NASA Technical Reports Server (NTRS)
Lee, Meemong; Weidner, Richard J.
2008-01-01
The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.
Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.
2015-01-01
Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas
2015-12-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.
Z Alotaibi, Abdullah
2015-10-20
Vision is the ability of seeing with a definite understanding of features, color and contrast, and to distinguish between objects visually. In the year 1999, the World Health Organization (WHO) and the International Agency for the Prevention of Blindness formulated a worldwide project for the eradication of preventable loss of sight with the subject of "Vision 2020: the Right to Sight". This global program aims to eradicate preventable loss of sight by the year 2020. This study was conducted to determine the main causes of low vision in Saudi Arabia and also to assess their visual improvement after using low vision aids (LVD).The study is a retrospective study and was conducted in low vision clinic at Eye World Medical Complex in Riyadh, Saudi Arabia. The file medical record of 280 patients attending low vision clinics from February 2008 to June 2010 was included. A data sheet was filled which include: age, gender, cause of low vision, unassisted visual acuity for long distances and short distances, low vision devices needed for long distances and short distances that provides best visual acuity. The result shows that the main cause of low vision was Optic atrophy (28.9%). Retinitis pigmentosa was the second cause of low vision, accounting for 73 patients (26%) followed by Diabetic retinopathy and Macular degeneration with 44 patients (15.7%) and 16 patients (5.7%) respectively. Inter family marriage could be one of the main causes of low vision. Public awareness should be embarked on for enlightenment on ocular diseases result in consanguineous marriage. Also, it is an important issue to start establishing low vision clinics in order to improve the situation.
Human Detection from a Mobile Robot Using Fusion of Laser and Vision Information
Fotiadis, Efstathios P.; Garzón, Mario; Barrientos, Antonio
2013-01-01
This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method. PMID:24008280
Human detection from a mobile robot using fusion of laser and vision information.
Fotiadis, Efstathios P; Garzón, Mario; Barrientos, Antonio
2013-09-04
This paper presents a human detection system that can be employed on board a mobile platform for use in autonomous surveillance of large outdoor infrastructures. The prediction is based on the fusion of two detection modules, one for the laser and another for the vision data. In the laser module, a novel feature set that better encapsulates variations due to noise, distance and human pose is proposed. This enhances the generalization of the system, while at the same time, increasing the outdoor performance in comparison with current methods. The vision module uses the combination of the histogram of oriented gradients descriptor and the linear support vector machine classifier. Current approaches use a fixed-size projection to define regions of interest on the image data using the range information from the laser range finder. When applied to small size unmanned ground vehicles, these techniques suffer from misalignment, due to platform vibrations and terrain irregularities. This is effectively addressed in this work by using a novel adaptive projection technique, which is based on a probabilistic formulation of the classifier performance. Finally, a probability calibration step is introduced in order to optimally fuse the information from both modules. Experiments in real world environments demonstrate the robustness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schalkoff, R.J.
This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includesmore » quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested.« less
Human-Centered Design Capability
NASA Technical Reports Server (NTRS)
Fitts, David J.; Howard, Robert
2009-01-01
For NASA, human-centered design (HCD) seeks opportunities to mitigate the challenges of living and working in space in order to enhance human productivity and well-being. Direct design participation during the development stage is difficult, however, during project formulation, a HCD approach can lead to better more cost-effective products. HCD can also help a program enter the development stage with a clear vision for product acquisition. HCD tools for clarifying design intent are listed. To infuse HCD into the spaceflight lifecycle the Space and Life Sciences Directorate developed the Habitability Design Center. The Center has collaborated successfully with program and project design teams and with JSC's Engineering Directorate. This presentation discusses HCD capabilities and depicts the Center's design examples and capabilities.
X-37 Flight Demonstrator Project: Capabilities for Future Space Transportation System Development
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2004-01-01
The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.
The World Water Vision: From Developing a Vision to Action
NASA Astrophysics Data System (ADS)
Gangopadhyay, S.; Cosgrove, W.; Rijsberman, F.; Strzepek, K.; Strzepek, K.
2001-05-01
The World Water Vision exercise was initiated by the World Water Commission under the auspices of the World Water Council. The goal of the World Water Vision project was to develop a widely shared vision on the actions required to achieve a common set of water-related goals and the necessary commitment to carry out these actions. The Vision should be participatory in nature, including input from both developed and developing regions, with a special focus on the needs of the poor, women, youth, children and the environment. Three overall objectives were to: (i)raise awareness of water issues among both the general population and decision-makers so as to foster the necessary political will and leadership to tackle the problems seriously and systematically; (ii) develop a vision of water management for 2025 that is shared by water sector specialists as well as international, national and regional decision-makers in government, the private sector and civil society; and (iii) provide input to a Framework for Action to be elaborated by the Global Water Partnership, with steps to go from vision to action, including recommendations to funding agencies for investment priorities. This exercise was characterized by the principles of: (i) a participatory approach with extensive consultation; (ii) Innovative thinking; (iii) central analysis to assure integration and co-ordination; and (iv) emphasis on communication with groups outside the water sector. The primary activities included, developing global water scenarios that fed into regional consultations and sectoral consultations as water for food, water for people - water supply and sanitation, and water and environment. These consultations formulated the regional and sectoral visions that were synthesized to form the World Water Vision. The findings from this exercise were reported and debated at the Second World Water Forum and the Ministerial Conference held in The Hague, The Netherlands during April 2000. This paper reports on the process of producing a "global water vision" and the primary findings, recommendations, and follow-on activities.
An Rx for 20/20 Vision: Vision Planning and Education.
ERIC Educational Resources Information Center
Chrisman, Gerald J.; Holliday, Clifford R.
1996-01-01
Discusses the Dallas Independent School District's decision to adopt an integrated technology infrastructure and the importance of vision planning for long term goals. Outlines the vision planning process: first draft; environmental projection; restatement of vision in terms of market projections, anticipated customer needs, suspected competitor…
The power of a vision.... A leader's journey.
Mintzer, B
2001-07-01
Being a leader in health care today requires the ability to implement a visionary style of leadership. The visionary leader has the challenge of formulating and articulating a corporate vision that employees can buy into and work toward.
Project Magnify: Increasing Reading Skills in Students with Low Vision
ERIC Educational Resources Information Center
Farmer, Jeanie; Morse, Stephen E.
2007-01-01
Modeled after Project PAVE (Corn et al., 2003) in Tennessee, Project Magnify is designed to test the idea that students with low vision who use individually prescribed magnification devices for reading will perform as well as or better than students with low vision who use large-print reading materials. Sixteen students with low vision were…
Tunnel Vision in Environmental Management.
ERIC Educational Resources Information Center
Miller, Alan
1982-01-01
Discusses problem-solving styles in environmental management and the specific deficiencies in these styles that might be grouped under the label "tunnel vision," a form of selective attention contributing to inadequate problem-formulation, partial solutions to complex problems, and generation of additional problems. Includes educational…
A Model for Integrating Low Vision Services into Educational Programs.
ERIC Educational Resources Information Center
Jose, Randall T.; And Others
1988-01-01
A project integrating low-vision services into children's educational programs comprised four components: teacher training, functional vision evaluations for each child, a clinical examination by an optometrist, and follow-up visits with the optometrist to evaluate the prescribed low-vision aids. Educational implications of the project and project…
Descriptive and Computer Aided Drawing Perspective on an Unfolded Polyhedral Projection Surface
NASA Astrophysics Data System (ADS)
Dzwierzynska, Jolanta
2017-10-01
The aim of the herby study is to develop a method of direct and practical mapping of perspective on an unfolded prism polyhedral projection surface. The considered perspective representation is a rectilinear central projection onto a surface composed of several flat elements. In the paper two descriptive methods of drawing perspective are presented: direct and indirect. The graphical mapping of the effects of the representation is realized directly on the unfolded flat projection surface. That is due to the projective and graphical connection between points displayed on the polyhedral background and their counterparts received on the unfolded flat surface. For a significant improvement of the construction of line, analytical algorithms are formulated. They draw a perspective image of a segment of line passing through two different points determined by their coordinates in a spatial coordinate system of axis x, y, z. Compared to other perspective construction methods that use information about points, for computer vision and the computer aided design, our algorithms utilize data about lines, which are applied very often in architectural forms. Possibility of drawing lines in the considered perspective enables drawing an edge perspective image of an architectural object. The application of the changeable base elements of perspective as a horizon height and a station point location enable drawing perspective image from different viewing positions. The analytical algorithms for drawing perspective images are formulated in Mathcad software, however, they can be implemented in the majority of computer graphical packages, which can make drawing perspective more efficient and easier. The representation presented in the paper and the way of its direct mapping on the flat unfolded projection surface can find application in presentation of architectural space in advertisement and art.
Chen, Yang; Young, Paul M; Murphy, Seamus; Fletcher, David F; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2017-04-01
The aim of this study is to investigate aerosol plume geometries of pressurised metered dose inhalers (pMDIs) using a high-speed laser image system with different actuator nozzle materials and designs. Actuators made from aluminium, PET and PTFE were manufactured with four different nozzle designs: cone, flat, curved cone and curved flat. Plume angles and spans generated using the designed actuator nozzles with four solution-based pMDI formulations were imaged using Oxford Lasers EnVision system and analysed using EnVision Patternate software. Reduced plume angles for all actuator materials and nozzle designs were observed with pMDI formulations containing drug with high co-solvent concentration (ethanol) due to the reduced vapour pressure. Significantly higher plume angles were observed with the PTFE flat nozzle across all formulations, which could be a result of the nozzle geometry and material's hydrophobicity. The plume geometry of pMDI aerosols can be influenced by the vapour pressure of the formulation, nozzle geometries and actuator material physiochemical properties.
Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies
NASA Astrophysics Data System (ADS)
Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.
2006-01-01
The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.
A strategic endeavor in business planning--an oncology perspective.
Eck, C
2000-06-01
Planning is imperative to provide direction for future growth. The purpose of writing a business plan is to cultivate, analyze, and refine ideas. Planning for academic health centers has become increasingly important because of the changes in financing and delivery of health care. Gathering data related to the current patients population as well as the projected future trends is necessary to establish a framework. Identifying the market and financial data and formulating the strategies needed to move forward are key elements of a business plan. The ultimate outcome of the process is to convince others that the vision is achievable and to ensure allocation of resources to carry out the plan.
Computational Vision: A Critical Review
1989-10-01
Optic News, 15:9-25, 1989. [8] H. B . Barlow and R. W. Levick . The mechanism of directional selectivity in the rabbit’s retina. J. Physiol., 173:477...comparison, other formulations, e.g., [64], used 16 @V A \\E(t=t2) (a) \\ E(t-tl) ( b ) Figure 7: An illustration of the aperture problem. Left: a bar E is...Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982. [7] D. H. Ballard, R. C. Nelson, and B . Yamauchi. Animate vision
ERIC Educational Resources Information Center
Morrison, James L.
This handbook for institutional researchers focuses on describing methods and techniques for conducting and merging external and internal analyses in order to produce an expanded vision of alternative future environments. Such vision is needed for the formulation of strategic long-range plans. Section 1 begins with a discussion of how an internal…
Multidisciplinary guidelines in Dutch mental health care: plans, bottlenecks and possible solutions.
Hutschemaekers, Giel J M
2003-12-10
This article describes the Dutch 'Multidisciplinary Guidelines in Mental Health Care' project and its first products (multidisciplinary guidelines on depressive and anxiety disorders). In the early 1990s, disciplines in Dutch mental health care formulated their first monodisciplinary guidelines, which disagreed on essential features. In 1998, the Dutch government invited representatives of the five core disciplines in mental health care (psychiatrists, general practitioners, psychotherapists (clinical), psychologists and psychiatric nurses) to start a joint project aimed at the development of new integrated multidisciplinary guidelines. The vision document, presented in 2000 by the five core disciplines, describes the directions for the development of new guidelines. The guidelines on depressive and anxiety disorders will appear in 2004. The first draft guidelines were presented in May 2003, in line with the vision document (2000). However, it is still not certain whether they will be authorised by all professional groups. Some disciplines do not recognise themselves in these guidelines. It is argued that these problems can be attributed at least in part to the evidence-based method that was used in drafting the guidelines. Interventions are compared on the basis of their 'level of evidence', the consequence of which is that cognitive behavioural therapy and drug treatment are almost always seen as the only appropriate interventions. Other interventions are excluded because of their lower level of evidence. The conclusion is that guidelines cannot be based on empirical evidence alone. It is argued that the collective sense of professions involved should also be integrated into the guideline, for example in relation to goal differentiation. It is finally argued that multidisciplinary guidelines must also offer a hierarchy between those goals, i.e. a vision of the appropriate type of care and the order in which the various care components should be administered.
2006-07-27
unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop analytical and computational tools to make vision a Viable sensor for...vision.ucla. edu July 27, 2006 Abstract The goal of this project was to develop analytical and computational tools to make vision a viable sensor for the ... sensors . We have proposed the framework of stereoscopic segmentation where multiple images of the same obejcts were jointly processed to extract geometry
Development of a volumetric projection technique for the digital evaluation of field of view.
Marshall, Russell; Summerskill, Stephen; Cook, Sharon
2013-01-01
Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.
Antimicrobial Medication Stability During Space Flight
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Berens, Kurt; Du, Jianping
2004-01-01
The current vision for manned space flight involves lunar and Martian exploration within the next two decades. In order for NASA to achieve these goals, a significant amount of preparation is necessary to assure crew health and safety. A mission critical component of this vision centers around the stability of pharmaceutical preparations contained in the space medicine kits. Evidence suggests that even brief periods of space flight have significant detrimental effects for some pharmaceutical formulations. The effects observed include decreases in physical stability of drug formulations of sufficient magnitude to effect bioavailability. Other formulations exhibit decreases in chemical stability resulting in a loss of potency. Physical or-chemical instability of pharmaceutical formulations i n space medicine kits could render the products ineffective. Of additional concern is the potential for formation of toxic degradation products as a result of the observed product instability. This proposal addresses Question number 11 of Clinical Capabilities in the Critical Path Roadmap. In addition, this proposal will reduce the risks and/or enhance the capabilities of humans exposed to the environments of space flight or an extraterrestrial destination by identifying drugs that may be unstable during spaceflight.
ERIC Educational Resources Information Center
American Society for Training and Development, Alexandria, VA.
In 2000, the American Society for Training and Development and the National Governors Association convened the Commission on Technology and Adult Learning. The 31-member commission included representatives of the business, government, and education sectors. They formulated a vision for the future of e-learning in the United States and identified…
Optimal design of photoreceptor mosaics: why we do not see color at night.
Manning, Jeremy R; Brainard, David H
2009-01-01
While color vision mediated by rod photoreceptors in dim light is possible (Kelber & Roth, 2006), most animals, including humans, do not see in color at night. This is because their retinas contain only a single class of rod photoreceptors. Many of these same animals have daylight color vision, mediated by multiple classes of cone photoreceptors. We develop a general formulation, based on Bayesian decision theory, to evaluate the efficacy of various retinal photoreceptor mosaics. The formulation evaluates each mosaic under the assumption that its output is processed to optimally estimate the image. It also explicitly takes into account the statistics of the environmental image ensemble. Using the general formulation, we consider the trade-off between monochromatic and dichromatic retinal designs as a function of overall illuminant intensity. We are able to demonstrate a set of assumptions under which the prevalent biological pattern represents optimal processing. These assumptions include an image ensemble characterized by high correlations between image intensities at nearby locations, as well as high correlations between intensities in different wavelength bands. They also include a constraint on receptor photopigment biophysics and/or the information carried by different wavelengths that produces an asymmetry in the signal-to-noise ratio of the output of different receptor classes. Our results thus provide an optimality explanation for the evolution of color vision for daylight conditions and monochromatic vision for nighttime conditions. An additional result from our calculations is that regular spatial interleaving of two receptor classes in a dichromatic retina yields performance superior to that of a retina where receptors of the same class are clumped together.
75 FR 51441 - Mid-Atlantic Fishery Management Council (MAFMC); Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... development of the Visioning Project. DATES: The meeting will be held Thursday, September 9, 2010, from 10 a.m...: The purpose of this meeting is to begin the development of the Council's Visioning Project. The... project goals. The initial purpose of the project is to identify stakeholders' views on the management...
ERIC Educational Resources Information Center
Sanspree, M. J.; And Others
1991-01-01
This article describes the Vision Outreach Project--a pilot project of the University of Alabama at Birmingham for training teachers of visually impaired students. The project produced video modules to provide distance education in rural and urban areas. The modules can be used to complete degree requirements or in-service training and continuing…
NASA Technical Reports Server (NTRS)
Smith, Fred; Perry, Jay; Nalette, Tim; Papale, William
2006-01-01
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T. As part of the original project effort, basic sorbent development was continued with the University of Connecticut and dynamic equilibrium trace contaminant adsorption characteristics were evaluated by NASA. This paper summarizes the University sorbent research effort, the basic trace contaminant loading characteristics of the SA9T sorbent, design support testing, and the status of the full-scale system hardware design and manufacturing effort.
Use of Open Architecture Middleware for Autonomous Platforms
NASA Astrophysics Data System (ADS)
Naranjo, Hector; Diez, Sergio; Ferrero, Francisco
2011-08-01
Network Enabled Capabilities (NEC) is the vision for next-generation systems in the defence domain formulated by governments, the European Defence Agency (EDA) and the North Atlantic Treaty Organization (NATO). It involves the federation of military information systems, rather than just a simple interconnection, to provide each user with the "right information, right place, right time - and not too much". It defines openness, standardization and flexibility principles in military systems, likewise applicable in the civilian space applications.This paper provides the conclusions drawn from "Architecture for Embarked Middleware" (EMWARE) study, funded by the European Defence Agency (EDA).The aim of the EMWARE project was to provide the information and understanding to facilitate the adoption of informed decisions regarding the specification and implementation of Open Architecture Middleware in future distributed systems, linking it with the NEC goal.EMWARE project included the definition of four business cases, each devoted to a different field of application (Unmanned Aerial Vehicles, Helicopters, Unmanned Ground Vehicles and the Satellite Ground Segment).
From Image Analysis to Computer Vision: Motives, Methods, and Milestones.
1998-07-01
images. Initially, work on digital image analysis dealt with specific classes of images such as text, photomicrographs, nuclear particle tracks, and aerial...photographs; but by the 1960’s, general algorithms and paradigms for image analysis began to be formulated. When the artificial intelligence...scene, but eventually from image sequences obtained by a moving camera; at this stage, image analysis had become scene analysis or computer vision
A vision and strategy for the virtual physiological human in 2010 and beyond.
Hunter, Peter; Coveney, Peter V; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Skår, John; Tegner, Jesper; Randall Thomas, S; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H G M; Viceconti, Marco
2010-06-13
European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE.
A vision and strategy for the virtual physiological human in 2010 and beyond
Hunter, Peter; Coveney, Peter V.; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F.; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Skår, John; Tegner, Jesper; Randall Thomas, S.; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H. G. M.; Viceconti, Marco
2010-01-01
European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE. PMID:20439264
SEE-GRID eInfrastructure for Regional eScience
NASA Astrophysics Data System (ADS)
Prnjat, Ognjen; Balaz, Antun; Vudragovic, Dusan; Liabotis, Ioannis; Sener, Cevat; Marovic, Branko; Kozlovszky, Miklos; Neagu, Gabriel
In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G ´EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure compatible with European developments, and empowering the scientists in the region in equal participation in the use of pan- European infrastructures, is materializing through the above initiatives. This model has a number of concrete operational and organizational guidelines which can be adapted to help e-Infrastructure developments in other world regions. In this paper we review the most important developments and contributions by the SEEGRID- SCI project.
The Road to Certainty and Back.
Westheimer, Gerald
2016-10-14
The author relates his intellectual journey from eye-testing clinician to experimental vision scientist. Starting with the quest for underpinning in physics and physiology of vague clinical propositions and of psychology's acceptance of thresholds as "fuzzy-edged," and a long career pursuing a reductionist agenda in empirical vision science, his journey led to the realization that the full understanding of human vision cannot proceed without factoring in an observer's awareness, with its attendant uncertainty and open-endedness. He finds support in the loss of completeness, finality, and certainty revealed in fundamental twentieth-century formulations of mathematics and physics. Just as biology prospered with the introduction of the emergent, nonreductionist concepts of evolution, vision science has to become comfortable accepting data and receiving guidance from human observers' conscious visual experience.
NASA Technical Reports Server (NTRS)
1972-01-01
A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.
LexTran support project : strategic planning support for LexTran visioning.
DOT National Transportation Integrated Search
2005-09-01
In October 2003, LexTran, the City of Lexingtons public transportation provider, was undergoing a management transition. It sought the assistance of the Kentucky Transportation Center for strategic planning and visioning. This project produced fou...
Image gathering and processing - Information and fidelity
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Halyo, N.; Samms, R. W.; Stacy, K.
1985-01-01
In this paper we formulate and use information and fidelity criteria to assess image gathering and processing, combining optical design with image-forming and edge-detection algorithms. The optical design of the image-gathering system revolves around the relationship among sampling passband, spatial response, and signal-to-noise ratio (SNR). Our formulations of information, fidelity, and optimal (Wiener) restoration account for the insufficient sampling (i.e., aliasing) common in image gathering as well as for the blurring and noise that conventional formulations account for. Performance analyses and simulations for ordinary optical-design constraints and random scences indicate that (1) different image-forming algorithms prefer different optical designs; (2) informationally optimized designs maximize the robustness of optimal image restorations and lead to the highest-spatial-frequency channel (relative to the sampling passband) for which edge detection is reliable (if the SNR is sufficiently high); and (3) combining the informationally optimized design with a 3 by 3 lateral-inhibitory image-plane-processing algorithm leads to a spatial-response shape that approximates the optimal edge-detection response of (Marr's model of) human vision and thus reduces the data preprocessing and transmission required for machine vision.
Integrated Multi-Aperture Sensor and Navigation Fusion
2010-02-01
Visio, Springer-Verlag Inc., New York, 2004. [3] R. G. Brown and P. Y. C. Hwang , Introduction to Random Signals and Applied Kalman Filtering, Third...formulate Kalman filter vision/inertial measurement observables for other images without the need to know (or measure) their feature ranges. As compared...Internal Data Fusion Multi-aperture/INS data fusion is formulated in the feature domain using the complementary Kalman filter methodology [3]. In this
76 FR 42684 - Mid-Atlantic Fishery Management Council (MAFMC); Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... Fishery Management Council (MAFMC); Public Meeting AGENCY: National Marine Fisheries Service (NMFS.... SUMMARY: The Mid-Atlantic Fishery Management Council Staff will hold a meeting of the Visioning Project Advisory Panel to discuss communications strategies and data gathering tools for the Visioning Project...
Machine vision 1992-1996: technology program to promote research and its utilization in industry
NASA Astrophysics Data System (ADS)
Soini, Antti J.
1994-10-01
Machine vision technology has got a strong interest in Finnish research organizations, which is resulting in many innovative products to industry. Despite this end users were very skeptical towards machine vision and its robustness for harsh industrial environments. Therefore Technology Development Centre, TEKES, who funds technology related research and development projects in universities and individual companies, decided to start a national technology program, Machine Vision 1992 - 1996. Led by industry the program boosts research in machine vision technology and seeks to put the research results to work in practical industrial applications. The emphasis is in nationally important, demanding applications. The program will create new industry and business for machine vision producers and encourage the process and manufacturing industry to take advantage of this new technology. So far 60 companies and all major universities and research centers are working on our forty different projects. The key themes that we have are process control, robot vision and quality control.
A Clear Vision for Equity and Opportunity.
ERIC Educational Resources Information Center
Gould, Marge Christensen; Gould, Herman
2003-01-01
Describes undetected and uncorrected vision problems for children in poverty associated with juvenile delinquency and poor academic performance. Discusses success of a project offering vision screening and free glasses for at-risk students in Tucson, Arizona. (PKP)
Notes from a clinical information system program manager. A solid vision makes all the difference.
Staggers, N
1997-01-01
Today's CIS manager will create a vision that connects computerization in ambulatory, home and community-based care with increased responsibility for patients to assume self-care. Patients will be faced with a glut of information and they will need nursing help in determining the validity of information. The new vision in this environment will focus on integration, interoperability, and a new definition for patient-centered information. Creating a well-articulated vision is the first skill in the repertoire of a CIS manager's tool set. A vision provides the firm structure upon which the entire project can be built, and provides for links to life-cycle planning. This first step in project planning begins to bring order to the chaos of dynamic demands in clinical computing.
Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases
NASA Technical Reports Server (NTRS)
Moton, Tryshanda
2016-01-01
Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.
Low-Latency Embedded Vision Processor (LLEVS)
2016-03-01
26 3.2.3 Task 3 Projected Performance Analysis of FPGA- based Vision Processor ........... 31 3.2.3.1 Algorithms Latency Analysis ...Programmable Gate Array Custom Hardware for Real- Time Multiresolution Analysis . ............................................... 35...conduct data analysis for performance projections. The data acquired through measurements , simulation and estimation provide the requisite platform for
76 FR 12943 - Mid-Atlantic Fishery Management Council; Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-09
... Strategic Planning Project. The roadmap will detail how the Council solicits stakeholder input and then incorporates that input into a vision and strategic plan that will guide Council Actions in the future. Any briefing materials will be posted to the Council's Visioning and Strategic Planning Project Web site: http...
EMC Aspects of Turbulence Heating ObserveR (THOR) Spacecraft
NASA Astrophysics Data System (ADS)
Soucek, J.; Ahlen, L.; Bale, S.; Bonnell, J.; Boudin, N.; Brienza, D.; Carr, C.; Cipriani, F.; Escoubet, C. P.; Fazakerley, A.; Gehler, M.; Genot, V.; Hilgers, A.; Hanock, B.; Jannet, G.; Junge, A.; Khotyaintsev, Y.; De Keyser, J.; Kucharek, H.; Lan, R.; Lavraud, B.; Leblanc, F.; Magnes, W.; Mansour, M.; Marcucci, M. F.; Nakamura, R.; Nemecek, Z.; Owen, C.; Phal, Y.; Retino, A.; Rodgers, D.; Safrankova, J.; Sahraoui, F.; Vainio, R.; Wimmer-Schweingruber, R.; Steinhagen, J.; Vaivads, A.; Wielders, A.; Zaslavsky, A.
