Sample records for visible near-infrared vnir

  1. Discrimination methods of biological contamination on fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms on fresh-cut lettuce. The optimal wavebands that detect worm on fresh-cut lettuce for each type of HSI were investigated using the one-way...

  2. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    USGS Publications Warehouse

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

  3. Soil profile property estimation with field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  4. Estimation of soil profile properties using field and laboratory VNIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Diffuse reflectance spectroscopy (DRS) soil sensors have the potential to provide rapid, high-resolution estimation of multiple soil properties. Although many studies have focused on laboratory-based visible and near-infrared (VNIR) spectroscopy of dried soil samples, previous work has demonstrated ...

  5. Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Visible and near-infrared (VNIR) hyperspectral imaging (400–900 nm) was used to evaluate pH of fresh chicken breast fillets (pectoralis major muscle) from the bone (dorsal) side of individual fillets. After the principal component analysis (PCA), a band threshold method was applied to the first prin...

  6. Design and fabrication of a real-time measurement system for the capsaicinoid content of Korean red pepper (Capsicum annuum L.) powder by visible and near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    This research aims to design and fabricate a system to measure the capsaicinoid content of red pepper powder in a non-destructive and rapid method through visible and near infrared spectroscopy (VNIR). The developed system scans a well-leveled powder surface continuously to minimize the influence of...

  7. Application of VNIR hyperspectral imaging for non-destructive prediction of pH, color, and drip loss of chicken breast fillets

    USDA-ARS?s Scientific Manuscript database

    Non-destructive and rapid prediction of quality attributes of chicken breast fillets using visible and near-infrared (VNIR) hyperspectral imaging (400-1000 nm) was carried out in this work. All hyperspectral images were acquired for bone (dorsal) side of chicken breast. A forward principal component...

  8. ISERV Pathfinder. The ISS SERVIR Environmental Research and Visualization System

    NASA Technical Reports Server (NTRS)

    Howell, Burgess

    2011-01-01

    SERVIR integrates Earth observations (e.g., space imagery), predictive models, and in situ data to provide timely information products to support environmental decision makers. ISERV propoesed development -- ISERV-W: Internal Visible/Near-Infrared (VNIR), attached to ISS via Window Observational Research Facility (WORF), ISERV-E: External Visible/Broad-Infrared (V/IR) and ISERV-PM: External Passive Microwave.

  9. Detection of lettuce discoloration using hyperspectral reflectance imaging

    USDA-ARS?s Scientific Manuscript database

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to classify the discoloration of lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectra...

  10. Visible-Near Infrared Point Spectrometry of Drill Core Samples from Río Tinto, Spain: Results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) Drilling Exercise

    NASA Astrophysics Data System (ADS)

    Sutter, Brad; Brown, Adrian J.; Stoker, Carol R.

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  11. Visible-near infrared point spectrometry of drill core samples from Río Tinto, Spain: results from the 2005 Mars Astrobiology Research and Technology Experiment (MARTE) drilling exercise.

    PubMed

    Sutter, Brad; Brown, Adrian J; Stoker, Carol R

    2008-10-01

    Sampling of subsurface rock may be required to detect evidence of past biological activity on Mars. The Mars Astrobiology Research and Technology Experiment (MARTE) utilized the Río Tinto region, Spain, as a Mars analog site to test dry drilling technologies specific to Mars that retrieve subsurface rock for biological analysis. This work examines the usefulness of visible-near infrared (VNIR) (450-1000 nm) point spectrometry to characterize ferric iron minerals in core material retrieved during a simulated Mars drilling mission. VNIR spectrometry can indicate the presence of aqueously precipitated ferric iron minerals and, thus, determine whether biological analysis of retrieved rock is warranted. Core spectra obtained during the mission with T1 (893-897 nm) and T2 (644-652 nm) features indicate goethite-dominated samples, while relatively lower wavelength T1 (832-880 nm) features indicate hematite. Hematite/goethite molar ratios varied from 0 to 1.4, and within the 880-898 nm range, T1 features were used to estimate hematite/goethite molar ratios. Post-mission X-ray analysis detected phyllosilicates, which indicates that examining beyond the VNIR (e.g., shortwave infrared, 1000-2500 nm) will enhance the detection of other minerals formed by aqueous processes. Despite the limited spectral range of VNIR point spectrometry utilized in the MARTE Mars drilling simulation project, ferric iron minerals could be identified in retrieved core material, and their distribution served to direct core subsampling for biological analysis.

  12. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; hide

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  13. HICO and RAIDS Experiment Payload - Hyperspectral Imager for the Coastal Ocean

    NASA Technical Reports Server (NTRS)

    Corson, Mike

    2009-01-01

    HICO and RAIDS Experiment Payload - Hyperspectral Imager For The Coastal Ocean (HREP-HICO) will operate a visible and near-infrared (VNIR) Maritime Hyperspectral Imaging (MHSI) system, to detect, identify and quantify coastal geophysical features from the International Space Station.

  14. Statistical modeling of natural backgrounds in hyperspectral LWIR data

    NASA Astrophysics Data System (ADS)

    Truslow, Eric; Manolakis, Dimitris; Cooley, Thomas; Meola, Joseph

    2016-09-01

    Hyperspectral sensors operating in the long wave infrared (LWIR) have a wealth of applications including remote material identification and rare target detection. While statistical models for modeling surface reflectance in visible and near-infrared regimes have been well studied, models for the temperature and emissivity in the LWIR have not been rigorously investigated. In this paper, we investigate modeling hyperspectral LWIR data using a statistical mixture model for the emissivity and surface temperature. Statistical models for the surface parameters can be used to simulate surface radiances and at-sensor radiance which drives the variability of measured radiance and ultimately the performance of signal processing algorithms. Thus, having models that adequately capture data variation is extremely important for studying performance trades. The purpose of this paper is twofold. First, we study the validity of this model using real hyperspectral data, and compare the relative variability of hyperspectral data in the LWIR and visible and near-infrared (VNIR) regimes. Second, we illustrate how materials that are easily distinguished in the VNIR, may be difficult to separate when imaged in the LWIR.

  15. ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro

    2015-10-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.

  16. Fusion of spectral and electrochemical sensor data for estimating soil macronutrients

    USDA-ARS?s Scientific Manuscript database

    Rapid and efficient quantification of plant-available soil phosphorus (P) and potassium (K) is needed to support variable-rate fertilization strategies. Two methods that have been used for estimating these soil macronutrients are diffuse reflectance spectroscopy in visible and near-infrared (VNIR) w...

  17. Mapping hydrothermal alteration using aircraft VNIR scanners at the Rosemont porphyry copper deposit. [Visible-Near Infrared

    NASA Technical Reports Server (NTRS)

    Sadowski, R. M.; Abrams, M. J.

    1983-01-01

    Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.

  18. Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    A partial least squares regression (PLSR) model to map internal soluble solids content (SSC) of apples using visible/near-infrared (VNIR) hyperspectral imaging was developed. The reflectance spectra of sliced apples were extracted from hyperspectral absorbance images obtained in the 400e1000 nm rang...

  19. Spatial Relationships Between Snow Contaminant Content, Grain Size, and Surface Temperature in Multi-spectral Remote Sensing Data of Mt. Rainier, WA

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Hansen, G.; Gillespie, A.; Pettit, E.

    2002-12-01

    Relating cryosphere change to climate change requires estimation of radiative fluxes on snow-covered surfaces. The distribution of, and relationship between, snow-pack properties that affect radiative balance can be estimated with high-resolution remote-sensing data. MODIS/ASTER airborne simulator (MASTER) data were collected at Mt. Rainier to reveal spatial patterns of, and correlations between, snow contaminant content, grain size, and temperature. The visible and near-infrared (VNIR: 11 bands, 0.4-1.0 μm) and the short-wave infrared (SWIR: 14 bands, 1.6-2.4 μm) data are processed to bi-directional reflectance (BDR) and albedo, by removing atmospheric effects and by normalizing to Solar irradiance and incidence angle. VNIR BDR and albedo are used as a proxy for snow contaminant content. Physical and optical grain size are estimated by comparing SWIR BDR and albedo to modeled and measured spectra, and ground-truth measurements. The thermal infrared data (TIR: 10 bands, 8-13 μm) are processed to temperature by removing emissivity and atmospheric effects. In combination, the VNIR, SWIR, and TIR data reveal a distinct pattern of contaminants, grain size, and temperature related to a recent snowfall and the end-of-the-summer melting season. At lower elevations, the surface accumulation of dirty lag deposits resulted in snow with very low visible albedo (20-30 %), large physical and optical grain radii (500-1500 μm, 200 μm), and temperatures near the melting point. At higher elevations, the recent snowfall left snow with low contaminant content, and a higher visible albedo (60-90 %). However, a region near the summit with smaller physical and optical grain radii (400 μm, 100 μm), and temperatures below the melting point, is distinguished from a middle elevation region with grain sizes and temperatures similar to the lower region. Contaminants reduce VNIR albedo and significantly enhance absorption of incoming solar radiation. The spatial correlation between temperature and grain size supports the idea that rapid, destructive metamorphism occurs when snow temperatures are at the melting point.

  20. ASTER First Views of San Francisco River, Brazil - Visible/near Infrared VNIR Image monochrome

    NASA Image and Video Library

    2000-03-11

    This image of the San Francisco River channel, and its surrounding flood zone, in Brazil was acquired by band 3N of ASTER's Visible/Near Infrared sensor. The surrounding area along the river channel in light gray to white could be covered by dense tropical rain forests. The water surface of the San Francisco River shows rather gray color as compared to small lakes and tributaries, which could indicate that the river water is contaminated by suspended material. The size of image: 20 km x 20 km approx., ground resolution 15 m x 15 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02451

  1. Sharpending of the Vnir and SWIR Bands of the Wide Band Spectral Imager Onboard Tiangong-II Imagery Using the Selected Bands

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, X.; Liu, G.; Huang, C.; Li, H.; Guan, X.

    2018-04-01

    The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI) onboard the Tiangong-II has 14 visible and near-infrared (VNIR) spectral bands covering the range from 403-990 nm and two shortwave infrared (SWIR) bands covering the range from 1230-1250 nm and 1628-1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS) sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  2. Design and Fabrication of a Real-Time Measurement System for the Capsaicinoid Content of Korean Red Pepper (Capsicum annuum L.) Powder by Visible and Near-Infrared Spectroscopy.

    PubMed

    Lim, Jongguk; Kim, Giyoung; Mo, Changyeun; Kim, Moon S

    2015-10-29

    This research aims to design and fabricate a system to measure the capsaicinoid content of red pepper powder in a non-destructive and rapid method using visible and near infrared spectroscopy (VNIR). The developed system scans a well-leveled powder surface continuously to minimize the influence of the placenta distribution, thus acquiring stable and representative reflectance spectra. The system incorporates flat belts driven by a sample input hopper and stepping motor, a powder surface leveler, charge-coupled device (CCD) image sensor-embedded VNIR spectrometer, fiber optic probe, and tungsten halogen lamp, and an automated reference measuring unit with a reference panel to measure the standard spectrum. The operation program includes device interface, standard reflectivity measurement, and a graphical user interface to measure the capsaicinoid content. A partial least square regression (PLSR) model was developed to predict the capsaicinoid content; 44 red pepper powder samples whose measured capsaicinoid content ranged 13.45-159.48 mg/100 g by per high-performance liquid chromatography (HPLC) and 1242 VNIR absorbance spectra acquired by the pungency measurement system were used. The determination coefficient of validation (RV2) and standard error of prediction (SEP) for the model with the first-order derivative pretreatment method for Korean red pepper powder were 0.8484 and ±13.6388 mg/100 g, respectively.

  3. ASTER system operating achievement for 15 years on orbit

    NASA Astrophysics Data System (ADS)

    Inada, Hitomi; Ito, Yoshiyuki; Kikuchi, Masakuni; Sakuma, Fumihiro; Tatsumi, Kenji; Akagi, Shigeki; Ono, Hidehiko

    2015-10-01

    ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) System is operating more than 15 years since launched on board of NASA's Terra spacecraft in December 1999. ASTER System is composed of 3 radiometers (VNIR (Visible and Near Infrared Radiometer), SWIR (Short-Wave Infrared Radiometer), and TIR (Thermal Infrared Radiometer)), CSP (Common Signal Processor) and MSP (Master Power Supply). This paper describes the ASTER System operating history and the achievement of ASTER System long term operation since the initial checkout operation, the normal operation, and the continuous operation. Through the 15 years operation, ASTER system had totally checked the all subsystems (MPS, VNIR, TIR, SWIR, and CSP) health and safety check using telemetry data trend evaluation, and executed the necessary action. The watch items are monitored as the life control items. The pointing mechanics for VNIR, SWIR and TIR, and the cooler for SWIR and TIR are all operating with any problem for over 15 years. In 2003, ASTER was successfully operated for the lunar calibration. As the future plan, ASTER team is proposing the 2nd lunar calibration before the end of mission.

  4. Spectral masking of goethite in abandoned mine drainage systems: implications for Mars

    USGS Publications Warehouse

    Cull, Selby; Cravotta, Charles A.; Klinges, Julia Grace; Weeks, Chloe

    2014-01-01

    Remote sensing studies of the surface of Mars use visible- to near-infrared (VNIR) spectroscopy to identify hydrated and hydroxylated minerals, which can be used to constrain past environmental conditions on the surface of Mars. However, due to differences in optical properties, some hydrated phases can mask others in VNIR spectra, complicating environmental interpretations. Here, we examine the role of masking in VNIR spectra of natural precipitates of ferrihydrite, schwertmannite, and goethite from abandoned mine drainage (AMD) systems in southeastern Pennsylvania. Mixtures of ferrihydrite, schwertmannite, and goethite were identified in four AMD sites by using X-ray diffractometry (XRD), and their XRD patterns compared to their VNIR spectra. We find that both ferrihydrite and schwertmannite can mask goethite in VNIR spectra of natural AMD precipitates. These findings suggest that care should be taken in interpreting environments on Mars where ferrihydrite, schwertmannite, or goethite are found, as the former two may be masking the latter. Additionally, our findings suggest that outcrops on Mars with both goethite and ferrihydrite/schwertmannite VNIR signatures may have high relative abundances of goethite, or the goethite may exist in a coarsely crystalline phase.

  5. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  6. A spectral reflectance study (0.4-2.5 μm) of selected playa evaporite mineral deposits and related geochemical processes

    USGS Publications Warehouse

    Crowley, James K.

    1990-01-01

    Playa evaporite mineral deposits show major compositional variations related to differences in lithology, hydrology, and groundwater geochemistry. The use of visible and near-infrared (VNIR) spectral reflectance measurements as a technique for investigating the mineralogy of playa efflorescent crusts is examined. Samples of efflorescent crust were collected from 4 playa: Bristol Dry Lake, Saline Valley, Teels Marsh, and Rhodes Marsh--all located in eastern California and western Nevada. Laboratory and field spectral analyses coupled with X-ray diffraction analyses of the crusts yielded the following observations: VNIR spectra of unweathered salt crusts can be used to infer the general chemistry of near-surface brines; VNIR spectra are very sensitive for detecting minor hydrate mineral phases contained in mixtures with anhydrous, spectrally featureless, minerals such as halite (NaCl) and thernardite (Na2So4); borate minerals exhibit particularly strong VNIR spectral features that permit small amounts of borate to be detected in efflorescent salt crusts; remote sensing spectral measurements of playa efflorescent crusts may have applications in global studies of playa brines and minerals.

  7. Mutual information registration of multi-spectral and multi-resolution images of DigitalGlobe's WorldView-3 imaging satellite

    NASA Astrophysics Data System (ADS)

    Miecznik, Grzegorz; Shafer, Jeff; Baugh, William M.; Bader, Brett; Karspeck, Milan; Pacifici, Fabio

    2017-05-01

    WorldView-3 (WV-3) is a DigitalGlobe commercial, high resolution, push-broom imaging satellite with three instruments: visible and near-infrared VNIR consisting of panchromatic (0.3m nadir GSD) plus multi-spectral (1.2m), short-wave infrared SWIR (3.7m), and multi-spectral CAVIS (30m). Nine VNIR bands, which are on one instrument, are nearly perfectly registered to each other, whereas eight SWIR bands, belonging to the second instrument, are misaligned with respect to VNIR and to each other. Geometric calibration and ortho-rectification results in a VNIR/SWIR alignment which is accurate to approximately 0.75 SWIR pixel at 3.7m GSD, whereas inter-SWIR, band to band registration is 0.3 SWIR pixel. Numerous high resolution, spectral applications, such as object classification and material identification, require more accurate registration, which can be achieved by utilizing image processing algorithms, for example Mutual Information (MI). Although MI-based co-registration algorithms are highly accurate, implementation details for automated processing can be challenging. One particular challenge is how to compute bin widths of intensity histograms, which are fundamental building blocks of MI. We solve this problem by making the bin widths proportional to instrument shot noise. Next, we show how to take advantage of multiple VNIR bands, and improve registration sensitivity to image alignment. To meet this goal, we employ Canonical Correlation Analysis, which maximizes VNIR/SWIR correlation through an optimal linear combination of VNIR bands. Finally we explore how to register images corresponding to different spatial resolutions. We show that MI computed at a low-resolution grid is more sensitive to alignment parameters than MI computed at a high-resolution grid. The proposed modifications allow us to improve VNIR/SWIR registration to better than ¼ of a SWIR pixel, as long as terrain elevation is properly accounted for, and clouds and water are masked out.

  8. Hydrothermal Alteration Mineral Mapping Using Sentinel-2A MSI and ASTER Data in the Duolong Ore Concentrating Area,Tibetau Plateau,China

    NASA Astrophysics Data System (ADS)

    Hu, B.; Wan, B.

    2017-12-01

    The porphyry copper deposits are characterized by alteration zones. Hydrothermal alteration minerals have diagnostic spectral absorption properties in the visible and near-infrared (VNIR) through the shortwave infrared (SWIR) regions. In order to identify the alteration zones in the study area, the Sentinel-2A Multi-Spectral Instrument(MSI) * Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and field inspection were combined. The Sentinel-2A MSI has ten bands in the visible and near-infrared (VNIR) regions, which has advantages of detecting ferric iron alteration minerals. Six ASTER bands in the shortwave infrared(SWIR) regions have been demonstrated to be effective in the mapping of Al-OH * Mg-OH group minerals. Integrating ASTER and Sentinel-2A MSI (AM) for mineral mapping can compensate each other's defect. The methods of minimum noise fraction(MNF) * band combination * matched filtering were applied to get Al-OH and Mg-OH group minerals information from AM data. The anomaly-overlaying selection method was used to process three temporal Sentinel-2A MSI data for extracting iron oxides minerals. The ground inspection has confirmed the validity of AM and Sentinel-2A MSI data in mineral mapping. The methodology proved effective in an arid area of Duolong ore concentrating area,Tibet and hereby suggested for application in similar geological settings.

  9. Monitoring Orbital Precession of EO-1 Hyperion with Three Atmospheric Correction Models in the Libya-4 PICS

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher; McCorkel, Joel; Campbell, Petya; Ong, Laurence; Ly, Vuong; Landis, David; Fry, Stuart; Middleton, Elizabeth

    2016-01-01

    Spaceborne spectrometers require spectral-temporal stability characterization to aid validation of derived data products. EO-1 began orbital precession in 2011 after exhausting onboard fuel resources. In the Libya-4 Pseudo Invariant Calibration Site (PICS) this resulted in a progressive shift from a mean local equatorial crossing time of approx. 10:00 AM in 2011 to approx. 8:30 AM in late 2015. Here, we studied precession impacts to Hyperion surface reflectance products using three atmospheric correction approaches from 2004 to 2015. Combined difference estimates of surface reflectance were < 5% in the visible near infrared (VNIR) and < 10% for most of the shortwave infrared (SWIR). Combined coefficient of variation (CV) estimates in the VNIR ranged from 0.025 ? 0.095, and in the SWIR ranged from 0.025 ? 0.06, excluding bands near atmospheric absorption features. Reflectances produced with different atmospheric models were correlated (R2) in VNIR from 0.25 ? 0.94 and SWIR from 0.12 ? 0.88 (p < 0.01). The uncertainties in all models increased with terrain slope up to 15deg and selecting dune flats could reduce errors. We conclude that these data remain a useful resource over this period.

  10. Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan

    2017-09-01

    The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.

  11. Rapid Erosion Modeling in a Western Kenya Watershed using Visible Near Infrared Reflectance, Classification Tree Analysis and 137Cesium.

    PubMed

    deGraffenried, Jeff B; Shepherd, Keith D

    2009-12-15

    Human induced soil erosion has severe economic and environmental impacts throughout the world. It is more severe in the tropics than elsewhere and results in diminished food production and security. Kenya has limited arable land and 30 percent of the country experiences severe to very severe human induced soil degradation. The purpose of this research was to test visible near infrared diffuse reflectance spectroscopy (VNIR) as a tool for rapid assessment and benchmarking of soil condition and erosion severity class. The study was conducted in the Saiwa River watershed in the northern Rift Valley Province of western Kenya, a tropical highland area. Soil 137 Cs concentration was measured to validate spectrally derived erosion classes and establish the background levels for difference land use types. Results indicate VNIR could be used to accurately evaluate a large and diverse soil data set and predict soil erosion characteristics. Soil condition was spectrally assessed and modeled. Analysis of mean raw spectra indicated significant reflectance differences between soil erosion classes. The largest differences occurred between 1,350 and 1,950 nm with the largest separation occurring at 1,920 nm. Classification and Regression Tree (CART) analysis indicated that the spectral model had practical predictive success (72%) with Receiver Operating Characteristic (ROC) of 0.74. The change in 137 Cs concentrations supported the premise that VNIR is an effective tool for rapid screening of soil erosion condition.

  12. Visible-Near Infrared (VNIR) and Shortwave Infrared (SWIR) Spectral Variability of Urban Materials

    DTIC Science & Technology

    2013-03-01

    extension). FieldSpec 4 spectrometer unit is contained in the backpack. The fiber optic cable and power cable for the contact probe are seen...spectroradiometer foreoptic (lens) is typically between 1 degree and 25 degrees when using natural lighting (or artificially lit in lab) but a bare fiber ... fiber optic cable and power cable for the contact probe are seen. In operation, the spectrometer is allowed to warm up prior to use for at least 30

  13. Preflight and in-flight calibration plan for ASTER

    USGS Publications Warehouse

    Ono, A.; Sakuma, F.; Arai, K.; Yamaguchi, Y.; Fujisada, H.; Slater, P.N.; Thome, K.J.; Palluconi, Frank Don; Kieffer, H.H.

    1996-01-01

    Preflight and in-flight radiometric calibration plans are described for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) that is a multispectral optical imager of high spatial resolution. It is designed for the remote sensing from orbit of land surfaces and clouds, and is expected to be launched in 1998 on NASA's EOS AM-1 spacecraft. ASTER acquires images in three separate spectral regions, the visible and near-infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR) with three imaging radiometer subsystems. The absolute radiometric accuracy is required to be better than 4% for VNIR and SWIR radiance measurements and 1 to 3 K, depending on the temperature regions from 200 to 370 K, for TIR temperature measurements. A reference beam is introduced at the entrance pupil of each imaging radiometer to provide the in-flight calibration Thus, the ASTER instrument includes internal onboard calibration units that comprise incandescent lamps for the VNIR and SWIR and a blackbody radiator for the TIR as reference sources. The calibration reliability of the VNIR and SWIR is enhanced by a dual system of onboard calibration units as well as by high-stability halogen lamps. A ground calibration system of spectral radiances traceable to fixed-point blackbodies is used for the preflight VNIR and SWIR calibration. Because of the possibility of nonuniform contamination effects on the partial-aperture onboard calibration, it is desirable to check their results with respect to other methods. Reflectance- and radiance-based vicarious methods have been developed for this purpose. These, and methods involving in-flight cross-calibration with other sensors are also described.

  14. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Overview

    USGS Publications Warehouse

    ,

    2008-01-01

    The National Aeronautics and Space Administration (NASA) launched Terra, the Earth Observing System's (EOS) flagship satellite platform on December 18, 1999. The polar-orbiting Terra contains five remote sensing instruments, which enable the scientific study and analyses of global terrestrial processes and manifestations of global change. One of the five instruments is the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is built in Japan by a consortium of government, industry, and research groups. It has three spectral bands in the visible near-infrared region (VNIR), six bands in the shortwave infrared region (SWIR), and five bands in the thermal infrared region (TIR), with 15-, 30-, and 90-meter ground resolutions, respectively. This combination of wide spectral coverage and high spatial resolution allows ASTER to discriminate among a wide variety of surface materials. The VNIR subsystem also has a backward-viewing telescope for high-resolution (15-meter) stereoscopic observation in the along-track direction, which facilitates the generation of digital elevation models (DEM).

  15. Cirrus Heterogeneity Effects on Cloud Optical Properties Retrieved with an Optimal Estimation Method from MODIS VIS to TIR Channels.

    NASA Technical Reports Server (NTRS)

    Fauchez, T.; Platnick, S.; Meyer, K.; Sourdeval, O.; Cornet, C.; Zhang, Z.; Szczap, F.

    2016-01-01

    This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 micrometers , and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.

  16. ASTER First Views of Red Sea, Ethiopia - Thermal-Infrared TIR Image monochrome

    NASA Image and Video Library

    2000-03-11

    ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history. The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately. http://photojournal.jpl.nasa.gov/catalog/PIA02452

  17. Monitoring Orbital Precession of EO-1 Hyperion With Three Atmospheric Correction Models in the Libya-4 PICS

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; McCorkel, Joel; Campbell, Petya K. E.; Ong, Lawrence; Ly, Vuong; Landis, David; Middleton, Elizabeth M.

    2016-01-01

    Spaceborne spectrometers require spectral-temporal stability characterization to aid in validation of derived data products. Earth Observation 1 (EO-1) began orbital precession in 2011 after exhausting onboard fuel resources. In the Libya-4 pseudo-invariant calibration site (PICS), this resulted in a progressive shift from a mean local equatorial crossing time of approximately10:00 A.M. in 2011 to approximately 8:30 A.M. in late 2015. Here, we studied precession impacts to Hyperion surface reflectance products using three atmospheric correction approaches from 2004 to 2015. Combined difference estimates of surface reflectance were less than 5 percent in the visible near infrared (VNIR) and less than 10 percent for most of the shortwave infrared (SWIR). Combined coefficient of variation estimates in the VNIR ranged from 0.025 to 0.095, and in the SWIR it ranged from 0.025 to 0.06, excluding bands near atmospheric absorption features. Reflectances produced with different atmospheric models were correlated (R squared) in VNIR from 0.25 to 0.94 and in SWIR from 0.12 to 0.88 (p value (calculated probability) less than 0.01). The uncertainties in all the models increased with a terrain slope up to 15 degrees and selecting dune flats could reduce errors. We conclude that these data remain a valuable resource over this period for sensor intercalibration despite orbital decay.

  18. Visible and Near-IR Reflectance Spectra of Mars Analogue Materials Under Arid Conditions for Interpretation of Martian Surface Mineralogy

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Graff, T. G.; Achilles, C. N.; Agresti, D. G.; Ming, D. W.; Golden, D. C.

    2011-01-01

    Visible and near-IR (VNIR) spectra from the hyper-spectral imagers MRO-CRISM and Mars Express OMEGA in martian orbit have signatures from Fe-bearing phases (e.g., olivine, pyroxene, and jarosite), H2O/OH-bearing phases (e.g., smectites and other phyllosilicates, sulfates, and high-SiO2 phases), and carbonate [e.g., 1-5]. Mineralogical assignments of martian spectral features are made on the basis of VNIR spectra acquired in the laboratory under appropriate environmental conditions on samples whose mineralogical composition is known. We report here additional results for our ongoing project [6] to acquire VNIR spectra under arid conditions.

  19. Integrated Spectroscopic Studies of Hydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Dyar, M. D.; Lane, M. D.; Bishop, J. L.; OConnor, V.; Cloutis, E.; Hiroi, T.

    2005-01-01

    Sulfate minerals have been identified in Martian meteorites and on Mars using a suite of instruments aboard the MER rovers. These results have confirmed previous groundbased observations and orbital measurements that suggested their presence. The orbiting OMEGA instrument on Mars Express is also finding evidence for sulfate. In order to better interpret remote-sensing data, we present here the results of a coordinated visible/near infrared (VNIR) reflectance, Moussbauer (MB), and thermal emittance study of wellcharacterized hydrous sulfate minerals.

  20. Discrimination of active and inactive sand from remote sensing - Kelso dunes, Mojave Desert, California

    NASA Technical Reports Server (NTRS)

    Paisley, Elizabeth C. I.; Lancaster, Nicholas; Gaddis, Lisa R.; Greeley, Ronald

    1991-01-01

    Landsat TM images, field data, and laboratoray reflectance spectra were examined for the Kelso dunes, Mojave Desert, California to assess the use of visible and near-infrared (VNIR) remote sensing data to discriminate aeolian sand populations on the basis of spectral brightness. Results show that areas of inactive sand have a larger percentage of dark, fine-grained materials compared to those composed of active sand, which contain less dark fines and a higher percentage of quartz sand-size grains. Both areas are spectrally distinct in the VNIR, suggesting that VNIR spectral data can be used to discriminate active and inactive sand populations in the Mojave Desert. Analysis of laboratory spectra was complicated by the presence of magnetite in the active sands, which decreases their laboratory reflectance values to those of inactive sands. For this application, comparison of TM and laboratory spectra suggests that less than 35 percent vegetation cover does not influence the TM spectra.

  1. Mapping Weathering and Alteration Minerals in the Comstock and Geiger Grade Areas using Visible to Thermal Infrared Airborne Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Vaughan, Greg R.; Calvin, Wendy M.

    2005-01-01

    To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of acidic drainage that were identified remotely.

  2. Recent Characterization of the Night-Sky Irradiance in the Visible/Near-Infrared Spectral Band

    NASA Astrophysics Data System (ADS)

    Moore, Carolynn; Wood, Michael; Bender, Edward; Hart, Steve

    2018-01-01

    The U.S. Army RDECOM CERDEC NVESD has made numerous characterizations of the night sky over the past 45 years. Up until the last four years, the measurement devices were highly detector-limited, which led to low spectral resolution, marginal sensitivity in no-moon conditions, and the need for inferential analysis of the resulting data. In 2014, however, the PhotoResearch Model PR-745 spectro-radiometer established a new state of the art for measurement of the integrated night-sky irradiance over the Visible-to-Near-Infrared (VNIR) spectral band (400-1050nm). This has enabled characterization of no-moon night-sky irradiance with a spectral bandwidth less than 15 nanometers, even when this irradiance is attenuated by heavy clouds or forest canopy. Since 2014, we have conducted a series of night-sky data collections at remote sites across the United States. The resulting data has provided new insights into natural radiance variations, cultural lighting impacts, and the spectrally-varying attenuation caused by cloud cover and forest canopy. Several new metrics have also been developed to provide insight into these newly-found components and temporal variations. The observations, findings and conclusions of the above efforts will be presented, including planned near-term efforts to further characterize the night-sky irradiance in the Visible/Near-Infrared spectral band.

  3. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring

    PubMed Central

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-01-01

    Conventional wastewater treatment generates large amounts of organic matter–rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation—RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring. PMID:27854280

  4. Wastewater Biosolid Composting Optimization Based on UV-VNIR Spectroscopy Monitoring.

    PubMed

    Temporal-Lara, Beatriz; Melendez-Pastor, Ignacio; Gómez, Ignacio; Navarro-Pedreño, Jose

    2016-11-15

    Conventional wastewater treatment generates large amounts of organic matter-rich sludge that requires adequate treatment to avoid public health and environmental problems. The mixture of wastewater sludge and some bulking agents produces a biosolid to be composted at adequate composting facilities. The composting process is chemically and microbiologically complex and requires an adequate aeration of the biosolid (e.g., with a turner machine) for proper maturation of the compost. Adequate (near) real-time monitoring of the compost maturity process is highly difficult and the operation of composting facilities is not as automatized as other industrial processes. Spectroscopic analysis of compost samples has been successfully employed for compost maturity assessment but the preparation of the solid compost samples is difficult and time-consuming. This manuscript presents a methodology based on a combination of a less time-consuming compost sample preparation and ultraviolet, visible and short-wave near-infrared spectroscopy. Spectroscopic measurements were performed with liquid compost extract instead of solid compost samples. Partial least square (PLS) models were developed to quantify chemical fractions commonly employed for compost maturity assessment. Effective regression models were obtained for total organic matter (residual predictive deviation-RPD = 2.68), humification ratio (RPD = 2.23), total exchangeable carbon (RPD = 2.07) and total organic carbon (RPD = 1.66) with a modular and cost-effective visible and near infrared (VNIR) spectroradiometer. This combination of a less time-consuming compost sample preparation with a versatile sensor system provides an easy-to-implement, efficient and cost-effective protocol for compost maturity assessment and near-real-time monitoring.

  5. Characterization of Synthetic and Natural Manganese Oxides as Martian Analogues

    NASA Technical Reports Server (NTRS)

    Fox, V. K.; Arvidson, R. E.; Jolliff, B. L.; Carpenter, P. K.; Catalano, J. G.; Hinkle, M. A. G.; Morris, R. V.

    2015-01-01

    Recent discoveries of highly concentrated manganese oxides in Gale Crater and on the rim of Endeavour Crater by the Mars Science Laboratory Curiosity and Mars Exploration Rover Opportunity, respectively, imply more highly oxidizing aqueous conditions than previously recognized. Manganese oxides are a significant environmental indicator about ancient aqueous conditions, provided the phases can be characterized reliably. Manganese oxides are typically fine-grained and poorly crystalline, making the mineral structures difficult to determine, and they generally have very low visible reflectance with few distinctive spectral features in the visible to near infrared, making them a challenge for interpretation from remote sensing data. Therefore, these recent discoveries motivate better characterization using methods available on Mars, particularly visible to near infrared (VNIR) spectroscopy, X-ray diffractometry (XRD), and compositional measurements. Both rovers have complementary instruments in this regard. Opportunity is equipped with its multispectral visible imager, Pancam, and an Alpha Particle X-ray Spectrometer (APXS), and Curiosity has the multispectral Mastcam, ChemCam (laser-induced breakdown spectroscopy and passive spectroscopy), and APXS for in situ characterization, and ChemMin (XRD) for collected samples.

  6. Visible, Very Near IR and Short Wave IR Hyperspectral Drone Imaging System for Agriculture and Natural Water Applications

    NASA Astrophysics Data System (ADS)

    Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O.

    2017-10-01

    The accurate determination of the quality parameters of crops requires a spectral range from 400 nm to 2500 nm (Kawamura et al., 2010, Thenkabail et al., 2002). Presently the hyperspectral imaging systems that cover this wavelength range consist of several separate hyperspectral imagers and the system weight is from 5 to 15 kg. In addition the cost of the Short Wave Infrared (SWIR) cameras is high (  50 k€). VTT has previously developed compact hyperspectral imagers for drones and Cubesats for Visible and Very near Infrared (VNIR) spectral ranges (Saari et al., 2013, Mannila et al., 2013, Näsilä et al., 2016). Recently VTT has started to develop a hyperspectral imaging system that will enable imaging simultaneously in the Visible, VNIR, and SWIR spectral bands. The system can be operated from a drone, on a camera stand, or attached to a tractor. The targeted main applications of the DroneKnowledge hyperspectral system are grass, peas, and cereals. In this paper the characteristics of the built system are shortly described. The system was used for spectral measurements of wheat, several grass species and pea plants fixed to the camera mount in the test fields in Southern Finland and in the green house. The wheat, grass and pea field measurements were also carried out using the system mounted on the tractor. The work is part of the Finnish nationally funded DroneKnowledge - Towards knowledge based export of small UAS remote sensing technology project.

  7. VizieR Online Data Catalog: Spectroscopy of main-belt Ch/Cgh-type asteroids (Vernazza+, 2016)

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    We conducted an extensive spectroscopic survey in the near-infrared range of 70 main-belt Ch/Cgh-type asteroids and 4 Ch/Cgh-type families and combined these measurements with available visible wavelength spectra. New data presented here are near-infrared asteroid spectral measurements for Ch- and Cgh-type asteroids from 0.7-2.5μm obtained using SpeX, the low- to medium-resolution near-IR spectrograph and imager on the 3m NASA InfraRed Telescope Facility (IRTF) located on Mauna Kea, HI. Observing runs were conducted remotely primarily from the Observatory of Paris-Meudon, France between 2010 April and 2012 January. The spectrograph SpeX, combined with a 0.8*15arcsec slit, was used in the low-resolution prism mode for acquisition of the spectra in the 0.7-2.5μm wavelength range. In order to monitor the high luminosity and variability of the sky in the near-IR, the telescope was moved along the slit during the acquisition of the data so as to obtain a sequence of spectra located at two different positions (A and B) on the array. In addition, we complemented our data set with additional near-infrared spectra retrieved from the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) database (http://smass.mit.edu/). Combining these near-infrared measurements with available visible wavelength spectra (Bus, 1999PhDT........50B; Lazzaro et al., 2004Icar..172..179L) allows for the first time an extensive visible and near-infrared (VNIR) spectral database of main-belt Ch and Cgh types with D>45km (78% or 49/63 of all Ch and Cgh types listed in SMASS; see Table1). (1 data file).

  8. Non-optically combined multispectral source for IR, visible, and laser testing

    NASA Astrophysics Data System (ADS)

    Laveigne, Joe; Rich, Brian; McHugh, Steve; Chua, Peter

    2010-04-01

    Electro Optical technology continues to advance, incorporating developments in infrared and laser technology into smaller, more tightly-integrated systems that can see and discriminate military targets at ever-increasing distances. New systems incorporate laser illumination and ranging with gated sensors that allow unparalleled vision at a distance. These new capabilities augment existing all-weather performance in the mid-wave infrared (MWIR) and long-wave infrared (LWIR), as well as low light level visible and near infrared (VNIR), giving the user multiple means of looking at targets of interest. There is a need in the test industry to generate imagery in the relevant spectral bands, and to provide temporal stimulus for testing range-gated systems. Santa Barbara Infrared (SBIR) has developed a new means of combining a uniform infrared source with uniform laser and visible sources for electro-optics (EO) testing. The source has been designed to allow laboratory testing of surveillance systems incorporating an infrared imager and a range-gated camera; and for field testing of emerging multi-spectral/fused sensor systems. A description of the source will be presented along with performance data relating to EO testing, including output in pertinent spectral bands, stability and resolution.

  9. Laboratory Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Hamilton, V. E.

    2007-12-01

    Though basaltic materials dominate the composition of the Martian surface, a material with a relatively high silica component in an area of Eos Chasma was reported by [1] from thermal infrared (TIR) data. The spectrum of the silica phase resembles quartz or chert, but with the existing information it is difficult to tell which phase best fits the observations. Though quartz, chert, and amorphous silica are chemically identical (SiO2), their physical differences (e.g., microstructures) result in different TIR spectral characteristics. Previous studies have analyzed a limited number of chert samples using emission infrared spectroscopy [2] and transmission infrared spectroscopy [3]. We continue these preliminary studies with an investigation aiming to more completely understand and document the variation in spectral character of cherts. This knowledge may help to identify the silica phase in Eos Chasma and any future discoveries. Our study includes a more extensive sampling of geologic chert in hand sample (>15 samples) with various sources, methods of formation, surface textures, and crystallinities. We analyzed their visible to near-infrared (VNIR) reflectance spectra, as well as spectral features in TIR emission spectra. We measured multiple locations on each sample to determine spectral homogeneity across the sample and between various orientations. Where possible, natural, cut, and recently fractured surfaces were measured. We compared the collected TIR spectra for similarities and differences in shape and spectral contrast within each sample and between samples that may relate to variations in the samples' structure (e.g. crystallinity, and surface texture). VNIR measurements show features indicative of non-silica phases and water that may be present in the cherts. [1] Hamilton, V.E. (2005) Eos Trans. AGU, Fall Meeting Suppl., Abstract P24A-08. [2] Michalski, J.R. (2005) PhD Diss., ASU, Tempe. [3] Long, D. G. et al. (2001) Canadian Archaeological Assoc., 33rd Meeting.

  10. Strategies for soil quality assessment using VNIR gyperspectral spectroscopy in a western Kenya Chronosequence

    USGS Publications Warehouse

    Kinoshita, Rintaro; Moebius-Clune, Bianca N.; van Es, Harold M.; Hively, W. Dean; Bilgilis, A. Volkan

    2012-01-01

    Visible and near-infrared reflectance spectroscopy (VNIRS) is a rapid and nondestructive method that can predict multiple soil properties simultaneously, but its application in multidimensional soil quality (SQ) assessment in the tropics still needs to be further assessed. In this study, VNIRS (350–2500 nm) was employed to analyze 227 air-dried soil samples of Ultisols from a soil chronosequence in western Kenya and assess 16 SQ indicators. Partial least squares regression (PLSR) was validated using the full-site cross-validation method by grouping samples from each farm or forest site. Most suitable models successfully predicted SQ indicators (R2 ≥ 0.80; ratio of performance to deviation [RPD] ≥ 2.00) including soil organic matter (OMLOI), active C, Ca, cation exchange capacity (CEC), and clay. Moderately-well predicted indicators (0.50 ≤ R2 pwp), and field capacity (Θfc). Poorly predicted indicators (R2 < 0.50; RPD < 1.40) were EC, S, P, available water capacity (AWC), K, Zn, and penetration resistance. Combining VNIRS with selected field- and laboratory-measured SQ indicator values increased predictability. Furthermore, VNIRS showed moderate to substantial agreement in predicting interpretive SQ scores and a composite soil quality index (CSQI) especially when combined with directly measured SQ indicator values. In conclusion, VNIRS has good potential for low cost, rapid assessment of physical and biological SQ indicators but conventional soil chemical tests may need to be retained to provide comprehensive SQ assessments.

  11. Compact survey and inspection day/night image sensor suite for small unmanned aircraft systems (EyePod)

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Linne von Berg, Dale; Davidson, Morgan; Holt, Niel; Kruer, Melvin; Wilson, Michael L.

    2010-04-01

    EyePod is a compact survey and inspection day/night imaging sensor suite for small unmanned aircraft systems (UAS). EyePod generates georeferenced image products in real-time from visible near infrared (VNIR) and long wave infrared (LWIR) imaging sensors and was developed under the ONR funded FEATHAR (Fusion, Exploitation, Algorithms, and Targeting for High-Altitude Reconnaissance) program. FEATHAR is being directed and executed by the Naval Research Laboratory (NRL) in conjunction with the Space Dynamics Laboratory (SDL) and FEATHAR's goal is to develop and test new tactical sensor systems specifically designed for small manned and unmanned platforms (payload weight < 50 lbs). The EyePod suite consists of two VNIR/LWIR (day/night) gimbaled sensors that, combined, provide broad area survey and focused inspection capabilities. Each EyePod sensor pairs an HD visible EO sensor with a LWIR bolometric imager providing precision geo-referenced and fully digital EO/IR NITFS output imagery. The LWIR sensor is mounted to a patent-pending jitter-reduction stage to correct for the high-frequency motion typically found on small aircraft and unmanned systems. Details will be presented on both the wide-area and inspection EyePod sensor systems, their modes of operation, and results from recent flight demonstrations.

  12. Linking Spectral Features with Composition, Crystallinity, and Roughness Properties of Silica and Implications for Candidate Hydrothermal Systems on Mars

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; McDowell, M. L.; Berger, J. A.; Cady, S. L.; Knauth, L. P.

    2011-12-01

    We have collected visible to near infrared reflectance (VNIR, ~0.4 - 2.5 um), thermal infrared emissivity (TIR, ~5 - 45 um), SEM, XRD, surface roughness, and petrographic data for 18 silica samples. These rocks (e.g., replacement chert, geyserite, opal-A/-CT) represent a variety of geologic formation environments, including hydrothermal, and have XRD-determined crystallinities ranging from <1 to >10 according to the quartz crystallinity index. Our findings are relevant to the interpretation of orbital and in situ spectral observations of crystalline or amorphous silica on the Martian surface, some of which may have formed in hydrothermal systems. Almost all of our samples' VNIR spectra contain discernible bands. The most common features are related to hydration (H2O and/or OH) of silica (e.g., at ~1.4, 1.9, and 2.2 um). The visibility and strength of these bands is not always constant between spectra from different areas of a sample. Other features include those of carbonate, phyllosilicate, and iron oxide impurities. All of our amorphous silica samples have hydration features in the VNIR, but we note that the absorptions around ~2.2 um can be very weak in amorphous samples relative to features at other wavelengths and relative to ~2.2-um features observed in Martian data, suggesting that some amorphous silica on Mars could go undetected. Deposits containing significant anhydrous, crystalline silica (chert) may be assumed to lack features in the VNIR, but many of our cherts have spectral features and could be misidentified as materials dominated by what is a minor contaminant. Thermal infrared spectra of chert and opaline silica differ from each other as a result of the loss of long-range Si-O order in increasingly amorphous samples. Our samples display a clear trend in TIR band shapes where features attributable to crystalline quartz and amorphous silica are blended in samples with intermediate crystallinities. Most diagnostic TIR spectral features observable in laboratory data typically are recognizable in hyperspectral remote sensing data. These features are more difficult to distinguish (or are not included) at multispectral resolutions, but in nearly all uncontaminated samples, the positions of Si-O emissivity minima shift towards longer wavelengths with decreasing crystallinity. Contaminating phases with strong VNIR spectral features are observed in some of the TIR spectra but have a negligible effect in others, suggesting that TIR spectroscopy helps constrain the abundances of these phases. In addition to compositional and crystallinity information, our laboratory data demonstrate that TIR spectra can be used to deduce important information on silica phases' texture and orientation. If used in combination, VNIR and TIR spectroscopy can detect and characterize silica phases, allowing us to estimate conditions of silica formation, e.g., high- or low-temperature aqueous systems.

  13. VNIR spectroscopy of Mars Analogues with the ExoMars-Ma_Miss instrument .

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; De Sanctis, M. C.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Capria, M. T.; Federico, C.; Boccaccini, A.; Capaccioni, F.; Giardino, M.; Cerroni, P.; Palomba, E.; Piccioni, G.

    The ExoMars 2018 mission will investigate the Martian surface environment with the aim of searching for eventual present or past signs of life, and to obtain a characterization of Martian soil and subsoil. The investigation of the near-surface environment and of the shallow subsurface with complementary techniques, will provide insights on the chemical and mineralogical composition, material grain size, the litotypes, the stratigraphy: these information will help us to understand the geologic processes that characterized the history of the Martian crust. The Ma_Miss (Mars Multispectral Imager for Subsurface Studies) instrument \\citep{coradini01} is a miniaturized visible and near-infrared spectrometer, integrated in the ExoMars Pasteur Rover Drill: it will acquire spectra of the borehole wall performed by the Drill, down to a depth up to two meters. Spectroscopic tests have been performed with the laboratory model (breadboard) on spectral targets and rock samples; furtherly, an activity of VNIR reflectance spectroscopy of Mars analogues has been begun with the breadboard to build a spectral library.

  14. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy.

    PubMed

    Chen, Tao; Chang, Qingrui; Clevers, J G P W; Kooistra, L

    2015-11-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Reprocessing VIIRS sensor data records from the early SNPP mission

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Cao, Changyong

    2016-10-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite began acquiring Earth observations in November 2011. VIIRS data from all spectral bands became available three months after launch when all infrared-band detectors were cooled down to operational temperature. Before that, VIIRS sensor data record (SDR) products were successfully generated for the visible and near infrared (VNIR) bands. Although VIIRS calibration has been significantly improved through the four years of the SNPP mission, SDR reprocessing for this early mission phase has yet to be performed. Despite a rapid decrease in the telescope throughput that occurred during the first few months on orbit, calibration coefficients for the VNIR bands were recently successfully generated using an automated procedure that is currently deployed in the operational SDR production system. The reanalyzed coefficients were derived from measurements collected during solar calibration events that occur on every SNPP orbit since the beginning of the mission. The new coefficients can be further used to reprocess the VIIRS SDR products. In this study, they are applied to reprocess VIIRS data acquired over pseudo-invariant calibration sites Libya 4 and Sudan 1 in Sahara between November 2011 and February 2012. Comparison of the reprocessed SDR products with the original ones demonstrates improvements in the VIIRS calibration provided by the reprocessing. Since SNPP is the first satellite in a series that will form the Joint Polar Satellite System (JPSS), calibration methods developed for the SNPP VIIRS will also apply to the future JPSS measurements.

  16. Soil Organic Carbon Variability in High-Andean Ecosystems: Bringing Together Machine Learning and Proximal Soil Sensing

    NASA Astrophysics Data System (ADS)

    Gavilan, C.; Grunwald, S.; Quiroz, R.

    2017-12-01

    The Andes represent the largest and highest mountain range in the tropics and is considered an important reserve of biodiversity, water provision and soil organic carbon (SOC) stocks. Nevertheless, limited attention has been given to estimate these stocks due to the lack of recent soil data, the poor accessibility and the wide range of coexistent ecosystems. In addition, conventional methods to determine SOC are usually time consuming and expensive to use in large-scale studies, hindering the possibility to have an accurate SOC assessment in the region. Proximal soil sensing techniques, such as visible near infrared (VNIR) and mid infrared (MIR) spectroscopy, have proven to be useful as an alternative to conventional methods for characterizing SOC but have not been tested in Andean soils. The aim of this study was to evaluate the potential of using VNIR and MIR spectroscopy to predict SOC content in the Central Andean region, using multivariate methods. Three study areas were selected across the Peruvian Central Andes. A total of 400 topsoil samples (0-30 cm) were collected and analyzed for SOC. The VNIR and MIR reflectance of the soil samples was measured in the laboratory. Three modeling approaches: Partial least squares regression (PLSR), random forest (RF) and support vector machine (SVM) were used to predict SOC from VNIR and MIR spectra in the study areas. The data was preprocessed in order to minimize the noise and optimize the accuracy of predictions. The models, for each study area, were assessed using 10-fold cross validation. Independent validation was implemented in the whole dataset (400 observations) by splitting it into calibration (70 %) and validation (30%) sets. Overall, the results indicate potential for both VNIR and MIR spectra to predict SOC content in the Andean soils. SOC content predictions from MIR spectra outperformed those from VNIR spectra. The evaluation of model performance shows that RF and SVM provide more accurate SOC predictions compared to PLSR. These findings suggest that integrating VNIR and MIR spectroscopy with machine learning algorithms constitutes a promising approach for assessing SOC content in high-Andean ecosystems.

  17. Evaluation of Aster Images for Characterization and Mapping of Amethyst Mining Residues

    NASA Astrophysics Data System (ADS)

    Markoski, P. R.; Rolim, S. B. A.

    2012-07-01

    The objective of this work was to evaluate the potential of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), subsystems VNIR (Visible and Near Infrared) and SWIR (Short Wave Infrared) images, for discrimination and mapping of amethyst mining residues (basalt) in the Ametista do Sul Region, Rio Grande do Sul State, Brazil. This region provides the most part of amethyst mining of the World. The basalt is extracted during the mining process and deposited outside the mine. As a result, mounts of residues (basalt) rise up. These mounts are many times smaller than ASTER pixel size (VNIR - 15 meters and SWIR - 30 meters). Thus, the pixel composition becomes a mixing of various materials, hampering its identification and mapping. Trying to solve this problem, multispectral algorithm Maximum Likelihood (MaxVer) and the hyperspectral technique SAM (Spectral Angle Mapper) were used in this work. Images from ASTER subsystems VNIR and SWIR were used to perform the classifications. SAM technique produced better results than MaxVer algorithm. The main error found by the techniques was the mixing between "shadow" and "mining residues/basalt" classes. With the SAM technique the confusion decreased because it employed the basalt spectral curve as a reference, while the multispectral techniques employed pixels groups that could have spectral mixture with other targets. The results showed that in tropical terrains as the study area, ASTER data can be efficacious for the characterization of mining residues.

  18. Onboard electrical calibration of the ASTER VNIR

    NASA Astrophysics Data System (ADS)

    Sakuma, Fumihiro; Kikuchi, Masakuni; Inada, Hitomi

    2013-10-01

    The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) is one of the five sensors on the NASA's Terra satellite on orbit since December 1999. ASTER consists of three radiometers, the Visible and Near InfraRed (VNIR), the Short-Wave InfraRed (SWIR) and Thermal InfraRed (TIR) whose spatial resolutions are 15 m, 30 m and 90 m, respectively. Unfortunately the SWIR image data are saturated since April 2008 due to the offset rise caused by the cooler temperature rise, but the VNIR and the TIR are taking Earth images of good quality. The VNIR and the TIR experienced responsivity degradation while the SWIR showed little change. From the lamp calibration, Band 1 decreased the most among three VNIR bands and 31% in thirteen years. The VNIR has the electrical calibration mode to check the healthiness of the electrical circuits through the charge coupled device (CCD). Four voltage levels from Line 1 to Line 4, which are from 2.78 V to 3.10 V, are input to the CCD in the onboard calibration sequence and the output digital numbers (DNs) are detected in the images. These input voltages are monitored as telemetry data and have been stable up to now. From the electrical calibration we can check stabilities of the offset, gain ratio and gain stability of the electric circuit. The output level of the Line1 input is close to the offset level which is measured while observing the earth at night. The trend of the Line 1 output is compared to the offset level. They are similar but are not exactly the same. The trend of the even pixel and odd pixel is the same so the saturated offset levels of the odd pixel is corrected by using the even pixel trend. The gain ratio trend shows that the ratio is stable. But the ratio values are different from those measured before launch. The difference comes up to 10% for the Band 2. The correct gain ratio should be applied to the vicarious calibration result because the onboard calibration is measured with the Normal gain whereas the vicarious calibration often measures with the High gain. The cause of the VNIR responsivity degradation is not known but one of the causes might be the change of the electric circuit. The band 3 gain shows 16 % decrease whereas the gain changes of the band 1 and band 2 are 5% to 8%. The responsivity decrease after 1000 days since launch might be controlled by the electric circuit change.

  19. Remote Sensing of Snow Cover. Section; Snow Extent

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Frei, Allan; Drey, Stephen J.

    2012-01-01

    Snow was easily identified in the first image obtained from the Television Infrared Operational Satellite-1 (TIROS-1) weather satellite in 1960 because the high albedo of snow presents a good contrast with most other natural surfaces. Subsequently, the National Oceanic and Atmospheric Administration (NOAA) began to map snow using satellite-borne instruments in 1966. Snow plays an important role in the Earth s energy balance, causing more solar radiation to be reflected back into space as compared to most snow-free surfaces. Seasonal snow cover also provides a critical water resource through meltwater emanating from rivers that originate from high-mountain areas such as the Tibetan Plateau. Meltwater from mountain snow packs flows to some of the world s most densely-populated areas such as Southeast Asia, benefiting over 1 billion people (Immerzeel et al., 2010). In this section, we provide a brief overview of the remote sensing of snow cover using visible and near-infrared (VNIR) and passive-microwave (PM) data. Snow can be mapped using the microwave part of the electromagnetic spectrum, even in darkness and through cloud cover, but at a coarser spatial resolution than when using VNIR data. Fusing VNIR and PM algorithms to produce a blended product offers synergistic benefits. Snow-water equivalent (SWE), snow extent, and melt onset are important parameters for climate models and for the initialization of atmospheric forecasts at daily and seasonal time scales. Snowmelt data are also needed as input to hydrological models to improve flood control and irrigation management.

  20. Visible-near infrared spectra of hydrous carbonates, with implications for the detection of carbonates in hyperspectral data of Mars

    NASA Astrophysics Data System (ADS)

    Harner, Patrick L.; Gilmore, Martha S.

    2015-04-01

    We present visible-near infrared (VNIR, 0.35-5 μm) spectra for a suite of hydrous carbonates that may be relevant to the surface of Mars. This includes VNIR spectra for ikaite, nesquehonite, synthetic monohydrocalcite and lansfordite over the 0.35-2.5 μm range that are new to the literature. The spectral features of the hydrous carbonates are dominated by absorptions at ∼1.0, 1.2, 1.4-1.5, 1.9 and 2.8 μm that are due to overtones and combinations of fundamental water and hydroxyl vibrations. Absorptions due to (CO3)2-, Mg-OH, Fe-OH, and/or water are seen at ∼2.3-2.5, 3.4, and 3.9 μm in hydrous Mg and Mg-Fe3+ carbonates containing hydroxyl groups, but are weaker than in the common anhydrous carbonates. When present in the hydrous carbonates, the positions of the centers of the 2.3 μm and/or 2.5 μm absorptions are often shifted relative to the anhydrous carbonates, which may be diagnostic. Some or all of the (CO3)2- absorptions typical of anhydrous carbonates are weak to absent in the hydrous carbonates, and thus this group may be difficult to distinguish from other hydrous minerals like sulfates, phyllosilicates or chlorides in Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data using standard spectral search parameters for anhydrous carbonates. We present strategies for recognizing hydrous carbonates in CRISM data using combinations of spectral parameters that measure the intensity and shape of the water-related absorptions in these minerals.

  1. An explorative chemometric approach applied to hyperspectral images for the study of illuminated manuscripts

    NASA Astrophysics Data System (ADS)

    Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano

    2017-04-01

    Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.

  2. Experimentally Shocked and Altered Basalt: VNIR Spectra of Mars Analog Materials

    NASA Technical Reports Server (NTRS)

    Bell, M. S.

    2017-01-01

    Major occurrences of hydrous alteration minerals on Mars have been found in Noachian impact craters formed in basaltic targets and detected using visible/near infrared (VNIR) spectroscopy. Until recently phyllosilicates were detected only in craters in the southern hemisphere. However, it has been reported that at least nine craters in the northern plains apparently excavated thick layers of lava and sediment to expose phyllosilicates as well and two Hesperian-aged impact craters, Toro and Majuro, bear evidence of phyllosilicates in the southern highlands. Turner et al. 2015 reported that hydrated minerals were identified in three Amazonian aged complex impact craters, located at 52.42degN, 39.86degE in the Ismenius Lacus quadrangle, at 8.93degN, 141.28degE in Elysium, and within Stokes crater. These discoveries indicate that Mars was globally altered by water throughout its past but do not fully constrain formation conditions for phyllosilicate occurrences which have important implications for the evolution of the surface and biological potential of Mars.

  3. Coordinating Chemical and Mineralogical Analyses of Antarctic Dry Valley Sediments as Potential Analogs for Mars

    NASA Technical Reports Server (NTRS)

    Patel, S. N.; Bishop, J. L.; Englert, P.; Gibson, E. K.

    2015-01-01

    The Antarctic Dry Valleys (ADV) provide a unique terrestrial analog for Martian surface processes as they are extremely cold and dry sedimentary environments. The surface geology and the chemical composition of the Dry Valleys that are similar to Mars suggest the possible presence of these soil-formation processes on Mars. The soils and sediments from Wright Valley, Antarctica were investigated in this study to examine mineralogical and chemical changes along the surface layer in this region and as a function of depth. Surface samples collected near Prospect Mesa and Don Juan Pond of the ADV were analyzed using visible/near-infrared (VNIR) and mid-IR reflectance spectroscopy and major and trace element abundances.

  4. Different mechanisms for acid weathering of crystalline basalt vs. basaltic glass and implications for detection on Mars

    NASA Astrophysics Data System (ADS)

    Horgan, B. H. N.; Smith, R.; Christensen, P. R.; Cloutis, E.

    2016-12-01

    Silica-rich acid leached rinds and coatings occur in volcanic environments on Earth and have been identified using orbital spectroscopy on Mars, but their development is poorly understood. We simulated long-term open-system acid weathering in a laboratory by repeatedly submerging and rinsing crystalline and glassy basalts in pH 1 and 3 acidic solutions for 220 days. Visible/near-infrared (VNIR; 0.3-2.5 μm) and thermal-infrared (TIR; 5-50 μm) spectra of the samples were compared to their microscopic properties from scanning electron microscopy (SEM). While previous studies have shown that exposure to moderately low pH ( 3) solutions can produce mineral precipitates, we find that there is very little spectral or microphysical effect on the underlying parent material. In contrast, materials exposed to very low pH ( 1) solutions were visibly altered in SEM images, and contained regions enriched in amorphous silica. These samples exhibited clear silica VNIR and TIR spectral signatures that increased in intensity with their glass content. In addition, glass exposed to low pH solutions often exhibited blue and concave up VNIR slopes. SEM indicates that these spectral differences correspond to different modes of alteration. In glass, low pH alteration occurs only at the surface and produces a silica-enriched rind. In more crystalline samples, alteration penetrates the interior to cause dissolution and replacement by silica. Thus, along with the pH of the aqueous environment, the crystallinity of a rock can greatly affect the way and the degree to which it is weathered. Because alteration is restricted to the surface of glassy materials, bulk glass is more stable than crystalline basalt under long-term acidic leaching. Leached glasses are consistent with OMEGA and TES spectra of the martian northern lowlands, and may contribute to the high-silica phases detected globally in TES Surface Type 2. Thus, both glass-rich deposits and acidic weathering may have been widespread on Mars.

  5. ASTER's First Views of Red Sea, Ethiopia - Thermal-Infrared (TIR) Image (monochrome)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    ASTER succeeded in acquiring this image at night, which is something Visible/Near Infrared VNIR) and Shortwave Infrared (SWIR) sensors cannot do. The scene covers the Red Sea coastline to an inland area of Ethiopia. White pixels represent areas with higher temperature material on the surface, while dark pixels indicate lower temperatures. This image shows ASTER's ability as a highly sensitive, temperature-discerning instrument and the first spaceborne TIR multi-band sensor in history.

    The size of image: 60 km x 60 km approx., ground resolution 90 m x 90 m approximately.

    The ASTER instrument was built in Japan for the Ministry of International Trade and Industry. A joint United States/Japan Science Team is responsible for instrument design, calibration, and data validation. ASTER is flying on the Terra satellite, which is managed by NASA's Goddard Space Flight Center, Greenbelt, MD.

  6. Assessment of the short-term radiometric stability between Terra MODIS and Landsat 7 ETM+ sensors

    USGS Publications Warehouse

    Choi, Taeyoung; Xiong, Xiaoxiong; Chander, Gyanesh; Angal, A.

    2009-01-01

    Short-term radiometric stability was evaluated using continuous ETM+ scenes within a single orbit (contact period) and the corresponding MODIS scenes for the four matching solar reflective visible and near-infrared (VNIR) band pairs between the two sensors. The near-simultaneous earth observations were limited by the smaller swath size of ETM+ (183 km) compared to MODIS (2330 km). Two sets of continuous granules for Terra MODIS and Landsat 7 ETM+ were selected and mosaicked based on pixel geolocation information for noncloudy pixels over the African continent. The matching pixel pairs were resampled from a fine to a coarse pixel resolution, and the at-sensor spectral radiance values for a wide dynamic range of the sensors were compared and analyzed, covering various surface types. The following study focuses on radiometric stability analysis from the VNIR band-pairs of ETM+ and MODIS. The Libya-4 desert target was included in the path of this continuous orbit, which served as a verification point between the short-term and the long-term trending results from previous studies. MODTRAN at-sensor spectral radiance simulation is included for a representative desert surface type to evaluate the consistency of the results.

