 (Au-CN) catalysts were prepared through a NaBH4-reduction method using g-C3N4 (CN) from pyrolysis of urea as precursor. The catalysts' surface area, crystal structure, surface morphology, chemical state, functional group composition and optical properties were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, ultraviolet visible (UV-vis) diffuse reflectance spectra, fourier transform infrared, photoluminescence and transient photocurrent analysis. The carbon dioxide (CO2) photoreduction activities under ultraviolet visible (UV-vis) light irradiation were significantly enhanced when gold (Au) was loaded on the surface of CN. 2Au-CN catalyst with Au to CN mole ratio of 2% showed the best catalytic activity. After 2 h UV-vis light irradiation, the methane (CH4) yield over the 2Au-CN catalyst was 9.1 times higher than that over the pure CN. The CH4 selectivity also greatly improved for the 2Au-CN compared to the CN. The deposited Au nanoparticles facilitated the separation of electron-hole pairs on the CN surface. Moreover, the surface plasmon resonance effect of Au further promoted the generation of hot electrons and visible light absorption. Therefore, Au loading significantly improved CO2 photoreduction performance of CN under UV-vis light irradiation.

  6. Intense visible light emission from stress-activated ZrO2:Ti

    NASA Astrophysics Data System (ADS)

    Akiyama, Morito; Xu, Chao-Nan; Nonaka, Kazuhiro

    2002-07-01

    We have investigated the luminescence phenomena from stress-activated ZrO2:Ti. The luminescence is clearly visible to the naked eye in the atmosphere. The luminescence center has been identified as the Ti4+ ion from spectra of the mechanoluminescence and also from photoluminescence studies of ZrO2:Ti. The mechanoluminescence intensity decreases on repetitive application of stress but recovers completely on irradiation with ultraviolet light. ZrO2 is an n-type semiconductor and has electron traps. It is suggested that the mechanoluminescence mechanism arises from the movement of dislocations and recombination between electrons and holes released from these traps which are associated with the Ti4+ centers.

  7. Synthesis and Visible-Light Photocatalytic Activity of CeO₂ Nanoboxes Based on Pearson’s Principle.

    PubMed

    Ge, Shengsong; Bao, Liwei; Shao, Qian; Zhang, Qiaoxia; Liu, Zingyun

    2017-01-01

    The CeO₂ nanoboxes with well-defined hollow structure were fabricated by template-engaged coordinating etching of Cu₂O cubes based on Pearson’s hard and soft acid-base principle. The morphologically uniform CeO₂ nanoboxes have an average edge length of 400 nm and shell thickness of around 60 nm. The strong chemical affinity between Cu+ and S₂O(2− 3) was the driving force for the etching of Cu₂O templates and the formation of shells. A possible formation mechanism of CeO₂ nanoboxes was proposed. The synthesized CeO₂ nanoboxes exhibit good photocatalytic activity for photodegradation of acid orange 7 (AO 7) under visible light irradiation.

  8. Graphite-like carbon nitride (C3N4) modified N-doped LaTiO3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance

    NASA Astrophysics Data System (ADS)

    Rakibuddin, Md; Kim, Haekyoung; Ehtisham Khan, Mohammad

    2018-09-01

    A novel g-C3N4/N doped-LaTiO3 organic-inorganic hybrid (CLT) is synthesized via a sol-gel polymerized complex method followed by a facile solid state transformation route. The as synthesized hybrid is characterized using powder X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-visible diffuse reflectance spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis. The results show that the band gap of LaTiO3 is narrowed and also could absorb visible light after doping of N into the LaTiO3 lattice. It is observed that N-doped LaTiO3 nanoparticles are wrapped with the g-C3N4 nano-sheet layers, forming a heterojunction structure, in the CLT hybrid. The CLT hybrid exhibits not only longer wavelength absorption in the visible region but also an enhancement in the photocatalytic and photocurrent activity under visible light compared to pure N-doped LaTiO3 and g-C3N4. Moreover, the hybrid is photo-stable and reusable. The improved visible light photocatalytic activity of the CLT hybrid is ascribed to its suitable band edge potential, better separation of photoinduced charge carriers owing to the heterojunction, and the synergistic effect of g-C3N4 and N-LaTiO3. Based on the results of photoluminescence, electrochemical impedance, and radical scavenger studies, a possible photocatalytic mechanism for the hybrid is also proposed. The g-C3N4/N-LaTiO3 hetero-structure is expected to provide new insight for the application of rare-earth-metal based perovskite oxides in environmental remediation and could be suitable for water splitting and other energy related applications as well.

  9. Photocatalytic performance of electrospun CNT/TiO2 nanofibers in a simulated air purifier under visible light irradiation.

    PubMed

    Wongaree, Mathana; Chiarakorn, Siriluk; Chuangchote, Surawut; Sagawa, Takashi

    2016-11-01

    The photocatalytic treatment of gaseous benzene under visible light irradiation was developed using electrospun carbon nanotube/titanium dioxide (CNT/TiO 2 ) nanofibers as visible light active photocatalysts. The CNT/TiO 2 nanofibers were fabricated by electrospinning CNT/poly(vinyl pyrrolidone) (PVP) solution followed by the removal of PVP by calcination at 450 °C. The molar ratio of CNT/TiO 2 was fixed at 0.05:1 by weight, and the quantity of CNT/TiO 2 loaded in PVP solution varied between 30 and 60 % wt. CNT/TiO 2 nanofibers have high specific surface area (116 m 2 /g), significantly higher than that of TiO 2 nanofibers (44 m 2 /g). The photocatalytic performance of the CNT/TiO 2 nanofibers was investigated by decolorization of 1 × 10 -5  M methylene blue (MB) dye (in water solution) and degradation of 100 ppm gaseous benzene under visible light irradiation. The 50-CNT/TiO 2 nanofibers (calcined CNT/TiO 2 nanofibers fabricated from a spinning solution of 50 % wt CNT/TiO 2 based on PVP) had higher MB degradation efficiency (58 %) than did other CNT/TiO 2 nanofibers and pristine TiO 2 nanofibers (15 %) under visible light irradiation. The photocatalytic degradation of gaseous benzene under visible light irradiation on filters made of 50-CNT/TiO 2 nanofibers was carried out in a simulated air purifier system. Similar to MB results, the degradation efficiency of gaseous benzene by 50-CNT/TiO 2 nanofibers (52 %) was higher than by other CNT/TiO 2 nanofibers and pristine TiO 2 nanofibers (18 %). The synergistic effects of the larger surface area and lower band gap energy of CNT/TiO 2 nanofibers were presented as strong adsorption ability and greater visible light adsorption. The CNT/TiO 2 nanofiber prepared in this study has potential for use in air purifiers to improve air treatment efficiency with less energy.

  10. Synthesis of a ternary Ag/RGO/ZnO nanocomposite via microwave irradiation and its application for the degradation of Rhodamine B under visible light.

    PubMed

    Surendran, Divya Kollikkara; Xavier, Marilyn Mary; Viswanathan, Vandana Parakkal; Mathew, Suresh

    2017-06-01

    Reduced graphene oxide supporting plasmonic photocatalyst (Ag) on ZnO has been synthesized via a facile two-step microwave synthesis using RGO/ZnO and AgNO 3 . First step involves fabrication of RGO/ZnO via microwave irradiation. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Ag/RGO/ZnO shows enhanced photoactivity under visible light for the degradation of Rhodamine B. Enhanced charge separation and migration have been assigned using UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectra, and TCSPC analysis. The improved photoactivity of Ag/RGO/ZnO can be ascribed to the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag with ZnO nanoparticles. Ag nanoparticles can absorb visible light via surface plasmon resonance to enhance photocatalytic activity.

  11. A Highly Selective and Robust Co(II)-Based Homogeneous Catalyst for Reduction of CO2 to CO in CH3CN/H2O Solution Driven by Visible Light.

    PubMed

    Ouyang, Ting; Hou, Cheng; Wang, Jia-Wei; Liu, Wen-Ju; Zhong, Di-Chang; Ke, Zhuo-Feng; Lu, Tong-Bu

    2017-07-03

    Visible-light driven reduction of CO 2 into chemical fuels has attracted enormous interest in the production of sustainable energy and reversal of the global warming trend. The main challenge in this field is the development of efficient, selective, and economic photocatalysts. Herein, we report a Co(II)-based homogeneous catalyst, [Co(NTB)CH 3 CN](ClO 4 ) 2 (1, NTB = tris(benzimidazolyl-2-methyl)amine), which shows high selectivity and stability for the catalytic reduction of CO 2 to CO in a water-containing system driven by visible light, with turnover number (TON) and turnover frequency (TOF) values of 1179 and 0.032 s -1 , respectively, and selectivity to CO of 97%. The high catalytic activity of 1 for photochemical CO 2 -to-CO conversion is supported by the results of electrochemical investigations and DFT calculations.

  12. S-Doped Sb2O3 Nanocrystal: an Efficient Visible-Light Catalyst for Organic Degradation

    NASA Astrophysics Data System (ADS)

    Xue, Hun; Lin, Xinyi; Chen, Qinghua; Qian, Qingrong; Lin, Suying; Zhang, Xiaoyan; Yang, Da-Peng; Xiao, Liren

    2018-04-01

    The S-doped Sb2O3 nanocrystals were successfully synthesized using SbCl3 and thioacetamide (TAA) as precursors via a facile one-step hydrothermal method. The effects of pH of the precursor reaction solution on the product composition and property were determined. The results indicated that the doping amount of S could be tuned by adjusting the pH of the precursor solution. Furthermore, the S entered into the interstitial site of Sb2O3 crystals as S2-, which broadened the absorption wavelength range of the Sb2O3 nanocrystal. The S-doped Sb2O3 exhibited an excellent visible-light-driven photocatalytic activity in the decomposition of methyl orange and 4-phenylazophenol. Last, a possible photocatalytic mechanism of the S-doped Sb2O3 under visible light irradiation was proposed.

  13. Visible-light-driven chemoselective hydrogenation of nitroarenes to anilines in water via graphitic carbon nitride metal-free photocatalysis.

    PubMed

    Xiao, Gang; Li, Peifeng; Zhao, Yilin; Xu, Shengnan; Su, Haijia

    2018-05-20

    Green and efficient procedures are highly required for the chemoselective hydrogenation of functionalized nitroarenes to industrially important anilines. Here, we show that visible-light-driven, chemoselective hydrogenation of functionalized nitroarenes bearing the sensitive groups to anilines can be achieved in good to excellent yields (82-100%) in water under relatively mild conditions, catalyzed by low-cost and recyclable graphitic carbon nitride. It is also applicable in gram-scale reaction with 86% yield of aniline. Mechanism study reveals that visible light induced electrons are responsible for the hydrogenation reactions and thermal energy can also promote the photocatalytic activity. Kinetics study shows that this reaction possibly occurs via one-step hydrogenation or stepwise condensation route. Wide applications can be expected using this green, efficient, and highly selective photocatalysis system in reduction reactions for fine chemical synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Starch mediated CdS nanoparticles and their photocatalytic performance under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firdaus, Farha, E-mail: Farha-firdaus@yahoo.co.in; Faraz, Mohd

    Green synthesis of Cadmium Sulphide (CdS-S) nanoparticles is of considerable interest due to its biocompatible and nontoxicity. Here, we present a biomolecule stimulated chemical method was adopted for the successful synthesis of CdS-S nanoparticles using starch as a capping agent. The CdS-S nanoparticles were characterized by various analytical techniques. The CdS-S nanoparicles exhibit photocatalytic activity against methyl orange (MO) at pH 9 in Visible light and the reaction follows pseudo first-order kinetics. The comparative photocatalytic activity revealed that CdS-S nanoparticles remarkably enhanced activities as compared to the commercial TiO{sub 2} nanoparticles. The outcome of these studies offers valuable for planningmore » CdS-S nanoparticles having photocatalytic activities helpful for the formulation of waste water remediation.« less

  15. Comparison and mechanism of photocatalytic activities of N-ZnO and N-ZrO2 for the degradation of rhodamine 6G.

    PubMed

    Sudrajat, Hanggara; Babel, Sandhya

    2016-05-01

    N-doped ZnO (N-ZnO) and N-doped ZrO2 (N-ZrO2) are synthesized by novel, simple thermal decomposition methods. The catalysts are evaluated for the degradation of rhodamine 6G (R6G) under visible and UV light. N-ZnO exhibits higher dye degradation under both visible and UV light compared to N-ZrO2 due to possessing higher specific surface area, lower crystalline size, and lower band gap. However, it is less reusable than N-ZrO2 and its photocatalytic activity is also deteriorated at low pH. At the same intensity of 3.5 W/m(2), UVC light is shown to be a better UV source for N-ZnO, while UVA light is more suitable for N-ZrO2. At pH 7 with initial dye concentration of 10 mg/L, catalyst concentration of 1 g/L, and UVC light, 94.3 % of R6G is degraded by N-ZnO within 2 h. Using UVA light under identical experimental conditions, 93.5 % degradation of R6G is obtained by N-ZrO2. Moreover, the type of light source is found to determine the reactive species produced in the R6G degradation by N-ZnO and N-ZrO2. Less oxidative reactive species such as superoxide radical and singlet oxygen play a major role in the degradation of R6G under visible light. On the contrary, highly oxidative hydroxyl radicals are predominant under UVC light. Based on the kinetic study, the adsorption of R6G on the catalyst surface is found to be the controlling step.