2016-05-01
Turbulence Heating ObserveR (THOR) is a spacecraft mission dedicated to the study of plasma turbulence in near-Earth space. The mission is currently under study for implementation as a part of ESA Cosmic Vision program. THOR will involve a single spinning spacecraft equipped with state of the art instruments capable of sensitive measurements of electromagnetic fields and plasma particles. The sensitive electric and magnetic field measurements require that the spacecraft- generated emissions are restricted and strictly controlled; therefore a comprehensive EMC program has been put in place already during the study phase. The THOR study team and a dedicated EMC working group are formulating the mission EMC requirements already in the earliest phase of the project to avoid later delays and cost increases related to EMC. This article introduces the THOR mission and reviews the current state of its EMC requirements.
Rapid matching of stereo vision based on fringe projection profilometry
NASA Astrophysics Data System (ADS)
Zhang, Ruihua; Xiao, Yi; Cao, Jian; Guo, Hongwei
2016-09-01
As the most important core part of stereo vision, there are still many problems to solve in stereo matching technology. For smooth surfaces on which feature points are not easy to extract, this paper adds a projector into stereo vision measurement system based on fringe projection techniques, according to the corresponding point phases which extracted from the left and right camera images are the same, to realize rapid matching of stereo vision. And the mathematical model of measurement system is established and the three-dimensional (3D) surface of the measured object is reconstructed. This measurement method can not only broaden application fields of optical 3D measurement technology, and enrich knowledge achievements in the field of optical 3D measurement, but also provide potential possibility for the commercialized measurement system in practical projects, which has very important scientific research significance and economic value.
Vision Zero--a road safety policy innovation.
Belin, Matts-Åke; Tillgren, Per; Vedung, Evert
2012-01-01
The aim of this paper is to examine Sweden's Vision Zero road safety policy. In particular, the paper focuses on how safety issues were framed, which decisions were made, and what are the distinctive features of Vision Zero. The analysis reveals that the decision by the Swedish Parliament to adopt Vision Zero as Sweden's road safety policy was a radical innovation. The policy is different in kind from traditional traffic safety policy with regard to problem formulation, its view on responsibility, its requirements for the safety of road users, and the ultimate objective of road safety work. The paper briefly examines the implications of these findings for national and global road safety efforts that aspire to achieving innovative road safety policies in line with the Decade of Action for Road Safety 2011-2020, declared by the United Nations General Assembly in March 2010.
Analog "neuronal" networks in early vision.
Koch, C; Marroquin, J; Yuille, A
1986-01-01
Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172
Suzuki, Daichi G; Murakami, Yasunori; Yamazaki, Yuji; Wada, Hiroshi
2015-01-01
Image-forming vision is crucial to animals for recognizing objects in their environment. In vertebrates, this type of vision is achieved with paired camera eyes and topographic projection of the optic nerve. Topographic projection is established by an orthogonal gradient of axon guidance molecules, such as Ephs. To explore the evolution of image-forming vision in vertebrates, lampreys, which belong to the basal lineage of vertebrates, are key animals because they show unique "dual visual development." In the embryonic and pre-ammocoete larval stage (the "primary" phase), photoreceptive "ocellus-like" eyes develop, but there is no retinotectal optic nerve projection. In the late ammocoete larval stage (the "secondary" phase), the eyes grow and form into camera eyes, and retinotectal projection is newly formed. After metamorphosis, this retinotectal projection in adult lampreys is topographic, similar to that of gnathostomes. In this study, we explored the involvement of Ephs in lamprey "dual visual development" and establishment of the image-form vision. We found that gnathostome-like orthogonal gradient expression was present in the retina during the "secondary" phase; i.e., EphB showed a gradient of expression along the dorsoventral axis, while EphC was expressed along the anteroposterior axis. However, no orthogonal gradient expression was observed during the "primary" phase. These observations suggest that Ephs are likely recruited de novo for the guidance of topographical "second" optic nerve projection. Transformations during lamprey "dual visual development" may represent "recapitulation" from a protochordate-like ancestor to a gnathostome-like vertebrate ancestor. © 2015 Wiley Periodicals, Inc.
2020 Vision Project Summary: FY99
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.W. Gordon; K.P. Scott
2000-01-01
During the 1998-99 school year, students from participating schools completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on U.S. national security. This report summarizes the student's views and describes trends observed over the course of the 2020 Vision project's four years.
VISIONS for Greater Employment Opportunities. Final Report.
ERIC Educational Resources Information Center
Orangeburg-Calhoun Technical Coll., Orangeburg, SC.
The VISIONS project, a workplace literacy program held in two manufacturing plants and a regional medical center, was conducted during an 18-month period from July 1, 1993 to December 31, 1994. During the project, staff were hired and trained, task analyses and orientation sessions were held, and tests and curricula were developed. Employees were…
ERIC Educational Resources Information Center
Hinckley, June
2000-01-01
Discusses changes in technology, information, and people and the impact on music programs. The Vision 2020 project focuses on the future of music education. Addresses the events that created Vision 2020. Includes "The Housewright Declaration," a summarization of agreements from the Housewright Symposium on the Future of Music Education. (CMK)
Brains studying brains: look before you think in vision
NASA Astrophysics Data System (ADS)
Zhaoping, Li
2016-06-01
Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its ‘conscious’ part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many ‘subconscious’ brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.
Brains studying brains: look before you think in vision.
Zhaoping, Li
2016-05-11
Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many 'subconscious' brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.
NASA Astrophysics Data System (ADS)
Paar, G.
2009-04-01
At present, mainly the US have realized planetary space missions with essential robotics background. Joining institutions, companies and universities from different established groups in Europe and two relevant players from the US, the EC FP7 Project PRoVisG started in autumn 2008 to demonstrate the European ability of realizing high-level processing of robotic vision image products from the surface of planetary bodies. PRoVisG will build a unified European framework for Robotic Vision Ground Processing. State-of-art computer vision technology will be collected inside and outside Europe to better exploit the image data gathered during past, present and future robotic space missions to the Moon and the Planets. This will lead to a significant enhancement of the scientific, technologic and educational outcome of such missions. We report on the main PRoVisG objectives and the development status: - Past, present and future planetary robotic mission profiles are analysed in terms of existing solutions and requirements for vision processing - The generic processing chain is based on unified vision sensor descriptions and processing interfaces. Processing components available at the PRoVisG Consortium Partners will be completed by and combined with modules collected within the international computer vision community in the form of Announcements of Opportunity (AOs). - A Web GIS is developed to integrate the processing results obtained with data from planetary surfaces into the global planetary context. - Towards the end of the 39 month project period, PRoVisG will address the public by means of a final robotic field test in representative terrain. The European tax payers will be able to monitor the imaging and vision processing in a Mars - similar environment, thus getting an insight into the complexity and methods of processing, the potential and decision making of scientific exploitation of such data and not least the elegancy and beauty of the resulting image products and their visualization. - The educational aspect is addressed by two summer schools towards the end of the project, presenting robotic vision to the students who are future providers of European science and technology, inside and outside the space domain.
Jordan Reforms Public Education to Compete in a Global Economy
ERIC Educational Resources Information Center
Erickson, Paul W.
2009-01-01
The King of Jordan's vision for education is resulting in innovative projects for the country. King Abdullah II wants Jordan to develop its human resources through public education to equip the workforce with skills for the future. From King Abdullah II's vision, the Education Reform for a Knowledge Economy (ERfKE) project implemented by the…
Teaching the Very Recent Past: "Miriam's Vision" and the London Bombings
ERIC Educational Resources Information Center
Kitson, Alison; Thompson, Sarah
2015-01-01
"Miriam's Vision" is an educational project developed by the Miriam Hyman Memorial Trust, an organisation set up in memory of Miriam Hyman, one of the 52 victims of the London bombings of 2005. The project has developed a number of subject-based modules, including history, which are provided free to schools through the website…
Sarriot, Eric G; Kouletio, Michelle; Jahan, Dr Shamim; Rasul, Izaz; Musha, Akm
2014-08-26
Starting in 1999, Concern Worldwide Inc. (Concern) worked with two Bangladeshi municipal health departments to support delivery of maternal and child health preventive services. A mid-term evaluation identified sustainability challenges. Concern relied on systems thinking implicitly to re-prioritize sustainability, but stakeholders also required a method, an explicit set of processes, to guide their decisions and choices during and after the project. Concern chose the Sustainability Framework method to generate creative thinking from stakeholders, create a common vision, and monitor progress. The Framework is based on participatory and iterative steps: defining (mapping) the local system and articulating a long-term vision, describing scenarios for achieving the vision, defining the elements of the model, and selecting corresponding indicators, setting and executing an assessment plan,, and repeated stakeholder engagement in analysis and decisions . Formal assessments took place up to 5 years post-project (2009). Strategic choices for the project were guided by articulating a collective vision for sustainable health, mapping the system of actors required to effect and sustain change, and defining different components of analysis. Municipal authorities oriented health teams toward equity-oriented service delivery efforts, strengthening of the functionality of Ward Health Committees, resource leveraging between municipalities and the Ministry of Health, and mitigation of contextual risks. Regular reference to a vision (and set of metrics (population health, organizational and community capacity) mitigated political factors. Key structures and processes were maintained following elections and political changes. Post-project achievements included the maintenance or improvement 5 years post-project (2009) in 9 of the 11 health indicator gains realized during the project (1999-2004). Some elements of performance and capacity weakened, but reductions in the equity gap achieved during the project were largely maintained post-project. Sustainability is dynamic and results from local systems processes, which can be strengthened through both implicit and explicit systems thinking steps applied with constancy of purpose.
ERIC Educational Resources Information Center
Sailor, Wayne; And Others
Intended for teachers of deaf-blind and severely handicapped students as well as for resource or itinerant teachers in the area of vision who have recently begun to serve low functioning students, the manual provides information on vision and on vision assessment. The manual serves three functions. It: (1) prepares teachers for participation in…
Flicker Vision of Selected Light Sources
NASA Astrophysics Data System (ADS)
Otomański, Przemysław; Wiczyński, Grzegorz; Zając, Bartosz
2017-10-01
The results of the laboratory research concerning a dependence of flicker vision on voltage fluctuations are presented in the paper. The research was realized on a designed measuring stand, which included an examined light source, a voltage generator with amplitude modulation supplying the light source and a positioning system of the observer with respect to the observed surface. In this research, the following light sources were used: one incandescent lamp and four LED luminaires by different producers. The research results formulate a conclusion concerning the description of the influence of voltage fluctuations on flicker viewing for selected light sources. The research results indicate that LED luminaires are less susceptible to voltage fluctuations than incandescent bulbs and that flicker vision strongly depends on the type of LED source.
Jóhannesson, Ómar I.; Balan, Oana; Unnthorsson, Runar; Moldoveanu, Alin; Kristjánsson, Árni
2016-01-01
The Sound of Vision project involves developing a sensory substitution device that is aimed at creating and conveying a rich auditory representation of the surrounding environment to the visually impaired. However, the feasibility of such an approach is strongly constrained by neural flexibility, possibilities of sensory substitution and adaptation to changed sensory input. We review evidence for such flexibility from various perspectives. We discuss neuroplasticity of the adult brain with an emphasis on functional changes in the visually impaired compared to sighted people. We discuss effects of adaptation on brain activity, in particular short-term and long-term effects of repeated exposure to particular stimuli. We then discuss evidence for sensory substitution such as Sound of Vision involves, while finally discussing evidence for adaptation to changes in the auditory environment. We conclude that sensory substitution enterprises such as Sound of Vision are quite feasible in light of the available evidence, which is encouraging regarding such projects. PMID:27355966
NASA Astrophysics Data System (ADS)
Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.
2004-09-01
The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.
Performance Evaluation and Software Design for EVA Robotic Assistant Stereo Vision Heads
NASA Technical Reports Server (NTRS)
DiPaolo, Daniel
2003-01-01
The purpose of this project was to aid the EVA Robotic Assistant project by evaluating and designing the necessary interfaces for two stereo vision heads - the TracLabs Biclops pan-tilt-verge head, and the Helpmate Zebra pan-tilt-verge head. The first half of the project consisted of designing the necessary software interface so that the other modules of the EVA Robotic Assistant had proper access to all of the functionalities offered by each of the stereovision heads. This half took most of the project time, due to a lack of ready-made CORBA drivers for either of the heads. Once this was overcome, the evaluation stage of the project began. The second half of the project was to take these interfaces and to evaluate each of the stereo vision heads in terms of usefulness to the project. In the key project areas such as stability and reliability, the Zebra pan-tilt-verge head came out on top. However, the Biclops did have many more advantages over the Zebra, such as: lower power consumption, faster communications, and a simpler, cleaner API. Overall, the Biclops pan-tilt-verge head outperformed the Zebra pan-tilt-verge head.
Computing motion using resistive networks
NASA Technical Reports Server (NTRS)
Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James
1988-01-01
Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.
NASA Technical Reports Server (NTRS)
Taylor, J. H.
1973-01-01
Some data on human vision, important in present and projected space activities, are presented. Visual environment and performance and structure of the visual system are also considered. Visual perception during stress is included.
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne
2005-01-01
When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.
Flight Testing an Integrated Synthetic Vision System
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III
2005-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.
2015-08-21
using the Open Computer Vision ( OpenCV ) libraries [6] for computer vision and the Qt library [7] for the user interface. The software has the...depth. The software application calibrates the cameras using the plane based calibration model from the OpenCV calib3D module and allows the...6] OpenCV . 2015. OpenCV Open Source Computer Vision. [Online]. Available at: opencv.org [Accessed]: 09/01/2015. [7] Qt. 2015. Qt Project home
Glass Vision 3D: Digital Discovery for the Deaf
ERIC Educational Resources Information Center
Parton, Becky Sue
2017-01-01
Glass Vision 3D was a grant-funded project focused on developing and researching a Google Glass app that would allowed young Deaf children to look at the QR code of an object in the classroom and see an augmented reality projection that displays an American Sign Language (ASL) related video. Twenty five objects and videos were prepared and tested…
Gulf States Strategic Vision to Face Iranian Nuclear Project
2015-09-01
STRATEGIC VISION TO FACE IRANIAN NUCLEAR PROJECT by Fawzan A. Alfawzan September 2015 Thesis Advisor: James Russell Second Reader: Anne...nuclear weapons at a high degree. Nuclear capabilities provided Iran with uranium enrichments abilities and nuclear weapons to enable the country to...IN SECURITY STUDIES (STRATEGIC STUDIES) from the NAVAL POSTGRADUATE SCHOOL September 2015 Approved by: James Russell Thesis
Negotiating plausibility: intervening in the future of nanotechnology.
Selin, Cynthia
2011-12-01
The national-level scenarios project NanoFutures focuses on the social, political, economic, and ethical implications of nanotechnology, and is initiated by the Center for Nanotechnology in Society at Arizona State University (CNS-ASU). The project involves novel methods for the development of plausible visions of nanotechnology-enabled futures, elucidates public preferences for various alternatives, and, using such preferences, helps refine future visions for research and outreach. In doing so, the NanoFutures project aims to address a central question: how to deliberate the social implications of an emergent technology whose outcomes are not known. The solution pursued by the NanoFutures project is twofold. First, NanoFutures limits speculation about the technology to plausible visions. This ambition introduces a host of concerns about the limits of prediction, the nature of plausibility, and how to establish plausibility. Second, it subjects these visions to democratic assessment by a range of stakeholders, thus raising methodological questions as to who are relevant stakeholders and how to activate different communities so as to engage the far future. This article makes the dilemmas posed by decisions about such methodological issues transparent and therefore articulates the role of plausibility in anticipatory governance.
NASA Technical Reports Server (NTRS)
Rhodes, Bradley; Meck, Janice
2005-01-01
NASA s National Vision for Space Exploration includes human travel beyond low earth orbit and the ultimate safe return of the crews. Crucial to fulfilling the vision is the successful and timely development of countermeasures for the adverse physiological effects on human systems caused by long term exposure to the microgravity environment. Limited access to in-flight resources for the foreseeable future increases NASA s reliance on ground-based analogs to simulate these effects of microgravity. The primary analog for human based research will be head-down bed rest. By this approach NASA will be able to evaluate countermeasures in large sample sizes, perform preliminary evaluations of proposed in-flight protocols and assess the utility of individual or combined strategies before flight resources are requested. In response to this critical need, NASA has created the Bed Rest Project at the Johnson Space Center. The Project establishes the infrastructure and processes to provide a long term capability for standardized domestic bed rest studies and countermeasure development. The Bed Rest Project design takes a comprehensive, interdisciplinary, integrated approach that reduces the resource overhead of one investigator for one campaign. In addition to integrating studies operationally relevant for exploration, the Project addresses other new Vision objectives, namely: 1) interagency cooperation with the NIH allows for Clinical Research Center (CRC) facility sharing to the benefit of both agencies, 2) collaboration with our International Partners expands countermeasure development opportunities for foreign and domestic investigators as well as promotes consistency in approach and results, 3) to the greatest degree possible, the Project also advances research by clinicians and academia alike to encourage return to earth benefits. This paper will describe the Project s top level goals, organization and relationship to other Exploration Vision Projects, implementation strategy, address Project deliverables, schedules and provide a status of bed rest campaigns presently underway.
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.
Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina
2014-05-01
The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to processing results, as a means to interact with and explore the archive. However PRoGIS is more than a source data explorer. It is linked to the PRoVIP (Planetary Robotics Vision Image Processing) system which includes photogrammetric processing tools to extract terrain models, compose panoramas, and explore and exploit multi-view stereo (where features on the surface have been imaged from different rover stops). We have started with the Opportunity MER rover as our test mission but the system is being designed to be multi-mission, taking advantage in particular of UCL MSSL's PDS mirror, and we intend to at least deal with both MER rovers and MSL. For the period of ProViDE until end of 2015 the further intent is to handle lunar and other Martian rover & descent camera data. The presentation discusses the challenges of integrating rover and orbital derived data into a single geographical framework, especially reconstructing view cones; our human-computer interaction intentions in creating an interface to the rover data that is accessible to planetary scientists; how we handle multi-mission data in the database; and a demonstration of the resulting system & its processing capabilities. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 PRoViDE.
... magnifying reading glasses or loupes for seeing the computer screen , sheet music, or for sewing telescopic glasses ... for the Blind services. The Low Vision Pilot Project The American Foundation for the Blind (AFB) has ...
Robotics research projects report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsia, T.C.
The research results of the Robotics Research Laboratory are summarized. Areas of research include robotic control, a stand-alone vision system for industrial robots, and sensors other than vision that would be useful for image ranging, including ultrasonic and infra-red devices. One particular project involves RHINO, a 6-axis robotic arm that can be manipulated by serial transmission of ASCII command strings to its interfaced controller. (LEW)
A Vision in Aeronautics: The K-12 Wind Tunnel Project
NASA Technical Reports Server (NTRS)
1997-01-01
A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.
2020 Vision: Envisioning a New Generation of STEM Learning Research
ERIC Educational Resources Information Center
Dierking, Lynn D.; Falk, John H.
2016-01-01
In this issue, we have compiled six original papers, outcomes from the U.S. National Science Foundation (US-NSF)-funded REESE (Research and Evaluation on Education in Science and Engineering) 2020 Vision: The Next Generation of STEM Learning Research project. The purpose of 2020 Vision was to re-envision the questions and frameworks guiding STEM…
Connected and autonomous vehicles 2040 vision.
DOT National Transportation Integrated Search
2014-07-01
The Pennsylvania Department of Transportation (PennDOT) commissioned a one-year project, Connected and Autonomous : Vehicles 2040 Vision, with researchers at Carnegie Mellon University (CMU) to assess the implications of connected and : autonomous ve...
Quasi-eccentricity error modeling and compensation in vision metrology
NASA Astrophysics Data System (ADS)
Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin
2018-04-01
Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.
ERIC Educational Resources Information Center
Davis, Char W., Ed.; Small, LaVeta T., Ed.
1986-01-01
Diverse issues in higher education are addressed in 19 articles. Titles and authors are as follows: "2001: Formulation of a Vision" (Kenneth L. Schwab); Trustees' Roles and Student Issues" (Davis Powers); "What Do Students and Faculty Talk about When They Eat Meals Together?" (John H. Schuh, Neal Edman); "Student…
Máthé, Koppány; Buşoniu, Lucian
2015-01-01
Unmanned aerial vehicles (UAVs) have gained significant attention in recent years. Low-cost platforms using inexpensive sensor payloads have been shown to provide satisfactory flight and navigation capabilities. In this report, we survey vision and control methods that can be applied to low-cost UAVs, and we list some popular inexpensive platforms and application fields where they are useful. We also highlight the sensor suites used where this information is available. We overview, among others, feature detection and tracking, optical flow and visual servoing, low-level stabilization and high-level planning methods. We then list popular low-cost UAVs, selecting mainly quadrotors. We discuss applications, restricting our focus to the field of infrastructure inspection. Finally, as an example, we formulate two use-cases for railway inspection, a less explored application field, and illustrate the usage of the vision and control techniques reviewed by selecting appropriate ones to tackle these use-cases. To select vision methods, we run a thorough set of experimental evaluations. PMID:26121608
ERIC Educational Resources Information Center
Freiler, Christa; Hurley, Stephen; Canuel, Ron; McGahey, Bob; Froese-Germain, Bernie; Riel, Rick
2012-01-01
"Teaching the Way We Aspire to Teach--Now and in the Future" is a collaborative research project between the Canadian Education Association (CEA) and the Canadian Teachers' Federation (CTF). The project grew out of a shared interest in exploring with teachers their experiences and visions of teaching the way in which they aspire--that…
Portable Common Execution Environment (PCEE) project review: Peer review
NASA Technical Reports Server (NTRS)
Locke, C. Douglass
1991-01-01
The purpose of the review was to conduct an independent, in-depth analysis of the PCEE project and to provide the results of said review. The review team was tasked with evaluating the potential contribution of the PCEE project to the improvement of the life cycle support of mission and safety critical (MASC) computing components for large, complex, non-stop, distributed systems similar to those planned for such NASA programs as the space station, lunar outpost, and manned missions to Mars. Some conclusions of the review team are as follow: The PCEE project was given high marks for its breath of vision on the overall problem with MASC software; Correlated with the sweeping vision, the Review Team is very skeptical that any research project can successfully attack such a broad range of problems; and several recommendations are made such as to identify the components of the broad solution envisioned, prioritizing them with respect to their impact and the likely ability of the PCEE or others to attack them successfully, and to rewrite its Concept Document differentiating the problem description, objectives, approach, and results so that the project vision becomes assessible to others.
Change champions at the grassroots level: practice innovation using team process.
Scott, J; Rantz, M
1994-01-01
A nursing administrative group recognized the critical value of staff participation in the formulation of a restructuring project and guidance throughout the project. Using a team approach, a task force of three staff nurses, two assistant nurse managers, a nurse clinician, a nursing practice specialist, and a representative from nursing administration came together. They were given responsibility for researching and setting the course for restructuring change. A unit-based team including a unit secretary, a nursing attendant, licensed practical nurse (LPN), and six staff nurses was formed from volunteers from the 40-bed medicine unit to develop that unit's plan for restructuring. The unit-based team analyzed patient care needs and staff member roles. They created a new patient care technician role as well as a nurse care coordinator role. The role of the LPN was envisioned as providing technical support. Staffing mix was also determined by the unit-based team. Both the task force and the unit-based team continue to evaluate, troubleshoot, and take every opportunity to sell their vision to solidify it further as the foundation for the future of patient care services at the hospital. The process will soon move forward to a large surgical unit.
Parallel asynchronous systems and image processing algorithms
NASA Technical Reports Server (NTRS)
Coon, D. D.; Perera, A. G. U.
1989-01-01
A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.
Sociology of Low Expectations: Recalibration as Innovation Work in Biomedicine.
Gardner, John; Samuel, Gabrielle; Williams, Clare
2015-11-01
Social scientists have drawn attention to the role of hype and optimistic visions of the future in providing momentum to biomedical innovation projects by encouraging innovation alliances. In this article, we show how less optimistic, uncertain, and modest visions of the future can also provide innovation projects with momentum. Scholars have highlighted the need for clinicians to carefully manage the expectations of their prospective patients. Using the example of a pioneering clinical team providing deep brain stimulation to children and young people with movement disorders, we show how clinicians confront this requirement by drawing on their professional knowledge and clinical expertise to construct visions of the future with their prospective patients; visions which are personalized, modest, and tainted with uncertainty. We refer to this vision-constructing work as recalibration, and we argue that recalibration enables clinicians to manage the tension between the highly optimistic and hyped visions of the future that surround novel biomedical interventions, and the exigencies of delivering those interventions in a clinical setting. Drawing on work from science and technology studies, we suggest that recalibration enrolls patients in an innovation alliance by creating a shared understanding of how the "effectiveness" of an innovation shall be judged.
Arens-Arad, Tamar; Farah, Nairouz; Ben-Yaish, Shai; Zlotnik, Alex; Zalevsky, Zeev; Mandel, Yossi
2016-10-12
Novel technologies are constantly under development for vision restoration in blind patients. Many of these emerging technologies are based on the projection of high intensity light patterns at specific wavelengths, raising the need for the development of specialized projection systems. Here we present and characterize a novel projection system that meets the requirements for artificial retinal stimulation in rats and enables the recording of cortical responses. The system is based on a customized miniature Digital Mirror Device (DMD) for pattern projection, in both visible (525 nm) and NIR (915 nm) wavelengths, and a lens periscope for relaying the pattern directly onto the animal's retina. Thorough system characterization and the investigation of the effect of various parameters on obtained image quality were performed using ZEMAX. Simulation results revealed that images with an MTF higher than 0.8 were obtained with little effect of the vertex distance. Increased image quality was obtained at an optimal pupil diameter and smaller field of view. Visual cortex activity data was recorded simultaneously with pattern projection, further highlighting the importance of the system for prosthetic vision studies. This novel head mounted projection system may prove to be a vital tool in studying natural and artificial vision in behaving animals.