  7. Evaluating the effect of spatial subsetting on subpixel unmixing methodology applied to ASTER over a hydrothermally altered terrain

    NASA Astrophysics Data System (ADS)

    Ayoobi, Iman; Tangestani, Majid H.

    2017-10-01

    This study investigates the effect of spatial subsets of Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) L1B visible-near infrared and short wave-infrared (VNIR-SWIR) data on matched filtering results at the central part of Kerman magmatic arc, where abundant porphyry copper deposits exist. The matched filtering (MF) procedure was run separately at sites containing hydrothermal minerals such as sericite, kaolinite, chlorite, and jarosite to map the abundances of these minerals on spatial subsets containing 100, 75, 50, and 25 percent of the original scene. Results were evaluated by comparing the matched filtering scores with the mineral abundances obtained by semi-quantitative XRD analysis of corresponding field samples. It was concluded that MF method should be applied to the whole scene prior to any data subsetting.

  8. Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Das, Bappa; Sahoo, Rabi N.; Pargal, Sourabh; Krishna, Gopal; Verma, Rakesh; Chinnusamy, Viswanathan; Sehgal, Vinay K.; Gupta, Vinod K.; Dash, Sushanta K.; Swain, Padmini

    2018-03-01

    In the present investigation, the changes in sucrose, reducing and total sugar content due to water-deficit stress in rice leaves were modeled using visible, near infrared (VNIR) and shortwave infrared (SWIR) spectroscopy. The objectives of the study were to identify the best vegetation indices and suitable multivariate technique based on precise analysis of hyperspectral data (350 to 2500 nm) and sucrose, reducing sugar and total sugar content measured at different stress levels from 16 different rice genotypes. Spectral data analysis was done to identify suitable spectral indices and models for sucrose estimation. Novel spectral indices in near infrared (NIR) range viz. ratio spectral index (RSI) and normalised difference spectral indices (NDSI) sensitive to sucrose, reducing sugar and total sugar content were identified which were subsequently calibrated and validated. The RSI and NDSI models had R2 values of 0.65, 0.71 and 0.67; RPD values of 1.68, 1.95 and 1.66 for sucrose, reducing sugar and total sugar, respectively for validation dataset. Different multivariate spectral models such as artificial neural network (ANN), multivariate adaptive regression splines (MARS), multiple linear regression (MLR), partial least square regression (PLSR), random forest regression (RFR) and support vector machine regression (SVMR) were also evaluated. The best performing multivariate models for sucrose, reducing sugars and total sugars were found to be, MARS, ANN and MARS, respectively with respect to RPD values of 2.08, 2.44, and 1.93. Results indicated that VNIR and SWIR spectroscopy combined with multivariate calibration can be used as a reliable alternative to conventional methods for measurement of sucrose, reducing sugars and total sugars of rice under water-deficit stress as this technique is fast, economic, and noninvasive.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoran, Maria; Savastru, Roxana; Savastru, Dan

    Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forestmore » areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.« less

  10. Meteorite WIS91600: A New Sample Related to a D- or T-type Asteroid

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Tonui, E.; Pieters, C. M.; Zolensky, M. E.; Ueda, Y.; Miyamoto, M.; Sasaki, S.

    2005-01-01

    Since the Tagish Lake meteorite fell in January 2000, the assumed one-of-the-kind meteorite has become the hottest issue among a diversity of scientists. Meanwhile, as the physical origin of the meteorite in our solar system, D or T asteroids have been suggested by Hiroi et al. based on comparison of their visible-near-infrared (VNIR) reflectance spectra. While it is probably still true that the Tagish Lake meteorite is possibly the first recovered sample from a D or T asteroid as a meteorite fall, we report in this paper that the meteorite WIS91600 may actually be the first recovered sample from one of those asteroids as a meteorite find.

  11. Effects of Palagonitic Dust Coatings on Visible, Near-IR, and Mossbauer Spectra of Rocks and Minerals: Implication for Mineralogical Remote Sensing of Mars

    NASA Technical Reports Server (NTRS)

    Morris, R.; Graff, T. G.; Shelfer, T. D.; Bell, J. F., III

    2001-01-01

    Visible, near-IR, and Mossbauer measurements on dust coated rocks and minerals show that a 300 5m thick layer is required to obscure the substrate for VNIR measurements and that a greater than 2000-micron-thick layer is required to obscure the substrate for Mossbauer measurements. Additional information is contained in the original extended abstract.

  12. Assessing the ability to combine hyperspectral imaging (HSI) data with Mineral Liberation Analyzer (MLA) data to characterize phosphate rocks

    NASA Astrophysics Data System (ADS)

    Laakso, K.; Middleton, M.; Heinig, T.; Bärs, R.; Lintinen, P.

    2018-07-01

    Phosphorus (P) is fundamental to manufacturing fertilizers. Phosphorus is predominantly extracted from phosphate rocks which are a finite resource expected to potentially last only a few decades. To investigate the means of using the hyperspectral imaging (HSI) technology to detect the phosphate-bearing mineral apatite in carbonate mineral -rich rocks we analyzed hyperspectral laboratory imagery obtained in the visible-near infrared (VNIR; 400-1000 nm) and short-wave infrared (SWIR; 1000-2500 nm) wavelength regions. These data were analyzed using the Spectral Angle Mapper (SAM) and by focusing on the characteristic absorption features of the minerals. The potential of using the Mineral Liberation Analyzer (MLA) data to guide the HSI data analysis was explored. The results were validated by means of the electron probe microanalyzer (EPMA) and MLA data. The results suggest that the VNIR wavelength region is applicable to map the rare earth element -rich fluorapatite which is featureless in the SWIR wavelength range. As suggested by previous studies, data obtained in the SWIR wavelength region can be successfully used to distinguish the carbonate minerals calcite and dolomite. Despite the benefits of having MLA data to map the mineralogy of the samples, the ability to use these data suffered from the polishing of the rock samples after the HSI data were acquired. Also, the MLA data were only available from the rock surfaces from which the SWIR data were acquired, and thus its applicability to validate the results obtained in the VNIR wavelength region was limited. Despite the non-optimal data acquisition setup, the MLA data were useful in guiding the analysis of the HSI data, and in validating the results thus obtained.

  13. Using Spectroscopy to Infer the Eruption Style and Volatile History of Volcanic Tephras

    NASA Astrophysics Data System (ADS)

    McBride, M. J.; Horgan, B. H. N.; Rowe, M. C.; Wall, K. T.; Oxley, B. M.

    2017-12-01

    The interaction between volatiles and magma strongly influences volcanic eruption styles, and results in an increase in the glass component of volcanic tephra. On Earth, both phreatomagmatic and magmatic explosive eruptions create glassy tephras. Phreatomagmatic eruptions form abundant glass by quickly quenching lava through interaction with meteoric water while magmatic eruptions create less glass through slower cooling within larger pyroclasts or eruption columns. Wall et al. (2014) used X-ray diffraction (XRD) of diverse tephra samples to show that glass content correlates with eruption style, as magmatic samples contain less glass than phreatomagmatic samples. While use of XRD is limited to Earth and the Curiosity rover on Mars, orbital spectroscopy is much a more common technique in the exploration of terrestrial bodies. In this study, we evaluate whether or not spectroscopy can be used to infer eruption style and thus volatile history. Visible/near-infrared (VNIR) and thermal-infrared (TIR) spectra were collected of the Wall et al. (2014) tephra samples, and were analyzed for trends related to glass content and thus eruption style. VNIR spectra can detect glass at high abundances as well as hydrothermal alteration minerals produced during interactions with meteoric water. Using TIR, glass abundances can be derived by deconvolving the spectra with a standard spectral library; however, due to the non-unique spectral shape of glass, intermediate to high glass abundances in tephras are difficult to differentiate using TIR alone. Synthetic mixtures of glass and crystalline minerals verify these results. Therefore, the most effective method for determining glass abundance and thus eruption style from volcanic deposits is a combination of VNIR and TIR spectral analysis. Using standard planetary remote sensing instrumentation to infer eruption styles will provide a new window into the volcanic and volatile histories of terrestrial bodies.

  14. Characterizing Nanophase Materials on Mars: Spectroscopic Studies of Allophane and Imogolite

    NASA Technical Reports Server (NTRS)

    Jeute, Thomas; Baker, Leslie; Bishop, Janice; Rampe, Elizabeth; Abidin, Zaenal

    2017-01-01

    Allophane is an amorphous or poorly crystalline hydrous aluminosilicate material. Allophane's chemical structure represents a hollow nanosphere, 5-6 nm in diameter with 4-7 large pores in the structure. Identification of allophane and other amorphous and nanophase minerals on Mars has provided clues about the aqueous geochemical environment there. These materials likely represent partially altered or leached basaltic ash and therefore, could represent a geologic marker for where water was present on the Martian surface; as well as indicate regions of climate change, where surface water was not present long enough or sufficiently warm to form clays. Characterization of these materials is important for increasing spectral recognition capabilities using visible/near-infrared (VNIR) and thermal infrared (TIR) spectra of Mars. A suite of synthetic allophane samples was created using a method that has been modified to produce allophane with Fe isomorphically substituted for Al in octahedral coordination. Compositions of the materials range from high-Si allophane (molar Al:Si = 1:2) to protoimogolite (Al:Si = 2:1), with Fe(3+) and Fe(2+) isomorphically substituted for Al from 0-10 mol% of total Al. These compositions span the range observed in natural terrestrial allophanes. Fe K-edge X-ray absorption spectroscopy provided information on the speciation and electrochemical and structural position of Fe in the framework. Fourier transform infrared spectroscopy confirmed syntheses and demonstrated changes in infrared spectroscopic signature with Fe substitution. VNIR reflectance spectra and TIR Thermal infrared emissivity spectra were also collected for direct comparison to Martian data. By increasing spectral recognition capacities of nanophase materials, more accurate estimates can be made on the aqueous geochemical environment of Mars.

  15. Observations of rock spectral classes by the Opportunity rover's Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Bell, J. F.; Johnson, J. R.; Rice, M. S.; Jolliff, B. L.; Arvidson, R. E.

    2014-11-01

    The Opportunity rover's exploration of the portion of the rim of Endeavour crater known as Cape York included examination of the sulfate-bearing Grasberg formation and the Matijevic Hill region. Multispectral visible and near-infrared (VNIR) Pancam observations were used to characterize reflectance properties of rock units. Using spectral end-member detection and classification approaches including a principal components/n-dimensional visualization, automatic sequential maximum angle convex cone method, and classification through hierarchical clustering, six main spectral classes of rock surfaces were identified: light-toned veins, Grasberg fm., the smectite-bearing Matijevic formation, the hematitic "blueberry" spherules, resistant spherules within the Matijevic fm. dubbed "newberries," and the Shoemaker formation impact breccia. Some of these could be divided into spectral subclasses. There were three types of veins: veins in the bench unit of Cape York, thinner veins in the Matijevic fm., and boxwork pattern-forming veins. The bench unit veins had higher 535 nm band depths than the other two vein subclasses and a steeper 934 to 1009 nm slope. The Grasberg fm. has VNIR spectral features that are interpreted to indicate higher fractions of red hematite than in the sulfate-bearing Burns Fm. The Matijevic fm. includes both light-toned, fine-grained matrix, and dark-toned veneers. The latter has a weak near-infrared absorption band centered near 950 nm consistent with nontronite. Observations of Rock Abrasion Tool brushed and ground newberries indicated that cuttings from the RAT grind had a longer wavelength reflectance maximum and deeper 535 nm band depth, consistent with more oxidized materials. Greater oxidation of cementing materials in the newberries is consistent with a diagenetic concretion origin.

  16. The Ring-Barking Experiment: Analysis of Forest Vitality Using Multi-Temporal Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Reichmuth, Anne; Bachmann, Martin; Heiden, Uta; Pinnel, Nicole; Holzwarth, Stefanie; Muller, Andreas; Henning, Lea; Einzmann, Kathrin; Immitzer, Markus; Seitz, Rudolf

    2016-08-01

    Through new operational optical spaceborne sensors (En- MAP and Sentinel-2) the impact analysis of climate change on forest ecosystems will be fostered. This analysis examines the potential of high spectral, spatial and temporal resolution data for detecting forest vegetation parameters, in particular Chlorophyll and Canopy Water content. The study site is a temperate spruce forest in Germany where in 2013 several trees were Ring-barked for a controlled die-off. During this experiment Ring- barked and Control trees were observed. Twelve airborne hyperspectral HySpex VNIR (Visible/Near Infrared) and SWIR (Shortwave Infrared) data with 1m spatial and 416 bands spectral resolution were acquired during the vegetation periods of 2013 and 2014. Additional laboratory spectral measurements of collected needle samples from Ring-barked and Control trees are available for needle level analysis. Index analysis of the laboratory measurements and image data are presented in this study.

  17. Separating vegetation and soil temperature using airborne multiangular remote sensing image data

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Yan, Chunyan; Xiao, Qing; Yan, Guangjian; Fang, Li

    2012-07-01

    Land surface temperature (LST) is a key parameter in land process research. Many research efforts have been devoted to increase the accuracy of LST retrieval from remote sensing. However, because natural land surface is non-isothermal, component temperature is also required in applications such as evapo-transpiration (ET) modeling. This paper proposes a new algorithm to separately retrieve vegetation temperature and soil background temperature from multiangular thermal infrared (TIR) remote sensing data. The algorithm is based on the localized correlation between the visible/near-infrared (VNIR) bands and the TIR band. This method was tested on the airborne image data acquired during the Watershed Allied Telemetry Experimental Research (WATER) campaign. Preliminary validation indicates that the remote sensing-retrieved results can reflect the spatial and temporal trend of component temperatures. The accuracy is within three degrees while the difference between vegetation and soil temperature can be as large as twenty degrees.

  18. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    PubMed Central

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2018-01-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6–8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 μm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover. PMID:29675340

  19. Estimating soil zinc concentrations using reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Weichao; Zhang, Xia

    2017-06-01

    Soil contamination by heavy metals has been an increasingly severe threat to nature environment and human health. Efficiently investigation of contamination status is essential to soil protection and remediation. Visible and near-infrared reflectance spectroscopy (VNIRS) has been regarded as an alternative for monitoring soil contamination by heavy metals. Generally, the entire VNIR spectral bands are employed to estimate heavy metal concentration, which lacks interpretability and requires much calculation. In this study, 74 soil samples were collected from Hunan Province, China and their reflectance spectra were used to estimate zinc (Zn) concentration in soil. Organic matter and clay minerals have strong adsorption for Zn in soil. Spectral bands associated with organic matter and clay minerals were used for estimation with genetic algorithm based partial least square regression (GA-PLSR). The entire VNIR spectral bands, the bands associated with organic matter and the bands associated with clay minerals were incorporated as comparisons. Root mean square error of prediction, residual prediction deviation, and coefficient of determination (R2) for the model developed using combined bands of organic matter and clay minerals were 329.65 mg kg-1, 1.96 and 0.73, which is better than 341.88 mg kg-1, 1.89 and 0.71 for the entire VNIR spectral bands, 492.65 mg kg-1, 1.31 and 0.40 for the organic matter, and 430.26 mg kg-1, 1.50 and 0.54 for the clay minerals. Additionally, in consideration of atmospheric water vapor absorption in field spectra measurement, combined bands of organic matter and absorption around 2200 nm were used for estimation and achieved high prediction accuracy with R2 reached 0.640. The results indicate huge potential of soil reflectance spectroscopy in estimating Zn concentrations in soil.

  20. The Ma_Miss instrument performance, I: Analysis of rocks powders by Martian VNIR spectrometer

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; De Sanctis, Maria Cristina; Ammannito, Eleonora; Carli, Cristian; Di Iorio, Tatiana; Altieri, Francesca

    2014-10-01

    The ExoMars/Ma_Miss instrument is a miniaturized spectrometer that will observe the Martian subsoil in the visible and near infrared range (VNIR, 0.4-2.2 μm) with high spatial resolution, 120 μm. It will be integrated in the Drilling system of the Pasteur Rover of the ExoMars 2018 mission, and will acquire reflectance spectra of the borehole wall performed by the Drill, at various depths down to 2 m. The laboratory breadboard instrument consists of the main subsystems: illumination system, optical fibres for illumination and signal collection, and optical elements for light focusing. It has been interfaced with a commercial spectrometer, the FieldSpec Pro©. The primary aim of this work is to compare the VNIR measurements and spectral parameters derived from the spectra acquired with the Ma_Miss breadboard and with a second laboratory setup. Reflectance spectra have been acquired on a set of six rock powder samples representative of Martian soil. Nine different grain size ranges of each sample have been measured with the breadboard and five spectral parameters were used to explore the Ma_Miss spectra. Those data were compared with spectra acquired by the FieldSpec Pro® coupled with a goniometer. The analyses of these spectral parameters evidence the correlation between the VNIR continuum slope and the grain size, and the correlation between the reflectance and the grain size; both the parameters tend to decrease as the grain size increases. The trends observed with Ma_Miss breadboard for NIR and VNIR slopes and for the reflectance are clearly consistent with the trends observed with the spectro-goniometer setup, although small differences are seen that can be explained with the different viewing geometries of the two instruments. Ma_Miss proves to have great capabilities for extracting spectroscopic information to constrain the mineralogy and some physical parameters of the analysed material.

  1. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    PubMed Central

    Devesse, Wim; De Baere, Dieter; Guillaume, Patrick

    2017-01-01

    A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764

  2. Spectral Variability among Rocks in Visible and Near Infrared Multispectral Pancam Data Collected at Gusev Crater: Examinations using Spectral Mixture Analysis and Related Techniques

    NASA Technical Reports Server (NTRS)

    Farrand, W. H.; Bell, J. F., III; Johnson, J. R.; Squyres, S. W.; Soderblom, J.; Ming, D. W.

    2006-01-01

    Visible and Near Infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit s Panoramic camera (Pancam) have been analysed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three endmember mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover s Rock Abrasion Tool (RAT) required additional endmembers. In the Columbia Hills there were a number of scenes in which additional rock endmembers were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces, as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined and six spectral classes were identified. These classes are named after a type rock or area and are: Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes, but divergence for the Wishstone class rocks which appear to have a higher fraction of crystalline ferrous iron bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts.

  3. SpecTIR and SEBASS analysis of the National Mining District, Humboldt County, Nevada

    NASA Astrophysics Data System (ADS)

    Morken, Todd O.

    The purpose of this study was to evaluate the minerals and materials that could be uniquely identified and mapped from measurements made with airborne hyperspectral SpecTIR VNIR/SWIR and SEBASS TIR sensors over areas in the National Mining District. SpecTIR Corporation and Aerospace Corporation acquired Hyperspectral measurements on June 26, 2008 using their ProSpecTIR and SEBASS sensors respectively. In addition the effects of vegetation, elevation, the atmosphere on spectral measurements were evaluated to determine their impact upon the data analysis and target identification. The National Mining District is located approximately 75 miles northeast of Winnemucca, Nevada at the northern end of the Santa Rosa Mountains. Precious metal mining has been dormant in this area since the 1940's, however with increased metal prices over the last decade economic interest in the region has increased substantially. Buckskin Mountain has a preserved alteration assemblage that is exposed in topographically steep terrain, ideal for exploring what hydrothermal alteration products can be identified and mapped in these datasets. These Visible Near Infrared (VNIR), Short Wave Infrared (SWIR), and Long Wave Infrared (LWIR) hyperspectral datasets were used to identify and map kaolinite, alunite, quartz, opal, and illite/muscovite, all of which are useful exploration target identifiers and can indicate regions of alteration. These mapping results were then combined with and compared to other geospatial data in a geographic information systems (GIS) database. The TIR hyperspectral data provided significant additional information that can benefit geologic exploration and demonstrated its usefulness as an additional tool for geological exploration.

  4. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran

    NASA Astrophysics Data System (ADS)

    Pour, Amin Beiranvnd; Hashim, Mazlan

    2011-11-01

    The NW-SE trending Central Iranian Volcanic Belt hosts many well-known porphyry copper deposits in Iran. It becomes an interesting area for remote sensing investigations to explore the new prospects of porphyry copper and vein type epithermal gold mineralization. Two copper mining districts in southeastern segment of the volcanic belt, including Meiduk and Sarcheshmeh have been selected in the present study. The performance of Principal Component Analysis, band ratio and Minimum Noise Fraction transformation has been evaluated for the visible and near infrared (VNIR) and, shortwave infrared (SWIR) subsystems of ASTER data. The image processing techniques indicated the distribution of iron oxides and vegetation in the VNIR subsystem. Hydrothermal alteration mineral zones associated with porphyry copper mineralization identified and discriminated based on distinctive shortwave infrared (SWIR) properties of the ASTER data in a regional scale. These techniques identified new prospects of porphyry copper mineralization in the study areas. The spatial distribution of hydrothermal alteration zones has been verified by in situ inspection, X-ray diffraction (XRD) analysis, and spectral reflectance measurements. Results indicated that the integration of the image processing techniques has a great ability to obtain significant and comprehensive information for the reconnaissance stages of porphyry copper exploration in a regional scale. The results of this research can assist exploration geologists to find new prospects of porphyry copper and gold deposits in the other virgin regions before costly detailed ground investigations. Consequently, the introduced image processing techniques can create an optimum idea about possible location of the new prospects.

  5. [Prediction of total nitrogen and alkali hydrolysable nitrogen content in loess using hyperspectral data based on correlation analysis and partial least squares regression].

    PubMed

    Liu, Xiu-ying; Wang, Li; Chang, Qing-rui; Wang, Xiao-xing; Shang, Yan

    2015-07-01

    Wuqi County of Shaanxi Province, where the vegetation recovering measures have been carried out for years, was taken as the study area. A total of 100 loess samples from 24 different profiles were collected. Total nitrogen (TN) and alkali hydrolysable nitrogen (AHN) contents of the soil samples were analyzed, and the soil samples were scanned in the visible/near-infrared (VNIR) region of 350-2500 nm in the laboratory. The calibration models were developed between TN and AHN contents and VNIR values based on correlation analysis (CA) and partial least squares regression (PLS). Independent samples validated the calibration models. The results indicated that the optimum model for predicting TN of loess was established by using first derivative of reflectance. The best model for predicting AHN of loess was established by using normal derivative spectra. The optimum TN model could effectively predict TN in loess from 0 to 40 cm, but the optimum AHN model could only roughly predict AHN at the same depth. This study provided a good method for rapidly predicting TN of loess where vegetation recovering measures have been adopted, but prediction of AHN needs to be further studied.

  6. Validation of early GOES-16 ABI on-orbit geometrical calibration accuracy using SNO method

    NASA Astrophysics Data System (ADS)

    Yu, Fangfang; Shao, Xi; Wu, Xiangqian; Kondratovich, Vladimir; Li, Zhengping

    2017-09-01

    The Advanced Baseline Imager (ABI) onboard the GOES-16 satellite, which was launched on 19 November 2016, is the first next-generation geostationary weather instrument in the west hemisphere. It has 16 spectral solar reflective and emissive bands located in three focal plane modules (FPM): one visible and near infrared (VNIR) FPM, one midwave infrared (MWIR), and one longwave infrared (LWIR) FPM. All the ABI bands are geometeorically calibrated with new techniques of Kalman filtering and Global Positioning System (GPS) to determine the accurate spacecraft attitude and orbit configuration to meet the challenging image navigation and registration (INR) requirements of ABI data. This study is to validate the ABI navigation and band-to-band registration (BBR) accuracies using the spectrally matched pixels of the Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) M-band data and the ABI images from the Simultaneous Nadir Observation (SNO) images. The preliminary results showed that during the ABI post-launch product test (PLPT) period, the ABI BBR errors at the y-direction (along the VIIRS track direction) is smaller than at the x-direction (along the VIIRS scan direction). Variations in the ABI BBR calibration residuals and navigation difference to VIIRS can be observed. Note that ABI is not operational yet and the data is experimental and still under testing. Effort is still ongoing to improve the ABI data quality.

  7. Validation of EO-1 Hyperion and Advanced Land Imager Using the Radiometric Calibration Test Site at Railroad Valley, Nevada

    NASA Technical Reports Server (NTRS)

    Czapla-Myers, Jeffrey; Ong, Lawrence; Thome, Kurtis; McCorkel, Joel

    2015-01-01

    The Earth-Observing One (EO-1) satellite was launched in 2000. Radiometric calibration of Hyperion and the Advanced Land Imager (ALI) has been performed throughout the mission lifetime using various techniques that include ground-based vicarious calibration, pseudo-invariant calibration sites, and also the moon. The EO-1 mission is nearing its useful lifetime, and this work seeks to validate the radiometric calibration of Hyperion and ALI from 2013 until the satellite is decommissioned. Hyperion and ALI have been routinely collecting data at the automated Radiometric Calibration Test Site [RadCaTS/Railroad Valley (RRV)] since launch. In support of this study, the frequency of the acquisitions at RadCaTS has been significantly increased since 2013, which provides an opportunity to analyze the radiometric stability and accuracy during the final stages of the EO-1 mission. The analysis of Hyperion and ALI is performed using a suite of ground instrumentation that measures the atmosphere and surface throughout the day. The final product is an estimate of the top-of-atmosphere (TOA) spectral radiance, which is compared to Hyperion and ALI radiances. The results show that Hyperion agrees with the RadCaTS predictions to within 5% in the visible and near-infrared (VNIR) and to within 10% in the shortwave infrared (SWIR). The 2013-2014 ALI results show agreement to within 6% in the VNIR and 7.5% in the SWIR bands. A cross comparison between ALI and the Operational Land Imager (OLI) using RadCaTS as a transfer source shows agreement of 3%-6% during the period of 2013-2014.

  8. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    NASA Astrophysics Data System (ADS)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to spectra measured under terrestrial conditions. Experimental studies such as this one will enhance interpretation of current and future planetary remote sensing data sets. This work is the beginning of an effort to develop a comprehensive spectral library of materials relevant to airless bodies and future missions such as OSIRIS-REx and Hayabusa 2.

  9. Spectral variability among rocks in visible and near-infrared mustispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques

    USGS Publications Warehouse

    Farrand, W. H.; Bell, J.F.; Johnson, J. R.; Squyres, S. W.; Soderblom, J.; Ming, D. W.

    2006-01-01

    Visible and near-infrared (VNIR) multispectral observations of rocks made by the Mars Exploration Rover Spirit's Panoramic camera (Pancam) have been analyzed using a spectral mixture analysis (SMA) methodology. Scenes have been examined from the Gusev crater plains into the Columbia Hills. Most scenes on the plains and in the Columbia Hills could be modeled as three end-member mixtures of a bright material, rock, and shade. Scenes of rocks disturbed by the rover's Rock Abrasion Tool (RAT) required additional end-members. In the Columbia Hills, there were a number of scenes in which additional rock end-members were required. The SMA methodology identified relatively dust-free areas on undisturbed rock surfaces as well as spectrally unique areas on RAT abraded rocks. Spectral parameters from these areas were examined, and six spectral classes were identified. These classes are named after a type rock or area and are Adirondack, Lower West Spur, Clovis, Wishstone, Peace, and Watchtower. These classes are discriminable based, primarily, on near-infrared (NIR) spectral parameters. Clovis and Watchtower class rocks appear more oxidized than Wishstone class rocks and Adirondack basalts based on their having higher 535 nm band depths. Comparison of the spectral parameters of these Gusev crater rocks to parameters of glass-dominated basaltic tuffs indicates correspondence between measurements of Clovis and Watchtower classes but divergence for the Wishstone class rocks, which appear to have a higher fraction of crystalline ferrous iron-bearing phases. Despite a high sulfur content, the rock Peace has NIR properties resembling plains basalts. Copyright 2006 by the American Geophysical Union.

  10. Evaluation of Sun Glint Correction Algorithms for High-Spatial Resolution Hyperspectral Imagery

    DTIC Science & Technology

    2012-09-01

    ACRONYMS AND ABBREVIATIONS AISA Airborne Imaging Spectrometer for Applications AVIRIS Airborne Visible/Infrared Imaging Spectrometer BIL Band...sensor bracket mount combining Airborne Imaging Spectrometer for Applications ( AISA ) Eagle and Hawk sensors into a single imaging system (SpecTIR 2011...The AISA Eagle is a VNIR sensor with a wavelength range of approximately 400–970 nm and the AISA Hawk sensor is a SWIR sensor with a wavelength

  11. Changes in size of nano phase iron inclusions with temperature: Experimental simulation of space weathering effects at high temperature

    NASA Astrophysics Data System (ADS)

    Rout, S. S.; Moroz, L. V.; Stockhoff, T.; Baither, D.; Bischoff, A.; Hiesinger, H.

    2011-10-01

    The mean size of nano phase iron inclusions (npFe0), produced during the space weathering of iron-rich regolith of airless solar system bodies, significantly affects visible and near-infrared (VNIR) spectra. To experimentally simulate the change in the size of npFe0 inclusions with increasing temperature, we produced sputter film deposits on a silicon dioxide substrate by sputtering a pressed pellet prepared from fine olivine powder using 600V Ar+ ions. This silicon dioxide substrate covered with the deposit was later heated to 450°C for 24 hours in an oven under argon atmosphere. Initial TEM analysis of the unheated silicon dioxide substrate showed the presence of a ~ 50 nm-thick layer of an amorphous deposit with nano clusters that has not yet been identified.

  12. Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations

    USGS Publications Warehouse

    Jablonski, Joseph; Durell, Christopher; Slonecker, Terry; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob

    2016-01-01

    Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user’s task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.

  13. ASTER-Derived 30-Meter-Resolution Digital Elevation Models of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Warner, Michael B.

    2007-01-01

    INTRODUCTION The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an imaging instrument aboard the Terra satellite, launched on December 19, 1999, as part of the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS). The ASTER sensor consists of three subsystems: the visible and near infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR), each with a different spatial resolution (VNIR, 15 meters; SWIR, 30 meters, TIR 90 meters). The VNIR system has the capability to generate along-track stereo images that can be used to create digital elevation models (DEMs) at 30-meter resolution. Currently, the only available DEM dataset for Afghanistan is the 90-meter-resolution Shuttle Radar Topography Mission (SRTM) data. This dataset is appropriate for macroscale DEM analysis and mapping. However, ASTER provides a low cost opportunity to generate higher resolution data. For this publication, study areas were identified around populated areas and areas where higher resolution elevation data were desired to assist in natural resource assessments. The higher resolution fidelity of these DEMs can also be used for other terrain analysis including landform classification and geologic structure analysis. For this publication, ASTER scenes were processed and mosaicked to generate 36 DEMs which were created and extracted using PCI Geomatics' OrthoEngine 3D Stereo software. The ASTER images were geographically registered to Landsat data with at least 15 accurate and well distributed ground control points with a root mean square error (RMSE) of less that one pixel (15 meters). An elevation value was then assigned to each ground control point by extracting the elevation from the 90-meter SRTM data. The 36 derived DEMs demonstrate that the software correlated on nearly flat surfaces and smooth slopes accurately. Larger errors occur in cloudy and snow-covered areas, lakes, areas with steep slopes, and southeastern-facing slopes. In these areas, holes, large pits, and spikes were generated by the software during the correlation process and the automatic interpolation method. To eliminate these problems, overlapping DEMs were generated and filtered using a progressive morphologic filter. The quadrangles used to delineate the DEMs in the publication were derived from the Afghan Geodesy and Cartography Head Office's (AGCHO) 1:100,000-scale maps series quadrangles. Each DEM was clipped and assigned a name according to the associated AGCHO quadrangle name. The geospatial data included in this publication are intended to be used with any GIS software packages including, but not limited to, ESRI's ArcGIS and ERDAS IMAGINE.

  14. Quantifying the VNIR Effects of Nanophase Iron Generated through the Space Weathering of Silicates: Reconciling Modeled Data with Laboratory Observations

    NASA Astrophysics Data System (ADS)

    Legett, C., IV; Glotch, T. D.; Lucey, P. G.

    2015-12-01

    Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (< 50 nm) causing both reddening and darkening of the spectra with respect to unweathered material (Britt-Pieters particle behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters < 80 nm and iron concentrations of ~1-10wt% in an amorphous silica matrix. Further model runs are planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to model data.

  15. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan

    USGS Publications Warehouse

    Mars, John C.; Rowan, Lawrence C.

    2011-01-01

    Advanced Spaceborne Thermal and Reflection Radiometer (ASTER) data of the early Quaternary Khanneshin carbonatite volcano located in southern Afghanistan were used to identify carbonate rocks within the volcano and to distinguish them from Neogene ferruginous polymict sandstone and argillite. The carbonatitic rocks are characterized by diagnostic CO3 absorption near 11.2 μm and 2.31–2.33 μm, whereas the sandstone, argillite, and adjacent alluvial deposits exhibit intense Si-O absorption near 8.7 μm caused mainly by quartz and Al-OH absorption near 2.20 μm due to muscovite and illite.Calcitic carbonatite was distinguished from ankeritic carbonatite in the short wave infrared (SWIR) region of the ASTER data due to a slight shift of the CO3 absorption feature toward 2.26 μm (ASTER band 7) in the ankeritic carbonatite spectra. Spectral assessment using ASTER SWIR data suggests that the area is covered by extensive carbonatite flows that contain calcite, ankerite, and muscovite, though some areas mapped as ankeritic carbonatite on a preexisting geologic map were not identified in the ASTER data. A contact aureole shown on the geologic map was defined using an ASTER false color composite image (R = 6, G = 3, B = 1) and a logical operator byte image. The contact aureole rocks exhibit Fe2+, Al-OH, and Fe, Mg-OH spectral absorption features at 1.65, 2.2, and 2.33 μm, respectively, which suggest that the contact aureole rocks contain muscovite, epidote, and chlorite. The contact aureole rocks were mapped using an Interactive Data Language (IDL) logical operator.A visible through short wave infrared (VNIR-SWIR) mineral and rock-type map based on matched filter, band ratio, and logical operator analysis illustrates: (1) laterally extensive calcitic carbonatite that covers most of the crater and areas northeast of the crater; (2) ankeritic carbonatite located southeast and north of the crater and some small deposits located within the crater; (3) agglomerate that primarily covers the inside rim of the crater and a small area west of the crater; (4) a crater rim that consists mostly of epidote-chlorite-muscovite–rich metamorphosed argillite and sandstone; and (5) iron (Fe3+) and muscovite-illite–rich rocks and iron-rich eolian sands surrounding the western part of the volcano. The thermal infrared (TIR) rock-type map illustrates laterally extensive carbonatitic and mafic rocks surrounded by quartz-rich eolian and fluvial reworked sediments. In addition, the combination of VNIR, SWIR, and TIR data complement one another in that the TIR data illustrate more laterally extensive rock types and the VNIR-SWIR data distinguish more specific varieties of rocks and mineral mixtures.

  16. Satellite Remote Sensing For Aluminum And Nickel Laterites

    NASA Astrophysics Data System (ADS)

    Henderson, Frederick B.; Penfield, Glen T.; Grubbs, Donald K.

    1984-08-01

    The new LANDSAT-4,-5/Thematic Mapper (TM) land observational satellite remote sensing systems are providing dramatically new and important short wave infrared (SWIR) data, which combined with Landsat's Multi-Spectral Scanner (MSS) visible (VIS), very near infrared (VNIR), and thermal infrared (TI) data greatly improves regional geological mapping on a global scale. The TM will significantly improve clay, iron oxide, aluminum, and nickel laterite mapping capabilities over large areas of the world. It will also improve the ability to discriminate vegetation stress and species distribution associated with lateritic environments. Nickel laterites on Gag Island, Indonesia are defined by MSS imagery. Satellite imagery of the Cape Bougainville and the Darling Range, Australia bauxite deposits show the potential use of MSS data for exploration and mining applications. Examples of satellite syn-thetic aperture radar (SAR) for Jamaica document the use of this method for bauxite exploration. Thematic Mapper data will be combined with the French SPOT satellite's high spatial resolution and stereoscopic digital data, and U.S., Japanese, European, and Canadian Synthetic Aperture Radar (SAR) data to assist with logistics, mine development, and environ-mental concerns associated with aluminum and nickel lateritic deposits worldwide.

  17. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging

    PubMed Central

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S.; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-01-01

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400–1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557–701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce. PMID:26610510

  18. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.

    PubMed

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-11-20

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.

  19. Airborne net-centric multi-INT sensor control, display, fusion, and exploitation systems

    NASA Astrophysics Data System (ADS)

    Linne von Berg, Dale C.; Lee, John N.; Kruer, Melvin R.; Duncan, Michael D.; Olchowski, Fred M.; Allman, Eric; Howard, Grant

    2004-08-01

    The NRL Optical Sciences Division has initiated a multi-year effort to develop and demonstrate an airborne net-centric suite of multi-intelligence (multi-INT) sensors and exploitation systems for real-time target detection and targeting product dissemination. The goal of this Net-centric Multi-Intelligence Fusion Targeting Initiative (NCMIFTI) is to develop an airborne real-time intelligence gathering and targeting system that can be used to detect concealed, camouflaged, and mobile targets. The multi-INT sensor suite will include high-resolution visible/infrared (EO/IR) dual-band cameras, hyperspectral imaging (HSI) sensors in the visible-to-near infrared, short-wave and long-wave infrared (VNIR/SWIR/LWIR) bands, Synthetic Aperture Radar (SAR), electronics intelligence sensors (ELINT), and off-board networked sensors. Other sensors are also being considered for inclusion in the suite to address unique target detection needs. Integrating a suite of multi-INT sensors on a single platform should optimize real-time fusion of the on-board sensor streams, thereby improving the detection probability and reducing the false alarms that occur in reconnaissance systems that use single-sensor types on separate platforms, or that use independent target detection algorithms on multiple sensors. In addition to the integration and fusion of the multi-INT sensors, the effort is establishing an open-systems net-centric architecture that will provide a modular "plug and play" capability for additional sensors and system components and provide distributed connectivity to multiple sites for remote system control and exploitation.

  20. Iron mineralogy of the surface of Mars from the 1 μm band spectral properties

    NASA Astrophysics Data System (ADS)

    Carrozzo, F. G.; Altieri, F.; Bellucci, G.; Poulet, F.; D'Aversa, E.; Bibring, J.-P.

    2012-10-01

    We study the 1 μm absorption from OMEGA/MEX spectra to map Martian iron mineralogy at a global scale. This band is covered on the left by the VNIR (visible and near infrared) OMEGA channel and on the right by the SWIR (short wavelengths infrared) one. We first perform a systematic spatial coregistration of the two channels after an improvement of the VNIR radiometric calibration. The update of the VNIR Instrumental Transfer Function (ITF) and the internal stray-light estimation is based on the spectra of the Phobos red units and of the water ice north polar cap of Mars, which have been fitted according to an iterative process. The level of the signal in the blue wavelength range, previously systematically overestimated due to a stray-light residual and the general shape of the spectrum for λ > 0.7 μm are improved . Global maps of the 1 μm signature have been derived from 9 new spectral indices. The largest values of the 1 μm band integral are found in Noachian terrains and in the dunes around the north polar cap. In the south polar region, an area centered at ˜155°W and ˜83°S is mapped as a distinctive spectral unit, dominated by pyroxene. The northern lowlands of Mars together with other dark terrains located in the northern hemisphere show very low values of some spectral indices due to the negative spectral slope in the NIR. This behavior is consistent with the presence of weathered basalts with a possible glassy or amorphous component. Among the hydrated terrains, the only ones that can be isolated by studying the 1 μm band are those located in Terra Meridiani, Aram Chaos and Capri Chasma, enriched in sulfate and hematite. On the other hand, the sulfates of the dark dunes surrounding the northern polar cap and the phyllosilicates of the bright hydrated deposits of Mawrth Vallis cannot be isolated combining the parameters used in this study. This suggests that their distinctive mineralogy does not affect the 1 μm band, remaining similar to the global Martian average shape.

  1. SOFIA + FORCAST Observations of 10 Aqueously Altered Asteroids

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret; Sunshine, Jessica M.; Kelley, Michael S.; Bus, Schelte J.

    2016-10-01

    Aqueous alteration, or the reaction of water and minerals to produce hydrated minerals, has affected certain groups of carbonaceous meteorites (e.g., the CM and CI meteorites) and asteroids. In the visible/near-infrared (VNIR), CM/CI meteorites and some dark C-complex asteroids are known to have 0.7-µm absorptions that indicate the presence of hydrated minerals [1, 2, 3]. However, this feature does not provide any information about the amount of hydrated minerals in asteroids or meteorites [1]. In contrast, at mid-infrared (MIR) wavelengths, strong spectral features change continuously with amount of hydrated minerals in a suite of well-characterized CM/CI meteorites [1].Using these results, we analyze the spectra of 10 C-complex asteroids observed by SOFIA + FORCAST. These targets are large objects (>95 km diameter) situated in the mid to outer Main Asteroid Belt (2.4 - 3.4 AU). We present spectra of the following asteroids, spectral types in parentheses: 36 Atalante (C), 38 Leda (Cgh), 62 Erato (Ch), 121 Hermione (Ch), 165 Loreley (Cb), 194 Prokne (C), 203 Pompeja (C), 266 Aline (Ch), 52 Europa (Ch), and 19 Fortuna (Ch). Spectra were obtained in two wavelength regions: 8.5-13.6-μm and 17.6-27.7-μm. In these spectral regions, mineralogical features that are known to change continuously with amount of hydrated minerals appear. Most of these targets are known to have hydrated minerals on their surfaces by the presence of the 0.7-μm feature [e.g. 3, 4] or from observations in the 3-μm region [5]. We interpret the spectral features observed using SOFIA and estimate the abundances of hydrated minerals for each asteroid. Additionally, we compare these observations to Spitzer observations of similar objects. A subset of these asteroids have also been measured in VNIR, which allows us to directly compare the signatures of hydration in both the VNIR and the MIR.[1] McAdam et al., (2015), Icarus, 245, 320-332. [2] Cloutis, et al., (2011), Icarus, 216, 309-346. [3] Vilas and Gaffey (1989), Science, 246, 790-792. [4] Bus and Binzel (2002), Icarus, 158, 146-177. Takir and Emery (2012), Icarus, 219, 641-654.

  2. The ultraviolet reflectance of Enceladus: Implications for surface composition

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda R.; Hansen, Candice J.; Holsclaw, Greg M.

    2010-04-01

    The reflectance of Saturn's moon Enceladus has been measured at far ultraviolet (FUV) wavelengths (115-190 nm) by Cassini's Ultraviolet Imaging Spectrograph (UVIS). At visible and near infrared (VNIR) wavelengths Enceladus' reflectance spectrum is very bright, consistent with a surface composed primarily of H 2O ice. At FUV wavelengths, however, Enceladus is surprisingly dark - darker than would be expected for pure water ice. Previous analyses have focused on the VNIR spectrum, comparing it to pure water ice (Cruikshank, D.P., Owen, T.C., Dalle Ore, C., Geballe, T.R., Roush, T.L., de Bergh, C., Sandford, S.A., Poulet, F., Benedix, G.K., Emery, J.P. [2005] Icarus, 175, 268-283) or pure water ice plus a small amount of NH 3 (Emery, J.P., Burr, D.M., Cruikshank, D.P., Brown, R.H., Dalton, J.B. [2005] Astron. Astrophys., 435, 353-362) or NH 3 hydrate (Verbiscer, A.J., Peterson, D.E., Skrutskie, M.F., Cushing, M., Helfenstein, P., Nelson, M.J., Smith, J.D., Wilson, J.C. [2006] Icarus, 182, 211-223). We compare Enceladus' FUV spectrum to existing laboratory measurements of the reflectance spectra of candidate species, and to spectral models. We find that the low FUV reflectance of Enceladus can be explained by the presence of a small amount of NH 3 and a small amount of a tholin in addition to H 2O ice on the surface. The presence of these three species (H 2O, NH 3, and a tholin) appears to satisfy not only the low FUV reflectance and spectral shape, but also the middle-ultraviolet to visible wavelength brightness and spectral shape. We expect that ammonia in the Enceladus plume is transported across the surface to provide a global coating.

  3. Pan Sharpening Quality Investigation of Turkish In-Operation Remote Sensing Satellites: Applications with Rasat and GÖKTÜRK-2 Images

    NASA Astrophysics Data System (ADS)

    Ozendi, Mustafa; Topan, Hüseyin; Cam, Ali; Bayık, Çağlar

    2016-10-01

    Recently two optical remote sensing satellites, RASAT and GÖKTÜRK-2, launched successfully by the Republic of Turkey. RASAT has 7.5 m panchromatic, and 15 m visible bands whereas GÖKTÜRK-2 has 2.5 m panchromatic and 5 m VNIR (Visible and Near Infrared) bands. These bands with various resolutions can be fused by pan-sharpening methods which is an important application area of optical remote sensing imagery. So that, the high geometric resolution of panchromatic band and the high spectral resolution of VNIR bands can be merged. In the literature there are many pan-sharpening methods. However, there is not a standard framework for quality investigation of pan-sharpened imagery. The aim of this study is to investigate pan-sharpening performance of RASAT and GÖKTÜRK-2 images. For this purpose, pan-sharpened images are generated using most popular pan-sharpening methods IHS, Brovey and PCA at first. This procedure is followed by quantitative evaluation of pan-sharpened images using Correlation Coefficient (CC), Root Mean Square Error (RMSE), Relative Average Spectral Error (RASE), Spectral Angle Mapper (SAM) and Erreur Relative Globale Adimensionnelle de Synthése (ERGAS) metrics. For generation of pan-sharpened images and computation of metrics SharpQ tool is used which is developed with MATLAB computing language. According to metrics, PCA derived pan-sharpened image is the most similar one to multispectral image for RASAT, and Brovey derived pan-sharpened image is the most similar one to multispectral image for GÖKTÜRK-2. Finally, pan-sharpened images are evaluated qualitatively in terms of object availability and completeness for various land covers (such as urban, forest and flat areas) by a group of operators who are experienced in remote sensing imagery.

  4. NRL Fact Book

    DTIC Science & Technology

    2008-01-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR

  5. Differentiation of plant age in grasses using remote sensing

    NASA Astrophysics Data System (ADS)

    Knox, Nichola M.; Skidmore, Andrew K.; van der Werff, Harald M. A.; Groen, Thomas A.; de Boer, Willem F.; Prins, Herbert H. T.; Kohi, Edward; Peel, Mike

    2013-10-01

    Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (AVNIRn+log(ASWIR2n))/(AVNIRn-log(ASWIR2n)), where AVNIRn and ASWIR2n are the respective normalised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.

  6. Development of a UAV system for VNIR-TIR acquisitions in precision agriculture

    NASA Astrophysics Data System (ADS)

    Misopolinos, L.; Zalidis, Ch.; Liakopoulos, V.; Stavridou, D.; Katsigiannis, P.; Alexandridis, T. K.; Zalidis, G.

    2015-06-01

    Adoption of precision agriculture techniques requires the development of specialized tools that provide spatially distributed information. Both flying platforms and airborne sensors are being continuously evolved to cover the needs of plant and soil sensing at affordable costs. Due to restrictions in payload, flying platforms are usually limited to carry a single sensor on board. The aim of this work is to present the development of a vertical take-off and landing autonomous unmanned aerial vehicle (VTOL UAV) system for the simultaneous acquisition of high resolution vertical images at the visible, near infrared (VNIR) and thermal infrared (TIR) wavelengths. A system was developed that has the ability to trigger two cameras simultaneously with a fully automated process and no pilot intervention. A commercial unmanned hexacopter UAV platform was optimized to increase reliability, ease of operation and automation. The designed systems communication platform is based on a reduced instruction set computing (RISC) processor running Linux OS with custom developed drivers in an efficient way, while keeping the cost and weight to a minimum. Special software was also developed for the automated image capture, data processing and on board data and metadata storage. The system was tested over a kiwifruit field in northern Greece, at flying heights of 70 and 100m above the ground. The acquired images were mosaicked and geo-corrected. Images from both flying heights were of good quality and revealed unprecedented detail within the field. The normalized difference vegetation index (NDVI) was calculated along with the thermal image in order to provide information on the accurate location of stressors and other parameters related to the crop productivity. Compared to other available sources of data, this system can provide low cost, high resolution and easily repeatable information to cover the requirements of precision agriculture.

  7. Cirrus Horizontal Heterogeneity Effects on Cloud Optical Properties Retrieved from MODIS VNIR to TIR Channels as a Function of the Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.

    2017-12-01

    Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.

  8. Application of ASTER and Landsat 8 imagery data and mathematical evaluation method in detecting iron minerals contamination in the Chadormalu iron mine area, central Iran

    NASA Astrophysics Data System (ADS)

    Moghtaderi, Arsia; Moore, Farid; Ranjbar, Hojjatollah

    2017-01-01

    Satellite images are widely used to map geological and environmental features at different map scales. The ability of visible to near-infrared (VNIR) scanner systems to map gossans, rich in iron and associated with weathered sulfide occurrences, as well as to characterize regoliths, is perhaps one of the most important current applications of this technology. Initial results of this study show that advanced space-borne thermal emission and reflection (ASTER), VNIR, and short-wave infrared radiometer scanner systems can be used successfully to map iron ores. By applying internal average relative reflectance, false color composite, minimum noise fraction transform, and mathematical evaluation method (MEM) techniques, iron contaminations were successfully detected in the Chadormalu iron mine area of central Iran. An attempt was also made to discriminate between the geogenic and anthropogenic iron contaminations in the vicinity of the Chadormalu iron deposit. This research compares ASTER and Landsat 8 data images and the MEM with the band ratio method in a full scope view scale and demonstrates ASTER image data capability in detecting iron contaminations in the Chadormalu area. This indicates that ASTER bands 3, 2, and 1 have a higher spatial (15 m) resolution compared with sensors used in previous works. In addition, the capability of the MEM in detecting Fe-contaminants, unlike the color judgments of the band ratio method, can discriminate between iron pollution in an alluvial plain and the Fe-contents of the host and country rocks in the study area. This study proved that Landsat 8 data illustrate exaggeration both in the MEM and band ratio final results (outputs) and cannot display iron contamination in detail.

  9. Near infrared and visible face recognition based on decision fusion of LBP and DCT features

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan

    2018-03-01

    Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In order to extract the discriminative complementary features between near infrared and visible images, in this paper, we proposed a novel near infrared and visible face fusion recognition algorithm based on DCT and LBP features. Firstly, the effective features in near-infrared face image are extracted by the low frequency part of DCT coefficients and the partition histograms of LBP operator. Secondly, the LBP features of visible-light face image are extracted to compensate for the lacking detail features of the near-infrared face image. Then, the LBP features of visible-light face image, the DCT and LBP features of near-infrared face image are sent to each classifier for labeling. Finally, decision level fusion strategy is used to obtain the final recognition result. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. The experiment results show that the proposed method extracts the complementary features of near-infrared and visible face images and improves the robustness of unconstrained face recognition. Especially for the circumstance of small training samples, the recognition rate of proposed method can reach 96.13%, which has improved significantly than 92.75 % of the method based on statistical feature fusion.

  10. The Global ASTER Geoscience and Mineralogical Maps

    NASA Astrophysics Data System (ADS)

    Abrams, M.

    2017-12-01

    In 2012, Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) released 17 Geoscience mineral maps for the continent of Australia We are producing the CSIRO Geoscience data products for the entire land surface of the Earth. These maps are created from Advanced Spacecraft Thermal Emission and Reflection Radiometer (ASTER) data, acquired between 2000 and 2008. ASTER, onboard the United States' Terra satellite, is part of NASA's Earth Observing System. This multispectral satellite system has 14 spectral bands spanning: the visible and near-infrared (VNIR) @ 15 m pixel resolution; shortwave-infrared (SWIR) @ 30 m pixel resolution; and thermal infrared (TIR) @ 90 m pixel resolution. In a polar-orbit, ASTER acquires a 60 km swath of data.The CSIRO maps are the first continental-scale mineral maps generated from an imaging satellite designed to measure clays, quartz and other minerals. Besides their obvious use in resource exploration, the data have applicability to climatological studies. Over Australia, these satellite mineral maps improved our understanding of weathering, erosional and depositional processes in the context of changing weather, climate and tectonics. The clay composition map showed how kaolinite has developed over tectonically stable continental crust in response to deep weathering. The same clay composition map, in combination with one sensitive to water content, enabled the discrimination of illite from montmorillonite clays that typically develop in large depositional environments over thin (sinking) continental crust. This product was also used to measure temporal gains/losses of surface clay caused by periodic wind erosion (dust) and rainfall inundation (flood) events. The two-year project is undertaken by JPL with collaboration from CSIRO. JPL has in-house the entire ASTER global archive of Level 1B image data—more than 1,500,000 scenes. This cloud-screened and vegetation-masked data set will be the basis for creation of the suite of global Geoscience products using all of ASTER's 14 VNIR-SWIR-TIR spectral bands resampled to 100 m pixel resolution. We plan a staged release of the geoscience products through NASA's LPDAAC.

  11. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this preliminary case, we use Partial Least Squares (PLS) regression with cross validation to develop a prediction model for soils of unknown carbon content given only their spectral signature. We find R2 values of greater than 0.93 for the MIR spectra and 0.87 for the VNIR spectra, indicating a strong ability to correlate a soil’s spectrum with its Ct content. We build on these encouraging results by continuing chemometric analyses using the full data set, different data subsets, separate model calibration and validation groups, combined VNIR and MIR spectra, and exploring different data pretreatment options and variations to the PLS parameters.

  12. A multistage framework for dismount spectral verification in the VNIR

    NASA Astrophysics Data System (ADS)

    Rosario, Dalton

    2013-05-01

    A multistage algorithm suite is proposed for a specific target detection/verification scenario, where a visible/near infrared hyperspectral (HS) sample is assumed to be available as the only cue from a reference image frame. The target is a suspicious dismount. The suite first applies a biometric based human skin detector to focus the attention of the search. Using as reference all of the bands in the spectral cue, the suite follows with a Bayesian Lasso inference stage designed to isolate pixels representing the specific material type cued by the user and worn by the human target (e.g., hat, jacket). In essence, the search focuses on testing material types near skin pixels. The third stage imposes an additional constraint through RGB color quantization and distance metric checking, limiting even further the search for material types in the scene having visible color similar to the target visible color. Using the proposed cumulative evidence strategy produced some encouraging range-invariant results on real HS imagery, dramatically reducing to zero the false alarm rate on the example dataset. These results were in contrast to the results independently produced by each one of the suite's stages, as the spatial areas of each stage's high false alarm outcome were mutually exclusive in the imagery. These conclusions also apply to results produced by other standard methods, in particular the kernel SVDD (support vector data description) and matched filter, as shown in the paper.

  13. Retrieving optical constants of glasses with variable iron abundance

    NASA Astrophysics Data System (ADS)

    Carli, C.; Roush, T. L.; Capaccioni, F.; Baraldi, A.

    2013-12-01

    Visible and Near Infrared (VNIR, ~0.4-2.5 μm) spectroscopy is an important tool to explore the surface composition of objects in our Solar System. Using this technique different minerals have been recognized on the surfaces of solar system bodies. One of the principal products of extrusive volcanism and impact cratering is a glassy component, that can be abundant and thus significantly influence the spectral signature of the region investigated. Different types of glasses have been proposed and identified on the lunar surface and in star forming regions near young stellar objects. Here we report an initial effort of retrieving the optical constants of volcanic glasses formed in oxidizing terrestrial-like conditions. We also investigated how those calculations are affected by the grain size distribution. Bidirectional reflectance spectra, obtained with incidence and emission angles of 30° and 0°, respectively, were measured on powders of different grain sizes for four different glassy compositions in the VNIR. Hapke's model of the interaction of light with particulate surfaces was used to determine the imaginary index, k, at each wavelength by iteratively minimizing the difference between measured and calculated reflectance The basic approach to retrieving the optical constants was to use multiple grain sizes of the same sample and assume all grain sizes are compositionally equivalent. Unless independently known as a function of wavelength, an additional assumption must be made regarding the real index of refraction, n. The median size for each particle size separate was adopted for initially estimating k. Then, iterating the Hapke analysis results with a subtractive Kramers-Kronig analysis we were able to determine the wavelength dependence of n. For each composition we used the k-values estimated for all the grain sizes to calculate a mean k-value representing that composition. These values were then used to fit the original spectra by only varying the grain sizes. As a separate estimate of the k-values, we will use transmission measurements in the VNIR. Two slabs, with different thicknesses, will be measured for each composition. These data will be used to determine a k value and a comparison between k values obtained from the two different techniques will be discussed.

  14. Advances in Satellite Remote Sensing of Particulate Air Pollution: From MISR to MAIA

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Burke, K.; Xu, F.; Garay, M. J.; Kalashnikova, O. V.; Liu, Y.; Meng, X.; Wang, J.; Martin, R.; Ostro, B.

    2017-12-01

    Airborne particulate matter (PM) is a well-known cause of cardiovascular and respiratory disease. To estimate human exposure to PM pollution, satellite instruments such as the Terra Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate resolution Imaging Spectroradiometer (MODIS) have been used in conjunction with surface monitors to map near-surface PM concentrations. The relative toxicity of different size and compositional mixtures of PM is not well understood. To address this, we are developing the Multi-Angle Imager for Aerosols (MAIA) investigation. The satellite instrument extends MISR's multiangular visible and near-infrared (VNIR) spectral coverage to 14 bands in the ultraviolet, VNIR, and shortwave IR; three of the bands are polarimetric to enhance sensitivity to aerosol size and composition. To constrain the retrievals, the observations will be combined with data from surface monitors and the WRF-Chem and GEOS-Chem chemical transport models. Existing surface PM speciation monitors will be supplemented by adding new stations to the Surface PARTiculate mAtter Network (SPARTAN). Unlike MISR, MAIA is a targeting instrument. Primary areas of interest include metropolitan areas in North and South America, Europe, the Middle East, Africa, India, and East Asia. PM retrieval algorithms are being developed using data from MISR and the high-altitude Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Epidemiologists on the MAIA science team will use the derived PM data products and birth, death, and hospital records to investigate adverse health impacts of different types of airborne particulates. MAIA's earliest possible launch date is mid-2020, making it possible for the data to be complemented by global observations from Terra as well as high temporal resolution atmospheric chemistry measurements from TEMPO (Tropospheric Emissions: Monitoring Pollution), GEMS (Geostationary Environment Monitoring Spectrometer), and Sentinel-4.

  15. Improvement in absolute calibration accuracy of Landsat-5 TM with Landsat-7 ETM+ data

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Micijevic, E.; Teillet, P.M.; Helder, D.L.; ,

    2005-01-01

    The ability to detect and quantify changes in the Earth's environment depends on satellites sensors that can provide calibrated, consistent measurements of Earth's surface features through time. A critical step in this process is to put image data from subsequent generations of sensors onto a common radiometric scale. To evaluate Landsat-5 (L5) Thematic Mapper's (TM) utility in this role, image pairs from the L5 TM and Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors were compared. This approach involves comparison of surface observations based on image statistics from large common areas observed eight days apart by the two sensors. The results indicate a significant improvement in the consistency of L5 TM data with respect to L7 ETM+ data, achieved using a revised Look-Up-Table (LUT) procedure as opposed to the historical Internal Calibrator (IC) procedure previously used in the L5 TM product generation system. The average percent difference in reflectance estimates obtained from the L5 TM agree with those from the L7 ETM+ in the Visible and Near Infrared (VNIR) bands to within four percent and in the Short Wave Infrared (SWIR) bands to within six percent.

  16. Integration of airborne optical and thermal imagery for archaeological subsurface structures detection: the Arpi case study (Italy)

    NASA Astrophysics Data System (ADS)

    Bassani, C.; Cavalli, R. M.; Fasulli, L.; Palombo, A.; Pascucci, S.; Santini, F.; Pignatti, S.

    2009-04-01

    The application of Remote Sensing data for detecting subsurface structures is becoming a remarkable tool for the archaeological observations to be combined with the near surface geophysics [1, 2]. As matter of fact, different satellite and airborne sensors have been used for archaeological applications, such as the identification of spectral anomalies (i.e. marks) related to the buried remnants within archaeological sites, and the management and protection of archaeological sites [3, 5]. The dominant factors that affect the spectral detectability of marks related to manmade archaeological structures are: (1) the spectral contrast between the target and background materials, (2) the proportion of the target on the surface (relative to the background), (3) the imaging system characteristics being used (i.e. bands, instrument noise and pixel size), and (4) the conditions under which the surface is being imaged (i.e. illumination and atmospheric conditions) [4]. In this context, just few airborne hyperspectral sensors were applied for cultural heritage studies, among them the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), the CASI (Compact Airborne Spectrographic Imager), the HyMAP (Hyperspectral MAPping) and the MIVIS (Multispectral Infrared and Visible Imaging Spectrometer). Therefore, the application of high spatial/spectral resolution imagery arise the question on which is the trade off between high spectral and spatial resolution imagery for archaeological applications and which spectral region is optimal for the detection of subsurface structures. This paper points out the most suitable spectral information useful to evaluate the image capability in terms of spectral anomaly detection of subsurface archaeological structures in different land cover contexts. In this study, we assess the capability of MIVIS and CASI reflectances and of ATM and MIVIS emissivities (Table 1) for subsurface archaeological prospection in different sites of the Arpi archaeological area (southern Italy). We identify, for the selected sites, three main land cover overlying the buried structures: (a) photosynthetic (i.e. green low vegetation), (b) non-photosynthetic vegetation (i.e. yellow, dry low vegetation), and (c) dry bare soil. Afterwards, we analyse the spectral regions showing an inherent potential for the archaeological detection as a function of the land cover characteristics. The classified land cover units have been used in a spectral mixture analysis to assess the land cover fractional abundance surfacing the buried structures (i.e. mark-background system). The classification and unmixing results for the CASI, MIVIS and ATM remote sensing data processing showed a good accordance both in the land cover units and in the subsurface structures identification. The integrated analysis of the unmixing results for the three sensors allowed us to establish that for the land cover characterized by green and dry vegetation (occurrence higher than 75%), the visible and near infrared (VNIR) spectral regions better enhance the buried man-made structures. In particular, if the structures are covered by more than 75% of vegetation the two most promising wavelengths for their detection are the chlorophyll peak at 0.56 m (Visible region) and the red edge region (0.67 to 0.72 m; NIR region). This result confirms that the variation induced by the subsurface structures (e.g., stone walls, tile concentrations, pavements near the surface, road networks) to the natural vegetation growth and/or colour (i.e., for different stress factors) is primarily detectable by the chlorophyll peak and the red edge region applied for the vegetation stress detection. Whereas, if dry soils cover the structures (occurrence higher than 75%), both the VNIR and thermal infrared (TIR) regions are suitable to detect the subsurface structures. This work demonstrates that airborne reflectances and emissivities data, even though at different spatial/spectral resolutions and acquisition time represent an effective and rapid tool to detect subsurface structures within different land cover contexts. As concluding results, this study reveals that the airborne multi/hyperspectral image processing can be an effective and cost-efficient tool to perform a preliminary analysis of those areas where large cultural heritage assets prioritising and localizing the sites where to apply near surface geophysics surveys. Spectral Region Spectral Resolution ( m )Spectral Range ( m) Spatial Resolution (m)IFOV (deg) ATM VIS-NIR SWIR-TIR (tot 12 ch) variable from 24 to 3100 0.42 - 1150 2 0.143 CASI VNIR (48 ch.) 0.01 0.40-0.94 2 0.115 MIVIS VNIR (28ch.) 0.02 (VIS) 0.05 (NIR) 0.43-0.83 (VIS) 1.15-1.55 (NIR) 6 - 7 0.115 SWIR (64ch.) 0.09 1.983-2.478 TIR (10ch.) 0.34-0.54 8.180-12.700 Table 1. Characteristics of airborne sensors used for the Arpi test area. 1 References 2 [1] Beck, A., Philip, G., Abdulkarim, M. and Donoghue, D., 2007. Evaluation of Corona and Ikonos high resolution satellite imagery for archaeological prospection in western Syria. Antiquity, 81: 161-175. 3 [2] Altaweel, M., 2005. The Use of ASTER Satellite Imagery in Archaeological Contexts. Archaeological Prospection, 12: 151- 166. 4 [3] Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote hyperspectral imagery as a support to archaeological prospection. J. of Cultural Heritage 2007, 8, 272-283. 5 [4] Kucukkaya, A.G. Photogrammetry and remote sensing in archaeology. J. Quant. Spectrosc. Radiat. Transfer 2004, 97(1-3), 83-97. [5] Rowlands, A.; Sarris, A. Detection of exposed and subsurface archaeological remains using multi-sensor remote sensing. J. of Archaeological Science 2007, 34, 795-803.