  16. Room-temperature synthesis of carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets with enhanced visible light photocatalytic activity.

    PubMed

    Huang, He; Huang, Ni; Wang, Zhonghua; Xia, Guangqiang; Chen, Ming; He, Lingling; Tong, Zhifang; Ren, Chunguang

    2017-09-15

    The preparation of highly efficient visible-light-driven photocatalyst for the photodegradation of organic pollutants has received much attention due to the increasing global energy crises and environmental pollution. In this study, carnation-like ZnO@AgI hierarchical nanostructures assembled by AgI nanoparticles-decorated ZnO nanosheets were successfully prepared via a room-temperature route. The as-prepared ZnO@AgI nanostructures exhibited highly efficient photocatalytic activity under visible light irradiation (λ>400nm). Under optimized AgI content, the ZnO@AgI-5% sample showed high photocatalytic activity, which was 25.7 and 1.5 times the activity of pure ZnO and pure AgI, respectively. Mechanism studies indicated that superoxide anion radicals (O 2 - ) was the main reactive species in the photocatalytic process. The high photocatalytic activity of the ZnO@AgI nanostructures is attributed to the highly active AgI nanoparticles and the heterojunction between AgI nanoparticles and ZnO nanosheets. The heterojunction structure reduced the recombination of the photogenerated electron-hole pairs in the conduction band (CB) and valence band (VB) of AgI nanoparticles by transferring the electrons from the CB of AgI nanoparticles to the CB of ZnO nanosheets. The composite of ZnO and AgI not only improves photocatalytic efficiency but also reduces photocatalyst cost, which is beneficial for practical application. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. MoS2-coated microspheres of self-sensitized carbon nitride for efficient photocatalytic hydrogen generation under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Gu, Quan; Sun, Huaming; Xie, Zunyuan; Gao, Ziwei; Xue, Can

    2017-02-01

    We have successfully coated the self-sensitized carbon nitride (SSCN) microspheres with a layer of MoS2 through a facile one-pot hydrothermal method by using (NH4)2MoS4 as the precursor. The resulted MoS2-coated SSCN photocatalyst appears as a core-shell structure and exhibits enhanced visible-light activities for photocatalytic H2 generation as compared to the un-coated SSCN and the standard g-C3N4 reference with MoS2 coating. The photocatalytic test results suggest that the oligomeric s-triazine dyes on the SSCN surface can provide additional light-harvesting capability and photogenerated charge carriers, and the coated MoS2 layer can serve as active sites for proton reduction towards H2 evolution. This synergistic effect of surface triazine dyes and MoS2 coating greatly promotes the activity of carbon nitride microspheres for vishible-light-driven H2 generation. This work provides a new way of future development of low-cost noble-metal-free photocatalysts for efficient solar-driven hydrogen production.

  18. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods.

    PubMed

    Al-Sabahi, Jamal; Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2017-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products.

  19. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods

    PubMed Central

    Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2017-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products. PMID:29261711

  20. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    PubMed

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  1. Thermal photogrammetric imaging: A new technique for monitoring dome eruptions

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Varley, Nick; James, Mike R.

    2017-05-01

    Structure-from-motion (SfM) algorithms greatly facilitate the generation of 3-D topographic models from photographs and can form a valuable component of hazard monitoring at active volcanic domes. However, model generation from visible imagery can be prevented due to poor lighting conditions or surface obscuration by degassing. Here, we show that thermal images can be used in a SfM workflow to mitigate these issues and provide more continuous time-series data than visible-light equivalents. We demonstrate our methodology by producing georeferenced photogrammetric models from 30 near-monthly overflights of the lava dome that formed at Volcán de Colima (Mexico) between 2013 and 2015. Comparison of thermal models with equivalents generated from visible-light photographs from a consumer digital single lens reflex (DSLR) camera suggests that, despite being less detailed than their DSLR counterparts, the thermal models are more than adequate reconstructions of dome geometry, giving volume estimates within 10% of those derived using the DSLR. Significantly, we were able to construct thermal models in situations where degassing and poor lighting prevented the construction of models from DSLR imagery, providing substantially better data continuity than would have otherwise been possible. We conclude that thermal photogrammetry provides a useful new tool for monitoring effusive volcanic activity and assessing associated volcanic risks.

  2. Facile fabrication of CuO-Pb2O3 nanophotocatalyst for efficient degradation of Rose Bengal dye under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kamaraj, Eswaran; Somasundaram, Sivaraman; Balasubramani, Kavitha; Eswaran, Muthu Prema; Muthuramalingam, Rajarajan; Park, Sanghyuk

    2018-03-01

    A p-type CuO/n-type Pb2O3 heterojunction photocatalyst was prepared by a simple wet chemical process and the photocatalytic ability was evaluated for the degradation of Rose Bengal (RB) under visible light irradiation. Synthesized nanocatalysts were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET) surface area analysis, and X-ray photoelectron spectroscopy (XPS). The p-n heterojunction of CuO-Pb2O3 nanostructures can promote the light absorption capability of photocatalyst and charge separation of electron-hole pairs. Photodegradation assays showed that the addition of CuO effectively enhanced the photocatalytic activity of CuO-Pb2O3 under visible light irradiation (λmax > 420 nm). Compared with pure Pb2O3 and CuO, the CuO-Pb2O3 exhibited significantly enhanced photocatalytic degradation activity. The reaction rate constant of CuO-Pb2O3 is 0.092 min-1, which is much higher than those of CuO (0.073 min-1) and Pb2O3 (0.045 min-1).

  3. Tuning Cu dopant of Zn 0.5 Cd 0.5 S nanocrystals enables high-performance photocatalytic H 2 evolution from water splitting under visible-light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zongwei; Zhang, Bingkai; Zheng, Jiaxin

    2016-08-01

    Cu-doping into Zn1-xCdxS can greatly enhance the photocatalytic H2 evolution from water splitting under visible-light irradiation. However, it is still controversial for how the Cu-dopant improves this performance. Here, we report that appropriate Cu-doped Zn0.5Cd0.5S nanocrystals reach 21.4 mmol/h/g of H2 evolution rate without cocatalyst in the visible-light region, which is also 2.8 times as high as that of the undoped counterpart, and the corresponding apparent quantum efficiency is 18.8% at 428 nm. It is firstly confirmed that the Cu2+ changes into Cu+ after being doped by soft X-ray absorption spectroscopy (sXAS). We theoretically propose that the transformation of 2Cu2+more » to 2Cu+ results in one adjacent S2- vacancy (VS) in host during the doping process, while the Cu+-dopant and VS attract the photoexcited holes and electrons, respectively. Accordingly, the photocatalytic activity is improved due to the enhanced separation of photoexcited carriers accompanied with the enhanced light absorption resulting from the Cu+-dopant and 2Cu+/VS complex as possible active site for photocatalytic H2 evolution.« less

  4. Visible-light photocatalytic activity of graphene oxide-wrapped Bi2WO6 hierarchical microspheres

    NASA Astrophysics Data System (ADS)

    Zhai, Jiali; Yu, Hongwen; Li, Haiyan; Sun, Lei; Zhang, Kexin; Yang, Hongjun

    2015-07-01

    A facile approach of fabricating homogeneous graphene oxide (GO)-wrapped Bi2WO6 microspheres (GO/Bi2WO6) is developed. The transmission electron microscopy (TEM) results show that a heterojunction interface between GO and Bi2WO6. The UV-vis diffuse reflection spectra (DRS) reveal that the as-prepared GO/Bi2WO6 composites own more intensive absorption in the visible light range compared with pure Bi2WO6. These characteristic structural and optical properties endow GO/Bi2WO6 composites with enhanced photocatalytic activity. The enhanced photocatalytic activity of the GO/Bi2WO6 is attributed predominantly to the synergetic effect between GO and Bi2WO6, causing rapid generation and separation of photo-generated charge carriers.

  5. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C–H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants

    PubMed Central

    2016-01-01

    Conspectus The development of efficient catalytic systems for direct aromatic C–H bond functionalization is a long-desired goal of chemists, because these protocols provide environmental friendly and waste-reducing alternatives to classical methodologies for C–C and C–heteroatom bond formation. A key challenge for these transformations is the reoxidation of the in situ generated metal hydride or low-valent metal complexes of the primary catalytic bond forming cycle. To complete the catalytic cycle and to regenerate the C–H activation catalyst, (super)stoichiometric amounts of Cu(II) or Ag(I) salts have often been applied. Recently, “greener” approaches have been developed by applying molecular oxygen in combination with Cu(II) salts, internal oxidants that are cleaved during the reaction, or solvents or additives enabling the metal hydride reoxidation. All these approaches improved the environmental friendliness but have not overcome the obstacles associated with the overall limited functional group and substrate tolerance. Hence, catalytic processes that do not feature the unfavorable aspects described above and provide products in a streamlined as well as economically and ecologically advantageous manner would be desirable. In this context, we decided to examine visible light photoredox catalysis as a new alternative to conventionally applied regeneration/oxidation procedures. This Account summarizes our recent advances in this expanding area and will highlight the new concept of merging distinct redox catalytic processes for C–H functionalizations through the application of visible light photoredox catalysis. Photoredox catalysis can be considered as catalytic electron-donating or -accepting processes, making use of visible-light absorbing homogeneous and heterogeneous metal-based catalysts, as well as organic dye sensitizers or polymers. As a consequence, photoredox catalysis is, in principle, an ideal tool for the recycling of any given metal catalyst via a coupled electron transfer (ET) process. Here we describe our first successful endeavors to address the above challenges by combining visible light photoredox catalysis with different ruthenium, rhodium, or palladium catalyzed C–H activations. Since only small amounts of the oxidant are generated and are immediately consumed in these transformations, side reactions of substrates or products can be avoided. Thus, usually oxidant-sensible substrates can be used, which makes these methods highly suitable for complex molecular structure syntheses. Moreover, mechanistic studies shed light on new reaction pathways, intermediates, and in situ generated species. The successful development of our dual catalysis concept, consisting of combined visible light photoredox catalysis and metal catalyzed C–H functionalization, provides many new opportunities for further explorations in the field of C–H functionalization. PMID:27556812

  6. Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light.

    PubMed

    Kulkarni, Aniruddha K; Praveen, C S; Sethi, Yogesh A; Panmand, Rajendra P; Arbuj, Sudhir S; Naik, Sonali D; Ghule, Anil V; Kale, Bharat B

    2017-11-07

    The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb 2 O 5-x N x ) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H 2 S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb 2 O 5-x N x was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb 2 O 5-x N x were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm. Diffuse reflectance spectra depicted their extended absorbance in the visible region with a band gap of 2.4 eV. The substitution of nitrogen in place of oxygen atoms as well as Nb-N bond formation were confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. A computational study (DFT) of Nb 2 O 5-x N x was also performed for investigation and conformation of the crystal and electronic structure. N-Substitution clearly showed a narrowing of the band gap due to N 2p bands cascading above the O 2p band. Considering the band gap in the visible region, Nb 2 O 5-x N x exhibited enhanced photocatalytic activity toward hydrogen evolution (3010 μmol h -1 g -1 ) for water splitting and (9358 μmol h -1 g -1 ) for H 2 S splitting under visible light. The enhanced photocatalytic activity of Nb 2 O 5-x N x was attributed to its extended absorbance in the visible region due to its electronic structure being modified upon doping, which in turn generates more electron-hole pairs, which are responsible for higher H 2 generation. More significantly, the mesoporous nanostructure accelerated the supression of electron and hole recombination, which also contributed to the enhancement of its activity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Junkuo, E-mail: jkgao@zstu.edu.cn; Wang, Jiangpeng; Qian, Xuefeng

    Here we report a novel synthetic pathway for preparation of Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology by using a two dimensional Cu–melamine supramolecular network as both sacrificial template and precursor. The specific surface area of Cu-g-C{sub 3}N{sub 4} is 40.86 m{sup 2} g{sup −1}, which is more than 7 times larger than that of pure g-C{sub 3}N{sub 4}. Cu-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region and expanded the absorption to the near-infrared region. The uniform nanosheet morphology, higher surface area and strong visible-light absorption have enabled Cu-g-C{sub 3}N{sub 4} exhibiting enhanced visiblemore » light photocatalytic activity for the photo-degradation of methylene blue (MB). The results indicate that metal–melamine supramolecular network can be promising precursors for the one step preparation of efficient metal-doped g-C{sub 3}N{sub 4} photocatalysts. - Graphical abstract: Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology was fabricated via a simple one step preparation by using a two dimensional Cu–melamine supra-molecular network as both sacrificial template and precursor. - Highlights: • Cu-doped g-C{sub 3}N{sub 4} (Cu-g-C{sub 3}N{sub 4}) with nanosheet morphology was prepared. • Cu-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region. • Cu-g-C{sub 3}N{sub 4} exhibits enhanced visible light photocatalytic activity.« less

  8. Combination of heterogeneous Fenton-like reaction and photocatalysis using Co-TiO₂nanocatalyst for activation of KHSO₅ with visible light irradiation at ambient conditions.