Arens-Arad, Tamar; Farah, Nairouz; Ben-Yaish, Shai; Zlotnik, Alex; Zalevsky, Zeev; Mandel, Yossi
2016-01-01
Novel technologies are constantly under development for vision restoration in blind patients. Many of these emerging technologies are based on the projection of high intensity light patterns at specific wavelengths, raising the need for the development of specialized projection systems. Here we present and characterize a novel projection system that meets the requirements for artificial retinal stimulation in rats and enables the recording of cortical responses. The system is based on a customized miniature Digital Mirror Device (DMD) for pattern projection, in both visible (525 nm) and NIR (915 nm) wavelengths, and a lens periscope for relaying the pattern directly onto the animal’s retina. Thorough system characterization and the investigation of the effect of various parameters on obtained image quality were performed using ZEMAX. Simulation results revealed that images with an MTF higher than 0.8 were obtained with little effect of the vertex distance. Increased image quality was obtained at an optimal pupil diameter and smaller field of view. Visual cortex activity data was recorded simultaneously with pattern projection, further highlighting the importance of the system for prosthetic vision studies. This novel head mounted projection system may prove to be a vital tool in studying natural and artificial vision in behaving animals. PMID:27731346
NASA Astrophysics Data System (ADS)
Arens-Arad, Tamar; Farah, Nairouz; Ben-Yaish, Shai; Zlotnik, Alex; Zalevsky, Zeev; Mandel, Yossi
2016-10-01
Novel technologies are constantly under development for vision restoration in blind patients. Many of these emerging technologies are based on the projection of high intensity light patterns at specific wavelengths, raising the need for the development of specialized projection systems. Here we present and characterize a novel projection system that meets the requirements for artificial retinal stimulation in rats and enables the recording of cortical responses. The system is based on a customized miniature Digital Mirror Device (DMD) for pattern projection, in both visible (525 nm) and NIR (915 nm) wavelengths, and a lens periscope for relaying the pattern directly onto the animal’s retina. Thorough system characterization and the investigation of the effect of various parameters on obtained image quality were performed using ZEMAX. Simulation results revealed that images with an MTF higher than 0.8 were obtained with little effect of the vertex distance. Increased image quality was obtained at an optimal pupil diameter and smaller field of view. Visual cortex activity data was recorded simultaneously with pattern projection, further highlighting the importance of the system for prosthetic vision studies. This novel head mounted projection system may prove to be a vital tool in studying natural and artificial vision in behaving animals.
Stephens, Martin L.; Barrow, Craig; Andersen, Melvin E.; Boekelheide, Kim; Carmichael, Paul L.; Holsapple, Michael P.; Lafranconi, Mark
2012-01-01
The U.S. National Research Council (NRC) report on “Toxicity Testing in the 21st century” calls for a fundamental shift in the way that chemicals are tested for human health effects and evaluated in risk assessments. The new approach would move toward in vitro methods, typically using human cells in a high-throughput context. The in vitro methods would be designed to detect significant perturbations to “toxicity pathways,” i.e., key biological pathways that, when sufficiently perturbed, lead to adverse health outcomes. To explore progress on the report’s implementation, the Human Toxicology Project Consortium hosted a workshop on 9–10 November 2010 in Washington, DC. The Consortium is a coalition of several corporations, a research institute, and a non-governmental organization dedicated to accelerating the implementation of 21st-century Toxicology as aligned with the NRC vision. The goal of the workshop was to identify practical and scientific ways to accelerate implementation of the NRC vision. The workshop format consisted of plenary presentations, breakout group discussions, and concluding commentaries. The program faculty was drawn from industry, academia, government, and public interest organizations. Most presentations summarized ongoing efforts to modernize toxicology testing and approaches, each with some overlap with the NRC vision. In light of these efforts, the workshop identified recommendations for accelerating implementation of the NRC vision, including greater strategic coordination and planning across projects (facilitated by a steering group), the development of projects that test the proof of concept for implementation of the NRC vision, and greater outreach and communication across stakeholder communities. PMID:21948868
Keating, Joseph; Meekers, Dominique; Adewuyi, Alfred
2006-05-03
In response to the growing HIV epidemic in Nigeria, the U.S. Agency for International Development (USAID) initiated the VISION Project, which aimed to increase use of family planning, child survival, and HIV/AIDS services. The VISION Project used a mass-media campaign that focused on reproductive health and HIV/AIDS prevention. This paper assesses to what extent program exposure translates into increased awareness and prevention of HIV/AIDS. This analysis is based on data from the 2002 and 2004 Nigeria (Bauchi, Enugu, and Oyo) Family Planning and Reproductive Health Surveys, which were conducted among adults living in the VISION Project areas. To correct for endogeneity, two-stage logistic regression is used to investigate the effect of program exposure on 1) discussion of HIV/AIDS with a partner, 2) awareness that consistent condom use reduces HIV risk, and 3) condom use at last intercourse. Exposure to the VISION mass media campaign was high: 59%, 47%, and 24% were exposed to at least 1 VISION radio, printed advertisement, or TV program about reproductive health, respectively. The differences in outcome variables between 2002 baseline data and the 2004 follow-up data were small. However, those with high program exposure were almost one and a half (Odds Ratio [O.R.] = 1.47, 95% Confidence Interval [C.I.] 1.01-2.16) times more likely than those with no exposure to have discussed HIV/AIDS with a partner. Those with high program exposure were over twice (O.R. = 2.20, C.I. 1.49-3.25) as likely as those with low exposure to know that condom use can reduce risk of HIV infection. Program exposure had no effect on condom use at last sex. The VISION Project reached a large portion of the population and exposure to mass media programs about reproductive health and HIV prevention topics can help increase HIV/AIDS awareness. Programs that target rural populations, females, and unmarried individuals, and disseminate information on where to obtain condoms, are needed to reduce barriers to condom use. Improvements in HIV/AIDS prevention behaviour are likely to require that these programmatic efforts be continued, scaled up, done in conjunction with other interventions, and targeted towards individuals with specific socio-demographic characteristics.
Looking above the prairie: localized and upward acute vision in a native grassland bird.
Tyrrell, Luke P; Moore, Bret A; Loftis, Christopher; Fernández-Juricic, Esteban
2013-12-02
Visual systems of open habitat vertebrates are predicted to have a band of acute vision across the retina (visual streak) and wide visual coverage to gather information along the horizon. We tested whether the eastern meadowlark (Sturnella magna) had this visual configuration given that it inhabits open grasslands. Contrary to our expectations, the meadowlark retina has a localized spot of acute vision (fovea) and relatively narrow visual coverage. The fovea projects above rather than towards the horizon with the head at rest, and individuals modify their body posture in tall grass to maintain a similar foveal projection. Meadowlarks have relatively large binocular fields and can see their bill tips, which may help with their probe-foraging technique. Overall, meadowlark vision does not fit the profile of vertebrates living in open habitats. The binocular field may control foraging while the fovea may be used for detecting and tracking aerial stimuli (predators, conspecifics).
Modeling and Simulation of Microelectrode-Retina Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckerman, M
2002-11-30
The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how bestmore » to stimulate, and communicate with, cells in the retina using implanted microelectrodes.« less
Roberts, Kasey; Park, Thomas; Elder, Nancy C; Regan, Saundra; Theodore, Sarah N; Mitchell, Monica J; Johnson, Yolanda N
2015-11-01
Urban Health Project (UHP) is a mission and vision-driven summer internship at the University of Cincinnati College of Medicine that places first-year medical students at local community agencies that work with underserved populations. At the completion of their internship, students write Final Intern Reflections (FIRs). Final Intern Reflections written from 1987 to 2012 were read and coded to both predetermined categories derived from the UHP mission and vision statements and new categories created from the data themselves. Comments relating to UHP's mission and vision were found in 47% and 36% of FIRs, respectively. Positive experiences outweighed negative by a factor of eight. Interns reported the following benefits: educational (53%), valuable (25%), rewarding (25%), new (10%), unique (6%), and life-changing (5%). Urban Health Project is successful in providing medical students with enriching experiences with underserved populations that have the potential to change their understanding of vulnerable populations.
Buildings of the Future Scoping Study: A Framework for Vision Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Na; Goins, John D.
2015-02-01
The Buildings of the Future Scoping Study, funded by the U.S. Department of Energy (DOE) Building Technologies Office, seeks to develop a vision for what U.S. mainstream commercial and residential buildings could become in 100 years. This effort is not intended to predict the future or develop a specific building design solution. Rather, it will explore future building attributes and offer possible pathways of future development. Whether we achieve a more sustainable built environment depends not just on technologies themselves, but on how effectively we envision the future and integrate these technologies in a balanced way that generates economic, social,more » and environmental value. A clear, compelling vision of future buildings will attract the right strategies, inspire innovation, and motivate action. This project will create a cross-disciplinary forum of thought leaders to share their views. The collective views will be integrated into a future building vision and published in September 2015. This report presents a research framework for the vision development effort based on a literature survey and gap analysis. This document has four objectives. First, it defines the project scope. Next, it identifies gaps in the existing visions and goals for buildings and discusses the possible reasons why some visions did not work out as hoped. Third, it proposes a framework to address those gaps in the vision development. Finally, it presents a plan for a series of panel discussions and interviews to explore a vision that mitigates problems with past building paradigms while addressing key areas that will affect buildings going forward.« less
Flight Test Comparison Between Enhanced Vision (FLIR) and Synthetic Vision Systems
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.
2005-01-01
Limited visibility and reduced situational awareness have been cited as predominant causal factors for both Controlled Flight Into Terrain (CFIT) and runway incursion accidents. NASA s Synthetic Vision Systems (SVS) project is developing practical application technologies with the goal of eliminating low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance. A flight test evaluation was conducted in the summer of 2004 by NASA Langley Research Center under NASA s Aviation Safety and Security, Synthetic Vision System - Commercial and Business program. A Gulfstream G-V aircraft, modified and operated under NASA contract by the Gulfstream Aerospace Corporation, was flown over a 3-week period at the Reno/Tahoe International Airport and an additional 3-week period at the NASA Wallops Flight Facility to evaluate integrated Synthetic Vision System concepts. Flight testing was conducted to evaluate the performance, usability, and acceptance of an integrated synthetic vision concept which included advanced Synthetic Vision display concepts for a transport aircraft flight deck, a Runway Incursion Prevention System, an Enhanced Vision Systems (EVS), and real-time Database Integrity Monitoring Equipment. This paper focuses on comparing qualitative and subjective results between EVS and SVS display concepts.
Causes and prevalence of visual impairment among adults in the United States.
Congdon, Nathan; O'Colmain, Benita; Klaver, Caroline C W; Klein, Ronald; Muñoz, Beatriz; Friedman, David S; Kempen, John; Taylor, Hugh R; Mitchell, Paul
2004-04-01
To estimate the cause-specific prevalence and distribution of blindness and low vision in the United States by age, race/ethnicity, and gender, and to estimate the change in these prevalence figures over the next 20 years. Summary prevalence estimates of blindness (both according to the US definition of < or =6/60 [< or =20/200] best-corrected visual acuity in the better-seeing eye and the World Health Organization standard of < 6/120 [< 20/400]) and low vision (< 6/12 [< 20/40] best-corrected vision in the better-seeing eye) were prepared separately for black, Hispanic, and white persons in 5-year age intervals starting at 40 years. The estimated prevalences were based on recent population-based studies in the United States, Australia, and Europe. These estimates were applied to 2000 US Census data, and to projected US population figures for 2020, to estimate the number of Americans with visual impairment. Cause-specific prevalences of blindness and low vision were also estimated for the different racial/ethnic groups. Based on demographics from the 2000 US Census, an estimated 937 000 (0.78%) Americans older than 40 years were blind (US definition). An additional 2.4 million Americans (1.98%) had low vision. The leading cause of blindness among white persons was age-related macular degeneration (54.4% of the cases), while among black persons, cataract and glaucoma accounted for more than 60% of blindness. Cataract was the leading cause of low vision, responsible for approximately 50% of bilateral vision worse than 6/12 (20/40) among white, black, and Hispanic persons. The number of blind persons in the US is projected to increase by 70% to 1.6 million by 2020, with a similar rise projected for low vision. Blindness or low vision affects approximately 1 in 28 Americans older than 40 years. The specific causes of visual impairment, and especially blindness, vary greatly by race/ethnicity. The prevalence of visual disabilities will increase markedly during the next 20 years, owing largely to the aging of the US population.
Health Project Management. A Manual of Procedures for Formulating and Implementing Health Projects.
ERIC Educational Resources Information Center
Bainbridge, J.; Sapirie, S.
The manual presents 16 main steps for health project management, from project formulation through termination. The manual defines a health project as a temporary intensive effort to set up and put into operation a new or revised service that will result in the reduction of specific health or health-related problems. (Typical examples include the…
State highways as main streets : a study of community design and visioning.
DOT National Transportation Integrated Search
2009-10-01
The objectives for this project were to explore community transportation design policy to improve collaboration when state highways serve as local main streets, determine successful approaches to meet the federal requirements for visioning set forth ...
Nikolić, Marina; Glibetić, Maria; Gurinović, Mirjana; Milešević, Jelena; Khokhar, Santosh; Chillo, Stefania; Abaravicius, Jonas Algis; Bordoni, Alessandra; Capozzi, Francesco
2014-04-02
The aim of the CHANCE project is to develop novel and affordable nutritious foods to optimize the diet and reduce the risk of diet-related diseases among groups at risk of poverty (ROP). This paper describes the methodology used in the two initial steps to accomplish the project's objective as follows: 1. a literature review of existing data and 2. an identification of ROP groups with which to design and perform the CHANCE nutritional survey, which will supply new data that is useful for formulating the new CHANCE food. Based on the literature review, a low intake of fruit and vegetables, whole grain products, fish, energy, fiber, vitamins B1, B2, B3, B6, B12 and C, folate, calcium, magnesium, iron, potassium and zinc and a high intake of starchy foods, processed meat and sodium were apparent. However, the available data appeared fragmented because of the different methodologies used in the studies. A more global vision of the main nutritional problems that are present among low-income people in Europe is needed, and the first step to achieve this goal is the use of common criteria to define the risk of poverty. The scoring system described here represents novel criteria for defining at-risk-of-poverty groups not only in the CHANCE-participating countries but also all over Europe.
Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks
Chen, Jianhui; Liu, Ji; Ye, Jieping
2013-01-01
We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms. PMID:24077658
Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks.
Chen, Jianhui; Liu, Ji; Ye, Jieping
2012-02-01
We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms.
Business Plan for the Southwest Regional Spaceport: Executive Summary
NASA Technical Reports Server (NTRS)
1997-01-01
A proposal for a commercial, full-service launch, tracking, and recovery complex for Reusable Launch Vehicles in New Mexico is presented. Vision, mission, business definition, competitive advantages, and business approach are formulated. Management plan and team structure are detailed, and anticipated market is described. Finance and marketing plans are presented. Financial analysis is performed.
ERIC Educational Resources Information Center
Hansen, Janne Hedegaard
2012-01-01
In this article, I will argue that a theoretical identification of the limit to inclusion is needed in the conceptual identification of inclusion. On the one hand, inclusion is formulated as a vision that is, in principle, limitless. On the other hand, there seems to be an agreement that inclusion has a limit in the pedagogical practice. However,…
A Vision beyond Survival: A Resource Guide for Incarcerated Women.
ERIC Educational Resources Information Center
Smith, Brenda V., Ed.; Dailard, Cynthia, Ed.
This guide is a compilation of material critical to incarcerated women and to women in the community who have a history involving the criminal justice system. It provides them with a framework for analyzing problems, formulating strategies for change, and crafting solutions. Section 1 deals with negotiating the prison system. Six chapters address…
New Horizons the Future of Higher Education
ERIC Educational Resources Information Center
Egol, Morton
2006-01-01
Given the extraordinary success that higher education has enjoyed over a very long period, it is vulnerable to becoming the "victim of its own success." The challenge for higher education is multifaceted and includes: (1) Overcoming the tendency toward hallowed tradition and the status quo; (2) Formulating a vision for achieving the purpose of…
EVA Communications Avionics and Informatics
NASA Technical Reports Server (NTRS)
Carek, David Andrew
2005-01-01
The Glenn Research Center is investigating and developing technologies for communications, avionics, and information systems that will significantly enhance extra vehicular activity capabilities to support the Vision for Space Exploration. Several of the ongoing research and development efforts are described within this presentation including system requirements formulation, technology development efforts, trade studies, and operational concept demonstrations.
An Omnidirectional Vision Sensor Based on a Spherical Mirror Catadioptric System.
Barone, Sandro; Carulli, Marina; Neri, Paolo; Paoli, Alessandro; Razionale, Armando Viviano
2018-01-31
The combination of mirrors and lenses, which defines a catadioptric sensor, is widely used in the computer vision field. The definition of a catadioptric sensors is based on three main features: hardware setup, projection modelling and calibration process. In this paper, a complete description of these aspects is given for an omnidirectional sensor based on a spherical mirror. The projection model of a catadioptric system can be described by the forward projection task (FP, from 3D scene point to 2D pixel coordinates) and backward projection task (BP, from 2D coordinates to 3D direction of the incident light). The forward projection of non-central catadioptric vision systems, typically obtained by using curved mirrors, is usually modelled by using a central approximation and/or by adopting iterative approaches. In this paper, an analytical closed-form solution to compute both forward and backward projection for a non-central catadioptric system with a spherical mirror is presented. In particular, the forward projection is reduced to a 4th order polynomial by determining the reflection point on the mirror surface through the intersection between a sphere and an ellipse. A matrix format of the implemented models, suitable for fast point clouds handling, is also described. A robust calibration procedure is also proposed and applied to calibrate a catadioptric sensor by determining the mirror radius and center with respect to the camera.
An Omnidirectional Vision Sensor Based on a Spherical Mirror Catadioptric System
Barone, Sandro; Carulli, Marina; Razionale, Armando Viviano
2018-01-01
The combination of mirrors and lenses, which defines a catadioptric sensor, is widely used in the computer vision field. The definition of a catadioptric sensors is based on three main features: hardware setup, projection modelling and calibration process. In this paper, a complete description of these aspects is given for an omnidirectional sensor based on a spherical mirror. The projection model of a catadioptric system can be described by the forward projection task (FP, from 3D scene point to 2D pixel coordinates) and backward projection task (BP, from 2D coordinates to 3D direction of the incident light). The forward projection of non-central catadioptric vision systems, typically obtained by using curved mirrors, is usually modelled by using a central approximation and/or by adopting iterative approaches. In this paper, an analytical closed-form solution to compute both forward and backward projection for a non-central catadioptric system with a spherical mirror is presented. In particular, the forward projection is reduced to a 4th order polynomial by determining the reflection point on the mirror surface through the intersection between a sphere and an ellipse. A matrix format of the implemented models, suitable for fast point clouds handling, is also described. A robust calibration procedure is also proposed and applied to calibrate a catadioptric sensor by determining the mirror radius and center with respect to the camera. PMID:29385051
Technology Assessment in Support of the Presidential Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Weisbin, Charles R.; Lincoln, William; Mrozinski, Joe; Hua, Hook; Merida, Sofia; Shelton, Kacie; Adumitroaie, Virgil; Derleth, Jason; Silberg, Robert
2006-01-01
This paper discusses the process and results of technology assessment in support of the United States Vision for Space Exploration of the Moon, Mars and Beyond. The paper begins by reviewing the Presidential Vision: a major endeavor in building systems of systems. It discusses why we wish to return to the Moon, and the exploration architecture for getting there safely, sustaining a presence, and safely returning. Next, a methodology for optimal technology investment is proposed with discussion of inputs including a capability hierarchy, mission importance weightings, available resource profiles as a function of time, likelihoods of development success, and an objective function. A temporal optimization formulation is offered, and the investment recommendations presented along with sensitivity analyses. Key questions addressed are sensitivity of budget allocations to cost uncertainties, reduction in available budget levels, and shifting funding within constraints imposed by mission timeline.
A vision and strategy for the virtual physiological human: 2012 update
Hunter, Peter; Chapman, Tara; Coveney, Peter V.; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F.; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Shublaq, Nour; Skår, John; Stroetmann, Karl; Tegner, Jesper; Thomas, S. Randall; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H. G. M.; Viceconti, Marco
2013-01-01
European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595–2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally. PMID:24427536
A vision and strategy for the virtual physiological human: 2012 update.
Hunter, Peter; Chapman, Tara; Coveney, Peter V; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Shublaq, Nour; Skår, John; Stroetmann, Karl; Tegner, Jesper; Thomas, S Randall; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H G M; Viceconti, Marco
2013-04-06
European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595-2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally.
Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drury, E.; Denholm, P.; Margolis, R.
2013-01-01
The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.
Health system vision of iran in 2025.
Rostamigooran, N; Esmailzadeh, H; Rajabi, F; Majdzadeh, R; Larijani, B; Dastgerdi, M Vahid
2013-01-01
Vast changes in disease features and risk factors and influence of demographic, economical, and social trends on health system, makes formulating a long term evolutionary plan, unavoidable. In this regard, to determine health system vision in a long term horizon is a primary stage. After narrative and purposeful review of documentaries, major themes of vision statement were determined and its context was organized in a work group consist of selected managers and experts of health system. Final content of the statement was prepared after several sessions of group discussions and receiving ideas of policy makers and experts of health system. Vision statement in evolutionary plan of health system is considered to be :"a progressive community in the course of human prosperity which has attained to a developed level of health standards in the light of the most efficient and equitable health system in visionary region(1) and with the regarding to health in all policies, accountability and innovation". An explanatory context was compiled either to create a complete image of the vision. Social values and leaders' strategic goals, and also main orientations are generally mentioned in vision statement. In this statement prosperity and justice are considered as major values and ideals in society of Iran; development and excellence in the region as leaders' strategic goals; and also considering efficiency and equality, health in all policies, and accountability and innovation as main orientations of health system.
An augmented-reality edge enhancement application for Google Glass.
Hwang, Alex D; Peli, Eli
2014-08-01
Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer's real-world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Google Glass' camera lens distortions were corrected by using an image warping. Because the camera and virtual display are horizontally separated by 16 mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of three-dimensional transformations to minimize parallax errors before the final projection to the Glass' see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal-vision subjects, with and without a diffuser film to simulate vision loss. For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera's performance. The authors assume that this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration.
Vision Voice: A Multimedia Exploration of Diabetes and Vision Loss in East Harlem.
Ives, Brett; Nedelman, Michael; Redwood, Charysse; Ramos, Michelle A; Hughson-Andrade, Jessica; Hernandez, Evelyn; Jordan, Dioris; Horowitz, Carol R
2015-01-01
East Harlem, New York, is a community actively struggling with diabetes and its complications, including vision-related conditions that can affect many aspects of daily life. Vision Voice was a qualitative community-based participatory research (CBPR) study that intended to better understand the needs and experiences of people living with diabetes, other comorbid chronic illnesses, and vision loss in East Harlem. Using photovoice methodology, four participants took photographs, convened to review their photographs, and determined overarching themes for the group's collective body of work. Identified themes included effect of decreased vision function on personal independence/mobility and self-management of chronic conditions and the importance of informing community members and health care providers about these issues. The team next created a documentary film that further develops the narratives of the photovoice participants. The Vision Voice photovoice project was an effective tool to assess community needs, educate and raise awareness.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.
2007-01-01
The use of enhanced vision systems in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting approach and landing operations. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved enhanced flight vision system that shows the required visual references on the pilot's Head-Up Display. An experiment was conducted to evaluate the complementary use of synthetic vision systems and enhanced vision system technologies, focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under these newly adopted rules. Experimental results specific to flight crew response to non-normal events using the fused synthetic/enhanced vision system are presented.
Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)
NASA Astrophysics Data System (ADS)
Ashcraft, Todd W.; Atac, Robert
2012-06-01
Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.
Design Environment for Novel Vertical Lift Vehicles: DELIVER
NASA Technical Reports Server (NTRS)
Theodore, Colin
2016-01-01
This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.
ERIC Educational Resources Information Center
Shoultz, Jan; Kooker, Barbara Molina; Sloat, Ann R.
1998-01-01
In Hawaii, one of four national "vision for nursing education" projects focused on identifying themes for a community-based curriculum. Focus groups selected nursing history, culture, identity, knowledge, and practice as well as cross-disciplinary themes. (SK)
Pedagogical Possibilities for Unruly Bodies
ERIC Educational Resources Information Center
Rice, Carla; Chandler, Eliza; Liddiard, Kirsty; Rinaldi, Jen; Harrison, Elisabeth
2018-01-01
Project Re-Vision uses disability arts to disrupt stereotypical understandings of disability and difference that create barriers to healthcare. In this paper, we examine how digital stories produced through Re-Vision disrupt biopedagogies by working as body-becoming pedagogies to create non-didactic possibilities for living in/with difference. We…
Vision and Voyages: Lessons Learned from the Planetary Decadal Survey
NASA Astrophysics Data System (ADS)
Squyres, S. W.
2015-12-01
The most recent planetary decadal survey, entitled Vision and Voyages for Planetary Science in the Decade 2013-2022, provided a detailed set of priorities for solar system exploration. Those priorities drew on broad input from the U.S. and international planetary science community. Using white papers, town hall meetings, and open meetings of the decadal committees, community views were solicited and a consensus began to emerge. The final report summarized that consensus. Like many past decadal reports, the centerpiece of Vision and Voyages was a set of priorities for future space flight projects. Two things distinguished this report from some previous decadals. First, conservative and independent cost estimates were obtained for all of the projects that were considered. These independent cost estimates, rather than estimates generated by project advocates, were used to judge each project's expected science return per dollar. Second, rather than simply accepting NASA's ten-year projection of expected funding for planetary exploration, decision rules were provided to guide program adjustments if actual funding did not follow projections. To date, NASA has closely followed decadal recommendations. In particular, the two highest priority "flagship" missions, a Mars rover to collect samples for return to Earth and a mission to investigate a possible ocean on Europa, are both underway. The talk will describe the planetary decadal process in detail, and provide a more comprehensive assessment of NASA's response to it.
Jordan, Timothy R; Sheen, Mercedes; Abedipour, Lily; Paterson, Kevin B
2014-01-01
When observing a talking face, it has often been argued that visual speech to the left and right of fixation may produce differences in performance due to divided projections to the two cerebral hemispheres. However, while it seems likely that such a division in hemispheric projections exists for areas away from fixation, the nature and existence of a functional division in visual speech perception at the foveal midline remains to be determined. We investigated this issue by presenting visual speech in matched hemiface displays to the left and right of a central fixation point, either exactly abutting the foveal midline or else located away from the midline in extrafoveal vision. The location of displays relative to the foveal midline was controlled precisely using an automated, gaze-contingent eye-tracking procedure. Visual speech perception showed a clear right hemifield advantage when presented in extrafoveal locations but no hemifield advantage (left or right) when presented abutting the foveal midline. Thus, while visual speech observed in extrafoveal vision appears to benefit from unilateral projections to left-hemisphere processes, no evidence was obtained to indicate that a functional division exists when visual speech is observed around the point of fixation. Implications of these findings for understanding visual speech perception and the nature of functional divisions in hemispheric projection are discussed.
From Romanticism to Deep Ecology: The Continuing Evolution in American Environmental Thought.