  17. Multispectral Imaging from Mars PATHFINDER

    NASA Technical Reports Server (NTRS)

    Ferrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Bishop, Janice L.; Morris, Richard V.

    2007-01-01

    The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.

  18. Mapping Irrigated Areas in the Tunisian Semi-Arid Context with Landsat Thermal and VNIR Data Imagery

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Drissi, Hsan; Simonneaux, Vincent; Tardy, Benjamin; Boulet, Gilles

    2016-04-01

    Our study area is the Merguellil semi-arid irrigated plain in Tunisia, where the water resource management is an important stake for governmental institutions, farmer communities and more generally for the environment. Indeed, groundwater abstraction for irrigation is the primary cause of aquifer depletion. Moreover, unregistered pumping practices are widespread and very difficult to survey by authorities. Thus, the identification of areas actually irrigated in the whole plain is of major interest. In order to map the irrigated areas, we tried out a methodology based on the use of Landsat 7 and 8 Land Surface Temperature (LST) data issued from atmospherically corrected thermal band using the LANDARTs Tool jointly with the NDVI vegetation indices obtained from visible ane near infrared (VNIR) bands. For each Landsat acquisition during the years 2012 to 2014, we computed a probability of irrigation based on the location of the pixel in the NDVI - LST space. Basically for a given NDVI value, the cooler the pixel the higher its probability to be irrigated is. For each date, pixels were classified in seven bins of irrigation probability ranges. Pixel probabilities for each date were then summed over the study period resulting in a probability map of irrigation. Comparison with ground data shows a consistent identification of irrigated plots and supports the potential operational interest of the method. However, results were hampered by the low Landsat LST data availability due to clouds and the inadequate revisit frequency of the sensor.

  19. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    PubMed

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world.

  20. Mapping Hydrothermal Alteration Zones at a Sediment-Hosted Gold Deposit - Goldstrike Mining District, Utah, Using Ground-Based Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Krupnik, D.; Khan, S.; Crockett, M.

    2017-12-01

    Understanding the origin, genesis, as well as depositional and structural mechanisms of gold mineralization as well as detailed mapping of gold-bearing mineral phases at centimeter scale can be useful for exploration. This work was conducted in the Goldstrike mining district near St. George, UT, a structurally complex region which contains Carlin-style disseminated gold deposits in permeable sedimentary layers near high-angle fault zones. These fault zones are likely a conduit for gold-bearing hydrothermal fluids, are silicified, and are frequently gold-bearing. Alteration patterns are complex, difficult to distinguish visually, composed of several phases, and vary significantly over centimeter to meter scale distances. This makes identifying and quantifying the extent of the target zones costly, time consuming, and discontinuous with traditional geochemical methods. A ground-based hyperspectral scanning system with sensors collecting data in the Visible Near Infrared (VNIR) and Short-Wave Infrared (SWIR) portions of the electromagnetic spectrum are utilized for close-range outcrop scanning. Scans were taken of vertical exposures of both gold-bearing and barren silicified rocks (jasperoids), with the intent to produce images which delineate and quantify the extent of each phase of alteration, in combination with discrete geochemical data. This ongoing study produces mineralogical maps of surface minerals at centimeter scale, with the intent of mapping original and alteration minerals. This efficient method of outcrop characterization increases our understanding of fluid flow and alteration of economic deposits.

  1. VNIR spectral features observed by the Mars Exploration Rover Opportunity in hematite-bearing materials at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Bell, J. F.; Morris, R. V.; Joliff, B. L.; Squyres, S. W.; Souza, P. A.

    2004-12-01

    The Mars Exploration Rover Opportunity was sent to Meridiani Planum based largely on MGS TES spectroscopic evidence of a large surface exposure of coarse grained gray hematite. The presence of hematite at Meridiani Planum has been confirmed through thermal infrared spectroscopy by the rover's Mini-TES instrument and by in-situ measurements by its Moessbauer (MB) spectrometer. Several types of hematite, as expressed by differences in MB spectral parameters, have been associated with various rocks and soils examined in Eagle crater and on the surrounding plains. The host materials include the small spherules (informally known as "blueberries") littering the floor of Eagle crater and the plains of Meridiani, the outcrop rock itself, specific types of soils, and two measurements on unique rocks in the Shoemaker's Patio area of Eagle crater. At the visible to near infrared (VNIR) wavelengths covered by the rover's multispectral Panoramic camera (Pancam), gray hematite is spectrally neutral. However, multispectral observations by Pancam of some of these hematite-bearing materials show discernable spectral features. Specifically, portions of the outcrop visible in the walls of Eagle crater display a strong 535 nm absorption feature. This feature resembles a similar feature in laboratory spectra of red hematite, but the characteristic 860 nm absorption of red hematite is either absent or is instead replaced by a longer wavelength absorption centered on Pancam's 900 nm channel. The blueberries display a deep and broad absorption centered on 900 nm and as well as an increase in reflectance in the 1009 nm band. The shape of the absorption feature in the blueberries is consistent with that seen in red hematite, but again the band minimum is displaced to a longer wavelength than would be expected for red hematite. The blueberries also lack the prominent absorption at the shortest wavelengths that would be expected of red hematite. The unique hematite-bearing (or coated) rocks at Shoemaker's Patio lack the very strong 535 nm band depth of other portions of the outcrop but still have a stronger 535 nm feature than most of the outcrop. Interestingly, VNIR spectra more consistent with that expected for red hematite have been found in cuttings released by grinding into outcrop by the rover's Rock Abrasion Tool. The cause of the observed spectral features in the portions of outcrop with strong 535 nm band depths and of the reddish rocks in the Shoemaker's Patio area is believed to be attributable either to red hematite mixed with other Fe3+ - bearing phases (such as jarosite and/or schwertmannite) or, at the longer wavelengths, with Fe2+ - bearing phases (such as pyroxenes). Determination of the nature of these iron-bearing materials will further elucidate the geologic, aqueous and diagenetic history of the rocks at Meridiani Planum.

  2. AVIRIS and TIMS data processing and distribution at the land processes distributed active archive center

    NASA Technical Reports Server (NTRS)

    Mah, G. R.; Myers, J.

    1993-01-01

    The U.S. Government has initiated the Global Change Research program, a systematic study of the Earth as a complete system. NASA's contribution of the Global Change Research Program is the Earth Observing System (EOS), a series of orbital sensor platforms and an associated data processing and distribution system. The EOS Data and Information System (EOSDIS) is the archiving, production, and distribution system for data collected by the EOS space segment and uses a multilayer architecture for processing, archiving, and distributing EOS data. The first layer consists of the spacecraft ground stations and processing facilities that receive the raw data from the orbiting platforms and then separate the data by individual sensors. The second layer consists of Distributed Active Archive Centers (DAAC) that process, distribute, and archive the sensor data. The third layer consists of a user science processing network. The EOSDIS is being developed in a phased implementation. The initial phase, Version 0, is a prototype of the operational system. Version 0 activities are based upon existing systems and are designed to provide an EOSDIS-like capability for information management and distribution. An important science support task is the creation of simulated data sets for EOS instruments from precursor aircraft or satellite data. The Land Processes DAAC, at the EROS Data Center (EDC), is responsible for archiving and processing EOS precursor data from airborne instruments such as the Thermal Infrared Multispectral Scanner (TIMS), the Thematic Mapper Simulator (TMS), and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). AVIRIS, TIMS, and TMS are flown by the NASA-Ames Research Center ARC) on an ER-2. The ER-2 flies at 65000 feet and can carry up to three sensors simultaneously. Most jointly collected data sets are somewhat boresighted and roughly registered. The instrument data are being used to construct data sets that simulate the spectral and spatial characteristics of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument scheduled to be flown on the first EOS-AM spacecraft. The ASTER is designed to acquire 14 channels of land science data in the visible and near-IR (VNIR), shortwave-IR (SWIR), and thermal-IR (TIR) regions from 0.52 micron to 11.65 micron at high spatial resolutions of 15 m to 90 m. Stereo data will also be acquired in the VNIR region in a single band. The AVIRIS and TMS cover the ASTER VNIR and SWIR bands, and the TIMS covers the TIR bands. Simulated ASTER data sets have been generated over Death Valley, California, Cuprite, Nevada, and the Drum Mountains, Utah using a combination of AVIRIS, TIMS, amd TMS data, and existing digital elevation models (DEM) for the topographic information.

  3. Infrared and visible fusion face recognition based on NSCT domain

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan

    2018-01-01

    Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In this paper, a novel fusion algorithm in non-subsampled contourlet transform (NSCT) domain is proposed for Infrared and visible face fusion recognition. Firstly, NSCT is used respectively to process the infrared and visible face images, which exploits the image information at multiple scales, orientations, and frequency bands. Then, to exploit the effective discriminant feature and balance the power of high-low frequency band of NSCT coefficients, the local Gabor binary pattern (LGBP) and Local Binary Pattern (LBP) are applied respectively in different frequency parts to obtain the robust representation of infrared and visible face images. Finally, the score-level fusion is used to fuse the all the features for final classification. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. Experiments results show that the proposed method extracts the complementary features of near-infrared and visible-light images and improves the robustness of unconstrained face recognition.

  4. Near-Infrared Coloring via a Contrast-Preserving Mapping Model.

    PubMed

    Chang-Hwan Son; Xiao-Ping Zhang

    2017-11-01

    Near-infrared gray images captured along with corresponding visible color images have recently proven useful for image restoration and classification. This paper introduces a new coloring method to add colors to near-infrared gray images based on a contrast-preserving mapping model. A naive coloring method directly adds the colors from the visible color image to the near-infrared gray image. However, this method results in an unrealistic image because of the discrepancies in the brightness and image structure between the captured near-infrared gray image and the visible color image. To solve the discrepancy problem, first, we present a new contrast-preserving mapping model to create a new near-infrared gray image with a similar appearance in the luminance plane to the visible color image, while preserving the contrast and details of the captured near-infrared gray image. Then, we develop a method to derive realistic colors that can be added to the newly created near-infrared gray image based on the proposed contrast-preserving mapping model. Experimental results show that the proposed new method not only preserves the local contrast and details of the captured near-infrared gray image, but also transfers the realistic colors from the visible color image to the newly created near-infrared gray image. It is also shown that the proposed near-infrared coloring can be used effectively for noise and haze removal, as well as local contrast enhancement.

  5. Verification of Rapid Focused-Recharge in Depressions of Kuwait and the Arabian Peninsula Using Thermal and VNIR Remote Sensing

    NASA Astrophysics Data System (ADS)

    Rotz, R. R.; Milewski, A.

    2013-12-01

    In the Arabian Peninsula, freshwater recharge from rainfall is infrequent. Recharge is typically focused in small depressions that fill with seasonal runoff and potentially form freshwater lenses. This phenomenon has been verified in the Raudhatain watershed in Kuwait. This study aims to substantiate previously hypothesized lens locations and detect water in the subsurface by using thermal remote sensing and rainfall data. Potential freshwater lenses (~142) have been previously postulated throughout Kuwait and Saudi Arabia, but lack verification due to inadequate monitoring networks. We hypothesize that due to water's unique heat capacity, recharge zones can be detected by identifying areas with lower changes in surface radiance values than neighboring dry areas between day and night after peak or sustained rainfall. If successful, recharge zones and freshwater lenses can be identified and verified in remote hyper-arid regions. We collected 320 high-resolution (15m - 90m), low cloud cover (<10%) images in the visible near-infrared (VNIR) and thermal infrared (TIR) wavelengths obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer sensor (ASTER) between 2004 and 2012. Overlapping day and night images were subtracted from each other to show surface radiance fluctuations and difference images were compared with rainfall data from Daily TRMM_3B42v7a between 2004 and 2012. Several lens locations, runoff channels, agricultural regions, and wetlands were detected in areas where radiance values change between 0.067 - 2.25 Wsr-1m-2 from day to night scenes and verified by Google Earth (15m), Landsat (30m), and ASTER VNIR (15m) images. Additionally, two seasonal peak rainfall (~35mm/day) events positively correlate with the surface radiance difference values. Surface radiance values for dry areas adjacent to the postulated lens locations range between 2.25 - 12.2 Wsr-1m-2. Results demonstrate the potential for shallow groundwater detection through the presence of ephemeral water bodies in hyper-arid regions en masse; however, the absence of comparable diurnal images limits data in these regions. Linking high rainfall events with low diurnal surface radiance images is ideal for capturing the presence of temporary surface runoff and recharge zones. Expanded research on hyper-arid regions including thermal values, proposed lens locations, and in-situ data will provide more data points and bolster the methodology.

  6. Synthesis and structural characterization of ferrous trioctahedral smectites: Implications for clay mineral genesis and detectability on Mars

    NASA Astrophysics Data System (ADS)

    Chemtob, Steven M.; Nickerson, Ryan D.; Morris, Richard V.; Agresti, David G.; Catalano, Jeffrey G.

    2015-06-01

    Widespread detections of phyllosilicates in Noachian terrains on Mars imply a history of near-surface fluid-rock interaction. Ferrous trioctahedral smectites are thermodynamically predicted products of basalt weathering on early Mars, but to date only Fe3+-bearing dioctahedral smectites have been identified from orbital observations. In general, the physicochemical properties of ferrous smectites are poorly studied because they are susceptible to air oxidation. In this study, eight Fe2+-bearing smectites were synthesized from Fe2+-Mg-Al silicate gels at 200°C under anoxic conditions. Samples were characterized by inductively coupled plasma optical emission spectrometry, powder X-ray diffraction, Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy, and visible/near-infrared (VNIR) reflectance spectroscopy. The range of redox states was Fe3+/ΣFe = 0 to 0.06 ± 0.01 as determined by both XAS and, for short integration times, Mössbauer. The smectites have 060 distances (d(060)) between 1.53 and 1.56 Å, indicating a trioctahedral structure. d(060) and XAS-derived interatomic Fe-(Fe,Mg,Al) distance scaled with Fe content. Smectite VNIR spectra feature OH/H2O absorption bands at 1.4 and 1.9 µm, (Fe2+,Mg,Al)3-OH stretching bands near 1.4 µm, and Fe2+Fe2+Fe2+-OH, MgMgMg-OH, AlAl(Mg,Fe2+)-OH, and AlAl-OH combination bands at 2.36 µm, 2.32 µm 2.25 µm, and 2.20 µm, respectively. The spectra for ferrous saponites are distinct from those for dioctahedral ferric smectites, permitting their differentiation from orbital observations. X-ray diffraction patterns for synthetic high-Mg ferrosaponite and high-Mg ferrian saponite are both consistent with the Sheepbed saponite detected by the chemistry and mineralogy (CheMin) instrument at Gale Crater, Mars, suggesting that anoxic basalt alteration was a viable pathway for clay mineral formation on early Mars.

  7. Monitoring Changing Eruption Styles of Kilauea Volcano Over the Summer of 2007 With Spaceborne Infrared Data

    NASA Astrophysics Data System (ADS)

    Ramsey, M.; Wessels, R.

    2007-12-01

    On June 19, 2007 episode 56 (the Father's Day intrusion) of the ongoing eruption at Kilauea Volcano culminated with a small eruption of lava from a 250 m long fissure approximately 6 km west of Pu'u 'O'o. The event was preceded by an earthquake swarm and attributed to the intrusion of magma. This intrusion was also associated with cessation of activity at Pu'u 'O'o and deflation of its summit region. On July 21, 2007 new lava then erupted along a set of fissures that extended eastward from Pu'u 'O'o toward the old Kupaianaha vent. By early September, this eruption continued to supply a lava channel approximately 1 km long, which has fed two 'a'a flow lobes advancing to the northeast and southeast. We describe the application of spaceborne imaging data from the visible to the thermal infrared (TIR) wavelengths for monitoring activity throughout this period. Satellite thermal infrared (TIR) data with low spatial resolution (i.e., kms/pixel) have been used for years to monitor changes in surface thermal features such as volcanic flows. However, the use of higher spatial resolution data allows for the extraction of physical parameters at meter to sub-meter scales. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) provides TIR, shortwave infrared (SWIR), and visible-near infrared (VNIR) data ideal for this type of analysis, hazard assessment, and smaller-scale monitoring of active lava flows. From June-August of 2007, ASTER was scheduled 23 times and collected 11 independent scenes of the new flow activity at Kilauea. Of these, 7 were clear to partly-cloudy and show excellent coverage of the activity following the Father's Day intrusion. TIR and SWIR data, converted to atmospherically corrected emitted surface radiance, have been used to extract flow extent, areal coverage, flow advance rate, and maximum brightness temperature. These data correlate well with descriptions of the flow activity documented by Hawaiian Volcano Observatory field crews. For example, the ASTER night time image collected on July 19 (22:42:56 HST) had a maximum SWIR-derived temperature of 305 C, and a total thermally-elevated area of 0.19 sq. km. Within that region, 3 distinctly hotter zones were identified as most likely the West Gap pit craters, which were described as intermittently overflowing to form a small lava lake at the time. Following the July 21 fissure eruption, ASTER observations were augmented with non-standard approaches such as collecting visible night time data in order to accurately extract the higher temperature of the open lava channel. Although clouds partially obscure the August 30 night image, a maximum pixel-integrated temperature of 750 C was detected using the VNIR night- time data for the first time. Such a monitoring program coordinated between NASA and a USGS volcano observatory can provide important data on hot spot detection, eruption rate, and flow advance at times where it may be too costly or risky to send scientists into the field.

  8. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    NASA Astrophysics Data System (ADS)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may be improved with detailed, synoptic studies, especially when it is possible to access and interpret appropriate remote sensing data in near-real time.

  9. VNIR reflectance spectroscopy of natural carbonate rocks: implication for remote sensing identification of fault damage zones

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Mari, Giovanna; Carli, Cristian; Demurtas, Matteo; Massironi, Matteo; Di Toro, Giulio

    2017-04-01

    Reflectance spectroscopy in the visible and near-infrared (VNIR) is a common technique used to study the mineral composition of Solar System bodies from remote sensed and in-situ robotic exploration. In the VNIR spectral range, both crystal field and vibrational overtone absorptions can be present with spectral characteristics (i.e. albedo, slopes, absorption band with different positions and depths) that vary depending on composition and texture (e.g. grain size, roughness) of the sensed materials. The characterization of the spectral variability related to the rock texture, especially in terms of grain size (i.e., both the size of rock components and the size of particulates), commonly allows to obtain a wide range of information about the different geological processes modifying the planetary surfaces. This work is aimed at characterizing how the grain size reduction associated to fault zone development produces reflectance variations in rock and mineral spectral signatures. To achieve this goal we present VNIR reflectance analysis of a set of fifteen rock samples collected at increasing distances from the fault core of the Vado di Corno fault zone (Campo Imperatore Fault System - Italian Central Apennines). The selected samples had similar content of calcite and dolomite but different grain size (X-Ray Powder Diffraction, optical and scanning electron microscopes analysis). Consequently, differences in the spectral signature of the fault rocks should not be ascribed to mineralogical composition. For each sample, bidirectional reflectance spectra were acquired with a Field-Pro Spectrometer mounted on a goniometer, on crushed rock slabs reduced to grain size <800, <200, <63, <10 μm and on intact fault zone rock slabs. The spectra were acquired on dry samples, at room temperature and normal atmospheric pressure. The source used was a Tungsten Halogen lamp with an illuminated spot area of ca. 0.5 cm2and incidence and emission angles of 30˚ and 0˚ respectively. The spectral analysis of the crushed and intact rock slabs in the VNIR spectral range revealed that in both cases, with increasing grain size: (i) the reflectance decreases (ii) VNIR spectrum slopes (i.e. calculated between wavelengths of 0.425 - 0.605 μm and 2.205 - 2.33 μm, respectively) and (iii) carbonate main absorption band depth (i.e. vibrational absorption band at wavelength of ˜2.3 μm) increase. In conclusion, grain size variations resulting from the fault zone evolution (e.g., cumulated slip or development of thick damage zones) produce reflectance variations in rocks and mineral spectral signatures. The remote sensing analysis in the VNIR spectral range can be applied to identify the spatial distribution and extent of fault core and damage zone domains for industrial and seismic hazard applications. Moreover, the spectral characterization of carbonate-built rocks can be of great interest for the surface investigation of inner planets (e.g. Earth and Mars) and outer bodies (e.g. Galilean icy satellites). On these surfaces, carbonate minerals at different grain sizes are common and usually related to water and carbon distribution, with direct implications for potential life outside Earth (e.g. Mars).

  10. Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria.

    PubMed

    Baranowski, Piotr; Jedryczka, Malgorzata; Mazurek, Wojciech; Babula-Skowronska, Danuta; Siedliska, Anna; Kaczmarek, Joanna

    2015-01-01

    In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%).

  11. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    PubMed Central

    Rogaß, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data. PMID:22163960

  12. The New LOTIS Test Facility

    NASA Technical Reports Server (NTRS)

    Bell, R. M.; Cuzner, G.; Eugeni, C.; Hutchison, S. B.; Merrick, A. J.; Robins, G. C.; Bailey, S. H.; Ceurden, B.; Hagen, J.; Kenagy, K.; hide

    2008-01-01

    The Large Optical Test and Integration Site (LOTIS) at the Lockheed Martin Space Systems Company in Sunnyvale, CA is designed for the verification and testing of optical systems. The facility consists of an 88 foot temperature stabilized vacuum chamber that also functions as a class 10k vertical flow cleanroom. Many problems were encountered in the design and construction phases. The industry capability to build large chambers is very weak. Through many delays and extra engineering efforts, the final product is very good. With 11 Thermal Conditioning Units and precision RTD s, temperature is uniform and stable within 1oF, providing an ideal environment for precision optical testing. Within this chamber and atop an advanced micro-g vibration-isolation bench is the 6.5 meter diameter LOTIS Collimator and Scene Generator, LOTIS alignment and support equipment. The optical payloads are also placed on the vibration bench in the chamber for testing. This optical system is designed to operate in both air and vacuum, providing test imagery in an adaptable suite of visible/near infrared (VNIR) and midwave infrared (MWIR) point sources, and combined bandwidth visible-through-MWIR point sources, for testing of large aperture optical payloads. The heart of the system is the LOTIS Collimator, a 6.5m f/15 telescope, which projects scenes with wavefront errors <85 nm rms out to a 0.75 mrad field of view (FOV). Using field lenses, performance can be extended to a maximum field of view of 3.2 mrad. The LOTIS Collimator incorporates an extensive integrated wavefront sensing and control system to verify the performance of the system.

  13. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    PubMed Central

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2015-01-01

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world. PMID:25609048

  14. Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert and Amorphous Silica

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Hamilton, V. E.; Cady, S. L.; Knauth, P.

    2009-03-01

    We look in detail at the thermal infrared and visible to near-infrared spectra of various forms of chert and amorphous silica and compare the spectral variations between samples with variations in physical and chemical characteristics.

  15. Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration

    USGS Publications Warehouse

    Schmidt, M.E.; Farrand, W. H.; Johnson, J. R.; Schroder, C.; Hurowitz, J.A.; McCoy, T.J.; Ruff, S.W.; Arvidson, R. E.; Des Marais, D.J.; Lewis, K.W.; Ming, D. W.; Squyres, S. W.; De Souza, P.A.

    2009-01-01

    Over the last ~ 3??years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80??m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by M??ssbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx.

  16. Compositional Analyses and Implications of Visible/Near-Infrared Spectra of Outer Irregular Jovian Satellites

    NASA Astrophysics Data System (ADS)

    Vilas, Faith; Hendrix, Amanda

    2017-10-01

    The existence of a visible-near infrared absorption feature attributed to aqueous alteration products has been suggested in both grey and reddened broadband photometry of some outer irregular jovian satellites. Moderate resolution VNIR narrowband spectroscopy was obtained of the jovian irregular satellites JVI Himalia, JVII Elara, JVIII Pasiphae, JIX Sinope, JX Lysithea, JXI Carme, JXII Ananke and JXVII Callirrhoe in 2006, 2008, 2009, and 2010 using the MMT Observatory facility Red Channel spectrograph to confirm the presence of this feature. The spectra are centered near 0.64 μm in order to cover the 0.7-μm feature entirely (generally ranging from 0.57 to 0.83 μm). The spectra generally have a dispersion/element of ~0.6 nm (6Å) some spectra are smoothed. These spectra sample three prograde (i = 28o), four retrograde (i = 149o, 165o) and one independent satellite.We observe these findings among the spectra:- An absorption feature centered near 0.7 µm exists in the spectra of the three prograde (i = 28o) satellites. This feature is spectrally broader than the 0.7-µm feature observed in C-complex asteroids. None appears spectrally reddened. This suggests that these prograde satellites have a common parent body.- A different absorption feature appears in the spectra of the three retrograde (i = 149o) satellites, also suggesting a common parent body. Varying reddening is observed. This feature is similar in spectral location and width to the 0.7-µm feature.- Reddening is observed in the individual observation of JXI Carme (i = 165o), and independent satellite JIX Sinope, similar to the D-class asteroid spectra dominating the Trojan population. A suggested absorption feature is being investigated.Mixing modeling of combinations of both expected and proposed compositions including carbonaceous materials, phyllosilicates, mafic silicates, and other opaque materials, is currently underway. Results will be reported and discussed at the meeting.Acknowledgments: The MMT Observatory is a joint facility of the University of Arizona and the Smithsonian Institution. This research has been supported by SSERVI CLASS.

  17. Spectral identification and quantification of salts in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Harris, J. K.; Cousins, C. R.; Claire, M. W.

    2016-10-01

    Salt minerals are an important natural resource. The ability to quickly and remotely identify and quantify salt deposits and salt contaminated soils and sands is therefore a priority goal for the various industries and agencies that utilise salts. The advent of global hyperspectral imagery from instruments such as Hyperion on NASA's Earth-Observing 1 satellite has opened up a new source of data that can potentially be used for just this task. This study aims to assess the ability of Visible and Near Infrared (VNIR) spectroscopy to identify and quantify salt minerals through the use of spectral mixture analysis. The surface and near-surface soils of the Atacama Desert in Chile contain a variety of well-studied salts, which together with low cloud coverage, and high aridity, makes this region an ideal testbed for this technique. Two forms of spectral data ranging 0.35 - 2.5 μm were collected: laboratory spectra acquired using an ASD FieldSpec Pro instrument on samples from four locations in the Atacama desert known to have surface concentrations of sulfates, nitrates, chlorides and perchlorates; and images from the EO-1 satellite's Hyperion instrument taken over the same four locations. Mineral identifications and abundances were confirmed using quantitative XRD of the physical samples. Spectral endmembers were extracted from within the laboratory and Hyperion spectral datasets and together with additional spectral library endmembers fed into a linear mixture model. The resulting identification and abundances from both dataset types were verified against the sample XRD values. Issues of spectral scale, SNR and how different mineral spectra interact are considered, and the utility of VNIR spectroscopy and Hyperion in particular for mapping specific salt concentrations in desert environments is established. Overall, SMA was successful at estimating abundances of sulfate minerals, particularly calcium sulfate, from both hyperspectral image and laboratory sample spectra, while abundance estimation of other salt phase spectral end-members was achieved with a higher degree of error.

  18. Visible and Near-IR Reflectance Spectra for Smectite, Sulfate And Perchlorate under Dry Conditions for Interpretation of Martian Surface Mineralogy

    NASA Technical Reports Server (NTRS)

    Morris, R.V.; Ming, W.; Golden, D.C.; Arvidson, R.E.; Wiseman, S.M.; Lichtenberg, K.A.; Cull, S.; Graff, T.G.

    2009-01-01

    Visible and near-IR (VNIR) spectral data for the martian surface obtained from orbit by the MRO-CRISM and OMEGA instruments are interpreted as having spectral signatures of H2O/OH-bearing phases, including smectites and other phyllosilicates, sulfates, and high-SiO2 phases [e.g., 1-4]. Interpretations of martian spectral signatures are based on and constrained by spectra that are obtained in the laboratory on samples with known mineralogical compositions and other physicochemical characteristics under, as appropriate, Mars-like environmental conditions (e.g., temperature, pressure, and humidity). With respect to environmental conditions, differences in the absolute concentration of atmospheric H2O can effect the hydration state and therefore the spectra signatures of smectite phyllosilicates (solvation H2O) and certain sulfates (hydration H2O) [e.g., 5-7]. We report VNIR spectral data acquired under humid (laboratory air) and dry (dry N2 gas) environments for two natural smectites (nontronite API-33A and saponite SapCa-1) to characterize the effect of solvation H2O on spectral properties. We also report spectral data for the thermal dehydration products of (1) melanterite (FeSO4.7H2O) in both air and dry N2 gas and (2) Mg-perchlorate (Mg(ClO4)2.6H2O) in dry N2 environments. Spectral measurements for samples dehydrated in dry N2 were made without exposing them to humid laboratory air.

  19. CRISM/HiRISE Correlative Spectroscopy

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Murchie, S. L.; McGovern, A.; Milazzo, M. P.; Herkenhoff, K. E.

    2011-12-01

    The Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and High Resolution Imaging Science Experiment (HiRISE) are complementary investigations with high spectral resolution and broad wavelength coverage (CRISM ~20 m/pxl; ~400 - 4000 nm, 6.55 nm sampling) and high spatial resolution with broadband color capability (HiRISE ~25 cm/pxl; ~500, 700, 900 nm band centers, ~200-300 nm FWHM). Over the course of the MRO mission it has become apparent that spectral variations in the IR detected by CRISM (~1000 nm - 4000 nm) sometimes correlate spatially with visible and near infrared 3-band color variations observed by HiRISE. We have developed a data processing procedure that establishes a numerical mapping between HiRISE color and CRISM VNIR and IR spectral data and provides a statistical evaluation of the uncertainty in the mapping, with the objective of extrapolating CRISM-inferred mineralogy to the HiRISE spatial scale. The MRO mission profile, spacecraft capabilities, and science planning process emphasize coordinated observations - the simultaneous observation of a common target by multiple instruments. The commonalities of CRISM/HiRISE coordinated observations present a unique opportunity for tandem data analysis. Recent advances in the systematic processing of CRISM hyperspectral targeted observations account for gimbal-induced photometric variations and transform the data to a synthetic nadir acquisition geometry. The CRISM VNIR (~400 nm - 1000 nm) data can then be convolved to the HiRISE Infrared, Red, and Blue/Green (IRB) response functions to generate a compatible CRISM IRB product. Statistical evaluation of the CRISM/HiRISE spatial overlap region establishes a quantitative link between the data sets. IRB spectral similarity mapping for each HiRISE color spatial pixel with respect to the CRISM IRB product allows a given HiRISE pixel to be populated with information derived from the coordinated CRISM observation, including correlative VNIR or IR spectral data, spectral summary parameters, or browse products. To properly characterize the quality and fidelity of the IRB correlation, a series of ancillary information bands that record the numerical behavior of the procedure are also generated. Prototype CRISM/HiRISE correlative data products have been generated for a small number of coordinated observation pairs. The resulting products have the potential to support integrated spectral and morphological mapping at sub-meter spatial scales. Such data products would be invaluable for strategic and tactical science operations on landed missions, and would allow observations from a landed platform to be evaluated in a CRISM-based spectral and mineralogical context.

  20. Trojan Asteroids: Spectral Groups, Volatiles, and Rotational Variation

    NASA Astrophysics Data System (ADS)

    Emery, J. P.; Takir, D.; Stamper, N. G.; Lucas, M. P.

    2017-12-01

    Trojan asteroids comprise a substantial population of primitive bodies confined to Jupiter's stable Lagrange regions. ecause they likely became trapped in these orbits at the end of the initial phase of planetary formation and subsequent migration, the compositions of Trojans provide unique perspectives on chemical and dynamical processes that shaped the Solar System. Ices and organics are of particular interest for understanding Trojan histories. Published near-infrared (0.7 to 4.0 mm) spectra of Trojans show no absorption bands due to H2O or organics. However, if the Trojan asteroids formed at or beyond their present heliocentric distance of 5.2 AU and never spent significant amounts of time closer to the Sun, they should contain H2O ice. Two VNIR spectral groups exist within the Trojans: 2/3 of large Trojans form a cluster with very red (D-type-like) spectral slopes, while the other 1/3 cluster around less-red (P-type-like) slopes. Visible colors of smaller Trojans suggest that the ratio of red to less-red Trojans decreases with decreasing size, from which Wong and Brown (2015; AJ 150:174) suggest that the interiors of all Trojans are represented by the less-red spectral group. In order to further test the hypothesis that Trojans contain H­2O ice and complex organics and to test the result from visible colors that the spectral group ratio changes with size, we have measured near-infrared (0.8 - 2.5 μm) spectra of small ( 35 to 75 km) Trojans from both swarms using the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). We have also measured 2 - 4 μm spectra of several Trojans to search for spectral signatures of H2O and organics. We confirm that the two spectral groups persist to smaller sizes, and we still detect no absorption features that would be diagnostic of composition. The spectrum of two large Trojans show evidence of spectral slope variations with rotation, but spectra of several others do not. We will present the new spectra and discuss them in the context of Trojan compositions and origins.

  1. Research on imaging spectrometer using LC-based tunable filter

    NASA Astrophysics Data System (ADS)

    Shen, Zhixue; Li, Jianfeng; Huang, Lixian; Luo, Fei; Luo, Yongquan; Zhang, Dayong; Long, Yan

    2012-09-01

    A liquid crystal tunable filter (LCTF) with large aperture is developed using PDLC liquid crystal. A small scale imaging spectrometer is established based on this tunable filter. This spectrometer can continuously tuning, or random-access selection of any wavelength in the visible and near infrared (VNIR) band synchronized with the imaging processes. Notable characteristics of this spectrometer include the high flexibility control of its operating channels, the image cubes with high spatial resolution and spectral resolution and the strong ability of acclimation to environmental temperature. The image spatial resolution of each tuning channel is almost near the one of the same camera without the LCTF. The spectral resolution is about 20 nm at 550 nm. This spectrometer works normally under 0-50°C with a maximum power consumption of 10 Watts (with exclusion of the storage module). Due to the optimization of the electrode structure and the driving mode of the Liquid Crystal cell, the switch time between adjacent selected channels can be reduced to 20 ms or even shorter. Spectral imaging experiments in laboratory are accomplished to verify the performance of this spectrometer, which indicate that this compact imaging spectrometer works reliably, and functionally. Possible applications of this imaging spectrometer include medical science, protection of historical relics, criminal investigation, disaster monitoring and mineral detection by remote sensing.

  2. Characterization of Navajo Sandstone concretions: Mars comparison and criteria for distinguishing diagenetic origins

    NASA Astrophysics Data System (ADS)

    Potter, Sally L.; Chan, Marjorie A.; Petersen, Erich U.; Dyar, M. Darby; Sklute, Elizabeth

    2011-01-01

    The eolian Jurassic Navajo Sandstone spheroidal hydrous ferric oxide (HFO) concretions are divided into two size classes: macro-concretions of > 5 mm diameter and micro-concretions of < 5 mm diameter. Three internal structural end-members of macro-concretions are described as rind, layered, and solid. Two end-members of micro-concretions are rind and solid. Chemical and mineralogical gradients (μm- to mm-scale) are identified with QEMSCAN (Quantitative Elemental Mineralogy using a SCANning electron microscope) and visible to near infrared (VNIR) reflectance spectroscopy. Three HFO phases are identified using VNIR reflectance spectroscopy. An amorphous HFO phase is typically located in the rinds. Goethite is present along interior edges of rinds and throughout the interiors of layered and solid concretions. Hematite is present in the centers of rind concretions. A synthesis of petrographic, mineralogical and chemical analyses suggests that concretions grow pervasively (as opposed to radially expanding). Our model proposes that concretions precipitate initially as an amorphous HFO that sets the radius and retains some original porosity. Subsequent precipitation fills remaining pore space with younger mineral phases. Inward digitate cement crystal growth corroborates concretion growth from a set radius toward the centers. Internal structure is modified during late stage precipitation that diffuses reactants through semi-permeable rinds and overprints the interiors with younger cements. Physical characterization of textures and minerals provides diagnostic criteria for understanding how similar concretions ("blueberries") form in Meridiani Planum, Mars. The analogous Navajo Sandstone concretions show similar characteristics of in situ self-organized spacing, spheroidal geometries, internal structures, conjoined forms, and precursor HFO phases that dehydrate to goethite or hematite. These characteristics indicate a common origin via groundwater diagenesis.

  3. Coordinated Analyses of Antarctic Sediments as Mars Analog Materials Using Reflectance Spectroscopy and Current Flight-Like Instruments for CheMin, SAM and MOMA

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Franz, Heather B.; Goetz, Walter; Blake, David F.; Freissinet, Caroline; Steininger, Harald; Goesmann, Fred; Brinckerhoff, William B.; Getty, Stephanie; Pinnick, Veronica T.; hide

    2013-01-01

    Coordinated analyses of mineralogy and chemistry of sediments from the Antarctic Dry Valleys illustrate how data obtained using flight-ready technology of current NASA and ESA missions can be combined for greater understanding of the samples. Mineralogy was measured by X-ray diffraction (XRD) and visible/ near-infrared (VNIR) reflectance spectroscopy. Chemical analyses utilized a quadrupole mass spectrometer (QMS) to perform pyrolysis-evolved gas analysis (EGA) and gas chromatography-mass spectrometry (GC/MS) both with and without derivatization, as well as laser desorption-mass spectrometry (LD/MS) techniques. These analyses are designed to demonstrate some of the capabilities of near-term landed Mars missions, to provide ground truthing of VNIR reflectance data acquired from orbit by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on MRO and to provide detection limits for surface- operated instruments: the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instrument suites onboard Mars Science Laboratory (MSL) and the Mars Organic Molecule Analyzer (MOMA) onboard ExoMars-2018. The new data from this study are compared with previous analyses of the sediments performed with other techniques. Tremolite was found in the oxic region samples for the first time using the CheMin-like XRD instrument. The NIR spectral features of tremolite are consistent with those observed in these samples. Although the tremolite bands are weak in spectra of these samples, spectral features near 2.32 and 2.39 micrometers could be detected by CRISM if tremolite is present on the martian surface. Allophane was found to be a good match to weak NIR features at 1.37-1.41, 1.92, and 2.19 micrometers in spectra of the oxic region sediments and is a common component of immature volcanic soils. Biogenic methane was found to be associated with calcite in the oxic region samples by the SAM/EGA instrument and a phosphoric acid derivative was found in the anoxic region sample using the SAM/MTBSTFA technique.

  4. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  5. Investigating the Origin of Silica Occurrences on Mars through Laboratory Observations

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Milliken, R. E.; Farmer, J. D.; Mills, V. W.; Robertson, K.

    2012-12-01

    Natural amorphous "opaline" silica is a non-crystalline, typically hydrated phase of nearly pure SiO2 that is a common product of aqueous alteration of basaltic materials [e.g., 1]. It has been identified on Mars with orbital spectral data [2] and in situ measurements from the Spirit rover [3]. On Earth, opaline silica is produced over a range of temperature, pH, and water-to-rock ratio conditions that occur in hot springs, fumaroles, volcanic exhalations, low temperature weathering, and diagenesis [e.g., 4 and references therein]. The mere identification of silica on Mars therefore does not indicate a unique geologic environment or setting. However, various attributes of a given silica occurrence can be used to narrow or perhaps uniquely define the conditions in which it formed. Field relationships, microtexture, bulk and trace element chemistry, and spectral characteristics provide clues to the geologic environment in which the silica formed. Here we focus on the opaline silica in outcrops and soil at the Home Plate feature in Gusev crater where there is good evidence for past hydrothermal processes [3]. Unresolved is whether fumaroles, hot springs, geysers, or some combination of these features were present and responsible for the emplacement of opaline silica there. Knowing the answer has implications for understanding ancient climate and habitability of Mars. We have begun an investigation involving a range of laboratory measurements on natural silica-rich samples collected from various settings in Yellowstone and Hawaii Volcanoes National Parks. Visible and near infrared (VNIR) and thermal infrared (TIR) spectral measurements are supplemented with X-ray powder diffraction, scanning electron microscopy, petrographic microscopy, and ultimately with bulk and trace element measurements. Among our emerging results: 1) both VNIR and TIR spectra can detect the presence of <2 μm silica coatings on altered basalts; 2) VNIR spectra of silica from different environments exhibit only subtle differences, likely controlled primarily by variations in water content; and 3) fumarolic silica appears to have TIR spectral characteristics distinct from hot spring silica. This last result applies to samples of basaltic rocks enriched in silica by acid-sulfate leaching from Sulfur Banks, HI, which has been suggested as an analog for the Home Plate silica [3]. TIR spectra of four samples display only a weak feature near 8 μm related to high emission angle compared to that observed in hot spring silica sinter from Yellowstone. This spectral behavior may arise from microtextural or contaminant differences between the two kinds of silica. TIR spectra of Home Plate silica display a strong 8-μm feature like those of hot spring silica. If this preliminary result survives subsequent scrutiny, it may provide additional insight into the nature of the Home Plate hydrothermal system, the first to be investigated in situ on Mars. [1] McLennan, S. M. (2003), Geology, 31, 4, 315-318, [2] Milliken, R. E., et al. (2008), Geology, 36, 11, 847-850, 10.1130/G24967A.1. [3] Squyres, S. W., et al. (2008), Science, 320, 1063-1067, [4] Ruff, S. W., et al. (2011), J. Geophys. Res., 116, E00F23, 10.1029/2010JE003767.

  6. Spectral dependence of texture features integrated with hyperspectral data for area target classification improvement

    NASA Astrophysics Data System (ADS)

    Bangs, Corey F.; Kruse, Fred A.; Olsen, Chris R.

    2013-05-01

    Hyperspectral data were assessed to determine the effect of integrating spectral data and extracted texture feature data on classification accuracy. Four separate spectral ranges (hundreds of spectral bands total) were used from the Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) portions of the electromagnetic spectrum. Haralick texture features (contrast, entropy, and correlation) were extracted from the average gray-level image for each of the four spectral ranges studied. A maximum likelihood classifier was trained using a set of ground truth regions of interest (ROIs) and applied separately to the spectral data, texture data, and a fused dataset containing both. Classification accuracy was measured by comparison of results to a separate verification set of test ROIs. Analysis indicates that the spectral range (source of the gray-level image) used to extract the texture feature data has a significant effect on the classification accuracy. This result applies to texture-only classifications as well as the classification of integrated spectral data and texture feature data sets. Overall classification improvement for the integrated data sets was near 1%. Individual improvement for integrated spectral and texture classification of the "Urban" class showed approximately 9% accuracy increase over spectral-only classification. Texture-only classification accuracy was highest for the "Dirt Path" class at approximately 92% for the spectral range from 947 to 1343nm. This research demonstrates the effectiveness of texture feature data for more accurate analysis of hyperspectral data and the importance of selecting the correct spectral range to be used for the gray-level image source to extract these features.

  7. Electrowetting based infrared lens using ionic liquids

    NASA Astrophysics Data System (ADS)

    Hu, Xiaodong; Zhang, Shiguo; Liu, Yu; Qu, Chao; Lu, Liujin; Ma, Xiangyuan; Zhang, Xiaoping; Deng, Youquan

    2011-11-01

    We demonstrated an infrared variable focus ionic liquids lens using electrowetting, which could overcome the problems caused by use of water, e.g., evaporation and poor thermostability, while keeping good optical transparency in visible light and near-infrared region. Besides, the type of lens (convex or concave) could be tuned by applied voltage or refractive index of ILs used, and the transmittance was measured to exceed 90% over the spectrum of visible light and near-infrared. We believe this infrared variable focus ionic liquids lens has a great application prospect in both visible light and infrared image systems.

  8. Hyperspectral and Thermal Imaging of Oilseed Rape (Brassica napus) Response to Fungal Species of the Genus Alternaria

    PubMed Central

    Baranowski, Piotr; Jedryczka, Malgorzata; Mazurek, Wojciech; Babula-Skowronska, Danuta; Siedliska, Anna; Kaczmarek, Joanna

    2015-01-01

    In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%). PMID:25826369

  9. Comparison of spatial variability in visible and near-infrared spectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1992-01-01

    The visible and near-infrared bands of the Landsat Thematic Mapper (TM) and the Satellite Pour l'Observation de la Terre (SPOT) were analyzed to determine which band contained more spatial variability. It is important for applications that require spatial information, such as those dealing with mapping linear features and automatic image-to-image correlation, to know which spectral band image should be used. Statistical and visual analyses were used in the project. The amount of variance in an 11 by 11 pixel spatial filter and in the first difference at the six spacings of 1, 5, 11, 23, 47, and 95 pixels was computed for the visible and near-infrared bands. The results indicate that the near-infrared band has more spatial variability than the visible band, especially in images covering densely vegetated areas. -Author

  10. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2004-01-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.

  11. System design of the CRISM (compact reconnaissance imaging spectrometer for Mars) hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Silverglate, Peter R.; Fort, Dennis E.

    2003-12-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.

  12. Spectral reflectance analysis of hydrothermal alteration in drill chips from two geothermal fields, Nevada

    NASA Astrophysics Data System (ADS)

    Lamb, A. K.; Calvin, W. M.

    2010-12-01

    We surveyed drill chips with a lab spectrometer in the visible-near infrared (VNIR) and short-wave infrared (SWIR) regions, 0.35-2.5 μm, to evaluate hydrothermal alteration mineralogy of samples from two known geothermal fields in western Nevada. Rock is fractured into small pieces or “chips” during drilling and stored in trays by depth interval. The drill chips are used to determine subsurface properties such as lithology, structure, and alteration. Accurately determining alteration mineralogy in the geothermal reservoir is important for indicating thermal fluids (usually associated with fluid pathways such as faults) and the highest temperature of alteration. Hydrothermal minerals, including carbonates, iron oxides, hydroxides, sheet silicates, and sulfates, are especially diagnostic in the VNIR-SWIR region.. The strength of reflectance spectroscopy is that it is rapid and accurate for differentiating temperature-sensitive minerals that are not visually unique. We examined drill chips from two western Nevada geothermal fields: Hawthorne (two wells) and Steamboat Springs (three wells) using an ASD lab spectrometer with very high resolution. The Steamboat Hills geothermal field has produced electricity since 1988 and is well studied, and is believed to be a combination of extensional tectonics and magmatic origin. Bedrocks are Cretaceous granodiorite intruding into older metasediments. Hot springs and other surface expressions occur over an area of about 2.6 km2. In contrast, the Hawthorne geothermal reservoir is a ‘blind’ system with no surface expressions such as hot springs or geysers. The geothermal field is situated in a range front fault zone in an extensional area, and is contained in Mesozoic mixed granite and meta-volcanics. We collected spectra at each interval in the chip trays. Interval length varied between 10’ and 30’. - Endmember analysis and mineral identification were performed -using standard analysis approaches used to map mineralogy in remote sensing data sets. Mapped by depth, we identified narrow zones of intense alteration that mark fluid circulation, and overall changes in metamorphic grade facies through clay type. Steamboat Hills is more highly altered than Hawthorne, thus the alteration assemblages reflect the pH and temperature differences.

  13. Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Goudge, T. A.; Bramble, M. S.; Edwards, C. S.; Bandfield, J. L.; Amador, E. S.; Mustard, J. F.; Christensen, P. R.

    2018-02-01

    We investigated the area to the northwest of the Isidis impact basin (hereby referred to as "NW Isidis") using thermal infrared emission datasets to characterize and quantify bulk surface mineralogy throughout this region. This area is home to Jezero crater and the watershed associated with its two deltaic deposits in addition to NE Syrtis and the strong and diverse visible/near-infrared spectral signatures observed in well-exposed stratigraphic sections. The spectral signatures throughout this region show a diversity of primary and secondary surface mineralogies, including olivine, pyroxene, smectite clays, sulfates, and carbonates. While previous thermal infrared investigations have sought to characterize individual mineral groups within this region, none have systematically assessed bulk surface mineralogy and related these observations to visible/near-infrared studies. We utilize an iterative spectral unmixing method to statistically evaluate our linear thermal infrared spectral unmixing models to derive surface mineralogy. All relevant primary and secondary phases identified in visible/near-infrared studies are included in the unmixing models and their modeled spectral contributions are discussed in detail. While the stratigraphy and compositional diversity observed in visible/near-infrared spectra are much better exposed and more diverse than most other regions of Mars, our thermal infrared analyses suggest the dominance of basaltic compositions with less observed variability in the amount and diversity of alteration phases. These results help to constrain the mineralogical context of these previously reported visible/near-infrared spectral identifications. The results are also discussed in the context of future in situ investigations, as the NW Isidis region has long been promoted as a region of paleoenvironmental interest on Mars.

  14. Enhanced visible and near-infrared capabilities of the JET mirror-linked divertor spectroscopy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomanowski, B. A., E-mail: b.a.lomanowski@durham.ac.uk; Sharples, R. M.; Meigs, A. G.

    2014-11-15

    The mirror-linked divertor spectroscopy diagnostic on JET has been upgraded with a new visible and near-infrared grating and filtered spectroscopy system. New capabilities include extended near-infrared coverage up to 1875 nm, capturing the hydrogen Paschen series, as well as a 2 kHz frame rate filtered imaging camera system for fast measurements of impurity (Be II) and deuterium Dα, Dβ, Dγ line emission in the outer divertor. The expanded system provides unique capabilities for studying spatially resolved divertor plasma dynamics at near-ELM resolved timescales as well as a test bed for feasibility assessment of near-infrared spectroscopy.

  15. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting in Tb and Yb co-doped glass containing Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Sekar, G.; Akrobetu, R.; Mu, R.; Morgan, S. H.

    2011-10-01

    Tb, Yb, and Ag co-doped glass nano-composites were synthesized in a lithium-lanthanum-aluminosilicate glass matrix (LLAS) by a melt-quench technique. Ag nanoparticles (NPs) were formed in the glass matrix and confirmed by optical absorption and transmission electron microscopy (TEM). Plasmon enhanced luminescence was observed. Cooperative infrared to visible upconversion and visible to near-infrared quantum cutting were studied for samples with different thermal annealing times. Because the Yb3+ emission at 940 - 1020 nm is matched well with the band gap of crystalline Si, the quantum cutting effect may have its potential application in silicon-based solar cells.

  16. Physical Chemical Studies on Molecular Composite Compositions

    DTIC Science & Technology

    1993-02-20

    be known over a wide range of wavelengths, from UV-Visible to near infrared , for second and third harmonic generation (SHG and THG) techniques. Here...visible to near infrared radiations. The measured birefringence is high, e.g., I nE - no I varies from 0.05 to 0.09 at 632.8 nm for polymer...indices no and nE, respectively, of nematic solutions of the rodlike poly(p-phenylene benzobisthiazole), PBT, for wavelengths from the visible to near

  17. A Comparison of MODIS and DOAS Sulfur Dioxide Measurements of the April 24, 2004 Eruption of Anatahan Volcano, Mariana Islands

    NASA Astrophysics Data System (ADS)

    Meier, V. L.; Scuderi, L.; Fischer, T.; Realmuto, V.; Hilton, D.

    2006-12-01

    Measurements of volcanic SO2 emissions provide insight into the processes working below a volcano, which can presage volcanic events. Being able to measure SO2 in near real-time is invaluable for the planning and response of hazard mitigation teams. Currently, there are several methods used to quantify the SO2 output of degassing volcanoes. Ground and aerial-based measurements using the differential optical absorption spectrometer (mini-DOAS) provide real-time estimates of SO2 output. Satellite-based measurements, which can provide similar estimates in near real-time, have increasingly been used as a tool for volcanic monitoring. Direct Broadcast (DB) real-time processing of remotely sensed data from NASA's Earth Observing System (EOS) satellites (MODIS Terra and Aqua) presents volcanologists with a range of spectral bands and processing options for the study of volcanic emissions. While the spatial resolution of MODIS is 1 km in the Very Near Infrared (VNIR) and Thermal Infrared (TIR), a high temporal resolution and a wide range of radiance measurements in 32 channels between VNIR and TIR combine to provide a versatile space borne platform to monitor SO2 emissions from volcanoes. An important question remaining to be answered is how well do MODIS SO2 estimates compare with DOAS estimates? In 2004 ground-based plume measurements were collected on April 24th and 25th at Anatahan volcano in the Mariana Islands using a mini-DOAS (Fischer and Hilton). SO2 measurements for these same dates have also been calculated using MODIS images and SO2 mapping software (Realmuto). A comparison of these different approaches to the measurement of SO2 for the same plume is presented. Differences in these observations are used to better quantify SO2 emissions, to assess the current mismatch between ground based and remotely sensed retrievals, and to develop an approach to continuously and accurately monitor volcanic activity from space in near real-time.

  18. Laboratory spectroscopy of HED meteorites

    NASA Astrophysics Data System (ADS)

    Farina, M.; Coradini, A.; Carli, C.; Ammannito, E.; Consolmagno, G.; De sanctis, M.; Di Iorio, T.; Turrini, D.

    2011-12-01

    4 Vesta is one of the largest and the most massive asteroid in the Main Asteroid Belt. This asteroid possesses a basaltic surface and apparently formed and differentiated very early in the history of the solar system. There are strong evidences that indicate Vesta as the parent body of Howardites, Diogenites and Eucrites (HEDs). HED meteorites are a subgroup of achondrite meteorites and they are a suite of rocks that formed at high temperature and experienced igneous processing similar to the magmatic rocks found on Earth. The visible and near-infrared (VNIR) reflectance spectra of Vesta's surface show high similarity with the laboratory spectra of HED meteorites. Vesta and HEDs spectra have two crystal field absorption bands close to 0.9 μm and 1.9 μm indicative of the presence of ferrous iron in pyroxenes. The HEDs differ from each other primarily based on variation in pyroxene composition and the pyroxene-plagioclase ratio as well as rocks texture characteristics (e.g., size of crystals). These differences suggest that a combined VNIR spectra studies of Vesta and HED meteorites might reveal the different characteristics of the surface compositions and shed new light on the origin and the thermal history of Vesta. Moreover the link between Vesta and HEDs could provide a test bed to understand the short-lived radionuclide-driven differentiation of planetary bodies. Here we present preliminary result of a study of spectral characteristics of different HED samples, provided to us by the Vatican Observatory. Bidirectional reflectance spectra of slabs of meteorites are performed in the VNIR, between (0.35/2.50) μm, using a Fieldspec spectrometer mounted on a goniometer, in use at the SLAB (Spectroscopy laboratory, INAF, Rome). The spectra are acquired in standard conditions with an incidence angle i=30o and an emission angle e=0o, measuring a spot with a diameter of 5 mm. Different Howardite, Diogenite and Eucrite samples are "mapped" considering several spots on the surface of the slabs to define their spectral variability between samples representing the different types of HEDs and to describe the spectral heterogeneity for each samples. A preliminary comparison with mineralogical and petrographic characteristics has been done describing hand samples and their thin sections. These data will be incorporated in a spectral library that could be an useful tool for the interpretation of data acquired by the Dawn mission in orbit on Vesta.

  19. How Rich is Rich? Placing Constraints on the Abundance of Spinel in the Pink Spinel Anorthosite Lithology on the Moon Through Space Weathering

    NASA Technical Reports Server (NTRS)

    Gross, J.; Gillis-Davis, J.; Isaacson, P. J.; Le, L.

    2015-01-01

    previously unknown lunar rock was recently recognized in the Moon Mineralogy Mapper (M(sup 3)) visible to near-infrared (VNIR) reflectance spectra. The rock type is rich in Mg-Al spinel (approximately 30%) and plagioclase and contains less than 5% mafic silicate minerals (olivine and pyroxene). The identification of this pink spinel anorthosite (PSA) at the Moscoviense basin has sparked new interest in lunar spinel. Pieters et al. suggested that these PSA deposits might be an important component of the lunar crust. However, Mg-Al spinel is rare in the Apollo and meteorite sample collections (only up to a few wt%), and occurs mostly in troctolites and troctolitic cataclastites. In this study, we are conducting a series of experiments (petrologic and space weathering) to investigate whether deposits of spinel identified by remote sensing are in high concentration (e.g. 30%) or whether the concentrations of spinel in these deposits are more like lunar samples, which contain only a few wt%. To examine the possibility of an impact-melt origin for PSA, conducted 1-bar crystallization experiments on rock compositions similar to pink spinel troctolite 65785. The VNIR spectral reflectance analyses of the low-temperature experiments yield absorption features similar to those of the PSA lithology detected at Moscoviense Basin. The experimental run products at these temperatures contain approximately 5 wt% spinel, which suggests that the spinel-rich deposits detected by M(sup 3) might not be as spinel-rich as previously thought. However, the effect of space weathering on spinel is unknown and could significantly alter its spectral properties including potential weakening of its diagnostic 2-micrometers absorption feature. Thus, weathered lunar rocks could contain more spinel than a comparison with the unweathered experimental charges would suggest. In this study, we have initiated space weathering experiments on 1) pure pink spinel, 2) spinel-anorthite mixtures, and 3) the low temperature experimental run products from Gross et al. in order to evaluate the influence of space weathering on the absorption strength of spinel. The results can be used to place constraints on the spinel abundance in the PSA lithology and can be used as ground truth for further VNIR spectral analyzes of lunar lithologies.

  20. Multi-spectral imaging with infrared sensitive organic light emitting diode

    PubMed Central

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  1. Multi-spectral imaging with infrared sensitive organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  2. CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter)

    NASA Astrophysics Data System (ADS)

    Murchie, Scott L.; Arvidson, Raymond E.; Bedini, Peter; Beisser, K.; Bibring, Jean-Pierre; Bishop, J.; Boldt, John D.; Choo, Tech H.; Clancy, R. Todd; Darlington, Edward H.; Des Marais, D.; Espiritu, R.; Fasold, Melissa J.; Fort, Dennis; Green, Richard N.; Guinness, E.; Hayes, John R.; Hash, C.; Heffernan, Kevin J.; Hemmler, J.; Heyler, Gene A.; Humm, David C.; Hutchison, J.; Izenberg, Noam R.; Lee, Robert E.; Lees, Jeffrey J.; Lohr, David A.; Malaret, Erick R.; Martin, T.; Morris, Richard V.; Mustard, John F.; Rhodes, Edgar A.; Robinson, Mark S.; Roush, Ted L.; Schaefer, Edward D.; Seagrave, Gordon G.; Silverglate, Peter R.; Slavney, S.; Smith, Mark F.; Strohbehn, Kim; Taylor, Howard W.; Thompson, Patrick L.; Tossman, Barry E.

    2004-12-01

    CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) spacecraft in August 2005. MRO"s objectives are to recover climate science originally to have been conducted on the Mars Climate Orbiter (MCO), to identify and characterize sites of possible aqueous activity to which future landed missions may be sent, and to characterize the composition, geology, and stratigraphy of Martian surface deposits. MRO will operate from a sun-synchronous, near-circular (255x320 km altitude), near-polar orbit with a mean local solar time of 3 PM. CRISM"s spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 383 nm to 3960 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.12° field-of-view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer, light is split by a dichroic into VNIR (visible-near-infrared, 383-1071 nm) and IR (infrared, 988-3960 nm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.6 nm spectral spacing and an instantaneous field of view of 61.5 μradians. The Optical Sensor Unit (OSU) can be gimbaled to take out along-track smear, allowing long integration times that afford high signal-to-noise ratio (SNR) at high spectral and spatial resolution. The scan motor and encoder are controlled by a separately housed Gimbal Motor Electronics (GME) unit. A Data Processing Unit (DPU) provides power, command and control, and data editing and compression. CRISM acquires three major types of observations of the Martian surface and atmosphere. In Multispectral Mapping Mode, with the gimbal pointed at planet nadir, data are collected at frame rates of 15 or 30 Hz. A commandable subset of wavelengths is saved by the DPU and binned 5:1 or 10:1 cross-track. The combination of frame rates and binning yields pixel footprints of 100 or 200 m. In this mode, nearly the entire planet can be mapped at wavelengths of key mineralogic absorption bands to select regions of interest. In Targeted Mode, the gimbal is scanned over +/-60° from nadir to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution. Ten additional abbreviated, pixel-binned observations are taken before and after the main hyperspectral image at longer atmospheric path lengths, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In Atmospheric Mode, the central observation is eliminated and only the EPF is acquired. Global grids of the resulting lower data volume observation are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties.

  3. [Detecting the information of cucumber in greenhouse for picking based on NIR image].