    PubMed

    Chen, Qingkong; Ji, Fangying; Guo, Qian; Fan, Jianping; Xu, Xuan

    2014-12-01

    A novel coupled system using Co-TiO₂was successfully designed which combined two different heterogeneous advanced oxidation processes, sulfate radical based Fenton-like reaction (SR-Fenton) and visible light photocatalysis (Vis-Photo), for degradation of organic contaminants. The synergistic effect of SR-Fenton and Vis-Photo was observed through comparative tests of 50mg/L Rhodamine B (RhB) degradation and TOC removal. The Rhodamine B degradation rate and TOC removal were 100% and 68.1% using the SR-Fenton/Vis-Photo combined process under ambient conditions, respectively. Moreover, based on XRD, XPS and UV-DRS characterization, it can be deduced that tricobalt tetroxide located on the surface of the catalyst is the SR-Fenton active site, and cobalt ion implanted in the TiO₂lattice is the reason for the visible light photocatalytic activity of Co-TiO₂. Finally, the effects of the calcination temperature and cobalt concentration on the synergistic performance were also investigated and a possible mechanism for the synergistic system was proposed. This coupled system exhibited excellent catalytic stability and reusability, and almost no dissolution of Co²⁺ was found. Copyright © 2014. Published by Elsevier B.V.

  9. Optimal levels of oxygen deficiency in the visible light photocatalyst TiO2-x and long-term stability of catalytic performance

    NASA Astrophysics Data System (ADS)

    Nakano, Takuma; Ito, Ryosuke; Kogoshi, Sumio; Katayama, Noboru

    2016-11-01

    The dependence of the visible light-responsive photocatalytic activity of oxygen deficient TiO2 (TiO2-x) prepared by Ar/H2 plasma surface treatment on the degree of oxygen deficiency (x) was assessed to determine the deficiency region associated with highest performance. The highest activity was obtained at x=0.06 (TiO1.94). The maximum visible light activity for this material, estimated from the formaldehyde (HCHO) removal rate, was three times higher than that exhibited by nitrogen-doped TiO2 (TiO2-xNx). The catalytic ability was found to decrease over the first week after fabrication of the material, after which it became stable, and the performance of TiO2-x at this point was found to be nearly equal to that of TiO2-xNx. The results of ab initio calculations of density of states for TiO2-x suggest that new oxygen deficiency states emerge at almost the exact center between the valence and conduction bands when x>0.06, which increases the recombination rate between electrons and holes. Therefore the declining performance of TiO2-x at larger x values is attributed to the emergence of new oxygen deficient states.

  10. Effect of preparation methods on the activity of titanium dioxide-carbon nitride composites for photocatalytic degradation of salicylic acid

    NASA Astrophysics Data System (ADS)

    Yuliati, L.; Salleh, A. M.; Hatta, M. H. M.; Lintang, H. O.

    2018-04-01

    In this study, titanium dioxide-carbon nitride (TiO2-CN) composites were prepared by three methods, which were one pot oxidation, impregnation, and physical mixing. Each series of the photocatalysts was prepared with different ratios of titanium to carbon (Ti/C), i.e., 1, 5, 10, 20, and 50 mol%. All samples were characterized by X-ray diffraction (XRD) and diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopies. The characterization results confirmed the successful preparation of TiO2, CN, and the TiO2-CN composites. Photocatalytic activity tests were carried out for degradation of salicylic acid at room temperature for 6 h under UV and visible light irradiations. It was confirmed that all the prepared TiO2-CN composites showed better photocatalytic activities than the bare TiO2 and the bare CN. Under UV light irradiation, 90.6% of salicylic acid degradation was achieved on the best composite prepared by one pot oxidation with 5 mol% of titanium to carbon (Ti/C) ratio. On the other hand, the highest degradation under visible light irradiation was 94.3%, observed on the composite that was prepared also by one pot oxidation method with the Ti/C ratio of 10 mol%. Therefore, among the investigated methods, the best method to prepare the titanium dioxide-carbon nitride composites with high photocatalytic activity was one pot oxidation method.

  11. Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol-gel spin coating method.

    PubMed

    Poongodi, G; Anandan, P; Kumar, R Mohan; Jayavel, R

    2015-09-05

    Nanostructured cobalt doped ZnO thin films were deposited on glass substrate by sol-gel spin coating technique and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and UV-Vis spectroscopy. The XRD results showed that the thin films were well crystalline with hexagonal wurtzite structure. The results of EDAX and XPS revealed that Co was doped into ZnO structure. FESEM images revealed that the films possess granular morphology without any crack and confirm that Co doping decreases the grain size. UV-Vis transmission spectra show that the substitution of Co in ZnO leads to band gap narrowing. The Co doped ZnO films were found to exhibit improved photocatalytic activity for the degradation of methylene blue dye under visible light in comparison with the undoped ZnO film. The decrease in grain size and extending light absorption towards the visible region by Co doping in ZnO film contribute equally to the improved photocatalytic activity. The bactericidal efficiency of Co doped ZnO films were investigated against a Gram negative (Escherichia coli) and a Gram positive (Staphylococcus aureus) bacteria. The optical density (OD) measurement showed better bactericidal activity at higher level of Co doping in ZnO. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    PubMed

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  13. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    PubMed

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-09

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  14. Nitrogen Doped Graphene Nickel Ferrite Magnetic Photocatalyst for the Visible Light Degradation of Methylene Blue.

    PubMed

    Singh, Rajinder; Ladol, Jigmet; Khajuria, Heena; Sheikh, Haq Nawaz

    2017-01-01

    A facile approach has been devised for the preparation of magnetic NiFe2O4 photocatalyst (NiFe2O4-NG) supported on nitrogen doped graphene (NG). The NiFe2O4-NG composite was synthesized by one step hydrothermal method. The nanocomposite catalyst was characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV-Vis) and Vibrating sample magnetometry (VSM). It is found that the combination of NiFe2O4 nanoparticles with nitrogen-doped graphene sheets converts NiFe2O4 into a good catalyst for methylene blue (MB) dye degradation by irradiation of visible light. The catalytic activity under visible light irradiation is assigned to extensive movement of photogenerated electron from NiFe2O4 to the conduction band of the reduced NG, effectively blocking direct recombination of electrons and holes. The NiFe2O4 nanoparticles alone have efficient magnetic property, so can be used for magnetic separation in the solution without additional magnetic support.

  15. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy

    NASA Astrophysics Data System (ADS)

    Pasparakis, George; Manouras, Theodore; Vamvakaki, Maria; Argitis, Panagiotis

    2014-04-01

    Light-controlled drug delivery systems constitute an appealing means to direct and confine drug release spatiotemporally at the site of interest with high specificity. However, the utilization of light-activatable systems is hampered by the lack of suitable drug carriers that respond sharply to visible light stimuli at clinically relevant wavelengths. Here, a new class of self-assembling, photo- and pH-degradable polymers of the polyacetal family is reported, which is combined with photochemical internalization to control the intracellular trafficking and release of anticancer compounds. The polymers are synthesized by simple and scalable chemistries and exhibit remarkably low photolysis rates at tunable wavelengths over a large range of the spectrum up to the visible and near infrared regime. The combinational pH and light mediated degradation facilitates increased therapeutic potency and specificity against model cancer cell lines in vitro. Increased cell death is achieved by the synergistic activity of nanoparticle-loaded anticancer compounds and reactive oxygen species accumulation in the cytosol by simultaneous activation of porphyrin molecules and particle photolysis.

  16. Effects of indium contents on photocatalytic performance of ZnIn{sub 2}S{sub 4} for hydrogen evolution under visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kelin; Zhu, Rongshu, E-mail: rszhu@hitsz.edu.cn; Public Platform for Technological Service in Urban Waste Reuse and Energy Regeneration, Shenzhen 518055

    2015-12-15

    A series of ZnIn{sub x}S{sub 4+y} (x=1.6, 2.0, 2.3, 2.6, 2.9, 3.1) photocatalysts were synthesized via a facile hydrothermal method and characterized by various analytical techniques, such as XRD, EDS, UV–vis DRS, SEM, TEM, BET and PL. The ZnIn{sub x}S{sub 4+y} photocatalysts had a similar crystal structure. With the increase of indium content, the absorption edges of ZnIn{sub x}S{sub 4+y} photocatalysts shifted to longer wavelength, their crystal sizes decreased firstly and then increased and the variation of the specific surface area and total pore volume was exactly opposite. Especially, when x=2.3, ZnIn{sub 2.3}S{sub 4+y} catalyst had smallest crystal size, largestmore » specific surface area and total pore volume. Additionally, the morphology of ZnIn{sub x}S{sub 4+y} greatly depended on the contents of indium. The photocatalytic activity of ZnIn{sub x}S{sub 4+y} was evaluated by photocatalytic hydrogen production from water under visible light. The ZnIn{sub 2.3}S{sub 4+y} sample had the highest photocatalytic activity among these ZnIn{sub x}S{sub 4+y} photocatalysts and its hydrogen production rate was 363 μmol/g h. - Graphical abstract: First, a series of catalysts were synthesized. And then those were characterized by various analytical techniques (such as SEM). finally, The photocatalytic activity of catalyst was evaluated by photocatalytic hydrogen production from water under visible light. - Highlights: • The photocatalytic property was studied upon visible-light irradiation. • ZnIn{sub x}S{sub 4+y} photocatalysts show superior photocatalytic activity. • The catalyst of grain size, morphology and BET are related to indium content. • ZnIn{sub x}S{sub 4+y} photocatalysts were synthesized via a facile hydrothermal method.« less

  17. Enhanced photodegradation activity of methyl orange over Ag{sub 2}CrO{sub 4}/SnS{sub 2} composites under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jin, E-mail: lj328520504@126.com; Zhou, Xiaosong; Ma, Lin

    Highlights: • Novel visible-light-driven Ag{sub 2}CrO{sub 4}/SnS{sub 2} composites are synthesized. • Ag{sub 2}CrO{sub 4}/SnS{sub 2} exhibits higher photocatalytic activity than pure Ag{sub 2}CrO{sub 4} and SnS{sub 2}. • Ag{sub 2}CrO{sub 4}/SnS{sub 2} exhibits excellent stability for the photodegradation of MO. • The possible photocatalytic mechanism was discussed in detail. - Abstract: Novel Ag{sub 2}CrO{sub 4}/SnS{sub 2} composites were prepared by a simple chemical precipitation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The visible light photocatalytic tests showed that the Ag{sub 2}CrO{sub 4}/SnS{sub 2} compositesmore » enhanced photocatalytic activities for the photodegradation of methyl orange (MO) under visible light irradiation (λ > 420 nm), and the optimum rate constant of Ag{sub 2}CrO{sub 4}/SnS{sub 2} at a weight content of 1.0% Ag{sub 2}CrO{sub 4} for the degradation of MO was 2.2 and 1.5 times larger than that of pure Ag{sub 2}CrO{sub 4} and SnS{sub 2}, respectively. The improved activity could be attributed to high separation efficiency of photogenerated electrons-hole pairs on the interface of Ag{sub 2}CrO{sub 4} and SnS{sub 2}, which arised from the synergistic effect between Ag{sub 2}CrO{sub 4} and SnS{sub 2}. Moreover, the possible photocatalytic mechanism with superoxide radical anions and holes species as the main reactive species in photocatalysis process was proposed on the basis of experimental results.« less

  18. Efficient resource allocation scheme for visible-light communication system

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Chan; Bae, Chi-Sung; Cho, Dong-Ho; Shin, Hong-Seok; Jung, D. K.; Oh, Y. J.

    2009-01-01

    A visible-light communication utilizing LED has many advantagies such as visibility of information, high SNR (Signal to Noise Ratio), low installation cost, usage of existing illuminators, and high security. Furthermore, exponentially increasing needs and quality of LED have helped the development of visible-light communication. The visibility is the most attractive property in visible-light communication system, but it is difficult to ensure visibility and transmission efficiency simultaneously during initial access because of the small amount of initial access process signals. In this paper, we propose an efficient resource allocation scheme at initial access for ensuring visibility with high resource utilization rate and low data transmission failure rate. The performance has been evaluated through the numerical analysis and simulation results.

  19. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  20. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.

    PubMed

    Mohammadi, Sanaz; Sohrabi, Maryam; Golikand, Ahmad Nozad; Fakhri, Ali

    2016-08-01

    In this study, pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles samples were prepared by precipitation and co-precipitation methods. These nanoparticles were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), Dynamic light scattering (DLS), UV-visible and photoluminescence (PL) spectroscopy. The synthesized pure, Zn, Cu, Zn,Cu co-doped WO3 nanoparticles have smart optical properties and average sizes with 3.2, 3.12, 3.08 and 2.97eV of band-gap, 18.1, 23.2, 25.7 and 30.2nm, respectively. Photocatalytic activity of four nanoparticles was studying towards degradation of gentamicin antibiotic under ultraviolet and visible light irradiation. The result showed that Zn,Cu co-doped WO3 possessed high photocatalytic activity. The photocatalytic activity of WO3 nanoparticles could be remarkably increased by doping the Zn and Cu impurity. This can be attributed to the fact that the red shift of absorption edge and the trapping effect of the mono and co-doped WO3 nanoparticles. The research result presents a general and effective way to prepare different photocatalysts with enhanced visible and UV light-driven photocatalytic performance. Antibacterial activity of four different WO3 nanoparticles against Escherichia coli bacterium has been assessed by the agar disc method under light irradiation and dark medium. It is concluded from the present findings that WO3 nanoparticles can be used as an efficient antibacterial agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  2. Novel visible light activated type 1 photosensitizers

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Raghavan; Karwa, Amolkumar; Poreddy, Amruta R.; Lusiak, Przemyslaw M.; Pandurangi, Raghoottama S.; Cantrell, Gary L.; Dorshow, Richard B.