ERIC Educational Resources Information Center
Ackerson, David
2000-01-01
Describes the contributions to deep ecology of Henry Thoreau, who advocated acting upon strongly held convictions; John Muir, who adopted a biocentric view of nature; and Aldo Leopold, who formulated an egalitarian ecosystem ethic. While deep ecology is moving toward a new vision of humankind's relation to nature, it has yet to coalesce into a…
2016-09-25
Niccolo Machiavelli, The Prince Introduction The idea that war and unarmed competition are much alike is common. Athletes, especially football players ...... research , Kotter formulated eight steps: (1) Establish a Sense of Urgency, (2) Create a Guiding Coalition, (3) Develop a Change Vision, (4) Communicate a
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Bellamy, Marvin; DeSantis, Charlie; Hess, John; Pattok, Tracy; Quintero, Andrew; Silver, R.
1996-01-01
ESS 2000 has the vision of enhancing the knowledge necessary to implement cost-effective, leading-edge ESS technologies and procedures in order to increase U.S. electronics industry competitiveness. This paper defines EES and discusses the factors driving the project, the objectives of the project, its participants, the three phases of the project, the technologies involved, and project deliverables.
Making sausage--effective management of enterprise-wide clinical IT projects.
Smaltz, Detlev H; Callander, Rhonda; Turner, Melanie; Kennamer, Gretchen; Wurtz, Heidi; Bowen, Alan; Waldrum, Mike R
2005-01-01
Unlike most other industries in which company employees are, well, company employees, U.S. hospitals are typically run by both employees (nurses, technicians, and administrative staff) and independent entrepreneurs (physicians and nurse practitioners). Therefore, major enterprise-wide clinical IT projects can never simply be implemented by mandate. Project management processes in these environments must rely on methods that influence adoption rather than presume adoption will occur. "Build it and they will come" does not work in a hospital setting. This paper outlines a large academic medical center's experiences in managing an enterprise-wide project to replace its core clinical systems functionality. Best practices include developing a cogent optimal future-state vision, communications planning and execution, vendor validation against the optimal future-state vision, and benefits realization assessment.
DOT National Transportation Integrated Search
2008-12-01
The I-95 Corridor Coalitions Vision project is a departure from the Coalitions historic role that focused primarily on shorter-term operational improvements in the corridor. In the past, most of the day-to-day issues confronting the Coalition m...
An Augmented-Reality Edge Enhancement Application for Google Glass
Hwang, Alex D.; Peli, Eli
2014-01-01
Purpose Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer’s real world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Methods Goggle Glass’s camera lens distortions were corrected by using an image warping. Since the camera and virtual display are horizontally separated by 16mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of 3D transformations to minimize parallax errors before the final projection to the Glass’ see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal vision subjects, with and without a diffuser film to simulate vision loss. Results For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera’s performance. The authors assume this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Conclusions Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible, and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration. PMID:24978871
Health System Vision of Iran in 2025
Rostamigooran, N; Esmailzadeh, H; Rajabi, F; Majdzadeh, R; Larijani, B; Dastgerdi, M Vahid
2013-01-01
Background: Vast changes in disease features and risk factors and influence of demographic, economical, and social trends on health system, makes formulating a long term evolutionary plan, unavoidable. In this regard, to determine health system vision in a long term horizon is a primary stage. Method: After narrative and purposeful review of documentaries, major themes of vision statement were determined and its context was organized in a work group consist of selected managers and experts of health system. Final content of the statement was prepared after several sessions of group discussions and receiving ideas of policy makers and experts of health system. Results: Vision statement in evolutionary plan of health system is considered to be :“a progressive community in the course of human prosperity which has attained to a developed level of health standards in the light of the most efficient and equitable health system in visionary region1 and with the regarding to health in all policies, accountability and innovation”. An explanatory context was compiled either to create a complete image of the vision. Conclusion: Social values and leaders’ strategic goals, and also main orientations are generally mentioned in vision statement. In this statement prosperity and justice are considered as major values and ideals in society of Iran; development and excellence in the region as leaders’ strategic goals; and also considering efficiency and equality, health in all policies, and accountability and innovation as main orientations of health system. PMID:23865011
Methods for Retention of Undergraduate Students in Field-Based Research
NASA Astrophysics Data System (ADS)
Lehnen, J. N.
2017-12-01
Undergraduate students often participate in research by following the vision, creativity, and procedures established by their principal investigators. Students at the undergraduate level rarely get a chance to direct the course of their own research and have little experience creatively solving advanced problems and establishing project objectives. This lack of independence and ingenuity results in students missing out on some of the most key aspects of research. For the last two years, the Undergraduate Student Instrument Project (USIP) at the University of Houston has encouraged students to become more independent scientists by completing a research project from start to finish with minimal reliance on faculty mentors. As part of USIP, students were responsible for proposing scientific questions about the upper stratosphere, designing instruments to answer those questions, and launching their experiments into the atmosphere of Fairbanks, Alaska. Everything from formulation of experiment ideas to actual launching of the balloon borne payloads was planned by and performed by students; members of the team even established a student leadership system, handled monetary responsibilities, and coordinated with NASA representatives to complete design review requirements. This session will discuss the pros and cons of student-led research by drawing on USIP as an example, focusing specifically on how the experience impacted student engagement and retention in the program. This session will also discuss how to encourage students to disseminate their knowledge through conferences, collaborations, and educational outreach initiatives by again using USIP students as an example.
NASA Astrophysics Data System (ADS)
Lewandowsky, S.
2016-12-01
Undergraduate students often participate in research by following the vision, creativity, and procedures established by their principal investigators. Students at the undergraduate level rarely get a chance to direct the course of their own research and have little experience creatively solving advanced problems and establishing project objectives. This lack of independence and ingenuity results in students missing out on some of the most key aspects of research. For the last two years, the Undergraduate Student Instrument Project (USIP) at the University of Houston has encouraged students to become more independent scientists by completing a research project from start to finish with minimal reliance on faculty mentors. As part of USIP, students were responsible for proposing scientific questions about the upper stratosphere, designing instruments to answer those questions, and launching their experiments into the atmosphere of Fairbanks, Alaska. Everything from formulation of experiment ideas to actual launching of the balloon borne payloads was planned by and performed by students; members of the team even established a student leadership system, handled monetary responsibilities, and coordinated with NASA representatives to complete design review requirements. This session will discuss the pros and cons of student-led research by drawing on USIP as an example, focusing specifically on how the experience impacted student engagement and retention in the program. This session will also discuss how to encourage students to disseminate their knowledge through conferences, collaborations, and educational outreach initiatives by again using USIP students as an example.
Liquid lens: advances in adaptive optics
NASA Astrophysics Data System (ADS)
Casey, Shawn Patrick
2010-12-01
'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.
Machine vision for real time orbital operations
NASA Technical Reports Server (NTRS)
Vinz, Frank L.
1988-01-01
Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, Jason L.
2005-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results evinced the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.
2006-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results showed the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.
NASA Astrophysics Data System (ADS)
Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.
2004-11-01
The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.
NASA Technical Reports Server (NTRS)
Nakagawa, Y.
1981-01-01
The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.
2020 Vision: The EICCD Moves into the 21st Century.
ERIC Educational Resources Information Center
Blong, John T.; Friedel, Janice N.
In 1989, the Eastern Iowa Community College District (EICCD) undertook a project to develop a collective image of what the community college should be in the coming century. The reasons for seeking this "shared vision" were to create institutional focus, foster commitment, build communication, and reaffirm the college's mission and…
The Influence of Attentional Focus Instructions and Vision on Jump Height Performance
ERIC Educational Resources Information Center
Abdollahipour, Reza; Psotta, Rudolf; Land, William M.
2016-01-01
Purpose: Studies have suggested that the use of visual information may underlie the benefit associated with an external focus of attention. Recent studies exploring this connection have primarily relied on motor tasks that involve manipulation of an object (object projection). The present study examined whether vision influences the effect of…
The Mission Project: Building a Nation of Learners by Advancing America's Community Colleges.
ERIC Educational Resources Information Center
American Association of Community Colleges, Washington, DC.
This document describes the American Association of Community Colleges (AACC), its new mission and vision statements, and a recommended set of strategic action areas deemed essential to creating the future described in the mission and vision statements. The proposed AACC mission statement reads: "building a nation of learners by advancing…
Qualifications of drivers - vision and diabetes
DOT National Transportation Integrated Search
2011-01-01
San Francisco UPA projects focus on reducing traffic congestion related to parking in downtown San Francisco. Intelligent transportation systems (ITS) technologies underlie many of the San Francisco UPA projects, including parking and roadway sensors...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, K.W.; Scott, K.P.
2000-11-01
Since the 2020 Vision project began in 1996, students from participating schools have completed and submitted a variety of scenarios describing potential world and regional conditions in the year 2020 and their possible effect on US national security. This report summarizes the students' views and describes trends observed over the course of the 2020 Vision project's five years. It also highlights the main organizational features of the project. An analysis of thematic trends among the scenarios showed interesting shifts in students' thinking, particularly in their views of computer technology, US relations with China, and globalization. In 1996, most students perceivedmore » computer technology as highly beneficial to society, but as the year 2000 approached, this technology was viewed with fear and suspicion, even personified as a malicious, uncontrollable being. Yet, after New Year's passed with little disruption, students generally again perceived computer technology as beneficial. Also in 1996, students tended to see US relations with China as potentially positive, with economic interaction proving favorable to both countries. By 2000, this view had transformed into a perception of China emerging as the US' main rival and ''enemy'' in the global geopolitical realm. Regarding globalization, students in the first two years of the project tended to perceive world events as dependent on US action. However, by the end of the project, they saw the US as having little control over world events and therefore, we Americans would need to cooperate and compromise with other nations in order to maintain our own well-being.« less
Three-dimensional ocular kinematics underlying binocular single vision
Misslisch, H.
2016-01-01
We have analyzed the binocular coordination of the eyes during far-to-near refixation saccades based on the evaluation of distance ratios and angular directions of the projected target images relative to the eyes' rotation centers. By defining the geometric point of binocular single vision, called Helmholtz point, we found that disparities during fixations of targets at near distances were limited in the subject's three-dimensional visual field to the vertical and forward directions. These disparities collapsed to simple vertical disparities in the projective binocular image plane. Subjects were able to perfectly fuse the vertically disparate target images with respect to the projected Helmholtz point of single binocular vision, independent of the particular location relative to the horizontal plane of regard. Target image fusion was achieved by binocular torsion combined with corrective modulations of the differential half-vergence angles of the eyes in the horizontal plane. Our findings support the notion that oculomotor control combines vergence in the horizontal plane of regard with active torsion in the frontal plane to achieve fusion of the dichoptic binocular target images. PMID:27655969
Creating a Partnering Community Aimed to Foster Climate Literacy in the Southeastern United States
NASA Astrophysics Data System (ADS)
Rutherford, D.; McNeal, K. S.; Smith, R.; Hare, D.; Nair, U. S.
2011-12-01
The Climate Literacy Partnership in the Southeast (CLiPSE) is a part of the Climate Change Education Program supported by the National Science Foundation (http://CLiPSE-project.org). The established CLiPSE partnership is dedicated to improving climate literacy in the southeast through crafting a shared vision and strategic plan among stakeholders that promotes scientific formal and informal educational resources, materials and programs; a diverse network of key partnering organizations throughout the Southeastern United States (SE US); and effective public dialogues that address diverse learners and audiences and supports learning of climate, climate change, and its relevance upon human and environmental systems. The CLiPSE project has been successful in creating partnerships with more than fifty key stakeholders that stem from a few key publics such as agriculture, education, leisure, religious organizations, and culturally diverse communities. These key publics in the SE US frequently consist of individuals that place great trust in local, private efforts, and CLiPSE has realized the importance of the role of the partnering organizations in providing information through a trusted source. A second unique characteristic of the SE US is the predominately conservative and Protestant citizenry in the region. Working with and through these communities enhances climate change education outreach to this citizenry. The CLiPSE project rests on solid climate science and learning science research in order to formulate an effective plan with desired learning outcomes of critical thinking and civil conversation through effective communication strategies. This paper will present the CLiPSE model in reaching the key publics that traditionally hold ideologies that are traditionally perceived as incompatible with climate change science. We will present the strategies utilized to bring together experts and researchers in climate science, learning science, and social science with practitioners and leaders of key stakeholder groups to formulate a shared climate change education plan in the SE US that is uniquely formatted for each target audience. We will also share what we have learned from interacting with the leaders of our partnering organizations in crafting effective messages for their audiences and addressing learners' affective and cognitive domains.
NASA Technical Reports Server (NTRS)
Miller, Thomas
2007-01-01
The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1992-01-01
The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doak, J. E.; Prasad, Lakshman
2002-01-01
This paper discusses the use of Python in a computer vision (CV) project. We begin by providing background information on the specific approach to CV employed by the project. This includes a brief discussion of Constrained Delaunay Triangulation (CDT), the Chordal Axis Transform (CAT), shape feature extraction and syntactic characterization, and normalization of strings representing objects. (The terms 'object' and 'blob' are used interchangeably, both referring to an entity extracted from an image.) The rest of the paper focuses on the use of Python in three critical areas: (1) interactions with a MySQL database, (2) rapid prototyping of algorithms, andmore » (3) gluing together all components of the project including existing C and C++ modules. For (l), we provide a schema definition and discuss how the various tables interact to represent objects in the database as tree structures. (2) focuses on an algorithm to create a hierarchical representation of an object, given its string representation, and an algorithm to match unknown objects against objects in a database. And finally, (3) discusses the use of Boost Python to interact with the pre-existing C and C++ code that creates the CDTs and CATS, performs shape feature extraction and syntactic characterization, and normalizes object strings. The paper concludes with a vision of the future use of Python for the CV project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-03-01
This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.
Audio from Orbit: The Future of Libraries for Individuals Who Are Blind or Vision Impaired
ERIC Educational Resources Information Center
Steer, Michael; Cheetham, Leonie
2005-01-01
Free library service is a component of the foundations of democracy, citizenship, economic and social development, scholarship and education, in progressive societies. The evolution of libraries for people who are blind or vision impaired is briefly discussed and an innovative project, a talking book and daily newspaper delivery system that…
Giacoia, George P; Taylor-Zapata, Perdita; Mattison, Donald
2008-11-01
The Pediatric Formulation Initiative (PFI) is a project of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). The PFI was established to address the issue of the lack of appropriate formulations in children and to use this activity as a means to improve pediatric formulations, as mandated by the Best Pharmaceuticals for Children Act of 2002 and 2007. The PFI began in 2005 with the formation of 3 working groups-Scientific, Economics, and Taste and Flavor. These groups began the process of identifying issues, gathering needed information, and considering possible ways to overcome barriers to the development of pediatric drug formulations. The purpose of this supplement was to provide details of the working groups' activities through presentation of full-length articles. Also presented is an article that discusses the 2007 European Union (EU) regulation on medicinal products for pediatric use. Information for this article was gathered from the proceedings of a PFI workshop, sponsored by the NICHD, that was held in Bethesda, Maryland, on December 6 and 7, 2005, as well as postworkshop discussions of the different working groups. The increased awareness that the majority of medications used today have not been labeled for use in children, and have not been tested to define safety, efficacy, and appropriate dosing, has led to the passage of legislation in the United States and in the EU to create incentives to stimulate the testing of drugs in this special population. It is imperative that the problems associated with the compounding and use of extemporaneous formulations as described in this supplement be addressed. Regulatory barriers to the availability of commercially developed pediatric formulations in different countries will need to be minimized or removed. New drug delivery systems will need to be tested and made available to pediatric patients. Further research in the mediators of bitter taste and study of taste blockers, as well as newer methods for taste testing in pediatrics, should be encouraged. An overarching goal for the future is addressing the economic barriers to develop appropriate pediatric dosage forms for drugs with limited market penetration. The lack of appropriate formulations is part of a larger problem that includes limited development and manufacture of medicines tailored for pediatric patients (particularly those affected by neglected diseases), insufficient investment in drug trials, and limited research on drug disposition in various pediatric populations worldwide. The solution to these issues will require alignment of vision and commitment as a global priority of policy makers, regulators, scientists, pharmaceutical sponsors, academic institutions, governments, and research foundations.
A Survey of Research Projects in Schools and Colleges of Optometry.
ERIC Educational Resources Information Center
Whitener, John C.
1981-01-01
A survey undertaken by the American Optometric Association reveals research projects, investigators, and in some cases, funding sources for research in the areas of low vision, ophthalmic lenses, pharmacology, anatomy and pathology, and sensory and motor functions. A total of 205 projects are charted. (MSE)
Prison Literacy Project Handbook.
ERIC Educational Resources Information Center
Kops, Joan, Ed.
This handbook records the creation, development and growth, and stumbling blocks and successes of the Prison Literacy Project (PLP). It is intended to serve as a model for other community groups that are developing their own literacy projects. The handbook provides a history and philosophy of PLP, states PLP's vision and purpose, discusses need,…
Orellano-Colón, Elsa M.; González-Laboy, Yolanda; De Jesús Rosario, Amarelis
2017-01-01
Objective The objective of this project was to develop a community-academic coalition partnership to conduct community-based participatory research (CBPR) to address health disparities in older adults with chronic conditions living in the Quebrada Arriba community. Methods We used the ‘Developing and Sustaining CPPR Partnerships: A Skill-Building Curriculum’, to create the Quebrada Arriba Community-Academic Partnership (QACAP). We assessed the meetings effectiveness and the CBPR experiences of the coalition members in the community-academic partnership. Results The stepwise process resulted in: the development of The Coalition for the Health and Wellbeing of Older People of Quebrada Arriba; the partnership’s mission and vision; the operating procedures; the formulation of the research question, and; the action plan for obtaining funding resources. The mean levels of satisfaction for each of the items of the Meeting Effectiveness Evaluation tool were 100%. The mean agreement rating scores on variables related to having a positive experience with the coalition, members’ representativeness of community interest, respectful contacts between members, the coalition’s vision and mission, the participation of the members in establishing the prioritized community problem, and sharing of resources between the members was 100%. Conclusion The steps used to build the QACAP provided an effective structure to create the coalition and captures the results of coalition activities. Partners’ time to build trust and developing a sufficient understanding of local issues, high interest of the community members, flexibility of the partners, capitalization on the partners’ strengths, and the shared decision building process were key contributors of this coalition’s success. PMID:28622408
Operational Based Vision Assessment
2014-02-01
formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation or convey any...expensive than other developers’ software. The sources for the GPUs ( Nvidia ) and the host computer (Concurrent’s iHawk) were identified. The...boundaries, which is a distracting artifact when performing visual tests. The problem has been isolated by the OBVA team to the Nvidia GPUs. The OBVA system
Eco-logical successes : second edition, January 2012
DOT National Transportation Integrated Search
2012-01-01
In 2006, leaders from eight Federal agencies signed the interagency document EcoLogical: An Ecosystem Approach to Developing Infrastructure Projects. Eco-Logical is a document that outlines a shared vision of how to develop infrastructure projects in...
Stead, William W.; Miller, Randolph A.; Musen, Mark A.; Hersh, William R.
2000-01-01
The vision of integrating information—from a variety of sources, into the way people work, to improve decisions and process—is one of the cornerstones of biomedical informatics. Thoughts on how this vision might be realized have evolved as improvements in information and communication technologies, together with discoveries in biomedical informatics, and have changed the art of the possible. This review identified three distinct generations of “integration” projects. First-generation projects create a database and use it for multiple purposes. Second-generation projects integrate by bringing information from various sources together through enterprise information architecture. Third-generation projects inter-relate disparate but accessible information sources to provide the appearance of integration. The review suggests that the ideas developed in the earlier generations have not been supplanted by ideas from subsequent generations. Instead, the ideas represent a continuum of progress along the three dimensions of workflow, structure, and extraction. PMID:10730596
Bird Flight as a Model for a Course in Unsteady Aerodynamics
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael
2014-11-01
Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.
Night vision goggle stimulation using LCoS and DLP projection technology, which is better?
NASA Astrophysics Data System (ADS)
Ali, Masoud H.; Lyon, Paul; De Meerleer, Peter
2014-06-01
High fidelity night-vision training has become important for many of the simulation systems being procured today. The end-users of these simulation-training systems prefer using their actual night-vision goggle (NVG) headsets. This requires that the visual display system stimulate the NVGs in a realistic way. Historically NVG stimulation was done with cathode-ray tube (CRT) projectors. However, this technology became obsolete and in recent years training simulators do NVG stimulation with laser, LCoS and DLP projectors. The LCoS and DLP projection technologies have emerged as the preferred approach for the stimulation of NVGs. Both LCoS and DLP technologies have advantages and disadvantages for stimulating NVGs. LCoS projectors can have more than 5-10 times the contrast capability of DLP projectors. The larger the difference between the projected black level and the brightest object in a scene, the better the NVG stimulation effects can be. This is an advantage of LCoS technology, especially when the proper NVG wavelengths are used. Single-chip DLP projectors, even though they have much reduced contrast compared to LCoS projectors, can use LED illuminators in a sequential red-green-blue fashion to create a projected image. It is straightforward to add an extra infrared (NVG wavelength) LED into this sequential chain of LED illumination. The content of this NVG channel can be independent of the visible scene, which allows effects to be added that can compensate for the lack of contrast inherent in a DLP device. This paper will expand on the differences between LCoS and DLP projectors for stimulating NVGs and summarize the benefits of both in night-vision simulation training systems.
Simulation Based Acquisition for NASA's Office of Exploration Systems
NASA Technical Reports Server (NTRS)
Hale, Joe
2004-01-01
In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OExS enterprise, within the Government, and with the general public. The SBA process features empowered collaborative teams (including industry partners) to integrate requirements, acquisition, training, operations, and sustainment. The SBA process also utilizes an increased reliance on and investment in M&S to reduce design risk. SBA originated as a joint Industry and Department of Defense (DoD) initiative to define and integrate an acquisition process that employs robust, collaborative use of M&S technology across acquisition phases and programs. The SBA process was successfully implemented in the Air Force s Joint Strike Fighter (JSF) Program.
NASA Astrophysics Data System (ADS)
Duclos, D.; Lonnoy, J.; Guillerm, Q.; Jurie, F.; Herbin, S.; D'Angelo, E.
2008-04-01
The last five years have seen a renewal of Automatic Target Recognition applications, mainly because of the latest advances in machine learning techniques. In this context, large collections of image datasets are essential for training algorithms as well as for their evaluation. Indeed, the recent proliferation of recognition algorithms, generally applied to slightly different problems, make their comparisons through clean evaluation campaigns necessary. The ROBIN project tries to fulfil these two needs by putting unclassified datasets, ground truths, competitions and metrics for the evaluation of ATR algorithms at the disposition of the scientific community. The scope of this project includes single and multi-class generic target detection and generic target recognition, in military and security contexts. From our knowledge, it is the first time that a database of this importance (several hundred thousands of visible and infrared hand annotated images) has been publicly released. Funded by the French Ministry of Defence (DGA) and by the French Ministry of Research, ROBIN is one of the ten Techno-vision projects. Techno-vision is a large and ambitious government initiative for building evaluation means for computer vision technologies, for various application contexts. ROBIN's consortium includes major companies and research centres involved in Computer Vision R&D in the field of defence: Bertin Technologies, CNES, ECA, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES. This paper, which first gives an overview of the whole project, is focused on one of ROBIN's key competitions, the SAGEM Defence Security database. This dataset contains more than eight hundred ground and aerial infrared images of six different vehicles in cluttered scenes including distracters. Two different sets of data are available for each target. The first set includes different views of each vehicle at close range in a "simple" background, and can be used to train algorithms. The second set contains many views of the same vehicle in different contexts and situations simulating operational scenarios.
Head-Mounted Display Technology for Low Vision Rehabilitation and Vision Enhancement
Ehrlich, Joshua R.; Ojeda, Lauro V.; Wicker, Donna; Day, Sherry; Howson, Ashley; Lakshminarayanan, Vasudevan; Moroi, Sayoko E.
2017-01-01
Purpose To describe the various types of head-mounted display technology, their optical and human factors considerations, and their potential for use in low vision rehabilitation and vision enhancement. Design Expert perspective. Methods An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field. Results Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low vision aids. Devices vary by their relationship to the user’s eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion and user interface. These optical and human factors considerations are important when selecting head-mounted displays for specific applications and patient groups. Conclusions Head-mounted display technologies may offer advantages over conventional low vision aids. Future research should compare head-mounted displays to commonly prescribed low vision aids in order to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations. PMID:28048975
Institute for Aviation Research and Development Research Project
1989-01-01
Symbolics Artificial Intelligence * Vision Systems * Finite Element Modeling ( NASTRAN ) * Aerodynamic Paneling (VSAERO) Projects: * Software...34Wall Functions for k and epsilon for Turbulent Flow Through Rough and Smooth Pipes," Eleventh International Symposium on Turbulence, October 17-19, 1988
Project nurse manager: an intrapreneurial role.
Risner, P B; Anderson, M L
1994-01-01
Nurse intrapreneurs are the key to innovation and cost-effective health care in the 1990s. A project nurse manager, acting as a liaison between service departments, can provide the vision and insight for the successful outcome of such projects as product evaluation, unit renovation, and the development of a new facility. The role, benefits, and outcomes of one project nurse manager are described.
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
ERIC Educational Resources Information Center
Andrews, Gillian
2015-01-01
Possibilities for a different form of education have provided rich sources of inspiration for science fiction writers. Isaac Asimov, Orson Scott Card, Neal Stephenson, Octavia Butler, and Vernor Vinge, among others, have all projected their own visions of what education could be. These visions sometimes engage with technologies that are currently…
Computing Visible-Surface Representations,
1985-03-01
Terzopoulos N00014-75-C-0643 9. PERFORMING ORGANIZATION NAME AMC ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK Artificial Inteligence Laboratory AREA A...Massachusetts Institute of lechnolog,. Support lbr the laboratory’s Artificial Intelligence research is provided in part by the Advanced Rtccarcl Proj...dynamically maintaining visible surface representations. Whether the intention is to model human vision or to design competent artificial vision systems
ERIC Educational Resources Information Center
Harris, Christopher J.; Penuel, William R.; D'Angelo, Cynthia M.; DeBarger, Angela Haydel; Gallagher, Lawrence P.; Kennedy, Cathleen A.; Cheng, Britte Haugen; Krajcik, Joseph S.