    PubMed

    Yuan, Ting; Xu, Chen-Guang; Ren, Yong-Xin; Feng, Qing-Chun; Tan, Yu-Zhi; Li, Wei

    2009-08-01

    For the cucumber harvesting robot, the identification of target information is one of important tasks in the automation of fruit-picking. In order to implement spatial fruit localization and quality discrimination in greenhouse, this paper presented a machine vision algorithm for the recognition and detection of cucumber fruits based on near-infrared spectral imaging. By comparing the spectral reflectance of cucumber plant (fruit, leaf and stem) from visible to infrared region (325-1 075 nm) measured by ASD FieldSpec Pro VNIR spectrometer, a monospectral near-infrared image at the 850 nm sensitive wavelength was captured to cope with the similar-color segmentation problem in complex environment. Then, a method of fruit extraction was developed on the basis of the following steps. Firstly, from the gray level histogram it was observed that the pixels of fruit distributed on the right are lesser than that of background, so "P parameter threshold method" was used to image segmentation. Subsequently, divided local image was partitioned into several sub-blocks by the application of adaptive template mining, which was feasible for processing the fruit with long-column feature. Finally, noises including parts of stem and leaf were eliminated using estimation condition of barycentre position and area size, proved by relative experiment In addition, the region for robotic grasping was established by gray variation between fruit-handle and fruit pedicel, as the quality feature was extracted with morphological characteristics of the centre-line length and the fruit flexure degree. A detecting experiment was carried out on 30 images with cucumber fruits and 10 images with no fruits, which were taken in a changing greenhouse environment. The results indicate that the accuracy rate of the recognition was 83.3% and 100%, while the success rate of effectively acquiring the grasping region was 83.3%, which can meet the demand of robotic fruit-harvesting.

  4. Multispectral VNIR Observations by the Opportunity Rover Pancam of Multiple Episodes of Aqueous Alteration in Marathon Valley, Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Farrand, William H.; Bell, James F., III; Johnson, Jeffrey R.; Arvidson, Raymond E.; Mittlefehldt, David W.; Ruff, Steven W.; Rice, Melissa S.

    2016-01-01

    Since early 2015, the Mars Exploration Rover Opportunity has been exploring the break in the rim of Endeavour Crater dubbed Marathon Valley by the rover team. Marathon Valley was identified by orbital hyperspectral data from the MRO CRISM as having a relatively strong spectral feature in the 2.3 micrometer region indicative of an Mg or Fe-OH combination overtone absorption band indicative of smectite clay. Earlier in its mission, Opportunity examined the Matijevic Hill region on the more northerly Cape York crater rim segment and found evidence for smectite clays in a stratigraphically lower, pre-impact formed unit dubbed the Matijevic formation. However, the smectite exposures in Marathon Valley appear to be associated with the stratigraphically higher Shoemaker formation impact breccia. Evidence for alteration in this unit in Marathon Valley is provided by Pancam multispectral observations in the 430 to 1010 nm visible/near infrared (VNIR) spectral range. Sinuous troughs ("red zones") contain fragmented cobbles and pebbles displaying higher blue-to-red slopes, moderately higher 535 nm band depths, elevated 754 to 934 nm, and negative 934 to 1009 nm slopes. The lack of an absorption at 864 to 904 nm indicates the lack of crystalline red hematite in these red zones, but likely an enrichment in nanophase ferric oxides. The negative 934 to 1009 nm slope is potentially indicative of the presence of adsorbed or structurally bound water. A scuff in a red zone near the southern wall of Marathon Valley uncovered light-toned soils and a pebble with an 803 to 864 nm absorption resembling that of light-toned Fe-sulfate bearing soils uncovered by the Spirit rover in the Columbia Hills of Gusev crater. APXS chemical measurements indicated enrichments of Mg and S in the scuff soils and the pebble, Joseph Field, with the strongest 803 nm band- consistent with Mg and Fe sulfates. The presence of Fe and Mg sulfates can be interpreted as evidence of a potentially later episode of aqueous alteration with an earlier, neutral to alkaline pH episode forming the Fe/Mg smectites and a later acid pH episode forming the Fe and Mg sulfates.

  5. Visible/near-infrared spectroscopy for discrimination of HLB-infected citrus leaves from healthy leaves

    USDA-ARS?s Scientific Manuscript database

    Researchers have used various hyperspectral systems, covering several areas of the electromagnetic spectrum to investigate all types of disease/plant interactions. The purpose of this research was to investigate using visible and near-infrared (400-1100nm) spectroscopy to differentiate HLB infected...

  6. Visible/near-infrared spectroscopy to predict water holding capacity in broiler breast meat

    USDA-ARS?s Scientific Manuscript database

    Visible/Near-infrared spectroscopy (Vis/NIRS) was examined as a tool for rapidly determining water holding capacity (WHC) in broiler breast meat. Both partial least squares (PLS) and principal component analysis (PCA) models were developed to relate Vis/NIRS spectra of 85 broiler breast meat sample...

  7. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    DTIC Science & Technology

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  8. The response of visible/near infrared absorbance to wood-staining fungi

    Treesearch

    Brian K. Via; Lori G. Eckhardt; Chi-Leung So; Todd F. Shupe; Leslie H. Groom; Michael Stine

    2006-01-01

    The influence of blue-stain fungi [Ophiostoma minus (Hedgcock) H. and P. Sydow and Leptographium serpens (Goid.) Siemaszko] on absorbance at the visible and near infrared wavelengths was investigated. Forty trees were sampled at breast height from longleaf pine (Pinus palustris Mill.). One half of each increment...

  9. Differences in visible and near-infrared light reflectance between orange fruit and leaves

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Berumen, A.

    1975-01-01

    The objective was to find the best time during the season (April 26, 1972 to January 8, 1973) to distinguish orange fruit from leaves by spectrophotometrically determining at 10-day intervals when the difference in visible (550- and 650-nm wavelengths) and near-infrared (850-nm wavelength) light reflectance between fruit and nearby leaves was largest. December 5 to January 8 was the best time to distinguish fruit from leaves. During this period the fruit's color was rapidly changing from green to yellow, and the difference in visible light reflectance between fruit and leaves was largest. The difference in near-infrared reflectance between leaves and fruit remained essentially constant during ripening when the difference in visible light reflectance between leaves and fruit was largest.

  10. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  11. Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion.

    PubMed

    Nienhaus, Lea; Wu, Mengfei; Bulović, Vladimir; Baldo, Marc A; Bawendi, Moungi G

    2018-03-01

    The process of upconversion leads to emission of photons higher in energy than the incident photons. Near-infrared-to-visible upconversion, in particular, shows promise in sub-bandgap sensitization of silicon and other optoelectronic materials, resulting in potential applications ranging from photovoltaics that exceed the Shockley-Queisser limit to infrared imaging. A feasible mechanism for near-infrared-to-visible upconversion is triplet-triplet annihilation (TTA) sensitized by colloidal nanocrystals (NCs). Here, the long lifetime of spin-triplet excitons in the organic materials that undergo TTA makes upconversion possible under incoherent excitation at relatively low photon fluxes. Since this process relies on optically inactive triplet states, semiconductor NCs are utilized as efficient spin mixers, absorbing the incident light and sensitizing the triplet states of the TTA material. The state-of-the-art system uses rubrene with a triplet energy of 1.14 eV as the TTA medium, and thus allows upconversion of light with photon energies above ∼1.1 eV. In this perspective, we review the field of lead sulfide (PbS) NC-sensitized near-infrared-to-visible upconversion, discuss solution-based upconversion, and highlight progress made on solid-state upconversion devices.

  12. Lunar Resources Using Moderate Spectral Resolution Visible and Near-infrared Spectroscopy: Al/si and Soil Maturity

    NASA Technical Reports Server (NTRS)

    Fischer, Erich M.; Pieters, Carle M.; Head, James W.

    1992-01-01

    Modern visible and near-infrared detectors are critically important for the accurate identification and relative abundance measurement of lunar minerals; however, even a very small number of well-placed visible and near-infrared bandpass channels provide a significant amount of general information about crucial lunar resources. The Galileo Solid State Imaging system (SSI) multispectral data are an important example of this. Al/Si and soil maturity will be discussed as examples of significant general lunar resource information that can be gleaned from moderate spectral resolution visible and near-infrared data with relative ease. Because quantitative-albedo data are necessary for these kinds of analyses, data such as those obtained by Galileo SSI are critical. SSI obtained synoptic digital multispectral image data for both the nearside and farside of the Moon during the first Galileo Earth-Moon encounter in December 1990. The data consist of images through seven filters with bandpasses ranging from 0.40 microns in the ultraviolet to 0.99 microns in the near-infrared. Although these data are of moderate spectral resolution, they still provide information for the following lunar resources: (1) titanium content of mature mare soils based upon the 0.40/0.56-micron (UV/VIS) ratio; (2) mafic mineral abundance based upon the 0.76/0.99-micron ratio; and (3) the maturity or exposure age of the soils based upon the 0.56-0.76-micron continuum and the 0.76/0.99-micron ratio. Within constraints, these moderate spectral resolution visible and near-infrared reflectance data can also provide elemental information such as Al/Si for mature highland soils.

  13. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    PubMed

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  14. Impact of spatial resolution on cirrus infrared satellite retrievals in the presence of cloud heterogeneity

    NASA Astrophysics Data System (ADS)

    Fauchez, T.; Platnick, S. E.; Meyer, K.; Zhang, Z.; Cornet, C.; Szczap, F.; Dubuisson, P.

    2015-12-01

    Cirrus clouds are an important part of the Earth radiation budget but an accurate assessment of their role remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better accuracy for thin cirrus effective radius retrievals with small effective radii. However, current global operational algorithms for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel Approximation (PPA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on ice cloud retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects in the TIR spectrum are mainly dominated by the PPA bias that primarily depends on the COT subpixel heterogeneity; for solar reflectance channels, in addition to the PPA bias, the IPA can lead to significant retrieval errors due to a significant photon horizontal transport between cloudy columns, as well as brightening and shadowing effects that are more difficult to quantify. Furthermore TIR retrievals techniques have demonstrated better retrieval accuracy for thin cirrus having small effective radii over solar reflectance techniques. The TIR range is thus particularly relevant in order to characterize, as accurately as possible, thin cirrus clouds. Heterogeneity effects in the TIR are evaluated as a function of spatial resolution in order to estimate the optimal spatial resolution for TIR retrieval applications. These investigations are performed using a cirrus 3D cloud generator (3DCloud), a 3D radiative transfer code (3DMCPOL), and two retrieval algorithms, namely the operational MODIS retrieval algorithm (MOD06) and a research-level SWT algorithm.

  15. Correlation of quality measurements to visible-near infrared spectra of pasteurized egg

    USDA-ARS?s Scientific Manuscript database

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using ch...

  16. Chemometric correlation of shelf life, quality measurements, and visible-near infrared spectra of pasteurized eggs

    USDA-ARS?s Scientific Manuscript database

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using pr...

  17. Measurement of moisture, soluble solids, and sucrose content and mechanical properties in sugar beet using portable visible and near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Visible and near-infrared spectroscopy, coupled with partial least squares regression, was used to predict the moisture, soluble solids and sucrose content and mechanical properties of sugar beet. Interactance spectra were acquired from both intact and sliced beets, using two portable spectrometers ...

  18. Classification Accuracy Increase Using Multisensor Data Fusion

    NASA Astrophysics Data System (ADS)

    Makarau, A.; Palubinskas, G.; Reinartz, P.

    2011-09-01

    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to other established methods illustrates the advantage in the classification accuracy for many classes such as buildings, low vegetation, sport objects, forest, roads, rail roads, etc.

  19. Validation of the ASTER instrument level 1A scene geometry

    USGS Publications Warehouse

    Kieffer, H.H.; Mullins, K.F.; MacKinnon, D.J.

    2008-01-01

    An independent assessment of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument geometry was undertaken by the U.S. ASTER Team, to confirm the geometric correction parameters developed and applied to Level 1A (radiometrically and geometrically raw with correction parameters appended) ASTER data. The goal was to evaluate the geometric quality of the ASTER system and the stability of the Terra spacecraft. ASTER is a 15-band system containing optical instruments with resolutions from 15- to 90-meters; all geometrically registered products are ultimately tied to the 15-meter Visible and Near Infrared (VNIR) sub-system. Our evaluation process first involved establishing a large database of Ground Control Points (GCP) in the mid-western United States; an area with features of an appropriate size for spacecraft instrument resolutions. We used standard U.S. Geological Survey (USGS) Digital Orthophoto Quads (DOQS) of areas in the mid-west to locate accurate GCPs by systematically identifying road intersections and recording their coordinates. Elevations for these points were derived from USGS Digital Elevation Models (DEMS). Road intersections in a swath of nine contiguous ASTER scenes were then matched to the GCPs, including terrain correction. We found no significant distortion in the images; after a simple image offset to absolute position, the RMS residual of about 200 points per scene was less than one-half a VNIR pixel. Absolute locations were within 80 meters, with a slow drift of about 10 meters over the entire 530-kilometer swath. Using strictly simultaneous observations of scenes 370 kilometers apart, we determined a stereo angle correction of 0.00134 degree with an accuracy of one microradian. The mid-west GCP field and the techniques used here should be widely applicable in assessing other spacecraft instruments having resolutions from 5 to 50-meters. ?? 2008 American Society for Photogrammetry and Remote Sensing.

  20. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data

    USGS Publications Warehouse

    Rowan, L.C.; Schmidt, R.G.; Mars, J.C.

    2006-01-01

    The Reko Diq, Pakistan mineralized study area, approximately 10??km in diameter, is underlain by a central zone of hydrothermally altered rocks associated with Cu-Au mineralization. The surrounding country rocks are a variable mixture of unaltered volcanic rocks, fluvial deposits, and eolian quartz sand. Analysis of 15-band Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data of the study area, aided by laboratory spectral reflectance and spectral emittance measurements of field samples, shows that phyllically altered rocks are laterally extensive, and contain localized areas of argillically altered rocks. In the visible through shortwave-infrared (VNIR + SWIR) phyllically altered rocks are characterized by Al-OH absorption in ASTER band 6 because of molecular vibrations in muscovite, whereas argillically altered rocks have an absorption feature in band 5 resulting from alunite. Propylitically altered rocks form a peripheral zone and are present in scattered exposures within the main altered area. Chlorite and muscovite cause distinctive absorption features at 2.33 and 2.20????m, respectively, although less intense 2.33????m absorption is also present in image spectra of country rocks. Important complementary lithologic information was derived by analysis of the spectral emittance data in the 5 thermal-infrared (TIR) bands. Silicified rocks were not distinguished in the 9 VNIR + SWIR bands because of the lack of diagnostic spectral absorption features in quartz in this wavelength region. Quartz-bearing surficial deposits, as well as hydrothermally silicified rocks, were mapped in the TIR bands by using a band 13/band 12 ratio image, which is sensitive to the intensity of the quartz reststrahlen feature. Improved distinction between the quartzose surficial deposits and silicified bedrock was achieved by using matched-filter processing with TIR image spectra for reference. ?? 2006 Elsevier Inc. All rights reserved.

  1. The PALM-3000 high-order adaptive optics system for Palomar Observatory

    NASA Astrophysics Data System (ADS)

    Bouchez, Antonin H.; Dekany, Richard G.; Angione, John R.; Baranec, Christoph; Britton, Matthew C.; Bui, Khanh; Burruss, Rick S.; Cromer, John L.; Guiwits, Stephen R.; Henning, John R.; Hickey, Jeff; McKenna, Daniel L.; Moore, Anna M.; Roberts, Jennifer E.; Trinh, Thang Q.; Troy, Mitchell; Truong, Tuan N.; Velur, Viswa

    2008-07-01

    Deployed as a multi-user shared facility on the 5.1 meter Hale Telescope at Palomar Observatory, the PALM-3000 highorder upgrade to the successful Palomar Adaptive Optics System will deliver extreme AO correction in the near-infrared, and diffraction-limited images down to visible wavelengths, using both natural and sodium laser guide stars. Wavefront control will be provided by two deformable mirrors, a 3368 active actuator woofer and 349 active actuator tweeter, controlled at up to 3 kHz using an innovative wavefront processor based on a cluster of 17 graphics processing units. A Shack-Hartmann wavefront sensor with selectable pupil sampling will provide high-order wavefront sensing, while an infrared tip/tilt sensor and visible truth wavefront sensor will provide low-order LGS control. Four back-end instruments are planned at first light: the PHARO near-infrared camera/spectrograph, the SWIFT visible light integral field spectrograph, Project 1640, a near-infrared coronagraphic integral field spectrograph, and 888Cam, a high-resolution visible light imager.

  2. Effect of varying postmortem deboning time and sampling position on visible and near infrared spectra of broiler breast filets

    USDA-ARS?s Scientific Manuscript database

    Visible-Near Infrared spectroscopy (Vis-NIR) was used to characterize broiler breast filets with varied deboning times and identify how the side and position of the sampling affects the chemometric analysis and prediction capabilities. This study served to identify what differences, if any, exist wh...

  3. Comparison of optimal wavelengths selection methods for visible/near-infrared prediction of apple firmness and soluble solids content

    USDA-ARS?s Scientific Manuscript database

    Visible and near-infrared (Vis-NIR) spectroscopy is now being used for nondestructive quality measurement of fruits and other food products. To implement the technology, it is necessary to develop an effective calibration model relating the acquired spectral data to the quality attribute(s) of inter...

  4. Nondestructive determination of dry matter and soluble solids content in dehydrator onions and garlics using a handheld visible and near infrared instrument

    USDA-ARS?s Scientific Manuscript database

    A non-destructive method based on visible and near-infrared spectroscopy was investigated for determining the dry matter and soluble solids contents of dehydrator onions at the base, equatorial, and shoulder locations and of garlic cloves at the equatorial location. The interactance spectrum (400-10...

  5. Shelf life study of egg albumin in pasteurized and non-pasteurized eggs using visible-near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    A twelve week shelf life study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. The goal of the study was to correlate the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior eg...

  6. Geological Characterization of Remote Field Sites Using Visible and Infrared Spectroscopy: Results from the 1999 Marsokhod Field Test

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.

    2000-01-01

    The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.

  7. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications

    PubMed Central

    Micó, Gloria; Pastor, Daniel; Pérez, Daniel; Doménech, José David; Fernández, Juan; Baños, Rocío; Alemany, Rubén; Sánchez, Ana M.; Cirera, Josep M.; Mas, Roser

    2017-01-01

    Silicon nitride photonics is on the rise owing to the broadband nature of the material, allowing applications of biophotonics, tele/datacom, optical signal processing and sensing, from visible, through near to mid-infrared wavelengths. In this paper, a review of the state of the art of silicon nitride strip waveguide platforms is provided, alongside the experimental results on the development of a versatile 300 nm guiding film height silicon nitride platform. PMID:28895906

  8. Modeling grain size variations of aeolian gypsum deposits at White Sands, New Mexico, using AVIRIS imagery

    USGS Publications Warehouse

    Ghrefat, H.A.; Goodell, P.C.; Hubbard, B.E.; Langford, R.P.; Aldouri, R.E.

    2007-01-01

    Visible and Near-Infrared (VNIR) through Short Wavelength Infrared (SWIR) (0.4-2.5????m) AVIRIS data, along with laboratory spectral measurements and analyses of field samples, were used to characterize grain size variations in aeolian gypsum deposits across barchan-transverse, parabolic, and barchan dunes at White Sands, New Mexico, USA. All field samples contained a mineralogy of ?????100% gypsum. In order to document grain size variations at White Sands, surficial gypsum samples were collected along three Transects parallel to the prevailing downwind direction. Grain size analyses were carried out on the samples by sieving them into seven size fractions ranging from 45 to 621????m, which were subjected to spectral measurements. Absorption band depths of the size fractions were determined after applying an automated continuum-removal procedure to each spectrum. Then, the relationship between absorption band depth and gypsum size fraction was established using a linear regression. Three software processing steps were carried out to measure the grain size variations of gypsum in the Dune Area using AVIRIS data. AVIRIS mapping results, field work and laboratory analysis all show that the interdune areas have lower absorption band depth values and consist of finer grained gypsum deposits. In contrast, the dune crest areas have higher absorption band depth values and consist of coarser grained gypsum deposits. Based on laboratory estimates, a representative barchan-transverse dune (Transect 1) has a mean grain size of 1.16 ??{symbol} (449????m). The error bar results show that the error ranges from - 50 to + 50????m. Mean grain size for a representative parabolic dune (Transect 2) is 1.51 ??{symbol} (352????m), and 1.52 ??{symbol} (347????m) for a representative barchan dune (Transect 3). T-test results confirm that there are differences in the grain size distributions between barchan and parabolic dunes and between interdune and dune crest areas. The t-test results also show that there are no significant differences between modeled and laboratory-measured grain size values. Hyperspectral grain size modeling can help to determine dynamic processes shaping the formation of the dunes such as wind directions, and the relative strengths of winds through time. This has implications for studying such processes on other planetary landforms that have mineralogy with unique absorption bands in VNIR-SWIR hyperspectral data. ?? 2006 Elsevier B.V. All rights reserved.

  9. Regional geomorphology and history of Titan's Xanadu province

    USGS Publications Warehouse

    Radebaugh, J.; Lorenz, R.D.; Wall, S.D.; Kirk, R.L.; Wood, C.A.; Lunine, J.I.; Stofan, E.R.; Lopes, R M.C.; Valora, P.; Farr, T.G.; Hayes, A.; Stiles, B.; Mitri, Giuseppe; Zebker, H.; Janssen, M.; Wye, L.; LeGall, A.; Mitchell, K.L.; Paganelli, F.; West, R.D.; Schaller, E.L.; ,

    2011-01-01

    Titan's enigmatic Xanadu province has been seen in some detail with instruments from the Cassini spacecraft. The region contains some of the most rugged, mountainous terrain on Titan, with relief over 2000 m. Xanadu contains evolved and integrated river channels, impact craters, and dry basins filled with smooth, radar-dark material, perhaps sediments from past lake beds. Arcuate and aligned mountain chains give evidence of compressional tectonism, yet the overall elevation of Xanadu is puzzlingly low compared to surrounding sand seas. Lineations associated with mountain fronts and valley floors give evidence of extension that probably contributed to this regional lowering. Several locations on Xanadu's western and southern margins contain flow-like features that may be cryovolcanic in origin, perhaps ascended from lithospheric faults related to regional downdropping late in its history. Radiometry and scatterometry observations are consistent with a water–ice or water–ammonia–ice composition to its exposed, eroded, fractured bedrock; both microwave and visible to near-infrared (v-nIR) data indicate a thin overcoating of organics, likely derived from the atmosphere. We suggest Xanadu is one of the oldest terrains on Titan and that its origin and evolution have been controlled and shaped by compressional and then extensional tectonism in the icy crust and ongoing erosion by methane rainfall.

  10. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    PubMed

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  11. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    PubMed Central

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  12. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  13. VNIR reflectance spectroscopy of glassy igneous material with variable oxidation states

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Di Genova, Danilo; Roush, Ted L.; Ertel-Ingrisch, Werner; Capaccioni, Fabrizio; Dingwell, Donald B.

    2017-04-01

    Silicate glasses with igneous compositions may represent an abundant component of planetary surface material via effusive volcanism or impact cratering processes. Several planetary surfaces are mapped with hyper-spectrometers in the visible and near-infrared (VNIR). In this spectral range, crystal field (C.F.) absorptions are useful to discriminate iron-bearing silicate components. At the same time, in the VNIR reflectance spectroscopy iron bearing glasses may exhibit a C.F. absorption at ˜1.1 μm. A weak C.F. absorption is also present at ˜1.9 μm. These absorptions can be therefore diagnostic for glassy component and can also affect the C.F. absorptions of mafic minerals when mixed in the regolith. So far, few studies investigated the spectral properties of systematic glasses compositions and at different oxygen fucacity. For these reasons studying glassy materials, and their optical constants, represents an important effort to document and to interpret, spectral features of Solar System silicate crusts where glasses are present, but may be difficult to map. In previous work Carli et al. (2016) considered the composition of glassy igneous materials produced in Earth-like atmospheric conditions (i.e. oxidized conditions). Here, we expand on that effort by including glasses formed under more reducing condition. In this study, glasses were produced at -9.3 log fO2 and 1400 ˚ C for a duration of 4 h at the Department of Earth and Environmental Sciences at the University of Munich using a gas-mixing furnace. The major element composition, sample homogeneity, and the Fe3+/Fetot. ratio of run products were analytically determined. Moreover, Raman spectra of the same samples were also acquired. Afterwards, powders were produced with nine-grain size from 250-224 μm to 50-20 μm and measured in bidirectional reflectance at Spectroscopy LABoratory (IAPS-INAF, Rome). Reflectance spectra were acquired from 0.35 to 2.5 μm with a Field-Pro Spectrometer mounted on a goniometer. Spectra were obtained with incident and emission angles of 30˚ and 0˚ , respectively. Spectra showed both diagnostic bands, reflectance diminished with increasing iron abundance. The comparison with spectra collected from samples sythetized at "Earth-like" atmospheric conditions showed: 1) Relatively higher reflectance in the visible; 2) less red slope in the IR; 3) deeper 1.1 μm absorption band. Following Carli et al. (2016, Icarus), for all the spectra acquired at each grain size, we apply the radiative transfer model to estimate the optical constant as a wavelength's function. Finally, we will report the retrieved optical constants for our samples and we will compare them with those obtained from the same composition but at "Earth-like" atmospheric conditions. Reference: Carli et al. 2016, Icarus, doi:10.1016/j.icarus.2015.10.032.

  14. A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics

    NASA Astrophysics Data System (ADS)

    Hayashi, Daiyu; van Dongen, Anne Marie; Boerekamp, Jack; Spoor, Sandra; Lucassen, Gerald; Schleipen, Jean

    2017-06-01

    Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitting diode (LED) source consisting of a blue LED for optical excitation, Lu3Al5O12:Ce3+,Cr3+ luminescent garnet for visible to near infrared emissions, and Bismuth doped GeO2 luminescent glass for near-infrared to short-wave infrared emissions. It emits broad-band light emissions continuously in 470-1600 nm with a spectral gap at 900-1000 nm. In comparison to the currently available broadband light sources like halogen lamps, high-pressure discharge lamps and super continuum lasers, the light sources of this paper has significant advantages for spectral tissue diagnostics in high-spectral stability, improved light coupling to optical fibers, potential in low light source cost and enabling battery-drive.

  15. Passive radiative cooling design with broadband optical thin-film filters

    NASA Astrophysics Data System (ADS)

    Kecebas, Muhammed Ali; Menguc, M. Pinar; Kosar, Ali; Sendur, Kursat

    2017-09-01

    The operation of most electronic semiconductor devices suffers from the self-generated heat. In the case of photovoltaic or thermos-photovoltaic cells, their exposure to sun or high temperature sources make them get warm beyond the desired operating conditions. In both incidences, the solution strategy requires effective radiative cooling process, i.e., by selective absorption and emission in predetermined spectral windows. In this study, we outline two approaches for alternative 2D thin film coatings, which can enhance the passive thermal management for application to electronic equipment. Most traditional techniques use a metallic (silver) layer because of their high reflectivity, although they display strong absorption in the visible and near-infrared spectrums. We show that strong absorption in the visible and near-infrared spectrums due to a metallic layer can be avoided by repetitive high index-low index periodic layers and broadband reflection in visible and near-infrared spectrums can still be achieved. These modifications increase the average reflectance in the visible and near-infrared spectrums by 3-4%, which increases the cooling power by at least 35 W/m2. We also show that the performance of radiative cooling can be enhanced by inserting an Al2O3 film (which has strong absorption in the 8-13 μm spectrum, and does not absorb in the visible and near-infrared) within conventional coating structures. These two approaches enhance the cooling power of passive radiative cooling systems from the typical reported values of 40 W/m2-100 W/m2 and 65 W/m2 levels respectively.

  16. The Tibesti Volcanoes of Chad: an ASTER-based Remote Sensing Analysis

    NASA Astrophysics Data System (ADS)

    Permenter, J. L.; Oppenheimer, C.

    2002-12-01

    Situated in the central Sahara desert, the Tibesti volcanic province of northern Chad, Africa, is a superb example of large-scale continental hot spot volcanism. The massif is comprised of seven major volcanoes and an assembly of related volcanic and tectonic structures, with a total surface area of over 350 km2. Its highest peak (Emi Koussi) rises above the surrounding desert to ~3415 m above sea level. Due, in part, to its remoteness, the Tibesti has never been described in volcanological detail. This study aims to provide the first modern synthesis of the volcanology of this significant hot spot province. It is based primarily on a detailed analysis and interpretation of a comprehensive set of multi-band imagery from NASA's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER has 14 spectral bands, divided between 3 optical subsystems; 3 in the very-near infrared (VNIR), 6 in the short-wave infrared, and 5 in the thermal infrared regions. In addition, the VNIR subsystem has aft-viewing optics for stereoscopic observation in the along-track direction, which permits generation of digital elevation models. The preliminary results presented here focus on the discrimination of lava composition, identification of pyroclastic deposits, and characterisation of the dimension of flows, craters, and other structural elements of the massif, using spectral and textural information gathered from the ASTER imagery. Furthermore, stratigraphic detail is obtained from the superposition of flow units and craters. The application of ASTER data to the Tibesti volcanic complex permits an initial first order description of the relative proportions and timing of different erupted materials, providing a framework for further interpretation of the volcanology and magmatic evolution of the Tibesti, based on modern geologic and tectonic concepts. It also allows intercomparisons to be made with other continental hot spot provinces.

  17. Development of a system for classification of pork loins for tenderness using visible and near-infrared reflectance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Boneless pork loins (n = 901) were evaluated either on the loin boning and trimming line of large-scale commercial plants (n = 465) or at the U.S. Meat Animal Research Center abattoir (n = 436). Exposed LM on the ventral side of boneless loins was evaluated with visible and near-infrared spectrosco...

  18. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    The feasibility of using visible/near-infrared spectroscopy (vis/NIR) to segregate broiler breast fillets by water-holding capacity (WHC) was determined. Broiler breast fillets (n = 72) were selected from a commercial deboning line based on visual color assessment. Meat color (L*a*b*), pH (2 and 2...

  19. Fluorescent Probes for Sensitive and Selective Detection of pH Changes in Live Cells in Visible and Near-infrared Channels.

    PubMed

    Fang, Mingxi; Adhikari, Rashmi; Bi, Jianheng; Mazi, Wafa; Dorh, Nethaniah; Wang, Jianbo; Conner, Nathan; Ainsley, Jon; Karabencheva-Christova, Tatyana G; Luo, Fen-Tair; Tiwari, Ashutosh; Liu, Haiying

    2017-12-28

    We report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores. The fluorescent probes B and E can be applied to visualize pH changes by monitoring visible as well as near-infrared fluorescence changes. This helps avoid fluorescence imaging blind spots at neutral or basic pH, which typical pH fluorescent probes encounter. The probes exhibit high sensitivity to pH changes, excellent photostability, low auto-fluorescence background and good cell membrane permeability.

  20. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum

    NASA Astrophysics Data System (ADS)

    Davy, Nicholas C.; Sezen-Edmonds, Melda; Gao, Jia; Lin, Xin; Liu, Amy; Yao, Nan; Kahn, Antoine; Loo, Yueh-Lin

    2017-08-01

    Current smart window technologies offer dynamic control of the optical transmission of the visible and near-infrared portions of the solar spectrum to reduce lighting, heating and cooling needs in buildings and to improve occupant comfort. Solar cells harvesting near-ultraviolet photons could satisfy the unmet need of powering such smart windows over the same spatial footprint without competing for visible or infrared photons, and without the same aesthetic and design constraints. Here, we report organic single-junction solar cells that selectively harvest near-ultraviolet photons, produce open-circuit voltages eclipsing 1.6 V and exhibit scalability in power generation, with active layers (10 cm2) substantially larger than those typical of demonstration organic solar cells (0.04-0.2 cm2). Integration of these solar cells with a low-cost, polymer-based electrochromic window enables intelligent management of the solar spectrum, with near-ultraviolet photons powering the regulation of visible and near-infrared photons for natural lighting and heating purposes.

  1. LRO Diviner Nonlinear Response and Opposition Effect Corrections

    NASA Astrophysics Data System (ADS)

    Gyalay, S.; Aye, K. M.; Paige, D. A.

    2016-12-01

    Aboard the Lunar Reconnaissance Orbiter, the Diviner Lunar Radiometer Experiment measures thermal radiation to determine the brightness temperature of the lunar surface. As with the Mars Climate Sounder (upon which Diviner is based), we use pre-flight calibration data to correct for the nonlinear response in Diviner's detectors, which in-turn accounts for much of the detector non-uniformity within channels. Furthermore, channels 8 and 9 exhibit unexpectedly high brightness temperatures close to the equator around midday, with even higher brightness temperatures when observing lunar highlands as opposed to maria. Unexpectedly high brightness temperatures around midday at the equator is reminiscent of the opposition effect known to exist on the Moon at low phase angles in Visual to Near Infra-Red (VNIR) wavelengths. Diviner channel 2 data (which detects solar radiation reflected by the Moon) shows this opposition effect, which is more pronounced in the highlands than the maria. We interpret a correlation we observe between channel 2 detected radiance and channel 8 and 9 brightness temperature as due to incomplete blocking of reflected solar radiation. This leads us to an opposition effect correction for Diviner channels 8 and 9 dependent on Diviner's solar channel data. Whether this is a direct leak of VNIR light upon the detectors, or solar heating of blocking filters, which then radiate infrared radiation upon the detectors, is yet to be determined. We can use the nonlinearity and opposition effect corrections to recharacterize the spectral emissivity of the lunar regolith, which we can then compare to laboratory spectra.

  2. Senegalese land surface change analysis and biophysical parameter estimation using NOAA AVHRR spectral data

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.

    1989-01-01

    Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.

  3. Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths

    NASA Astrophysics Data System (ADS)

    You, Lixing; Li, Hao; Zhang, Weijun; Yang, Xiaoyan; Zhang, Lu; Chen, Sijing; Zhou, Hui; Wang, Zhen; Xie, Xiaoming

    2017-08-01

    The detection efficiency (DE) of superconducting nanowire single-photon detectors (SNSPDs) at 1550 nm has been significantly improved in the past decades as a result of evolution of the optical structure, the materials, and the fabrication process. We discuss the general optical design for a high-efficiency SNSPD based on dielectric optical films that can detect wavelengths from visible to near infrared regions. This structure shows close-to-unity absorption and good insensitivity to the fine wavelength and the incident angle. We demonstrate an SNSPD specifically fabricated for the detection of 1064 nm wavelength with a maximal system DE of 87.4% ± 3.7%. The DEs of the SNSPDs for visible and near infrared wavelengths are also summarized and compared with those of semiconducting detectors.

  4. Deposits of the Peruvian Pisco Formation compared to layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Sowe, M.; Bishop, J. L.; Gross, C.; Walter, S.

    2013-09-01

    Deposits of the Peruvian Pisco Formation are morphologically similar to the mounds of Juventae Chasma at the equatorial region on Mars (Fig. 1). By analyzing these deposits, we hope to gain information about the environmental conditions that prevailed during sediment deposition and erosion, hence conditions that might be applicable to the Martian layered and hydrated deposits. Mariner 9 data of the Martian mid-latitudes have already shown evidence of the wind-sculptured landforms that display the powerful prevailing eolian regime [1]. In addition, [2] reported on similarities between Martian erosional landforms and those of the rainless coastal desert of central Peru from the Paracas peninsula to the Rio Ica. As indicated by similar erosional patterns, hyper-arid conditions and unidirectional winds must have dominated at least after deposition of the sediments, which are intermixed volcaniclastic materials and evaporate minerals at both locations. Likewise, variations in composition are displayed by alternating layers of different competence. The Pisco formation bears yardangs on siltstones, sandstones and clays with volcaniclastic admixtures [3] whereas the presence of sulphate minerals and the omnipresent mafic mineralogy has been reported for the layered mounds of Juventae Chasma equally [4]. Likewise, a volcanic airfall deposition and lacustrine formation have been proposed for the sulphate-rich deposits of Juventae Chasma [5,6]. In order to find out about potential spectral similarities, we performed a detailed spectral analysis of the surface by using LANDSAT and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) VNIR/ SWIR data (visible to near-infrared and shortwave infrared region).

  5. Subglacial hydrothermal alteration minerals in Jökulhlaup deposits of Southern Iceland, with implications for detecting past or present habitable environments on Mars.

    PubMed

    Warner, Nicholas H; Farmer, Jack D

    2010-06-01

    Jökulhlaups are terrestrial catastrophic outfloods, often triggered by subglacial volcanic eruptions. Similar volcano-ice interactions were likely important on Mars where magma/lava may have interacted with the planet's cryosphere to produce catastrophic floods. As a potential analogue to sediments deposited during martian floods, the Holocene sandurs of Iceland are dominated by basaltic clasts derived from the subglacial environment and deposited during jökulhlaups. Palagonite tuffs and breccias, present within the deposits, represent the primary alteration lithology. The surface abundance of palagonite on the sandurs is 1-20%. X-ray diffraction (XRD) analysis of palagonite breccias confirms a mineral assemblage of zeolites, smectites, low-quartz, and kaolinite. Oriented powder X-ray diffractograms (< 2 microm fraction) for palagonite breccia clasts and coatings reveal randomly ordered smectite, mixed layer smectite/illite, zeolites, and quartz. Visible light-near infrared (VNIR) and shortwave infrared (SWIR) lab spectroscopic data of the same palagonite samples show H2O/OH(-) absorptions associated with clays and zeolites. SWIR spectra derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images of the sandurs reveal Al-OH(-) and Si-OH(-) absorption features. The identified alteration mineral assemblage is consistent with low temperature (100-140 degrees C) hydrothermal alteration of basaltic material within the subglacial environment. These results suggest that potential martian analog sites that contain a similar suite of hydrated minerals may be indicative of past hydrothermal activity and locations where past habitable environments for microbial life may be found.

  6. Comparing Independent Component Analysis with Principle Component Analysis in Detecting Alterations of Porphyry Copper Deposit (case Study: Ardestan Area, Central Iran)

    NASA Astrophysics Data System (ADS)

    Mahmoudishadi, S.; Malian, A.; Hosseinali, F.

    2017-09-01

    The image processing techniques in transform domain are employed as analysis tools for enhancing the detection of mineral deposits. The process of decomposing the image into important components increases the probability of mineral extraction. In this study, the performance of Principal Component Analysis (PCA) and Independent Component Analysis (ICA) has been evaluated for the visible and near-infrared (VNIR) and Shortwave infrared (SWIR) subsystems of ASTER data. Ardestan is located in part of Central Iranian Volcanic Belt that hosts many well-known porphyry copper deposits. This research investigated the propylitic and argillic alteration zones and outer mineralogy zone in part of Ardestan region. The two mentioned approaches were applied to discriminate alteration zones from igneous bedrock using the major absorption of indicator minerals from alteration and mineralogy zones in spectral rang of ASTER bands. Specialized PC components (PC2, PC3 and PC6) were used to identify pyrite and argillic and propylitic zones that distinguish from igneous bedrock in RGB color composite image. Due to the eigenvalues, the components 2, 3 and 6 account for 4.26% ,0.9% and 0.09% of the total variance of the data for Ardestan scene, respectively. For the purpose of discriminating the alteration and mineralogy zones of porphyry copper deposit from bedrocks, those mentioned percentages of data in ICA independent components of IC2, IC3 and IC6 are more accurately separated than noisy bands of PCA. The results of ICA method conform to location of lithological units of Ardestan region, as well.

  7. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    NASA Technical Reports Server (NTRS)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  8. Analysis of albumin Raman scattering in visible and near-infrared ranges

    NASA Astrophysics Data System (ADS)

    Lykina, Anastasia A.; Artemyev, Dmitry N.

    2018-04-01

    In this work the analysis of the shape and intensity of albumin Raman signals in visible and near-IR ranges was carried out. The experimental setup using lasers from the visible region first of all excites the fluorescence of the albumin solution, the main contribution to which is produced by sodium chloride, which is a component of the tested sample. At the same time, lasers from the near-infrared range excited the Raman signal of albumin most effectively. It was found that the highest ratio of Raman scattering to autofluorescence intensities in the detected signal was obtained using a laser with a wavelength of 1064 nm. To determine the albumin solution concentration by type of spectrum, a regression approach with the projection to latent structures method was applied. The lowest predicted error of albumin concentration of 2-3 g/l was obtained by using the near-infrared range lasers.

  9. Synthetic and natural plagioclases: iron variations and its influence on VNIR reflectance spectra

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Orlando, Andrea; Borini, Daniele; Giuli, Gabriele; Serventi, Giovanna; Pratesi, Giovanni; Sgavetti, Maria

    2017-04-01

    Besides being one of the most important rock-forming phases, plagioclase (pl) is a common surface mineral in several Solar System bodies. In particular, pl is present in meteorites and lunar samples, both in lunar Highland, where it is the dominant phase, and Maria samples. Moreover, pl has been detected in Martian meteorites, as well as in HEDs. In visible and near-infrared (VNIR) reflectance spectroscopy this phase is characterized by a crystal field (C.F.) absorption band in iron-bearing samples. In particular, Burns (1993) summarized the electronic absorptions due to iron, pointing out: 1) a broad absorption around 1.25 μm related to a C.F. transition due to Fe2+ replacing Ca2+ in seven-fold coordinated sites; 2) narrow absorptions around 0.4 μm related to tetrahedrally coordinated Fe3+ ions replacing Al in the tetrahedral sites. A better understanding of the spectral properties of Fe2+-pl can be an important tool to investigate the spectral influence of pl in regolith material in which it can be mixed with variable amount of other components with variable abundance. This goal can be reached working on synthetic pl with variable FeO and An contents, which must be well characterized to be sure about the attribution of absorption bands seen in reflectance spectra, as well as working on well characterized (in term of An, iron amount and Fe2+/Fe3+) terrestrial pl. Future rover mission will have onboard hyperspectral instrument working in the VNIR with relative high spatial resolution and, so, with the possibility of measured pl crystals. For this reason, working more in detail on iron bearing plagioclase can be an important task. Here, we present our results on synthetic An90 mol% pl with different iron contents (0, 0.5 and 1.0 FeO wt%) with the aim to investigate the effects of iron substitution on the VNIR spectra of pl. Reagent-grade oxides and carbonates reactants used as starting materials were thoroughly mixed to ensure homogeneity. Each experimental charge weighed about 200 mg. All the experiments have been carried out in a Deltech vertical gas-mixing (CO - CO2) quenching furnace equipped with an oxygen fugacity probe. Temperatures were in the 1395 - 1580 ˚ C range and run duration varied from 15 min to 48 hours. The synthesis procedure envisaged two stages: 1) preparation of a glass from the starting material at high temperature (1550 or 1580 ˚ C); 2) annealing at lower T (1395 ˚ C). The produced pl were grinded and sieved at about <100 μm, VNIR reflectance and EXAFS spectra have been acquired to define the reflectance spectra and the Fe2+/Fe3+ ratio on each experiment. Moreover, the obtained products were characterized by several techniques such as optical microscopy, XRD, SEM, EMPA, to assess the pl-crystallinity and its chemical composition. Spectra collected on synthetic samples are compared with those of natural pl, and the broad 1.25gμm C.F. absorption parameters have been related to Fe2+ abundance and Fe2+/Fe3+ ratio. Reference: Burns, R.G., 1993. Mineralogical Applications of Crystal Field Theory. Cambridge University Press, 551 pp.

  10. The use of near-infrared photography to image fired bullets and cartridge cases.

    PubMed

    Stein, Darrell; Yu, Jorn Chi Chung

    2013-09-01

    An imaging technique that is capable of reducing glare, reflection, and shadows can greatly assist the process of toolmarks comparison. In this work, a camera with near-infrared (near-IR) photographic capabilities was fitted with an IR filter, mounted to a stereomicroscope, and used to capture images of toolmarks on fired bullets and cartridge cases. Fluorescent, white light-emitting diode (LED), and halogen light sources were compared for use with the camera. Test-fired bullets and cartridge cases from different makes and models of firearms were photographed under either near-IR or visible light. With visual comparisons, near-IR images and visible light images were comparable. The use of near-IR photography did not reveal more details and could not effectively eliminate reflections and glare associated with visible light photography. Near-IR photography showed little advantages in manual examination of fired evidence when it was compared with visible light (regular) photography. © 2013 American Academy of Forensic Sciences.

  11. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  12. Areosynchronous weather imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffery J.; Lock, Robert

    2016-09-01

    Mars is characterized by rapidly changing, poorly understood weather that is a concern for future human missions. Future Areosynchronous Mars Orbit (AMO) communication satellites offer possible platforms for Mars weather imagers similar to the geosynchronous Earth orbit (GEO) weather imagers that have been observing Earth since 1966. This paper describes an AReosynchronous Environmental Suite (ARES) that includes two imagers: one with two emissive infrared bands (10.8 μm and 12.0 μm) at 4 km resolution and the other with three VNIR bands (500 nm, 700 nm, 900 nm) at 1 km resolution. ARES stares at Mars and provides full disk coverage as fast as every 40 sec in the VNIR bands and every 2 min in the emissive bands with good sensitivity (SNR 200 in the VNIR for typical radiances and NEDT 0.2K at 180 K scene temperature in the emissive infrared). ARES size, mass, power and data rate characteristics are compatible with expectations for hosted payloads onboard future AMO communication satellites. Nevertheless, more work is needed to optimize ARES for future missions, especially in terms of trades between data rate, full disk coverage rate, sensitivity, number of spectral bands and spatial resolution and in study of approaches for maintaining accurate line of sight knowledge during data collection.

  13. Red and near-infrared spectral reflectance of snow

    NASA Technical Reports Server (NTRS)

    Obrien, H. W.; Munis, R. H.

    1975-01-01

    The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.

  14. Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials

    NASA Astrophysics Data System (ADS)

    Cai, Dengke; Neyer, Andreas; Kuckuk, Rüdiger; Heise, H. Michael

    2010-07-01

    Special siloxane polymers have been produced via an addition reaction from commercially available two-component addition materials by thermal curing. Polydimethylsiloxane (PDMS) based polymers have already been used in the optical communication field, where passive polymer multimode waveguides are required for short-distance datacom optical applications. For such purpose, materials with low intrinsic absorption losses within the spectral region of 600-900 nm wavelengths are essential. For vibrational absorption band assignments, especially in the visible and short-wave near-infrared region, the mid-infrared and Raman spectra were investigated for fundamental vibrations of the siloxane materials, shedding light onto the chemistry before and after material polymerization. Within the near-infrared and long-wave visible spectral range, vibrational C sbnd H stretching overtone and combination bands dominate the spectra, rendering an optical characterization of core and clad materials. Such knowledge also provides information for the synthesis and optical characterization, e.g., of deuterated derivatives with less intrinsic absorption losses from molecular vibrations compared to the siloxane materials studied.

  15. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms, volume 2. [Oklahoma and Texas

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) were developed and tested and biomass was estimated by including microwave with visible and infrared data. The study was conducted at Guymon, Oklahoma and Dalhart, Texas utilizing aircraft multispectral data and ground truth soil moisture and biomass information. Results indicate that inclusion of C, L, and P band active microwave data from look angles greater than 35 deg from nadir with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels. In addition, two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass.

  16. Jovian Hotspots in the NEB in the Visible and Near-IR from Hubble and Ground-Based IR Observations

    NASA Astrophysics Data System (ADS)

    Wittal, Matthew Michael; Orton, Glenn; Sinclair, James; Wong, Michael; Simon, Amy; Irwin, Patrick; Braude, Ashwin

    2018-01-01

    In order to better understand the composition and behavior of Jupiter's atmosphere, radiating regions in the infrared known as ‘hotspots’ are compared with darker spots in the visible at the same locations within the Northern Equatorial Band (NEB). Hubble images taken in across the visible and into the near-infrared (between 275 nm and 889 nm) are compared with 5.1 µm images taken using the Subaru telescope and other ground-based observations. The connection between these regions has been known for some time, and comparison between them at these wavelengths showed a general correlation between dimness in the visible and brightness in the infrared, but this was not the case in all observed locations. The origins and cause of these hotspots remains unclear, but because of their quasi-stable nature and reoccurrence at roughly 30-degree longitudes suggests a relationship with Rossby Waves. Continuous spectra from Multi Unite Spectroscopic Explorer (MUSE) also shows that measured values from the near-infrared fit well with observations, and hints at the composition of the discolored region through the use of NEMESIS software cross-correlation.

  17. VIS/NIR Spectroscopy to determine the spatial variation of the weathering degree in Paleogene clay soil - London Clay Formation

    NASA Astrophysics Data System (ADS)

    Nasser, Mohammed; Gibson, Andy, ,, Dr; Koor, Nick, ,, Dr; Gale, Professor Andy; Huggett, Jenny, ,, Dr; Branch, Steve

    2017-04-01

    The London Clay Formation (LCF) which underlies much of South-East England is hugely important as a construction medium. However, its geotechnical performance (shear strength, compressive strength, shrink-swell behaviour, etc. ) is greatly affected by its degree of weathering. Despite this importance, little attention has been focussed on a robust method to define and measure its degree of weathering. This is perhaps a result of a well-known colour change from bluish-grey to brown that accompanies 'weathering' and considered to be the result of oxidisation (Chandler and Apted 1988). Through wide experience, this definition is normally effective, but it is perhaps subjective and reliant on the experience of the investigator and the ability to observe samples or exposures. More objective investigation, typically using SEM is not normally economically feasible or expedient for construction works. We propose a simple, robust method to characterise the degree of weathering in the LCF using reflective or Visible-Near-InfraRed-Spectroscopy (VNIRS). 24 samples were extracted from 2 boreholes drilled in the Hampstead area of London to depths of 12 m within the uppermost Claygate Member of the LCF. VNIRS spectra (350-2500 nm) were measured from all samples and compared with XRD, XRF, SEM and PSD results on the same samples. Results show increased magnitude of absorption features related to clay mineralogy around 1400, 1900 and 2200 nm to a depth of 5 m beneath ground level. Beneath this depth, the absorption features show little variation. SEM analyses show corresponding changes in the degradation of pyrite crystals and individual clay (illite/smectite). These preliminary results show that there is a good potential for VNIRS spectroscopy to determine the variation of weathering in the LCF.

  18. A Fourier transform spectrometer for visible and near ultra-violet measurements of atmospheric absorption

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Gerlach, J. C.; Whitehurst, M.

    1982-01-01

    The development of a prototype, ground-based, Sun-pointed Michelson interferometric spectrometer is described. Its intended use is to measure the atmospheric amount of various gases which absorb in the near-infrared, visible, and near-ultraviolet portions of the electromagnetic spectrum. Preliminary spectra which contain the alpha, 0.8 micrometer, and rho sigma tau water vapor absorption bands in the near-infrared are presented to indicate the present capability of the system. Ultimately, the spectrometer can be used to explore the feasible applications of Fourier transform spectroscopy in the ultraviolet where grating spectrometers were used exclusively.

  19. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars.

    PubMed

    Sklute, Elizabeth C; Rogers, A Deanne; Gregerson, Jason C; Jensen, Heidi B; Reeder, Richard J; Dyar, M Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe 2 (SO 4 ) 3 ± Ca, Na, Mg, Fe, Cl, HCO 3 ) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  20. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-03-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multicomponent (Fe2(SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21 °C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

  1. Amorphous salts formed from rapid dehydration of multicomponent chloride and ferric sulfate brines: Implications for Mars

    PubMed Central

    Sklute, Elizabeth C.; Rogers, A. Deanne; Gregerson, Jason C.; Jensen, Heidi B.; Reeder, Richard J.; Dyar, M. Darby

    2018-01-01

    Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca–, Na–, Mg– and Fe–chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe–chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials. PMID:29670302

  2. Near-infrared selective dynamic windows controlled by charge transfer impedance at the counter electrode.

    PubMed

    Pattathil, Praveen; Scarfiello, Riccardo; Giannuzzi, Roberto; Veramonti, Giulia; Sibillano, Teresa; Qualtieri, Antonio; Giannini, Cinzia; Cozzoli, P Davide; Manca, Michele

    2016-12-08

    Recent developments in the exploitation of transparent conductive oxide nanocrystals paved the way to the realization of a new class of electrochemical systems capable of selectively shielding the infrared heat loads carried by sunlight and prospected the blooming of a key enabling technology to be implemented in the next generation of "zero-energy" building envelopes. Here we report the fabrication of a set of electrochromic devices embodying an engineered nanostructured electrode made by high aspect-ratio tungsten oxide nanorods, which allow for selectively and dynamically controlling sunlight transmission over the near-infrared to visible range. Varying the intensity of applied voltage makes the spectral response of the device change across three different optical regimes, namely fully transparent, near-infrared only blocking and both visible and near-infrared blocking. It is demonstrated that the degree of reversible modulation of the thermal radiation entering the glazing element can approach a remarkable 85%, accompanied by only a modest reduction in the luminous transmittance.

  3. Using visible and near-infrared diffuse reflectance spectroscopy for predicting soil properties based on regression with peaks parameters as derived from continuum-removed spectra

    NASA Astrophysics Data System (ADS)

    Vasat, Radim; Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

    2014-05-01

    Visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS) provides a rapid and inexpensive tool for simultaneous prediction of a variety of soil properties. Usually, some sophisticated multivariate mathematical or statistical methods are employed in order to extract the required information from the raw spectra measurement. For this purpose especially the Partial least squares regression (PLSR) and Support vector machines (SVM) are the most frequently used. These methods generally benefit from the complexity with which the soil spectra are treated. But it is interesting that also techniques that focus only on a single spectral feature, such as a simple linear regression with selected continuum-removed spectra (CRS) characteristic (e.g. peak depth), can often provide competitive results. Therefore, we decided to enhance the potential of CRS taking into account all possible CRS peak parameters (area, width and depth) and develop a comprehensive methodology based on multiple linear regression approach. The eight considered soil properties were oxidizable carbon content (Cox), exchangeable (pHex) and active soil pH (pHa), particle and bulk density, CaCO3 content, crystalline and amorphous (Fed) and amorphous Fe (Feox) forms. In four cases (pHa, bulk density, Fed and Feox), of which two (Fed and Feox) were predicted reliably accurately (0.50 < R2cv < 0.80) and the other two (pHa and bulk density) only poorly (R2cv < 0.50), we obtained slightly better results than with PLSR and SVM. In one case (pHex) we achieved a significantly higher, although just reliable, accuracy (R2cv = 0.601) than with PLSR and SVM (R2cv = 0.448 and 0.442, resp.). But most interestingly, in the case of particle density, the presented approach outperformed the PLSR and SVM dramatically offering a fairly accurate prediction (R2cv = 0.827) against two failures (R2cv = 0.034 and 0.121 for PLSR and SVM, resp.). In last two cases (Cox and CaCO3) a slightly worse results were achieved then with PLSR and SVM with overall fairly accurate prediction (R2cv > 0.80). Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319).

  4. Remote compositional analysis of lunar olivine-rich lithologies with Moon Mineralogy Mapper (M3) spectra

    USGS Publications Warehouse

    Isaacson, P.J.; Pieters, C.M.; Besse, S.; Clark, R.N.; Head, J.W.; Klima, R.L.; Mustard, J.F.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; Taylor, L.A.; Thaisen, K.G.; Tompkins, S.

    2011-01-01

    A systematic approach for deconvolving remotely sensed lunar olivine-rich visible to near-infrared (VNIR) reflectance spectra with the Modified Gaussian Model (MGM) is evaluated with Chandrayaan-1 Moon Mineralogy Mapper (M 3) spectra. Whereas earlier studies of laboratory reflectance spectra focused only on complications due to chromite inclusions in lunar olivines, we develop a systematic approach for addressing (through continuum removal) the prominent continuum slopes common to remotely sensed reflectance spectra of planetary surfaces. We have validated our continuum removal on a suite of laboratory reflectance spectra. Suites of olivine-dominated reflectance spectra from a small crater near Mare Moscoviense, the Copernicus central peak, Aristarchus, and the crater Marius in the Marius Hills were analyzed. Spectral diversity was detected in visual evaluation of the spectra and was quantified using the MGM. The MGM-derived band positions are used to estimate the olivine's composition in a relative sense. Spectra of olivines from Moscoviense exhibit diversity in their absorption features, and this diversity suggests some variation in olivine Fe/Mg content. Olivines from Copernicus are observed to be spectrally homogeneous and thus are predicted to be more compositionally homogeneous than those at Moscoviense but are of broadly similar composition to the Moscoviense olivines. Olivines from Aristarchus and Marius exhibit clear spectral differences from those at Moscoviense and Copernicus but also exhibit features that suggest contributions from other phases. If the various precautions discussed here are weighed carefully, the methods presented here can be used to make general predictions of absolute olivine composition (Fe/Mg content). Copyright ?? 2011 by the American Geophysical Union.

  5. [Development of a Surgical Navigation System with Beam Split and Fusion of the Visible and Near-Infrared Fluorescence].

    PubMed

    Yang, Xiaofeng; Wu, Wei; Wang, Guoan

    2015-04-01

    This paper presents a surgical optical navigation system with non-invasive, real-time, and positioning characteristics for open surgical procedure. The design was based on the principle of near-infrared fluorescence molecular imaging. The in vivo fluorescence excitation technology, multi-channel spectral camera technology and image fusion software technology were used. Visible and near-infrared light ring LED excitation source, multi-channel band pass filters, spectral camera 2 CCD optical sensor technology and computer systems were integrated, and, as a result, a new surgical optical navigation system was successfully developed. When the near-infrared fluorescence was injected, the system could display anatomical images of the tissue surface and near-infrared fluorescent functional images of surgical field simultaneously. The system can identify the lymphatic vessels, lymph node, tumor edge which doctor cannot find out with naked eye intra-operatively. Our research will guide effectively the surgeon to remove the tumor tissue to improve significantly the success rate of surgery. The technologies have obtained a national patent, with patent No. ZI. 2011 1 0292374. 1.

  6. Compositional and textural information from the dual inversion of visible, near and thermal infrared remotely sensed data

    NASA Technical Reports Server (NTRS)

    Brackett, Robert A.; Arvidson, Raymond E.

    1993-01-01

    A technique is presented that allows extraction of compositional and textural information from visible, near and thermal infrared remotely sensed data. Using a library of both emissivity and reflectance spectra, endmember abundances and endmember thermal inertias are extracted from AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) and TIMS (Thermal Infrared Mapping Spectrometer) data over Lunar Crater Volcanic Field, Nevada, using a dual inversion. The inversion technique is motivated by upcoming Mars Observer data and the need for separation of composition and texture parameters from sub pixel mixtures of bedrock and dust. The model employed offers the opportunity to extract compositional and textural information for a variety of endmembers within a given pixel. Geologic inferences concerning grain size, abundance, and source of endmembers can be made directly from the inverted data. These parameters are of direct relevance to Mars exploration, both for Mars Observer and for follow-on missions.

  7. High spectral resolution remote sensing of canopy chemistry

    NASA Technical Reports Server (NTRS)

    Aber, John D.; Martin, Mary E.

    1995-01-01

    Near infrared laboratory spectra have been used for many years to determine nitrogen and lignin concentrations in plant materials. In recent years, similar high spectral resolution visible and infrared data have been available via airborne remote sensing instruments. Using data from NASA's Airborne visible/Infrared Imaging Spectrometer (AVIRIS) we attempt to identify spectral regions correlated with foliar chemistry at the canopy level in temperate forests.

  8. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    PubMed

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  9. Airborne Hyperspectral Imaging of Seagrass and Coral Reef

    NASA Astrophysics Data System (ADS)

    Merrill, J.; Pan, Z.; Mewes, T.; Herwitz, S.

    2013-12-01

    This talk presents the process of project preparation, airborne data collection, data pre-processing and comparative analysis of a series of airborne hyperspectral projects focused on the mapping of seagrass and coral reef communities in the Florida Keys. As part of a series of large collaborative projects funded by the NASA ROSES program and the Florida Fish and Wildlife Conservation Commission and administered by the NASA UAV Collaborative, a series of airborne hyperspectral datasets were collected over six sites in the Florida Keys in May 2012, October 2012 and May 2013 by Galileo Group, Inc. using a manned Cessna 172 and NASA's SIERRA Unmanned Aerial Vehicle. Precise solar and tidal data were used to calculate airborne collection parameters and develop flight plans designed to optimize data quality. Two independent Visible and Near-Infrared (VNIR) hyperspectral imaging systems covering 400-100nm were used to collect imagery over six Areas of Interest (AOIs). Multiple collections were performed over all sites across strict solar windows in the mornings and afternoons. Independently developed pre-processing algorithms were employed to radiometrically correct, synchronize and georectify individual flight lines which were then combined into color balanced mosaics for each Area of Interest. The use of two different hyperspectral sensor as well as environmental variations between each collection allow for the comparative analysis of data quality as well as the iterative refinement of flight planning and collection parameters.

  10. Rearrangement of an aniline linked perylene bisimide under acidic conditions and visible to near-infrared emission from the intramolecular charge-transfer state of its fused derivatives.

    PubMed

    Kojima, Mitsuru; Tamoto, Akira; Aratani, Naoki; Yamada, Hiroko

    2017-05-23

    We have prepared a series of aniline-linked and fused perylene bisimides (PBIs) for making near-infrared (NIR) fluorophores. During this research, we found an unexpected rearrangement reaction on the PBI core for the first time. The aniline- and phenothiazine-fused PBIs exhibit excellent absorption ability and visible-to-NIR emission owing to their intramolecular charge transfer character.

  11. Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India

    NASA Astrophysics Data System (ADS)

    Guha, Arindam; Singh, Vivek Kr.; Parveen, Reshma; Kumar, K. Vinod; Jeyaseelan, A. T.; Dhanamjaya Rao, E. N.

    2013-04-01

    Bauxite deposits of Jharkhand in India are resulted from the lateritization process and therefore are often associated with the laterites. In the present study, ASTER (Advanced Space borne Thermal Emission and Reflection Radiometer) image is processed to delineate bauxite rich pockets within the laterites. In this regard, spectral signatures of lateritic bauxite samples are analyzed in the laboratory with reference to the spectral features of gibbsite (main mineral constituent of bauxite) and goethite (main mineral constituent of laterite) in VNIR-SWIR (visible-near infrared and short wave infrared) electromagnetic domain. The analysis of spectral signatures of lateritic bauxite samples helps in understanding the differences in the spectral features of bauxites and laterites. Based on these differences; ASTER data based relative band depth and simple ratio images are derived for spatial mapping of the bauxites developed within the lateritic province. In order to integrate the complementary information of different index image, an index based principal component (IPC) image is derived to incorporate the correlative information of these indices to delineate bauxite rich pockets. The occurrences of bauxite rich pockets derived from density sliced IPC image are further delimited by the topographic controls as it has been observed that the major bauxite occurrences of the area are controlled by slope and altitude. In addition to above, IPC image is draped over the digital elevation model (DEM) to illustrate how bauxite rich pockets are distributed with reference to the topographic variability of the terrain. Bauxite rich pockets delineated in the IPC image are also validated based on the known mine occurrences and existing geological map of the bauxite. It is also conceptually validated based on the spectral similarity of the bauxite pixels delineated in the IPC image with the ASTER convolved laboratory spectra of bauxite samples.

  12. Snapshot hyperspectral fovea vision system (HyperVideo)

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.

    2012-06-01

    The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.

  13. Near-Infrared Spectroscopy of Henan and Watsonia Family Asteroids

    NASA Astrophysics Data System (ADS)

    Bus, S. J.; Binzel, R. P.; Sunshine, J.; Burbine, T. H.; McCoy, T. J.