    2010-02-01

    Photodynamic therapy of tumors involving Type 2 photosenstizers has been conspicuously successful, but the Type 1 process, in contrast, has not received much attention despite its considerable potential. Accordingly, several classes of molecules containing fragile bonds such as azido (-N=N=N), azo (-N=N-), and oxaza (-N-O-) functional groups that produce reactive intermediates such as radicals and nitrenes upon photoexcitation with visible light were prepared and tested for cell viability using U397 leukemia cell line. The cells were incubated with the photosensitizer at various concentrations, and were illuminated for 5, 10, and 20 minutes. The results show that all the photosensitizers caused cell death compared to the controls when exposed to both the photosensitizers and light.

  3. Facile fabrication of Ag3VO4/attapulgite composites for highly efficient visible light-driven photodegradation towards organic dyes and tetracycline hydrochloride

    NASA Astrophysics Data System (ADS)

    Luo, Yuting; Luo, Jie; Duan, Guorong; Liu, Xiaoheng

    2017-12-01

    An efficient one-dimensional attapulgite (ATP)-based photocatalyst, Ag3VO4/ATP nanocomposite, was fabricated by a facile deposition precipitation method with well-dispersed Ag3VO4 nanoparticles anchored on the surface of natural ATP fibers. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectroscopy (UV-vis DRS) were employed to investigate the morphologies, structure, and optical property of the prepared photocatalysts. The photocatalytic experiments indicated that the Ag3VO4/ATP nanocomposites exhibited enhanced visible light-driven photocatalytic activity towards the degradation of rhodamine B (RhB), methyl orange (MO), and tetracycline hydrochloride (TCH), of which the 20 wt% Ag3VO4/ATP sample showed superb photocatalytic performance. As demonstrated by N2 adsorption-desorption, photocurrent measurements, electrochemical impedance spectroscopy (EIS), and photoluminescence (PL) spectra analyses, the improved photocatalytic activity arose from the enlarged surface area, the facilitated charge transfer, and the suppressed recombination of photogenerated charge carriers in Ag3VO4/ATP system. Furthermore, radical scavengers trapping experiments and recycling tests were also conducted. This work gives a new insight into fabrication of highly efficient, stable, and cost-effective visible light-driven photocatalyst for practical application in wastewater treatment and environmental remediation.

  4. Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties.

    PubMed

    Zhang, Jin; Wang, Bing; Li, Chuang; Cui, Hao; Zhai, Jianping; Li, Qin

    2014-09-01

    To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiVO4 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline phases. The XPS results showed that Ce was present as both Ce(4+) and Ce(3+) oxidation states in CeO2 and dispersed on the surface of BiVO4 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment. Copyright © 2014. Published by Elsevier B.V.

  5. Highly Efficient Low-Temperature N-Doped TiO2 Catalysts for Visible Light Photocatalytic Applications

    PubMed Central

    Mahy, Julien G.; Cerfontaine, Vincent; Devred, François; Gaigneaux, Eric M.; Heinrichs, Benoît; Lambert, Stéphanie D.

    2018-01-01

    In this paper, TiO2 prepared with an aqueous sol-gel synthesis by peptization process is doped with nitrogen precursor to extend its activity towards the visible region. Three N-precursors are used: urea, ethylenediamine and triethylamine. Different molar N/Ti ratios are tested and the synthesis is adapted for each dopant. For urea- and trimethylamine-doped samples, anatase-brookite TiO2 nanoparticles of 6–8 nm are formed, with a specific surface area between 200 and 275 m2·g−1. In ethylenediamine-doped samples, the formation of rutile phase is observed, and TiO2 nanoparticles of 6–8 nm with a specific surface area between 185 and 240 m2·g−1 are obtained. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance measurements show the incorporation of nitrogen in TiO2 materials through Ti–O–N bonds allowing light absorption in the visible region. Photocatalytic tests on the remediation of water polluted with p-nitrophenol show a marked improvement for all doped catalysts under visible light. The optimum doping, taking into account cost, activity and ease of synthesis, is up-scaled to a volume of 5 L and compared to commercial Degussa P25 material. This up-scaled sample shows similar properties compared to the lab-scale sample, i.e., a photoactivity 4 times higher than commercial P25. PMID:29642626

  6. Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using TiO2. Mineralization and intermediate products.

    PubMed

    Fotiou, Theodora; Triantis, Theodoros; Kaloudis, Triantafyllos; Hiskia, Anastasia

    2015-01-01

    Cyanobacteria (blue-green algae) are considered an important water quality problem, since several genera can produce toxins, called cyanotoxins that are harmful to human health. Cylindrospermopsin (CYN) is an alkaloid-like potent cyanotoxin that has been reported in water reservoirs and lakes worldwide. In this paper the removal of CYN from water by UV-A, solar and visible light photocatalysis was investigated. Two different commercially available TiO2 photocatalysts were used, i.e., Degussa P25 and Kronos-vlp7000. Complete degradation of CYN was achieved with both photocatalysts in 15 and 40 min under UV-A and 40 and 120 min under solar light irradiation, for Degussa P25 and Kronos vlp-7000 respectively. Experiments in the absence of photocatalysts showed that direct photolysis was negligible. Under visible light irradiation only the Kronos vlp-7000 which is a visible light activated catalyst was able to degrade CYN. A number of intermediates were identified and a complete degradation pathway is proposed, leading to the conclusion that hydroxyl radical attack is the main mechanism followed. TOC and inorganic ions (NO2-, NO3-, SO4(2-) and NH4+) determinations suggested that complete mineralization of CYN was achieved under UV-A in the presence of Degussa P25. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis.

    PubMed

    Kalikeri, Shankramma; Shetty Kodialbail, Vidya

    2018-05-01

    Mixed-phase bismuth ferrite (BFO) nanoparticles were prepared by co-precipitation method using potassium hydroxide as the precipitant. X-ray diffractogram (XRD) of the particles showed the formation of mixed-phase BFO nanoparticles containing BiFeO 3 /Bi 25 FeO 40 phases with the crystallite size of 70 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the formation of quasi-spherical particles. The BFO nanoparticles were uniform sized with narrow size range and with the average hydrodynamic diameter of 76 nm. The band gap energy of 2.2 eV showed its ability to absorb light even in the visible range. Water contaminated with Acid Yellow (AY-17) and Reactive Blue (RB-19) dye was treated by photocatalysis under UV, visible, and solar light irradiation using the BFO nanoparticles. The BFO nanoparticles showed maximum photocatalytical activity under solar light as compared to UV and visible irradiations, and photocatalysis was favored under acidic pH. Complete degradation of AY-17 dyes and around 95% degradation of RB-19 could be achieved under solar light at pH 5. The kinetics of degradation followed the Langmuir-Hinshelhood kinetic model showing that the heterogeneous photocatalysis is adsorption controlled. The findings of this work prove the synthesized BFO nanoparticles as promising photocatalysts for the treatment of dye-contaminated industrial wastewater.

  8. [A Method for Selecting Self-Adoptive Chromaticity of the Projected Markers].

    PubMed

    Zhao, Shou-bo; Zhang, Fu-min; Qu, Xing-hua; Zheng, Shi-wei; Chen, Zhe

    2015-04-01

    The authors designed a self-adaptive projection system which is composed of color camera, projector and PC. In detail, digital micro-mirror device (DMD) as a spatial light modulator for the projector was introduced in the optical path to modulate the illuminant spectrum based on red, green and blue light emitting diodes (LED). However, the color visibility of active markers is affected by the screen which has unknown reflective spectrum as well. Here active markers are projected spot array. And chromaticity feature of markers is sometimes submerged in similar spectral screen. In order to enhance the color visibility of active markers relative to screen, a method for selecting self-adaptive chromaticity of the projected markers in 3D scanning metrology is described. Color camera with 3 channels limits the accuracy of device characterization. For achieving interconversion of device-independent color space and device-dependent color space, high-dimensional linear model of reflective spectrum was built. Prior training samples provide additional constraints to yield high-dimensional linear model with more than three degrees of freedom. Meanwhile, spectral power distribution of ambient light was estimated. Subsequently, markers' chromaticity in CIE color spaces was selected via maximization principle of Euclidean distance. The setting values of RGB were easily estimated via inverse transform. Finally, we implemented a typical experiment to show the performance of the proposed approach. An 24 Munsell Color Checker was used as projective screen. Color difference in the chromaticity coordinates between the active marker and the color patch was utilized to evaluate the color visibility of active markers relative to the screen. The result comparison between self-adaptive projection system and traditional diode-laser light projector was listed and discussed to highlight advantage of our proposed method.

  9. Visible-light-driven Photocatalytic N-arylation of Imidazole Derivatives and Arylboronic Acids on Cu/graphene catalyst

    PubMed Central

    Cui, Yan-Li; Guo, Xiao-Ning; Wang, Ying-Yong; Guo, Xiang-Yun

    2015-01-01

    N-aryl imidazoles play an important role as structural and functional units in many natural products and biologically active compounds. Herein, we report a photocatalytic route for the C-N cross-coupling reactions over a Cu/graphene catalyst, which can effectively catalyze N-arylation of imidazole and phenylboronic acid, and achieve a turnover frequency of 25.4 h−1 at 25 oC and the irradiation of visible light. The enhanced catalytic activity of the Cu/graphene under the light irradiation results from the localized surface plasmon resonance of copper nanoparticles. The Cu/graphene photocatalyst has a general applicability for photocatalytic C-N, C-O and C-S cross-coupling of arylboronic acids with imidazoles, phenols and thiophenols. This study provides a green photocatalytic route for the production of N-aryl imidazoles. PMID:26189944

  10. Structuring Pd Nanoparticles on 2H-WS2 Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light.

    PubMed

    Raza, Faizan; Yim, DaBin; Park, Jung Hyun; Kim, Hye-In; Jeon, Su-Ji; Kim, Jong-Ho

    2017-10-18

    Effective photocatalysts and their surface engineering are essential for the efficient conversion of solar energy into chemical energy in photocatalyzed organic transformations. Herein, we report an effective approach for structuring Pd nanoparticles (NPs) on exfoliated 2H-WS 2 nanosheets (WS 2 /PdNPs), resulting in hybrids with extraordinary photocatalytic activity in Suzuki reactions under visible light. Pd NPs of different sizes and densities, which can modulate the photocatalytic activity of the as-prepared WS 2 /PdNPs, were effectively structured on the basal plane of 2H-WS 2 nanosheets via a sonic wave-assisted nucleation method without any reductants at room temperature. As the size of Pd NPs on WS 2 /PdNPs increased, their photocatalytic activity in Suzuki reactions at room temperature increased substantially. In addition, it was found that protic organic solvents play a crucial role in activating WS 2 /PdNPs catalysts in photocatalyzed Suzuki reactions, although these solvents are generally considered much less effective than polar aprotic ones in the conventional Suzuki reactions promoted by heterogeneous Pd catalysts. A mechanistic investigation suggested that photogenerated holes are transferred to protic organic solvents, whereas photogenerated electrons are transferred to Pd NPs. This transfer makes the Pd NPs electron-rich and accelerates the rate-determining step, i.e., the oxidative addition of aryl halides under visible light. WS 2 /PdNPs showed the highest turnover frequency (1244 h -1 ) for photocatalyzed Suzuki reactions among previously reported photocatalysts.

  11. High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B.

    PubMed

    Zhang, Ying; Chen, Juanrong; Hua, Li; Li, Songjun; Zhang, Xuanxuan; Sheng, Weichen; Cao, Shunsheng

    2017-10-15

    Ongoing research activities are targeted to explore high photocatalytic activity of TiO 2 -based photocatalysts for the degradation of environmental contaminants under UV and visible light irradiation. In this work, we devise a facile, cost-effective technique to in situ synthesize hierarchical SiO 2 @C-doped TiO 2 (SCT) hollow spheres for the first time. This strategy mainly contains the preparation of monodisperse cationic polystyrene spheres (CPS), sequential deposition of inner SiO 2 , the preparation of the sandwich-like CPS@SiO 2 @CPS particles, and formation of outer TiO 2 . After the one-step removal of CPS templates by calcination at 450°C, hierarchical SiO 2 @C-doped TiO 2 hollow spheres are in situ prepared. The morphology, hierarchical structure, and properties of SCT photocatalyst were characterized by TEM. SEM, STEM Mapping, BET, XRD, UV-vis spectroscopy, and XPS. Results strongly confirm the carbon doping in the outer TiO 2 lattice of SCT hollow spheres. When the as-synthesized SCT hollow spheres were employed as a photocatalyst for the degradation of Rhodamine B under visible-light and ultraviolet irradiation, the SCT photocatalyst exhibits a higher photocatalytic activity than commercial P25, effectively overcoming the limitations of poorer UV activity for many previous reported TiO 2 -based photocatalysts due to doping. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Novel Bi₁₂O₁₅Cl₆ Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation.