2015-01-01
The "Framework for K-12 Science Education" (National Research Council, 2012) sets an ambitious vision for science learning by emphasizing that for students to achieve proficiency in science they will need to participate in the authentic practices of scientists. To realize this vision, all students will need opportunities to learn from…
The Amazon Region; A Vision of Sovereignty
1998-04-06
and SPOT remote sensing satellites images, about 90% of the Amazon jungle remains almost untouched9. This 280 million hectares of vegetation hold...increasing energy needs, remain unanswered. Indian rights Has the Indian population been jeopardized by the development of the Amazon Region...or government agency. STRATEGY RESEARCH PROJECT THE AMAZON REGION; A VISION OF SOVEREIGNTY BY LIEUTENANT COLONEL EDUARDO JOSE BARBOSA
Insect-Based Vision for Autonomous Vehicles: A Feasibility Study
NASA Technical Reports Server (NTRS)
Srinivasan, Mandyam V.
1999-01-01
The aims of the project were to use a high-speed digital video camera to pursue two questions: i) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; To study the fine structure of insect flight trajectories with in order to better understand the characteristics of flight control, orientation and navigation.
49 CFR 571.218 - Standard No. 218; Motorcycle helmets.
Code of Federal Regulations, 2013 CFR
2013-10-01
... provide peripheral vision clearance of at least 105° to each side of the mid-sagittal plane, when the... basic plane that are within the angles of peripheral vision (see Figure 3). S5.5 Projections. A helmet... including 70 percent for a minimum of 4 hours. (b) Low temperature. Expose to any temperature from 5 °F to...
49 CFR 571.218 - Standard No. 218; Motorcycle helmets.
Code of Federal Regulations, 2014 CFR
2014-10-01
... provide peripheral vision clearance of at least 105° to each side of the mid-sagittal plane, when the... basic plane that are within the angles of peripheral vision (see Figure 3). S5.5 Projections. A helmet... including 70 percent for a minimum of 4 hours. (b) Low temperature. Expose to any temperature from 5 °F to...
Insect-Based Vision for Autonomous Vehicles: A Feasibility Study
NASA Technical Reports Server (NTRS)
Srinivasan, Mandyam V.
1999-01-01
The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.
Ability to Read Medication Labels Improved by Participation in a Low Vision Rehabilitation Program
ERIC Educational Resources Information Center
Markowitz, Samuel N.; Kent, Christine K.; Schuchard, Ronald A.; Fletcher, Donald C.
2008-01-01
Demographic projections indicate that the population of the Western world is aging, and evidence suggests an increase in the incidence of conditions, such as age-related macular degeneration (AMD), that produce visual impairments and result in low vision (Maberley et al., 2006). It is expected that in the United States and Canada, the annual…
Teacher Training Workshop for Educators of Students Who Are Blind or Low Vision
ERIC Educational Resources Information Center
Supalo, Cary A.; Dwyer, Danielle; Eberhart, Heather L.; Bunnag, Natasha; Mallouk, Thomas E.
2009-01-01
The Independent Laboratory Access for the Blind (ILAB) project has developed a suite of speech accessible tools for students who are blind or low vision to use in secondary and postsecondary science laboratory classes. The following are illustrations of experiments designed to be used by educators to introduce them to the ILAB tools, and to…
Color machine vision in industrial process control: case limestone mine
NASA Astrophysics Data System (ADS)
Paernaenen, Pekka H. T.; Lemstrom, Guy F.; Koskinen, Seppo
1994-11-01
An optical sorter technology has been developed to improve profitability of a mine by using color line scan machine vision technology. The new technology adapted longers the expected life time of the limestone mine and improves its efficiency. Also the project has proved that color line scan technology of today can successfully be applied to industrial use in harsh environments.
Nikolić, Marina; Glibetić, Maria; Gurinović, Mirjana; Milešević, Jelena; Khokhar, Santosh; Chillo, Stefania; Abaravicius, Jonas Algis; Bordoni, Alessandra; Capozzi, Francesco
2014-01-01
The aim of the CHANCE project is to develop novel and affordable nutritious foods to optimize the diet and reduce the risk of diet-related diseases among groups at risk of poverty (ROP). This paper describes the methodology used in the two initial steps to accomplish the project’s objective as follows: 1. a literature review of existing data and 2. an identification of ROP groups with which to design and perform the CHANCE nutritional survey, which will supply new data that is useful for formulating the new CHANCE food. Based on the literature review, a low intake of fruit and vegetables, whole grain products, fish, energy, fiber, vitamins B1, B2, B3, B6, B12 and C, folate, calcium, magnesium, iron, potassium and zinc and a high intake of starchy foods, processed meat and sodium were apparent. However, the available data appeared fragmented because of the different methodologies used in the studies. A more global vision of the main nutritional problems that are present among low-income people in Europe is needed, and the first step to achieve this goal is the use of common criteria to define the risk of poverty. The scoring system described here represents novel criteria for defining at-risk-of-poverty groups not only in the CHANCE-participating countries but also all over Europe. PMID:24699195
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Hughes, Monica F.; Arthur, Jarvis J., III; Kramer, Lynda J.; Glaab, Louis J.; Bailey, Randy E.; Parrish, Russell V.; Uenking, Michael D.
2003-01-01
Because restricted visibility has been implicated in the majority of commercial and general aviation accidents, solutions will need to focus on how to enhance safety during instrument meteorological conditions (IMC). The NASA Synthetic Vision Systems (SVS) project is developing technologies to help achieve these goals through the synthetic presentation of how the outside world would look to the pilot if vision were not reduced. The potential safety outcome would be a significant reduction in several accident categories, such as controlled-flight-into-terrain (CFIT), that have restricted visibility as a causal factor. The paper describes two experiments that demonstrated the efficacy of synthetic vision technology to prevent CFIT accidents for both general aviation and commercial aircraft.
Protyping machine vision software on the World Wide Web
NASA Astrophysics Data System (ADS)
Karantalis, George; Batchelor, Bruce G.
1998-10-01
Interactive image processing is a proven technique for analyzing industrial vision applications and building prototype systems. Several of the previous implementations have used dedicated hardware to perform the image processing, with a top layer of software providing a convenient user interface. More recently, self-contained software packages have been devised and these run on a standard computer. The advent of the Java programming language has made it possible to write platform-independent software, operating over the Internet, or a company-wide Intranet. Thus, there arises the possibility of designing at least some shop-floor inspection/control systems, without the vision engineer ever entering the factories where they will be used. It successful, this project will have a major impact on the productivity of vision systems designers.
From wheels to wings with evolutionary spiking circuits.
Floreano, Dario; Zufferey, Jean-Christophe; Nicoud, Jean-Daniel
2005-01-01
We give an overview of the EPFL indoor flying project, whose goal is to evolve neural controllers for autonomous, adaptive, indoor micro-flyers. Indoor flight is still a challenge because it requires miniaturization, energy efficiency, and control of nonlinear flight dynamics. This ongoing project consists of developing a flying, vision-based micro-robot, a bio-inspired controller composed of adaptive spiking neurons directly mapped into digital microcontrollers, and a method to evolve such a neural controller without human intervention. This article describes the motivation and methodology used to reach our goal as well as the results of a number of preliminary experiments on vision-based wheeled and flying robots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farthing, G. A.; Rimpf, L. M.
The overall goal of this project, as originally proposed, was to optimize the formulation of a novel solvent as a critical enabler for the cost-effective, energy-efficient, environmentally-friendly capture of CO{sub 2} at coal-fired utility plants. Aqueous blends of concentrated piperazine (PZ) with other compounds had been shown to exhibit high rates of CO{sub 2} absorption, low regeneration energy, and other desirable performance characteristics during an earlier 5-year development program conducted by B&W. The specific objective of this project was to identify PZ-based solvent formulations that globally optimize the performance of coal-fired power plants equipped with CO{sub 2} scrubbing systems. Whilemore » previous solvent development studies have tended to focus on energy consumption and absorber size, important issues to be sure, the current work seeks to explore, understand, and optimize solvent formulation across the full gamut of issues related to commercial application of the technology: capital and operating costs, operability, reliability, environmental, health and safety (EH&S), etc. Work on the project was intended to be performed under four budget periods. The objective of the work in the first budget period has been to identify several candidate formulations of a concentrated PZ-based solvent for detailed characterization and evaluation. Work in the second budget period would generate reliable and comprehensive property and performance data for the identified formulations. Work in the third budget period would quantify the expected performance of the selected formulations in a commercial CO{sub 2} scrubbing process. Finally, work in the fourth budget period would provide a final technology feasibility study and a preliminary technology EH&S assessment. Due to other business priorities, however, B&W has requested that this project be terminated at the end of the first budget period. This document therefore serves as the final report for this project. It is the first volume of the two-volume final report and summarizes Budget Period 1 accomplishments under Tasks 1-5 of the project, including the selection of four solvent formulations for further study.« less
Vision Algorithms to Determine Shape and Distance for Manipulation of Unmodeled Objects
NASA Technical Reports Server (NTRS)
Montes, Leticia; Bowers, David; Lumia, Ron
1998-01-01
This paper discusses the development of a robotic system for general use in an unstructured environment. This is illustrated through pick and place of randomly positioned, un-modeled objects. There are many applications for this project, including rock collection for the Mars Surveyor Program. This system is demonstrated with a Puma560 robot, Barrett hand, Cognex vision system, and Cimetrix simulation and control, all running on a PC. The demonstration consists of two processes: vision system and robotics. The vision system determines the size and location of the unknown objects. The robotics part consists of moving the robot to the object, configuring the hand based on the information from the vision system, then performing the pick/place operation. This work enhances and is a part of the Low Cost Virtual Collaborative Environment which provides remote simulation and control of equipment.
Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin
2015-04-22
Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.
Transit safety retrofit package development : final report.
DOT National Transportation Integrated Search
2014-07-01
This report provides a summary of the Transit Safety Retrofit Package (TRP) Development project and its results. The report documents results of each project phase, and provides recommended next steps as well as a vision for a next generation TRP. Th...
NASA Astrophysics Data System (ADS)
Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Akujärvi, Altti; Saari, Heikki; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe
2016-10-01
PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT Technical Research Centre of Finland Ltd, Clyde Space Ltd. (UK) and Centre Spatial de Liège (BE). The test campaign for the engineering model of the PICASSO VISION instrument, a miniaturized nanosatellite spectral imager, has been successfully completed. The test results look very promising. The proto-flight model of VISION has also been successfully integrated and it is waiting for the final integration to the satellite platform.
Short-Term Neural Adaptation to Simultaneous Bifocal Images
Radhakrishnan, Aiswaryah; Dorronsoro, Carlos; Sawides, Lucie; Marcos, Susana
2014-01-01
Simultaneous vision is an increasingly used solution for the correction of presbyopia (the age-related loss of ability to focus near images). Simultaneous Vision corrections, normally delivered in the form of contact or intraocular lenses, project on the patient's retina a focused image for near vision superimposed with a degraded image for far vision, or a focused image for far vision superimposed with the defocused image of the near scene. It is expected that patients with these corrections are able to adapt to the complex Simultaneous Vision retinal images, although the mechanisms or the extent to which this happens is not known. We studied the neural adaptation to simultaneous vision by studying changes in the Natural Perceived Focus and in the Perceptual Score of image quality in subjects after exposure to Simultaneous Vision. We show that Natural Perceived Focus shifts after a brief period of adaptation to a Simultaneous Vision blur, similar to adaptation to Pure Defocus. This shift strongly correlates with the magnitude and proportion of defocus in the adapting image. The magnitude of defocus affects perceived quality of Simultaneous Vision images, with 0.5 D defocus scored lowest and beyond 1.5 D scored “sharp”. Adaptation to Simultaneous Vision shifts the Perceptual Score of these images towards higher rankings. Larger improvements occurred when testing simultaneous images with the same magnitude of defocus as the adapting images, indicating that wearing a particular bifocal correction improves the perception of images provided by that correction. PMID:24664087
12 strategies for managing capital projects.
Stoudt, Richard L
2013-05-01
To reduce the amount of time and cost associated with capital projects, healthcare leaders should: Begin the project with a clear objective and a concise master facilities plan. Select qualified team members who share the vision of the owner. Base the size of the project on a conservative business plan. Minimize incremental program requirements. Evaluate the cost impact of the building footprint. Consider alternative delivery methods.
ERIC Educational Resources Information Center
Ajuwon, Paul M.; Oyinlade, A. Olu
2016-01-01
In this project, the authors used the Essential Behavioral Leadership Qualities (EBLQ) method of measuring leadership effectiveness to assess and compare the effectiveness of principals (leaders) of residential schools for children with blindness or low vision in the United States (U.S.) and Nigeria. A total of 248 teachers (subordinates) in 25…
PROJECTIONS OFF FRACTAL FUNCTIONS: A NEW VISION OF NATURE'S COMPLEXITY. (R824780)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
A zero waste vision for industrial networks in Europe.
Curran, T; Williams, I D
2012-03-15
'ZeroWIN' (Towards Zero Waste in Industrial Networks--www.zerowin.eu) is a five year project running 2009-2014, funded by the EC under the 7th Framework Programme. Project ZeroWIN envisions industrial networks that have eliminated the wasteful consumption of resources. Zero waste is a unifying concept for a range of measures aimed at eliminating waste and challenging old ways of thinking. Aiming for zero waste will mean viewing waste as a potential resource with value to be realised, rather than as a problem to be dealt with. The ZeroWIN project will investigate and demonstrate how existing approaches and tools can be improved and combined to best effect in an industrial network, and how innovative technologies can contribute to achieving the zero waste vision. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ballantyne, F.; Billings, S. A.
2016-12-01
Much of the variability in projections of Earth's future C balance derives from uncertainty in how to formulate and parameterize models of biologically mediated transformations of soil organic C (SOC). Over the past decade, models of belowground decomposition have incorporated more realism, namely microbial biomass and exoenzyme pools, but it remains unclear whether microbially mediated decomposition is accurately formulated. Different models and different assumptions about how microbial efficiency, defined in terms of respiratory losses, varies with temperature exert great influence on SOC and CO2 flux projections for the future. Here, we incorporate a physiologically realistic formulation of CO2 loss from microbes, distinct from extant formulations and logically consistent with microbial C uptake and losses, into belowground dynamics and contrast its projections for SOC pools and CO2 flux from soils to those from the phenomenological formulations of efficiency in current models. We quantitatively describe how short and long term SOC dynamics are influenced by different mathematical formulations of efficiency, and that our lack of knowledge regarding loss rates from SOC and microbial biomass pools, specific respiration rate and maximum substrate uptake rate severely constrains our ability to confidently parameterize microbial SOC modules in Earth System Models. Both steady-state SOC and microbial biomass C pools, as well as transient responses to perturbations, can differ substantially depending on how microbial efficiency is derived. In particular, the discrepancy between SOC stocks for different formulations of efficiency varies from negligible to more than two orders of magnitude, depending on the relative values of respiratory versus non-respiratory losses from microbial biomass. Mass-specific respiration and proportional loss rates from soil microbes emerge as key determinants of the consequences of different formulations of efficiency for C flux in soils.
Vision technology/algorithms for space robotics applications
NASA Technical Reports Server (NTRS)
Krishen, Kumar; Defigueiredo, Rui J. P.
1987-01-01
The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed.
CAD-model-based vision for space applications
NASA Technical Reports Server (NTRS)
Shapiro, Linda G.
1988-01-01
A pose acquisition system operating in space must be able to perform well in a variety of different applications including automated guidance and inspections tasks with many different, but known objects. Since the space station is being designed with automation in mind, there will be CAD models of all the objects, including the station itself. The construction of vision models and procedures directly from the CAD models is the goal of this project. The system that is being designed and implementing must convert CAD models to vision models, predict visible features from a given view point from the vision models, construct view classes representing views of the objects, and use the view class model thus derived to rapidly determine the pose of the object from single images and/or stereo pairs.
Crew and Display Concepts Evaluation for Synthetic / Enhanced Vision Systems
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence J., III
2006-01-01
NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that strive to eliminate low-visibility conditions as a causal factor to civil aircraft accidents and replicate the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Enhanced Vision System (EVS) technologies are analogous and complementary in many respects to SVS, with the principle difference being that EVS is an imaging sensor presentation, as opposed to a database-derived image. The use of EVS in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting operations to civil airports. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved EVS that shows the required visual references on the pilot s Head-Up Display. An experiment was conducted to evaluate the complementary use of SVS and EVS technologies, specifically focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under the newly adopted FAA rules which provide operating credit for EVS. Overall, the experimental data showed that significant improvements in SA without concomitant increases in workload and display clutter could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying.
The intelligent user interface for NASA's advanced information management systems
NASA Technical Reports Server (NTRS)
Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.
1987-01-01
NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.
Are visual peripheries forever young?
Burnat, Kalina
2015-01-01
The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.
A New Vision for the First Amendment in Schools.
ERIC Educational Resources Information Center
Chaltain, Sam
2002-01-01
Describes the First Amendment Schools project aimed at teaching K-12 public and independent school students their constitutionally protected religious, speech, press, assembly, and petition rights and responsibilities. Includes examples describing the project in several schools. Includes annotated list of resources for educators. (PKP)
10 CFR 603.1010 - Substantive issues.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... The scope is an overall vision statement for the project, including a discussion of the project's... minimum required Federal Government rights in intellectual property generated under the award and address... disposition of tangible property. The property provisions for for-profit and nonprofit participants must be in...
Daniel Gogny's vision for a microscopic theory of fission
NASA Astrophysics Data System (ADS)
Younes, W.
2017-05-01
Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. The generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated.
2013-11-01
Acoustic Measurement and Model Predictions for the Aural Nondetectability of Two Night-Vision Goggles by Jeremy Gaston, Tim Mermagen, and...Goggles Jeremy Gaston, Tim Mermagen, and Kelly Dickerson Human Research and Engineering Directorate, ARL...5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jeremy Gaston, Tim Mermagen, and Kelly Dickerson 5d. PROJECT NUMBER 74A 5e. TASK NUMBER 5f. WORK
Joint Vision for the Korean Peninsula -- Can We Get There?
2012-03-11
complex problem that requires a multifaceted approach. Trilateral cooperation with China coupled with all the elements of the Alliance’s elements of...national power can set the conditions for the Joint Vision Statement to become a reality in this century. 15. SUBJECT TERMS Northeast Asia, China ...We Get There? FORMAT: Strategy Research Project DATE: 11 March 2012 WORD COUNT: 5,917 PAGES: 30 KEY TERMS: Northeast Asia, China
A Vision Too Far? Mapping the Space for a High Skills Project in the UK
ERIC Educational Resources Information Center
Lloyd, Caroline; Payne, Jonathan
2005-01-01
Although the current Labour government is committed to developing the UK as a high skills society, there is much confusion as what such a society might look like and from where it might draw its inspiration. Some academic commentators have also expressed the need for a clearer vision of the kind of society to which the UK might choose to head for…
Foster, Stephen; Garduño, Héctor
2013-01-01
Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.
NASA Technical Reports Server (NTRS)
Murray, N. D.
1985-01-01
Current technology projections indicate a lack of availability of special purpose computing for Space Station applications. Potential functions for video image special purpose processing are being investigated, such as smoothing, enhancement, restoration and filtering, data compression, feature extraction, object detection and identification, pixel interpolation/extrapolation, spectral estimation and factorization, and vision synthesis. Also, architectural approaches are being identified and a conceptual design generated. Computationally simple algorithms will be research and their image/vision effectiveness determined. Suitable algorithms will be implimented into an overall architectural approach that will provide image/vision processing at video rates that are flexible, selectable, and programmable. Information is given in the form of charts, diagrams and outlines.
Obstacles encountered in the development of the low vision enhancement system.
Massof, R W; Rickman, D L
1992-01-01
The Johns Hopkins Wilmer Eye Institute and the NASA Stennis Space Center are collaborating on the development of a new high technology low vision aid called the Low Vision Enhancement System (LVES). The LVES consists of a binocular head-mounted video display system, video cameras mounted on the head-mounted display, and real-time video image processing in a system package that is battery powered and portable. Through a phased development approach, several generations of the LVES can be made available to the patient in a timely fashion. This paper describes the LVES project with major emphasis on technical problems encountered or anticipated during the development process.
Photo screening around the world: Lions Club International Foundation experience.
Donahue, Sean P; Lorenz, Sylvia; Johnson, Tammy
2008-01-01
To describe the use of photoscreening for preschool vision screening in several diverse locations throughout the world. The MTI photo screener was used to screen pre-verbal children; photographs were interpreted using standard criteria. The Tennessee vision screening program remains successful, screening over 200,000 children during the past 8 years. Similar programs modeled across the United States have screened an additional 500,000 children. A pilot demonstration project in Hong Kong, Beijing, and Brazil screened over 5000 additional children with good success and appropriately low referral rates. Photoscreening can be an appropriate technique for widespread vision screening of preschool children throughout the world.
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's Technology Transfer Office at Stennis Space Center worked with the Johns Hopkins Wilmer Eye Institute in Baltimore, Md., to incorporate NASA software originally developed by NASA to process satellite images into the Low Vision Enhancement System (LVES). The LVES, referred to as 'ELVIS' by its users, is a portable image processing system that could make it possible to improve a person's vision by enhancing and altering images to compensate for impaired eyesight. The system consists of two orientation cameras, a zoom camera, and a video projection system. The headset and hand-held control weigh about two pounds each. Pictured is Jacob Webb, the first Mississippian to use the LVES.
Recommendations for the Implementation of the LASSO Workflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I; Vogelmann, Andrew M; Cheng, Xiaoping
The U. S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Research Fa-cility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability, envisioned in the ARM Decadal Vision (U.S. Department of Energy 2014), subsequently has been named the Large-Eddy Simu-lation (LES) ARM Symbiotic Simulation and Observation (LASSO) project, and it has an initial focus of shallow convection at the ARM Southern Great Plains (SGP) atmospheric observatory. This report documents the recommendations resulting from the pilot project to be considered by ARM for imple-mentation into routinemore » operations. During the pilot phase, LASSO has evolved from the initial vision outlined in the pilot project white paper (Gustafson and Vogelmann 2015) to what is recommended in this report. Further details on the overall LASSO project are available at https://www.arm.gov/capabilities/modeling/lasso. Feedback regarding LASSO and the recommendations in this report can be directed to William Gustafson, the project principal investigator (PI), and Andrew Vogelmann, the co-principal investigator (Co-PI), via lasso@arm.gov.« less
PILOT PROJECT CLOSE UP: ORD RESEARCH INVENTORY
Harvey, Jim and Elin Ulrich. 2004. Pilot Project Close Up: ORD Research Inventory. Changing Times. Pp. 1. (ERL,GB R1022).
At the January 2003 summit, many people were drawn to our vision of improving ORD's internal communications by creating a "go-to" page that consolicat...
The Urban Mission: Linking Fresno State and the Community
ERIC Educational Resources Information Center
Culver-Dockins, Natalie; McCarthy, Mary Ann; Brogan, Amy; Karsevar, Kent; Tatsumura, Janell; Whyte, Jenny; Woods, R. Sandie
2011-01-01
The "four spheres" model of transformation, as viewed through the lens of the urban mission of California State University, Fresno, is examined through current projects in economic development, infrastructure development, human development, and the fourth sphere, which encompasses the broad vision. Local projects will be highlighted.
Aspects of Synthetic Vision Display Systems and the Best Practices of the NASA's SVS Project
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Jones, Denise R.; Young, Steven D.; Arthur, Jarvis J.; Prinzel, Lawrence J.; Glaab, Louis J.; Harrah, Steven D.; Parrish, Russell V.
2008-01-01
NASA s Synthetic Vision Systems (SVS) Project conducted research aimed at eliminating visibility-induced errors and low visibility conditions as causal factors in civil aircraft accidents while enabling the operational benefits of clear day flight operations regardless of actual outside visibility. SVS takes advantage of many enabling technologies to achieve this capability including, for example, the Global Positioning System (GPS), data links, radar, imaging sensors, geospatial databases, advanced display media and three dimensional video graphics processors. Integration of these technologies to achieve the SVS concept provides pilots with high-integrity information that improves situational awareness with respect to terrain, obstacles, traffic, and flight path. This paper attempts to emphasize the system aspects of SVS - true systems, rather than just terrain on a flight display - and to document from an historical viewpoint many of the best practices that evolved during the SVS Project from the perspective of some of the NASA researchers most heavily involved in its execution. The Integrated SVS Concepts are envisagements of what production-grade Synthetic Vision systems might, or perhaps should, be in order to provide the desired functional capabilities that eliminate low visibility as a causal factor to accidents and enable clear-day operational benefits regardless of visibility conditions.
Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration
NASA Technical Reports Server (NTRS)
Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.
2005-01-01
NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric J.; Mone, Christopher D.; DeMeo, Edgar
IIn March 2015, the U.S. Department of Energy (DOE) released Wind Vision: A New Era for Wind Power in the United States (DOE 2015), which explores a scenario in which wind provides 10 percent of U.S. electricity in 2020, 20 percent in 2030, and 35 percent in 2050. The Wind Vision report also includes a roadmap of recommended actions aimed at pursuit of the vision and its underlying wind-deployment scenario. The roadmap was compiled by the Wind Vision project team, which included representatives from the industrial, electric-power, government-laboratory, academic, environmental-stewardship, regulatory, and permitting stakeholder groups. The roadmap describes high-level activitiesmore » suitable for all sectors with a stake in wind power and energy development. It is intended to be a 'living document,' and DOE expects to engage the wind community from time to time to track progress.« less
Creating a vision for your medical call center.
Barr, J L; Laufenberg, S; Sieckman, B L
1998-01-01
MCC technologies and applications that can have a positive impact on managed care delivery are almost limitless. As you determine your vision, be sure to have in mind the following questions: (1) Do you simply want an efficient front end for receiving calls? (2) Do you want to offer triage services? (3) Is your organization ready for a fully functional "electronic physician's office?" Understand your organization's strategy. Where are you going, not only today but five years from now? That information is essential to determine your vision. Once established, your vision will help determine what you need and whether you should build or outsource. Vendors will assist in cost/benefit analysis of their equipment, but do not lose sight of internal factors such as "prior inclination" costs in the case of a nurse triage program. The technology is available to take your vision to its outer reaches. With the projected increase in utilization of call center services, don't let your organization be left behind!
NASA Astrophysics Data System (ADS)
Moore, Linda A.; Ferreira, Jannie T.