    2002-09-01

    We present visible and near-infrared spectra for members of both the Henan and Watsonia asteroid families. These two families are known to contain asteroids belonging to the taxonomic L class based on visible wavelength spectroscopy obtained during the second phase of the Small Main-belt Asteroid Spectroscopic Survey (SMASSII, Bus and Binzel 2002, Icarus in press). The L-type asteroids have visible-wavelength spectra similar to those of K-types but with steeper spectral slopes shortward of 0.75 micron, becoming relatively flat longward of 0.75 micron and showing little or no concave curvature related to a 1 micron silicon absorption band. Our current study of the Henan and Watsonia families uses data obtained with SpeX, a medium-resolution near-infrared spectrograph available at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. When combined with the SMASSII results, we find the near-infrared spectra of these asteroids contains very weak 1 micron bands but have moderately deep 2 micron bands. A possible interpretation of this anomalous spectral signature is the presence of spinel, suggested by Burbine et al. (1992, Meteoritics 27, 424) for the asteroids 387 Aquitania and 980 Anacostia, both likely members of the Watsonia family (Bus 1999, Ph.D. thesis). The work of Burbine et al. made use of combined ECAS and 52-color measurements covering the visible and near-IR wavelengths out to 2.5 microns. We can now use the high signal-to-noise data obtained with SpeX to more fully explore the mineralogy of the taxonomic L class and to search for evidence of mineralogical variations among the Henan and Watsonia asteroid family members.

  14. Visible and Near-IR Reflectance Spectra of Smectite Acquired Under Dry Conditions for Interpretation of Martian Surface Mineralogy

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Achilles, Cherie N; Archer, Paul D.; Graff, Trevor G.; Agresti, David G.; Ming, Douglas W; Golden, Dadi C.; Mertzman, Stanley A.

    2011-01-01

    Visible and near-IR (VNIR) spectra from the MEx OMEGA and the MRO CRISM hyper-spectral imaging instruments have spectral features associated with the H2O molecule and M OH functional groups (M = Mg, Fe, Al, and Si). Mineralogical assignments of martian spectral features are made on the basis of laboratory VNIR spectra, which were often acquired under ambient (humid) conditions. Smectites like nontronite, saponite, and montmorillionite have interlayer H2O that is exchangeable with their environment, and we have acquired smectite reflectance spectra under dry environmental conditions for interpretation of martian surface mineralogy. We also obtained chemical, Moessbauer (MB), powder X-ray diffraction (XRD), and thermogravimetric (TG) data to understand variations in spectral properties. VNIR spectra were recorded in humid lab air at 25-35C, in a dynamic dry N2 atmosphere (50-150 ppmv H2O) after exposing the smectite samples (5 nontronites, 3 montmorillionites, and 1 saponite) to that atmosphere for up to approximately l000 hr each at 25-35C, approximately 105C, and approximately 215C, and after re-exposure to humid lab air. Heating at 105C and 215C for approximately 1000 hr is taken as a surrogate for geologic time scales at lower temperatures. Upon exposure to dry N2, the position and intensity of spectral features associated with M-OH were relatively insensitive to the dry environment, and the spectral features associated with H2O (e.g., approximately 1.90 micrometers) decreased in intensity and are sometimes not detectable by the end of the 215C heating step. The position and intensity of H2O spectral features recovered upon re-exposure to lab air. XRD data show interlayer collapse for the nontronites and Namontmorillionites, with the interlayer remaining collapsed for the latter after re-exposure to lab air. The interlayer did not collapse for the saponite and Ca-montmorillionite. TG data show that the concentration of H2O derived from structural OH was invariant to the dry N2 treatment for saponite and the montmorillionites, but the nontronites had additional structural OH after treatment. Upon exposure to dry N2, the VNIR spectra also acquired a red slope with decreasing albedo between approximately 0.4 and approximately 2.0 micrometers. The magnitude of the effects covaries with exposure time to dry N2 and heating temperature. Upon re-exposure to lab air, the slope and albedo do not completely recover to pre-exposure values. MB data show that these effects do not result from partial reduction of ferric to ferrous iron, and TG data show they do not result from loss of structural OH. Possible explanations include formation of small clusters of (superparamagnetic) ferric oxide and reduced smectite crystallinity. The difference in spectral properties between spectra acquired in humid lab air and under dry conditions are consequential for interpretation of CRISM and OMEGA spectra. For example, nontronite by itself and not nontronite plus ferrihydrite can account for the red spectral slope in martian spectra where nontronite is indicated by the Fe-OH spectral features.

  15. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    NASA Astrophysics Data System (ADS)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point-of-care applications. As next steps in the development, we will manufacture the different optical components and experimentally characterize the spectrometer device in more detail.

  16. VNIR multispectral observations of rocks at Cape York, Endeavour crater, Mars by the Opportunity rover's Pancam

    NASA Astrophysics Data System (ADS)

    Farrand, William H.; Bell, James F.; Johnson, Jeffrey R.; Rice, Melissa S.; Hurowitz, Joel A.

    2013-07-01

    From its arrival at the portion of the rim of Endeavour crater known informally as Cape York, the Mars Exploration Rover Opportunity has made numerous visible and near infrared (VNIR) multispectral observations of rock surfaces. This paper describes multispectral observations from Opportunity's arrival at Cape York to its winter-over location at Greeley Haven. Averages of pixels from the Pancam's left and right eyes were joined to form 11 point spectra from numerous observations and were examined via a number of techniques. These included principal components analysis, a sequential maximum angle convex cone approach, examination of spectral parameters, and a hierarchical clustering approach. The end result of these analyses was the determination of six primary spectral (PS) classes describing spectrally unique materials observed on Cape York. These classes consisted of a "standard" outcrop spectrum that was observed on the clasts and matrix comprising the upper unit of the Shoemaker formation, a class representing rock surfaces exposed around Odyssey crater and typified by the rocks of the Tisdale series, pebbles occurring in and weathered out of the upper unit of the Shoemaker formation that appear red in 1009, 904, 754 nm color composites, patches on Tisdale rocks exhibiting a 864 nm band minimum that were spectrally anomalous in root mean square error images derived from spectral mixture analyses, clasts with a high 904 nm band depth occurring in the Greeley Haven location, and gypsum veins typified by the vein Homestake. Comparisons of three of these classes that had well defined band minima between 800 and 1009 nm with spectral library spectra of ferrous silicates and ferric oxide, oxyhydroxide and ferric sulfate minerals indicated tentative matches of the "red" pebbles with orthopyroxenes, of the spectrally anomalous 864 nm band minimum material with hematite or ferric sulfates, and of the high 904 nm band depth material with an orthopyroxene-clinopyroxene mixture. The spectral properties of rock surfaces on Cape York are distinct from those of Burns Formation outcrops observed on the Meridiani Plains. The Cape York outcrop is Noachian in age and study of these materials provides insight into less acidic environmental conditions extant before the formation of the Burns Formation.

  17. Near-infrared absorbing squarylium dyes with linearly extended π-conjugated structure for dye-sensitized solar cell applications.

    PubMed

    Maeda, Takeshi; Hamamura, Yuuto; Miyanaga, Kyohei; Shima, Naoki; Yagi, Shigeyuki; Nakazumi, Hiroyuki

    2011-11-18

    A novel class of near-infrared absorbing squarylium sensitizers with linearly extended π-conjugated structures, which were obtained by Pd-catalyzed cross-coupling reactions with stannylcyclobutenediones, has been developed for dye-sensitized solar cells. The cells based on these dyes exhibited a significant spectral response in the near-infrared region over 750 nm in addition to the visible region.

  18. Mapping known and potential mineral occurrences and host rocks in the Bonnifield Mining District using minimal cloud- and snow-cover ASTER data: Chapter E in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Hubbard, Bernard E.; Dusel-Bacon, Cynthia; Rowan, Lawrence C.; Eppinger, Robert G.; Gough, Larry P.; Day, Warren C.

    2007-01-01

    On July 8, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor acquired satellite imagery of a 60-kilometer-wide swath covering a portion of the Bonnifield mining district within the southernmost part of the Tintina Gold Province, Alaska, under unusually favorable conditions of minimal cloud and snow cover. Although rocks from more than eight different lithotectonic terranes are exposed within the extended swath of data, we focus on volcanogenic massive sulfides (VMS) and porphyry deposits within the Yukon-Tanana terrane (YTT), the largest Mesozoic accretionary terrane exposed between the Denali fault system to the south of Fairbanks and the Tintina fault system to the north of Fairbanks. Comparison of thermal-infrared region (TIR) decorrelation stretch data to available geologic maps indicates that rocks from the YTT contain a wide range of rock types ranging in composition from mafic metavolcanic rocks to felsic rock types such as metarhyolites, pelitic schists, and quartzites. The nine-band ASTER visible-near-infrared region--short-wave infrared region (VNIR-SWIR) reflectance data and spectral matched-filter processing were used to map hydrothermal alteration patterns associated with VMS and porphyry deposit types. In particular, smectite, kaolinite, opaline silica, jarosite and (or) other ferric iron minerals defined narrow (less than 250-meter diameter) zonal patterns around Red Mountain and other potential VMS targets. Using ASTER we identified some of the known mineral deposits in the region, as well as mineralogically similar targets that may represent potential undiscovered deposits. Some known deposits were not identified and may have been obscured by vegetation or snow cover or were too small to be resolved.

  19. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    PubMed Central

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-01-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval. PMID:28671575

  20. In vitro evaluation of low-intensity light radiation on murine melanoma (B16F10) cells.

    PubMed

    Peidaee, P; Almansour, N M; Pirogova, E

    2016-03-01

    Changes in the energy state of biomolecules induced by electromagnetic radiation lead to changes in biological functions of irradiated biomolecules. Using the RRM approach, it was computationally predicted that far-infrared light irradiation in the range of 3500-6000 nm affects biological activity of proto-oncogene proteins. This in vitro study evaluates quantitatively and qualitatively the effects of selected far-infrared exposures in the computationally determined wavelengths on mouse melanoma B16F10 cells and Chinese hamster ovarian (CHO) cells by MTT (thiazolyl blue tetrazolium bromide) cell proliferation assay and confocal laser-scanning microscopy (CLSM). This paper also presents the findings obtained from irradiating B16F10 and CHO cells by the selected wavelengths in visible and near-infrared range. The MTT results show that far-infrared wavelength irradiation induces detrimental effect on cellular viability of B16F10 cells, while that of normal CHO cells is not affected considerably. Moreover, CLSM images demonstrate visible cellular detachment of cancer cells. The observed effects support the hypothesis that far-infrared light irradiation within the computationally determined wavelength range induces biological effect on cancer cells. From irradiation of selected visible and near-infrared wavelengths, no visible changes were detected in cellular viability of either normal or cancer cells.

  1. Additional spectra of asteroid 1996 FG3, backup target of the ESA MarcoPolo-R mission

    NASA Astrophysics Data System (ADS)

    de León, J.; Lorenzi, V.; Alí-Lagoa, V.; Licandro, J.; Pinilla-Alonso, N.; Campins, H.

    2013-08-01

    Context. Near-Earth binary asteroid (175706) 1996 FG3 is the current backup target of the ESA MarcoPolo-R mission, selected for the study phase of ESA M3 missions. It is a primitive (C-type) asteroid that shows significant variation in its visible and near-infrared spectra. Aims: Here we present new visible and near-infrared spectra of 1996 FG3. We compare our new data with other published spectra, analysing the variation in the spectral slope. The asteroid will not be observable again over the next three years at least. Methods: We obtained visible and near-infrared spectra using DOLORES and NICS instruments, respectively, at the Telescopio Nazionale Galileo (TNG), a 3.6 m telescope located at El Roque de los Muchachos Observatory in La Palma, Spain. To compare with other published spectra of the asteroid, we computed the spectral slope S', and studied any plausible correlation of this quantity with the phase angle (α). Results: In the case of visible spectra, we find a variation in spectral slope of ΔS' = 0.15 ± 0.10%/103 Å/° for 3°<α< 18°, which is in good agreement with the values found in the literature for the phase reddening effect. In the case of the near-infrared, there seems to be a trend between the reddening of the spectra and the phase angle, excluding one point. We find a variation in the slope of ΔS' = 0.04 ± 0.08%/103 Å/° for 6° < α < 51°. Our computed variation in S' is in good agreement with the only two values found in the literature for the phase reddening in the near-infrared. Conclusions: The variation in the spectral slope of asteroid 1996 FG3 shows a trend with the phase angle at the time of the observations, both in the visible and the near-infrared. It is worth noting that, to fully explain this spectral variability we should take into account other factors, like the position of the secondary component of the binary asteroid 1999 FG3 with respect to the primary, or the spin axis orientation at the time of the observations. More data are necessary for an analysis of this kind.

  2. Predicting color traits of intact broiler breast fillets using visible and infrared-light

    USDA-ARS?s Scientific Manuscript database

    The ability of using visible and near-infrared (Vis/NIR) spectroscopy with wavelengths ranging from 400 to 2500nm to predict broiler breast fillets color traits was assessed in this study. Deboning fillets from 214 carcasses slaughtered in a commercial processing plant were included in this work, sp...

  3. The composition of the lunar crust: Radiative transfer modeling and analysis of lunar visible and near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Cahill, Joshua T. S.

    This dissertation has two focuses: (1) the evaluation and validation of algorithms used for analysis of lunar visible and near-infrared data sets, and (2) the determination of lunar surface and sub-surface crustal composition by virtue of these algorithms. To that end, the results and interpretation reported herein further enhance knowledge of lunar ferroan anorthosite (FAN) and magnesium-suite (Mg-suite) mineralogy, chemistry, and distribution on and in our Moon's crust.

  4. Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

    NASA Astrophysics Data System (ADS)

    Porcel, Marco A. G.; Artundo, Iñigo; Domenech, J. David; Geuzebroek, Douwe; Sunarto, Rino; Hoofman, Romano

    2018-04-01

    This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

  5. Visible/near-infrared spectra and two-layer modeling of palagonite-coated Basalts

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.

    2001-01-01

    Fine-grained dust coatings on Martian rocks and soils obscure underlying surfaces and hinder mineralogic interpretations of both remote sensing and in-situ observations. We investigate laboratory visible/near-infrared spectra of various thicknesses of palagonite coatings on basalt substrates. We develop a two-layer Hapke scattering model incorporating porosity, grain size, and derived absorption coefficients of palagonite and basalt that reproduces the observed spectra only when the single scattering particle phase function is varied with wavelength.

  6. Absorption-enhanced imaging through scattering media using carbon black nano-particles: from visible to near infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Tanzid, Mehbuba; Hogan, Nathaniel J.; Robatjazi, Hossein; Veeraraghavan, Ashok; Halas, Naomi J.

    2018-05-01

    Imaging through scattering media can be improved with the addition of absorbers, since multiply-scattered photons, with their longer path length, are absorbed with a higher probability than ballistic photons. The image resolution enhancement is substantially greater when imaging through isotropic scatterers than when imaging through an ensemble of strongly forward-scattering particles. However, since the angular scattering distribution is determined by the size of the scatterers with respect to the wavelength of incident light, particles that are forward scatterers at visible wavelengths can be isotropic scatterers at infrared (IR) wavelengths. Here, we show that substantial image resolution enhancement can be achieved in the near-infrared wavelength regime for particles that are forward scattering at visible wavelengths using carbon black nanoparticles as a broadband absorber. This observation provides a new strategy for image enhancement through scattering media: by selecting the appropriate wavelength range for imaging, in this case the near-IR, the addition of absorbers more effectively enhances the image resolution.

  7. Visible and near-infrared spectral survey of lunar meteorites recovered by the National Institute of Polar Research

    NASA Astrophysics Data System (ADS)

    Hiroi, T.; Kaiden, H.; Yamaguchi, A.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.

    2016-12-01

    Lunar meteorite chip samples recovered by the National Institute of Polar Research (NIPR) have been studied by a UV-visible-near-infrared spectrometer, targeting small areas of about 3 × 2 mm in size. Rock types and approximate mineral compositions of studied meteorites have been identified or obtained through this spectral survey with no sample preparation required. A linear deconvolution method was used to derive end-member mineral spectra from spectra of multiple clasts whenever possible. In addition, the modified Gaussian model was used in an attempt of deriving their major pyroxene compositions. This study demonstrates that a visible-near-infrared spectrometer on a lunar rover would be useful for identifying these kinds of unaltered (non-space-weathered) lunar rocks. In order to prepare for such a future mission, further studies which utilize a smaller spot size are desired for improving the accuracy of identifying the clasts and mineral phases of the rocks.

  8. [Application of low-power visible and near infrared radiation in clinical oncology].

    PubMed

    Zimin, A A; Zhevago, N A; Buĭniakova, A I; Samoĭlova, K A

    2009-01-01

    Although low-power visible (VIS) and near infrared (nIR) radiation emitted from lasers, photodiodes, and other sources does not cause neoplastic transformation of the tissue, these phototherapeutic techniques are looked at with a great deal of caution for fear of their stimulatory effect on tumour growth. This apprehension arises in the first place from the reports on the possibility that the proliferative activity of tumour cells may increase after their in vitro exposure to light. Much less is known that these phototherapeutic modalities have been successfully used for the prevention and management of complications developing after surgery, chemo- and radiotherapy. The objective of the present review is to summarize the results of applications of low-power visible and near infrared radiation for the treatment of patients with oncological diseases during the last 20-25 years. It should be emphasized that 2-4 year-long follow-up observations have not revealed any increase in the frequency of tumour recurrence and metastasis.

  9. Structural, electrical and optical properties of indium tin oxide thin film grown by metal organic chemical vapor deposition with tetramethyltin-precursor

    NASA Astrophysics Data System (ADS)

    Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Wang, Gang

    2018-01-01

    Tin-doped indium oxide (ITO) is grown by metal organic chemical vapor deposition (MOCVD) using tetramethyltin (TDMASn) as tin precursor. The as-grown ITO films are polycrystalline with (111) and (100) textures. A gradual transition of crystallographic orientation from (111) preferred to (100) preferred is observed as the composition of tin changes. By precisely controlling the Sn doping, the ITO thin films present promising optical and electrical performances at either near-infrared-visible or visible-near-ultraviolet ranges. At low Sn doping level, the as-grown ITO possesses high electron mobility of 48.8 cm2 V-1 s-1, which results in high near-infrared transmittance and low resistivity. At higher Sn doping level, high carrier concentration (8.9 × 1020 cm-3) and low resistivity (3 × 10-4 Ω cm) are achieved. The transmittance is 97.8, 99.1, and 82.3% at the wavelength of 550, 365, and 320 nm, respectively. The results strongly suggest that MOCVD with TDMASn as tin precursor is an effective method to fabricate high quality ITO thin film for near-infrared, visible light, and near-ultraviolet application.

  10. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    NASA Astrophysics Data System (ADS)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  11. Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms. [Guyton, Oklahoma and Dalhart, Texas

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Mcfarland, M. J.; Theis, S. W.; Jones, C. L. (Principal Investigator)

    1982-01-01

    Agricultural crop classification models using two or more spectral regions (visible through microwave) are considered in an effort to estimate biomass at Guymon, Oklahoma Dalhart, Texas. Both grounds truth and aerial data were used. Results indicate that inclusion of C, L, and P band active microwave data, from look angles greater than 35 deg from nadir, with visible and infrared data improve crop discrimination and biomass estimates compared to results using only visible and infrared data. The microwave frequencies were sensitive to different biomass levels. The K and C band were sensitive to differences at low biomass levels, while P band was sensitive to differences at high biomass levels. Two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass. It is implied that inclusion of active microwave sensors with visible and infrared sensors on future satellites could aid in crop discrimination and biomass estimation.

  12. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide

    NASA Astrophysics Data System (ADS)

    Li, Guilian; Zhang, Shouhao; Guo, Chongshen; Liu, Shaoqin

    2016-05-01

    In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions.In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09147k

  13. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    PubMed

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  14. Field applications of stand-off sensing using visible/NIR multivariate optical computing

    NASA Astrophysics Data System (ADS)

    Eastwood, DeLyle; Soyemi, Olusola O.; Karunamuni, Jeevanandra; Zhang, Lixia; Li, Hongli; Myrick, Michael L.

    2001-02-01

    12 A novel multivariate visible/NIR optical computing approach applicable to standoff sensing will be demonstrated with porphyrin mixtures as examples. The ultimate goal is to develop environmental or counter-terrorism sensors for chemicals such as organophosphorus (OP) pesticides or chemical warfare simulants in the near infrared spectral region. The mathematical operation that characterizes prediction of properties via regression from optical spectra is a calculation of inner products between the spectrum and the pre-determined regression vector. The result is scaled appropriately and offset to correspond to the basis from which the regression vector is derived. The process involves collecting spectroscopic data and synthesizing a multivariate vector using a pattern recognition method. Then, an interference coating is designed that reproduces the pattern of the multivariate vector in its transmission or reflection spectrum, and appropriate interference filters are fabricated. High and low refractive index materials such as Nb2O5 and SiO2 are excellent choices for the visible and near infrared regions. The proof of concept has now been established for this system in the visible and will later be extended to chemicals such as OP compounds in the near and mid-infrared.

  15. Solution processable and optically switchable 1D photonic structures.

    PubMed

    Paternò, Giuseppe M; Iseppon, Chiara; D'Altri, Alessia; Fasanotti, Carlo; Merati, Giulia; Randi, Mattia; Desii, Andrea; Pogna, Eva A A; Viola, Daniele; Cerullo, Giulio; Scotognella, Francesco; Kriegel, Ilka

    2018-02-23

    We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only.

  16. Modeling Visible/Near-Infrared Photometric Properties of Dustfall on a Known Substrate

    NASA Technical Reports Server (NTRS)

    Sohl-Dickstein, J.; Johnson, J. R.; Grundy, W. M.; Guinness, E.; Graff, T.; Shepard, M. K.; Arvidson, R. E.; Bell, J. F., III; Christensen, P.; Morris, R.

    2005-01-01

    We present a comprehensive visible/near-infrared two-layer radiative transfer modeling study using laboratory spectra of variable dust thicknesses deposited on substrates with known photometric parameters. The masking effects of Martian airfall dust deposition on rocks, soils, and lander/rover components provides the incentive to improve two-layer models [1-3]. It is believed that the model presented will facilitate understanding of the spectral and compositional properties of both the dust layer and substrate material, and allow for better compensation for dust deposition.

  17. Pattern recognition of visible and near-infrared spectroscopy from bayberry juice by use of partial least squares and a backpropagation neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen Haiyan; Bao Yidan; He Yong

    2006-10-10

    Visible and near-infrared reflectance (visible-NIR) spectroscopy is applied to discriminate different varieties of bayberry juices. The discrimination of visible-NIR spectra from samples is a matter of pattern recognition. By partial least squares (PLS), the spectrum is reduced to certain factors, which are then taken as the input of the backpropagation neural network (BPNN). Through training and prediction, three different varieties of bayberry juice are classified based on the output of the BPNN. In addition, a mathematical model is built and the algorithm is optimized. With proper parameters in the training set,100% accuracy is obtained by the BPNN. Thus it ismore » concluded that the PLS analysis combined with the BPNN is an alternative for pattern recognition based on visible and NIR spectroscopy.« less

  18. Linear geologic structure and magic rock discrimination as determined from infrared data

    NASA Technical Reports Server (NTRS)

    Offield, T. W.; Rowan, L. C.; Watson, R. D.

    1970-01-01

    Color infrared photographs of the Beartooth Mountains, Montana show the distribution of mafic dikes and amphibolite bodies. Lineaments that cross grassy plateaus can be identified as dikes by the marked constrast between the dark rocks and the red vegetation. Some amphibolite bodies in granitic terrain can also be detected by infrared photography and their contacts can be accurately drawn due to enchanced contrast of the two types of rock in the near infrared. Reflectance measurements made in the field for amphibolite and granite show that the granite is 25% to 50% more reflective in the near infrared than in the visible region. Further enhancement is due to less atmospheric scattering than in the visible region. Thermal infrared images of the Mill Creek, Oklahoma test site provided information on geologic faults and fracture systems not obtainable from photographs. Subtle stripes that cross outcrop and intervening soil areas and which probably record water distribution are also shown on infrared photographs.

  19. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  20. Observing system simulations for small satellite formations estimating bidirectional reflectance

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  1. Impact of soil moisture and winter wheat height from the Loess Plateau in Northwest China on surface spectral albedo

    NASA Astrophysics Data System (ADS)

    Li, Zhenchao; Yang, Jiaxi; Gao, Xiaoqing; Zheng, Zhiyuan; Yu, Ye; Hou, Xuhong; Wei, Zhigang

    2018-02-01

    The understanding of surface spectral radiation and reflected radiation characteristics of different surfaces in different climate zones aids in the interpretation of regional surface energy transfers and the development of land surface models. This study analysed surface spectral radiation variations and corresponding surface albedo characteristics at different wavelengths as well as the relationship between 5-cm soil moisture and surface albedo on typical sunny days during the winter wheat growth period. The analysis was conducted using observational Loess Plateau winter wheat data from 2015. The results show that the ratio of atmospheric downward radiation to global radiation on typical sunny days is highest for near-infrared wavelengths, followed by visible wavelengths and ultraviolet wavelengths, with values of 57.3, 38.7 and 4.0%, respectively. The ratio of reflected spectral radiation to global radiation varies based on land surface type. The visible radiation reflected by vegetated surfaces is far less than that reflected by bare ground, with surface albedos of 0.045 and 0.27, respectively. Thus, vegetated surfaces absorb more visible radiation than bare ground. The atmospheric downward spectral radiation to global radiation diurnal variation ratios vary for near-infrared wavelengths versus visible and ultraviolet wavelengths on typical sunny days. The near-infrared wavelengths ratio is higher in the morning and evening and lower at noon. The visible and ultraviolet wavelengths ratios are lower in the morning and evening and higher at noon. Visible and ultraviolet wavelength surface albedo is affected by 5-cm soil moisture, demonstrating a significant negative correlation. Excluding near-infrared wavelengths, correlations between surface albedo and 5-cm soil moisture pass the 99% confidence test at each wavelength. The correlation with 5-cm soil moisture is more significant at shorter wavelengths. However, this study obtained surface spectral radiation characteristics that were affected by land surface vegetation coverage as well as by soil physical properties.

  2. The Infrared Hunter

    NASA Image and Video Library

    2006-08-15

    NASA Spitzer Space Telescope and the National Optical Astronomy Observatory compare infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation sword.

  3. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis.

    PubMed

    Yang, Zhong; Li, Kang; Zhang, Maomao; Xin, Donglin; Zhang, Junhua

    2016-01-01

    During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible-near infrared spectra was evaluated. The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible-near infrared spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after pretreatment with aqueous ammonia were also observed. The results showed the potential of visible-near infrared spectroscopy in combination with multivariate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as bamboo fractions.

  4. Near-opposition martian limb-darkening: Quantification and implication for visible-near-infrared bidirectional reflectance studies.

    NASA Astrophysics Data System (ADS)

    de Grenier, Muriel; Pinet, Patrick C.

    1995-06-01

    A nearly global coverage of the martian eastern hemisphere, acquired under small phase angles and varying observational geometries conditions, has been produced from 1988 opposition by spectral (0.5-1 μm) imaging data obtained at the Pic du Midi Observatory in France. From this data set, the methodology presented here permits a systematic analysis of martian photometric behavior at a regional scale of 100-300 km in the visible and near-infrared. The quantification of limb-darkening as a function of wavelength and surface albedo gives access in martian regional properties as a function of wavelength and surface albedo and results in the production of visible and near-infrared geometric albedo maps. A linear relation between the limb darkening parameter k and geometric albedo exists in the near infrared. Based on laboratory studies, it suggests a spectral response of particulate type for the martian soil. Conversely, in the visible, the value of k parameter is 0.6 independent of albedo and is consistent with a single scattering photometric behavior in the surface layer. However, the observed change in the martian photometry from single to multiple scattering may be partially due to a large contribution of atmospheric scattering above 0.7 μm. In the absence of a multitemporal dataset analysis, it must be emphasized that the present results are a priori only pertinent to the atmospheric and surface conditions existing on Mars at the time of observation. However, this analysis may contribute to characterize some physical properties, such as surface roughness. In the near-infrared, for bright terrains, k tends to 0.8 and agrees with the presence of very fine particulate materials. Photometry of dark areas is more irregular (0.48 < k < 0.64) and might result from surface roughness heterogeneities. However, a few dark areas reveal that k anomalous values in the range 0.7-0.8 may be caused by the presence of a coating of very fine materials or duricrust. Finally, we evaluate the influence of reflectance geometrical effects on the multispectral and spectroscopic data of the martian surface.

  5. Remote sensing of snow and ice.

    USGS Publications Warehouse

    Meier, M.F.

    1980-01-01

    Active and passive sensors operating in the visible, near infrared, thermal infrared, and microwave wavelengths are described in regard to general applications and in regard to specific USA or USSR satellites. -from Author

  6. Classification of broiler breast fillets according to storage and to freeze-thaw treatment using near infrared spectroscopy and multivariate analysis

    USDA-ARS?s Scientific Manuscript database

    Visible/near-infrared (NIR) spectroscopy has shown potential for successfully classifying broiler breast fillets according to their texture properties. Freshness and shelf life are also important quality characteristics of boneless skinless chicken breast products in the marketplace. This study deal...

  7. Multiple wavelength light collimator and monitor

    NASA Technical Reports Server (NTRS)

    Gore, Warren J. (Inventor)

    2011-01-01

    An optical system for receiving and collimating light and for transporting and processing light received in each of N wavelength ranges, including near-ultraviolet, visible, near-infrared and mid-infrared wavelengths, to determine a fraction of light received, and associated dark current, in each wavelength range in each of a sequence of time intervals.

  8. Electrochromic window with high reflectivity modulation

    DOEpatents

    Goldner, Ronald B.; Gerouki, Alexandra; Liu, Te-Yang; Goldner, Mark A.; Haas, Terry E.

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  9. Mapping argillic and advanced argillic alteration in volcanic rocks, quartzites, and quartz arenites in the western Richfield 1° x 2 ° quadrangle, southwestern Utah, using ASTER satellite data

    USGS Publications Warehouse

    Rockwell, Barnaby W.; Hofstra, Albert H.

    2012-01-01

    The Richfield quadrangle in southwestern Utah is known to contain a variety of porphyry Mo, skarn, polymetallic replacement and vein, alunite, and kaolin resources associated with 27-32 Ma calc-alkaline or 12-23 Ma bimodal volcano-plutonic centers in Neoproterozoic to Mesozoic carbonate and siliciclastic rocks. Four scenes of visible to shortwave-infrared image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were analyzed to generate maps of exposed clay, sulfate, mica, and carbonate minerals, and ASTER thermal infrared data were analyzed to identify quartz and carbonate minerals. Argillic and advanced argillic alteration minerals including alunite, pyrophyllite, dickite, and kaolinite were identified in both undocumented (U) and known (K) areas, including in the southern Paradise Mtns. (U); in calc-alkaline volcanic rocks in the Wah Wah Mtns. between Broken Ridge and the NG area (U/K); at Wah Wah Summit in a small zone adjacent to 33.1 Ma diorite and marble (U); in fractures cutting quartzites surrounding the 20-22 Ma Pine Grove Mo deposit (U); in volcanic rocks in the Shauntie Hills (U/K); in quartzites in the west-central San Francisco Mtns. (U); in volcanic rocks in the Black Mtns. (K); and in mainly 12-13 Ma rhyolitic rocks along a 20 km E-W belt that includes the Bible Spring fault zone west of Broken Ridge, with several small centers in the Escalante Desert to the south (U/K). Argillized Navajo Sandstone with kaolinite and (or) dickite ± alunite was mapped adjacent to calc-alkaline intrusions in the Star Range (U). Intense quartz-sericite alteration (K) with local kaolinite was identified in andesite adjacent to calc-alkaline intrusions in the Beaver Lake Mountains. Mo-bearing phyllic alteration was identified in 22.2 Ma rhyolite plugs at the center of the NG alunite area. Limestones, dolomites, and marbles were differentiated, and quartz and sericite were identified in most unaltered quartzites. Halos of argillically-altered rock ≈12 km in diameter surround the Pine Grove deposit, the central rhyolites at NG, and the North Peaks just south of the Bible Spring fault zone. A southward shift from 22-23 Ma alunite at NG in the northeast to the 12-13 Ma alunite near Broken Ridge in the southwest mirrors a shift in the locus of bimodal magmatism and is similar to the southward shift of activity from the Antelope Range to Alunite Ridge (porphyry Mo potential) in the Marysvale volcanic field farther east. The poster provided in this report compares mineral maps generated from analysis of combined visible-near infrared (VNIR) and shortwave-infrared (SWIR) data and thermal infrared (TIR) ASTER data to a previously published regional geologic map. Such comparisons are used to identify and differentiate rock-forming and hydrothermal alteration-related minerals, which aids in lithologic mapping and alteration characterization over an 11,245 square kilometer area.

  10. The fabrication and visible-near-infrared optical modulation of vanadium dioxide/silicon dioxide composite photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei

    2017-12-01

    We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO2) thin film and silicon dioxide (SiO2) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO2 sphere arrays. VO2 thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO2 shell formed a continuous surface, the composition of VO2 films in the structure changed when the oxygen flow rates increased. The 2D VO2/SiO2 composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO2 phase changes from insulator to metal. The composite nanostructure based on VO2 films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows.

  11. Multisensor analysis of hydrologic features with emphasis on the Seasat SAR

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Hall, D. K.

    1981-01-01

    Synthetic aperture radar (SAR) imagery of the Wind River Range area in Wyoming is compared with visible and near-infrared imagery of the same area. Data from the Seasat L-Band SAR and an aircraft X-Band SAR are compared with Landsat Return Beam Vidicon (RBV) visible data and near-infrared aerial photography and topographic maps of the same area. It is noted that visible and near-infrared data provide more information than the SAR data when conditions are the most favorable. The SAR penetrates clouds and snow, however, and data can be acquired day or night. Drainage density detail is good on SAR imagery because individual streams show up well owing to riparian vegetation; this causes higher radar reflections which result from the 'rough' surface which vegetation creates. In the winter image, the X-Band radar data show high returns because of cracks on the lake ice surfaces. High returns can also be seen in the L-Band SAR imagery of the lakes due to ripples on the surface induced by wind. It is concluded that the use of multispectral data would optimize analysis of hydrologic features.

  12. Using reflectance spectroscopy to predict beef tenderness.

    PubMed

    Bowling, M B; Vote, D J; Belk, K E; Scanga, J A; Tatum, J D; Smith, G C

    2009-05-01

    A study was conducted to determine if reflectance measurements made in the near-infrared region of the spectrum were additive to reflectance measurements made in the visible region of the spectrum for predicting Warner-Bratzler shear force (WBSF) values. Eighty seven strip loins were collected following fabrication over 3d at a commercial beef processing facility from heifer carcasses with Slight or Traces marbling scores. Spectroscopic measurements were made at approximately 50h postmortem using a Hunter-Lab UltraScan. Subsequently, all strip loins were aged for 14d, cooked to an internal temperature of 70°C, and sheared to obtain WBSF values. Reflectance measurements obtained in the near-infrared region of the spectrum were correlated with WBSF values, however, these measurements were not additive to the predictive ability of reflectance measurements (R(2) values did not differ) made in the visible portion of the spectrum when the use of broad-band wavelength filters were simulated. It was therefore determined, that both the visible and near-infrared spectra measure reflectance and that both methods are acceptable methods of tenderness prediction.

  13. Identification of pesticide varieties by testing microalgae using Visible/Near Infrared Hyperspectral Imaging technology

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; Jiang, Linjun; Zhou, Hong; Pan, Jian; He, Yong

    2016-04-01

    In our study, the feasibility of using visible/near infrared hyperspectral imaging technology to detect the changes of the internal components of Chlorella pyrenoidosa so as to determine the varieties of pesticides (such as butachlor, atrazine and glyphosate) at three concentrations (0.6 mg/L, 3 mg/L, 15 mg/L) was investigated. Three models (partial least squares discriminant analysis combined with full wavelengths, FW-PLSDA; partial least squares discriminant analysis combined with competitive adaptive reweighted sampling algorithm, CARS-PLSDA; linear discrimination analysis combined with regression coefficients, RC-LDA) were built by the hyperspectral data of Chlorella pyrenoidosa to find which model can produce the most optimal result. The RC-LDA model, which achieved an average correct classification rate of 97.0% was more superior than FW-PLSDA (72.2%) and CARS-PLSDA (84.0%), and it proved that visible/near infrared hyperspectral imaging could be a rapid and reliable technique to identify pesticide varieties. It also proved that microalgae can be a very promising medium to indicate characteristics of pesticides.

  14. Hyperspectral sensors and the conservation of monumental buildings

    NASA Astrophysics Data System (ADS)

    Camaiti, Mara; Benvenuti, Marco; Chiarantini, Leandro; Costagliola, Pilar; Moretti, Sandro; Paba, Francesca; Pecchioni, Elena; Vettori, Silvia

    2010-05-01

    The continuous control of the conservation state of outdoor materials is a good practice for timely planning conservative interventions and therefore to preserve historical buildings. The monitoring of surfaces composition, in order to characterize compounds of neo-formation and deposition, by traditional diagnostic campaigns, although gives accurate results, is a long and expensive method, and often micro-destructive analyses are required. On the other hand, hyperspectral analysis in the visible and near infrared (VNIR) region is a very common technique for determining the characteristics and properties of soils, air, and water in consideration of its capability to give information in a rapid, simultaneous and not-destructive way. VNIR Hypespectral analysis, which discriminate materials on the basis of their different patterns of absorption at specific wavelengths, are in fact successfully used for identifying minerals and rocks (1), as well as for detecting soil properties including moisture, organic content and salinity (2). Among the existing VNIR techniques (Laboratory Spectroscopy - LS, Portable Spectroscopy - PS and Imaging Spectroscopy - IS), PS and IS can play a crucial role in the characterization of components of exposed stone surfaces. In particular, the Imaging Spectroscopic (remote sensing), which uses sensors placed both on land or airborne, may contribute to the monitoring of large areas in consideration of its ability to produce large areal maps at relatively low costs. In this presentation the application of hyperspectral instruments (mainly PS and IS, not applied before in the field of monumental building diagnostic) to quantify the degradation of carbonate surfaces will be discussed. In particular, considering gypsum as the precursor symptom of damage, many factors which may affect the estimation of gypsum content on the surface will be taken into consideration. Two hyperspectral sensors will be considered: 1) A portable radiometer (ASD-FieldSpec FP Pro spectroradiometer), which continuously acquires punctual reflectance spectra in the range 350-2500 nm, both in natural light conditions and by a contact probe (fixed geometry of shot). This instrument is used on field for the identification of different materials, as well as for the definition of maps (e.g geological maps) if coupled with other hyperspectral instruments. 2) Hyperspectral sensor SIM-GA (Selex Galileo Multisensor Hyperspectral System), a system with spatial acquisition of data which may be used on an earth as well as on an airborne platform. SIM-GA consists of two electro-optical heads, which operate in the VNIR and SWIR regions, respectively, between 400-1000 nm and 1000-2500 nm (3). Although the spectral signature in the VNIR of many minerals is known, the co-presence of more minerals on a surface can affect the quantitative analysis of gypsum. Different minerals, such as gypsum, calcite, weddellite, whewellite, and other components (i.e. carbon particles in black crusts) are, in fact, commonly found on historical surfaces. In order to illustrate the complexity, but also the potentiality of hyperspectral sensors (portable or remote sensing) for the characterization of stone surfaces, a case study, the Facade of Santa Maria Novella in Florence - Italy, will be presented. References 1) R.N. Clark and G.A. Swayze, 1995, "Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials: The USGS Tricorder Algorithm", in "Summaries of the Fifth Annual JPL Airborne Earth Science Workshop", JPL Publication 95-1,1,39-40 2) E. Ben-Dor, K. Patin, A. Banin and A. Karnieli, 2002, "Mapping of several soil properties using DATS-7915 hyperspectral scanner data. A case study over clayely soils in Israel", International Journal of Remote Sensing, 23(6), 1043-1062 3) S. Vettori, M. Benvenuti, M. Camaiti, L. Chiarantini, P. Costagliola, S. Moretti, E. Pecchioni, 2008, "Assessment of the deterioration status of historical buildings by Hyperspectral Imaging techniques", in Proceedings of the "In situ Monitoring of Monumental Surfaces -SMS/08" Congress, Edifir-Edizioni Firenze 2008, 55-64

  15. Classification of corn kernels contaminated with aflatoxins using fluorescence and reflectance hyperspectral images analysis

    NASA Astrophysics Data System (ADS)

    Zhu, Fengle; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Brown, Robert; Bhatnagar, Deepak; Cleveland, Thomas

    2015-05-01

    Aflatoxins are secondary metabolites produced by certain fungal species of the Aspergillus genus. Aflatoxin contamination remains a problem in agricultural products due to its toxic and carcinogenic properties. Conventional chemical methods for aflatoxin detection are time-consuming and destructive. This study employed fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images to classify aflatoxin contaminated corn kernels rapidly and non-destructively. Corn ears were artificially inoculated in the field with toxigenic A. flavus spores at the early dough stage of kernel development. After harvest, a total of 300 kernels were collected from the inoculated ears. Fluorescence hyperspectral imagery with UV excitation and reflectance hyperspectral imagery with halogen illumination were acquired on both endosperm and germ sides of kernels. All kernels were then subjected to chemical analysis individually to determine aflatoxin concentrations. A region of interest (ROI) was created for each kernel to extract averaged spectra. Compared with healthy kernels, fluorescence spectral peaks for contaminated kernels shifted to longer wavelengths with lower intensity, and reflectance values for contaminated kernels were lower with a different spectral shape in 700-800 nm region. Principal component analysis was applied for data compression before classifying kernels into contaminated and healthy based on a 20 ppb threshold utilizing the K-nearest neighbors algorithm. The best overall accuracy achieved was 92.67% for germ side in the fluorescence data analysis. The germ side generally performed better than endosperm side. Fluorescence and reflectance image data achieved similar accuracy.

  16. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  17. Potential of Visible and Near Infrared Spectroscopy and Pattern Recognition for Rapid Quantification of Notoginseng Powder with Adulterants

    PubMed Central

    Nie, Pengcheng; Wu, Di; Sun, Da-Wen; Cao, Fang; Bao, Yidan; He, Yong

    2013-01-01

    Notoginseng is a classical traditional Chinese medical herb, which is of high economic and medical value. Notoginseng powder (NP) could be easily adulterated with Sophora flavescens powder (SFP) or corn flour (CF), because of their similar tastes and appearances and much lower cost for these adulterants. The objective of this study is to quantify the NP content in adulterated NP by using a rapid and non-destructive visible and near infrared (Vis-NIR) spectroscopy method. Three wavelength ranges of visible spectra, short-wave near infrared spectra (SNIR) and long-wave near infrared spectra (LNIR) were separately used to establish the model based on two calibration methods of partial least square regression (PLSR) and least-squares support vector machines (LS-SVM), respectively. Competitive adaptive reweighted sampling (CARS) was conducted to identify the most important wavelengths/variables that had the greatest influence on the adulterant quantification throughout the whole wavelength range. The CARS-PLSR models based on LNIR were determined as the best models for the quantification of NP adulterated with SFP, CF, and their mixtures, in which the rP values were 0.940, 0.939, and 0.867 for the three models respectively. The research demonstrated the potential of the Vis-NIR spectroscopy technique for the rapid and non-destructive quantification of NP containing adulterants. PMID:24129019

  18. NRL Fact Book 2010

    DTIC Science & Technology

    2010-01-01

    service) High assurance software Distributed network-based battle management High performance computing supporting uniform and nonuniform memory...VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power photodetector characteriza- tion...Antimonide (InSb) imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services

  19. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    PubMed

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  20. Solar Coronal Lines in the Visible and Infrared: A Rough Guide

    NASA Astrophysics Data System (ADS)

    Del Zanna, Giulio; DeLuca, Edward E.

    2018-01-01

    We review the coronal visible and infrared lines, collecting previous observations and comparing, whenever available, observed radiances to those predicted by various models: the quiet Sun (QS), a moderately active Sun, and an active region as observed near the limb, around 1.1 R ⊙. We also model the off-limb radiances for the QS case. We used the most up-to-date atomic data in CHIANTI version 8. The comparison is satisfactory, in that all of the strong visible lines now have a firm identification. We revise several previous identifications and suggest some new ones. We also list the large number of observed lines for which we do not currently have atomic data, and therefore still await firm identifications. We also show that a significant number of coronal lines should be observable in the near-infrared region of the spectrum by the upcoming Daniel K. Inouye Solar Telescope (DKIST) and the AIR-Spec instrument, which observed the corona during the 2017 August 21 solar eclipse. We also briefly discuss the many potential spectroscopic diagnostics available to the visible and infrared, with particular emphasis on measurements of electron densities and chemical abundances. We briefly point out some of the potential diagnostics that could be available with the future infrared instrumentation that is being built for DKIST and planned for the Coronal Solar Magnetism Observatory. Finally, we highlight the need for further improvements in the atomic data.

  1. Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire.

    PubMed

    Fang, Hehai; Hu, Weida; Wang, Peng; Guo, Nan; Luo, Wenjin; Zheng, Dingshan; Gong, Fan; Luo, Man; Tian, Hongzheng; Zhang, Xutao; Luo, Chen; Wu, Xing; Chen, Pingping; Liao, Lei; Pan, Anlian; Chen, Xiaoshuang; Lu, Wei

    2016-10-12

    One-dimensional InAs nanowires (NWs) have been widely researched in recent years. Features of high mobility and narrow bandgap reveal its great potential of optoelectronic applications. However, most reported work about InAs NW-based photodetectors is limited to the visible waveband. Although some work shows certain response for near-infrared light, the problems of large dark current and small light on/off ratio are unsolved, thus significantly restricting the detectivity. Here in this work, a novel "visible light-assisted dark-current suppressing method" is proposed for the first time to reduce the dark current and enhance the infrared photodetection of single InAs NW photodetectors. This method effectively increases the barrier height of the metal-semiconductor contact, thus significantly making the device a metal-semiconductor-metal (MSM) photodiode. These MSM photodiodes demonstrate broadband detection from less than 1 μm to more than 3 μm and a fast response of tens of microseconds. A high detectivity of ∼10 12 Jones has been achieved for the wavelength of 2000 nm at a low bias voltage of 0.1 V with corresponding responsivity of as much as 40 A/W. Even for the incident wavelength of 3113 nm, a detectivity of ∼10 10 Jones and a responsivity of 0.6 A/W have been obtained. Our work has achieved an extended detection waveband for single InAs NW photodetector from visible and near-infrared to mid-infrared. The excellent performance for infrared detection demonstrated the great potential of narrow bandgap NWs for future infrared optoelectronic applications.

  2. Infrared Image of Low Clouds on Venus

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This false-color image is a near-infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft as it approached the planet's night side on February 10, 1990. Bright slivers of sunlit high clouds are visible above and below the dark, glowing hemisphere. The spacecraft is about 100,000 kilometers (60,000 miles) above the planet. An infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) was used. The map shows the turbulent, cloudy middle atmosphere some 50-55 kilometers (30- 33 miles) above the surface, 10-16 kilometers or 6-10 miles below the visible cloudtops. The red color represents the radiant heat from the lower atmosphere (about 400 degrees Fahrenheit) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about -30 degrees Fahrenheit, at a pressure about 1/2 Earth's surface atmospheric pressure. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude.

  3. Visible and Extended Near-Infrared Multispectral Imaging for Skin Cancer Diagnosis

    PubMed Central

    Rey-Barroso, Laura; Burgos-Fernández, Francisco J.; Delpueyo, Xana; Ares, Miguel; Malvehy, Josep; Puig, Susana

    2018-01-01

    With the goal of diagnosing skin cancer in an early and noninvasive way, an extended near infrared multispectral imaging system based on an InGaAs sensor with sensitivity from 995 nm to 1613 nm was built to evaluate deeper skin layers thanks to the higher penetration of photons at these wavelengths. The outcomes of this device were combined with those of a previously developed multispectral system that works in the visible and near infrared range (414 nm–995 nm). Both provide spectral and spatial information from skin lesions. A classification method to discriminate between melanomas and nevi was developed based on the analysis of first-order statistics descriptors, principal component analysis, and support vector machine tools. The system provided a sensitivity of 78.6% and a specificity of 84.6%, the latter one being improved with respect to that offered by silicon sensors. PMID:29734747

  4. Active microwave responses - An aid in improved crop classification

    NASA Technical Reports Server (NTRS)

    Rosenthal, W. D.; Blanchard, B. J.

    1984-01-01

    A study determined the feasibility of using visible, infrared, and active microwave data to classify agricultural crops such as corn, sorghum, alfalfa, wheat stubble, millet, shortgrass pasture and bare soil. Visible through microwave data were collected by instruments on board the NASA C-130 aircraft over 40 agricultural fields near Guymon, OK in 1978 and Dalhart, TX in 1980. Results from stepwise and discriminant analysis techniques indicated 4.75 GHz, 1.6 GHz, and 0.4 GHz cross-polarized microwave frequencies were the microwave frequencies most sensitive to crop type differences. Inclusion of microwave data in visible and infrared classification models improved classification accuracy from 73 percent to 92 percent. Despite the results, further studies are needed during different growth stages to validate the visible, infrared, and active microwave responses to vegetation.

  5. Confocal retinal imaging using a digital light projector with a near infrared VCSEL source

    NASA Astrophysics Data System (ADS)

    Muller, Matthew S.; Elsner, Ann E.

    2018-02-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1" LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging.

  6. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  7. Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic-Inorganic Hybrid Perovskite Photovoltaic Absorber.

    PubMed

    Yu, By Hyeonggeun; Cheng, Yuanhang; Li, Menglin; Tsang, Sai-Wing; So, Franky

    2018-05-09

    Direct integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED. Because of the efficient photocarrier injection from the hybrid perovskite layer to the OLED, we observed a sub-band gap turn-on of the OLED under NIR illumination. The device showed a NIR-to-visible up-conversion efficiency of 3% and a luminance on/off ratio of 10 3 at only 5 V. Finally, we demonstrate pixel-free NIR imaging using the up-conversion device.

  8. Extraction and fusion of spectral parameters for face recognition

    NASA Astrophysics Data System (ADS)

    Boisier, B.; Billiot, B.; Abdessalem, Z.; Gouton, P.; Hardeberg, J. Y.

    2011-03-01

    Many methods have been developed in image processing for face recognition, especially in recent years with the increase of biometric technologies. However, most of these techniques are used on grayscale images acquired in the visible range of the electromagnetic spectrum. The aims of our study are to improve existing tools and to develop new methods for face recognition. The techniques used take advantage of the different spectral ranges, the visible, optical infrared and thermal infrared, by either combining them or analyzing them separately in order to extract the most appropriate information for face recognition. We also verify the consistency of several keypoints extraction techniques in the Near Infrared (NIR) and in the Visible Spectrum.

  9. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  10. Rapid Carbon Assessment Project: Data Summary and Availability

    NASA Astrophysics Data System (ADS)

    Wills, Skye; Loecke, Terry; Roecker, Stephen; Beaudette, Dylan; Libohova, Zamir; Monger, Curtis; Lindbo, David

    2017-04-01

    The Rapid Carbon Assessment (RaCA) project was undertaken to estimate regional soil organic carbon (SOC) stocks across the conterminous United States (CONUS) as a one-time event. Sample locations were selected randomly using the NRI (National Resource Inventory) sampling framework covering all areas in CONUS with SSURGO certified maps as of Dec 2012. Within each of 17 regions, sites were selected by a combination of soil and land use/cover groups (LUGR). At each of more than 6,000 sites five pedons were described and sampled to a depth of 100cm (one central and 4 satellites 30m in each cardinal direction). There were 144,833 samples described from 32,084 pedons at 6, 017 sites. A combination of measurement and modeled bulk density was used for all samples. A visible near-infrared (VNIR) spectrophotometer was used to scan each sample for prediction of soil carbon contents. The samples of each central pedon were analyzed by the Kellogg Soil Survey Laboratory for combustion carbon and calcimeter inorganic carbon. SOC stocks were calculated for each pedon using a standard fixed depth technique to depths of 5, 30 and 100cm. Pedon SOC stocks were transformed to better approach normality before LUGR, regional and land use/cover summaries were calculated. The values reported are geometric means. A detailed spatial map can be produced using LUGR mean assignment to correlated pixels. LUGR values range from 1 to 3,000 Mg ha-1. While some artifacts are visible due to the stratified nature of sampling and extrapolation, the predictions are generally smooth and highlight some distinct geomorphic features including the sandhills in the Great Plains in the central US, mountainous regions in the West and coastal wetlands in the East. Regional averages range from 46 Mg ha-1 in the desert Southwest to 182 Mg ha-1 in the Northeast. Regional trends correlate to climate variables such as precipitation and potential evapotranspiration. While land use/cover classes vary in mean values, the range within each class overlap and they are not significantly different. As expected, wetlands have the highest SOC stocks, 261 Mg ha-1, and range lands the lowest, 51 Mg ha-1. This is due primarily to the great stocks between 30 and 100cm in wetlands. Ongoing work includes incorporating measurement error into uncertainties and using Bayesian inference to test differences between land use/cover classes. Project information and raw data including sample descriptions, sample data, processing scripts, VNIR scans, and maps are available via web and R based packages. Future work will be done to map carbon across landscapes using environmental covariates and produce probabilities of C concentrations and stocks across multiple land use and management scenarios

  11. Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: a case study

    USDA-ARS?s Scientific Manuscript database

    Effective and efficient methods are needed to map agricultural subsurface drainage systems. Visible (VIS), near infrared (NIR), and/or thermal infrared (TIR) imagery obtained by unmanned aircraft systems (UAS) may provide a means for determining drainage pipe locations. Preliminary UAS surveys wit...

  12. [Evaluation of Sugar Content of Huanghua Pear on Trees by Visible/Near Infrared Spectroscopy].

    PubMed

    Liu, Hui-jun; Ying, Yi-bin

    2015-11-01

    A method of ambient light correction was proposed to evaluate the sugar content of Huanghua pears on tree by visible/near infrared diffuse reflectance spectroscopy (Vis/NIRS). Due to strong interference of ambient light, it was difficult to collect the efficient spectral of pears on tree. In the field, covering the fruits with a bag blocking ambient light can get better results, but the efficiency is fairly low, the instrument corrections of dark and reference spectra may help to reduce the error of the model, however, the interference of the ambient light cannot be eliminated effectively. In order to reduce the effect of ambient light, a shutter was attached to the front of probe. When opening shutter, the spot spectrum were obtained, on which instrument light and ambient light acted at the same time. While closing shutter, background spectra were obtained, on which only ambient light acted, then the ambient light spectra was subtracted from spot spectra. Prediction models were built using data on tree (before and after ambient light correction) and after harvesting by partial least square (PLS). The results of the correlation coefficient (R) are 0.1, 0.69, 0.924; the root mean square error of prediction (SEP) are 0. 89°Brix, 0.42°Brix, 0.27°Brix; ratio of standard deviation (SD) to SEP (RPD) are 0.79, 1.69, 2.58, respectively. The results indicate that, method of background correction used in the experiment can reduce the effect of ambient lighting on spectral acquisition of Huanghua pears in field, efficiently. This method can be used to collect the visible/near infrared spectrum of fruits in field, and may give full play to visible/near-infrared spectroscopy in preharvest management and maturity testing of fruits in the field.

  13. ARC-1990-AC91-2005

    NASA Image and Video Library

    1990-02-10

    Range : 60,000 miles This image is a false-color version of a near- infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard Galileo. Taken at an infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) the map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image shows the radiant heat from the lower atmosphere (about 400 degrees F) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. The colors indicate relative cloud transparency; white and red show thin cloud regions, while black and blue represent relatively this clouds. This cloud layer is at about 170 degrees F., at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slivers of daylit high clouds visible at top and bottom left. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps. Designed and operated by scientists and engineers at the JPL, NIMS involves 15 scientists in the US, England and France.

  14. Silicon nitride photonics: from visible to mid-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Micó, Gloria; Bru, Luis A.; Pastor, Daniel; Doménech, David; Fernández, Juan; Sánchez, Ana; Cirera, Josep M.; Domínguez, Carlos; Muñoz, Pascual

    2018-02-01

    Silicon nitride has received a lot of attention during the last ten years, for applications such as bio-photonics, tele/datacom, optical signal processing and sensing. In this paper, firstly an updated review of the state of the art of silicon nitride photonics integration platforms will be provided. Secondly, our developments on a moderate confinement Si3N4 platform in the near-infrared will be presented. Finally, our steps towards establishing a Si3N4 based platform for broadband operation spanning from visible to mid-infrared wavelengths will be introduced.

  15. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    PubMed Central

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-01-01

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495

  16. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    PubMed

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  17. Surface reflectance retrieval from satellite and aircraft sensors - Results of sensors and algorithm comparisons during FIFE

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Halthore, R. N.; Goetz, S. J.

    1992-01-01

    Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 Thematic Mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 Thematic Mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5 percent. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 microns) and about 0.30 in the near infrared (0.7-1.2 microns) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 microns) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.

  18. Thermal radiation scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    de Wilde, Yannick; Formanek, Florian; Carminati, Rémi; Gralak, Boris; Lemoine, Paul-Arthur; Joulain, Karl; Mulet, Jean-Philippe; Chen, Yong; Greffet, Jean-Jacques

    2006-12-01

    In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical `stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a `thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.

  19. Naval Research Laboratory Fact Book 2012

    DTIC Science & Technology

    2012-11-01

    Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion

  20. Evidence for Interlayer Collapse of Nontronite on Mars from Laboratory Visible and Near-IR Reflective Spectra

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Ming, D. W.; Golden, D. C.; Graff, T. G.; Achilles, C. N.

    2010-01-01

    Dioctahedral smectites (e.g., nontronite and montmorillionite) are interpreted to occupy the optical surface of Mars at a number of locations on the basis of spectral features derived from interlayer H2O and MOH (M=Fe(3+)2, Fe(3+)Al, Al2, etc.) as observed by orbiting MRO-CRISM and MEx-OMEGA hyperspectral imaging spectrometers. At wavelengths shorter than approximately 2.7 micrometers, the strongest bands from interlayer H2O occur at approximately 1.4 and 1.9 micrometers from 2v1 and v1+v2, respectively, where v1 and v2 are the fundamental stretching and bending vibrations of the H2O molecule. Smectite MOH vibrations occur near 1.4 micrometers (stretching overtone) and in the region between 2.1 and 2.7 micrometers (stretching + bending combination). Because interlayer H2O can exchange with the martian environment, a number of studies have examined the strength of the interlayer H2O spectral features under Mars-like environmental conditions. The relationship between spectral properties and the underlying crystal structure of the smectites was not determined, and the extent of interlayer H2O removal was not established. We report combined visible and near-IR (VNIR), Mossbauer (MB), and powder X-ray diffraction (XRD) data for samples of the Fe-bearing smectite nontronite where the interlayer was collapsed by complete removal of interlayer H2O.

  1. Time-Resolved Near-Infrared Photometry of Extreme Kuiper Belt Object Haumea

    NASA Astrophysics Data System (ADS)

    Lacerda, Pedro

    2009-02-01

    We present time-resolved near-infrared (J and H) photometry of the extreme Kuiper belt object (136108) Haumea (formerly 2003 EL61) taken to further investigate rotational variability of this object. The new data show that the near-infrared peak-to-peak photometric range is similar to the value at visible wavelengths, ΔmR = 0.30 ± 0.02 mag. Detailed analysis of the new and previous data reveals subtle visible/near-infrared color variations across the surface of Haumea. The color variations are spatially correlated with a previously identified surface region, redder in B - R and darker than the mean surface. Our photometry indicates that the J - H colors of Haumea (J - H = -0.057 ± 0.016 mag) and its brightest satellite Hi'iaka (J - H = -0.399 ± 0.034 mag) are significantly (greater than 9σ) different. The satellite Hi'iaka is unusually blue in J - H, consistent with strong 1.5 μm water-ice absorption. The phase coefficient of Haumea is found to increase monotonically with wavelength in the range 0.4 < λ < 1.3. We compare our findings with other solar system objects and discuss implications regarding the surface of Haumea.

  2. Comparison of the Changes in the Visible and Infrared Irradiance Observed by the SunPhotometers on EURECA to the UARS Total Solar and UV Irradiances

    NASA Technical Reports Server (NTRS)

    Pap, Judit

    1995-01-01

    Solar irradiance in the near-UV (335 nm), visible (500 nm) and infrared (778 nm) spectral bands has been measured by the SunPhotometers developed at the World Radiation Center, Davos, Switzerland on board the European Retrievable Carrier between August 1992 and May 1993. Study of the variations in the visible and infrared irradiance is important for both solar and atmospheric physics. The purpose of this paper is to examine the temporal variations observed in the visible and infrared spectral bands after eliminating the trend in the data mainly related to instrument degradation. The effect of active regions in these spectral irradiances is clearly resolved. Variations in the visible and infrared irradiances are compared to total solar irradiance observed by the SOVA2 radiometer on the EURECA platform and by the ACRIMII radiometer on UARS as well as to UV observations of the UARS and NOAA9 satellites. The space-borne spectral irradiance observations are compared to the photometric sunspot deficit and CaII K irradiance measured at the San Fernando Observatory, California State University at Northridge in order to study the effect of active regions in detail.

  3. Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Ismael, Chiamenti; Francesca, Bonfigli; Anderson, S. L. Gomes; Rosa, Maria Montereali; Larissa, N. da Costa; Hypolito, J. Kalinowski

    2014-01-01

    Broadband waveguiding through light-emitting strips directly written in a blank lithium fluoride crystal with a femtosecond laser is reported. Light guiding was observed at several optical wavelengths, from blue, 458 nm, to near-infrared, at 1550 nm. Visible photoluminescence spectra of the optically active F2 and F3+ color centers produced by the fs laser writing process were measured. The wavelength-dependent refractive index increase was estimated to be in the order of 10-3-10-4 in the visible and near-infrared spectral intervals, which is consistent with the stable formation of point defects in LiF.

  4. Altered rock spectra in the visible and near infrared. [western Nevada

    NASA Technical Reports Server (NTRS)

    Hunt, G. R.; Ashley, R. P. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Visible and near-infrared (0.35 to 2.5 micron m) bidirectional reflection spectra recorded for a suite of well-characterized hydrothermally altered rock samples typically display well defined bands caused by both electronic and vibrational processes in the individual mineral constituents. Electronic transitions in the iron-bearing constituent minerals produce diagnostic minima near 0.43, 0.65, 0.85, and 0.93 micron m. Vibrational transitions in clay and water-bearing mineral constituents produce characteristic single or multiple features over limited spectral ranges near 1.4, 1.75, 1.9, 2.2, and 2.35 micron m. The most abundant feature-producing minerals present in these rocks are hematite, goethite, and alunite. Others frequently present are jarosite, kaolinite, potassium micas, pyrophyllite, montmorillonite, diaspore, and gypsum. The spectral region near 2.2 micron m is particularly important for detecting altered rocks by remote sensing.