    PubMed

    Wang, Chu-Ya; Zhang, Xing; Song, Xiang-Ning; Wang, Wei-Kang; Yu, Han-Qing

    2016-03-02

    Bisphenol A (BPA), a typical endocrine-disrupting chemical, is widely present in water environments, and its efficient and cost-effective removal is greatly needed. Among various physicochemical methods for BPA degradation, visible-light-driven catalytic degradation of BPA is a promising approach because of its utilization of solar energy. Bismuth oxychloride (BiOCl) is recognized as an efficient photocatalyst, but its band gap, >3.0 eV, makes it inefficient for solar energy utilization, especially for degrading nondye pollutants like BPA. Thus, preparation and application of bismuth oxychloride photocatalysts with an increased visible-light activity are essential. In this work, inspired by density functional theory calculations, a novel bismuth oxychloride photocatalyst, Bi12O15Cl6, was designed. The nanosheets were successfully synthesized using a facile solvothermal method followed by a thermal treatment route. The prepared Bi12O15Cl6 nanosheets had a favorable energy band structure and thus exhibited a superior visible-light photocatalytic activity for degrading BPA. The BPA degradation rate by the Bi12O15Cl6 was determined to be 13.6 and 8.7 times faster than those for BiOCl and TiO2 (P25), respectively. The photogenerated reactive species and degradation intermediates were identified, and the photocatalytic mechanism was elucidated. Furthermore, the as-synthesized Bi12O15Cl6 nanosheets remained stable in the photocatalytic process and could be used repeatedly, demonstrating their promising application in the degradation of diverse pollutants in water and wastewater.

  13. Surface interaction between cubic phase NaNbO3 nanoflowers and Ru nanoparticles for enhancing visible-light driven photosensitized photocatalysis

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Hu, Yin; Ba, Mingwei

    2018-03-01

    Ru nanoparticles supported on perovskite NaNbO3 with cubic crystal structure and nanoflower-like morphology was prepared by a convenient solvothermal method combined with photo-deposition technique. Crystal structure, chemical component and surface valence states determined by XRD, XPS, TEM and SEM demonstrated the metastable cubic phase of perovskite NaNbO3, and its modified surface by Ru species. Optical and electrochemical analysis, such as UV-vis DRS, OTCS and EIS, indicated the excellent photoelectrochemical properties and the efficient electron transfer of the composites. Compared with naked and Ru-doped NaNbO3, the composite photocatalyst exhibited outstanding performance for the degradation of RhB under visible light irradiation due to the dye self-photosensitization and the surface interaction between Ru metal nanoparticles and semiconductor. In-situ reduction of surface Ru oxide species in the photocatalytic process assisted the further improvement of the photocatalytic activity and stability. Investigation of the main active species during the photocatalysis confirmed the efficient transfer of the photo-generated electrons and the positive effect of oxygen defects in NaNbO3. Finally, possible mechanism of the present visible-light driven photocatalysis was proposed in detail. This work provided an alternative strategy to enhance the visible-light photocatalytic efficiency of the catalyst with wide band gap on the basis of the synergistic effect of dye self-photosensitization, interaction between NaNbO3 and its surface Ru nanoparticles, and the "self-doping" of oxygen defects in NaNbO3.

  14. Surface modification of the TiO2 nanoparticle surface enables fluorescence monitoring of aggregation and enhanced photoreactivity.

    PubMed

    Kamps, Kara; Leek, Rachael; Luebke, Lanette; Price, Race; Nelson, Megan; Simonet, Stephanie; Eggert, David Joeseph; Ateşin, Tülay Aygan; Brown, Eric Michael Bratsolias

    2013-01-01

    Chemically and biologically modified nanoparticles are increasingly considered as viable and multifunctional tools to be used in cancer theranostics. Herein, we demonstrate that coordination of alizarin blue black B (ABBB) to the TiO(2) nanoparticle surface enhances the resulting nanoparticles by (1) creating distinct fluorescence emission spectra that differentiate smaller TiO(2) nanoparticles from larger TiO(2) nanoparticle aggregates (both in vitro and intracellular) and (2) enhancing visible light activation of TiO(2) nanoparticles above previously described methods to induce in vitro and intracellular damage to DNA and other targets. ABBB-TiO(2) nanoparticles are characterized through sedimentation, spectral absorbance, and gel electrophoresis. The possible coordination modes of ABBB to the TiO(2) nanoparticle surface are modeled by computational methods. Fluorescence emission spectroscopy studies indicate that ABBB coordination on TiO(2) nanoparticles enables discernment between nanoparticles and nanoparticle aggregates both in vitro and intracellular through fluorescence confocal microscopy. Visible light activated ABBB-TiO(2) nanoparticles are capable of inflicting increased DNA cleavage through localized production of reactive oxygen species as visualized by plasmid DNA damage detected through gel electrophoresis and atomic force microscopy. Finally, visible light excited ABBB-TiO(2) nanoparticles are capable of inflicting damage upon HeLa (cervical cancer) cells by inducing alterations in DNA structure and membrane associated proteins. The multifunctional abilities of these ABBB-TiO(2) nanoparticles to visualize and monitor aggregation in real time, as well as inflict visible light triggered damage upon cancer targets will enhance the use of TiO(2) nanoparticles in cancer theranostics.

  15. Visible-light-induced Ag/BiVO4 semiconductor with enhanced photocatalytic and antibacterial performance

    NASA Astrophysics Data System (ADS)

    Regmi, Chhabilal; Dhakal, Dipesh; Wohn Lee, Soo

    2018-02-01

    An Ag-loaded BiVO4 visible-light-driven photocatalyst was synthesized by the microwave hydrothermal method followed by photodeposition. The photocatalytic performance of the synthesized samples was evaluated on a mixed dye (methylene blue and rhodamine B), as well as bisphenol A in aqueous solution. Similarly, the disinfection activities of synthesized samples towards the Gram-negative Escherichia coli (E. coli) in a model cell were investigated under irradiation with visible light (λ ≥ 420 nm). The synthesized samples have monoclinic scheelite structure. Photocatalytic results showed that all Ag-loaded BiVO4 samples exhibited greater degradation and a higher mineralization rate than the pure BiVO4, probably due to the presence of surface plasmon absorption that arises due to the loading of Ag on the BiVO4 surface. The optimum Ag loading of 5 wt% has the highest photocatalytic performance and greatest stability with pseudo-first-order rate constants of 0.031 min-1 and 0.023 min-1 for the degradation of methylene blue and rhodamine B respectively in a mixture with an equal volume and concentration of each dye. The photocatalytic degradation of bisphenol A reaches 76.2% with 5 wt% Ag-doped BiVO4 within 180 min irradiation time. Similarly, the Ag-loaded BiVO4 could completely inactivate E. coli cells within 30 min under visible light irradiation. The disruption of the cell membrane as well as degradation of protein and DNA exhibited constituted evidence for antibacterial activity towards E. coli. Moreover, the bactericidal mechanisms involved in the photocatalytic disinfection process were systematically investigated.

  16. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity

    PubMed Central

    Laatar, Fakher; Moussa, Hatem; Alem, Halima; Balan, Lavinia; Girot, Emilien; Medjahdi, Ghouti; Ezzaouia, Hatem

    2017-01-01

    CdSe nanorods (NRs) with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO2 nanoparticles (Aeroxide® P25) by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV–visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO2 particles. The UV–visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO2 composites until ≈725 nm. The CdSe (2 wt %)/TiO2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO2. Due to its high stability (up to ten reuses without any significant loss in activity), the CdSe/TiO2 heterostructured catalysts show high potential for real water decontamination. PMID:29354345

  17. CdSe nanorod/TiO2 nanoparticle heterojunctions with enhanced solar- and visible-light photocatalytic activity.

    PubMed

    Laatar, Fakher; Moussa, Hatem; Alem, Halima; Balan, Lavinia; Girot, Emilien; Medjahdi, Ghouti; Ezzaouia, Hatem; Schneider, Raphaël

    2017-01-01

    CdSe nanorods (NRs) with an average length of ≈120 nm were prepared by a solvothermal process and associated to TiO 2 nanoparticles (Aeroxide ® P25) by annealing at 300 °C for 1 h. The content of CdSe NRs in CdSe/TiO 2 composites was varied from 0.5 to 5 wt %. The CdSe/TiO 2 heterostructured materials were characterized by XRD, TEM, SEM, XPS, UV-visible spectroscopy and Raman spectroscopy. TEM images and XRD patterns show that CdSe NRs with wurtzite structure are associated to TiO 2 particles. The UV-visible spectra demonstrate that the narrow bandgap of CdSe NRs serves to increase the photoresponse of CdSe/TiO 2 composites until ≈725 nm. The CdSe (2 wt %)/TiO 2 composite exhibits the highest photocatalytic activity for the degradation of rhodamine B in aqueous solution under simulated sunlight or visible light irradiation. The enhancement in photocatalytic activity likely originates from CdSe sensitization of TiO 2 and the heterojunction between these materials which facilitates electron transfer from CdSe to TiO 2 . Due to its high stability (up to ten reuses without any significant loss in activity), the CdSe/TiO 2 heterostructured catalysts show high potential for real water decontamination.

  18. Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine

    PubMed Central

    Pan, Xiaobo; Liang, Xinyue; Yao, Longfang; Wang, Xinyi; Jing, Yueyue; Fei, Yiyan; Chen, Li

    2017-01-01

    TiO2 nanoparticles modified with phthalocyanines (Pc) have been proven to be a potential photosensitizer in the application of photodynamic therapy (PDT). However, the generation of reactive oxygen species (ROS) by TiO2 nanoparticles modified with Pc has not been demonstrated clearly. In this study, nitrogen-doped TiO2 conjugated with Pc (N-TiO2-Pc) were studied by means of monitoring the generation of ROS. The absorbance and photokilling effect on HeLa cells upon visible light of different regions were also studied and compared with non-doped TiO2-Pc and Pc. Both N-TiO2-Pc and TiO2-Pc can be activated by visible light and exhibited much higher photokilling effect on HeLa cells than Pc. In addition, nitrogen-doping can greatly enhance the formation of 1O2 and •O2−, while it suppresses the generation of OH•. This resulted in significant photodynamic activity. Therefore, N-TiO2-Pc can be an excellent candidate for a photosensitizer in PDT with wide-spectrum visible irradiation. PMID:29053580

  19. Controlled Synthesis and Photocatalytic Antifouling Properties of BiVO4 with Tunable Morphologies

    NASA Astrophysics Data System (ADS)

    Xiang, Zhenbo; Wang, Yi; Ju, Peng; Zhang, Dun

    2017-02-01

    Monoclinic BiVO4 with different nanostructures were prepared via a facile and rapid route by adding different surfactants. Ethylenediaminetetraacetic acid, polyvinylpyrrolidone, and sodium dodecyl sulfate surfactants were selected as morphology controlling agents. The crystal phase, morphology, and diffuse reflectance spectra of BiVO4 were characterized by x-ray diffraction, scanning electron microscopy, and UV-visible diffuse reflectance spectra techniques, respectively. The photocatalytic activities of BiVO4 were investigated by killing the typical marine fouling bacteria Pseudomonas aeruginosa ( P. aeruginosa) under visible light irradiation. BiVO4 with grape-like nanostructure exhibited the best photocatalytic bactericidal activity. The sterilization rate of P. aeruginosa could reach up to 99.9% in 120 min. The photocatalytic mechanism was studied by captive species trapping experiments. The result revealed that photogenerated hole (h+) is the main reactive specie for killing P. aeruginosa under visible light irradiation. In addition, after five recycles, BiVO4 does not exhibit significant loss of photocatalytic sterilization activity. The results confirm that the synthesized BiVO4 photocatalyst has long-time reusability and good photocatalytic stability.

  20. Visible light reduces C. elegans longevity.

    PubMed

    De Magalhaes Filho, C Daniel; Henriquez, Brian; Seah, Nicole E; Evans, Ronald M; Lapierre, Louis R; Dillin, Andrew

    2018-03-02

    The transparent nematode Caenorhabditis elegans can sense UV and blue-violet light to alter behavior. Because high-dose UV and blue-violet light are not a common feature outside of the laboratory setting, we asked what role, if any, could low-intensity visible light play in C. elegans physiology and longevity. Here, we show that C. elegans lifespan is inversely correlated to the time worms were exposed to visible light. While circadian control, lite-1 and tax-2 do not contribute to the lifespan reduction, we demonstrate that visible light creates photooxidative stress along with a general unfolded-protein response that decreases the lifespan. Finally, we find that long-lived mutants are more resistant to light stress, as well as wild-type worms supplemented pharmacologically with antioxidants. This study reveals that transparent nematodes are sensitive to visible light radiation and highlights the need to standardize methods for controlling the unrecognized biased effect of light during lifespan studies in laboratory conditions.