2003-03-01
Sports vision encompasses the visual assessment and provision of sports-specific visual performance enhancement and ocular protection for athletes of all ages, genders and levels of participation. In recent years, sports vision has been identified as one of the key performance indicators in sport. It is built on four main cornerstones: corrective eyewear, protective eyewear, visual skills enhancement and performance enhancement. Although clinically well established in the US, it is still a relatively new area of optometric specialisation elsewhere in the world and is gaining increasing popularity with eyecare practitioners and researchers. This research is often multi-disciplinary and involves input from a variety of subject disciplines, mainly those of optometry, medicine, physiology, psychology, physics, chemistry, computer science and engineering. Collaborative research projects are currently underway between staff of the Schools of Physics and Computing (DIT) and the Academy of Sports Vision (RAU).
Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin
2015-01-01
Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust. PMID:25912350
Aartolahti, Eeva; Häkkinen, Arja; Lönnroos, Eija; Kautiainen, Hannu; Sulkava, Raimo; Hartikainen, Sirpa
2013-10-01
Vision is an important prerequisite for balance control and mobility. The role of objectively measured visual functions has been previously studied but less is known about associations of functional vision, that refers to self-perceived vision-based ability to perform daily activities. The aim of the study was to investigate the relationship between functional vision and balance and mobility performance in a community-based sample of older adults. This study is part of a Geriatric Multidisciplinary Strategy for the Good Care of the Elderly project (GeMS). Participants (576) aged 76-100 years (mean age 81 years, 70 % women) were interviewed using a seven-item functional vision questionnaire (VF-7). Balance and mobility were measured by the Berg balance scale (BBS), timed up and go (TUG), chair stand test, and maximal walking speed. In addition, self-reported fear of falling, depressive symptoms (15-item Geriatric Depression Scale), cognition (Mini-Mental State Examination) and physical activity (Grimby) were assessed. In the analysis, participants were classified into poor, moderate, or good functional vision groups. The poor functional vision group (n = 95) had more comorbidities, depressed mood, cognition decline, fear of falling, and reduced physical activity compared to participants with moderate (n = 222) or good functional vision (n = 259). Participants with poor functional vision performed worse on all balance and mobility tests. After adjusting for gender, age, chronic conditions, and cognition, the linearity remained statistically significant between functional vision and BBS (p = 0.013), TUG (p = 0.010), and maximal walking speed (p = 0.008), but not between functional vision and chair stand (p = 0.069). Poor functional vision is related to weaker balance and mobility performance in community-dwelling older adults. This highlights the importance of widespread assessment of health, including functional vision, to prevent balance impairment and maintain independent mobility among older population.
SunShot Initiative Portfolio Book 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solar Energy Technologies Office
2014-05-01
The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014.
Vision for a 21st Century Information Infrastructure.
ERIC Educational Resources Information Center
Council on Competitiveness, Washington, DC.
In order to ensure that the United States maintains an advanced information infrastructure, the Council on Competitiveness has started a project on the 21st century infrastructure. Participating in this project are the many different parties who are providing and using the infrastructure, including cable companies, regional Bell companies, long…
The Duke Engineering Living Technology Advancement (DELTA) Project began as a multidisciplinary endeavor to engage engineering students by having them design aspects/attributes of a new learning and living space. In the next few years, the vision will be realized when the DEL...
32 CFR 37.1010 - What substantive issues should my award document address?
Code of Federal Regulations, 2011 CFR
2011-07-01
... document must address: (a) Project scope. The scope is an overall vision statement for the project... must set forth the minimum required Federal Government rights in intellectual property generated under... tangible property. Your property provisions for for-profit and nonprofit participants must be in accordance...
ScienceVision: An Inquiry-Based Videodisc Science Curriculum.
ERIC Educational Resources Information Center
Dawson, George
As a result of declining scores, the National Science Foundation has funded numerous materials-development grants. Largest among these is the Interactive Media Science (IMS) Project at Florida State University (FSU) in Tallahassee. This project's mandate is to design, develop, and produce six level III interactive videodisc programs for middle…
A Detailed Evaluation of a Laser Triangulation Ranging System for Mobile Robots
1983-08-01
System Accuracy Factors ..................10 2.1.2 Detector "Cone of Vision" Problem ..................... 10 2. 1.3 Laser Triangulation Justification... product of these advances. Since 1968, when the effort began under a NASA grant, the project has undergone many changes both in the design goals and in...MD Vision System Accuracy Factors The accuracy of the data obtained by triangulation system depends on essentially three independent factors . They
Observability/Identifiability of Rigid Motion under Perspective Projection
1994-03-08
Faugeras and S. Maybank . Motion from point mathces: multiplicity of solutions. Int. J, of Computer Vision, 1990. [16] D.B. Gennery. Tracking known...sequences. Int. 9. of computer vision, 1989. [37] S. Maybank . Theory of reconstruction from image motion. Springer Verlag, 1992. [38] Andrea 6...defined in section 5; in this appendix we show a simple characterization which is due to Faugeras and Maybank [15, 371. Theorem B.l . Let Q = UCVT
Daniel Gogny’s vision for a microscopic theory of fission
Younes, W.
2017-05-26
Daniel Gogny made many contributions to our understanding of nuclear fission over a span of 35 years. This paper reviews some of those contributions, focusing in particular on fission dynamics, the challenges of describing scission in a quantum-mechanical context, and the calculation of fragment properties such as their mass, kinetic, and excitation energy distributions. Here, the generator coordinate method provides the common theoretical framework within which these various aspects of fission are formulated.
Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias
2013-07-25
We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01% can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.
Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias
2014-03-01
We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01 percent can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.
The prospects for hybrid electric vehicles, 2005-2020 : results of a Delphi Study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, H. K.; Santini, D. J.; Vyas, A. D.
1999-07-22
The introduction of Toyota's hybrid electric vehicle (HEV), the Prius, in Japan has generated considerable interest in HEV technology among US automotive experts. In a follow-up survey to Argonne National Laboratory's two-stage Delphi Study on electric and hybrid electric vehicles (EVs and HEVs) during 1994-1996, Argonne researchers gathered the latest opinions of automotive experts on the future ''top-selling'' HEV attributes and costs. The experts predicted that HEVs would have a spark-ignition gasoline engine as a power plant in 2005 and a fuel cell power plant by 2020. The projected 2020 fuel shares were about equal for gasoline and hydrogen, withmore » methanol a distant third. In 2020, HEVs are predicted to have series-drive, moderate battery-alone range and cost significantly more than conventional vehicles (CVs). The HEV is projected to cost 66% more than a $20,000 CV initially and 33% more by 2020. Survey respondents view batteries as the component that contributes the most to the HEV cost increment. The mean projection for battery-alone range is 49 km in 2005, 70 km in 2010, and 92 km in 2020. Responding to a question relating to their personal vision of the most desirable HEV and its likely characteristics when introduced in the US market in the next decade, the experts predicted their ''vision'' HEV to have attributes very similar to those of the ''top-selling'' HEV. However, the ''vision'' HEV would cost significantly less. The experts projected attributes of three leading batteries for HEVs and projected acceleration times on battery power alone. The resulting battery packs are evaluated, and their initial and replacement costs are analyzed. These and several other opinions are summarized.« less
Central mechanisms for force and motion--towards computational synthesis of human movement.
Hemami, Hooshang; Dariush, Behzad
2012-12-01
Anatomical, physiological and experimental research on the human body can be supplemented by computational synthesis of the human body for all movement: routine daily activities, sports, dancing, and artistic and exploratory involvements. The synthesis requires thorough knowledge about all subsystems of the human body and their interactions, and allows for integration of known knowledge in working modules. It also affords confirmation and/or verification of scientific hypotheses about workings of the central nervous system (CNS). A simple step in this direction is explored here for controlling the forces of constraint. It requires co-activation of agonist-antagonist musculature. The desired trajectories of motion and the force of contact have to be provided by the CNS. The spinal control involves projection onto a muscular subset that induces the force of contact. The projection of force in the sensory motor cortex is implemented via a well-defined neural population unit, and is executed in the spinal cord by a standard integral controller requiring input from tendon organs. The sensory motor cortex structure is extended to the case for directing motion via two neural population units with vision input and spindle efferents. Digital computer simulations show the feasibility of the system. The formulation is modular and can be extended to multi-link limbs, robot and humanoid systems with many pairs of actuators or muscles. It can be expanded to include reticular activating structures and learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Transition from Spacecraft Development Ot Flight Operation: Human Factor Considerations
NASA Technical Reports Server (NTRS)
Basilio, Ralph R.
2000-01-01
In the field of aeronautics and astronautics, a paradigm shift has been witnessed by those in academia, research and development, and private industry. Long development life cycles and the budgets to support such programs and projects has given way to aggressive task schedules and leaner resources to draw from all the while challenging assigned individuals to create and produce improved products of processes. however, this "faster, better, cheaper" concept cannot merely be applied to the design, development, and test of complex systems such as earth-orbiting of interplanetary robotic spacecraft. Full advantage is not possible without due consideration and application to mission operations planning and flight operations, Equally as important as the flight system, the mission operations system consisting of qualified personnel, ground hardware and software tools, and verified and validated operational processes, should also be regarded as a complex system requiring personnel to draw upon formal education, training, related experiences, and heuristic reasoning in engineering an effective and efficient system. Unquestionably, qualified personnel are the most important elements of a mission operations system. This paper examines the experiences of the Deep Space I Project, the first in a series of new technology in-flight validation missions sponsored by the United States National Aeronautics and Space Administration (NASA), specifically, in developing a subsystems analysis and technology validation team comprised of former spacecraft development personnel. Human factor considerations are investigated from initial concept/vision formulation; through operational process development; personnel test and training; to initial uplink product development and test support. Emphasis has been placed on challenges and applied or recommended solutions, so as to provide opportunities for future programs and projects to address and disposition potential issues and concerns as early as possible to reap the benefits associated with learning from other's past experiences.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)
An efficient variable projection formulation for separable nonlinear least squares problems.
Gan, Min; Li, Han-Xiong
2014-05-01
We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.
Hand-eye calibration using a target registration error model.
Chen, Elvis C S; Morgan, Isabella; Jayarathne, Uditha; Ma, Burton; Peters, Terry M
2017-10-01
Surgical cameras are prevalent in modern operating theatres and are often used as a surrogate for direct vision. Visualisation techniques (e.g. image fusion) made possible by tracking the camera require accurate hand-eye calibration between the camera and the tracking system. The authors introduce the concept of 'guided hand-eye calibration', where calibration measurements are facilitated by a target registration error (TRE) model. They formulate hand-eye calibration as a registration problem between homologous point-line pairs. For each measurement, the position of a monochromatic ball-tip stylus (a point) and its projection onto the image (a line) is recorded, and the TRE of the resulting calibration is predicted using a TRE model. The TRE model is then used to guide the placement of the calibration tool, so that the subsequent measurement minimises the predicted TRE. Assessing TRE after each measurement produces accurate calibration using a minimal number of measurements. As a proof of principle, they evaluated guided calibration using a webcam and an endoscopic camera. Their endoscopic camera results suggest that millimetre TRE is achievable when at least 15 measurements are acquired with the tracker sensor ∼80 cm away on the laparoscope handle for a target ∼20 cm away from the camera.
JOICFP included in GII mission to Ghana. Global Issues Initiative.
1996-03-01
Among countries in West Africa, Ghana is the main focus of the Global Issues Initiative (GII) on Population and AIDS and one of twelve priority countries selected for official development assistance (ODA) under the program. A ten-member project formulation mission sent to Ghana by the Ministry of Foreign Affairs (MOFA) of Japan was in the country during January 10-18. This mission was the first of its kind to be sent to Africa. It was led by the director of the Third Project Formulation Study Division, Project Formulation Study Department, Japan International Cooperation Agency (JICA), and included representatives of MOFA, JICA, and the Ministry of Health and Welfare, and an observer from UNAIDS. The mission's chief objective was to explore possibilities for Japanese cooperation in the areas of population, child health, and HIV/AIDS in line with the Mid-Term Health Strategy (MTHS) formulated in 1995 by the government of Ghana. The mission also explored the possibility of collaboration with major donors, international organizations, international agencies, and NGOs. The mission met with representatives of NGOs from population, women, AIDS, and health-related areas on January 13, who were then briefed upon Japan's Grant Assistance for Grassroots Project for local NGOs. Views were exchanged upon NGO activities.
Emergence of a utopian vision of modernist and futuristic houses and cities in early 20th century
NASA Astrophysics Data System (ADS)
Ma, Nan
2017-04-01
Throughout the development of literature on urban design theories, utopian thinking has played a crucial role as utopians were among the first designers. Many unrealized utopian projects such as The Radiant City, have presented a research laboratory and positive attempts for all architects, urban designers and theorists. In this essay, a utopian vision following under More’s and Jameson’s definitions is discussed, examining how the utopian vision of modernist and futuristic houses and cities emerged in the early twentieth century in response to several factors, what urban utopia aimed to represent, and how such version was represented in the built form and the urban landscapes.
Bag-of-visual-ngrams for histopathology image classification
NASA Astrophysics Data System (ADS)
López-Monroy, A. Pastor; Montes-y-Gómez, Manuel; Escalante, Hugo Jair; Cruz-Roa, Angel; González, Fabio A.
2013-11-01
This paper describes an extension of the Bag-of-Visual-Words (BoVW) representation for image categorization (IC) of histophatology images. This representation is one of the most used approaches in several high-level computer vision tasks. However, the BoVW representation has an important limitation: the disregarding of spatial information among visual words. This information may be useful to capture discriminative visual-patterns in specific computer vision tasks. In order to overcome this problem we propose the use of visual n-grams. N-grams based-representations are very popular in the field of natural language processing (NLP), in particular within text mining and information retrieval. We propose building a codebook of n-grams and then representing images by histograms of visual n-grams. We evaluate our proposal in the challenging task of classifying histopathology images. The novelty of our proposal lies in the fact that we use n-grams as attributes for a classification model (together with visual-words, i.e., 1-grams). This is common practice within NLP, although, to the best of our knowledge, this idea has not been explored yet within computer vision. We report experimental results in a database of histopathology images where our proposed method outperforms the traditional BoVWs formulation.
Office of Space Science: Integrated technology strategy
NASA Technical Reports Server (NTRS)
Huntress, Wesley T., Jr.; Reck, Gregory M.
1994-01-01
This document outlines the strategy by which the Office of Space Science, in collaboration with the Office of Advanced Concepts and Technology and the Office of Space Communications, will meet the challenge of the national technology thrust. The document: highlights the legislative framework within which OSS must operate; evaluates the relationship between OSS and its principal stakeholders; outlines a vision of a successful OSS integrated technology strategy; establishes four goals in support of this vision; provides an assessment of how OSS is currently positioned to respond to the goals; formulates strategic objectives to meet the goals; introduces policies for implementing the strategy; and identifies metrics for measuring success. The OSS Integrated Technology Strategy establishes the framework through which OSS will satisfy stakeholder expectations by teaming with partners in NASA and industry to develop the critical technologies required to: enhance space exploration, expand our knowledge of the universe, and ensure continued national scientific, technical and economic leadership.
A computer architecture for intelligent machines
NASA Technical Reports Server (NTRS)
Lefebvre, D. R.; Saridis, G. N.
1991-01-01
The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.
Summary of "Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium"
NASA Astrophysics Data System (ADS)
Cole, Gerald S.
This paper summarizes the monograph, "Magnesium Vision 2020. A North American Automotive Strategic Vision for Magnesium"1 prepared under the auspices of the United States Automotive Materials Partnership The objective was to understand the infrastructural and technical challenge that can increase the use of magnesium in the automotive industry. One hundred sixty three (163) Research and Technology Development Themes (RTDTs), or RTD projects were developed that addressed issues of corrosion, fastening, and processing-other-than-high pressure die casting to produce automotive magnesium parts. A major problem identified in the study is the limited ability of the current magnesium industrial infrastructure to supply RTD and implementation-ready automotive magnesium components. One solution is to create a magnesium cyber center wrhere globally networked experts would be able to innovate in process and product development, model metalworking and non-HPDC foundry processes, and integrate theoretical predictions/models of metallurgical structure with component function.
Technical Challenges in the Development of a NASA Synthetic Vision System Concept
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Parrish, Russell V.; Kramer, Lynda J.; Harrah, Steve; Arthur, J. J., III
2002-01-01
Within NASA's Aviation Safety Program, the Synthetic Vision Systems Project is developing display system concepts to improve pilot terrain/situation awareness by providing a perspective synthetic view of the outside world through an on-board database driven by precise aircraft positioning information updating via Global Positioning System-based data. This work is aimed at eliminating visibility-induced errors and low visibility conditions as a causal factor to civil aircraft accidents, as well as replicating the operational benefits of clear day flight operations regardless of the actual outside visibility condition. Synthetic vision research and development activities at NASA Langley Research Center are focused around a series of ground simulation and flight test experiments designed to evaluate, investigate, and assess the technology which can lead to operational and certified synthetic vision systems. The technical challenges that have been encountered and that are anticipated in this research and development activity are summarized.
Spatio-Temporal Neural Networks for Vision, Reasoning and Rapid Decision Making
1994-08-31
something that is obviously not pattern for long-term knowledge base (LTKB) facts. As a matter possiblc in common neural networks (as units in a...Conferences on Neural Davis, P. (19W0) Application of op~tical chaos to temporal pattern search in a Networks . Piscataway, NJ. [SC] nonlinear optical...Science Institute PROJECT TITLE: Spatio-temporal Neural Networks for Vision, Reasoning and Rapid Decision Making (N00014-93-1-1149) Number of ONR
Fenwick, Eva K; Pesudovs, Konrad; Khadka, Jyoti; Dirani, Mohamed; Rees, Gwyn; Wong, Tien Y; Lamoureux, Ecosse L
2012-12-01
Assessing the efficacy of treatment modalities for diabetic retinopathy (DR) from the patient's perspective is restricted due to a lack of a comprehensive patient-reported outcome measure. We are developing a DR-specific quality of life (QoL) item bank, and we report here on the qualitative results from the first phase of this project. Eight focus groups and 18 semi-structured interviews were conducted with 57 patients with DR. The sessions were transcribed verbatim and iteratively analysed using the constant comparative method and NVIVO software. Participants had a median age of 58 years (range 27-83 years). Twenty-seven (47%) participants had proliferative DR in the better eye, and 14 (25%) had clinically significant macular oedema. Nine QoL domains were identified, namely visual symptoms, ocular surface symptoms, vision-related activity limitation, mobility, emotional well-being, health concerns, convenience, social, and economic. Participants described many vision-related activity limitations, particularly under challenging lighting conditions; however, socioemotional issues were equally important. Participants felt frustrated due to their visual restrictions, concerned about further vision loss and had difficulty coping with this uncertainty. Restrictions on driving were pervasive, affecting transport, social life, relationships, responsibilities, work and independence. Patients with DR experience many socioemotional issues in addition to vision-related activity limitations. Data from this study will be used to generate data for a DR-specific QoL item bank.
Vision for perception and vision for action in the primate brain.
Goodale, M A
1998-01-01
Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.
Affordable Window Insulation with R-10/inch Rating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou
2004-10-15
During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanicalmore » properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.« less
Certification for Teachers of the Visually Impaired: A Rural Teacher Training Project.
ERIC Educational Resources Information Center
Tweto-Johnson, Linda
The goal of a 2-year vision teacher training project is to provide the coursework instruction and student teaching opportunities necessary for Oregon certification as teacher of the visually impaired. The program was designed in response to several conditions affecting services for visually impaired students living in seven eastern Oregon…
PROJECT HEAD START MEDICAL--A GUIDE FOR DIRECTION OF CHILD DEVELOPMENT CENTERS.
ERIC Educational Resources Information Center
Office of Economic Opportunity, Washington, DC.
HEALTH SERVICES OF PROJECT HEAD START CHILD DEVELOPMENT CENTERS PROVIDE--A MEDICAL EVALUATION OF EACH CHILD INCLUDING MEDICAL HISTORY, DEVELOPMENTAL ASSESSMENT, AND PHYSICAL EXAMINATION, SCREENING TESTS FOR VISION, HEARING, SPEECH, AND TUBERCULOSIS, LABORATORY TESTS OF URINE FOR ALBUMIN AND TESTS OF SUGAR AND BLOOD FOR ANEMIA, DENTAL ASSESSMENT,…
The Miami-Dade Juvenile Assessment Center National Demonstration Project
ERIC Educational Resources Information Center
Walters, Wansley; Dembo, Richard; Beaulaurier, Richard; Cocozza, Joseph; De La Rosa, Mario; Poythress, Norman; Skowyra, Kathy; Veysey, Bonita M.
2005-01-01
The Miami-Dade Juvenile Assessment Center National Demonstration Project (NDP) is serving as a national model for the transformation of front end services in the juvenile justice system in a unique sociocultural setting.We discuss the background and vision of the NDP, its implementation and accomplishments in six major program areas: (1)…
Seeing the Light: A Classroom-Sized Pinhole Camera Demonstration for Teaching Vision
ERIC Educational Resources Information Center
Prull, Matthew W.; Banks, William P.
2005-01-01
We describe a classroom-sized pinhole camera demonstration (camera obscura) designed to enhance students' learning of the visual system. The demonstration consists of a suspended rear-projection screen onto which the outside environment projects images through a small hole in a classroom window. Students can observe these images in a darkened…
Health Activities Project (HAP): Sight and Sound Module.
ERIC Educational Resources Information Center
Buller, Dave; And Others
Contained within this Health Activities Project (HAP) learning packet are activities for children in grades 5-8. Design of the activities centers around the idea that students can control their own health and safety. Within this module are teacher and student folios describing six activities which involve students in restricting their vision by…
Chapter 7: Lessons, Conclusions, and Implications of the Saber-Tooth Project.
ERIC Educational Resources Information Center
Ward, Phillip; Doutis, Panayiotis; Evans, Sharon A.
1999-01-01
Summarizes findings from the Saber-Tooth Project related to systemic change and student learning, concluding that vision is everything; workplace conditions must be addressed at multiple levels; strong relationships exist among planning, teaching, and assessment; and improvement in reform may occur due to the cessation of business as usual. This…
Technology Enriched Schools: Nine Case Studies with Reflections.
ERIC Educational Resources Information Center
Collis, Betty, Ed.; Carleer, Gerrit, Ed.
Technology enriched school projects are initiatives in real school settings that try to reduce or remove problems and constraints that hamper the effective use of computers in the schools. These projects are based, not on technology, but on educational need and vision. They examine the atmosphere and functioning of a school that uses technology…
US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, J.; Fox, P.; Dawson, W. A.
This white paper summarizes the workshop “U.S. Cosmic Visions: New Ideas in Dark Matter” held at University of Maryland from March 23-25. The flagships of the US Dark Matter search program are the G2 experiments ADMX, LZ, and SuperCDMS, which will cover well-motivated axion and WIMP dark matter over a range of masses. The workshop assumes that a complete exploration of this parameter space remains the highest priority of the dark matter community, and focuses instead on the science case for additional new small-scale projects in dark matter science that complement the G2 program (and other ongoing projects worldwide). Itmore » therefore concentrates on exploring distinct, well-motivated parameter space that will not be covered by the existing program; on surveying ideas for such projects (i.e. projects costing ~$10M or less); and on placing these ideas in a global context. The workshop included over 100 presentations of new ideas, proposals and recent science and R&D results from the US and international scientific community.« less
Skynet Junior Scholars- Sharing the Universe with Blind/Low Vision Youth
NASA Astrophysics Data System (ADS)
Hoette, Vivian L.; Kron, R. G.; Meredith, K.; Heatherly, S.; Williamson, K.; Gurton, S.; Reichart, D.; Haislip, J.
2014-01-01
Skynet Junior Scholars, a new project funded by the National Science Foundation, aims to engage middle school youth including youth with visual and hearing impairments, in investigating the universe with the same tools professionals use. Project deliverables include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project deliverables to the greatest extent possible given existing accessibility technologies. In this paper we describe our experience in field-testing SJS activities with 29 blind/low vision youth attending a Lion’s Club summer camp. From our observations and preliminary results from pre/post surveys and interviews, we learned that rather than creating a new interest in STEM for these youth, we were instead helping the students satisfy an interest that they already had in these subjects, with our techniques allowing a first direct experience in observational astronomy.
Skynet Junior Scholars- Sharing the Universe with Blind/Low Vision Youth
NASA Astrophysics Data System (ADS)
Meredith, Kate K.; Hoette, Vivian; Kron, Richard; Heatherly, Sue Ann; Williamson, Kathryn; Gurton, Suzanne; Haislip, Josh; Reichart, Dan
2015-08-01
Skynet Junior Scholars, a project funded by the National Science Foundation, aims to engage middle school youth including youth with visual and hearing impairments in investigating the universe with the same tools professionals use. Project deliverables include: 1) Online access to optical and radio telescopes, data analysis tools, and professional astronomers, 2) An age-appropriate web-based interface for controlling remote telescopes, 3) Inquiry-based standards-aligned instructional modules. From an accessibility perspective, the goal of the Skynet Junior Scholars project is to facilitate independent access to the project deliverables to the greatest extent possible given existing accessibility technologies. In this poster we describe our experience in field-testing SJS activities with 29 blind/low vision youth attending a Lion’s Club summer camp. From our observations and preliminary results from pre and post surveys and interviews, we learned that rather than creating a new interest in STEM, we were instead nourishing pre-existing interest giving students their first direct experience in observational astronomy. Additional accessibility features have been added to the SJS program since the initial pilot testing. Full testing is scheduled for July 2015.
ERIC Educational Resources Information Center
Hultén, Magnus
2013-01-01
In the state-of-the-art Glass Project run by the Swedish National Agency for Education during the second half of the 1960s, a new type of comprehensive technology education was developed. The project had little impact on school practice and was soon forgotten about. However, the project is interesting from several points of view. First, it…
New approach for teaching health promotion in the community: integration of three nursing courses.
Moshe-Eilon, Yael; Shemy, Galia
2003-07-01
The complexity of the health care system and its interdisciplinary nature require that each component of the system redefine its professional framework, relative advantage, and unique contribution as an independent discipline. In choosing the most efficient and cost-effective work-force, each profession in the health care system must clarify its importance and contribution, otherwise functions will overlap and financial resources will be wasted. As rapid and wide-ranging changes occur in the health care system, the nursing profession must display a new and comprehensive vision that projects its values, beliefs, and relationships with and commitment to both patients and coworkers. The plans to fulfill this vision must be described clearly. This article presents part of a new professional paradigm developed by the nursing department of the University of Haifa, Israel. Three main topics are addressed: The building blocks of the new vision (i.e., community and health promotion, managerial skills, academic research). Integration of the building blocks into the 4-year baccalaureate degree program (i.e., how to practice health promotion with students in the community setting; managerial nursing skills at the baccalaureate level, including which to choose and to what depth and how to teach them; and academic nursing research, including the best way to teach basic research skills and implement them via a community project). Two senior student projects, demonstrating practical linking of the building blocks.