  5. The Effect of Temperature on Reflectance of Materials Space Weathered by Laser Irradiation: Implications for Increased Albedo Measured by LOLA

    NASA Astrophysics Data System (ADS)

    Corley, L. M.; Gillis-Davis, J.; Lucey, P. G.; Trang, D.

    2016-12-01

    Space weathering significantly changes the optical properties of airless planetary bodies, resulting in decreased albedo, spectral reddening, and subdued absorption bands. These optical changes are caused by the presence of submicroscopic iron (SMFe) in agglutinates and patina glass, which is observed in lunar soils returned by the Apollo and Luna missions. Micrometeorite impacts and solar wind irradiation are key processes that produce SMFe. The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter measured a trend of increased albedo at 1064 nm with decreasing temperature and a spike in 1064-nm albedo in permanently shadowed regions (PSRs). Although the LOLA albedo increase could be due to the presence of ice, increased reflectance is also consistent with reduced space weathering. It is currently unknown how temperature influences the production of SMFe and the resulting spectral effects. Low temperatures of polar regions and PSRs (as low as 50K) may affect the volume of impact melt/vaporization produced and the subsequent development of SMFe. To test this hypothesis we compare visible to near-infrared (VNIR) reflectance spectra of materials laser space weathered at low temperature and room temperature. Olivine irradiated at 88K is brighter at 1064 nm and exhibits less reddening than olivine irradiated at 295K. Radiative transfer modeling provided abundance estimates for SMFe. Based on these estimates, olivine irradiated at 88K contains 65-70% the abundance of SMFe of olivine irradiated at 295K. Laser weathering of a highlands analog at 85K results in reduced reddening but does not yield a statistically significant increased brightness at 1064 nm with lower temperature. Hence, our results show that laser weathering at low temperatures produces a measurable effect in VNIR spectra for olivine and less so for a plagioclase dominated soil. We attribute this mineral dependent observation to a decrease in the production of SMFe, and we will confirm this hypothesis with transmission electron microscopy. The 5% greater reflectance at 1064 nm for the 88K sample of olivine is consistent with the observed anticorrelation trend between temperature and LOLA albedo. Thus, reduced space weathering may contribute to the trend of increased albedo with decreasing temperature measured by LOLA.

  6. The multispectral instrument of the Sentinel2 program

    NASA Astrophysics Data System (ADS)

    Cazaubiel, V.; Chorvalli, Vincent; Miesch, Christophe

    2017-11-01

    The Sentinel-2 program will provide a permanent record of comprehensive data to help inform the agricul-tural sector (utilisation, coverage), forestry industry (population, damage, forest fires), disaster control (management, early warning) and humanitarian relief programmes. Sentinel-2 will also be able to observe natural disasters such as floods, volcanic eruptions, subsidence and landslides. In the Sentinel-2 mission programme, Astrium in Friedrichshafen is responsible for the satellite's system design and platform, as well as for satellite integration and testing. Astrium Toulouse will supply the Multi-Spectral imaging Instrument (MSI), and Astrium Spain will be in charge of the satellite's structure and will produce its thermal equipment and cable harness. The industrial core team also comprises Jena Optronik (Germany), Boostec (France), Sener and GMV (Spain). Sentinel-2 is intended to image the Earth's landmasses from its orbit for at least 7.25 years. In addition, its onboardresources will be designed so that the mission can be prolonged by an extra five years. From 2012 onwards, the 1.1-metric-ton satellite will circle the Earth in a sun-synchronous, polar orbit at an altitude of 786kilometres, fully covering the planet's landmasses in just ten days. The multi-spectral instrument (MSI) will generate optical images in 13 spectral channels in the visible and shortwave infrared range down to a resolution of 10 metres with an image width of 290 kilometres. The instrument is composed of two main parts: • The telescope assembly , combining in one instrument both VNIR and SWIR channels, is mounted on the upper plate of the Bus • The Video and Compression Electronic Units mounted inside the Bus. This telescope is based on a Three Mirror Anastigmat optical concept. This three mirror optical combination is corrected from spherical aberration, coma and astigmatism. It provides a large field of view with very good optical quality. The telescope mirrors and structural baseplate are made of Silicon Carbide material in order to minimise thermo-elastic distortions. Isostatic mounts decouple the instrument from potential deformations of the platform upper plate. The optical beam is spectrally separated thanks to a dichroic filter towards two different focal planes with different detector technologies: Silicon is used for the VNIR domain whereas Mercury Cadmium Telluride is required for the SWIR spectral domain. The VNIR detector is a CMOS device. The SWIR detector is a hybridised component where the MCT photosensitive arrays are hybridised on top of a CMOS circuit. The separation of the individual spectral bands(10 spectral bands, for the VNIR detectors and 3 spectral bands for the SWIR detectors) is performed by specific strip filters mounted on top of the detectors. The telescope is thermally decoupled from the external environment and the platform thanks to a thermal enclosure. A calibration and shutter mechanism avoids direct sun incidence inside the telescope during launch, specific platform manoeuvres and safe mode. The video signals coming out of the VNIR and SWIR focal planes are digitised and compressed inside the Video and Electronic Units prior to be sent to the bus.

  7. Confocal Retinal Imaging Using a Digital Light Projector with a Near Infrared VCSEL Source

    PubMed Central

    Muller, Matthew S.; Elsner, Ann E.

    2018-01-01

    A custom near infrared VCSEL source has been implemented in a confocal non-mydriatic retinal camera, the Digital Light Ophthalmoscope (DLO). The use of near infrared light improves patient comfort, avoids pupil constriction, penetrates the deeper retina, and does not mask visual stimuli. The DLO performs confocal imaging by synchronizing a sequence of lines displayed with a digital micromirror device to the rolling shutter exposure of a 2D CMOS camera. Real-time software adjustments enable multiply scattered light imaging, which rapidly and cost-effectively emphasizes drusen and other scattering disruptions in the deeper retina. A separate 5.1″ LCD display provides customizable visible stimuli for vision experiments with simultaneous near infrared imaging. PMID:29899586

  8. Daytime Sky Brightness Characterization for Persistent GEO SSA

    NASA Astrophysics Data System (ADS)

    Thomas, G.; Cobb, R. G.

    Space Situational Awareness (SSA) is fundamental to operating in space. SSA for collision avoidance ensures safety of flight for both government and commercial spacecraft through persistent monitoring. A worldwide network of optical and radar sensors gather satellite ephemeris data from the nighttime sky. Current practice for daytime satellite tracking is limited exclusively to radar as the brightening daytime sky prevents the use of visible-band optical sensors. Radar coverage is not pervasive and results in significant daytime coverage gaps in SSA. To mitigate these gaps, optical telescopes equipped with sensors in the near-infrared band (0.75-0.9m) may be used. The diminished intensity of the background sky radiance in the near-infrared band may allow for daylight tracking further into the twilight hours. To determine the performance of a near-infrared sensor for daylight custody, the sky background radiance must first be characterized spectrally as a function of wavelength. Using a physics-based atmospheric model with access to near-real time weather, we developed a generalized model for the apparent sky brightness of the Geostationary satellite belt. The model results are then compared to measured data collected from Dayton, OH through various look and Sun angles for model validation and spectral sky radiance quantification in the visible and near-infrared bands.

  9. GETTING TO THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This collage of images in visible and infrared light reveals how the barred spiral galaxy NGC 1365 is feeding material into its central region, igniting massive star birth and probably causing its bulge of stars to grow. The material also is fueling a black hole in the galaxy's core. A galaxy's bulge is a central, football-shaped structure composed of stars, gas, and dust. The black-and-white image in the center, taken by a ground-based telescope, displays the entire galaxy. But the telescope's resolution is not powerful enough to reveal the flurry of activity in the galaxy's hub. The blue box in the galaxy's central region outlines the area observed by the NASA Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The red box pinpoints a narrower view taken by the Hubble telescope's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). A barred spiral is characterized by a lane of stars, gas, and dust slashing across a galaxy's central region. It has a small bulge that is dominated by a disk of material. The spiral arms begin at both ends of the bar. The bar is funneling material into the hub, which triggers star formation and feeds the bulge. The visible-light picture at upper left is a close-up view of the galaxy's hub. The bright yellow orb is the nucleus. The dark material surrounding the orb is gas and dust that is being funneled into the central region by the bar. The blue regions pinpoint young star clusters. In the infrared image at lower right, the Hubble telescope penetrates the dust seen in the WFPC2 picture to reveal more clusters of young stars. The bright blue dots represent young star clusters; the brightest of the red dots are young star clusters enshrouded in dust and visible only in the infrared image. The fainter red dots are older star clusters. The WFPC2 image is a composite of three filters: near-ultraviolet (3327 Angstroms), visible (5552 Angstroms), and near-infrared (8269 Angstroms). The NICMOS image, taken at a wavelength of 16,000 Angstroms, was combined with the visible and near-infrared wavelengths taken by WFPC2. The WFPC2 image was taken in January 1996; the NICMOS data were taken in April 1998. Credits for the ground-based image: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for the WFPC2 image: NASA and John Trauger (Jet Propulsion Laboratory) Credits for the NICMOS image: NASA, ESA, and C. Marcella Carollo (Columbia University)

  10. Near-infrared face recognition utilizing open CV software

    NASA Astrophysics Data System (ADS)

    Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.

    2014-06-01

    Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.

  11. Unusual Light in Dark Space Revealed by Los Alamos, NASA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smidt, Joseph

    By looking at the dark spaces between visible galaxies and stars the NASA/JPL CIBER sounding rocket experiment has produced data that could redefine what constitutes a galaxy. CIBER, the Cosmic Infrared Background Experiment, is designed to understand the physics going on between visible stars and galaxies. The relatively small, sub-orbital rocket unloads a camera that snaps pictures of the night sky in near-infrared wavelengths, between 1.2 and 1.6 millionth of a meter. Scientists take the data and remove all the known visible stars and galaxies and quantify what is left.

  12. Unusual Light in Dark Space Revealed by Los Alamos, NASA

    ScienceCinema

    Smidt, Joseph

    2018-01-16

    By looking at the dark spaces between visible galaxies and stars the NASA/JPL CIBER sounding rocket experiment has produced data that could redefine what constitutes a galaxy. CIBER, the Cosmic Infrared Background Experiment, is designed to understand the physics going on between visible stars and galaxies. The relatively small, sub-orbital rocket unloads a camera that snaps pictures of the night sky in near-infrared wavelengths, between 1.2 and 1.6 millionth of a meter. Scientists take the data and remove all the known visible stars and galaxies and quantify what is left.

  13. Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data

    NASA Technical Reports Server (NTRS)

    Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei

    1992-01-01

    The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.

  14. Detailed spectroscopic analysis of chloride salt deposits in Terra Sirenum, Mars

    NASA Astrophysics Data System (ADS)

    Osterloo, M. M.; Glotch, T. D.; Bandfield, J. L.

    2015-12-01

    Chloride salt-bearing deposits have been identified throughout the southern highlands of Mars [1] based on the lack of diagnostic spectral features of anhydrous chlorides in both the visible near infrared (VNIR) and middle infrared (MIR) wavelength ranges [1,2]. A puzzling aspect of martian chloride deposits is the apparent lack of other weathering or evaporite phases associated with most of the deposits. A global analysis over the chloride salt sites conducted by [3] found that only ~9% of the deposits they analyzed were associated with minerals such as phyllosilicates. Most of these occurrences are in Terra Sirenum where [4] noted that salt-bearing deposits lie stratigraphically above Noachian phyllosilicates. Although a variety of formation mechanisms have been proposed for these intriguing deposits, detailed geologic mapping by [5] suggests that surface water and evaporation played a dominant role. On Earth, evaporative settings are often characterized by a multitude of evaporite and phyllosilicate phases including carbonates, sulfates, and nitrates. [6] evaluated chemical divides and brine evolution for martian systems and their results indicate three pathways wherein late-stage brines favor chloride precipitation. In each case the pathway to chloride formation includes precipitation of carbonates (calcite, siderite, and/or magnesite) and sulfates (gypsum, melanterite, and/or epsomite). Here, we present the results of our detailed and systematic spectroscopic study to identify additional evaporite phases associated with salt/silicate mixtures in Terra Sirenum. [1] Osterloo et al. (2008) Science, 319, [2] Glotch, T. D. et al. (2013) Lunar and Planet. Sci. XLIV, abstract #1549 [3] Ruesch, O. et al. (2012), J. Geophys. Res., 117, E00J13 [4] Glotch, T. D. et al. (2010) Geophys. Res. Lett. 37, L16202, [5] Osterloo, M. M. and B. M Hynek (2015) Lunar and Planet. Sci XLVI. Abstract #1054 [6] Tosca, N. J. and S. M. McLennan (2006), Earth and Planet. Sci. Lett., 241.

  15. Efficient broadband energy detection from the visible to near-infrared using a plasmon FET.

    PubMed

    Cho, Seongman; Ciappesoni, Mark A; Allen, Monica S; Allen, Jeffery W; Leedy, Kevin D; Wenner, Brett R; Kim, Sung Jin

    2018-04-11

    Plasmon based field effect transistors (FETs) can be used to convert energy induced by incident optical radiation to electrical energy. Plasmonic FETs can efficiently detect incident light and amplify it by coupling to resonant plasmonic modes thus improving selectivity and signal to noise ratio. The spectral responses can be tailored both through optimization of nanostructure geometry as well as constitutive materials. In this paper, we studied various plasmonic nanostructures using gold for a wideband spectral response from visible to near-infrared. We show, using empirical data and simulation results, that detection loss exponentially increases as the volume of metal nanostructure increases and also a limited spectral response is possible using gold nanostructures in a plasmon to electric conversion device. Finally, we demonstrate a plasmon FET that offers a broadband spectral response from visible to telecommunication wavelengths.

  16. Hurricane Hector in the Eastern Pacific

    NASA Image and Video Library

    2006-08-17

    Infrared, microwave, and visible/near-infrared images of Hurricane Hector in the eastern Pacific were created with data from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 17, 2006. The infrared AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). At the time the data were taken from which these images were made, Hector is a well organized storm, with the strongest convection in the SE quadrant. The increasing vertical wind shear in the NW quadrant is appearing to have an effect. Maximum sustained winds are at 85 kt, gusts to 105 kt. Estimated minimum central pressure is 975 mbar. The microwave image is created from microwave radiation emitted by Earth's atmosphere and received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm where there are either some clouds or no clouds, indicate where the sea surface shines through. The "visible" image is created from data acquired by the visible light/near-infrared sensor on the AIRS instrument. http://photojournal.jpl.nasa.gov/catalog/PIA00507

  17. ASTER Waves

    NASA Image and Video Library

    2000-10-06

    The pattern on the right half of this image of the Bay of Bengal is the result of two opposing wave trains colliding. This ASTER sub-scene, acquired on March 29, 2000, covers an area 18 kilometers (13 miles) wide and 15 kilometers (9 miles) long in three bands of the reflected visible and infrared wavelength region. The visible and near-infrared bands highlight surface waves due to specular reflection of sunlight off of the wave faces. http://photojournal.jpl.nasa.gov/catalog/PIA02662

  18. MODIS airborne simulator visible and near-infrared calibration, 1992 ASTEX field experiment. Calibration version: ASTEX King 1.0

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared (near-IR) channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1992 Atlantic Stratocumulus Transition Experiment (ASTEX) field deployment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Tests during the ASTEX deployment were conducted to calibrate the hemisphere and then the MAS. This report summarizes the ASTEX hemisphere calibration, and then describes how the MAS was calibrated from the hemisphere data. All MAS calibration measurements are presented and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. In addition, comparisons to an independent MAS calibration by Ames personnel using their 30-inch integrating sphere is discussed.

  19. Opto-mechanical system design of test system for near-infrared and visible target

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhu, Guodong; Wang, Yuchao

    2014-12-01

    Guidance precision is the key indexes of the guided weapon shooting. The factors of guidance precision including: information processing precision, control system accuracy, laser irradiation accuracy and so on. The laser irradiation precision is an important factor. This paper aimed at the demand of the precision test of laser irradiator,and developed the laser precision test system. The system consists of modified cassegrain system, the wide range CCD camera, tracking turntable and industrial PC, and makes visible light and near infrared target imaging at the same time with a Near IR camera. Through the analysis of the design results, when it exposures the target of 1000 meters that the system measurement precision is43mm, fully meet the needs of the laser precision test.

  20. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks

    PubMed Central

    Shu, Shiwei; Zhan, Yawen; Lee, Chris; Lu, Jian; Li, Yang Yang

    2016-01-01

    Absorber is an important component in various optical devices. Here we report a novel type of asymmetric absorber in the visible and near-infrared spectrum which is based on lossy Bragg stacks. The lossy Bragg stacks can achieve near-perfect absorption at one side and high reflection at the other within the narrow bands (several nm) of resonance wavelengths, whereas display almost identical absorption/reflection responses for the rest of the spectrum. Meanwhile, this interesting wavelength-selective asymmetric absorption behavior persists for wide angles, does not depend on polarization, and can be ascribed to the lossy characteristics of the Bragg stacks. Moreover, interesting Fano resonance with easily tailorable peak profiles can be realized using the lossy Bragg stacks. PMID:27251768

  1. First Images of R Aquarii and Its Asymmetric H2O Shell

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Le Coroller, H.; Pluzhnik, E.; Cotton, W. D.; Danchi, W. C.; Monnier, J. D.; Traub, W. A.; Willson, L. A.; Berger, J.-P.; Lacasse, M. G.

    2008-05-01

    We report imaging observations of the symbiotic long-period Mira variable R Aquarii (R Aqr) at near-infrared and radio wavelengths. The near-infrared observations were made with the IOTA imaging interferometer in three narrowband filters centered at 1.51, 1.64, and 1.78 μm, which sample mainly water, continuum, and water features, respectively. Our near-infrared fringe visibility and closure phase data are analyzed using three models. (1) A uniform disk model with wavelength-dependent sizes fails to fit the visibility data, and is inconsistent with the closure phase data. (2) A three-component model, consisting of a Mira star, water shell, and an off-axis point source, provide a good fit to all data. (3) A model generated by a constrained image reconstruction analysis provides more insight, suggesting that the water shell is highly nonuniform, i.e., clumpy. The VLBA observations of SiO masers in the outer molecular envelope show evidence of turbulence, with jetlike features containing velocity gradients.

  2. Remote Sensing in Environmental Education.

    ERIC Educational Resources Information Center

    Huber, Thomas P.

    1983-01-01

    Describes general concepts of remote sensing and provides three examples of how its techniques have been used in the context of environmental issues. Examples focus on the use of this data gathering technique in the visible (aerial photography), near infrared, and thermal infrared ranges. (JN)

  3. Thermal targets for satellite calibration

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; O'Steen, Byron L.; Pendergast, Malcolm M.

    2001-03-01

    The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The MTI imager is a research and development project with 15 wavebands in the visible, near-infrared, short-wave infrared, mid-wave infrared and long-wave infrared spectral regions. A plethora of targets with known temperatures such as power plant heated lakes, volcano lava vents, desert playas and aluminized Mylar tarps are being used in the validation of the five thermal bands of the MTI satellite. SRTC efforts in the production of cold targets with aluminized Mylar tarps will be described. Visible and thermal imagery and wavelength dependent radiance measurements of the calibration targets will be presented.

  4. Near infrared spectrum simulation applied to human skin for diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao

    2007-11-01

    This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.

  5. ASTER preflight and inflight calibration and the validation of level 2 products

    USGS Publications Warehouse

    Thome, K.; Aral, K.; Hook, S.; Kieffer, H.; Lang, H.; Matsunaga, T.; Ono, A.; Palluconi, F. D.; Sakuma, H.; Slater, P.; Takashima, T.; Tonooka, H.; Tsuchida, S.; Welch, R.M.; Zalewski, E.

    1998-01-01

    This paper describes the preflight and inflight calibration approaches used for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The system is a multispectral, high-spatial resolution sensor on the Earth Observing System's (EOS)-AMl platform. Preflight calibration of ASTER uses well-characterized sources to provide calibration and preflight round-robin exercises to understand biases between the calibration sources of ASTER and other EOS sensors. These round-robins rely on well-characterized, ultra-stable radiometers. An experiment held in Yokohama, Japan, showed that the output from the source used for the visible and near-infrared (VNIR) subsystem of ASTER may be underestimated by 1.5%, but this is still within the 4% specification for the absolute, radiometric calibration of these bands. Inflight calibration will rely on vicarious techniques and onboard blackbodies and lamps. Vicarious techniques include ground-reference methods using desert and water sites. A recent joint field campaign gives confidence that these methods currently provide absolute calibration to better than 5%, and indications are that uncertainties less than the required 4% should be achievable at launch. The EOS-AMI platform will also provide a spacecraft maneuver that will allow ASTER to see the moon, allowing further characterization of the sensor. A method for combining the results of these independent calibration results is presented. The paper also describes the plans for validating the Level 2 data products from ASTER. These plans rely heavily upon field campaigns using methods similar to those used for the ground-reference, vicarious calibration methods. ?? 1998 IEEE.

  6. Landsat 9 OLI 2 focal plane subsystem: design, performance, and status

    NASA Astrophysics Data System (ADS)

    Malone, Kevin J.; Schrein, Ronald J.; Bradley, M. Scott; Irwin, Ronda; Berdanier, Barry; Donley, Eric

    2017-09-01

    The Landsat 9 mission will continue the legacy of Earth remote sensing that started in 1972. The Operational Land Imager 2 (OLI 2) is one of two instruments on the Landsat 9 satellite. The OLI 2 instrument is essentially a copy of the OLI instrument flying on Landsat 8. A key element of the OLI 2 instrument is the focal plane subsystem, or FPS, which consists of the focal plane array (FPA), the focal plane electronics (FPE) box, and low-thermal conductivity cables. This paper presents design details of the OLI 2 FPS. The FPA contains 14 critically-aligned focal plane modules (FPM). Each module contains 6 visible/near-IR (VNIR) detector arrays and three short-wave infrared (SWIR) arrays. A complex multi-spectral optical filter is contained in each module. Redundant pixels for each array provide exceptional operability. Spare detector modules from OLI were recharacterized after six years of storage. Radiometric test results are presented and compared with data recorded in 2010. Thermal, optical, mechanical and structural features of the FPA will be described. Special attention is paid to the thermal design of the FPA since thermal stability is crucial to ensuring low-noise and low-drift operation of the detectors which operate at -63°C. The OLI 2 FPE provides power, timing, and control to the focal plane modules. It also digitizes the video data and formats it for the solid-state recorder. Design improvements to the FPA-FPE cables will be discussed and characterization data will be presented. The paper will conclude with the status of the flight hardware assembly and testing.

  7. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  8. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.; ,

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  9. Variable field-of-view visible and near-infrared polarization compound-eye endoscope.

    PubMed

    Kagawa, K; Shogenji, R; Tanaka, E; Yamada, K; Kawahito, S; Tanida, J

    2012-01-01

    A multi-functional compound-eye endoscope enabling variable field-of-view and polarization imaging as well as extremely deep focus is presented, which is based on a compact compound-eye camera called TOMBO (thin observation module by bound optics). Fixed and movable mirrors are introduced to control the field of view. Metal-wire-grid polarizer thin film applicable to both of visible and near-infrared lights is attached to the lenses in TOMBO and light sources. Control of the field-of-view, polarization and wavelength of the illumination realizes several observation modes such as three-dimensional shape measurement, wide field-of-view, and close-up observation of the superficial tissues and structures beneath the skin.

  10. Overview of Vesta Mineralogy Diversity

    NASA Technical Reports Server (NTRS)

    DeSanctis, M. C.; Ammannito, E.; Capria, M. T.; Capaccioni, F.; Carraro, F.; Fonte, S.; Frigeri, A.; Magni, G.; Marchi, S.; Palomba, E.; hide

    2012-01-01

    4 Vesta is known to have a surface of basaltic material through visible/near-infrared reflectance spectroscopy (1). Vesta s spectrum has strong absorption features centered near 0.9 and 1.9 m, indicative of Fe-bearing pyroxenes. The spectra of HED (howardite, eucrite and diogenite) meteorites have similar features (1). This led to the hypothesis that Vesta was the parent body of the HED clan (2,3) and the discovery of a dynamical Vesta family of asteroids (Vestoids) provides a further link between Vesta and HEDs (4). Data from the Dawn VIR (Visible InfraRed mapping Spectrometer) (5) characterize and map the mineral distribution on Vesta, strengthen the Vesta - HED linkage and provide new insights into Vesta s formation and evolution.

  11. High Resolution Spectrometry of Leaf and Canopy Chemistry for Biochemical Cycling

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Peterson, D. L.; Acevedo, W.; Matson, P.

    1985-01-01

    High-resolution laboratory spectrophotometer and Airborne Imaging Spectrometer (AIS) data were used to analyze forest leaf and canopy chemistry. Fundamental stretching frequencies of organic bonds in the visible, near infrared and short-wave infrared are indicative of concentrations and total content of nitrogen, phosphorous, starch and sugar. Laboratory spectrophotometer measurements showed very strong negative correlations with nitrogen (measured using wet chemistry) in the visible wavelengths. Strong correlations with green wet canopy weight in the atmospheric water absorption windows were observed in the AIS data. A fairly strong negative correlation between the AIS data at 1500 nm and total nitrogen and nitrogen concentration was evident. This relationship corresponds very closely to protein absorption features near 1500 nm.

  12. Mid-infrared laser phase-locking to a remote near-infrared frequency reference for high-precision molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Chanteau, B.; Lopez, O.; Zhang, W.; Nicolodi, D.; Argence, B.; Auguste, F.; Abgrall, M.; Chardonnet, C.; Santarelli, G.; Darquié, B.; Le Coq, Y.; Amy-Klein, A.

    2013-07-01

    We present a method for accurate mid-infrared frequency measurements and stabilization to a near-infrared ultra-stable frequency reference, transmitted with a long-distance fibre link and continuously monitored against state-of-the-art atomic fountain clocks. As a first application, we measure the frequency of an OsO4 rovibrational molecular line around 10 μm with an uncertainty of 8 × 10-13. We also demonstrate the frequency stabilization of a mid-infrared laser with fractional stability better than 4 × 10-14 at 1 s averaging time and a linewidth below 17 Hz. This new stabilization scheme gives us the ability to transfer frequency stability in the range of 10-15 or even better, currently accessible in the near infrared or in the visible, to mid-infrared lasers in a wide frequency range.

  13. Human infrared vision is triggered by two-photon chromophore isomerization

    PubMed Central

    Palczewska, Grazyna; Vinberg, Frans; Stremplewski, Patrycjusz; Bircher, Martin P.; Salom, David; Komar, Katarzyna; Zhang, Jianye; Cascella, Michele; Wojtkowski, Maciej; Kefalov, Vladimir J.; Palczewski, Krzysztof

    2014-01-01

    Vision relies on photoactivation of visual pigments in rod and cone photoreceptor cells of the retina. The human eye structure and the absorption spectra of pigments limit our visual perception of light. Our visual perception is most responsive to stimulating light in the 400- to 720-nm (visible) range. First, we demonstrate by psychophysical experiments that humans can perceive infrared laser emission as visible light. Moreover, we show that mammalian photoreceptors can be directly activated by near infrared light with a sensitivity that paradoxically increases at wavelengths above 900 nm, and display quadratic dependence on laser power, indicating a nonlinear optical process. Biochemical experiments with rhodopsin, cone visual pigments, and a chromophore model compound 11-cis-retinyl-propylamine Schiff base demonstrate the direct isomerization of visual chromophore by a two-photon chromophore isomerization. Indeed, quantum mechanics modeling indicates the feasibility of this mechanism. Together, these findings clearly show that human visual perception of near infrared light occurs by two-photon isomerization of visual pigments. PMID:25453064

  14. Femtosecond synchronism of x-rays and visible/infrared light in an x-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, B. W.

    2007-12-15

    A way is proposed to obtain ultrashort pulses of intense infrared/visible light in few-femtosecond synchronism with x-rays from an x-ray free-electron laser (XFEL). It makes use of the recently proposed emittance-slicing technique [Emma et al., Phys. Rev. Lett. 92, 074801 (2004)] to both restrict the duration of self-amplified spontaneous emission (SASE) to a few femtoseconds and to lead to a coherence enhancement of near-infrared transition undulator radiation (CTUR). The x-rays and the near-infrared light originate within the XFEL undulator from the same slice of electrons within a bunch and are therefore perfectly synchronized with each other. An example of realizingmore » the scheme at the Linac Coherent Light Source is presented. A few side issues are explored briefly, such as the magnitude of the velocity term versus the acceleration term in the Lienard-Wiechert fields and the possible use of the CTUR as a diagnostic tool for the SASE process itself.« less

  15. Multielectron effects in the photoelectron momentum distribution of noble-gas atoms driven by visible-to-infrared-frequency laser pulses: A time-dependent density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Zhang, G. P.; Chu, Shih-I.

    2017-05-01

    We present the photoelectron momentum distributions (PMDs) of helium, neon, and argon atoms driven by a linearly polarized, visible (527-nm) or near-infrared (800-nm) laser pulse (20 optical cycles in duration) based on the time-dependent density-functional theory (TDDFT) under the local-density approximation with a self-interaction correction. A set of time-dependent Kohn-Sham equations for all electrons in an atom is numerically solved using the generalized pseudospectral method. An effect of the electron-electron interaction driven by a visible laser field is not recognizable in the helium and neon PMDs except for a reduction of the overall photoelectron yield, but there is a clear difference between the PMDs of an argon atom calculated with the frozen-core approximation and TDDFT, indicating an interference of its M -shell wave functions during the ionization. Furthermore, we find that the PMDs of degenerate p states are well separated in intensity when driven by a near-infrared laser field, so that the single-active-electron approximation can be adopted safely.

  16. The Two-faced Whirlpool Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release January 13, 2011 These images by NASA's Hubble Space Telescope show off two dramatically different face-on views of the spiral galaxy M51, dubbed the Whirlpool Galaxy. The image here, taken in visible light, highlights the attributes of a typical spiral galaxy, including graceful, curving arms, pink star-forming regions, and brilliant blue strands of star clusters. In the image above, most of the starlight has been removed, revealing the Whirlpool's skeletal dust structure, as seen in near-infrared light. This new image is the sharpest view of the dense dust in M51. The narrow lanes of dust revealed by Hubble reflect the galaxy's moniker, the Whirlpool Galaxy, as if they were swirling toward the galaxy's core. To map the galaxy's dust structure, researchers collected the galaxy's starlight by combining images taken in visible and near-infrared light. The visible-light image captured only some of the light; the rest was obscured by dust. The near-infrared view, however, revealed more starlight because near-infrared light penetrates dust. The researchers then subtracted the total amount of starlight from both images to see the galaxy's dust structure. The red color in the near-infrared image traces the dust, which is punctuated by hundreds of tiny clumps of stars, each about 65 light-years wide. These stars have never been seen before. The star clusters cannot be seen in visible light because dense dust enshrouds them. The image reveals details as small as 35 light-years across. Astronomers expected to see large dust clouds, ranging from about 100 light-years to more than 300 light-years wide. Instead, most of the dust is tied up in smooth and diffuse dust lanes. An encounter with another galaxy may have prevented giant clouds from forming. Probing a galaxy's dust structure serves as an important diagnostic tool for astronomers, providing invaluable information on how the gas and dust collapse to form stars. Although Hubble is providing incisive views of the internal structure of galaxies such as M51, the planned James Webb Space Telescope (JWST) is expected to produce even crisper images. Researchers constructed the image by combining visible-light exposures from Jan. 18 to 22, 2005, with the Advanced Camera for Surveys (ACS), and near-infrared light pictures taken in December 2005 with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Credit: NASA, ESA, M. Regan and B. Whitmore (STScI), and R. Chandar (University of Toledo)

  17. The Two-faced Whirlpool Galaxy

    NASA Image and Video Library

    2011-01-13

    NASA image release January 13, 2011 These images by NASA's Hubble Space Telescope show off two dramatically different face-on views of the spiral galaxy M51, dubbed the Whirlpool Galaxy. The image above, taken in visible light, highlights the attributes of a typical spiral galaxy, including graceful, curving arms, pink star-forming regions, and brilliant blue strands of star clusters. In the image here, most of the starlight has been removed, revealing the Whirlpool's skeletal dust structure, as seen in near-infrared light. This new image is the sharpest view of the dense dust in M51. The narrow lanes of dust revealed by Hubble reflect the galaxy's moniker, the Whirlpool Galaxy, as if they were swirling toward the galaxy's core. To map the galaxy's dust structure, researchers collected the galaxy's starlight by combining images taken in visible and near-infrared light. The visible-light image captured only some of the light; the rest was obscured by dust. The near-infrared view, however, revealed more starlight because near-infrared light penetrates dust. The researchers then subtracted the total amount of starlight from both images to see the galaxy's dust structure. The red color in the near-infrared image traces the dust, which is punctuated by hundreds of tiny clumps of stars, each about 65 light-years wide. These stars have never been seen before. The star clusters cannot be seen in visible light because dense dust enshrouds them. The image reveals details as small as 35 light-years across. Astronomers expected to see large dust clouds, ranging from about 100 light-years to more than 300 light-years wide. Instead, most of the dust is tied up in smooth and diffuse dust lanes. An encounter with another galaxy may have prevented giant clouds from forming. Probing a galaxy's dust structure serves as an important diagnostic tool for astronomers, providing invaluable information on how the gas and dust collapse to form stars. Although Hubble is providing incisive views of the internal structure of galaxies such as M51, the planned James Webb Space Telescope (JWST) is expected to produce even crisper images. Researchers constructed the image by combining visible-light exposures from Jan. 18 to 22, 2005, with the Advanced Camera for Surveys (ACS), and near-infrared light pictures taken in December 2005 with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Credit: NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team (STScI/AURA) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  18. Hubble Tracks Clouds on Uranus

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997.

    The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.)

    At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors.

    In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below.

    The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are almost as large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color.

    The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring.

    Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  19. HUBBLE TRACKS CLOUDS ON URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Taking its first peek at Uranus, NASA Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has detected six distinct clouds in images taken July 28,1997. The image on the right, taken 90 minutes after the left-hand image, shows the planet's rotation. Each image is a composite of three near-infrared images. They are called false-color images because the human eye cannot detect infrared light. Therefore, colors corresponding to visible light were assigned to the images. (The wavelengths for the 'blue,' 'green,' and 'red' exposures are 1.1, 1.6, and 1.9 micrometers, respectively.) At visible and near-infrared light, sunlight is reflected from hazes and clouds in the atmosphere of Uranus. However, at near-infrared light, absorption by gases in the Uranian atmosphere limits the view to different altitudes, causing intense contrasts and colors. In these images, the blue exposure probes the deepest atmospheric levels. A blue color indicates clear atmospheric conditions, prevalent at mid-latitudes near the center of the disk. The green exposure is sensitive to absorption by methane gas, indicating a clear atmosphere; but in hazy atmospheric regions, the green color is seen because sunlight is reflected back before it is absorbed. The green color around the south pole (marked by '+') shows a strong local haze. The red exposure reveals absorption by hydrogen, the most abundant gas in the atmosphere of Uranus. Most sunlight shows patches of haze high in the atmosphere. A red color near the limb (edge) of the disk indicates the presence of a high-altitude haze. The purple color to the right of the equator also suggests haze high in the atmosphere with a clear atmosphere below. The five clouds visible near the right limb rotated counterclockwise during the time between both images. They reach high into the atmosphere, as indicated by their red color. Features of such high contrast have never been seen before on Uranus. The clouds are almost as large as continents on Earth, such as Europe. Another cloud (which barely can be seen) rotated along the path shown by the black arrow. It is located at lower altitudes, as indicated by its green color. The rings of Uranus are extremely faint in visible light but quite prominent in the near infrared. The brightest ring, the epsilon ring, has a variable width around its circumference. Its widest and thus brightest part is at the top in this image. Two fainter, inner rings are visible next to the epsilon ring. Eight of the 10 small Uranian satellites, discovered by Voyager 2, can be seen in both images. Their sizes range from about 25 miles (40 kilometers) for Bianca to 100 miles (150 kilometers) for Puck. The smallest of these satellites have not been detected since the departure of Voyager 2 from Uranus in 1986. These eight satellites revolve around Uranus in less than a day. The inner ones are faster than the outer ones. Their motion in the 90 minutes between both images is marked in the right panel. The area outside the rings was slightly enhanced in brightness to improve the visibility of these faint satellites. Credits: Erich Karkoschka (University of Arizona), and NASA.

  20. Method And Apparatus For Examining A Tissue Using The Spectral Wing Emission Therefrom Induced By Visible To Infrared Photoexcitation.

    DOEpatents

    Alfano, Robert R.; Demos, Stavros G.; Zhang, Gang

    2003-12-16

    Method and an apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation. In one aspect, the method is used to characterize the condition of a tissue sample and comprises the steps of (a) photoexciting the tissue sample with substantially monochromatic light having a wavelength of at least 600 nm; and (b) using the resultant far red and near infrared spectral wing emission (SW) emitted from the tissue sample to characterize the condition of the tissue sample. In one embodiment, the substantially monochromatic photoexciting light is a continuous beam of light, and the resultant steady-state far red and near infrared SW emission from the tissue sample is used to characterize the condition of the tissue sample. In another embodiment, the substantially monochromatic photoexciting light is a light pulse, and the resultant time-resolved far red and near infrared SW emission emitted from the tissue sample is used to characterize the condition of the tissue sample. In still another embodiment, the substantially monochromatic photoexciting light is a polarized light pulse, and the parallel and perpendicular components of the resultant polarized time-resolved SW emission emitted from the tissue sample are used to characterize the condition of the tissue sample.

  1. Derivation of optical constants for nanophase hematite and application to modeled abundances from in-situ Martian reflectance spectra

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Trang, David; Johnson, Jeffrey R.; Glotch, Timothy D.

    2018-01-01

    Several studies have detected the presence of nanophase ferric oxide, such as nanophase hematite, across the martian surface through spacecraft and rover data. In this study, we used the radiative transfer method to detect and quantify the abundance of these nanophase particles. Because the visible/near-infrared spectral characteristics of hematite > 10 nm in size are different from nanophase hematite < 10 nm, there are not any adequate optical constants of nanophase hematite to study visible to near-infrared rover/spacecraft data of the martian surface. Consequently, we found that radiative transfer models based upon the optical constants of crystalline hematite are unable to reproduce laboratory spectra of nanophase hematite. In order to match the model spectra to the laboratory spectra, we developed a new set of optical constants of nanophase hematite in the visible and near-infrared and found that radiative transfer models based upon these optical constants consistently model the laboratory spectra. We applied our model to the passive bidirectional reflectance spectra data from the Chemistry and Camera (ChemCam) instrument onboard the Mars Science Laboratory rover, Curiosity. After modeling six spectra representing different major units identified during the first year of rover operations, we found that the nanophase hematite abundance was no more than 4 wt%.

  2. Star Formation in the DR21 Region A

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. The colorful image (top panel) is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon. Each of the constituent images is shown below the large mosaic. The Digital Sky Survey (DSS) image (lower left) provides a familiar view of deep space, with stars scattered around a dark field. The reddish hue is from gas heated by foreground stars in this region. This fluorescence fades away in the near-infrared Two-Micron All-Sky Survey (2MASS) image (lower center), but other features start to appear through the obscuring clouds of dust, now increasingly transparent. Many more stars are discerned in this image because near-infrared light pierces through some of the obscuration of the interstellar dust. Note that some stars seen as very bright in the visible image are muted in the near-infrared image, whereas other stars become more prominent. Embedded nebulae revealed in the Spitzer image are only hinted at in this picture. The Spitzer image (lower right) provides a vivid contrast to the other component images, revealing star-forming complexes and large-scale structures otherwise hidden from view. The Spitzer image is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of nearly 10,000 light-years. The red filaments stretching across the Spitzer image denote the presence of polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by surrounding interstellar radiation and become luminescent at wavelengths near 8 microns. The complex pattern of filaments is caused by an intricate combination of radiation pressure, gravity, and magnetic fields. The result is a tapestry in which winds, outflows, and turbulence move and shape the interstellar medium. http://photojournal.jpl.nasa.gov/catalog/PIA05735

  3. Star Formation in the DR21 Region (A)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Annotated mosaic

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image (top panel) is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

    Each of the constituent images is shown below the large mosaic. The Digital Sky Survey (DSS) image (lower left) provides a familiar view of deep space, with stars scattered around a dark field. The reddish hue is from gas heated by foreground stars in this region. This fluorescence fades away in the near-infrared Two-Micron All-Sky Survey (2MASS) image (lower center), but other features start to appear through the obscuring clouds of dust, now increasingly transparent. Many more stars are discerned in this image because near-infrared light pierces through some of the obscuration of the interstellar dust. Note that some stars seen as very bright in the visible image are muted in the near-infrared image, whereas other stars become more prominent. Embedded nebulae revealed in the Spitzer image are only hinted at in this picture.

    The Spitzer image (lower right) provides a vivid contrast to the other component images, revealing star-forming complexes and large-scale structures otherwise hidden from view. The Spitzer image is composed of photographs obtained at four wavelengths: 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8 microns (red). The brightest infrared cloud near the top center corresponds to DR21, which presumably contains a cluster of newly forming stars at a distance of nearly 10,000 light-years.

    The red filaments stretching across the Spitzer image denote the presence of polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by surrounding interstellar radiation and become luminescent at wavelengths near 8 microns. The complex pattern of filaments is caused by an intricate combination of radiation pressure, gravity, and magnetic fields. The result is a tapestry in which winds, outflows, and turbulence move and shape the interstellar medium.

  4. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation.

    PubMed

    Deng, Yaocheng; Tang, Lin; Feng, Chengyang; Zeng, Guangming; Wang, Jiajia; Zhou, Yaoyu; Liu, Yani; Peng, Bo; Feng, Haopeng

    2018-02-15

    To realize the full utilization of solar energy, the design of highly efficient photocatalyst with improved visible-near-infrared photocatalysis performance has attracted great attentions for environment pollutant removal. In this work, we rationally employed the surface plasmon resonance effect of metallic Ag in the phosphorus doped ultrathin g-C 3 N 4 nanosheets (PCNS) and BiVO 4 composites to construct a ternary Ag@PCNS/BiVO 4 photocatalyst. It was applied for the photodegradation of ciprofloxacin (CIP), exhibiting 92.6% removal efficiency under visible light irradiation (λ>420nm) for 10mg/L CIP, and presenting enhanced photocatalytic ability than that of single component or binary nanocomposites under near-infrared light irradiation (λ>760nm). The improved photocatalytic activity of the prepared Ag@PCNS/BiVO 4 nanocomposite can be attributed to the synergistic effect among the PCNS, BiVO 4 and Ag, which not only improves the visible light response ability and hinders the recombination efficiency of the photogenerated electrons and holes, but also retains the strong the redox ability of the photogenerated charges. According to the trapping experiment and ESR measurements results, OH, h + and O 2 - all participated in the photocatalytic degradation process. Considering the SPR effect of metallic Ag and the established local electric field around the interfaces, a dual Z-scheme electrons transfer mechanism was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Landsat-8: science and product vision for terrestrial global change research

    USDA-ARS?s Scientific Manuscript database

    Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new...

  6. An overview of in-orbit radiometric calibration of typical satellite sensors

    NASA Astrophysics Data System (ADS)

    Zhou, G. Q.; Li, C. Y.; Yue, T.; Jiang, L. J.; Liu, N.; Sun, Y.; Li, M. Y.

    2015-06-01

    This paper reviews the development of in-orbit radiometric calibration methods in the past 40 years. It summarizes the development of in-orbit radiometric calibration technology of typical satellite sensors in the visible/near-infrared bands and the thermal infrared band. Focuses on the visible/near-infrared bands radiometric calibration method including: Lamp calibration and solar radiationbased calibration. Summarizes the calibration technology of Landsat series satellite sensors including MSS, TM, ETM+, OLI, TIRS; SPOT series satellite sensors including HRV, HRS. In addition to the above sensors, there are also summarizing ALI which was equipped on EO-1, IRMSS which was equipped on CBERS series satellite. Comparing the in-orbit radiometric calibration technology of different periods but the same type satellite sensors analyzes the similarities and differences of calibration technology. Meanwhile summarizes the in-orbit radiometric calibration technology in the same periods but different country satellite sensors advantages and disadvantages of calibration technology.

  7. Broad-band and polarization-independent perfect absorption in graphene-gold cylinder arrays at visible and near-infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Zhou, P.; Zheng, G. G.; Xu, L. H.; Xian, F. L.; Lai, M.

    2018-07-01

    A wavelength tunable perfect absorber with graphene-hexagonal gold (Au) cylinder array on a ground plate is investigated theoretically. The interactions between electromagnetic (EM) waves and monolayer graphene are analyzed through the field distributions and spectral responses in detail. The finite-difference-time-domain (FDTD) method is used to investigate the tunable properties of the absorber. It is demonstrated that in an optimized configuration, monolayer graphene can interact with light via critical coupling, and the absorptance can be greatly enhanced and reach to 100% for both transverse magnetic (TM) and transverse electronic (TE) polarizations. Furthermore, the influence of geometrical parameters of the structure on the response of the hybrid structure is studied. It is expected that the proposed graphene perfect absorbers can be applied for many applications in the visible (VIS) and the near-infrared (NIR) spectral ranges such as wavelength selective infrared photodetectors and plasmonic sensors.

  8. Analysis of rocks particulates by VNIR spectroscopy with Ma_Miss instrument breadboard.

    NASA Astrophysics Data System (ADS)

    De Angelis, Simone; Altieri, Francesca; Giardino, Marco; Ammannito, Eleonora; Carli, Cristian; Frigeri, Alessandro; De Sanctis, Maria Cristina

    Ma_Miss (Mars Multispectral Imager for Subsurface Studies) miniaturized spectrometer will investigate the Martian subsurface in the Visible and Near Infrared spectral range 0.4-2.2 mum, with 120 mum spatial resolution, and 20 nm of spectral resolution. It will be integrated in the Drill of the Pasteur Rover of the ExoMars 2018 mission, and will acquire spectra of the borehole wall performed by the Drill in the subsoil, at depths down to 2 meters. The main objective of Exomars mission is the search of present or past life and the investigation about the conditions favourable to the development of life. So the characterization of the possible water geochemical environment is the primary goal: thus objectives will be the search for hydrated silicates as well as carbonate or sulphate layers. The goal of Ma_Miss is the study of the Martian subsurface, and its principal scientific objectives are: the determination of the subsurface mineralogy and the reconstraction of a stratigraphic column or sequence, by means of Visible and Near Infrared reflectance spectroscopy; the characterization of physical properties of materials. The instrument breadboard is operative at the IAPS/INAF laboratory; it consists of the main subsystems except the spectrometer, that is a commercial spectrometer (FieldSpec Pro ©): a 5 W lamp supplies the illumination; an optical fibres bundle carries the light from the lamp to the Optical Head, which has the double task of focusing the light on the observed target and of collecting the scattered light from the target. The illumination spot on the target is 1 mm in diameter, while the light is recollected from a 120-mum spot. A single optical fibre carries the collected light from the Optical Head to the spectrometer. The interface between the Optical Head and the external wall is the Sapphire Window, which has high hardness and transparency. The light is focused on the wall at a distance of less than 1 mm outside the Sapphire Window. In this work, reflectance spectra have been acquired on a set of six particulate rock samples, two carbonates and four volcanic rocks. All six rocks have been grinded in powders, then they’ve been separated in nine grain sizes in the range d<0.02-0.80 mm. All the samples have been previously characterized at IAPS-INAF, with a spectro-goniometer, consisting of the FieldSpec coupled with a goniometer. We analysed the continuum slope and the reflectance values of the spectra acquired with the Ma_Miss breadboard, and we compared them with the laboratory spectro-goniometer data. The continuum slope has been calculated in three ranges: a VIS-slope (0.5-0.8 mum), a NIR-slope (1.2-1.8 mum), and a VNIR-slope (0.6 - 2.0 mum). The reflectance value has been evaluated in two distinct regions of the analysed spectra, at 0.8 mum and at 1.62 mum. Continuum slopes and reflectance values have been plotted in function of the grain size. The classical correlation between these parameters and the grain size has been observed with both setups: the slope and reflectances decrease with increasing grain size. Parameters derived from Ma_Miss breadboard measurements show a behaviour that is consistent with the trends observed from spectro-goniometer measurements. The reflectance values derived with the two setups are very similar. The trends relative to the slopes obtained with Ma_Miss data are more irregular, even if there is a general decreasing with increasing of the grain size, as expected. The differences observed in the continuum slopes as seen by the two instruments can be justified taking into account the different spatial resolutions, viewing geometries, the angular diameter of the source, and the ratio between the instrument spatial spot and the grain size.

  9. The Near-Earth Object Camera: A Next-Generation Minor Planet Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; Wright, Edward L.; Bauer, James; Grav, Tommy; Cutri, Roc M.; Masiero, Joseph; Nugent, Carolyn R.

    2015-11-01

    The Near-Earth Object Camera (NEOCam) is a next-generation asteroid and comet survey designed to discover, characterize, and track large numbers of minor planets using a 50 cm infrared telescope located at the Sun-Earth L1 Lagrange point. Proposed to NASA's Discovery program, NEOCam is designed to carry out a comprehensive inventory of the small bodies in the inner regions of our solar system. It address three themes: 1) quantify the potential hazard that near-Earth objects may pose to Earth; 2) study the origins and evolution of our solar system as revealed by its small body populations; and 3) identify the best destinations for future robotic and human exploration. With a dual channel infrared imager that observes at 4-5 and 6-10 micron bands simultaneously through the use of a beamsplitter, NEOCam enables measurements of asteroid diameters and thermal inertia. NEOCam complements existing and planned visible light surveys in terms of orbital element phase space and wavelengths, since albedos can be determined for objects with both visible and infrared flux measurements. NEOCam was awarded technology development funding in 2011 to mature the necessary megapixel infrared detectors.

  10. Broadband and efficient plasmonic control in the near-infrared and visible via strong interference of surface plasmon polaritons.

    PubMed

    Gan, C H; Nash, G R

    2013-11-01

    Broadband and tunable control of surface plasmon polaritons in the near-infrared and visible spectrum is demonstrated theoretically and numerically with a pair of phased nanoslits. We establish, with simulations supported by a coupled wave model, that by dividing the incident power equally between two input channels, the maximum plasmon intensity deliverable to either side of the nanoslit pair is twice that for an isolated slit. For a broadband source, a compact device with nanoslit separation of the order of a tenth of the wavelength is shown to steer nearly all the generated plasmons to one side for the same phase delay, thereby achieving a broadband unidirectional plasmon launcher. The reported effect can be applied to the design of ultra-broadband and efficient tunable plasmonic devices.

  11. Optical materials and films applied in industrial lasers

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Liu, Shengyong

    1999-09-01

    Optical materials and films are often used in industrial lasers. Most of industrial lasers work at visible spectrum and near-infrared spectrum. Only CO2 laser works at far- infrared region (10.6 micrometers ). The optical materials and films are categorized in this article, and the properties of the materials and films are related. From visible to infrared spectrum, many optical materials can be used: K9 glass, fused silica, germanium, gallium arsenide, zinc selenide, silicon, copper, and so on. Optical films for lasers include reflection coating, antireflection coating, edge filter, VRM (variable reflectance mirror) coating and polarizer. The characteristic and application of them will be introduced.

  12. Detectors and Focal Plane Modules for Weather Satellites

    NASA Technical Reports Server (NTRS)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Ely, P.; Khalap, V.; Babu, S.; Smith, D. S.

    2016-01-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 micron band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (lamba(sub c) approximately 5 micron at 98K), MWIR (lambda(sub c) approximately 9 micron at 98K) and LWIRs (lamba(sub c) approximately 15.5 micron at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 micron to 8.6 micron and (iii) a 9.6 micron to 13.3 micron, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 micron to 0.86 micron channels. The thirteen channels above 1 micron are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 micron to 9.61 micron channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 micron to 13.3 micron channels fabricated in Double layer planar heterostructure (DLPH) detectors. This is the same architecture used for the CrIS detectors CrIS detectors are 850 micron diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak wavelength are = 5.0E+10 Jones for LWIR, = 9.3E+10 Jones for MWIR and = 3.0E+11 Jones for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 10(exp 10) cm-Hz(exp 1/2)/W at 14.0 micron, 1.0 x 10(exp 11) cm-Hz(exp 1/2)/W at 8.0 micron and 3.1 x 10(exp 11) cm-Hz(exp 1/2)/W at 4.64 micron.

  13. Detectors and focal plane modules for weather satellites

    NASA Astrophysics Data System (ADS)

    D'Souza, A. I.; Robinson, E.; Masterjohn, S.; Ely, P.; Khalap, V.; Babu, S.; Smith, D. S.

    2016-05-01

    Weather satellite instruments require detectors with a variety of wavelengths ranging from the visible to VLWIR. One of the remote sensing applications is the geostationary GOES-ABI imager covering wavelengths from the 450 to 490 nm band through the 13.0 to 13.6 μm band. There are a total of 16 spectral bands covered. The Cross-track infrared Sounder (CrIS) is a Polar Orbiting interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR (λc ~ 5 μm at 98K), MWIR (λc ~ 9 μm at 98K) and LWIRs (λc ~ 15.5 μm at 81K) bands in three Focal Plane Array Assemblies (FPAAs). GOES-ABI contains three focal plane modules (FPMs), (i) a visible-near infrared module consisting of three visible and three near infrared channels, (ii) a MWIR module comprised of five channels from 3.9 μm to 8.6 μm and (iii) a 9.6 μm to 13.3 μm, five-channel LWIR module. The VNIR FPM operates at 205 K, and the MWIR and LWIR FPMs operate at 60 K. Each spectral channel has a redundant array built into a single detector chip. Switching is thus permitted from the primary selected array in each channel to the redundant array, given any degradation in performance of the primary array during the course of the mission. Silicon p-i-n detectors are used for the 0.47 μm to 0.86 μm channels. The thirteen channels above 1 μm are fabricated in various compositions of Hg1-xCdxTe, and in this particular case using two different detector architectures. The 1.38 μm to 9.61 μm channels are all fabricated in Hg1-xCdxTe grown by Liquid Phase Epitaxy (LPE) using the HDVIP detector architecture. Molecular beam epitaxy (MBE)-grown Hg1-xCdxTe material are used for the LWIR 10.35 μm to 13.3 μm channels fabricated in Double layer planar heterostructure (DLPH) detectors. This is the same architecture used for the CrIS detectors. CrIS detectors are 850 μm diameter detectors with each FPAA consisting of nine photovoltaic detectors arranged in a 3 x 3 pattern. Each detector has an accompanying cold preamplifier. SWIR and MWIR FPAAs operate at 98 K and the LWIR FPAA at 81 K, permitting the use of passive radiators to cool the detectors. D* requirements at peak wavelength are >= 5.0E+10 Jones for LWIR, >= 9.3E+10 Jones for MWIR and >= 3.0E+11 Jones for SWIR. All FPAAs exceeded the D* requirements. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 μm, 1.0 x 1011 cm-Hz1/2/W at 8.0 μm and 3.1 x 1011 cm-Hz1/2/W at 4.64 μm.

  14. Low efficiency upconversion nanoparticles for high-resolution coalignment of near-infrared and visible light paths on a light microscope

    PubMed Central

    Sundaramoorthy, Sriramkumar; Badaracco, Adrian Garcia; Hirsch, Sophia M.; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C.; Canman, Julie C.

    2017-01-01

    The combination of near infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25,000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically-encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (~2 µm versus ~8 µm beam broadening respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast S. cerevisiae. In summary, nano-UCPs are powerful new tools for coaligning NIR and visible light paths on a light microscope. PMID:28221018

  15. Employing airborne multispectral digital imagery to map Brazilian pepper infestation in south Texas.

    USDA-ARS?s Scientific Manuscript database

    A study was conducted in south Texas to determine the feasibility of using airborne multispectral digital imagery for differentiating the invasive plant Brazilian pepper (Schinus terebinthifolius) from other cover types. Imagery obtained in the visible, near infrared, and mid infrared regions of th...

  16. Mapping the distribution of ferric iron minerals on a vertical mine face using derivative analysis of hyperspectral imagery (430-970 nm)

    NASA Astrophysics Data System (ADS)

    Murphy, Richard J.; Monteiro, Sildomar T.

    2013-01-01

    Hyperspectral imagery is used to map the distribution of iron and separate iron ore from shale (a waste product) on a vertical mine face in an open-pit mine in the Pilbara, Western Australia. Vertical mine faces have complex surface geometries which cause large spatial variations in the amount of incident and reflected light. Methods used to analyse imagery must minimise these effects whilst preserving any spectral variations between rock types and minerals. Derivative analysis of spectra to the 1st-, 2nd- and 4th-order is used to do this. To quantify the relative amounts and distribution of iron, the derivative spectrum is integrated across the visible and near infrared spectral range (430-970 nm) and over those wavelength regions containing individual peaks and troughs associated with specific iron absorption features. As a test of this methodology, results from laboratory spectra acquired from representative rock samples were compared with total amounts of iron minerals from X-ray diffraction (XRD) analysis. Relationships between derivatives integrated over the visible near-infrared range and total amounts (% weight) of iron minerals were strongest for the 4th- and 2nd-derivative (R2 = 0.77 and 0.74, respectively) and weakest for the 1st-derivative (R2 = 0.56). Integrated values of individual peaks and troughs showed moderate to strong relationships in 2nd- (R2 = 0.68-0.78) and 4th-derivative (R2 = 0.49-0.78) spectra. The weakest relationships were found for peaks or troughs towards longer wavelengths. The same derivative methods were then applied to imagery to quantify relative amounts of iron minerals on a mine face. Before analyses, predictions were made about the relative abundances of iron in the different geological zones on the mine face, as mapped from field surveys. Integration of the whole spectral curve (430-970 nm) from the 2nd- and 4th-derivative gave results which were entirely consistent with predictions. Conversely, integration of the 1st-derivative gave results that did not fit with predictions nor distinguish between zones with very large and small amounts of iron oxide. Classified maps of ore and shale were created using a simple level-slice of the 1st-derivative reflectance at 702, 765 and 809 nm. Pixels classified as shale showed a similar distribution to kaolinite (an indicator of shales in the region), as mapped by the depth of the diagnostic kaolinite absorption feature at 2196 nm. Standard statistical measures of classification performance (accuracy, precision, recall and the Kappa coefficient of agreement) indicated that nearly all of the pixels were classified correctly using 1st-derivative reflectance at 765 and 809 nm. These results indicate that data from the VNIR (430-970 nm) can be used to quantify, without a priori knowledge, the total amount of iron minerals and to distinguish ore from shale on vertical mine faces.

  17. Evaluation of the SMAP model calculated snow albedo at the SIGMA-A site, northwest Greenland, during the 2012 record surface melt event

    NASA Astrophysics Data System (ADS)

    Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.

    2015-12-01

    The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and visible fractions of the downward shortwave radiant flux. This result suggests that it is necessary for snowpack models to consider changes in the visible and near-infrared fractions of the downward shortwave radiant flux caused by the presence of cloud cover to reproduce realistic temporal changes in the snow albedo and consequently the surface energy balance.

  18. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  19. Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.

    PubMed

    Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas

    2014-03-01

    We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.

  20. Binocular Multispectral Adaptive Imaging System (BMAIS)

    DTIC Science & Technology

    2010-07-26

    system for pilots that adaptively integrates shortwave infrared (SWIR), visible, near ‐IR (NIR), off‐head thermal, and computer symbology/imagery into...respective areas. BMAIS is a binocular helmet mounted imaging system that features dual shortwave infrared (SWIR) cameras, embedded image processors and...algorithms and fusion of other sensor sites such as forward looking infrared (FLIR) and other aircraft subsystems. BMAIS is attached to the helmet

  1. Hydrological Application of Remote Sensing: Surface States -- Snow

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.

    2004-01-01

    Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.

  2. The enigmatic object 2201 Oljato - Is it an asteroid or an evolved comet?

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Cochran, Anita L.; Barker, Edwin S.; Cruikshank, Dale P.; Hartmann, William K.

    1993-01-01

    The orbital properties of near-earth object 2201 have been associated with meteor showers, and its modeled orbital evolution is chaotic - a property which might indicate a history related to comets. Telescopic observations of its visible and near-infrared spectral reflectance, broad-band visible and near-infrared photometry, infrared radiometric measurements, and radar echoes are reported here from two apparitions, 1979 and 1983. This asteroid has a high radiometric albedo, a property not associated with comet nuclei. In certain wavelength regimes it is classified as an S-type asteroid, in others, an E-type, but its overall spectral reflectance is not typical of either taxonomic type, and neither type is thought of as cometlike. Unexpectedly high ultraviolet reflectance at the 1979 apparition was suggested to be the result of residual outgassing as in a comet. The UV photometric data are modeled as fluorescent emission from neutral species found in comets. The resulting calculations indicate a plausible value for OH and CN emission at 0.3085 and 0.38 micron relative to the observed range of active comets.

  3. Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris

    USGS Publications Warehouse

    Roach, L.H.; Mustard, J.F.; Swayze, G.; Milliken, R.E.; Bishop, J.L.; Murchie, S.L.; Lichtenberg, K.

    2010-01-01

    New high-resolution spectral and morphologic imaging of deposits on walls and floor of Ius Chasma extend previous geomorphic mapping, and permit a new interpretation of aqueous processes that occurred during the development of Valles Marineris. We identify hydrated mineralogy based on visible-near infrared (VNIR) absorptions. We map the extents of these units with CRISM spectral data as well as morphologies in CTX and HiRISE imagery. Three cross-sections across Ius Chasma illustrate the interpreted mineral stratigraphy. Multiple episodes formed and transported hydrated minerals within Ius Chasma. Polyhydrated sulfate and kieserite are found within a closed basin at the lowest elevations in the chasma. They may have been precipitates in a closed basin or diagenetically altered after deposition. Fluvial or aeolian processes then deposited layered Fe/Mg smectite and hydrated silicate on the chasma floor, postdating the sulfates. The smectite apparently was weathered out of Noachian-age wallrock and transported to the depositional sites. The overlying hydrated silicate is interpreted to be an acid-leached phyllosilicate transformed from the underlying smectite unit, or a smectite/jarosite mixture. The finely layered smectite and massive hydrated silicate units have an erosional unconformity between them, that marks a change in surface water chemistry. Landslides transported large blocks of wallrock, some altered to contain Fe/Mg smectite, to the chasma floor. After the last episode of normal faulting and subsequent landslides, opal was transported short distances into the chasma from a few m-thick light-toned layer near the top of the wallrock, by sapping channels in Louros Valles. Alternatively, the material was transported into the chasma and then altered to opal. The superposition of different types of hydrated minerals and the different fluvial morphologies of the units containing them indicate sequential, distinct aqueous environments, characterized by alkaline, then circum-neutral, and finally very acidic surface or groundwater chemistry. ?? 2009 Elsevier Inc. All rights reserved.