  1. In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation.

    PubMed

    Zhang, Yong-Gang; Ma, Li-Li; Li, Jia-Lin; Yu, Ying

    2007-09-01

    TiO2/Cu2O composite is prepared by a simple electrochemical method and coated on glass matrix through a spraying method. The obtained composite is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of TiO2/Cu2O composite films with different ratio of TiO2 and Cu2O on photodegradation of the dye methylene blue under visible light is investigated in detail. It is found that the photocatalytic activity of TiO2/Cu2O composite film with the presence of FeSO4 and EDTA is much higher than that for the similar system with only TiO2 and Cu2O film respectively. Without the presence of FeSO4 and EDTA, there is no degradation for methylene blue. The exploration of the optimized parameters for the degradation of methylene blue by using TiO2/Cu2O composite film as catalyst under visible light was also carried out. The most significant factor is the amount of Ti02 in the composite, and the second significant factor is the concentration of FeSO4. During the degradation of methylene blue under visible light, TiO2/Cu2O composite film generates H202, and Fenton regent is formed with Fe2+ and EDTA, which is detected in this study. The mechanism for the great improvement of photocatalytic activity of TiO2/Cu2O composite film under visible light is proposed by the valence band theory. Electrons excitated from TiO2/Cu2O composite under visible light are transferred from the conduction band of Cu2O to that of Ti02. The formed intermediate state of Ti 3+ ion is observed by X-ray photoelectron spectroscopy (XPS) on the TiO/Cu2O composite film. Additionally, the accumulated electrons in the conduction band of TiO2 are transferred to oxygen on the TiO2 surface for the formation of O2- or O2(2-), which combines with H+ to form H2O2. The evolved H202 with FeSO4 and EDTA forms Fenton reagentto degrade methylene blue. Compared to the traditional Fenton reagent, this new kind of in situ Fenton reagent generated from TiO2/Cu2O composite film does not need to supply H202. It is expected to be easily recycled, which may reduce second pollution and the cost of wastewater treatment. Moreover, this TiO/Cu2O composite film with FeSO4 and EDTA provides a new way to take advantage of TiO2 under visible light.

  2. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    NASA Astrophysics Data System (ADS)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  3. Visible light alters yeast metabolic rhythms by inhibiting respiration.

    PubMed

    Robertson, James Brian; Davis, Chris R; Johnson, Carl Hirschie

    2013-12-24

    Exposure of cells to visible light in nature or in fluorescence microscopy often is considered to be relatively innocuous. However, using the yeast respiratory oscillation (YRO) as a sensitive measurement of metabolism, we find that non-UV visible light has a significant impact on yeast metabolism. Blue/green wavelengths of visible light shorten the period and dampen the amplitude of the YRO, which is an ultradian rhythm of cell metabolism and transcription. The wavelengths of light that have the greatest effect coincide with the peak absorption regions of cytochromes. Moreover, treating yeast with the electron transport inhibitor sodium azide has similar effects on the YRO as visible light. Because impairment of respiration by light would change several state variables believed to play vital roles in the YRO (e.g., oxygen tension and ATP levels), we tested oxygen's role in YRO stability and found that externally induced oxygen depletion can reset the phase of the oscillation, demonstrating that respiratory capacity plays a role in the oscillation's period and phase. Light-induced damage to the cytochromes also produces reactive oxygen species that up-regulate the oxidative stress response gene TRX2 that is involved in pathways that enable sustained growth in bright visible light. Therefore, visible light can modulate cellular rhythmicity and metabolism through unexpectedly photosensitive pathways.

  4. Oxidative esterification via photocatalytic C-H activation

    EPA Science Inventory

    Direct oxidative esterification of alcohol via photocatalytic C-H activation has been developed using VO@g-C3N4 catalyst; an expeditious esterification of alcohols occurs under neutral conditions using visible light as the source of energy.

  5. Synthesis of ammonium and sulfate ion-functionalized titanium dioxide for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Cheng, J. L.; Mi, J. Y.; Miao, H.; Sharifah Fatanah, B. S. A.; Wong, S. F.; Tay, B. K.

    2017-04-01

    Due to high band gap energy the optimum photocatalytic activities can only be achieved under UV light, thus limiting the practical application of TiO2. In this study, a method combining NH4 +/SO4 2--functionalization technique and post-treatment was developed and successfully applied to synthesize photoactive TiO2 samples which showed higher photocatalytic activity than the commercial P25 TiO2 under visible light radiation. The results also showed that the addition of (NH4)2SO4 surface functionalization on TiO2 increased the photocatalytic activity, which could be due to the combined effect of crystallinity and band gap energies. Moreover, the results showed that calcination temperature was inversely proportional to photocatalytic activity. The degradation efficiency for methylene blue under visible light was improved by 2 times from 10.7% for P25 nano Degussa TiO2 to 20.2% for the synthesized sample. The band gap energies were also reduced from 3.7 to 3.4 eV (under UV-Vis direct transition mode) indicating a red shift towards higher wavelength.

  6. A Difference in Cutaneous Pigmentary Response to LED Versus Halogen Incandescent Visible Light: A Case Report from a Single Center, Investigational Clinical Trial Determining a Minimal Pigmentary Visible Light Dose.

    PubMed

    Soleymani, Teo; Soter, Nicholas A; Folan, Lorcan M; Elbuluk, Nada; Okereke, Uchenna R; Cohen, David E

    2017-04-01

    BACKGROUND: While most of the attention regarding skin pigmentation has focused on the effects on ultraviolet radiation, the cutaneous effects of visible light (400 to 700nm) are rarely reported. In this report, we describe a case of painful erythema and induration that resulted from direct irradiation of UV-naïve skin with visible LED light in a patient with Fitzpatrick type II skin.

    METHODS AND RESULTS: A 24-year-old healthy woman with Fitzpatrick type II skin presented to our department to participate in a clinical study. As part of the study, the subject underwent visible light irradiation with an LED and halogen incandescent visible light source. After 5 minutes of exposure, the patient complained of appreciable pain at the LED exposed site. Evaluation demonstrated erythema and mild induration. There were no subjective or objective findings at the halogen incandescent irradiated site, which received equivalent fluence (0.55 Watts / cm2). The study was halted as the subject was unable to tolerate the full duration of visible light irradiation.

    CONCLUSION: This case illustrates the importance of recognizing the effects of visible light on skin. While the vast majority of investigational research has focused on ultraviolet light, the effects of visible light have been largely overlooked and must be taken into consideration, in all Fitzpatrick skin types.

    J Drugs Dermatol. 2017;16(4):388-392.

    .

  7. The design of novel visible light driven Ag/CdO as smart nanocomposite for photodegradation of different dye contaminants.

    PubMed

    Saravanakumar, K; Muthuraj, V; Jeyaraj, M

    2018-01-05

    In this paper, we report a novel visible light driven Ag/CdO photocatalyst, fabricated for the first time via one pot hydrothermal method and further applied for the photodegradation of two important exemplar water contaminants, Malachite green and Acid Orange 7. The microstructure, composition and optical properties of Ag/CdO nanocomposites were thoroughly investigated by various techniques. Scanning electron microscopy clearly shows that Ag NPs were strongly embedded between the CdO nanoparticles. Among the series of synthesized Ag/CdO nanocomposites, (5%) Ag/CdO nanocomposite possesses enhanced photocatalytic activity. This result was attributed to the synergistic effect between Ag and CdO, and mainly Ag NPs can act as an electron trap site, which could reduce the recombination of the electron-hole and induce the visible light absorption. The active species trapping experiments implicate OH and O 2 - radicals as the respective primary and secondary reactive species responsible for oxidative photodegradation of organic pollutants. On the basis of the results, a possible photocatalytic mechanism has also been proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nada, Amr A.; Tantawy, Hesham R.; Elsayed, Mohamed A.; Bechelany, Mikhael; Elmowafy, Mohamed E.

    2018-04-01

    In this paper, magnetic nanocomposites are synthesized by loading reduced graphene oxide (RG) with two components of nanoparticles consisting of titanium dioxide (TiO2) and magnetite (Fe3O4) with varying amounts. The structural and magnetic features of the prepared composite photocatalysts were investigated by powder X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectra (UV-vis/DRS), Raman and vibrating sample magnetometer (VSM). The resulting TiO2/magnetite reduced graphene oxide (MRGT) composite demonstrated intrinsic visible light photocatalytic activity, on degradation of tartrazine (TZ) dye from a synthetic aqueous solution. Specifically, it exhibits higher photocatalytic activity than magnetite reduced graphene oxide (MRG) and TiO2 nanoparticles. The photocatalytic degradation of TZ dye when using MRG and TiO2 for 3 h under visible light was 35% and 10% respectively, whereas for MRGT it was more than 95%. The higher photocatalytic efficiency of MRGT is due to the existence of reduced graphene oxide and magnetite which enhances the photocatalytic efficiency of the composite in visible light towards the degradation of harmful soluble azo dye (tartrazine).

  9. Visible-light activate Ag/WO3 films based on wood with enhanced negative oxygen ions production properties

    NASA Astrophysics Data System (ADS)

    Gao, Likun; Gan, Wentao; Cao, Guoliang; Zhan, Xianxu; Qiang, Tiangang; Li, Jian

    2017-12-01

    The Ag/WO3-wood was fabricated through a hydrothermal method and a silver mirror reaction. The system of visible-light activate Ag/WO3-wood was used to produce negative oxygen ions, and the effect of Ag nanoparticles on negative oxygen ions production was investigated. From the results of negative oxygen ions production tests, it can be observed that the sample doped with Ag nanoparticles, the concentration of negative oxygen ions is up to 1660 ions/cm3 after 60 min visible light irradiation. Moreover, for the Ag/WO3-wood, even after 60 min without irradiation, the concentration of negative oxygen ions could keep more than 1000 ions/cm3, which is up to the standard of the fresh air. Moreover, due to the porous structure of wood, the wood acted as substrate could promote the nucleation of nanoparticles, prevent the agglomeration of the particles, and thus lead the improvement of photocatalytic properties. And such wood-based functional materials with the property of negative oxygen ions production could be one of the most promising materials in the application of indoor decoration materials, which would meet people's pursuit of healthy, environment-friendly life.

  10. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  11. Porous immobilized C coated N doped TiO2 containing in-situ generated polyenes for enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Sabri, N. A.; Nawi, M. A.; Nawawi, W. I.

    2015-10-01

    Carbon coated nitrogen-doped Degussa P25TiO2 (or C,N-P25TiO2) was successfully immobilized on a glass plate using epoxidized natural rubber (ENR-50) and polyvinyl chloride (PVC) as the organic binders. Photo-etching of the fabricated system for 10 h oxidized its PVC binder into polyenes as well as forming a highly porous surface. The band gap energy (Eg) of the photo-etched immobilized photocatalyst system (C,N-P25TiO2/ENR/PVC-10 h) was reduced from 2.91 to 2.86 eV. Its photocatalytic activity was studied via photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under a 45 W visible light fluorescent lamp. C,N-P25TiO2/ENR/PVC-10 h with polyenes performed better than its slurry counterpart under visible light irradiation where the conjugated double bonds acted as photo sensitizers. The immobilized C,N-P25TiO2/ENR/PVC-10 h has excellent reusability and sustainable with an average k value of 0.056 ± 0.011 min-1 and average percent removal of 99.18 ± 0.54%.

  12. A new route for degradation of volatile organic compounds under visible light: using the bifunctional photocatalyst Pt/TiO2-xNx in H2-O2 atmosphere.

    PubMed

    Li, Danzhen; Chen, Zhixin; Chen, Yilin; Li, Wenjuan; Huang, Hanjie; He, Yunhui; Fu, Xianzhi

    2008-03-15

    The bifunctional photocatalyst Pt/TiO2-xNx has been successfully prepared by wet impregnation. The properties of Pt/ TiO2-xNx have been investigated by diffuse reflectance spectra, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, a photoluminescence technique with terephthalic acid, and electric field induced surface photovoltage spectra. The photocatalytic activity of the sample was evaluated by the decomposition of volatile organic pollutants (VOCs) in a H2-O2 atmosphere under visible light irradiation. The results demonstrated that nitrogen-doped and platinum-modified TiO2 in a H2-O2 atmosphere could enormously increase the quantum efficiency of the photocatalytic system with excellent photocatalytic activity and high catalytic stability. The increased quantum efficiency can be explained by enhanced separation efficiency of photogenerated electron-hole pairs, higher interface electron transfer rate, and an increased number of surface hydroxyl radicals in the photocatalytic process. A mechanism was proposed to elucidate the degradation of VOCs over PtTiO(2-x)Nx in a H2-O2 atmosphere under visible light irradiation.

  13. Phototoxicity in Human Retinal Pigment Epithelial Cells Promoted by Hypericin, a Component of St. John’s Wort†

    PubMed Central

    Wielgus, Albert R.; Chignell, Colin F.; Miller, David S.; Van Houten, Ben; Meyer, Joel; Hu, Dan-Ning; Roberts, Joan E.