RS-25 for the NASA Cargo Launch Vehicle: The Evolution of SSME for Space Exploration
NASA Technical Reports Server (NTRS)
Kynard, Michael H.; McArthur, J. Craig; Ise, Dayna S.
2006-01-01
A key element of the National Vision for Space Exploration is the development of a heavy-lift Cargo Launch Vehicle (CaLV). Missions to the Moon, Mars, and beyond are only possible with the logistical capacity of putting large payloads in low-earth orbit. However, beyond simple logistics, there exists the need for this capability to be as cost effective as possible to ensure mission sustainability. An element of the CaLV project is, therefore, the development of the RS-25, which represents the evolution of the proven Space Shuttle Main Engine (SSME) into a high-performance, cost-effective expendable rocket engine. The development of the RS-25 will be built upon the foundation of over one million seconds of accumulated hot-fire time on the SSME. Yet in order to transform the reusable SSME into the more cost-effective, expendable RS-25 changes will have to be made. Thus the project will inevitably strive to maintain a balance between demonstrated heritage products and processes and the utilization of newer technology developments. Towards that end, the Core Stage Engine Office has been established at the NASA Marshall Space Flight Center to initiate the design and development of the RS-25 engine. This paper is being written very early in the formulation phase of the RS-25 project. Therefore the focus of this paper will be to present the scope, challenges, and opportunities for the RS-25 project. Early schedules and development decisions and plans will be explained. For not only must the RS-25 project achieve cost effectiveness through the development of new, evolved components such as a channel-wall nozzle, a new HIP-bonded main combustion chamber, and several others, it must simultaneously develop the means whereby this engine can be manufactured on a scale never envisioned for the SSME. Thus, while the overall project will span the next eight to ten years, there is little doubt that even this schedule is aggressive with a great deal of work to accomplish.
NASA Technical Reports Server (NTRS)
Ryan, Robert
1993-01-01
The concept of rubustness includes design simplicity, component and path redundancy, desensitization to the parameter and environment variations, control of parameter variations, and punctual operations. These characteristics must be traded with functional concepts, materials, and fabrication approach against the criteria of performance, cost, and reliability. The paper describes the robustness design process, which includes the following seven major coherent steps: translation of vision into requirements, definition of the robustness characteristics desired, criteria formulation of required robustness, concept selection, detail design, manufacturing and verification, operations.
An l1-TV Algorithm for Deconvolution with Salt and Pepper Noise
2009-04-01
deblurring in the presence of impulsive noise ,” Int. J. Comput. Vision, vol. 70, no. 3, pp. 279–298, Dec. 2006. [13] A. E. Beaton and J. W. Tukey, “The...AN 1-TV ALGORITHM FOR DECONVOLUTIONWITH SALT AND PEPPER NOISE Brendt Wohlberg∗ T-7 Mathematical Modeling and Analysis Los Alamos National Laboratory...and pepper noise , but the extension of this formulation to more general prob- lems, such as deconvolution, has received little attention. We consider
National Civil Applications Program: strategic plan vision for 2005
,
2004-01-01
The National Mapping Division (NMD) has developed this comprehensive strategic plan to chart the course of the National Civil Applications Program (NCAP) over the next 5 years. To meet the challenges of the future, the NCAP is changing its program emphases, methods of responding to customer needs, and business practices. The NCAP Strategic Plan identifies the new direction for the program through a series of strategic thrusts and goals for managers to use in formulating plans, establishing program emphases, and determining resource needs and allocations.
Rooney, Kevin K.; Condia, Robert J.; Loschky, Lester C.
2017-01-01
Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one’s fist at arm’s length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words) PMID:28360867
Rooney, Kevin K; Condia, Robert J; Loschky, Lester C
2017-01-01
Neuroscience has well established that human vision divides into the central and peripheral fields of view. Central vision extends from the point of gaze (where we are looking) out to about 5° of visual angle (the width of one's fist at arm's length), while peripheral vision is the vast remainder of the visual field. These visual fields project to the parvo and magno ganglion cells, which process distinctly different types of information from the world around us and project that information to the ventral and dorsal visual streams, respectively. Building on the dorsal/ventral stream dichotomy, we can further distinguish between focal processing of central vision, and ambient processing of peripheral vision. Thus, our visual processing of and attention to objects and scenes depends on how and where these stimuli fall on the retina. The built environment is no exception to these dependencies, specifically in terms of how focal object perception and ambient spatial perception create different types of experiences we have with built environments. We argue that these foundational mechanisms of the eye and the visual stream are limiting parameters of architectural experience. We hypothesize that people experience architecture in two basic ways based on these visual limitations; by intellectually assessing architecture consciously through focal object processing and assessing architecture in terms of atmosphere through pre-conscious ambient spatial processing. Furthermore, these separate ways of processing architectural stimuli operate in parallel throughout the visual perceptual system. Thus, a more comprehensive understanding of architecture must take into account that built environments are stimuli that are treated differently by focal and ambient vision, which enable intellectual analysis of architectural experience versus the experience of architectural atmosphere, respectively. We offer this theoretical model to help advance a more precise understanding of the experience of architecture, which can be tested through future experimentation. (298 words).
Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck
2008-04-10
One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.
NASA Technical Reports Server (NTRS)
Simon, Tom
2009-01-01
To effectively manage a project, the project manager must have a plan, understand the current conditions, and be able to take action to correct the course when challenges arise. Research and design projects face technical, schedule, and budget challenges that make it difficult to utilize project management tools developed for projects based on previously demonstrated technologies. Projects developing new technologies by their inherent nature are trying something new and thus have little to no data to support estimates for schedule and cost, let alone the technical outcome. Projects with a vision for the outcome but little confidence in the exact tasks to accomplish in order to achieve the vision incur cost and schedule penalties when conceptual solutions require unexpected iterations or even a reinvention of the plan. This presentation will share the project management methodology and tools developed through trial and error for a NASA research and design project combining industry, academia, and NASA inhouse work in which Earned Value Management principles were employed but adapted for the reality of the government financial system and the reality of challenging technology development. The priorities of the presented methodology are flexibility, accountability, and simplicity to give the manager tools to help deliver to the customer while not using up valuable time and resources on extensive planning and analysis. This presentation will share the methodology, tools, and work through failed and successful examples from the three years of process evolution.
Resource allocation in road infrastructure using ANP priorities with ZOGP formulation-A case study
NASA Astrophysics Data System (ADS)
Alias, Suriana; Adna, Norfarziah; Soid, Siti Khuzaimah; Kardri, Mahani
2013-09-01
Road Infrastructure (RI) project evaluation and selection is concern with the allocation of scarce organizational resources. In this paper, it is suggest an improved RI project selection methodology which reflects interdependencies among evaluation criteria and candidate projects. Fuzzy Delphi Method (FDM) is use to evoking expert group opinion and also to determine a degree of interdependences relationship between the alternative projects. In order to provide a systematic approach to set priorities among multi-criteria and trade-off among objectives, Analytic Network Process (ANP) is suggested to be applied prior to Zero-One Goal Programming (ZOGP) formulation. Specifically, this paper demonstrated how to combined FDM and ANP with ZOGP through a real-world RI empirical example on an ongoing decision-making project in Johor, Malaysia.
Moses Lake Fishery Restoration Project : FY 1999 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None given
2000-12-01
The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie,more » bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.« less
Impairment of color vision in aircraft maintenance workers.
Guest, Maya; D'Este, Catherine; Attia, John; Boggess, May; Brown, Anthony; Tavener, Meredith; Gibson, Richard; Gardner, Ian; Harrex, Warren; Ross, James
2011-10-01
The purpose of the study was to examine possible persisting effects to color vision in a group from the Royal Australian Air Force who had exposure to formulations containing neurotoxins during F-111 fuel tank maintenance, relative to two contemporaneous comparison groups. Color vision was tested in 512 exposed personnel, 458 technical-trade comparisons, and 330 non-technical comparisons using the Ishihara test plates and the Lanthony D-15 Desaturated Color disk arrangement test. Participants were excluded if they failed the Ishihara test as this indicates congenital color blindness. From the Lanthony results, the type of color deficient vision (CDV) was diagnosed, and additionally, the Bowman's color confusion index (CCI) was calculated. Regression models were used to examine whether there was an association between color vision deficiencies and F-111 fuel tank maintenance, adjusting for possible confounders. The CCI ranged from 1 to 2.8 (median 1.2, quartiles 1.1, 1.4) in the 2,600 eyes tested. Forty five percent of all participants had blue-yellow CDV in at least one eye. Deficiencies of this nature are caused by environmental exposures. Logistic regression demonstrated statistically significant differences in CCI category in the exposed group versus technical group (odds ratio 1.7: 95% CI 1.3-2.0) and a blue-yellow confusion in the exposed group versus technical group (odds ratio 1.4: 95% CI 1.1-1.7). No differences were observed between the exposed group and the non-technical group. The results indicate reduced color discrimination among the exposed subjects compared to one of two control groups. The findings may be due to previous exposure to solvents among the air force personnel.
Bamashmus, Mahfouth A; Hubaish, Khammash; Alawad, Mohammed; Alakhlee, Hisham
2015-01-01
The purpose was to evaluate subjective quality of vision and patient satisfaction after laser in situ keratomileusis (LASIK) for myopia and myopic astigmatism. A self-administered patient questionnaire consisting 29 items was prospectively administered to LASIK patients at the Yemen Magrabi Hospital. Seven scales covering specific aspects of the quality of vision were formulated including; global satisfaction; quality of uncorrected and corrected vision; quality of night vision; glare; daytime driving and; night driving. Main outcome measures were responses to individual questions and scale scores and correlations with clinical parameters. The scoring scale ranged from 1 (dissatisfied) to 3 (very satisfied) and was stratified in the following manner: 1-1.65 = dissatisfied; 1.66-2.33 = satisfied and; 2.33-3 = very satisfied. Data at 6 months postoperatively are reported. This study sample was comprised of 200 patients (122 females: 78 males) ranging in age from 18 to 46 years old. The preoperative myopic sphere was - 3.50 ± 1.70 D and myopic astigmatism was 0.90 ± 0.82 D. There were 96% of eyes within ± 1.00 D of the targeted correction. Postoperatively, the uncorrected visual acuity was 20/40 or better in 99% of eyes. The mean score for the overall satisfaction was 2.64 ± 0.8. A total of 98.5% of patients was satisfied or very satisfied with their surgery, 98.5% considered their main goal for surgery was achieved. Satisfaction with uncorrected vision was 2.5 ± 0.50. The main score for glare was 1.98 ± 0.7 at night. Night driving was rated more difficult preoperatively by 6.2%, whereas 79% had less difficulty driving at night. Patient satisfaction with uncorrected vision after LASIK for myopia and myopic astigmatism appears to be excellent and is related to the residual refractive error postoperatively.
Bamashmus, Mahfouth A.; Hubaish, Khammash; Alawad, Mohammed; Alakhlee, Hisham
2015-01-01
Purpose: The purpose was to evaluate subjective quality of vision and patient satisfaction after laser in situ keratomileusis (LASIK) for myopia and myopic astigmatism. Patients and Methods: A self-administered patient questionnaire consisting 29 items was prospectively administered to LASIK patients at the Yemen Magrabi Hospital. Seven scales covering specific aspects of the quality of vision were formulated including; global satisfaction; quality of uncorrected and corrected vision; quality of night vision; glare; daytime driving and; night driving. Main outcome measures were responses to individual questions and scale scores and correlations with clinical parameters. The scoring scale ranged from 1 (dissatisfied) to 3 (very satisfied) and was stratified in the following manner: 1-1.65 = dissatisfied; 1.66-2.33 = satisfied and; 2.33-3 = very satisfied. Data at 6 months postoperatively are reported. Results: This study sample was comprised of 200 patients (122 females: 78 males) ranging in age from 18 to 46 years old. The preoperative myopic sphere was − 3.50 ± 1.70 D and myopic astigmatism was 0.90 ± 0.82 D. There were 96% of eyes within ± 1.00 D of the targeted correction. Postoperatively, the uncorrected visual acuity was 20/40 or better in 99% of eyes. The mean score for the overall satisfaction was 2.64 ± 0.8. A total of 98.5% of patients was satisfied or very satisfied with their surgery, 98.5% considered their main goal for surgery was achieved. Satisfaction with uncorrected vision was 2.5 ± 0.50. The main score for glare was 1.98 ± 0.7 at night. Night driving was rated more difficult preoperatively by 6.2%, whereas 79% had less difficulty driving at night. Conclusion: Patient satisfaction with uncorrected vision after LASIK for myopia and myopic astigmatism appears to be excellent and is related to the residual refractive error postoperatively. PMID:25624684
Data Reduction Algorithm Using Nonnegative Matrix Factorization with Nonlinear Constraints
NASA Astrophysics Data System (ADS)
Sembiring, Pasukat
2017-12-01
Processing ofdata with very large dimensions has been a hot topic in recent decades. Various techniques have been proposed in order to execute the desired information or structure. Non- Negative Matrix Factorization (NMF) based on non-negatives data has become one of the popular methods for shrinking dimensions. The main strength of this method is non-negative object, the object model by a combination of some basic non-negative parts, so as to provide a physical interpretation of the object construction. The NMF is a dimension reduction method thathasbeen used widely for numerous applications including computer vision,text mining, pattern recognitions,and bioinformatics. Mathematical formulation for NMF did not appear as a convex optimization problem and various types of algorithms have been proposed to solve the problem. The Framework of Alternative Nonnegative Least Square(ANLS) are the coordinates of the block formulation approaches that have been proven reliable theoretically and empirically efficient. This paper proposes a new algorithm to solve NMF problem based on the framework of ANLS.This algorithm inherits the convergenceproperty of the ANLS framework to nonlinear constraints NMF formulations.
Humanoids for lunar and planetary surface operations
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier; Csaszar, Ambrus; Gan, Quan; Hidalgo, Timothy; Moore, Jeff; Newton, Jason; Sandoval, Steven; Xu, Jiajing
2005-01-01
This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans, for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project in this direction is outlined.
ARK: Autonomous mobile robot in an industrial environment
NASA Technical Reports Server (NTRS)
Nickerson, S. B.; Jasiobedzki, P.; Jenkin, M.; Jepson, A.; Milios, E.; Down, B.; Service, J. R. R.; Terzopoulos, D.; Tsotsos, J.; Wilkes, D.
1994-01-01
This paper describes research on the ARK (Autonomous Mobile Robot in a Known Environment) project. The technical objective of the project is to build a robot that can navigate in a complex industrial environment using maps with permanent structures. The environment is not altered in any way by adding easily identifiable beacons and the robot relies on naturally occurring objects to use as visual landmarks for navigation. The robot is equipped with various sensors that can detect unmapped obstacles, landmarks and objects. In this paper we describe the robot's industrial environment, it's architecture, a novel combined range and vision sensor and our recent results in controlling the robot in the real-time detection of objects using their color and in the processing of the robot's range and vision sensor data for navigation.
NASA Astrophysics Data System (ADS)
Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki
2006-01-01
In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.
Machine vision extracted plant movement for early detection of plant water stress.
Kacira, M; Ling, P P; Short, T H
2002-01-01
A methodology was established for early, non-contact, and quantitative detection of plant water stress with machine vision extracted plant features. Top-projected canopy area (TPCA) of the plants was extracted from plant images using image-processing techniques. Water stress induced plant movement was decoupled from plant diurnal movement and plant growth using coefficient of relative variation of TPCA (CRV[TPCA)] and was found to be an effective marker for water stress detection. Threshold value of CRV(TPCA) as an indicator of water stress was determined by a parametric approach. The effectiveness of the sensing technique was evaluated against the timing of stress detection by an operator. Results of this study suggested that plant water stress detection using projected canopy area based features of the plants was feasible.
TrkB Activators for the Treatment of Traumatic Vision Loss
2015-10-01
The views, opinions and/or findings contained in this report are those of the author( s ) and should not be construed as an official Department of the...for the Treatment of Traumatic Vision Loss 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0436 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER Michael P. Iuvone 5e. TASK NUMBER E-Mail: miuvone@emory.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES
The role of visual deprivation and experience on the performance of sensory substitution devices.
Stronks, H Christiaan; Nau, Amy C; Ibbotson, Michael R; Barnes, Nick
2015-10-22
It is commonly accepted that the blind can partially compensate for their loss of vision by developing enhanced abilities with their remaining senses. This visual compensation may be related to the fact that blind people rely on their other senses in everyday life. Many studies have indeed shown that experience plays an important role in visual compensation. Numerous neuroimaging studies have shown that the visual cortices of the blind are recruited by other functional brain areas and can become responsive to tactile or auditory input instead. These cross-modal plastic changes are more pronounced in the early blind compared to late blind individuals. The functional consequences of cross-modal plasticity on visual compensation in the blind are debated, as are the influences of various etiologies of vision loss (i.e., blindness acquired early or late in life). Distinguishing between the influences of experience and visual deprivation on compensation is especially relevant for rehabilitation of the blind with sensory substitution devices. The BrainPort artificial vision device and The vOICe are assistive devices for the blind that redirect visual information to another intact sensory system. Establishing how experience and different etiologies of vision loss affect the performance of these devices may help to improve existing rehabilitation strategies, formulate effective selection criteria and develop prognostic measures. In this review we will discuss studies that investigated the influence of training and visual deprivation on the performance of various sensory substitution approaches. Copyright © 2015 Elsevier B.V. All rights reserved.
A web-based online collaboration platform for formulating engineering design projects
NASA Astrophysics Data System (ADS)
Varikuti, Sainath
Effective communication and collaboration among students, faculty and industrial sponsors play a vital role while formulating and solving engineering design projects. With the advent in the web technology, online platforms and systems have been proposed to facilitate interactions and collaboration among different stakeholders in the context of senior design projects. However, there are noticeable gaps in the literature with respect to understanding the effects of online collaboration platforms for formulating engineering design projects. Most of the existing literature is focused on exploring the utility of online platforms on activities after the problem is defined and teams are formed. Also, there is a lack of mechanisms and tools to guide the project formation phase in senior design projects, which makes it challenging for students and faculty to collaboratively develop and refine project ideas and to establish appropriate teams. In this thesis a web-based online collaboration platform is designed and implemented to share, discuss and obtain feedback on project ideas and to facilitate collaboration among students and faculty prior to the start of the semester. The goal of this thesis is to understand the impact of an online collaboration platform for formulating engineering design projects, and how a web-based online collaboration platform affects the amount of interactions among stakeholders during the early phases of design process. A survey measuring the amount of interactions among students and faculty is administered. Initial findings show a marked improvement in the students' ability to share project ideas and form teams with other students and faculty. Students found the online platform simple to use. The suggestions for improving the tool generally included features that were not necessarily design specific, indicating that the underlying concept of this collaborative platform provides a strong basis and can be extended for future online platforms. Although the platform was designed to promote collaboration, adoption of the collaborative platform by students and faculty has been slow. While the platform appears to be very useful for collaboration, more time is required for it to be widely used by all the stakeholders and to fully convert from email communication to the use of the online collaboration platform.
Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, E. I.
The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. Thismore » conference poster outlines the elements of the new Wind Vision.« less
Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate
NASA Technical Reports Server (NTRS)
Sander, Michael J.
2006-01-01
As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments
System of error detection in the manufacture of garments using artificial vision
NASA Astrophysics Data System (ADS)
Moreno, J. J.; Aguila, A.; Partida, E.; Martinez, C. L.; Morales, O.; Tejeida, R.
2017-12-01
A computer vision system is implemented to detect errors in the cutting stage within the manufacturing process of garments in the textile industry. It provides solution to errors within the process that cannot be easily detected by any employee, in addition to significantly increase the speed of quality review. In the textile industry as in many others, quality control is required in manufactured products and this has been carried out manually by means of visual inspection by employees over the years. For this reason, the objective of this project is to design a quality control system using computer vision to identify errors in the cutting stage within the garment manufacturing process to increase the productivity of textile processes by reducing costs.
NASA Astrophysics Data System (ADS)
Miao, Di; Borden, Michael J.; Scott, Michael A.; Thomas, Derek C.
2018-06-01
In this paper we demonstrate the use of B\\'{e}zier projection to alleviate locking phenomena in structural mechanics applications of isogeometric analysis. Interpreting the well-known $\\bar{B}$ projection in two different ways we develop two formulations for locking problems in beams and nearly incompressible elastic solids. One formulation leads to a sparse symmetric symmetric system and the other leads to a sparse non-symmetric system. To demonstrate the utility of B\\'{e}zier projection for both geometry and material locking phenomena we focus on transverse shear locking in Timoshenko beams and volumetric locking in nearly compressible linear elasticity although the approach can be applied generally to other types of locking phenemona as well. B\\'{e}zier projection is a local projection technique with optimal approximation properties, which in many cases produces solutions that are comparable to global $L^2$ projection. In the context of $\\bar{B}$ methods, the use of B\\'ezier projection produces sparse stiffness matrices with only a slight increase in bandwidth when compared to standard displacement-based methods. Of particular importance is that the approach is applicable to any spline representation that can be written in B\\'ezier form like NURBS, T-splines, LR-splines, etc. We discuss in detail how to integrate this approach into an existing finite element framework with minimal disruption through the use of B\\'ezier extraction operators and a newly introduced dual basis for the B\\'{e}zierprojection operator. We then demonstrate the behavior of the two proposed formulations through several challenging benchmark problems.
Greening America's Capitals - Austin, TX
Report on the technical assistance project to help Austin, TX, develop a vision for the South Central Waterfront that incorporates green infrastructure to manage stormwater runoff, makes streets safer, and spurs investment.
Kids Speaking Up for Kids: Advocacy by Children, for Children
ERIC Educational Resources Information Center
Zygmunt-Fillwalk, Eva; Staley, Lynn; Kumar, Rashmi; Lin, Cecilia Lingfen; Moore, Catherine; Salakaya, Manana; Szecsi, Tunde
2007-01-01
This article describes a project called "Kids Speaking Up for Kids: Advocacy by Children, for Children". The project was simple in scope. The authors sought to collect stories of child advocacy--ways in which children were working on behalf of other children. They also sought to collect and profile children's voices and vision and so…
A study on integrating surveys of terrestrial natural resources: The Oregon Demonstration Project
J. Jeffery Goebel; Hans T. Schreuder; Carol C. House; Paul H. Geissler; Anthony R. Olsen; William Williams
1998-01-01
An interagency project demonstrated the feasibility of integrating Federal surveys of terrestrial natural resources and offers a vision for that integration. At locations selected from forest inventory and analysis, National forest system Region 6, and national resources inventory surveys in a six-county area in Northern Oregon, experienced teams interpreted and made...
Alternative, Renewable and Novel Feedstocks for Producing Chemicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2007-07-01
Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.
Reclaiming the Vision: Past, Present, and Future Native Voices for the Eighth Generation.
ERIC Educational Resources Information Center
Francis, Lee, Ed.; Bruchac, James, Ed.
This book describes the "Returning the Gift" project, designed to create new opportunities for North American Native writers to share their work with Native youth, the overall Native community, and the general public. The project included a festival that brought together over 200 current and emerging Native American writers (Norman,…
The Solar City Daegu 2050 Project: Visions for a Sustainable City
ERIC Educational Resources Information Center
Kim, Jong-dall; Han, Dong-hi; Na, Jung-gyu
2006-01-01
The Solar City Daegu 2050 Project (SCD 2050) represents a comprehensive model for shaping the future of this city of 2.5 million residents with a mixed industrial and services economic base. Its specific aims are as follows: realization of a carbon footprint consistent with standards of global sustainability and equity; the development of a…
Rediscovering America: The FWP Legacy and Challenge
ERIC Educational Resources Information Center
Hirsch, Jerrold
2012-01-01
An overview of the history of the Federal Writers' Project, hitting on critical reference points for our vision of what the project might look like today: the 1930s' FWP's cross-disciplinary integration of literature and history; the rejection of strict divisions between high and low culture; and the bottom-up approach to history that had begun…
The Research Path to the Virtual Class. ZIFF Papiere 105.
ERIC Educational Resources Information Center
Rajasingham, Lalita
This paper describes a project conducted in 1991-92, based on research conducted in 1986-87 that demonstrated the need for a telecommunications system with the capacity of integrated services digital networks (ISDN) that would allow for sound, vision, and integrated computer services. Called the Tri-Centre Project, it set out to explore, from the…
ERIC Educational Resources Information Center
Young, Doris S.
The Elders Gathering on July 11-13, 1994, brought together 12 First Nations and Metis elders (all women) from 11 southern Saskatchewan communities to share their stories and to identify sociopolitical issues and their related learning needs. Throughout the spring and summer, the project coordinator traveled to First Nations and Metis communities…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockhold, Mark L.
2008-09-26
The objective of Activity 1.B of the Remediation Decision Support (RDS) Project is to compile all available physical and hydraulic property data for sediments from the Hanford Site, to port these data into the Hanford Environmental Information System (HEIS), and to make the data web-accessible to anyone on the Hanford Local Area Network via the so-called Virtual Library. In past years efforts were made by RDS project staff to compile all available physical and hydraulic property data for Hanford sediments and to transfer these data into SoilVision{reg_sign}, a commercial geotechnical software package designed for storing, analyzing, and manipulating soils data.more » Although SoilVision{reg_sign} has proven to be useful, its access and use restrictions have been recognized as a limitation to the effective use of the physical and hydraulic property databases by the broader group of potential users involved in Hanford waste site issues. In order to make these data more widely available and useable, a decision was made to port them to HEIS and to make them web-accessible via a Virtual Library module. In FY08 the objectives of Activity 1.B of the RDS Project were to: (1) ensure traceability and defensibility of all physical and hydraulic property data currently residing in the SoilVision{reg_sign} database maintained by PNNL, (2) transfer the physical and hydraulic property data from the Microsoft Access database files used by SoilVision{reg_sign} into HEIS, which has most recently been maintained by Fluor-Hanford, Inc., (3) develop a Virtual Library module for accessing these data from HEIS, and (4) write a User's Manual for the Virtual Library module. The development of the Virtual Library module was to be performed by a third party under subcontract to Fluor. The intent of these activities is to make the available physical and hydraulic property data more readily accessible and useable by technical staff and operable unit managers involved in waste site assessments and remedial action decisions for Hanford. This status report describes the history of this development effort and progress to date.« less
Colour, vision and ergonomics.