  4. A near-infrared SETI experiment: commissioning, data analysis, and performance results

    NASA Astrophysics Data System (ADS)

    Maire, Jérôme; Wright, Shelley A.; Dorval, Patrick; Drake, Frank D.; Duenas, Andres; Isaacson, Howard; Marcy, Geoffrey W.; Siemion, Andrew; Stone, Remington P. S.; Tallis, Melisa; Treffers, Richard R.; Werthimer, Dan

    2016-08-01

    Over the last two decades, Optical Search for Extra-Terrestrial Intelligence experiments have been conducted to search for either continuous or pulsed visible-light laser beacons that could be used for interstellar communication or energy transmission. Near-infrared offers a compelling window for signal transmission since there is a decrease in interstellar extinction and Galactic background compared to optical wavelengths. An innovative Near-InfraRed and Optical SETI (NIROSETI) instrument has been designed and constructed to take advantage of a new generation of fast (> 1 Ghz) low-noise near-infrared avalanche photodiodes to search for nanosecond pulsed near-infrared (850 - 1650 nm) pulses. The instrument was successfully installed and commissioned at the Nickel (1m) telescope at Lick Observatory in March 2015. We will describe the overall design of the instrument with a focus on methods developed for data acquisition and reduction for near-infrared SETI. Time and height analyses of the pulses produced by the detectors are performed to search for periodicity and coincidences in the signals. We will further discuss our NIROSETI survey plans.

  5. Multi-Wavelength Observations of Asteroid 2100 Ra-Shalom: Visible, Infrared, and Thermal Spectroscopy Results

    NASA Technical Reports Server (NTRS)

    Clark, Beth Ellen; Shepard, M.; Bus, S. J.; Vilas, F.; Rivkin, A. S.; Lim, L.; Lederer, S.; Jarvis, K.; Shah, S.; McConnochie, T.

    2004-01-01

    The August 2003 apparition of asteroid 2100 Ra-Shalom brought together a collaboration of observers with the goal of obtaining rotationally resolved multiwavelength spectra at each of 5 facilities: infrared spectra at the NASA Infrared Telescope Facility (Clark and Shepard), radar images at Arecibo (Shepard and Clark), thermal infrared spectra at Palomar (Lim, McConnochie and Bell), visible spectra at McDonald Observatory (Vilas, Lederer and Jarvis), and visible lightcurves at Ondrojev Observatory (Pravec). The radar data was to be used to develop a high spatial resolution physical model to be used in conjunction with spectral data to investigate compositional and textural properties on the near surface of Ra Shalom as a function of rotation phase. This was the first coordinated multi-wavelength investigation of any Aten asteroid. There are many reasons to study near-Earth asteroid (NEA) 2100 Ra-Shalom: 1) It has a controversial classification (is it a C- or K-type object)? 2) There would be interesting dynamical ramifications if Ra-Shalom is a K-type because most K-types come from the Eos family and there are no known dynamical pathways from Eos to the Aten population. 3) The best available spectra obtained previously may indicate a heterogeneous surface (most asteroids appear to be fairly homogeneous). 4) Ra-Shalom thermal observations obtained previously indicated a lack of regolith, minimizing the worry of space weathering effects in the spectra. 5) Radar observations obtained previously hinted at interesting surface structures. 6) Ra-Shalom is one of the largest Aten objects. And 7) Ra-Shalom is on a short list of proposed NEAs for spacecraft encounters and possible sample returns. Preliminary results from the visible, infrared, and thermal spectroscopy measurements will be presented here.

  6. Spitzer Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-04

    NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a "sombrero," but here looks more like a "bulls-eye." Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions. Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen. The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun. This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features. http://photojournal.jpl.nasa.gov/catalog/PIA07899

  7. Soft-X-Ray Prefilter for Hot, Bright Objects

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Ortendahl, J. A.

    1985-01-01

    Prefilters consisting of beryllium foil supported on conductive silver mesh transmit soft x-rays but are nearly opaque to visible and infrared light. New Be/AG filters protect imaging X-ray detectors from damage by visible and longer wavelength radiation when viewing such hot, bright emitters as Sun or possibly certain industrial processes.

  8. Fabrication of thin-film thermoelectric generators with ball lenses for conversion of near-infrared solar light

    NASA Astrophysics Data System (ADS)

    Ito, Yoshitaka; Mizoshiri, Mizue; Mikami, Masashi; Kondo, Tasuku; Sakurai, Junpei; Hata, Seiichi

    2017-06-01

    We designed and fabricated thin-film thermoelectric generators (TEGs) with ball lenses, which separated visible light and near-infrared (NIR) solar light using a chromatic aberration. The transmitted visible light was used as daylight and the NIR light was used for thermoelectric generation. Solar light was estimated to be separated into the visible light and NIR light by a ray tracing method. 92.7% of the visible light was used as daylight and 9.9% of the NIR light was used for thermoelectric generation. Then, the temperature difference of the pn junctions of the TEG surface was 0.71 K, determined by heat conduction analysis using a finite element method. The thin-film TEGs were fabricated using lithography and deposition processes. When the solar light (A.M. 1.5) was irradiated to the TEGs, the open-circuit voltage and maximum power were 4.5 V/m2 and 51 µW/m2, respectively. These TEGs are expected to be used as an energy supply for Internet of Things sensors.

  9. Physical Characterization of Warm Spitzer-observed Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbo, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al., 2010). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (approx. 0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of Explore-NEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with band area ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed.The results of our phase angle study are consistent with those of (Sanchez et al., 2012). We find evidence for spectral phase reddening for Eros, Ganymed, and Ivar. We identify the likely ordinary chondrite type analog for an appropriate subset of our sample. Our resulting proportions of H, L, and LL ordinary chondrites differ from those calculated for meteorite falls and in previous studies of ordinary chondrite-like NEOs.

  10. ASTER Washington, D.C.

    NASA Image and Video Library

    2000-10-06

    The White House, the Jefferson Memorial, and the Washington Monument with its shadow are all visible in this image of Washington, D.C. With its 15-meter spatial resolution, ASTER can see individual buildings. Taken on June 1, 2000, this image covers an area 14 kilometers (8.5 miles) wide and 13.7 kilometers (8.2 miles) long in three bands of the reflected visible and infrared wavelength region. The combination of visible and near infrared bands displays vegetation in red and water in dark grays. The Potomac River flows from the middle left to the bottom center. The large red area west of the river is Arlington National Cemetery. http://photojournal.jpl.nasa.gov/catalog/PIA02655

  11. Visible supercontinuum generation from a tunable mid-infrared laser

    NASA Astrophysics Data System (ADS)

    Marble, Christopher B.; O'Connor, Sean P.; Nodurft, Dawson T.; Yakovlev, Vladislav V.; Wharmby, Andrew W.

    2018-02-01

    Calcium fluoride, BK7 and fused silica are common optical materials used in lenses and windows. In this report, we discuss supercontinuum generation using tunable femtosecond mid-IR laser pulses with wavelengths ranging from 2.7 μm to 7.0 μm and pulse energies between 3 and 18 microjoules. We observed harmonic generation in fused silica and BK7, but not supercontinuum generation. Other borosilicate targets generated supercontinuum in both visible and near infrared regions of the spectrum. The visible supercontinuum was, in some instances, strong enough to be observed directly by the human eye. These results contribute to ongoing work being done to refine eye safety standards for femtosecond lasers.

  12. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  13. Emergence of two near-infrared windows for in vivo and intraoperative SERS.

    PubMed

    Lane, Lucas A; Xue, Ruiyang; Nie, Shuming

    2018-04-06

    Two clear windows in the near-infrared (NIR) spectrum are of considerable current interest for in vivo molecular imaging and spectroscopic detection. The main rationale is that near-infrared light can penetrate biological tissues such as skin and blood more efficiently than visible light because these tissues scatter and absorb less light at longer wavelengths. The first clear window, defined as light wavelengths between 650nm and 950nm, has been shown to be far superior for in vivo and intraoperative optical imaging than visible light. The second clear window, operating in the wavelength range of 1000-1700nm, has been reported to further improve detection sensitivity, spatial resolution, and tissue penetration because tissue photon scattering and background interference are further reduced at longer wavelengths. Here we discuss recent advances in developing biocompatible plasmonic nanoparticles for in vivo and intraoperative surface-enhanced Raman scattering (SERS) in both the first and second NIR windows. In particular, a new class of 'broad-band' plasmonic nanostructures is well suited for surface Raman enhancement across a broad range of wavelengths allowing a direct comparison of detection sensitivity and tissue penetration between the two NIR window. Also, optimized and encoded SERS nanoparticles are generally nontoxic and are much brighter than near-infrared quantum dots (QDs), raising new possibilities for ultrasensitive detection of microscopic tumors and image-guided precision surgery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Unveiling Singlet Fission Mediating States in TIPS-pentacene and its Aza Derivatives.

    PubMed

    Herz, Julia; Buckup, Tiago; Paulus, Fabian; Engelhart, Jens U; Bunz, Uwe H F; Motzkus, Marcus

    2015-06-25

    Femtosecond pump-depletion-probe experiments were carried out in order to shed light on the ultrafast excited-state dynamics of triisopropylsilylethynyl (TIPS)-pentacene and two nitrogen-containing derivatives, namely, diaza-TIPS-pentacene and tetraaza-TIPS-pentacene. Measurements performed in the visible and near-infrared spectral range in combination with rate model simulations reveal that singlet fission proceeds via the extremely short-lived intermediate (1)TT state, which absorbs in the near-infrared spectral region only. The T1 → T3 transition probed in the visible region shows a rise time that comprises two components according to a consecutive reaction (S1 → (1)TT → T1). The incorporation of nitrogen atoms into the acene structure leads to shorter dynamics, but the overall triplet formation follows the same kinetic model. This is of particular importance, since experiments on tetraaza-TIPS-pentacene allow for investigation of the triplet state in the visible range without an overlapping singlet contribution. In addition, the pump-depletion-probe experiments show that the triplet absorption in the visible (T1 → T3) and near-infrared (T1 → T2) regions occurs from the same initial state, which was questioned in previous studies. Furthermore, an additional ultrafast transfer between the excited triplet states (T3 → T2) is identified, which is also in agreement with the rate model simulation. By applying depletion pulses, which are resonant with higher vibrational levels, we gain insight into internal vibrational energy redistribution processes within the triplet manifold. This additional information is of great relevance regarding the study of loss channels within these materials.

  15. Irrigation management with remote sensing. [alfalfa plots in new mexico

    NASA Technical Reports Server (NTRS)

    Heilman, J.; Moore, D.; Myers, V.

    1980-01-01

    A ground study conducted utilizing hand held radiometers to collect visible, near infrared and thermal infrared measurements. The data was analyzed and evaluated in terms of the ground measurements, which included percent crop canopy cover. The results used to recommend future action regarding use of satellite data in irrigation management.

  16. MODIS airborne simulator visible and near-infrared calibration, 1991 FIRE-Cirrus field experiment. Calibration version: FIRE King 1.1

    NASA Technical Reports Server (NTRS)

    Arnold, G. Thomas; Fitzgerald, Michael; Grant, Patrick S.; King, Michael D.

    1994-01-01

    Calibration of the visible and near-infrared channels of the MODIS Airborne Simulator (MAS) is derived from observations of a calibrated light source. For the 1991 FIRE-Cirrus field experiment, the calibrated light source was the NASA Goddard 48-inch integrating hemisphere. Laboratory tests during the FIRE Cirrus field experiment were conducted to calibrate the hemisphere and from the hemisphere to the MAS. The purpose of this report is to summarize the FIRE-Cirrus hemisphere calibration, and then describe how the MAS was calibrated from observations of the hemisphere data. All MAS calibration measurements are presented, and determination of the MAS calibration coefficients (raw counts to radiance conversion) is discussed. Thermal sensitivity of the MAS visible and near-infrared calibration is also discussed. Typically, the MAS in-flight is 30 to 60 degrees C colder than the room temperature laboratory calibration. Results from in-flight temperature measurements and tests of the MAS in a cold chamber are given, and from these, equations are derived to adjust the MAS in-flight data to what the value would be at laboratory conditions. For FIRE-Cirrus data, only channels 3 through 6 were found to be temperature sensitive. The final section of this report describes comparisons to an independent MAS (room temperature) calibration by Ames personnel using their 30-inch integrating sphere.

  17. Wavelength-agile high-power sources via four-wave mixing in higher-order fiber modes.

    PubMed

    Demas, J; Prabhakar, G; He, T; Ramachandran, S

    2017-04-03

    Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.

  18. [Evaluation of Iris Morphology Viewed through Stromal Edematous Corneas by Infrared Camera].

    PubMed

    Kobayashi, Masaaki; Morishige, Naoyuki; Morita, Yukiko; Yamada, Naoyuki; Kobayashi, Motomi; Sonoda, Koh-Hei

    2016-02-01

    We reported that the application of infrared camera enables us to observe iris morphology in Peters' anomaly through edematous corneas. To observe the iris morphology in bullous keratopathy or failure grafts with an infrared camera. Eleven bullous keratopathy or failure grafts subjects (6 men and 5 women, mean age ± SD; 72.7 ± 13.0 years old) were enrolled in this study. The iris morphology was observed by applying visible light mode and near infrared light mode of infrared camera (MeibomPen). The detectability of pupil shapes, iris patterns and presence of iridectomy was evaluated. Infrared mode observation enabled us to detect the pupil shapes in 11 out of 11 cases, iris patterns in 3 out of 11 cases, and presence of iridetomy in 9 out of 11 cases although visible light mode observation could not detect any iris morphological changes. Applying infrared optics was valuable for observation of the iris morphology through stromal edematous corneas.

  19. High spatial resolution burn severity mapping of the New Jersey Pine Barrens with WorldView-3 near-infrared and shortwave infrared imagery

    Treesearch

    Timothy A. Warner; Nicholas S. Skowronski; Michael R. Gallagher

    2017-01-01

    The WorldView-3 (WV-3) sensor, launched in 2014, is the first highspatial resolution scanner to acquire imagery in the shortwave infrared (SWIR). A spectral ratio of the SWIR combined with the nearinfrared (NIR) can potentially provide an effective differentiation of wildfire burn severity. Previous high spatial resolution sensors were limited to data fromthe visible...

  20. Visible and infrared optical properties of stacked cone graphite microtubes.

    PubMed

    Bruce, Charles W; Alyones, Sharhabeel

    2012-06-01

    The absorptive and scattering optical properties of heat-treated, vapor-grown, graphite microtubes consisting of nanotubes in a "stacked cone" configuration were investigated through the visible and infrared wavelengths using photoacoustic and other spectrometric techniques. However, computations of these properties involved uncertainties that were not easily resolved; the appropriate dielectric coefficients were presumed to be a combination of the published values for the distinct orientations of graphite, but the correct proportions are not evident and none of the reasonable choices produced satisfactory agreement (within the measurement limits of error). Since both of the primary components of the extinction were measured, the appropriate computational codes were employed in reverse to compute the dielectric coefficients for the graphite microtubes. Differences, primarily for the imaginary index, are most distinct for visible and near infrared wavelengths; in this wavelength region, the imaginary index falls progressively to less than half that for the computed mixture.

  1. Quantum cascade lasers and the Kruse model in free space optical communication.

    PubMed

    Corrigan, Paul; Martini, Rainer; Whittaker, Edward A; Bethea, Clyde

    2009-03-16

    Mid-infrared (MIR) free space optical communication has seen renewed interest in recent years due to advances in quantum cascade lasers. We present data from a multi-wavelength test-bed operated in the New York metropolitan area under realistic weather conditions. We show that a mid-infrared source (8.1 microm) provides enhanced link stability with 2x to 3x greater transmission over near infrared wavelengths (1.3 microm & 1.5 microm) during fog formation and up to 10x after a short scavenging rain event where fog developed and visibility reduced to approximately 1 km. We attribute the improvement to less Mie scattering at longer wavelengths. We confirm that this result is generally consistent with the empirical benchmark Kruse model at visibilities above 2.5 km, but towards the 1 km eye-seeing limit we measured the equivalent MIR visibility to be > 10 km. (c) 2008 Optical Society of America

  2. Daniel K. Inouye Solar Telescope: High-resolution observing of the dynamic Sun

    NASA Astrophysics Data System (ADS)

    Tritschler, A.; Rimmele, T. R.; Berukoff, S.; Casini, R.; Kuhn, J. R.; Lin, H.; Rast, M. P.; McMullin, J. P.; Schmidt, W.; Wöger, F.; DKIST Team

    2016-11-01

    The 4-m aperture Daniel K. Inouye Solar Telescope (DKIST) formerly known as the Advanced Technology Solar Telescope (ATST) is currently under construction on Haleakalā (Maui, Hawai'i) projected to start operations in 2019. At the time of completion, DKIST will be the largest ground-based solar telescope providing unprecedented resolution and photon collecting power. The DKIST will be equipped with a set of first-light facility-class instruments offering unique imaging, spectroscopic and spectropolarimetric observing opportunities covering the visible to infrared wavelength range. This first-light instrumentation suite will include: a Visible Broadband Imager (VBI) for high-spatial and -temporal resolution imaging of the solar atmosphere; a Visible Spectro-Polarimeter (ViSP) for sensitive and accurate multi-line spectropolarimetry; a Fabry-Pérot based Visible Tunable Filter (VTF) for high-spatial resolution spectropolarimetry; a fiber-fed Diffraction-Limited Near Infra-Red Spectro-Polarimeter (DL-NIRSP) for two-dimensional high-spatial resolution spectropolarimetry (simultaneous spatial and spectral information); and a Cryogenic Near Infra-Red Spectro-Polarimeter (Cryo-NIRSP) for coronal magnetic field measurements and on-disk observations of, e.g., the CO lines at 4.7 μm. We will provide an overview of the DKIST's unique capabilities with strong focus on the first-light instrumentation suite, highlight some of the additional properties supporting observations of transient and dynamic solar phenomena, and touch on some operational strategies and the DKIST critical science plan.

  3. Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    NASA Astrophysics Data System (ADS)

    Thureau, N. D.; Monnier, J. D.; Traub, W. A.; Millan-Gabet, R.; Pedretti, E.; Berger, J.-P.; Garcia, M. R.; Schloerb, F. P.; Tannirkulam, A.-K.

    2009-09-01

    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8yr period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data show that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24mas, an axis ratio r = 0.39 +/- 0.03 and a position angle θ = 35° +/- 2°.

  4. Spectral evidence for amorphous silicates in least-processed CO meteorites and their parent bodies

    NASA Astrophysics Data System (ADS)

    McAdam, Margaret M.; Sunshine, Jessica M.; Howard, Kieren T.; Alexander, Conel M.; McCoy, Timothy J.; Bus, Schelte J.

    2018-05-01

    Least-processed carbonaceous chondrites (carbonaceous chondrites that have experienced minimal aqueous alteration and thermal metamorphism) are characterized by their predominately amorphous iron-rich silicate interchondrule matrices and chondrule rims. This material is highly susceptible to destruction by the parent body processes of thermal metamorphism or aqueous alteration. The presence of abundant amorphous material in a meteorite indicates that the parent body, or at least a region of the parent body, experienced minimal processing since the time of accretion. The CO chemical group of carbonaceous chondrites has a significant number of these least-processed samples. We present visible/near-infrared and mid-infrared spectra of eight least-processed CO meteorites (petrologic type 3.0-3.1). In the visible/near-infrared, these COs are characterized by a broad weak feature that was first observed by Cloutis et al. (2012) to be at 1.3-μm and attributed to iron-rich amorphous silicate matrix materials. This feature is observed to be centered at 1.4-μm for terrestrially unweathered, least-processed CO meteorites. At mid-infrared wavelengths, a 21-μm feature, consistent with Si-O vibrations of amorphous materials and glasses, is also present. The spectral features of iron-rich amorphous silicate matrix are absent in both the near- and mid-infrared spectra of higher metamorphic grade COs because this material has recrystallized as crystalline olivine. Furthermore, spectra of least-processed primitive meteorites from other chemical groups (CRs, MET 00426 and QUE 99177, and C2-ungrouped Acfer 094), also exhibit a 21-μm feature. Thus, we conclude that the 1.4- and 21-μm features are characteristic of primitive least-processed meteorites from all chemical groups of carbonaceous chondrites. Finally, we present an IRTF + SPeX observation of asteroid (93) Minerva that has spectral similarities in the visible/near-infrared to the least-processed CO carbonaceous chondrites. While Minerva is not the only CO-like asteroid (e.g., Burbine et al., 2001), Minerva is likely the least-processed CO-like asteroid observed to date.

  5. Dielectric-Like Behavior of Graphene in Au Plasmon Resonator.

    PubMed

    Liu, Junku; Li, Qunqing; Chen, Mo; Ren, Mengxin; Zhang, Lihui; Xiao, Lin; Jiang, Kaili; Fan, Shoushan

    2016-12-01

    Graphene has proven to be a promising conductive layer in fabricating optical plasmon resonators on insulator substrate using electron beam lithography and has the potential to construct electrically controlled active plasmon resonators. In this study, we investigate the effect of graphene on plasmon resonance using graphene and Au plasmon resonator system as a model at visible and near-infrared wavelength. Our experiment data show that the presence of graphene does not weaken and annihilate the plasmon resonance peaks, instead it predominantly makes the peaks redshift, which is similar to the behavior of depositing SiO 2 film on Au plasmon resonators. This fact indicates that graphene predominantly exhibits dielectric-like behavior at visible and near-infrared wavelength, which can be attributed to the low carrier density in graphene compared with metals.

  6. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications.

    PubMed

    Chuang, Ya-Wen; Yen, Hung-Ju; Wu, Jia-Hao; Liou, Guey-Sheng

    2014-03-12

    In this study, two novel colorless thermoset epoxy resins with anodically electrochromism were prepared from the thermal curing of two triphenylamine-based diamine monomers, 4,4'-diamino-4″-methoxytriphenylamine (1) and N,N'-bis(4-aminophenyl)-N,N'-di(4-methoxylphenyl)-1,4-phenylenediamine (2) with aliphatic epoxy triglycidyl isocyanurate, respectively. The resulting thermoset epoxy resins showed excellent softening temperature (Ts, 270 and 280 °C) due to the rigid structure and highly crosslinking density. In addition, novel colorless epoxy resin films revealed good reversible electrochemical oxidation and interesting multi-electrochromic behavior with high contrast ratio both in visible and near-infrared regions. The aliphatic thermoset epoxy resins also exhibited high transparency in visible region as colorless and great potential for practical electrochromic applications.

  7. Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging.

    PubMed

    Fu, Ling; Gu, Min

    2006-05-15

    A 1 x 2 double-clad photonic crystal fiber coupler is fabricated by the fused tapered method, showing a low excess loss of 1.1 dB and a splitting ratio of 97/3 over the entire visible and near-infrared wavelength range. In addition to the property of splitting the laser power, the double-clad feature of the coupler facilitates the separation of a near-infrared single-mode beam from a visible multimode beam, which is ideal for nonlinear optical microscopy imaging. In conjunction with a gradient-index lens, this coupler is used to construct a miniaturized microscope based on two-photon fluorescence and second-harmonic generation. Three-dimensional nonlinear optical images demonstrate potential applications of the coupler to compact all-fiber and nonlinear optical microscopy and endoscopy.

  8. Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography.

    PubMed

    Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo

    2011-04-11

    We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America

  9. A Commercial Architecture for Satellite Imagery

    DTIC Science & Technology

    2006-09-01

    incorporates image detection from the visible and near - infrared wavelengths, 3) 16 Ball Aerospace...present limited total area coverage since the field of regard is smallest. The opposite is true for resolution and total area coverage near apogee. The...27 B. SENSOR FIELD OF REGARD ...................................................................27 1. Spherical Analysis

  10. Tropical Depression 6 (Florence) in the Atlantic

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Microwave ImageVisible Light Image

    These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite.

    Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Image AIRS data used to create the microwave images come from the microwave radiation emitted by Earth's atmosphere which is then received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm, where there are either some clouds or no clouds, indicate where the sea surface shines through.

    Vis/NIR Image The AIRS instrument suite contains a sensor that captures light in the visible/near-infrared portion of the electromagnetic spectrum. These 'visible' images are similar to a snapshot taken with your camera.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  11. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE PAGES

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; ...

    2017-09-08

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  12. Vacancy-Rich Monolayer BiO 2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng

    Here in this paper, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x, monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy VBi-O"' as confirmed by the positron annihilation spectra. The presence of V Bi-O"' defects inmore » monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts.« less

  13. CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light.

    PubMed

    Wu, Jie; Liu, Baibai; Ren, Zhenxing; Ni, Mengying; Li, Can; Gong, Yinyan; Qin, Wei; Huang, Yongli; Sun, Chang Q; Liu, Xinjuan

    2018-05-01

    To make full use of the solar energy, it remains a great challenge for semiconductor photocatalysts to harvest the full solar light spectrum from ultraviolet (UV) to visible even the near infrared (NIR) wavelength. Here we show firstly the CuS/RGO (reduced graphene oxide) hybrid photocatalyst synthesized via a microwave assisted method with full solar light (UV-Vis-NIR) active for efficient Cr(VI) reduction. The CuS/RGO displays high absorption and catalytic activity in the UV, visible and even the NIR light regions. As co-catalyst, RGO can separate and inhibit the recombination of charge carriers, consequently improving the catalytic activity. Only 1wt% RGO emersions can reduce 90% of Cr(VI) under the radiation of light over the full spectrum. Findings may provide a new strategy and substance to expand the utilization range of solar light from UV to visible even the NIR energy. Copyright © 2017. Published by Elsevier Inc.

  14. DUSTER: demonstration of an integrated LWIR-VNIR-SAR imaging system

    NASA Astrophysics Data System (ADS)

    Wilson, Michael L.; Linne von Berg, Dale; Kruer, Melvin; Holt, Niel; Anderson, Scott A.; Long, David G.; Margulis, Yuly

    2008-04-01

    The Naval Research Laboratory (NRL) and Space Dynamics Laboratory (SDL) are executing a joint effort, DUSTER (Deployable Unmanned System for Targeting, Exploitation, and Reconnaissance), to develop and test a new tactical sensor system specifically designed for Tier II UAVs. The system is composed of two coupled near-real-time sensors: EyePod (VNIR/LWIR ball gimbal) and NuSAR (L-band synthetic aperture radar). EyePod consists of a jitter-stabilized LWIR sensor coupled with a dual focal-length optical system and a bore-sighted high-resolution VNIR sensor. The dual focal-length design coupled with precision pointing an step-stare capabilities enable EyePod to conduct wide-area survey and high resolution inspection missions from a single flight pass. NuSAR is being developed with partners Brigham Young University (BYU) and Artemis, Inc and consists of a wideband L-band SAR capable of large area survey and embedded real-time image formation. Both sensors employ standard Ethernet interfaces and provide geo-registered NITFS output imagery. In the fall of 2007, field tests were conducted with both sensors, results of which will be presented.

  15. Observations of Planet Crossing Asteroids

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1999-01-01

    This grant funds the investigation of the Solar System's planet crossing asteroid population, principally the near Earth and trans-Neptunian objects, but also the Centaurs. Investigations include colorimetry at both visible and near infrared wavelengths, light curve photometry, astrometry, and a pilot project to find near Earth objects with small aphelion distances, which requires observations at small solar elongations.

  16. UV / Visible / Near-Infrared Reflectance Models for the Rapid and Non-Destructive Prediction and Classification of Cotton Color and Physical Indices

    USDA-ARS?s Scientific Manuscript database

    High volume instrumentation (HVI), utilized in the cotton industry to determine the qualities and classifications of cotton fibers, is time consuming, and prone to day-to-day and location-to-location variations. UV / visible / NIR spectroscopy, a rapid and easy sampling technique, was investigated a...

  17. Discrimination of crop and weeds on visible and visible/near-infrared spectrums using support vector machines, artificial neural network and decision tree

    USDA-ARS?s Scientific Manuscript database

    Weeds are regarded as farmers' natural enemy. In order to avoid excessive pesticide residues, the destruction of ecological environment, and to guarantee the quality and safety of agricultural products, it is urgent to develop highly-efficient weed management methods. Amongst, weed discrimination is...

  18. Recognizing Sulfate and Phosphate Complexes Adsorbed onto Nanophase Weathering Products on Mars

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Morris, R. V.; Archer, P. D., Jr.

    2015-01-01

    Nanophase weathering products (i.e., secondary phases that lack long-range atomic order) have been recognized on the martian surface via orbital observations and in-situ measurements from landed missions. Allophane, a poorly crystalline, hydrated aluminosilicate, has been identified at the regional scale in models of thermal-infrared (TIR) data from the Thermal Emission Spectrometer (TES) and at the local scale from visible/near-IR (VNIR) data from the Compact Reconnaissance Impact Spectrometer for Mars (CRISM) instrument and phase calculations of Alpha Particle X-ray Spectrometer (APXS) data of rocks encountered by the Mars Exploration Rovers (MER) Spirit and Opportunity. Nanophase iron oxides (npOx) have been recognized in rocks and soils measured by the Mössbauer Spectrometer on Spirit and Opportunity. Furthermore, analyses of X-ray diffraction data measured by the CheMin instrument onboard the Mars Science Laboratory rover Curiosity indicate rock and soil samples are comprised of approx. 20-50 wt.% X-ray amorphous materials. Chemical measurements by landed missions indicate the presence of sulfur and phosphorus in martian rocks in soils, and APXS data from Gusev crater demonstrate abundances of up to approx. 5 wt.% P2O5 and approx. 30 wt.% SO3. However, the speciation of phosphorus and sulfur is not always evident. On Earth, phosphate and sulfate anions can be chemisorbed onto the surfaces of nanophase weathering products. This process may also occur on Mars, and calculations of the composition of the amorphous component at Gale crater using CheMin mineral models and APXS data show that amorphous material is enriched in volatiles, including S. Here, we examine the ability to detect chemisorbed sulfate and phosphate complexes by analyzing sulfate- and phosphate-adsorbed nanophase weathering products using instruments similar to those on landed and orbital missions.

  19. Water Stress Detection using Temperature, Emissivity, and Reflectance

    NASA Astrophysics Data System (ADS)

    Gerhards, Max; Rock, Gilles; Schlerf, Martin; Udelhoven, Thomas

    2017-04-01

    Water stress is one of the most critical abiotic stressors limiting crop development. The main imaging and non-imaging remote sensing based techniques for the detection of plant stress (water stress and other types of stress) are thermography, visible (VIS), near- and shortwave infrared (NIR/SWIR) reflectance, and fluorescence. Just very recently, in addition to broadband thermography, narrowband (hyperspectral) thermal imaging has become available, which even facilitates the retrieval of spectral emissivity as an additional measure of plant stress. It is, however, still unclear at what stage plant stress is detectable with the various techniques. During summer 2014 a water treatment experiment was run on 60 potato plants (Solanum tuberosum L. Cilena) with one half of the plants watered and the other half stressed. Crop response was measured using broadband and hyperspectral thermal cameras and a VNIR/SWIR spectrometer. Stomatal conductance was measured using a leaf porometer. Various measures and indices were computed and analysed for their sensitivity towards water stress (Crop Water Stress Index (CWSI), Moisture Stress Index (MSI), Photochemical Reflectance Index (PRI), and spectral emissivity, amongst others). The results show that water stress as measured through stomatal conductance started on day 2 after watering was stopped. The fastest reacting, i.e., starting on day 7, indices were temperature based measures (e.g., CWSI) and NIR/SWIR reflectance based indices related to plant water content (e.g., MSI). Spectral emissivity reacted equally fast. Contrarily, visual indices (e.g., PRI) either did not respond at all or responded in an inconsistent manner. This experiment shows that pre-visual water stress detection is feasible using indices depicting leaf temperature, leaf water content and spectral emissivity.

  20. Detecting peanuts inoculated with toxigenic and atoxienic Aspergillus flavus strains with fluorescence hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Xing, Fuguo; Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Zhu, Fengle; Brown, Robert L.; Bhatnagar, Deepak; Liu, Yang

    2017-05-01

    Aflatoxin contamination in peanut products has been an important and long-standing problem around the world. Produced mainly by Aspergillus flavus and Aspergillus parasiticus, aflatoxins are the most toxic and carcinogenic compounds among toxins. This study investigated the application of fluorescence visible near-infrared (VNIR) hyperspectral images to assess the spectral difference between peanut kernels inoculated with toxigenic and atoxigenic inocula of A. flavus and healthy kernels. Peanut kernels were inoculated with NRRL3357, a toxigenic strain of A. flavus, and AF36, an atoxigenic strain of A. flavus, respectively. Fluorescence hyperspectral images under ultraviolet (UV) excitation were recorded on peanut kernels with and without skin. Contaminated kernels exhibited different fluorescence features compared with healthy kernels. For the kernels without skin, the inoculated kernels had a fluorescence peaks shifted to longer wavelengths with lower intensity than healthy kernels. In addition, the fluorescence intensity of peanuts without skin was higher than that of peanuts with skin (10 times). The fluorescence spectra of kernels with skin are significantly different from that of the control group (p<0.001). Furthermore, the fluorescence intensity of the toxigenic, AF3357 peanuts with skin was lower than that of the atoxigenic AF36 group. Discriminate analysis showed that the inoculation group can be separated from the controls with 100% accuracy. However, the two inoculation groups (AF3357 vis AF36) can be separated with only ∼80% accuracy. This study demonstrated the potential of fluorescence hyperspectral imaging techniques for screening of peanut kernels contaminated with A. flavus, which could potentially lead to the production of rapid and non-destructive scanning-based detection technology for the peanut industry.

  1. Assessing the Ability of Vegetation Indices to Identify Shallow Subsurface Water Flow Pathways from Hyperspectral Imagery Using Machine Learning: Application

    NASA Astrophysics Data System (ADS)

    Doctor, K.; Byers, J. M.

    2017-12-01

    Shallow underground water flow pathways expressed as slight depressions are common in the land surface. Under conditions of saturated overland flow, such as during heavy rain or snow melt, these areas of preferential flow might appear on the surface as very shallow flowing streams. When there is no water flowing in these ephemeral channels it can be difficult to identify them. It is especially difficult to discern the slight depressions above the subsurface water flow pathways (SWFP) when the area is covered by vegetation. Since the soil moisture content in these SWFP is often greater than the surrounding area, the vegetation growing on top of these channels shows different vigor and moisture content than the vegetation growing above the non-SWFP area. Vegetation indices (VI) are used in visible and near infrared (VNIR) hyperspectral imagery to enhance biophysical properties of vegetation, and so the brightness values between vegetation atop SWFP and the surrounding vegetation were highlighted. We performed supervised machine learning using ground-truth class labels to determine the conditional probability of a SWFP at a given pixel given either the spectral distribution or VI at that pixel. The training data estimates the probability distributions to a determined finite sampling accuracy for a binary Naïve Bayes classifier between SWFP and non-SWFP. The ground-truth data provides a test bed for understanding the ability to build SWFP classifiers using hyperspectral imagery. SWFP were distinguishable in the imagery within corn and grass fields and in areas with low-lying vegetation. However, the training data is limited to particular types of terrain and vegetation cover in the Shenandoah Valley, Virginia and this would limit the resulting classifier. Further training data could extend its use to other environments.

  2. Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface

    NASA Astrophysics Data System (ADS)

    De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team

    2017-07-01

    The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.

  3. Concept and integration of an on-line quasi-operational airborne hyperspectral remote sensing system

    NASA Astrophysics Data System (ADS)

    Schilling, Hendrik; Lenz, Andreas; Gross, Wolfgang; Perpeet, Dominik; Wuttke, Sebastian; Middelmann, Wolfgang

    2013-10-01

    Modern mission characteristics require the use of advanced imaging sensors in reconnaissance. In particular, high spatial and high spectral resolution imaging provides promising data for many tasks such as classification and detecting objects of military relevance, such as camouflaged units or improvised explosive devices (IEDs). Especially in asymmetric warfare with highly mobile forces, intelligence, surveillance and reconnaissance (ISR) needs to be available close to real-time. This demands the use of unmanned aerial vehicles (UAVs) in combination with downlink capability. The system described in this contribution is integrated in a wing pod for ease of installation and calibration. It is designed for the real-time acquisition and analysis of hyperspectral data. The main component is a Specim AISA Eagle II hyperspectral sensor, covering the visible and near-infrared (VNIR) spectral range with a spectral resolution up to 1.2 nm and 1024 pixel across track, leading to a ground sampling distance below 1 m at typical altitudes. The push broom characteristic of the hyperspectral sensor demands an inertial navigation system (INS) for rectification and georeferencing of the image data. Additional sensors are a high resolution RGB (HR-RGB) frame camera and a thermal imaging camera. For on-line application, the data is preselected, compressed and transmitted to the ground control station (GCS) by an existing system in a second wing pod. The final result after data processing in the GCS is a hyperspectral orthorectified GeoTIFF, which is filed in the ERDAS APOLLO geographical information system. APOLLO allows remote access to the data and offers web-based analysis tools. The system is quasi-operational and was successfully tested in May 2013 in Bremerhaven, Germany.

  4. Spectral Reconstruction Based on Svm for Cross Calibration

    NASA Astrophysics Data System (ADS)

    Gao, H.; Ma, Y.; Liu, W.; He, H.

    2017-05-01

    Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor's passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  5. Interpretation of Spectrometric Measurements of Active Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Bedard, D.; Wade, G.

    2014-09-01

    Over 5000 visible near-infrared (VNIR) spectrometric measurements of active geostationary satellites have been collected with the National Research Council (NRC) 1.8m Plaskett telescope located at the Dominion Astrophysical Observatory (DAO) in Victoria, Canada. The objective of this ongoing experiment is to study how reflectance spectroscopy can be used to reliably identify specific material types on the surface of artificial Earth-orbiting objects. Active geostationary satellites were selected as the main subjects for this experiment since their orientation is stable and can be estimated to a high-level of confidence throughout a night of observation. Furthermore, for most geostationary satellites, there is a wide variety of sources that can provide some level of information as to their external surface composition. Notwithstanding the high number of measurements that have been collected to date, it was assumed that the experimenters would have a much greater success rate in material identification given the choice experimental subjects. To date, only the presence of aluminum has been confidently identified in some of the reflectance spectra that have been collected. Two additional material types, namely photovoltaic cells and polyimide film, the first layer of multi-layer insulation (MLI), have also been possibly identified. However uncertainties in the reduced spectral measurements prevent any definitive conclusion with respect to these materials at this time. The surprising lack of results with respect to material identification have forced the experimenters to use other data interpretation methods to characterize the spectral scattering characteristics of the studied satellites. The results from this study have already led to improvements in the ways that reflectance spectra from spacecraft are collected and analysed. Equally important, the data interpretation techniques elaborated over the course of this experiment will also serve to increase the body of knowledge pertaining to the spectral characterization of artificial Earth-orbiting objects.

  6. Single aflatoxin contaminated corn kernel analysis with fluorescence hyperspectral image

    NASA Astrophysics Data System (ADS)

    Yao, Haibo; Hruska, Zuzana; Kincaid, Russell; Ononye, Ambrose; Brown, Robert L.; Cleveland, Thomas E.

    2010-04-01

    Aflatoxins are toxic secondary metabolites of the fungi Aspergillus flavus and Aspergillus parasiticus, among others. Aflatoxin contaminated corn is toxic to domestic animals when ingested in feed and is a known carcinogen associated with liver and lung cancer in humans. Consequently, aflatoxin levels in food and feed are regulated by the Food and Drug Administration (FDA) in the US, allowing 20 ppb (parts per billion) limits in food and 100 ppb in feed for interstate commerce. Currently, aflatoxin detection and quantification methods are based on analytical tests including thin-layer chromatography (TCL) and high performance liquid chromatography (HPLC). These analytical tests require the destruction of samples, and are costly and time consuming. Thus, the ability to detect aflatoxin in a rapid, nondestructive way is crucial to the grain industry, particularly to corn industry. Hyperspectral imaging technology offers a non-invasive approach toward screening for food safety inspection and quality control based on its spectral signature. The focus of this paper is to classify aflatoxin contaminated single corn kernels using fluorescence hyperspectral imagery. Field inoculated corn kernels were used in the study. Contaminated and control kernels under long wavelength ultraviolet excitation were imaged using a visible near-infrared (VNIR) hyperspectral camera. The imaged kernels were chemically analyzed to provide reference information for image analysis. This paper describes a procedure to process corn kernels located in different images for statistical training and classification. Two classification algorithms, Maximum Likelihood and Binary Encoding, were used to classify each corn kernel into "control" or "contaminated" through pixel classification. The Binary Encoding approach had a slightly better performance with accuracy equals to 87% or 88% when 20 ppb or 100 ppb was used as classification threshold, respectively.

  7. Hyperspectral remote sensing of wild oyster reefs

    NASA Astrophysics Data System (ADS)

    Le Bris, Anthony; Rosa, Philippe; Lerouxel, Astrid; Cognie, Bruno; Gernez, Pierre; Launeau, Patrick; Robin, Marc; Barillé, Laurent

    2016-04-01

    The invasion of the wild oyster Crassostrea gigas along the western European Atlantic coast has generated changes in the structure and functioning of intertidal ecosystems. Considered as an invasive species and a trophic competitor of the cultivated conspecific oyster, it is now seen as a resource by oyster farmers following recurrent mass summer mortalities of oyster spat since 2008. Spatial distribution maps of wild oyster reefs are required by local authorities to help define management strategies. In this work, visible-near infrared (VNIR) hyperspectral and multispectral remote sensing was investigated to map two contrasted intertidal reef structures: clusters of vertical oysters building three-dimensional dense reefs in muddy areas and oysters growing horizontally creating large flat reefs in rocky areas. A spectral library, collected in situ for various conditions with an ASD spectroradiometer, was used to run Spectral Angle Mapper classifications on airborne data obtained with an HySpex sensor (160 spectral bands) and SPOT satellite HRG multispectral data (3 spectral bands). With HySpex spectral/spatial resolution, horizontal oysters in the rocky area were correctly classified but the detection was less efficient for vertical oysters in muddy areas. Poor results were obtained with the multispectral image and from spatially or spectrally degraded HySpex data, it was clear that the spectral resolution was more important than the spatial resolution. In fact, there was a systematic mud deposition on shells of vertical oyster reefs explaining the misclassification of 30% of pixels recognized as mud or microphytobenthos. Spatial distribution maps of oyster reefs were coupled with in situ biomass measurements to illustrate the interest of a remote sensing product to provide stock estimations of wild oyster reefs to be exploited by oyster producers. This work highlights the interest of developing remote sensing techniques for aquaculture applications in coastal areas.

  8. Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta

    NASA Technical Reports Server (NTRS)

    Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.

    2011-01-01

    Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and <125 m powders of melt. Results: General petrography: The sample specimen is a coherent, medium dark-grey (N4), melt rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.

  9. Assessing post-fire ground cover in Mediterranean shrublands with field spectrometry and digital photography

    NASA Astrophysics Data System (ADS)

    Montorio Llovería, Raquel; Pérez-Cabello, Fernando; García-Martín, Alberto

    2016-09-01

    Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland formations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground measurements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP) and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range (VNIR, 400-900 nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables (HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of seven post-fire ground cover types (vegetation and soil - unburned and charred components - and ash - char and ash, individually and as a combined category). Models were developed and validated at the Peñaflor site (training, n = 217; validation, n = 88) and applied to the samples from the Ibieca and Zuera sites (n = 51). The best results were observed for the abundance estimations of green vegetation (Radj.20.70-0.90), unburned soil (Radj.20.40-0.75), and the combination of ashes (Radj.20.65-0.80). In comparison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made to improve the estimation of intermediate severity levels and upscaling the developed models. In the context of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in a quick and objective manner post-fire ground cover fractions and thus provide valuable information to guide management responses.

  10. Application of VNIR diffuse reflectance spectroscopy to estimate soil organic carbon content, and content of different forms of iron and manganese

    NASA Astrophysics Data System (ADS)

    Klement, Ales; Jaksik, Ondrej; Kodesova, Radka; Drabek, Ondrej; Boruvka, Lubos

    2013-04-01

    Visible and near-infrared (VNIR) diffuse reflectance spectroscopy is a progressive method used for prediction of soil properties. Study was performed on the soils from the agricultural land from the south Moravia municipality of Brumovice. Studied area is characterized by a relatively flat upper part, a tributary valley in the middle and a colluvial fan at the bottom. Haplic Chernozem reminded at the flat upper part of the area. Regosols were formed at steep parts of the valley. Colluvial Chernozem and Colluvial soils were formed at the bottom parts of the valley and at the bottom part of the studied field. The goal of the study was to evaluate relationship between soil spectra curves and organic matter content, and different forms iron and manganese content (Mehlich III extract, ammonium oxalate extract and dithionite-citrate extract). Samples (87) were taken from the topsoil within regular grid covering studied area. The soil spectra curves (of air dry soil and sieved using 2 mm sieve) were measured in the laboratory using spectometer FieldSpec®3 (350 - 2 500 nm). The Fe and Mn contents in different extract were measured using ICP-OES (with an iCAP 6500 Radial ICP Emission spectrometer; Thermo Scientific, UK) under standard analytical conditions. Partial least squares regression (PLSR) was used for modeling of the relationship between spectra and measured soil properties. Prediction ability was evaluated using the R2, root mean square error (RMSE) and normalized root mean square deviation (NRMSD). The results showed the best prediction for Mn (R2 = 0.86, RMSE = 29, NRMSD = 0.11), Fe in ammonium oxalate extract (R2 = 0.82, RMSE = 171, NRMSD = 0.12) and organic matter content (R2 = 0.84, RMSE = 0.13, NRMSD = 0.09). The slightly worse prediction was obtained for Mn and Fe in citrate extract (R2 = 0.82, RMSE = 21, NRMSD = 0.10; R2 = 0.77, RMSE = 522, NRMSD = 0.23). Poor prediction was evaluated for Mn and Fe in Mehlich III extract (R2 = 0.43, RMSE = 13, NRMSD = 0.17; R2 = 0.39, RMSE = 13, NRMSD = 0.26). In general, the results confirmed that the measurement of soil spectral characteristics is a promising technology for a digital soil mapping and predicting studied soil properties. Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (grant No. QJ1230319) and the Czech Science Foundation (grant No. GA526/09/1762).

  11. CRISM Multispectral and Hyperspectral Mapping Data - A Global Data Set for Hydrated Mineral Mapping

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Hash, C. D.; Murchie, S. L.; Lim, H.

    2017-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a visible through short-wave infrared hyperspectral imaging spectrometer (VNIR S-detector: 364-1055 nm; IR L-detector: 1001-3936 nm; 6.55 nm sampling) that has been in operation on the Mars Reconnaissance Orbiter (MRO) since 2006. Over the course of the MRO mission, CRISM has acquired 290,000 individual mapping observation segments (mapping strips) with a variety of observing modes and data characteristics (VNIR/IR; 100/200 m/pxl; multi-/hyper-spectral band selection) over a wide range of observing conditions (atmospheric state, observation geometry, instrument state). CRISM mapping data coverage density varies primarily with latitude and secondarily due to seasonal and operational considerations. The aggregate global IR mapping data coverage currently stands at 85% ( 80% at the equator with 40% repeat sampling), which is sufficient spatial sampling density to support the assembly of empirically optimized radiometrically consistent mapping mosaic products. The CRISM project has defined a number of mapping mosaic data products (e.g. Multispectral Reduced Data Record (MRDR) map tiles) with varying degrees of observation-specific processing and correction applied prior to mosaic assembly. A commonality among the mosaic products is the presence of inter-observation radiometric discrepancies which are traceable to variable observation circumstances or associated atmospheric/photometric correction residuals. The empirical approach to radiometric reconciliation leverages inter-observation spatial overlaps and proximal relationships to construct a graph that encodes the mosaic structure and radiometric discrepancies. The graph theory abstraction allows the underling structure of the msaic to be evaluated and the corresponding optimization problem configured so it is well-posed. Linear and non-linear least squares optimization is then employed to derive a set of observation- and wavelength- specific model parameters for a series of transform functions that minimize the total radiometric discrepancy across the mosaic. This empirical approach to CRISM data radiometric reconciliation and the utility of the resulting mapping data mosaic products for hydrated mineral mapping will be presented.

  12. Definitions in use by the visible and near-infrared, and thermal working groups

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Miller, ED; Martin, Bob; Kieffer, Hugh H.; Palmer, James M.

    1992-01-01

    The Calibration Advisory Panel (CAP) is composed of calibration experts from each of the Earth Observing System (EOS) instruments, science investigation, and cross-calibration teams. These members come from a variety of institutions and backgrounds. In order to facilitate an exchange of ideas, and assure a common basis for communication, it was desirable to assemble this list of definitions. These definitions were developed for use by the visible and near-infrared working group, and the thermal infrared working group. Where necessary or appropriate, deviations from these for specific instruments or other sensor types are given in the individual calibration plans. The definitions contained in this document are derived, wherever possible, from definitions accepted by international and national metrological commissions including the United States National Institute of Standards and Technology (NIST), the International Bureau of Weights and Measures (BIPM), the International Electrotechnical Commission (IEC), the International Organization for Standardization (ISO), and the International Organization of Legal Metrology (OIML).

  13. Resonant antenna probes for tip-enhanced infrared near-field microscopy.

    PubMed

    Huth, Florian; Chuvilin, Andrey; Schnell, Martin; Amenabar, Iban; Krutokhvostov, Roman; Lopatin, Sergei; Hillenbrand, Rainer

    2013-03-13

    We report the development of infrared-resonant antenna probes for tip-enhanced optical microscopy. We employ focused-ion-beam machining to fabricate high-aspect ratio gold cones, which replace the standard tip of a commercial Si-based atomic force microscopy cantilever. Calculations show large field enhancements at the tip apex due to geometrical antenna resonances in the cones, which can be precisely tuned throughout a broad spectral range from visible to terahertz frequencies by adjusting the cone length. Spectroscopic analysis of these probes by electron energy loss spectroscopy, Fourier transform infrared spectroscopy, and Fourier transform infrared near-field spectroscopy corroborates their functionality as resonant antennas and verifies the broad tunability. By employing the novel probes in a scattering-type near-field microscope and imaging a single tobacco mosaic virus (TMV), we experimentally demonstrate high-performance mid-infrared nanoimaging of molecular absorption. Our probes offer excellent perspectives for optical nanoimaging and nanospectroscopy, pushing the detection and resolution limits in many applications, including nanoscale infrared mapping of organic, molecular, and biological materials, nanocomposites, or nanodevices.

  14. Laser discrimination by stimulated emission of a phosphor

    NASA Technical Reports Server (NTRS)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  15. Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses.

    PubMed

    Balda, R; Fernández, J; Fernández-Navarro, J M

    2009-05-25

    In this work, we report the near-infrared emission properties of Tm(3+)-Er(3+) codoped tellurite TeO(2)-WO(3)-PbO glasses under 794 nm excitation. A broad emission from 1350 to 1750 nm corresponding to the Tm(3+) and Er(3+) emissions is observed. The full width at half-maximum of this broadband increases with increasing [Tm]/[Er] concentration ratio up to a value of ~ 160 nm. The energy transfer between Tm(3+) and Er(3+) ions is evidenced by both the temporal behavior of the near-infrared luminescence and the effect of Tm3+ codoping on the visible upconversion of Er(3+) ions.

  16. ARC-1990-A91-2001

    NASA Image and Video Library

    1990-02-19

    Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.

  17. ARC-1990-A91-2002

    NASA Image and Video Library

    1990-02-10

    Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.

  18. Venus - Lower-level Clouds As Seen By NIMS

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These images are two versions of a near-infrared map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft as it approached the planet February 10, 1990. Taken from an altitude of about 60,000 miles above the planet, at an infrared wavelength of 2.3 microns (about three times the longest wavelength visible to the human eye) the map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees Fahrenheit) shining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about -30 degrees Fahrenheit, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of blocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and blocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopically analyze atmospheres and surfaces and construct thermal and chemical maps. Designed and operated by scientists and engineers at the Jet Propulsion Laboratory, NIMS involves 15 scientists in the U.S., England, and France. The Galileo Project is managed for NASA's Office of Space Science and Applications by JPL; its mission is to study the planet Jupiter and its satellites and magnetosphere after multiple gravity-assist flybys at Venus and the Earth.

  19. Use of near infared spectroscopy to predict the mechanical properties of six softwoods

    Treesearch

    Stephen S. Jelley; Timothy G. Rials; Leslie H. Groom; Chi-Leung So

    2004-01-01

    The visible and near infrared (NIR)(500-2400 nm) spectra and mechanical properties of almost 1000 small clear-wood samples from six softwood species: Pinus taeda L. (loblolly pine), Pinus palustris, Mill. (longleaf pine), Pinus elliottii Engelm. (slash pine), Pinus echinata Mill. (shortleaf...

  20. Announcing the Availability of the MIT SMASS and SMASSIR Data Sets

    NASA Technical Reports Server (NTRS)

    Binzel, R. P.; Bus, S. J.; Burbine, T. H.; Rivkin, A. S.

    2001-01-01

    We announce the release of visible and near-infrared reflectance spectroscopy measurements for nearly 2000 asteroids obtained by the MIT Small Main-Belt Asteroid Spectroscopic Survey (SMASS) program. Data are being released via http://smass.mit.edu. Additional information is contained in the original extended abstract.

  1. Defect induced visible-light-activated near-infrared emissions in Gd3-x-y-zYbxBiyErzGa5O12

    NASA Astrophysics Data System (ADS)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2017-11-01

    Visible-light-activated near-infrared luminescent materials are promising photoluminescent materials due to their convenience and low cost. Crystal defects can seriously affect the performance of luminescent materials, and better understanding of the complexity of the structural disorder and electronic structures of such materials opens up new possibilities in luminescent material development. In this work, we successfully design a novel, effective, visible-light-activated near-infrared luminescent Gd3Ga5O12: 4.2%Yb3+, 8.4%Er3+, and 4.2%Bi3+ system based on first principles. This exhibits strong emission intensity and high luminous efficiency (0.993) and also has a lifetime (7.002 ms) that is at least twice as long as the longest lifetime reported in published papers. We utilize density functional theory with an effective LSDA + U method to study the structural properties of Gd3-x-y-zGa5O12: xYb3+, yBi3+, zEr3+ (GGG: Yb3+, Bi3+, Er3+). The d and f electron orbits of rare-earth ions are considered for an effective Hund exchange. Detailed analysis reveals that GGG: 4.2%Yb3+, 8.4%Er3+, 4.2%Bi3+ has the smallest cell volume because of the strong covalent bonds of Bi-O, Er-O, and Yb-O. Bi 3d is a hybridized state that acts as sensitizing ions during the process of luminescence in GGG: Yb3+, Bi3+, Er3+. Together with experimental and theoretical results, we analyze the influence of defects on emission intensity. The locations of Yb3+, Er3+, and Bi3+ are determined by X-ray absorption fine structure measurements, which are in agreement with the model constructed using first principles. This work may provide innovative guidance for the design of high-performance visible-light-activated near-infrared luminophores based on calculations and a new methodology for application of coherent laser radar and optical communication.

  2. Hyperspectral data analysis for estimation of foliar biochemical content along the Oregon transect

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Peterson, David L.

    1991-01-01

    The NASA Oregon Transect Ecosystem Research (OTTER) project completed a data acquisition phase. Data were acquired with several airborne imaging spectrometers. Included were the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) aboard the ER-2, the Advanced Solidstate Array Spectrometer (ASAS) aboard the C-130, and the Fluorescence Line Imager (FLI) and Compact Airborne Spectrographic Imager (CASI), both aboard light aircraft. In addition, Spectron visible and near-infrared data were acquired in transects across study areas from a low-altitude ultralight craft. Sunphotometer data were taken approximately coincident with each overflight for atmospheric correction of the aircraft data.

  3. Study of changes in the lineament structure, caused by earthquakes in South America by applying the lineament analysis to the Aster (Terra) satellite data

    NASA Astrophysics Data System (ADS)

    Arellano-Baeza, A. A.; Zverev, A. T.; Malinnikov, V. A.

    The region between Southern Peru and Northern Chile is one of the most seismically and volcanically active regions in South America. This is caused by a constant subduction of the South American Plate, converging with the Nazca Plate in the extreme North of Chile. We used the 15 and 30 m resolution satellite images, provided by the ASTER (VNIR and SWIR) instrument onboard the Terra satellite to study changes in the geological faults close to earthquake epicenters in southern Peru. Visible and infrared spectral bands were analysed using “The Lineament Extraction and Stripes Statistic Analysis” (LESSA) software package to examine changes in the lineament features and stripe density fields caused by seismic activity. We used the satellite images 128 and 48 days before and 73 days after a 5.2 Richter scale magnitude earthquake. The fact that the seasonal variations in the South of Peru and North of Chile are very small, and the vegetation is very limited, allowed us to establish substantial changes in the lineament and the stripe density field features. We develop a methodology that allows to evaluate the seismic risk in this region for the future.

  4. ASTER spectral sensitivity of carbonate rocks - Study in Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Nasir, Sobhi

    2014-02-01

    Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates. Further, the study demonstrates and confirms the spectral sensitivity of marls and carbonatites. Marls have high reflectivity in ASTER visible near infrared (VNIR) and shortwave infrared (SWIR) spectral bands and low emissivity of energy in ASTER TIR spectral bands due to the presence of hydroxyl bearing alumina-silicate minerals. Carbonatites have low reflectivity in ASTER VNIR-SWIR spectral bands and high emissivity in ASTER TIR spectral bands due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of the carbonate minerals and carbonates. These have been discussed by providing the grey scale color image of 14 ASTER spectral bands of the study sites. The study is based on the interpretation of image spectra of multispectral image conducted to map such economic valuable carbonate rocks. It provides a simple methods and basic knowledge, which are of great help to the geology and exploration communities. It is recommended to the geologists, industrialists, exploration communities of carbonates and mine owners to take up the knowledge for economic exploration of such deposits. Further, the study has proved that the technique is time and cost effective in mapping of such deposits and can be used to the areas which have extremely rugged topography occurred in similar arid region, where difficult to do exhaustive sampling and not reachable for conventional geological mapping.

  5. Comparison of outgassing models for the landsat thematic mapper sensors

    USGS Publications Warehouse

    Micijevic, E.; Chander, G.

    2007-01-01

    The Thematic Mapper (TM) is a multi-spectral electro-optical sensor featured onboard both the Landsat 4 (L4) and Landsat 5 (L5) satellites. TM sensors have seven spectral bands with center wavelengths of approximately 0.49, 0.56, 0.66, 0.83, 1.65, 11.5 and 2.21 ??m, respectively. The visible near-infrared (VNIR) bands are located on the primary focal plane (PFP), and two short-wave infrared (SWIR) bands and the thermal infrared (TIR) band are located on the cold focal plane (CFP). The CFP bands are maintained at cryogenic temperatures of about 91 K, to reduce thermal noise effects. Due to the cold temperature, an ice film accumulates on the CFP dewar window, which introduces oscillations in SWIR and an exponential decay in TIR band responses. This process is usually monitored and characterized by the detector responses to the internal calibrator (IC) lamps and the blackbody. The ice contamination on the dewar window is an effect of the sensor outgassing in a vacuum of the space environment. Outgassing models have been developed, which are based on the thin-film optical interference phenomenon. They provide the coefficients for correction for outgassing effects for the entire mission's lifetime. While the L4 TM ceased imaging in August 1993, the L5 TM continues to operate even after more than 23 years in orbit. The process of outgassing in L5 TM is still occurring, though at a much lower rate than during early years of mission. Although the L4 and L5 TM sensors are essentially identical, they exhibit slightly different responses to the outgassing effects. The work presented in the paper summarizes the results of modeling outgassing effects in each of the sensors and provides a detailed analysis of differences among the estimated modeling parameters. For both sensors, water ice was confirmed as a reasonable candidate for contaminant material, the contaminant growth rate was found to be gradually decreasing with the time since launch, and the indications exist that some film may remain after the CFP warm-up procedures, which are periodically initiated to remove accumulated contamination. The observed difference between the models could be contributed to differences in the operational history for the sensors, the content and amount of contaminant impurities, the sensor spectral filter responses, and the internal calibrator systems.

  6. The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data

    NASA Astrophysics Data System (ADS)

    Rose, Shellie; Ramsey, Michael

    2009-07-01

    Kliuchevskoi volcano, located on the Kamchatka peninsula of eastern Russia, is one of the largest and most active volcanoes in the world. Its location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. In 2005, the Kamchatka Volcano Emergency Response Team (KVERT) first reported that seismic activity of Kliuchevskoi increased above background levels on 12 January (Kamchatka Volcanic Eruption Response Team (KVERT) Report, 2005. Kliuchevskoi Volcano, 14 January through 13 May 2005. ( http://www.avo.alaska.edu/activity/avoreport.php?view=kam info&id=&month=January&year=2005). Cited January 2007). By 15 January Kliuchevskoi entered an explosive-effusive phase, which lasted for five months and produced basaltic lava flows, lahar deposits, and phreatic explosions along its northwestern flank. We present a comparison between field observations and multispectral satellite image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument in order to characterize the eruptive behavior. The ASTER instrument was targeted in an automated urgent request mode throughout the eruption timeline in order to collect data at the highest observation frequency possible. Brightness temperatures were calculated in all three ASTER wavelength regions during lava flow emplacement. The maximum lava flow brightness temperatures, calculated from the 15 m/pixel visible near infrared (VNIR) data, were in excess of 800 °C. The shortwave infrared (SWIR) data were radiometrically and geometrically corrected, normalized to the same gain settings, and used to estimate an eruptive volume of 2.35 × 10 - 2 km 3 at the summit. These data were also used to better constrain errors arising in the thermal infrared (TIR) data due to sub-pixel thermal heterogeneities. Based on all the ASTER data, the eruption was separated into three phases: an initial explosive phase (20 January-31 January), an explosive-effusive phase (1 February-8 March), and a subsequent cooling phase. Decorrelation stretch (DCS) images of the TIR data also suggested the presence of silicate ash, SO 2, and water vapor plumes that extended up to 300 km from the summit. The ASTER rapid-response program provided important multispectral, moderate spatial resolution information that was used to detect and monitor the eruptive activity of this remote volcano which can be applied to other eruptions worldwide.

  7. Spectral radiative properties of a living human body

    NASA Astrophysics Data System (ADS)

    Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.

    1986-09-01

    Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.

  8. Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.

    2017-12-01

    The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.

  9. From UV to Near-Infrared Light-Responsive Metal-Organic Framework Composites: Plasmon and Upconversion Enhanced Photocatalysis.