    2007-01-01

    St. John’s Wort (SJW), an over-the-counter antidepressant, contains hypericin, which absorbs light in the UV and visible ranges. In vivo studies have determined that hypericin is phototoxic to skin and our previous in vitro studies with lens tissues have determined that it is potentially phototoxic to the human lens. To determine if hypericin might also be phototoxic to the human retina, we exposed human retinal pigment epithelial cells to 10−7 to 10−5 M hypericin. Fluorescence emission detected from the cells (λexc = 488 nm; λem = 505 nm) confirmed hypericin uptake by human RPE. Neither hypericin exposure alone nor visible light exposure alone reduced cell viability. However when irradiated with 0.7 J/cm2 of visible light (λ> 400 nm) there was loss of cell viability as measured by MTS and LDH assays. The presence of hypericin in irradiated hRPE cells significantly changed the redox equilibrium of glutathione and a decrease in the activity of glutathione reductase. Increased lipid peroxidation as measured by the TBARS assay correlated to hypericin concentration in hRPE cells and visible light radiation. Thus, ingested SJW is potentially phototoxic to retina and could contribute to retinal or early macular degeneration. PMID:17576381

  14. Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darwish, Maher, E-mail: m-darwish@razi.tums.ac.ir; Mohammadi, Ali, E-mail: alimohammadi@tums.ac.ir; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran

    2016-02-15

    Highlights: • PVP-stabilized CdS nanoparticles have been fabricated by a polyol-microwave method. • CdS nanoparticles were characterized and the size was approximately 48 ± 10 nm. • Catalytic activity of our nanoparticles was examined for tartrazine degradation. • Remarkable results were obtained under both UV and visible light irradiations. - Abstract: Polyvinylpyrrolidone capped cadmium sulfide nanoparticles have been successfully synthesized by a facile polyol method with ethylene glycol. Microwave irradiation and calcination were used to control the size and shape of nanoparticles. Characterization with scanning electron microscopy revealed a restricted nanoparticles growth comparing with the uncapped product, hexagonal phase andmore » 48 nm average particle size were confirmed by X-ray diffraction, and finally mechanism of passivation was suggested depending on Fourier transform infrared spectra. The efficiency of nanoparticles was evaluated by the photocatalytic degradation of tartrazine in aqueous solution under UVC and visible light irradiation. Complete degradation of the dye was observed after 90 min of UVC irradiation under optimized conditions. Kinetic of reaction fitted well to the pseudo-first-order kinetic and Langmuir–Hinshelwood models. Furthermore, 85% degradation of the dye in 9 h under visible light suggests that cadmium sulfide is a promising tool to work under visible light for environmental remediation.« less

  15. Enhanced photocatalytic performances and magnetic recovery capacity of visible-light-driven Z-scheme ZnFe2O4/AgBr/Ag photocatalyst

    NASA Astrophysics Data System (ADS)

    He, Jie; Cheng, Yahui; Wang, Tianzhao; Feng, Deqiang; Zheng, Lingcheng; Shao, Dawei; Wang, Weichao; Wang, Weihua; Lu, Feng; Dong, Hong; Zheng, Rongkun; Liu, Hui

    2018-05-01

    High efficiency, high stability and easy recovery are three key factors for practical photocatalysts. Z-scheme heterostructure is one of the most promising photocatalytic systems to meet all above requirements. However, efficient Z-scheme photocatalysts which could absorb visible light are still few and difficult to implement at present. In this work, the composite photocatalysts ZnFe2O4/AgBr/Ag were prepared through a two-step method. A ∼92% photodegradation rate on methyl orange was observed within 30 min under visible light, which is much better than that of individual ZnFe2O4 or AgBr/Ag. The stability was also greatly improved compared with AgBr/Ag. The increased performance is resulted from the suitable band alignment of ZnFe2O4 and AgBr, and it is defined as Z-scheme mechanism which was demonstrated by detecting active species and electrochemical impedance spectroscopy. Besides, ZnFe2O4/AgBr/Ag is ferromagnetic and can be recycled by magnet. These results show that ZnFe2O4/AgBr/Ag is a potential magnetically recyclable photocatalyst which can be driven by visible light.

  16. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    NASA Astrophysics Data System (ADS)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  17. Effect of catalyst calcination temperature in the visible light photocatalytic oxidation of gaseous formaldehyde by multi-element doped titanium dioxide.

    PubMed

    de Luna, Mark Daniel G; Laciste, Maricris T; Tolosa, Nolan C; Lu, Ming-Chun

    2018-03-20

    The present study investigates the influence of calcination temperature on the properties and photoactivity of multi-element doped TiO 2 . The photocatalysts were prepared by incorporating silver (Ag), fluorine (F), nitrogen (N), and tungsten (W) into the TiO 2 structure via the sol-gel method. Spectroscopic techniques were used to elucidate the correlation between the structural and optical properties of the doped photocatalyst and its photoactivity. XRD results showed that the mean crystallite size increased for undoped photocatalysts and decreased for the doped photocatalysts when calcination was done at higher temperatures. UV-Vis spectra showed that the absorption cut-off wavelength shifted towards the visible light region for the as-synthesized photocatalysts and band gap narrowing was attributed to multi-element doping and calcination. FTIR spectra results showed the shifting of OH-bending absorption bands towards increasing wave numbers. The activity of the photocatalysts was evaluated in terms of gaseous formaldehyde removal under visible light irradiation. The highest photocatalytic removal of gaseous formaldehyde was found at 88%. The study confirms the effectiveness of multi-element doped TiO 2 to remove gaseous formaldehyde in air by visible light photocatalysis and the results have a lot of potential to extend the application to other organic air contaminants.

  18. UV-visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites

    NASA Astrophysics Data System (ADS)

    Mavengere, Shielah; Kim, Jung-Sik

    2018-06-01

    In this study, a new novel composite photocatalyst of NaYF4:(Gd, Si)/TiO2 phosphor has been synthesized by two step method of solution combustion and sol-gel. The photocatalyst powders were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-vis spectroscopy and photoluminescence (PL) spectroscopy. Raman spectroscopy confirmed the anatase TiO2 phase which remarkably increased with existence of yttrium silicate compounds between 800 cm-1 and 900 cm-1. Double-addition of Gd3+-Si4+ ions in NaYF4 host introduced sub-energy band levels with intense absorption in the ultraviolet (UV) light region. Photocatalytic activity was examined by exposing methylene blue (MB) solutions mixed with photocatalyst powders to 254 nm UV-C fluorescent lamp and 200 W visible lights. The UV and visible photocatalytic reactivity of the NaYF4:(Gd, 1% Si)/TiO2 phosphor composites showed enhanced MB degradation efficiency. The coating of NaYF4:(Gd, 1% Si) phosphor with TiO2 nanoparticles creates energy band bending at the phosphor/TiO2 interfaces. Thus, these composites exhibited enhanced absorption of UV/visible light and the separation of electron and hole pairs for efficient photocatalysis.

  19. Reduced Graphene Oxide-Ag3PO4 Heterostructure: A Direct Z-Scheme Photocatalyst for Augmented Photoreactivity and Stability.

    PubMed

    Samal, Alaka; Das, D P; Nanda, K K; Mishra, B K; Das, J; Dash, A

    2016-02-18

    A visible light driven, direct Z-scheme reduced graphene oxide-Ag3PO4 (RGO-Ag3 PO4 ) heterostructure was synthesized by means of a simple one-pot photoreduction route by varying the amount of RGO under visible light illumination. The reduction of graphene oxide (GO) and growth of Ag3PO4 took place simultaneously. The effect of the amount of RGO on the textural properties and photocatalytic activity of the heterostructure was investigated under visible light illumination. Furthermore, total organic carbon (TOC) analysis confirmed 97.1 % mineralization of organic dyes over RGO-Ag3PO4 in just five minutes under visible-light illumination. The use of different quenchers in the photomineralization suggested the presence of hydroxyl radicals ((.)OH), superoxide radicals ((.)O2 (-)), and holes (h(+)), which play a significant role in the mineralization of organic dyes. In addition to that, clean hydrogen fuel generation was also observed with excellent reusability. The 4 RGO-Ag3PO4 heterostructure has a high H2 evolution rate of 3690 μmol h(-1)  g(-1), which is 6.15 times higher than that of RGO. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Zhong, Suting; Jiang, Wei; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-01

    A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe3O4) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron-hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  1. An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Guo, Yanru; Xiao, Limin; Zhang, Min; Li, Qiuye; Yang, Jianjun

    2018-05-01

    An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 ternary nanocomposite was fabricated using nanotubular titanic acid as precursors via a simple photo-deposition of Pd nanoparticles and calcination process. The prepared nanocomposites were investigated by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible diffuse reflectance spectroscopy, respectively. For g-C3N4/TiO2 binary nanocomposites, at the optimal content of g-C3N4 (2%), the apparent photocatalytic activity of 2%g-C3N4/TiO2 was 9 times higher than that of pure TiO2 under visible-light illumination. After deposition of Pd (1 wt%) at the contact interface between g-C3N4 and TiO2, the 2%g-C3N4/Pd/TiO2 ternary nanocomposites demonstrated the highest visible-light-driven photocatalytic activity for the degradation of gaseous propylene, which was 16- and 2-fold higher activities than pure TiO2 and 2%g-C3N4/TiO2, respectively. The mechanism for the enhanced photocatalytic performance of the g-C3N4/Pd/TiO2 photo-catalyst is proposed to be based on the efficient separation of photo-generated electron-hole pairs through Z-scheme system, in which uniform dispersity of Pd nanoparticles at contact interface between g-C3N4 and TiO2 and oxygen vacancies promote charge separation.

  2. Preparation of Ag@AgCl-doped TiO2/sepiolite and its photocatalytic mechanism under visible light.

    PubMed

    Liu, Shaomin; Zhu, Dinglong; Zhu, Jinglin; Yang, Qing; Wu, Huijun

    2017-10-01

    A cube-like Ag@AgCl-doped TiO 2 /sepiolite (denoted Ag@AgCl-TiO 2 /sepiolite) was successfully synthesized via a novel method. X-ray diffraction, scanning electron microscopy, energy dispersion X-ray fluorescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance ultraviolet-visible spectroscopy were performed to determine the structure and physicochemical properties of Ag@AgCl-TiO 2 /sepiolite. SEM micrographs revealed that Ag@AgCl nanoparticles and TiO 2 film are well deposited on the surface of tube-like sepiolite. As a result, Ag@AgCl-TiO 2 /sepiolite exhibits a red shift relative to TiO 2 /sepiolite. Photocatalytic experiments demonstrated that the dosage of catalysts plays an important role during photocatalysis. The photoelectrochemical activities of Ag@AgCl-TiO 2 /sepiolite and TiO 2 /sepiolite were also investigated. Photocurrent responses confirmed that the ability of Ag@AgCl-TiO 2 /sepiolite to separate photo-generated electron-hole pairs is stronger than that of TiO 2 /sepiolite. Methylene Blue degradation is also improved under alkaline conditions and visible light irradiation because more OH is produced by visible light excitation. This excellent catalytic ability is mainly attributed to the formed Ag nanoparticles and the Schottky barrier at the Ag/TiO 2 interface. Active species analysis indicated that O 2 - and h + are implicated as active species in photocatalysis. Therefore, catalysts are excited to produce abundant electron-hole pairs after they absorb photons in photocatalysis. Copyright © 2017. Published by Elsevier B.V.

  3. Nanoimprinted High-Refractive Index Active Photonic Nanostructures Based on Quantum Dots for Visible Light

    DOE PAGES

    Pina-Hernandez, Carlos; Koshelev, Alexander; Dhuey, Scott; ...

    2017-12-15

    A novel method to realizing printed active photonic devices was developed using nanoimprint lithography (NIL), combining a printable high-refractive index material and colloidal CdSe/CdS quantum dots (QDs) for applications in the visible region. Active media QDs were applied in two different ways: embedded inside a printable high-refractive index matrix to form an active printable hybrid nanocomposite, and used as a uniform coating on top of printed photonic devices. As a proof-of-demonstration for printed active photonic devices, two-dimensional (2-D) photonic crystals as well as 1D and 2D photonic nanocavities were successfully fabricated following a simple reverse-nanoimprint process. We observed enhanced photoluminescencemore » from the 2D photonic crystal and the 1D nanocavities. Outstandingly, the process presented in this study is fully compatible with large-scale manufacturing where the patterning areas are only limited by the size of the corresponding mold. This work shows that the integration of active media and functional materials is a promising approach to the realization of integrated photonics for visible light using high throughput technologies. We believe that this work represents a powerful and cost-effective route for the development of numerous nanophotonic structures and devices that will lead to the emergence of new applications.« less

  4. Visible-light system for detecting doxorubicin contamination on skin and surfaces.

    PubMed

    Van Raalte, J; Rice, C; Moss, C E

    1990-05-01

    A portable system that uses fluorescence stimulated by visible light to identify doxorubicin contamination on skin and surfaces was studied. When activated by violet-blue light in the 465-nm range, doxorubicin fluoresces, emitting orange-red light in the 580-nm range. The light source to stimulate fluorescence was a slide projector with a filter to selectively pass short-wave (blue) visible light. Fluorescence was both observed visually with viewing spectacles and photographed. Solutions of doxorubicin in sterile 0.9% sodium chloride injection were prepared in nine standard concentrations ranging from 2 to 0.001 mg/mL. Droplets of each admixture were placed on stainless steel, laboratory coat cloth, pieces of latex examination glove, bench-top absorbent padding, and other materials on which antineoplastics might spill or leak. These materials then were stored for up to eight weeks and photographed weekly. The relative ability of water, household bleach, hydrogen peroxide solution, and soap solution to deactivate doxorubicin was also measured. Finally, this system was used to inspect the antineoplastic-drug preparation and administration areas of three outpatient cancer clinics for doxorubicin contamination. Doxorubicin fluorescence was easily detectable with viewing spectacles when a slide projector was used as the light source. The photographic method was sensitive for doxorubicin concentrations from 2.0 to 0.001 mg/mL. Immersion of study materials in bleach for one minute eliminated detectable fluorescence. Doxorubicin contamination is detectable for at least eight weeks in the ambient environment. Probable doxorubicin contamination was detected in two of the three clinics surveyed. A safe, portable system that uses fluorescence stimulated by visible light is a sensitive method for detecting doxorubicin on skin and surfaces.

  5. Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer

    DTIC Science & Technology

    2016-05-01

    Visible-light long baseline interferometry holds the promise of advancing a number of important applications in fundamental astronomy, including the...advance the field of visible-light interferometry requires development of instruments capable of combing light from 15 baselines (6 telescopes

  6. Development of a visible light transmission (VLT) measurement system using an open-path optical method

    NASA Astrophysics Data System (ADS)

    Nurulain, S.; Manap, H.

    2017-09-01

    This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.

  7. White LED visible light communication technology research

    NASA Astrophysics Data System (ADS)

    Yang, Chao

    2017-03-01

    Visible light communication is a new type of wireless optical communication technology. White LED to the success of development, the LED lighting technology is facing a new revolution. Because the LED has high sensitivity, modulation, the advantages of good performance, large transmission power, can make it in light transmission light signal at the same time. Use white LED light-emitting characteristics, on the modulation signals to the visible light transmission, can constitute a LED visible light communication system. We built a small visible optical communication system. The system composition and structure has certain value in the field of practical application, and we also research the key technology of transmitters and receivers, the key problem has been resolved. By studying on the optical and LED the characteristics of a high speed modulation driving circuit and a high sensitive receiving circuit was designed. And information transmission through the single chip microcomputer test, a preliminary verification has realized the data transmission function.

  8. Visible Light Communication System Using an Organic Bulk Heterojunction Photodetector

    PubMed Central

    Arredondo, Belén; Romero, Beatriz; Pena, José Manuel Sánchez; Fernández-Pacheco, Agustín; Alonso, Eduardo; Vergaz, Ricardo; de Dios, Cristina

    2013-01-01

    A visible light communication (VLC) system using an organic bulk heterojunction photodetector (OPD) is presented. The system has been successfully proven indoors with an audio signal. The emitter consists of three commercial high-power white LEDs connected in parallel. The receiver is based on an organic photodetector having as active layer a blend of poly(3-hexylthiophene) (P3HT) and phenyl C61-butyric acid methyl ester (PCBM). The OPD is opto-electrically characterized, showing a responsivity of 0.18 A/W and a modulation response of 790 kHz at −6 V. PMID:24036584

  9. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. 78 FR 18846 - Certifications and Exemptions Under the International Regulations for Preventing Collisions at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... vertical separation of the anchor lights and vertical placement of the forward anchor light above the hull... forward of height light to visibility; visibility; visibility; sides in stern in above hull forward rule...

  11. Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst.

    PubMed

    Liu, Chengbin; Cao, Chenghao; Luo, Xubiao; Luo, Shenglian

    2015-03-21

    A unique Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction (Ag-Ag2O/TiO2 NT) was fabricated by simple electrochemical method. Ag nanoparticles were firstly electrochemically deposited onto the surface of TiO2 NT and then were partly oxidized to Ag2O nanowires while the rest of Ag mother nanoparticles were located at the junctions of Ag2O nanowire network. The Ag-Ag2O/TiO2 NT heterostructure exhibited strong visible-light response, effective separation of photogenerated carriers, and high adsorption capacity. The integration of Ag-Ag2O self-stability structure and p-n heterojunction permitted high and stable photocatalytic activity of Ag-Ag2O/TiO2 NT heterostructure photocatalyst. Under 140-min visible light irradiation, the photocatalytic removal efficiency of both dye acid orange 7 (AO7) and industrial chemical p-nitrophenol (PNP) over Ag-Ag2O/TiO2 NT reached nearly 100% much higher than 17% for AO7 or 13% for PNP over bare TiO2 NT. After 5 successive cycles under 600-min simulated solar light irradiation, Ag-Ag2O/TiO2 NT remained highly stable photocatalytic activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Sacrificial hydrogen generation from aqueous triethanolamine with Eosin Y-sensitized Pt/TiO2 photocatalyst in UV, visible and solar light irradiation.

    PubMed

    Chowdhury, Pankaj; Gomaa, Hassan; Ray, Ajay K

    2015-02-01

    In this paper, we have studied Eosin Y-sensitized sacrificial hydrogen generation with triethanolamine as electron donor in UV, visible, and solar light irradiation. Aeroxide TiO2 was loaded with platinum metal via solar photo-deposition method to reduce the electron hole recombination process. Photocatalytic sacrificial hydrogen generation was influenced by several factors such as platinum loading (wt%) on TiO2, solution pH, Eosin Y to Pt/TiO2 mass ratio, triethanolamine concentration, and light (UV, visible and solar) intensities. Detailed reaction mechanisms in visible and solar light irradiation were established. Oxidation of triethanolamine and formaldehyde formation was correlated with hydrogen generation in both visible and solar lights. Hydrogen generation kinetics followed a Langmuir-type isotherm with reaction rate constant and adsorption constant of 6.77×10(-6) mol min(-1) and 14.45 M(-1), respectively. Sacrificial hydrogen generation and charge recombination processes were studied as a function of light intensities. Apparent quantum yields (QYs) were compared for UV, visible, and solar light at four different light intensities. Highest QYs were attained at lower light intensity because of trivial charge recombination. At 30 mW cm(-2) we achieved QYs of 10.82%, 12.23% and 11.33% in UV, visible and solar light respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors.

    PubMed

    Rifaie-Graham, Omar; Ulrich, Sebastian; Galensowske, Nikolas F B; Balog, Sandor; Chami, Mohamed; Rentsch, Daniel; Hemmer, James R; Read de Alaniz, Javier; Boesel, Luciano F; Bruns, Nico

    2018-06-27

    Transient activation of biochemical reactions by visible light and subsequent return to the inactive state in the absence of light is an essential feature of the biochemical processes in photoreceptor cells. To mimic such light-responsiveness with artificial nanosystems, polymersome nanoreactors were developed that can be switched on by visible light and self-revert fast in the dark at room temperature to their inactive state. Donor-acceptor Stenhouse adducts (DASAs), with their ability to isomerize upon irradiation with visible light, were employed to change the permeability of polymersome membranes by switching polarity from a nonpolar triene-enol form to a cyclopentenone with increased polarity. To this end, amphiphilic block copolymers containing poly(pentafluorophenyl methacrylate) in their hydrophobic block were synthesized by reversible addition-fragmentation chain-transfer (RAFT) radical polymerization and functionalized either with a DASA that is based on Meldrum's acid or with a novel fast-switching pyrazolone-based DASA. These polymers were self-assembled into vesicles. Release of hydrophilic payload could be triggered by light and stopped as soon as the light was turned off. The encapsulation of enzymes yielded photoresponsive nanoreactors that catalyzed reactions only if they were irradiated with light. A mixture of polymersome nanoreactors, one that switches in green light, the other switching in red light, permitted specific control of the individual reactions of a reaction cascade in one pot by irradiation with varied wavelengths, thus enabling light-controlled wavelength-selective catalysis. The DASA-based nanoreactors demonstrate the potential of DASAs to switch permeability of membranes and could find application to switch reactions on and off, on demand, e.g., in microfluidics or in drug delivery.

  14. Two-dimensional assembly structure of graphene and TiO2 nanosheets from titanic acid with enhanced visible-light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Hao, Rong; Guo, Shien; Wang, Xiuwen; Feng, Tong; Feng, Qingmao; Li, Mingxia; Jiang, Baojiang

    2016-06-01

    The titanic acid sheets were prepared by one-step hydrazine hydrate-assisted hydrothermal process. Then the reduced graphite oxide (rGO)@TiO2 nanosheet composites were finally obtained through ultrasonic exfoliation and following calcination treatment process. rGO@TiO2 nanosheet composites show excellent hydrogen production performance under AM1.5 light source. The highest hydrogen evolution yield (923.23 μmol) is nearly two times higher than that of pure TiO2, mainly due to the special electron structure and more active sites for TiO2 nanosheet. The introduction of graphene could improve the TiO2 nanosheet stability and extend visible-light absorption range.

  15. Facile synthesis of highly active reduced graphene oxide-CuI catalyst through a simple combustion method for photocatalytic reduction of CO2 to methanol

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Li, Yingjie; Zhang, Xiaoxiong; Li, Cuiluo

    2017-09-01

    We report a facile combustion method synthesis of reduced graphene oxide/CuI composites as a photocatalyst, in which CuI nanoparticles were homogeneously distributed on the surface of reduced graphene oxide (rGO), showing a good visible light response. The rGO-supported and unsupported CuI hybrids were tested over the photocatalytic reduction of CO2 for methanol evolution in visible light. In the current study rGO-CuI composites have shown excellent yields (19.91 μmol g-cat-1). rGO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the CuI nanoparticles.

  16. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent.

    PubMed

    Wei, Jianhua; Renfrew, Anna K

    2018-02-01

    CHS-828 (N-(6-(4-chlorophenoxy)hexyl)-N'-cyano-N″-4-pyridyl guanidine) is an anticancer agent with low bioavailability and high systemic toxicity. Here we present an approach to improve the therapeutic profile of the drug using photolabile ruthenium complexes to generate light-activated prodrugs of CHS-828. Both prodrug complexes are stable in the dark but release CHS-828 when irradiated with visible light. The complexes are water-soluble and accumulate in tumour cells in very high concentrations, predominantly in the mitochondria. Both prodrug complexes are significantly less cyototoxic than free CHS-828 in the dark but their toxicity increases up to 10-fold in combination with visible light. The cellular responses to light treatment are consistent with release of the cytotoxic CHS-828 ligand. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Fu, Yanhui; Liang, Wei; Guo, Jinqiu; Tang, Hua; Liu, Shuaishuai

    2018-02-01

    A novel MoS2 quantum dots (QDs) decorated g-C3N4/Ag heterostructured photocatalyst has been synthesized via a two-step method including in situ microemulsion-assisted reduction and wetness impregnation method. The obtained heterostructure photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectrosxopy (PL). The photocatalytic activity was evaluated by the degradation of methyl orange (MO) under visible-light irradiation. The MoS2 QDs decorated hybrid photocatalysts exhibited significantly enhanced photocatalytic performance. The concentration of Ag and MoS2 QDs showing the optimal photocatalytic performance was determined to be 10% and 0.3% respectively, which exceeded the photocatalytic performance of pure g-C3N4 by more than 4.7 times. Recycling experiments confirmed that the hybrid catalysts had superior cycle performance and stability. The enhanced photocatalytic activity of MoS2 QDs decorated g-C3N4/Ag hybrid photocatalysts can be mainly ascribed to enhanced visible-light absorption, the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of g-C3N4, Ag and MoS2 QDs, in which Ag nanoparticles act as the charge separation center. The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts was obtained from the active species trapping experiments.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Phan, Thuy -Duong; Luo, Si; Vovchok, Dimitriy

    Here, three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO 2 hierarchical architectures composed of radially aligned, densely-packed TiO 2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H 2 production under visible light irradiation, not possible on undoped and bulk rutile TiO 2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m 2 g –1 but alsomore » induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti 3+, significantly below the conduction band of TiO 2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen-Phan, Thuy-Duong; Luo, Si; Vovchok, Dimitriy

    Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyze the formation of the 3D urchin structure and drive the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m2 g-1 but also induces enhanced photo response in the regimemore » of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti3+, significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenetated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.« less

  20. Invisibility Cloaking Based on Geometrical Optics for Visible Light

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Oura, M.; Taoda, T.

    2013-06-01

    Optical cloaking has been one of unattainable dreams and just a subject in fiction until recently. Several different approaches to cloaking have been proposed and demonstrated: stealth technology, active camouflage and transformation optics. The last one would be the most formal approach modifying electromagnetic field around an object to be cloaked with metamaterials. While cloaking based on transformation optics, though valid only at single frequency, is experimentally demonstrated in microwave region, its operation in visible spectrum is still distant from realisation mainly owing to difficulty in fabricating metamaterial structure whose elements are much smaller than wavelength of light. Here we show that achromatic optical cloaking in visible spectrum is possible with the mere principle based on geometrical optics. In combining a pair of polarising beam splitters and right-angled prisms, rays of light to be obstructed by an object can make a detour to an observer, while unobstructed rays go straight through two polarising beam splitters. What is observed eventually through the device is simply background image as if nothing exists in between.

Top