    PubMed

    Li, Dandan; Yu, Shu-Hong; Jiang, Hai-Long

    2018-05-15

    The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high-priority target yet grand challenge. In this work, for the first time, metal-organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near-infrared (NIR) region. In the core-shell structured upconversion nanoparticles (UCNPs)-Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of "bare and clean" Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g -1 h -1 ) under simulated solar light, and the involved mechanism of photocatalytic H 2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H 2 production by light harvesting in all UV, visible, and NIR regions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies.

    PubMed

    Telle, H R; Meschede, D; Hänsch, T W

    1990-05-15

    We explore and demonstrate the feasibility of an optical-frequency-to-radio-frequency division method that is based on visible or near-infrared laser oscillators only. Comparing harmonic and sum frequencies, we generate the arithmetic average of two visible frequencies. Cascading n stages provides difference-frequency division by 2(n). For a demonstration we have phase locked the second harmonic and the sum frequency of two independent diode lasers.

  11. Atmospheric imaging results from the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Lemmon, M.; Athena Science Team

    The Athena science payload of the Spirit and Opportunity Mars Exploration Rovers contains instruments capable of measuring radiometric properties of the Martian atmosphere in the visible and the thermal infrared. Remote sensing instruments include Pancam, a color panoramic camera covering 0.4-1.0 microns, and Mini-TES, a thermal infrared spectrometer covering 5-29 microns. Results from atmospheric imaging by Pancam will be covered here. Visible and near-infrared aerosol opacity is monitored by direct solar imaging. Early results show dust opacity near 1 when both rovers landed. Both Spirit and Opportunity have seen dust opacity fall with time, somewhat faster at Spirit's Gusev crater landing site. Diurnal variations are also being monitored at both sites. There is no direct probe of the dust's vertical distribution, but images of the Sun near the horizon and of the twilight will provide constraints on the dust distribution. Dust optical properties and a cross-section weighted aerosol size will be estimated from Pancam images of the sky at varying geometries and times of day. A series of sky imaging sequences has been run with varying illumination geometry. The observations are similar to those reported for Mars Pathfinder.

  12. Space Weathering Effects at UV Wavelengths: Asteroids and the Moon

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda; Vilas, F.

    2006-09-01

    Space weathering, the bombardment of airless bodies by micrometeoroids and irradiation by solar wind particles, affects spectra of solar system bodies at visible/near IR (VNIR) wavelengths by darkening and reddening their surface materials, as well as degrading absorption features. We present new results detailing space weathering effects at ultraviolet wavelengths. We focus on new spectral modeling results, and also present spacecraft data of asteroids and the Moon, along with new UV measurements of asteroid families from HST, to demonstrate the effects of varying degrees of weathering and the outcome of weathering on surfaces of different compositions. Weathered surfaces are relatively bright and spectrally blue in the UV; these UV effects can be more obvious than the VNIR effects. The cause of these weathering effects is likely vapor deposition of submicroscopic iron (SMFe), through solar wind irradiation and micrometeoroid bombardment of the bodies' surfaces. In silicate minerals, the NUV region is dominated by a decrease in reflectance with wavelength - the "UV absorption edge.” In contrast to silicates, iron is opaque and relatively bright in the UV, so the addition of SMFe to a silicate grains has the effect of making the UV region brighter; this is in opposition to the situation at longer wavelengths, where the addition of SMFe decreases the albedo. Our spectral modeling results show that the addition of SMFe decreases the steepness of the UV dropoff, in effect making the UV spectrum bluer. This can explain the difference in UV spectral behavior seen between S-class asteroids and less-weathered ordinary chondrite meteorites, and between lunar rocks and more weathered lunar soils. This work is funded in part by Hubble Space Telescope Grant #10557.

  13. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study

    PubMed Central

    Sappa, Angel D.; Carvajal, Juan A.; Aguilera, Cristhian A.; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X.

    2016-01-01

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR). PMID:27294938

  14. Wavelet-Based Visible and Infrared Image Fusion: A Comparative Study.

    PubMed

    Sappa, Angel D; Carvajal, Juan A; Aguilera, Cristhian A; Oliveira, Miguel; Romero, Dennis; Vintimilla, Boris X

    2016-06-10

    This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).

  15. DM/LCWFC based adaptive optics system for large aperture telescopes imaging from visible to infrared waveband.

    PubMed

    Sun, Fei; Cao, Zhaoliang; Wang, Yukun; Zhang, Caihua; Zhang, Xingyun; Liu, Yong; Mu, Quanquan; Xuan, Li

    2016-11-28

    Almost all the deformable mirror (DM) based adaptive optics systems (AOSs) used on large aperture telescopes work at the infrared waveband due to the limitation of the number of actuators. To extend the imaging waveband to the visible, we propose a DM and Liquid crystal wavefront corrector (DM/LCWFC) combination AOS. The LCWFC is used to correct the high frequency aberration corresponding to the visible waveband and the aberrations of the infrared are corrected by the DM. The calculated results show that, to a 10 m telescope, DM/LCWFC AOS which contains a 1538 actuators DM and a 404 × 404 pixels LCWFC is equivalent to a DM based AOS with 4057 actuators. It indicates that the DM/LCWFC AOS is possible to work from visible to infrared for larger aperture telescopes. The simulations and laboratory experiment are performed for a 2 m telescope. The experimental results show that, after correction, near diffraction limited resolution USAF target images are obtained at the wavebands of 0.7-0.9 μm, 0.9-1.5 μm and 1.5-1.7 μm respectively. Therefore, the DM/LCWFC AOS may be used to extend imaging waveband of larger aperture telescope to the visible. It is very appropriate for the observation of spatial objects and the scientific research in astronomy.

  16. The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging.

    PubMed

    Verri, G

    2009-06-01

    The photo-induced luminescence properties of Egyptian blue, Han blue and Han purple were investigated by means of near-infrared digital imaging. These pigments emit infrared radiation when excited in the visible range. The emission can be recorded by means of a modified commercial digital camera equipped with suitable glass filters. A variety of visible light sources were investigated to test their ability to excite luminescence in the pigments. Light-emitting diodes, which do not emit stray infrared radiation, proved an excellent source for the excitation of luminescence in all three compounds. In general, the use of visible radiation emitters with low emission in the infrared range allowed the presence of the pigments to be determined and their distribution to be spatially resolved. This qualitative imaging technique can be easily applied in situ for a rapid characterisation of materials. The results were compared to those for Egyptian green and for historical and modern blue pigments. Examples of the application of the technique on polychrome works of art are presented.

  17. The Hyper Spectral Imager Instrument on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, A. S.; Roy Chowdhury, A.; Murali, K. R.; Sarkar, S. S.; Joshi, S. R.; Mehta, S.; Dave, A. B.; Shah, K. J.; Banerjee, A.; Mathew, K.; Sharma, B. N.

    2009-03-01

    The Hyperspectral imager on Chandrayaan-1 provides images of lunar surface with a spatial resolution of 80 meters in 64 contiguous spectral bands in visible and near infrared regions for mineralogical mapping.

  18. Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers.

    PubMed

    Pan, Jing; Cha, Tae-Gon; Li, Feiran; Chen, Haorong; Bragg, Nina A; Choi, Jong Hyun

    2017-01-01

    DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers' small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s -1 ) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps.

  19. 0.4-1.4 μm Visible to Near-Infrared Widely Broadened Super Continuum Generation with Er-doped Ultrashort Pulse Fiber Laser System

    NASA Astrophysics Data System (ADS)

    Nishizawa, Norihiko; Mitsuzawa, Hideyuki; Sumimura, Kazuhiko

    2009-03-01

    Visible to near-infrared widely broadened super continuum generation is demonstrated using ultrashort-pulse fiber laser system. Er-doped fiber chirped-pulse amplification system operated at 1550 nm in wavelength is used for the amplifier system, which generated ultrashort-pulse of 112 fs in FWHM with output power of 160 mW, on average. Almost pedestal free 200 fs second harmonic generation pulse is generated at 780 nm region using periodically poled LiNbO3 and conversion efficiency is as high as 37%. 0.45-1.40 μm widely broadened super continuum is generated in highly nonlinear photonic crystal fiber and spectrum flatness is within ±6 dB. All of the fiber devices are fusion spliced so that this system shows a good stability.

  20. Toward in vivo diagnosis of skin cancer using multimode imaging dermoscopy: (II) molecular mapping of highly pigmented lesions

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; MacKinnon, Nicholas; Farkas, Daniel L.

    2014-03-01

    We have developed a multimode imaging dermoscope that combines polarization and hyperspectral imaging with a computationally rapid analytical model. This approach employs specific spectral ranges of visible and near infrared wavelengths for mapping the distribution of specific skin bio-molecules. This corrects for the melanin-hemoglobin misestimation common to other systems, without resorting to complex and computationally intensive tissue optical models that are prone to inaccuracies due to over-modeling. Various human skin measurements including a melanocytic nevus, and venous occlusion conditions were investigated and compared with other ratiometric spectral imaging approaches. Access to the broad range of hyperspectral data in the visible and near-infrared range allows our algorithm to flexibly use different wavelength ranges for chromophore estimation while minimizing melanin-hemoglobin optical signature cross-talk.

  1. Characterization of long-range plasmonic waveguides at visible to near-infrared regime

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Ting; Lai, Chien-Chih; Sheu, Fang-Wen; Tsai, Wan-Shao

    2017-12-01

    Long-range surface plasmon polariton waveguides composed with thin gold stripes embedded in SU-8 polymer cladding with various stripe widths were fabricated. Material properties of the polymer cladding layer, gold thin film, and the device structures were discussed. Optical properties based on modal propagation were characterized at visible to near-infrared wavelengths. The measured propagation losses of waveguide widths from 3 to 9 μm at 633, 785, and 1550 nm are 7.5-18.8, 6.8-12.5, and 1.9-3.9 dB/mm, respectively. Guiding mode properties such as overlap integrals between the simulated and the measured fields and the polarization extinction ratios of the waveguides with different stripe widths were investigated at the telecommunication wavelength. Good accordance between the measurement and simulation results was presented.

  2. Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers

    PubMed Central

    Pan, Jing; Cha, Tae-Gon; Li, Feiran; Chen, Haorong; Bragg, Nina A.; Choi, Jong Hyun

    2017-01-01

    DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers’ small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s−1) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps. PMID:28116353

  3. Physical characterization of Warm Spitzer-observed near-Earth objects

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbó, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling, D.E. et al. [2010]. Astron. J. 140, 770-784. http://dx.doi.org/10.1088/0004-6256/140/3/770). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (˜0.7-2.5 μm) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of ExploreNEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with Band Area Ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed. The results of our phase angle study are consistent with those of (Sanchez, J.A., Reddy, V., Nathues, A., Cloutis, E.A., Mann, P., Hiesinger, H. [2012]. Icarus 220, 36-50. http://dx.doi.org/10.1016/j.icarus.2012.04.008, arXiv:1205.0248). We find evidence for spectral phase reddening for Eros, Ganymed, and Ivar. We identify the likely ordinary chondrite type analog for an appropriate subset of our sample. Our resulting proportions of H, L, and LL ordinary chondrites differ from those calculated for meteorite falls and in previous studies of ordinary chondrite-like NEOs.

  4. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature.

    PubMed

    Zhang, Zongtao; Gao, Yanfeng; Chen, Zhang; Du, Jing; Cao, Chuanxiang; Kang, Litao; Luo, Hongjie

    2010-07-06

    This paper describes a solution-phase synthesis of high-quality vanadium dioxide thermochromic thin films. The films obtained showed excellent visible transparency and a large change in transmittance at near-infrared (NIR) wavelengths before and after the metal-insulator phase transition (MIPT). For a 59 nm thick single-layer VO(2) thin film, the integral values of visible transmittance (T(int)) for metallic (M) and semiconductive (S) states were 54.1% and 49.1%, respectively, while the NIR switching efficiencies (DeltaT) were as high as 50% at 2000 nm. Thinner films can provide much higher transmittance of visible light, but they suffer from an attenuation of the switching efficiency in the near-infrared region. By varying the film thickness, ultrahigh T(int) values of 75.2% and 75.7% for the M and S states, respectively, were obtained, while the DeltaT at 2000 nm remained high. These results represent the best data for VO(2) to date. Thicker films in an optimized range can give enhanced NIR switching efficiencies and excellent NIR blocking abilities; in a particularly impressive experiment, one film provided near-zero NIR transmittance in the switched state. The thickness-dependent performance suggests that VO(2) will be of great use in the objective-specific applications. The reflectance and emissivity at the wavelength range of 2.5-25 microm before and after the MIPT were dependent on the film thickness; large contrasts were observed for relatively thick films. This work also showed that the MIPT temperature can be reduced simply by selecting the annealing temperature that induces local nonstoichiometry; a MIPT temperature as low as 42.7 degrees C was obtained by annealing the film at 440 degrees C. These properties (the high visible transmittance, the large change in infrared transmittance, and the near room-temperature MIPT) suggest that the current method is a landmark in the development of this interesting material toward applications in energy-saving smart windows.

  5. Infrared and visible laser spectroscopy for highly-charged Ni-like ions

    NASA Astrophysics Data System (ADS)

    Ralchenko, Yuri

    2017-10-01

    Application of visible or infrared (IR) lasers for spectroscopy of highly-charged ions (HCI) has not been particularly extensive so far due to a mismatch in typical energies. We show here that the energy difference between the two lowest levels within the first excited configuration 3d9 4 s in Ni-like ions of heavy elements from ZN = 60 to ZN = 92 is within the range of visible or near-IR lasers. The wavelengths of these transitions are calculated within the relativistic model potential formalism and compared with other theoretical and limited experimental data. Detailed collisional-radiative simulations of non-Maxwellian and thermal plasmas are performed showing that photopumping between these levels using relatively moderate lasers is sufficient to provide a two-order of magnitude increase of the pumped level population. This accordingly results in a similar rise of the X-ray line intensity thereby allowing control of X-ray emission with visible/IR lasers.

  6. Analysis of the selected optical parameters of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz

    2016-09-01

    The paper analyses the selected optical parameters of protective optic filters used for protection of the eyes against hazardous radiation within the visible (VIS) and near infrared (NIR) spectrum range. The indexes characterizing transmission and reflection of optic radiation incident on the filter are compared. As it follows from the completed analysis, the newly developed interference filters provide more effective blocking of infrared radiation in comparison with the currently used protective filters.

  7. Near-infrared photoluminescence in La0.98AlO3: 0.02Ln3+(Ln = Nd/Yb) for sensitization of c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Sawala, N. S.; Koparkar, K. A.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The host matrix LaAlO3 was synthesized by conventional solid state reaction method in which the Nd3+ ions and Yb3+ ions successfully doped at 2mol% concentrations. The phase purity was confirmed by X ray powder diffraction (XRD) method. The photoluminescence (PL) properties were studied by spectrophotometer in near infra red (NIR) and ultra violet visible (UV-VIS) region. The Nd3+ ion doped LaAlO3 converts a visible (VIS) green photon (587 nm) into near infrared (NIR) photon (1070 nm) while Yb3+ ion doped converts ultra violet (UV) photon (221 nm) into NIR photon (980 nm). The La0.98AlO3: 0.02Ln3+(Ln = Nd / Yb) can be potentiality used for betterment of photovoltaic (PV) technology. This result further indicates its potential application as a luminescence converter layer for enhancing solar cells performance.

  8. Venus in Violet and Near Infrared Light

    NASA Image and Video Library

    1996-02-01

    These images of the Venus clouds were taken by NASA Galileo Solid State Imaging System February 13,1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. They show the state of the clouds near the top of Venus cloud. http://photojournal.jpl.nasa.gov/catalog/PIA00071

  9. Evaluation of water-use efficiency in foxtail millet (Setaria italica) using visible-near infrared and thermal spectral sensing techniques.

    PubMed

    Wang, Meng; Ellsworth, Patrick Z; Zhou, Jianfeng; Cousins, Asaph B; Sankaran, Sindhuja

    2016-05-15

    Water limitations decrease stomatal conductance (g(s)) and, in turn, photosynthetic rate (A(net)), resulting in decreased crop productivity. The current techniques for evaluating these physiological responses are limited to leaf-level measures acquired by measuring leaf-level gas exchange. In this regard, proximal sensing techniques can be a useful tool in studying plant biology as they can be used to acquire plant-level measures in a high-throughput manner. However, to confidently utilize the proximal sensing technique for high-throughput physiological monitoring, it is important to assess the relationship between plant physiological parameters and the sensor data. Therefore, in this study, the application of rapid sensing techniques based on thermal imaging and visual-near infrared spectroscopy for assessing water-use efficiency (WUE) in foxtail millet (Setaria italica (L.) P. Beauv) was evaluated. The visible-near infrared spectral reflectance (350-2500 nm) and thermal (7.5-14 µm) data were collected at regular intervals from well-watered and drought-stressed plants in combination with other leaf physiological parameters (transpiration rate-E, A(net), g(s), leaf carbon isotopic signature-δ(13)C(leaf), WUE). Partial least squares regression (PLSR) analysis was used to predict leaf physiological measures based on the spectral data. The PLSR modeling on the hyperspectral data yielded accurate and precise estimates of leaf E, gs, δ(13)C(leaf), and WUE with coefficient of determination in a range of 0.85-0.91. Additionally, significant differences in average leaf temperatures (~1°C) measured with a thermal camera were observed between well-watered plants and drought-stressed plants. In summary, the visible-near infrared reflectance data, and thermal images can be used as a potential rapid technique for evaluating plant physiological responses such as WUE. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lithologic mapping using Landsat thematic mapper data

    USGS Publications Warehouse

    Podwysocki, M.H.; Salisbury, J.W.; Jones, O.D.; Mimms, D.L.

    1983-01-01

    The Landsat-4 Thematic Mapper (TM), with its new near infrared bands centered at 1.65 μm and 2.20 μm and spatial resolution of 30 m has been used to distinguish rocks containing minerals having ferric-iron absorption bands in the visible and near-infrared and Al-O- and CO3 absorption bands in the 2.1-2.4 μm regions. On the basis of characteristic absorption bands, digitally processed TM data were used to differentiate vegetated from non-vegetated areas, limonitic from nonlimonitic rocks, rocks containing minerals having absorption bands in the near-infrared region from rocks lacking infrared absorption bands. Specific minerals were detected in both the humid eastern and semi-arid western United States. The absorption bands in the near-infrared region were used to detect kaolinite in open-pit exposures of a kaolin mining district near Macon, Georgia; calcium carbonate in the back sands along the east coast of Floridia; and kaolinite, alunite, jarosite, sericite and gypsum in natural exposures near Boulder City, Nevada. These results show that the additional spectral bands in the near-infrared region and increased spatial resolution of the Thematic Mapper provide a valuable tool for distinguishing several significant geologic materials not distinguishable from space using previous imaging systems. They also show that TM data can be successfully used in a variety of geologic environments.

  11. Fusion of spatio-temporal UAV and proximal sensing data for an agricultural decision support system

    NASA Astrophysics Data System (ADS)

    Katsigiannis, P.; Galanis, G.; Dimitrakos, A.; Tsakiridis, N.; Kalopesas, C.; Alexandridis, T.; Chouzouri, A.; Patakas, A.; Zalidis, G.

    2016-08-01

    Over the last few years, multispectral and thermal remote sensing imagery from unmanned aerial vehicles (UAVs) has found application in agriculture and has been regarded as a means of field data collection and crop condition monitoring source. The integration of information derived from the analysis of these remotely sensed data into agricultural management applications facilitates and aids the stakeholder's decision making. Whereas agricultural decision support systems (DSS) have long been utilised in farming applications, there are still critical gaps to be addressed; as the current approach often neglects the plant's level information and lacks the robustness to account for the spatial and temporal variability of environmental parameters within agricultural systems. In this paper, we demonstrate the use of a custom built autonomous UAV platform in providing critical information for an agricultural DSS. This hexacopter UAV bears two cameras which can be triggered simultaneously and can capture both the visible, near-infrared (VNIR) and the thermal infrared (TIR) wavelengths. The platform was employed for the rapid extraction of the normalized difference vegetation index (NDVI) and the crop water stress index (CWSI) of three different plantations, namely a kiwi, a pomegranate, and a vine field. The simultaneous recording of these two complementary indices and the creation of maps was advantageous for the accurate assessment of the plantation's status. Fusion of UAV and soil scanner system products pinpointed the necessity for adjustment of the irrigation management applied. It is concluded that timely CWSI and NDVI measures retrieved for different crop growing stages can provide additional information and can serve as a tool to support the existing irrigation DSS that had so far been exclusively based on telemetry data from soil and agrometeorological sensors. Additionally, the use of the multi-sensor UAV was found to be beneficial in collecting timely, spatio-temporal information for the fusion with ground-based proximal sensing data. This research work was designed and deployed in the frame of the project "AGRO_LESS: Joint reference strategies for rural activities of reduced inputs".

  12. High resolution and deep tissue imaging using a near infrared acoustic resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Moothanchery, Mohesh; Sharma, Arunima; Periyasamy, Vijitha; Pramanik, Manojit

    2018-02-01

    It is always a great challenge for pure optical techniques to maintain good resolution and imaging depth at the same time. Photoacoustic imaging is an emerging technique which can overcome the limitation by pulsed light illumination and acoustic detection. Here, we report a Near Infrared Acoustic-Resolution Photoacoustic Microscopy (NIR-AR-PAM) systm with 30 MHz transducer and 1064 nm illumination which can achieve a lateral resolution of around 88 μm and imaging depth of 9.2 mm. Compared to visible light NIR beam can penetrate deeper in biological tissue due to weaker optical attenuation. In this work, we also demonstrated the in vivo imaging capabilty of NIRARPAM by near infrared detection of SLN with black ink as exogenous photoacoustic contrast agent in a rodent model.

  13. Purple Mountain Majesty

    NASA Image and Video Library

    2015-07-15

    NASA Mars Reconnaissance Orbite observed this image of an isolated mountain in the Southern highlands reveals a large exposure of purplish bedrock. Since HiRISE color is shifted to longer wavelengths than visible color and given relative stretches, this really means that the bedrock is roughly dark in the broad red bandpass image compared to the blue-green and near-infrared bandpass images. In the RGB (red-green-blue) color image, which excludes the near-infrared bandpass image, the bedrock appears bluish in color. This small mountain is located near the northeastern rim of the giant Hellas impact basin, and could be impact ejecta. http://photojournal.jpl.nasa.gov/catalog/PIA19854

  14. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  15. Near infrared lasers in flow cytometry.

    PubMed

    Telford, William G

    2015-07-01

    Technology development in flow cytometry has closely tracked laser technology, the light source that flow cytometers almost exclusively use to excite fluorescent probes. The original flow cytometers from the 1970s and 1980s used large water-cooled lasers to produce only one or two laser lines at a time. Modern cytometers can take advantage of the revolution in solid state laser technology to use almost any laser wavelength ranging from the ultraviolet to the near infrared. Commercial cytometers can now be equipped with many small solid state lasers, providing almost any wavelength needed for cellular analysis. Flow cytometers are now equipped to analyze 20 or more fluorescent probes simultaneously, requiring multiple laser wavelengths. Instrument developers are now trying to increase this number by designing fluorescent probes that can be excited by laser wavelength at the "edges" of the visible light range, in the near ultraviolet and near-infrared region. A variety of fluorescent probes have been developed that excite with violet and long wavelength ultraviolet light; however, the near-infrared range (660-800 nm) has yet seen only exploitation in flow cytometry. Fortunately, near-infrared laser diodes and other solid state laser technologies appropriate for flow cytometry have been in existence for some time, and can be readily incorporated into flow cytometers to accelerate fluorescent probe development. The near infrared region represents one of the last "frontiers" to maximize the number of fluorescent probes that can be analyzed by flow cytometry. In addition, near infrared fluorescent probes used in biomedical tracking and imaging could also be employed for flow cytometry with the correct laser wavelengths. This review describes the available technology, including lasers, fluorescent probes and detector technology optimal for near infrared signal detection. Published by Elsevier Inc.

  16. HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baranec, Christoph; Atkinson, Dani; Hall, Donald

    2015-08-10

    Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less

  17. Frontiers for geological remote sensing from space; Geosat Workshop, 4th, Flagstaff, AZ, June 12-17, 1983, Report

    NASA Technical Reports Server (NTRS)

    Henderson, F. B. (Editor); Rock, B. N. (Editor)

    1983-01-01

    Consideration is given to: the applications of near-infrared spectroscopy to geological reconnaissance and exploration from space; imaging systems for identifying the spectral properties of geological materials in the visible and near-infrared; and Thematic Mapper (TM) data analysis. Consideration is also given to descriptions of individual geological remote sensing systems, including: GEO-SPAS; SPOT; the Thermal Infrared Multispectral Scanner (TIMS); and the Shuttle Imaging Radars A and B (SIR-A and SIR-B). Additional topics include: the importance of geobotany in geological remote sensing; achromatic holographic stereograms from Landsat MSS data; and the availability and applications of NOAA's non-Landsat satellite data archive.

  18. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    PubMed

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Metal colloids employed in the SERS of biomolecules: activation when exciting in the visible and near-infrared regions

    NASA Astrophysics Data System (ADS)

    García-Ramos, J. V.; Sánchez-Cortés, S.

    1997-03-01

    Silver, gold and copper colloids have been employed in the study of the nucleic bases cytosine, guanine, their alkyl derivatives 1-methylcytosine, 5-methylcytosine, 1,5-dimethylcytosine, 7-methylcytosine and 9-ethylguanosine. Cytidine, 5'-cytidinemonophosphate and 5'-adenosinemonophosphate have been also studied using silver and copper colloids. The interaction and orientation of these compounds on the metal colloids are interpreted on the basis of the SER spectra obtained, and further compared with interactions with the corresponding metallic ions in aqueous solution. Transmission electronic microscopy and ultraviolet-visible absorption spectroscopy were also employed to characterize the silver and copper colloids before and after aggregation by 1,5-dimethylcytosine. Information on the aggregation process is presented. The activation effect of chloride, perchlorate and nitrate anions on the silver colloids employed is studied for both the visible and near-infrared regions. An assessment of the effectiveness of each colloid is made at different excitation lines. Finally, an explanation of the mechanism through which these anions exert their activation effect is given on the basis of the morphologies of the particles contained in the colloid.

  20. High frequency coaxial pulse tube cryocoolers for cooling infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dang, Haizheng

    2010-11-01

    A survey is made about the development of high frequency coaxial PTCs. The coolers cover from 30 K to 200 K and the cooling power levels from hundreds of milliwatts to 10's W. Tests suggest that they have the potential to provide appropriate cooling for HgCdTe-based infrared focal plane arrays from near visible down to very long wave infrared region. The paper also discusses the efforts to realize space qualified cryocooler technologies.

  1. Visibly transparent polymer solar cells produced by solution processing.

    PubMed

    Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang

    2012-08-28

    Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.

  2. Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey R.; Achilles, Cherie; Bell, James F.; Bender, Steve; Cloutis, Edward; Ehlmann, Bethany; Fraeman, Abigail; Gasnault, Olivier; Hamilton, Victoria E.; Le Mouélic, Stéphane; Maurice, Sylvestre; Pinet, Patrick; Thompson, Lucy; Wellington, Danika; Wiens, Roger C.

    2017-12-01

    As part of the Bagnold Dune campaign conducted by Mars Science Laboratory rover Curiosity, visible/near-infrared reflectance spectra of dune sands were acquired using Mast Camera (Mastcam) multispectral imaging (445-1013 nm) and Chemistry and Camera (ChemCam) passive point spectroscopy (400-840 nm). By comparing spectra from pristine and rover-disturbed ripple crests and troughs within the dune field, and through analysis of sieved grain size fractions, constraints on mineral segregation from grain sorting could be determined. In general, the dune areas exhibited low relative reflectance, a weak 530 nm absorption band, an absorption band near 620 nm, and a spectral downturn after 685 nm consistent with olivine-bearing sands. The finest grain size fractions occurred within ripple troughs and in the subsurface and typically exhibited the strongest 530 nm bands, highest relative reflectances, and weakest red/near-infrared ratios, consistent with a combination of crystalline and amorphous ferric materials. Coarser-grained samples were the darkest and bluest and exhibited weaker 530 nm bands, lower relative reflectances, and stronger downturns in the near-infrared, consistent with greater proportions of mafic minerals such as olivine and pyroxene. These grains were typically segregated along ripple crests and among the upper surfaces of grain flows in disturbed sands. Sieved dune sands exhibited progressive decreases in reflectance with increasing grain size, as observed in laboratory spectra of olivine size separates. The continuum of spectral features observed between the coarse- and fine-grained dune sands suggests that mafic grains, ferric materials, and air fall dust mix in variable proportions depending on aeolian activity and grain sorting.

  3. Hyperspectral image processing methods

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  4. Distant Galaxies in Goods North

    NASA Image and Video Library

    2014-01-07

    The view is a composite of images taken in visible and near-infrared light by NASA Hubble Space Telescope. Researchers have circled four unusually red objects that appear as they existed just 500 million years after the big bang.

  5. Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ting; Gong, Hui; Luo, Qingming

    2011-04-01

    Using the visible Chinese human data set, which faithfully represents human anatomy, we visualize the light propagation in the head in detail based on Monte Carlo simulation. The simulation is verified to agree with published experimental results in terms of a differential path-length factor. The spatial sensitivity profile turns out to seem like a fat tropical fish with strong distortion along the folding cerebral surface. The sensitive brain region covers the gray matter and extends to the superficial white matter, leading to a large penetration depth (>3 cm). Finally, the optimal source-detector separation is suggested to be narrowed down to 3-3.5 cm, while the sensitivity of the detected signal to brain activation reaches the peak of 8%. These results indicate that the cerebral cortex folding geometry actually has substantial effects on light propagation, which should be necessarily considered for applications of functional near-infrared spectroscopy.

  6. Analysis of the boreal forest-tundra ecotone: A test of AVIRIS capabilities in the Eastern Canadian subarctic

    NASA Technical Reports Server (NTRS)

    Goward, Samuel N.; Petzold, Donald E.

    1989-01-01

    A comparison was conducted between ground reflectance spectra collected in Schefferville, Canada and imaging spectrometer observations acquired by the AVIRIS sensor in a flight of the ER-2 Aircraft over the same region. The high spectral contrasts present in the Canadian Subarctic appeared to provide an effective test of the operational readiness of the AVIRIS sensor. Previous studies show that in this location various land cover materials possess a wide variety of visible/near infrared reflectance properties. Thus, this landscape served as an excellent test for the sensing variabilities of the newly developed AVIRIS sensor. An underlying hypothesis was that the unique visible/near infrared spectral reflectance patterns of Subarctic lichens could be detected from high altitudes by this advanced imaging spectrometer. The relation between lichen occurrence and boreal forest-tundra ecotone dynamics was investigated.

  7. Fully CMOS-compatible titanium nitride nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305; Naik, Gururaj V.

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements onmore » plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.« less

  8. Spectral reflectance of carbonate minerals and rocks in the visible and near infrared (0.35 - 2.55 microns) and its applications in carbonate petrology

    NASA Technical Reports Server (NTRS)

    Gaffey, S. J.

    1984-01-01

    Reflection spectroscopy in the visible and near infrared (0.35 to 2.55 micron) offers a rapid, inexpensive, nondestructive tool for determining the mineralogy and investigating the minor element chemistry of the hard-to-discriminate carbonate minerals, and can, in one step, provide information previously obtainable only by the combined application of two or more analytical techniques. When light interacts with a mineral certain wavelengths are preferentially absorbed. The number, positions, widths and relative intensities of these absorptions are diagnostic of the mineralogy and chemical composition of the sample. At least seven bands due to vibrations of the carbonate radical occur between 1.60 and 2.55 micron. Positions of these bands vary from one carbonae mineral to another and can be used for mineral identification. Cation mass is the primary factor controlling band position; cation radius plays a secondary role.

  9. Assessment of Transition Element Speciation in Glasses Using a Portable Transmission Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) Spectrometer.

    PubMed

    Hunault, Myrtille; Lelong, Gérald; Gauthier, Michel; Gélébart, Frédéric; Ismael, Saindou; Galoisy, Laurence; Bauchau, Fanny; Loisel, Claudine; Calas, Georges

    2016-05-01

    A new low-cost experimental setup based on two compact dispersive optical spectrometers has been developed to measure optical absorption transmission spectra over the 350-2500 nm energy range. We demonstrate how near-infrared (NIR) data are essential to identify the coloring species in addition to ultraviolet visible data. After calibration with reference glasses, the use of an original sample stage that maintains the window panel in the vertical position enables the comparison of ancient and modern glasses embedded in a panel from the Sainte-Chapelle of Paris, without any sampling. The spectral resolution enables to observe fine resonances arising in the absorption bands of Cr(3+), and the complementary information obtained in the NIR enables to determine the contribution of Fe(2+), a key indicator of glassmaking conditions. © The Author(s) 2016.

  10. Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshio, Satoshi; Maki, Koichiro; Adachi, Kenji, E-mail: kenji-adachi@ni.smm.co.jp

    2016-06-21

    LaB{sub 6} nanoparticles are widely used as solar control materials for strong near-infrared absorption and high visible transparency. In order to elucidate the origin of this unique optical property, first-principles calculations have been made for the energy-band structure and dielectric functions of R{sup III}B{sub 6} (R{sup III} = Sc, Y, La, Ac). On account of the precise assessment of the energy eigenvalues of vacant states in conduction band by employing the screened exchange method, as well as to the incorporation of the Drude term, dielectric functions and various physical properties of LaB{sub 6} have been reproduced in excellent agreement withmore » experimental values. Systematic examinations of dielectric functions and electronic structures of the trivalent metal hexaborides have clarified the origin of the visible transparency and the near-infrared plasmon absorption of R{sup III}B{sub 6} nanoparticles.« less

  11. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies

    PubMed Central

    Giannios, Panagiotis; Toutouzas, Konstantinos G.; Matiatou, Maria; Stasinos, Konstantinos; Konstadoulakis, Manousos M.; Zografos, George C.; Moutzouris, Konstantinos

    2016-01-01

    The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools. PMID:27297034

  12. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  13. Using scaling factors for evaluating spatial and temporal variability of soil hydraulic properties within one elevation transect

    NASA Astrophysics Data System (ADS)

    Nikodem, Antonín; Kodešová, Radka; Jakšík, Ondřej; Fér, Miroslav; Klement, Aleš

    2016-04-01

    This study was carried out in Southern Moravia, in the Czech Republic. The original soil unit in the wider area is a Haplic Chernozem developed on loess. The intensive agricultural exploitation in combination with terrain morphology has resulted in a highly diversified soil spatial pattern. Nowadays the original soil unit is preserved only on top of relatively flat parts, and is gradually transformed by water erosion up to Regosols on the steepest slopes, while colluvial soils are formed in terrain depressions and at toe slopes due to sedimentation of previously eroded material. Soils within this area has been intensively investigated during the last several years (e.g. Jakšík et al., 2015; Vašát et al., 2014, 2015a,b). Soil sampling (disturbed and undisturbed 100-cm3 soil samples) was performed at 5 points of one elevation transect in November 2010 (after wheat sowing) and August 2011 (after wheat harvest). Disturbed soil samples were used to determine basic soil properties (grain size distribution and organic carbon content etc.). Undisturbed soil samples were used to determine the soil water retention curves and the hydraulic conductivity functions using the multiple outflow tests in Tempe cells and a numerical inversion with HYDRUS 1-D. Scaling factors (alpha-h for pressure head, alpha-theta for soil water contents and alpha-k for hydraulic conductivities) were used here to express soil hydraulic properties variability. Evaluated scaling factors reflected position within the elevation transect as well as time of soil sampling. In general large values of alpha-h, lower values of alpha-k and similar values of alpha-theta were obtained in 2010 in comparison to values obtained in 2011, which indicates development of soil structure during the vegetation season. Jakšík, O., Kodešová, R., Kubiš, A., Stehlíková, I., Drábek, O., Kapička, A. (2015): Soil aggregate stability within morphologically diverse areas. Catena, 127, 287-299. Vašát, R., Kodešová, R., Borůvka, L., Jakšík, O., Klement, A., Drábek, O. (2015a): Absorption features in soil spectra assessment. Applied Spectroscopy, 69(12), 1425-1431. Vašát, R., Kodešová, R., Borůvka, L., Klement, A., Jakšík, O., Gholizadeh, A. (2014): Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma, 232-234, 208-218. Vašát, R., Kodešová, R., Klement, A., Jakšík, O. (2015b): Predicting oxidizable carbon content via visible- and near-infrared diffuse reflectance spectroscopy in soils heavily affected by water erosion. Soil and Water Research, 10 (2), 74-77.

  14. An Overview of the CBERS-2 Satellite and Comparison of the CBERS-2 CCD Data with the L5 TM Data

    NASA Technical Reports Server (NTRS)

    Chandler, Gyanesh

    2007-01-01

    CBERS satellite carries on-board a multi sensor payload with different spatial resolutions and collection frequencies. HRCCD (High Resolution CCD Camera), IRMSS (Infrared Multispectral Scanner), and WFI (Wide-Field Imager). The CCD and the WFI camera operate in the VNIR regions, while the IRMSS operates in SWIR and thermal region. In addition to the imaging payload, the satellite carries a Data Collection System (DCS) and Space Environment Monitor (SEM).

  15. Structural and Visible-Near Infrared Optical Properties of Cr-Doped TiO2 for Colored Cool Pigments

    NASA Astrophysics Data System (ADS)

    Yuan, Le; Weng, Xiaolong; Zhou, Ming; Zhang, Qingyong; Deng, Longjiang

    2017-11-01

    Chromium-doped TiO2 pigments were synthesized via a solid-state reaction method and studied with X-ray diffraction, SEM, XPS, and UV-VIS-NIR reflectance spectroscopy. The incorporation of Cr3+ accelerates the transition from the anatase phase to the rutile phase and compresses the crystal lattice. Moreover, the particle morphology, energy gap, and reflectance spectrum of Cr-doped TiO2 pigments is affected by the crystal structure and doping concentration. For the rutile samples, some of the Cr3+ ions are oxidized to Cr4+ after sintering at a high temperature, which leads to a strong near-infrared absorption band due to the 3A2 → 3 T1 electric dipole-allowed transitions of Cr4+. And the decrease of the band gap causes an obvious redshift of the optical absorption edges as the doping concentration increases. Thus, the VIS and near-infrared average reflectance of the rutile Ti1 - x Cr x O2 sample decrease by 60.2 and 58%, respectively, when the Cr content increases to x = 0.0375. Meanwhile, the color changes to black brown. However, for the anatase Ti1 - x Cr x O2 pigments, only the VIS reflection spectrum is inhibited by forming some characteristic visible light absorption peaks of Cr3+. The morphology, band gap, and NIR reflectance are not significantly affected. Finally, a Cr-doped anatase TiO2 pigment with a brownish-yellow color and 90% near-infrared reflectance can be obtained.

  16. Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Lavigne, Daniel A.; Breton, Mélanie; Fournier, Georges; Charette, Jean-François; Pichette, Mario; Rivet, Vincent; Bernier, Anne-Pier

    2011-10-01

    Surveillance operations and search and rescue missions regularly exploit electro-optic imaging systems to detect targets of interest in both the civilian and military communities. By incorporating the polarization of light as supplementary information to such electro-optic imaging systems, it is possible to increase their target discrimination capabilities, considering that man-made objects are known to depolarized light in different manner than natural backgrounds. As it is known that electro-magnetic radiation emitted and reflected from a smooth surface observed near a grazing angle becomes partially polarized in the visible and infrared wavelength bands, additional information about the shape, roughness, shading, and surface temperatures of difficult targets can be extracted by processing effectively such reflected/emitted polarized signatures. This paper presents a set of polarimetric image processing algorithms devised to extract meaningful information from a broad range of man-made objects. Passive polarimetric signatures are acquired in the visible, shortwave infrared, midwave infrared, and longwave infrared bands using a fully automated imaging system developed at DRDC Valcartier. A fusion algorithm is used to enable the discrimination of some objects lying in shadowed areas. Performance metrics, derived from the computed Stokes parameters, characterize the degree of polarization of man-made objects. Field experiments conducted during winter and summer time demonstrate: 1) the utility of the imaging system to collect polarized signatures of different objects in the visible and infrared spectral bands, and 2) the enhanced performance of target discrimination and fusion algorithms to exploit the polarized signatures of man-made objects against cluttered backgrounds.

  17. Spitzer Makes 'Invisible' Visible

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

  18. A new application of hyperspectral radiometry: the characterization of painted surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Salvatici, Teresa; Camaiti, Mara; Del Ventisette, Chiara; Moretti, Sandro

    2016-04-01

    Hyperspectral sensors, working in the Visible-Near Infrared and Short Wave Infrared (VNIR-SWIR) regions, are widely employed for geological applications since they can discriminate many inorganic (e.g. mineral phases) and organic compounds (i.e. vegetations and soils) [1]. Their advantage is to work in the portion of the solar spectrum used for remote sensors. Some examples of application of the hyperspectral sensors to the conservation of cultural heritage are also known. These applications concern the detection of gypsum on historical buildings [2], and the monitoring of organic protective materials on stone surfaces [3]. On the contrary, hyperspectral radiometry has not been employed on painted surfaces. Indeed, the characterization of these surfaces is mainly performed with sophisticated, micro-destractive and time-consuming laboratory analyses (i.e. SEM-EDS, FTIR and, GC-MS spectroscopy) or through portable and non-invasive instruments (mid FTIR, micro Raman, XRF, FORS) which work in different spectral ranges [4,5]. In this work the discrimination of many organic and inorganic components from paintings was investigated through a hyperspectral spectroradiometer ,which works in the 350-2500 nm region. The reflectance spectra were collected by the contact reflectance probe, equipped with an internal light source with fixed geometry of illumination and shot. Several standards samples, selected among the most common materials of paintings, were prepared and analysed in order to collect reference spectra. The standards were prepared with powders of 7 pure pigments, films of 5 varnishes (natural and synthetic), and films of 3 dried binding media. Monochromatic painted surfaces have also been prepared and investigated to verify the identification of different compounds on the surface. The results show that the discrimination of pure products is possible in the VNIR-SWIR region, except for compounds with similar composition (e.g. natural resins such as dammar and mastic). The reflectance spectra of painted surfaces, as supposed, are more complex than the spectra of pure materials, but the identification of single components is possible if the superficial layer of varnish was thin enough to allow the "penetration" of the irradiation light until the pictorial layer. Finally, the hyperspectral technique, owe to the fast spectra collection (10 spectra/second) and the friendly use of the instrument, has been proved to be a successful method for the evaluation of cleaning treatments, because of the possibility to monitor the partial or total elimination of varnish. References 1) Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879-891 2) Camaiti M, Benvenuti M, Chiarantini L et al (2011) Hyperspectral sensor for gypsum detection on monumental buildings. J Geophys Eng 8:S126-S131 3) Vettori S et al (2012) Portable hyperspectral device as a valuable tool for the detection of protective agents applied on historical buildings. In: Geophysical Research Abstracts of EGU General Assembly 2012, Wien, 22-27 April 2012, vol 14, p 9459 4) Miliani C, Rosi F, Brunetti BG et al (2010) In Situ Noninvasive Study of Artworks: The MOLAB Multitechnique Approach. Accounts Chem Res 43(6):758-738 5) Bacci M (1995) Fibre optics applications to works of art. Sensor Actuat B-Chem 29:190-196

  19. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    NASA Astrophysics Data System (ADS)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  20. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  1. Comparison of two methodologies for calibrating satellite instruments in the visible and near infrared

    PubMed Central

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher

    2016-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861

  2. Albedo climatology for European land surfaces retrieved from AVHRR data (1990-2014) and its spatial and temporal analysis from green-up to vegetation senescence

    NASA Astrophysics Data System (ADS)

    Sütterlin, M.; Stöckli, R.; Schaaf, C. B.; Wunderle, S.

    2016-07-01

    Satellite-based, long-term records of surface albedo characterization that accurately capture spatial and temporal patterns are essential to develop climate models and to monitor the impact of land use changes on the terrestrial energy and water balance. This study presents the first Bidirectional Reflectance Distribution Function (BRDF) and albedo data set derived from the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage reflectance data acquired on board National Oceanic and Atmospheric Administration and Meteorological Operational platforms from 1990 to 2014 over Europe. The objectives of this paper are to describe the data set's surface albedo climatology and anomalies in the visible, near-infrared, and shortwave broadbands for the growing season months of May to September in order to facilitate utilization of the data by the climate modeling communities. The results demonstrate that the AVHRR BRDF and albedo data have temporal and spatial patterns that are appropriate for the underlying predominant land cover type and accurately reflect the associated climate variation. Visible and near-infrared broadband albedo anomalies are found to be contrasting in most years, and their spatial distributions depict responses of vegetation to climate events (e.g., heat waves). Visible albedo of crops and near-infrared albedo of pastures show a higher interannual variation than respective albedos of other snow-free land covers, while the interannual standard deviations are found to be lower than 0.015. Our findings indicate the importance of taking into account the spectrally distinct variability of surface albedo when analyzing its complex spatiotemporal dynamics in climate-related research.

  3. All-nitride AlxGa1−xN:Mn/GaN distributed Bragg reflectors for the near-infrared

    PubMed Central

    Capuzzo, Giulia; Kysylychyn, Dmytro; Adhikari, Rajdeep; Li, Tian; Faina, Bogdan; Tarazaga Martín-Luengo, Aitana; Bonanni, Alberta

    2017-01-01

    Since the technological breakthrough prompted by the inception of light emitting diodes based on III-nitrides, these material systems have emerged as strategic semiconductors not only for the lighting of the future, but also for the new generation of high-power electronic and spintronic devices. While III-nitride optoelectronics in the visible and ultraviolet spectral range is widely established, all-nitride efficient devices in the near-infrared (NIR) are still wanted. Here, through a comprehensive protocol of design, modeling, epitaxial growth and in-depth characterization, we develop AlxGa1−xN:Mn/GaN NIR distributed Bragg reflectors and we show their efficiency in combination with GaN:(Mn,Mg) layers containing Mn-Mgk complexes optically active in the near-infrared range of wavelengths. PMID:28198432

  4. Earth taken by Galileo after completing its first Earth Gravity Assist

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Near-infrared photograph of Earth was taken by Galileo spacecraft at 6:07 am Pacific Standard Time (PST), 12-11-90, at a range of about 1.32 million miles. Camera used light with a wavelength of 1 micron, which easily penetrates atmospheric hazes and enhances the brightness of land surfaces. South America is prominent near the center; at the top, the East Coast of the United States, including Florida is visible. The West Coast of Africa is visible on the horizon at right. Photo provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37328, 12-19-90.

  5. Dual-Band Modulation of Visible and Near-Infrared Light Transmittance in an All-Solution-Processed Hybrid Micro-Nano Composite Film.

    PubMed

    Liang, Xiao; Chen, Mei; Guo, Shumeng; Zhang, Lanying; Li, Fasheng; Yang, Huai

    2017-11-22

    Smart windows with controllable visible and near-infrared light transmittance can significantly improve the building's energy efficiency and inhabitant comfort. However, most of the current smart window technology cannot achieve the target of ideal solar control. Herein, we present a novel all-solution-processed hybrid micronano composite smart material that have four optical states to separately modulate the visible and NIR light transmittance through voltage and temperature, respectively. This dual-band optical modulation was achieved by constructing a phase-separated polymer framework, which contains the microsized liquid crystals domains with a negative dielectric constant and tungsten-doped vanadium dioxide (W-VO 2 ) nanocrystals (NCs). The film with 2.5 wt % W-VO 2 NCs exhibits transparency at normal condition, and the passage of visible light can be reversibly and actively regulated between 60.8% and 1.3% by external applied voltage. Also, the transmittance of NIR light can be reversibly and passively modulated between 59.4% and 41.2% by temperature. Besides, the film also features easy all-solution processability, fast electro-optical (E-O) response time, high mechanical strength, and long-term stability. The as-prepared film provides new opportunities for next-generation smart window technology, and the proposed strategy is conductive to engineering novel hybrid inorganic-organic functional matters.

  6. Detectors for optical communications: A review

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1983-01-01

    Detectors for optical communications in the visible and near infrared regions of the spectrum are reviewed. The three generic types of detectors described are: photomultipliers, photodiodes and avalanche photodiodes. Most of the information is applicable to other optical communications systems.

  7. Waves of the Future (for Mars): In-Situ Mid-infrared, Near-infrared, and Visible Spectroscopic Analysis of Antarctic Cryptoendolithic Communities.

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Calrson, R.; Sun, H.; Anderson, M.; Wynn, W.; Levy, R.

    2005-12-01

    We have analyzed both the surface expression and depth profile of cryptoendolithic microbial communities at Battleship Promontory, in the Dry Valleys of Antarctica. Data was collected on site with an active mid-infrared Fourier transform microspectrometer (2.6 - 15 um), a near-infrared spectrometer (0.9-1.8 um), and a visible spectrometer (0.4-1 um). The trio of instruments are connected to microscopes that yield ~1 mm2 spatial resolution on the sample and they are mounted on two perpendicular motorized stages that allow for spatial scanning over an area of ~2cm2. Here we present results on the surface expression of the subsurface microbes in these three spectral regions and we present results on the analysis of a colonized sample examined in cross section. The former case has direct application to the remote, robotic detection of life within the rocks of Mars and the later case provides fundamental insights into the geological and biological interactions that make the Antarctic cryptoendolithic ecosystems possible. Non-invasive surface detection of cyanobacterial dominated communities was possible through the observation of several distinct bands: the carbon-hydrogen stretching modes (symmetric and asymmetric) for CH, CH2, and CH3 in the regions of 3.3-3.6 um and 3.6-3.7 um; the NH2 scissoring and C=O stretch near 6.0 um; the amide I of beta-pleated structures at ~6.1 um; and the 6.4 um - 6.6 um bands of N-H in plane bend of the amide II functional group. In combination, these bands make a strong case for carbohydrates and proteins associated with life. Not surprisingly, as the integrity of the amorphous silica surface varnish improved, our ability to detected the subsurface biosignature decreased. We note, however, that by utilizing the JPL rock crusher in Antarctica, a device designed to fly on the Mars Science Laboratory mission, the mid-infrared biosignature was easily detected. In the cross-section analysis the mid-infrared data provide a depth profile tracking the presence of hydrocarbons, amide bonds, and the mineralogical transition from amorphous quartz to crystalline sandstone. Mapped onto this are the changes in the oxidation states of iron, as recorded by the visible and near-infrared spectrometers. Together, this data set allows us to track the role of biologically produced compounds, such as oxalic acid, in the chelation and leaching of iron compounds from the surface through the rock and into the deposition zone below the colonized subsurface region.

  8. Discrimination of tomatoes bred by spaceflight mutagenesis using visible/near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong

    2015-04-01

    Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the selection of SWs, and the Vis/NIR combined with LS-SVM models had the capability to predict the different breeds (mutant M1, mutant M2 and their parent) of tomatoes from leafs and fruits.

  9. Nonlinear nonlocal infrared plasmonic arrays for pump-probe studies on protein monolayers

    NASA Astrophysics Data System (ADS)

    Erramilli, Shyamsunder; Adato, Ronen; Gabel, Alan; Yanik, Ahmet Ali; Altug, Hatice; Hong, Mi K.

    2010-03-01

    Infrared spectroscopy is an exquisite bond-specific tool for studying biomolecules with characteristic vibrational normal modes that serve as a molecular ``fingerprint''. Intrinsic absorption cross-sections for proteins are significant (˜10-19 -10-21 cm^2), although small compared to label-based fluorescence methods. We have shown that carefully designed plasmonic nanoantenna arrays can enhance the vibrational signatures by ˜ 10^5 (Adato et al, Proc Natl Acad Sci USA, 2009). Theoretical modeling combined with polarized FTIR-microscopy show that enhancement is due both to localized effects and nonlocal collective effects, governed by the dielectric properties of silicon and gold nanoantennae, coupled to protein molecules. The resonance properties can be modulated by photoinduced excitation of charge carriers and excitons, causing both a shift in the resonance frequency and a change in the enhancement factor. An ultrafast visible pump laser can then be used to extend visible pump-infrared probe studies to protein molecules even when the molecules lack a chromophore. This provides a toolkit for biophysical studies in which the nonlinear, nonlocal interaction between a 35-fs visible or near-infrared laser and the designed plasmonic nanoantenna arrays are used to study dynamics of protein molecules.

  10. Circumstellar envelopes of Cepheids: a possible bias affecting the distance scale?

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Gallenne, Alexandre; Mérand, Antoine

    2013-02-01

    Circumstellar envelopes (CSEs) have been detected around many Cepheids, first based on long-baseline interferometry, and now also using other observing techniques. These envelopes are particularly interesting for two reasons: their presence could impact the Cepheid distance scale, and they may be valuable tracers of stellar mass loss. Here we focus on their potential impact on the calibration of the Cepheid distance scale. We consider the photometric contribution of the envelopes in the visible, near-, and thermal-infrared domains. We conclude that the impact of CSEs on the apparent luminosities of Cepheids is negligible at visible wavelengths and generally weak (<5%) in the near-infrared (λ ~ 2 μm). In the thermal-infrared domain (λ ~ 8 μm), the flux contribution of the CSEs differs depending on the pulsation period: it is relatively weak (<15%) for stars with periods shorter than P ~ 10 days, but can reach ~ 30% for long-period Cepheids. We specifically discuss the long-period Galactic Cepheid RS Puppis, which exhibits a very large circumstellar, dusty envelope, and we conclude that this is not a representative case. Overall, the contribution of CSEs to the usual period-luminosity relations (from the visible to the K band) is mostly negligible. They could affect calibrations at longer wavelengths, although the presence of envelopes may have been partially taken into account in the existing empirical calibrations.

  11. Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil

    NASA Astrophysics Data System (ADS)

    Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long

    2017-10-01

    Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.

  12. Hubble Provides Infrared View of Jupiter's Moon, Ring, and Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Probing Jupiter's atmosphere for the first time, the Hubble Space Telescope's new Near Infrared Camera and Multi-Object Spectrometer (NICMOS) provides a sharp glimpse of the planet's ring, moon, and high-altitude clouds.

    The presence of methane in Jupiter's hydrogen- and helium-rich atmosphere has allowed NICMOS to plumb Jupiter's atmosphere, revealing bands of high-altitude clouds. Visible light observations cannot provide a clear view of these high clouds because the underlying clouds reflect so much visible light that the higher level clouds are indistinguishable from the lower layer. The methane gas between the main cloud deck and the high clouds absorbs the reflected infrared light, allowing those clouds that are above most of the atmosphere to appear bright. Scientists will use NICMOS to study the high altitude portion of Jupiter's atmosphere to study clouds at lower levels. They will then analyze those images along with visible light information to compile a clearer picture of the planet's weather. Clouds at different levels tell unique stories. On Earth, for example, ice crystal (cirrus) clouds are found at high altitudes while water (cumulus) clouds are at lower levels.

    Besides showing details of the planet's high-altitude clouds, NICMOS also provides a clear view of the ring and the moon, Metis. Jupiter's ring plane, seen nearly edge-on, is visible as a faint line on the upper right portion of the NICMOS image. Metis can be seen in the ring plane (the bright circle on the ring's outer edge). The moon is 25 miles wide and about 80,000 miles from Jupiter.

    Because of the near-infrared camera's narrow field of view, this image is a mosaic constructed from three individual images taken Sept. 17, 1997. The color intensity was adjusted to accentuate the high-altitude clouds. The dark circle on the disk of Jupiter (center of image) is an artifact of the imaging system.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. Improvements and Additions to NASA Near Real-Time Earth Imagery

    NASA Technical Reports Server (NTRS)

    Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor; hide

    2016-01-01

    For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.

  14. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  15. Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason

    2011-01-01

    Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy

  16. Laboratory measurements of physical, chemical, and optical characteristics of Lake Chicot sediment waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Usry, J. W.; Morris, W. D.; Gurganus, E. A.

    1981-01-01

    Reflectance, chromaticity, diffuse attenuation, beam attenuation, and several other physical and chemical properties were measured for various water mixtures of lake bottom sediment. Mixture concentrations range from 5 ppm to 700 ppm by weight of total suspended solids in filtered deionized tap water. Upwelled reflectance is a nonlinear function of remote sensing wave lengths. Near-infrared wavelengths are useful for monitoring highly turbid waters with sediment concentrations above 100 ppm. It is found that both visible and near infrared wavelengths, beam attenuation correlates well with total suspended solids ranging over two orders of magnitude.

  17. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  18. HUBBLE SPIES BROWN DWARFS IN NEARBY STELLAR NURSERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Probing deep within a neighborhood stellar nursery, NASA's Hubble Space Telescope uncovered a swarm of newborn brown dwarfs. The orbiting observatory's near-infrared camera revealed about 50 of these objects throughout the Orion Nebula's Trapezium cluster [image at right], about 1,500 light-years from Earth. Appearing like glistening precious stones surrounding a setting of sparkling diamonds, more than 300 fledgling stars and brown dwarfs surround the brightest, most massive stars [center of picture] in Hubble's view of the Trapezium cluster's central region. All of the celestial objects in the Trapezium were born together in this hotbed of star formation. The cluster is named for the trapezoidal alignment of those central massive stars. Brown dwarfs are gaseous objects with masses so low that their cores never become hot enough to fuse hydrogen, the thermonuclear fuel stars like the Sun need to shine steadily. Instead, these gaseous objects fade and cool as they grow older. Brown dwarfs around the age of the Sun (5 billion years old) are very cool and dim, and therefore are difficult for telescopes to find. The brown dwarfs discovered in the Trapezium, however, are youngsters (1 million years old). So they're still hot and bright, and easier to see. This finding, along with observations from ground-based telescopes, is further evidence that brown dwarfs, once considered exotic objects, are nearly as abundant as stars. The image and results appear in the Sept. 20 issue of the Astrophysical Journal. The brown dwarfs are too dim to be seen in a visible-light image taken by the Hubble telescope's Wide Field and Planetary Camera 2 [picture at left]. This view also doesn't show the assemblage of infant stars seen in the near-infrared image. That's because the young stars are embedded in dense clouds of dust and gas. The Hubble telescope's near-infrared camera, the Near Infrared Camera and Multi-Object Spectrometer, penetrated those clouds to capture a view of those objects. The brown dwarfs are the faintest objects in the image. Surveying the cluster's central region, the Hubble telescope spied brown dwarfs with masses equaling 10 to 80 Jupiters. Researchers think there may be less massive brown dwarfs that are beyond the limits of Hubble's vision. The near-infrared image was taken Jan. 17, 1998. Two near-infrared filters were used to obtain information on the colors of the stars at two wavelengths (1.1 and 1.6 microns). The Trapezium picture is 1 light-year across. This composite image was made from a 'mosaic' of nine separate, but adjoining images. In this false-color image, blue corresponds to warmer, more massive stars, and red to cooler, less massive stars and brown dwarfs, and stars that are heavily obscured by dust. The visible-light data were taken in 1994 and 1995. Credits for near-infrared image: NASA; K.L. Luhman (Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.); and G. Schneider, E. Young, G. Rieke, A. Cotera, H. Chen, M. Rieke, R. Thompson (Steward Observatory, University of Arizona, Tucson, Ariz.) Credits for visible-light picture: NASA, C.R. O'Dell and S.K. Wong (Rice University)

  19. Fourier-Transform Raman Spectroscopy Of Biological Assemblies

    NASA Astrophysics Data System (ADS)

    Levin, Ira W.; Lewis, E. Neil

    1989-12-01

    Although the successful coupling of Raman scattered near-infrared radiation to a Michelson interferometer has recently created an outburst of intense interest in Fourier-transform (FT) Raman spectrometry," extended applications of the technique to macromolecular assemblies of biochemical and biophysical relevance have not progressed as rapidly as studies directed primarily at more conventional chemical characterizations. Since biological materials sampled with visible laser excitation sources typically emit a dominant fluorescence signal originating either from the intrinsic fluorescence of the molecular scatterer or from unrelenting contaminants, the use of near-infrared Nd:YAG laser excitation offers a convenient approach for avoiding this frequently overwhelming effect. In addition, the FT-Raman instrumentation provides a means of eliminating the deleterious resonance and decomposition effects often observed with the more accessible green and blue laser emissions. However, in choosing the incident near-infrared wavelength at, for example, 1064nm, the Raman scattered intensity decreases by factors of eighteen to forty from the Raman emissions induced by the shorter, visible excitations. Depending upon the experiment, this disadvantage is offset by the throughput and multiplex advantages afforded by the interferometric design. Thus, for most chemical systems, near-infrared FT-Raman spectroscopy, clearly provides a means for obtaining vibrational Raman spectra from samples intractable to the use of visible laser sources. In particular, for neat liquids, dilute solutions or polycrystalline materials, the ability to achieve high quality, reproducible spectra is, with moderate experience and perhaps relatively high laser powers, as straightforward as the conventional methods used to obtain Raman spectra with visible excitation and dispersive monochromators. In using near-infrared FT techniques to determine the Raman spectra of biological samples, one encounters new sets of experimental problems that may entail an initial, relatively steep learning curve. These difficulties originate particularly from the fragility of the weakly scattering aggregate paired with the dilute nature of the biochemical or cellular dispersion. Often, the Raman scattered intensity from these samples can be increased by carefully peileting the biological suspension using ultracentrifugation techniques. Since the overtone region of water, the usual medium for biological samples, absorbs radiation from both the Rayleigh signal at the exciting wavelength of the Nd:YAG laser and the longer wavelength Raman scattering from the sample, reproducible temperature measurements and temperature control become significant concerns. In these cases one appeals to internal temperature calibrations, use of deuterium oxide (D20) as a solvent (since absorptions of the laser exciting wavelength and Raman scattered photons are minimized), manipulation of incident laser spot size and the use of fiber optic bundles to carry the exciting and scattered radiation. In the present discussion we briefly cite some of the experimental approaches we have developed and experiences we have encountered in adapting near-infrared FT-Raman spectroscopy to the more challenging biophysical and biochemical systems amenable to vibrational analysis. We emphasize here the determination of the spectra of membrane assemblies and membrane related materials; in particular, we elucidate the interaction of several polyene antibiotics, including amphotericin A, amphotericin B and nystatin, with a model membrane system composed of dipalmitoylphosphatidylcholine bilayers.

  20. Visible-light optical coherence tomography: a review

    NASA Astrophysics Data System (ADS)

    Shu, Xiao; Beckmann, Lisa; Zhang, Hao F.

    2017-12-01

    Visible-light optical coherence tomography (vis-OCT) is an emerging imaging modality, providing new capabilities in both anatomical and functional imaging of biological tissue. It relies on visible light illumination, whereas most commercial and investigational OCTs use near-infrared light. As a result, vis-OCT requires different considerations in engineering design and implementation but brings unique potential benefits to both fundamental research and clinical care of several diseases. Here, we intend to provide a summary of the development of vis-OCT and its demonstrated applications. We also provide perspectives on future technology improvement and applications.

Top