Pinheiro, Cristina; da Silva, Fernando Moreira
2012-01-01
This paper is based on a research project - Visual Communication and Inclusive Design-Colour, Legibility and Aged Vision, developed at the Faculty of Architecture of Lisbon. The research has the aim of determining specific design principles to be applied to visual communication design (printed) objects, in order to be easily read and perceived by all. This study target group was composed by a selection of socially active individuals, between 55 and 80 years, and we used cultural events posters as objects of study and observation. The main objective is to overlap the study of areas such as colour, vision, older people's colour vision, ergonomics, chromatic contrasts, typography and legibility. In the end we will produce a manual with guidelines and information to apply scientific knowledge into the communication design projectual practice. Within the normal aging process, visual functions gradually decline; the quality of vision worsens, colour vision and contrast sensitivity are also affected. As people's needs change along with age, design should help people and communities, and improve life quality in the present. Applying principles of visually accessible design and ergonomics, the printed design objects, (or interior spaces, urban environments, products, signage and all kinds of visually information) will be effective, easier on everyone's eyes not only for visually impaired people but also for all of us as we age.
Formulation of spin 7/2 and 9/2 nucleon resonance amplitudes for kaon photoproduction off a proton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clymton, S., E-mail: samsonclymton@gmail.com; Mart, T.
2016-04-19
We have constructed the formulation of scattering amplitude for kaon photoproduction off a proton that includes nucleon resonances with spins 7/2 and 9/2. To this end we start with the formalism of projection operator for higher spins and derive the spins 7/2 and 9/2 projection operators. The corresponding Feynman propagators are obtained from these projection operators. To calculate the scattering amplitude we use the vertex factor proposed by Pascalutsa. The scattering amplitudes are then decomposed into six Lorentz- and gauge-invariant amplitudes, from which the cross section and polarization observables can be calculated.
Evaluation of ‘vision screening’ program for three to six-year-old children in the Republic of Iran
Khandekar, Rajiv; Parast, Noa; Arabi, Ashraf
2009-01-01
Background: Since 1996, vision screening of three to six-year-old children is conducted every year in Iran. We present outcomes of project review held in August 2006. Materials and Methods: Kindergarten teachers examined vision by using Snellen's illiterate ‘E’ chart. They used torchlight to detect strabismus. On a repeat test, if either eye had vision <20/30, the child was referred to the optometrist. A pediatric ophthalmologist examined and managed children with strabismus or amblyopia. Provincial managers supervised the screening program. The evaluator team assessed the coverage, yield, quality and feasibility, and cost-effectiveness of vision screening, as well as magnitude of amblyopia, and its risk factors. Result: In 2005, 1.4 million (67%) children were examined in all provinces of Iran. Opticians examined 90,319 (61%) children with defective vision that were referred to them. The prevalence of uncorrected refractive error, strabismus and amblyopia was 3.82% (95% CI 3.79 – 3.85), 0.39% (95% CI 0.38 – 0.40) and 1.25% (95% CI 1.24 – 1.26) respectively. Validity test of 7,768 children had a sensitivity of 74.5% (95% CI 72.7 – 76.3) and specificity of 97.2% (95% CI 96.7 – 97.7). The cost of amblyopia screening was US $ 1.5 per child. While the cost of screening and treating one child with amblyopia was US $ 245. Conclusion: A review of the vision screening of children in Iran showed it with screening and useful exercise and had a yield of 1:21. The coverage of vision screening was low and the management of children with amblyopia, low vision and refractive error needed strengthening. PMID:19861745
Evaluation of 'vision screening' program for three to six-year-old children in the Republic of Iran.
Khandekar, Rajiv; Parast, Noa; Arabi, Ashraf
2009-01-01
Since 1996, vision screening of three to six-year-old children is conducted every year in Iran. We present outcomes of project review held in August 2006. Kindergarten teachers examined vision by using Snellen's illiterate 'E' chart. They used torchlight to detect strabismus. On a repeat test, if either eye had vision < 20/30, the child was referred to the optometrist. A pediatric ophthalmologist examined and managed children with strabismus or amblyopia. Provincial managers supervised the screening program. The evaluator team assessed the coverage, yield, quality and feasibility, and cost-effectiveness of vision screening, as well as magnitude of amblyopia, and its risk factors. In 2005, 1.4 million (67%) children were examined in all provinces of Iran. Opticians examined 90,319 (61%) children with defective vision that were referred to them. The prevalence of uncorrected refractive error, strabismus and amblyopia was 3.82% (95% CI 3.79 - 3.85), 0.39% (95% CI 0.38 - 0.40) and 1.25% (95% CI 1.24 - 1.26) respectively. Validity test of 7,768 children had a sensitivity of 74.5% (95% CI 72.7 - 76.3) and specificity of 97.2% (95% CI 96.7 - 97.7). The cost of amblyopia screening was US $ 1.5 per child. While the cost of screening and treating one child with amblyopia was US $ 245. A review of the vision screening of children in Iran showed it with screening and useful exercise and had a yield of 1:21. The coverage of vision screening was low and the management of children with amblyopia, low vision and refractive error needed strengthening.
NASA Astrophysics Data System (ADS)
Kasprzyk, J. R.; Smith, R.; Raseman, W. J.; DeRousseau, M. A.; Dilling, L.; Ozekin, K.; Summers, R. S.; Balaji, R.; Livneh, B.; Rosario-Ortiz, F.; Sprain, L.; Srubar, W. V., III
2017-12-01
This presentation will report on three projects that used interactive workshops with stakeholders to develop problem formulations for Multi-Objective Evolutionary Algorithm (MOEA)-based decision support in diverse fields - water resources planning, water quality engineering under climate extremes, and sustainable materials design. When combined with a simulation model of a system, MOEAs use intelligent search techniques to provide new plans or designs. This approach is gaining increasing prominence in design and planning for environmental sustainability. To use this technique, a problem formulation - objectives and constraints (quantitative measures of performance) and decision variables (actions that can be modified to improve the system) - must be identified. Although critically important for MOEA effectiveness, the problem formulations are not always developed with stakeholders' interests in mind. To ameliorate this issue, project workshops were organized to improve the tool's relevance as well as collaboratively build problem formulations that can be used in applications. There were interesting differences among the projects, which altered the findings of each workshop. Attendees ranged from a group of water managers on the Front Range of Colorado, to water utility representatives from across the country, to a set of designers, academics, and trade groups. The extent to which the workshop participants were already familiar with simulation tools contributed to their willingness to accept the solutions that were generated using the tool. Moreover, in some instances, brainstorming new objectives to include within the MOEA expanded the scope of the problem formulation, relative to the initial conception of the researchers. Through describing results across a diversity of projects, the goal of this presentation is to report on how our approach may inform future decision support collaboration with a variety of stakeholders and sectors.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard
2016-01-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/ dbalsara/Numerical-PDE-Course.
Oral biopharmaceutics tools - time for a new initiative - an introduction to the IMI project OrBiTo.
Lennernäs, H; Aarons, L; Augustijns, P; Beato, S; Bolger, M; Box, K; Brewster, M; Butler, J; Dressman, J; Holm, R; Julia Frank, K; Kendall, R; Langguth, P; Sydor, J; Lindahl, A; McAllister, M; Muenster, U; Müllertz, A; Ojala, K; Pepin, X; Reppas, C; Rostami-Hodjegan, A; Verwei, M; Weitschies, W; Wilson, C; Karlsson, C; Abrahamsson, B
2014-06-16
OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharmaceutics tools will be performed using active pharmaceutical ingredient (API), formulations and supporting datasets from industry partners. A combination of high quality in vitro or in silico characterizations of API and formulations will be integrated into physiologically based in silico biopharmaceutics models capturing the full complexity of GI drug absorption. This approach gives an unparalleled opportunity to initiate a transformational change in industrial research and development to achieve model-based pharmaceutical product development in accordance with the Quality by Design concept. Benefits include an accelerated and more efficient drug candidate selection, formulation development process, particularly for challenging projects such as low solubility molecules (BCS II and IV), enhanced and modified-release formulations, as well as allowing optimization of clinical product performance for patient benefit. In addition, the tools emerging from OrBiTo are expected to significantly reduce demand for animal experiments in the future as well as reducing the number of human bioequivalence studies required to bridge formulations after manufacturing or composition changes. Copyright © 2013 Elsevier B.V. All rights reserved.
Suzuki, Daichi G; Murakami, Yasunori; Escriva, Hector; Wada, Hiroshi
2015-02-01
Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions. © 2014 Wiley Periodicals, Inc.
Wang, Yu-Jen; Chen, Po-Ju; Liang, Xiao; Lin, Yi-Hsin
2017-03-27
Augmented reality (AR), which use computer-aided projected information to augment our sense, has important impact on human life, especially for the elder people. However, there are three major challenges regarding the optical system in the AR system, which are registration, vision correction, and readability under strong ambient light. Here, we solve three challenges simultaneously for the first time using two liquid crystal (LC) lenses and polarizer-free attenuator integrated in optical-see-through AR system. One of the LC lens is used to electrically adjust the position of the projected virtual image which is so-called registration. The other LC lens with larger aperture and polarization independent characteristic is in charge of vision correction, such as myopia and presbyopia. The linearity of lens powers of two LC lenses is also discussed. The readability of virtual images under strong ambient light is solved by electrically switchable transmittance of the LC attenuator originating from light scattering and light absorption. The concept demonstrated in this paper could be further extended to other electro-optical devices as long as the devices exhibit the capability of phase modulations and amplitude modulations.
Coffey, Martin J; DeCory, Heleen H; Lane, Stephen S
2013-01-01
The eye has protective barriers (ie, the conjunctival and corneal membranes) and defense mechanisms (ie, reflex tearing, blinking, lacrimal drainage) which present challenges to topical drug delivery. Topical ocular corticosteroids are commonly used in the treatment of anterior segment diseases and inflammation associated with ocular surgery, and manufacturers continually strive to improve their characteristics. We describe the development of a novel ophthalmic gel formulation of loteprednol etabonate (LE), a C-20 ester-based corticosteroid with an established safety profile, in the treatment of ocular inflammatory conditions. The new LE gel formulation is non-settling, eliminating the need to shake the product to resuspend the drug, has a pH close to that of tears, and a low preservative concentration. The rheological characteristics of LE gel are such that the formulation is instilled as a drop and transitions to a fluid upon instillation in the eye, yet retains sufficient viscosity to prolong ocular surface retention. The new formulation provides consistent, uniform dosing as evidenced by dose extrusion studies, while pharmacokinetic studies in rabbits demonstrated rapid and sustained exposure to LE in ocular tissues following instillation of LE gel. Finally, results from two clinical studies of LE gel in the treatment of postoperative inflammation and pain following cataract surgery indicate that it was safe and effective. Most patients reported no unpleasant drop sensation upon instillation, and reports of blurred vision were rare. PMID:23430378
Current status of cataract blindness and Vision 2020: the right to sight initiative in India.
Murthy, Gvs; Gupta, Sanjeev K; John, Neena; Vashist, Praveen
2008-01-01
India is a signatory to the World Health Organization resolution on Vision 2020: The right to sight. Efforts of all stakeholders have resulted in increased number of cataract surgeries performed in India, but the impact of these efforts on the elimination of avoidable blindness is unknown. Projection of performance of cataract surgery over the next 15 years to determine whether India is likely to eliminate cataract blindness by 2020. Data from three national level blindness surveys in India over three decades, and projected age-specific population till 2020 from US Census Bureau were used to develop a model to predict the magnitude of cataract blindness and impact of Vision 2020: the right to sight initiatives. Using age-specific data for those aged 50+ years it was observed that prevalence of blindness at different age cohorts (above 50 years) reduced over three decades with a peak in 1989. Projections show that among those aged 50+ years, the quantum of cataract surgery would double (3.38 million in 2001 to 7.63 million in 2020) and cataract surgical rate would increase from 24025/million 50+ in 2001 to 27817/million 50+ in 2020. Though the prevalence of cataract blindness would decrease, the absolute number of cataract blind would increase from 7.75 million in 2001 to 8.25 million in 2020 due to a substantial increase in the population above 50 years in India over this period. Considering existing prevalence and projected incidence of cataract blindness over the period 2001-2020, visual outcomes after cataract surgery and sight restoration rate, elimination of cataract blindness may not be achieved by 2020 in India.
Six years of vision screening tests in pre-school children in kindergartens of Wroclaw
NASA Astrophysics Data System (ADS)
Szmigiel, Marta; Geniusz, Malwina; Szmigiel, Ireneusz
2017-09-01
Detection of vision defects of a child without professional knowledge is not easy. Very often, the parents of a small child does not know that their child sees incorrect. Also the youngster, not knowing any other way of seeing, does not know that it is not the best. While the vision of a small child is not yet fully formed, it is worth checking them very early. Defects detected early gives opportunity for the correction of anomalies, which might give the effect of the normal development of vision. According to the indications, the American Optometric Association (AOA) control eye examination should be performed between the ages of 6 months to 3 years, before going to school and then every two years. Members of SPIE Student Chapter, in cooperation with the Visual Optics Group working on the Department of Optics and Photonics (Faculty of Fundamental Problems, Wroclaw University of Science and Technology) for 6 years offer selected kindergartens of Wroclaw participation in project "Screening vision tests in pre-school children". Depending on the number of involved members of the student chapter and willing to cooperate students of Ophthalmology and Optometry, vision screening test was carried out in up to eight kindergartens every year. The basic purpose of screening vision test is to detect visual defects to start the correction so early in life as possible, while increasing the efficiency of the child's visual potential. The surrounding community is in fact more than enough examples of late diagnose vision problems, which resulted in lack of opportunity or treatment failure
Technology Foresight For Youth: A Project For Science and Technology Education in Sweden
NASA Astrophysics Data System (ADS)
Kendal, Anne Louise
"Technology Foresight for Youth" is a project run by two science museums, two science centres and "Technology Foresight (Sweden)" an organization in which both business and scientists are represented. The project is designed to strengthen young people's interest in ongoing technological work, research and education. It should give them confidence in their own ability both to understand today's techniques including its influence on people's daily lives, and to influence future developments. One part of the project is aimed at school teachers, teacher cooperation groups and students in the age group 12 to 18 years. A second part encourages dialog and meetings by arranging debates, seminars, theatre, science demonstrations in cooperation with business representatives and scientists. A third important part of the project is a special exhibition to be shown at the four cooperating institutions: "To be where I am not - young people's dreams about the future". The exhibition is meant to be sensual, interactive and partly virtual. It will change and grow with time as young people contribute with their thoughts, visions and challenges. Young people in different parts of the country will be able to interact electronically with each other and with the virtual part of the exhibition. The main aim of the project is to develop new interactive pedagogic methods for science and technology based on young people's own visions about the future.
NASA Astrophysics Data System (ADS)
Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.
2016-06-01
Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial measurement for large structure with similar dimension with large deployable reflector to confirm the validity of the network design and instrumentation. In this report, the overview of this R&D project and the results of feasibility study of network design based on simulations on vision metrology and beam pattern compensation of antenna with very large reflector in orbit is discussed. The feasibility of assumed network design for vision metrology and satisfaction of accuracy requirements are discussed. The feasibility of beam pattern compensation by using accurately measured reflector shape is confirmed with antenna pattern simulation for deformed parabola reflector. If reflector surface of communication satellite can be measured routinely in orbit, the antenna pattern can be compensated and maintain the high performance every moment.
Project Photofly: New 3d Modeling Online Web Service (case Studies and Assessments)
NASA Astrophysics Data System (ADS)
Abate, D.; Furini, G.; Migliori, S.; Pierattini, S.
2011-09-01
During summer 2010, Autodesk has released a still ongoing project called Project Photofly, freely downloadable from AutodeskLab web site until August 1 2011. Project Photofly based on computer-vision and photogrammetric principles, exploiting the power of cloud computing, is a web service able to convert collections of photographs into 3D models. Aim of our research was to evaluate the Project Photofly, through different case studies, for 3D modeling of cultural heritage monuments and objects, mostly to identify for which goals and objects it is suitable. The automatic approach will be mainly analyzed.
Rosebud Sioux Wind Energy Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tony Rogers
2008-04-30
In 1998, through the vision of the late Alex “Little Soldier” Lunderman (1928-2000) and through the efforts of the Rosebud Sioux Tribal Utilities Commission, and with assistance from Intertribal Council on Utility Policy (COUP), and Distributed Generation, Inc (DISGEN). The Rosebud Sioux Tribe applied and was awarded in 1999 a DOE Cooperative Grant to build a commercial 750 Kw wind turbine, along with a 50/50 funding grant from the Department of Energy and a low interest loan from the Rural Utilities Service, United States Department of Agriculture, the Rosebud Sioux Tribe commissioned a single 750 kilowatt NEG Micon wind turbinemore » in March of 2003 near the Rosebud Casino. The Rosebud Sioux Wind Energy Project (Little Soldier “Akicita Cikala”) Turbine stands as a testament to the vision of a man and the Sicangu Oyate.« less
Humanoids in Support of Lunar and Planetary Surface Operations
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Keymeulen, Didier
2006-01-01
This paper presents a vision of humanoid robots as human's key partners in future space exploration, in particular for construction, maintenance/repair and operation of lunar/planetary habitats, bases and settlements. It integrates this vision with the recent plans for human and robotic exploration, aligning a set of milestones for operational capability of humanoids with the schedule for the next decades and development spirals in the Project Constellation. These milestones relate to a set of incremental challenges, for the solving of which new humanoid technologies are needed. A system of systems integrative approach that would lead to readiness of cooperating humanoid crews is sketched. Robot fostering, training/education techniques, and improved cognitive/sensory/motor development techniques are considered essential elements for achieving intelligent humanoids. A pilot project using small-scale Fujitsu HOAP-2 humanoid is outlined.
Smart lighting using a liquid crystal modulator
NASA Astrophysics Data System (ADS)
Baril, Alexandre; Thibault, Simon; Galstian, Tigran
2017-08-01
Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.
Missionary Zeal: Some Problems with the Rhetoric, Vision and Approach of the AHELO Project
ERIC Educational Resources Information Center
Ashwin, Paul
2015-01-01
The OECD's Assessment of Higher Education Learning Outcomes (AHELO) project is an important contribution to discussions of how to define and measure the quality of global higher education. There is a genuine need for quality measures that can help to ensure students have equitable access to high-quality higher education wherever they study but do…
History Places: A Case Study for Relational Database and Information Retrieval System Design
ERIC Educational Resources Information Center
Hendry, David G.
2007-01-01
This article presents a project-based case study that was developed for students with diverse backgrounds and varied inclinations for engaging technical topics. The project, called History Places, requires that student teams develop a vision for a kind of digital library, propose a conceptual model, and use the model to derive a logical model and…
ERIC Educational Resources Information Center
McKeon, Kelly; Thompson, Ellen
2008-01-01
The Arts Libraries Society of Australia and New Zealand (Arlis/ANZ) recently implemented a new web presence. More than just a website, it was envisaged as a web "identity", a virtual clubhouse where the Society could conduct its "virtual business" and where members could "meet" and contribute to the activities of…
ERIC Educational Resources Information Center
Trivette, Carol M.; Dunst, Carl J.
2011-01-01
This monograph includes the final report for a project funded by the Pennsylvania Developmental Disabilities Council for "Measuring Outcomes for Children" (2008 RFP). The goal of the project was to "develop and demonstrate the effectiveness of an instrument designed to measure life outcomes of children with disabilities being…
Leclerc-Madlala, Suzanne; Broomhall, Lorie; Fieno, John
2017-12-04
Efforts are currently underway by major orchestrators and funders of the global AIDS response to realise the vision of achieving an end to AIDS by 2030. Unlike previous efforts to provide policy guidance or to encourage 'best practice' approaches for combatting AIDS, the end of AIDS project involves the promotion of a clear set of targets, tools, and interventions for a final biomedical solution to the epidemic. In this paper, we examine the bureaucratic procedures of one major AIDS funder that helped to foster a common vision and mission amongst a global AIDS community with widely divergent views on how best to address the epidemic. We focus on the methods, movements, and materials that are central to the project of ending AIDS, including those related to biomedical forms of evidence and big data science. We argue that these approaches have limitations and social scientists need to pay close attention to the end of AIDS project, particularly in contexts where clinical interventions might transform clinical outcomes, but where the social, economic, and cultural determinants of HIV and AIDS remain largely intact and increasingly obscured.
NASA Astrophysics Data System (ADS)
Hildreth, E. C.
1985-09-01
For both biological systems and machines, vision begins with a large and unwieldly array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene such as the location of object boundaries and the structure, color and texture of object surfaces, from the two-dimensional image that is projected onto the eye or camera. This goal is not achieved in a single step: vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clues about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processing has led to extensive research on their detection, description and use, both in computer and biological vision systems. This article reviews some of the theory that underlies the detection of edges, and the methods used to carry out this analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-08-01
This article reports that there are literally hundreds of machine vision systems from which to choose. They range in cost from $10,000 to $1,000,000. Most have been designed for specific applications; the same systems if used for a different application may fail dismally. How can you avoid wasting money on inferior, useless, or nonexpandable systems. A good reference is the Automated Vision Association in Ann Arbor, Mich., a trade group comprised of North American machine vision manufacturers. Reputable suppliers caution users to do their homework before making an investment. Important considerations include comprehensive details on the objects to be viewed-thatmore » is, quantity, shape, dimension, size, and configuration details; lighting characteristics and variations; component orientation details. Then, what do you expect the system to do-inspect, locate components, aid in robotic vision. Other criteria include system speed and related accuracy and reliability. What are the projected benefits and system paybacks.. Examine primarily paybacks associated with scrap and rework reduction as well as reduced warranty costs.« less
Machine Vision Applied to Navigation of Confined Spaces
NASA Technical Reports Server (NTRS)
Briscoe, Jeri M.; Broderick, David J.; Howard, Ricky; Corder, Eric L.
2004-01-01
The reliability of space related assets has been emphasized after the second loss of a Space Shuttle. The intricate nature of the hardware being inspected often requires a complete disassembly to perform a thorough inspection which can be difficult as well as costly. Furthermore, it is imperative that the hardware under inspection not be altered in any other manner than that which is intended. In these cases the use of machine vision can allow for inspection with greater frequency using less intrusive methods. Such systems can provide feedback to guide, not only manually controlled instrumentation, but autonomous robotic platforms as well. This paper serves to detail a method using machine vision to provide such sensing capabilities in a compact package. A single camera is used in conjunction with a projected reference grid to ascertain precise distance measurements. The design of the sensor focuses on the use of conventional components in an unconventional manner with the goal of providing a solution for systems that do not require or cannot accommodate more complex vision systems.
Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs.
Vo, Chau Le-Ngoc; Park, Chulhun; Lee, Beom-Jin
2013-11-01
Over 40% of active pharmaceutical ingredients (API) in development pipelines are poorly water-soluble drugs which limit formulation approaches, clinical application and marketability because of their low dissolution and bioavailability. Solid dispersion has been considered one of the major advancements in overcoming these issues with several successfully marketed products. A number of key references that describe state-of-the-art technologies have been collected in this review, which addresses various pharmaceutical strategies and future visions for the solubilization of poorly water-soluble drugs according to the four generations of solid dispersions. This article reviews critical aspects and recent advances in formulation, preparation and characterization of solid dispersions as well as in-depth pharmaceutical solutions to overcome some problems and issues that limit the development and marketability of solid dispersion products. Copyright © 2013 Elsevier B.V. All rights reserved.
Line grouping using perceptual saliency and structure prediction for car detection in traffic scenes
NASA Astrophysics Data System (ADS)
Denasi, Sandra; Quaglia, Giorgio
1993-08-01
Autonomous and guide assisted vehicles make a heavy use of computer vision techniques to perceive the environment where they move. In this context, the European PROMETHEUS program is carrying on activities in order to develop autonomous vehicle monitoring that assists people to achieve safer driving. Car detection is one of the topics that are faced by the program. Our contribution proposes the development of this task in two stages: the localization of areas of interest and the formulation of object hypotheses. In particular, the present paper proposes a new approach that builds structural descriptions of objects from edge segmentations by using geometrical organization. This approach has been applied to the detection of cars in traffic scenes. We have analyzed images taken from a moving vehicle in order to formulate obstacle hypotheses: preliminary results confirm the efficiency of the method.
Invariant visual object recognition and shape processing in rats
Zoccolan, Davide
2015-01-01
Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421
Agte, Silke; Savvinov, Alexey; Karl, Anett; Zayas-Santiago, Astrid; Ulbricht, Elke; Makarov, Vladimir I; Reichenbach, Andreas; Bringmann, Andreas; Skatchkov, Serguei N
2018-05-16
In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Research on the feature set construction method for spherical stereo vision
NASA Astrophysics Data System (ADS)
Zhu, Junchao; Wan, Li; Röning, Juha; Feng, Weijia
2015-01-01
Spherical stereo vision is a kind of stereo vision system built by fish-eye lenses, which discussing the stereo algorithms conform to the spherical model. Epipolar geometry is the theory which describes the relationship of the two imaging plane in cameras for the stereo vision system based on perspective projection model. However, the epipolar in uncorrected fish-eye image will not be a line but an arc which intersects at the poles. It is polar curve. In this paper, the theory of nonlinear epipolar geometry will be explored and the method of nonlinear epipolar rectification will be proposed to eliminate the vertical parallax between two fish-eye images. Maximally Stable Extremal Region (MSER) utilizes grayscale as independent variables, and uses the local extremum of the area variation as the testing results. It is demonstrated in literatures that MSER is only depending on the gray variations of images, and not relating with local structural characteristics and resolution of image. Here, MSER will be combined with the nonlinear epipolar rectification method proposed in this paper. The intersection of the rectified epipolar and the corresponding MSER region is determined as the feature set of spherical stereo vision. Experiments show that this study achieved the expected results.
The visually impaired patient.
Rosenberg, Eric A; Sperazza, Laura C
2008-05-15
Blindness or low vision affects more than 3 million Americans 40 years and older, and this number is projected to reach 5.5 million by 2020. In addition to treating a patient's vision loss and comorbid medical issues, physicians must be aware of the physical limitations and social issues associated with vision loss to optimize health and independent living for the visually impaired patient. In the United States, the four most prevalent etiologies of vision loss in persons 40 years and older are age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy. Exudative macular degeneration is treated with laser therapy, and progression of nonexudative macular degeneration in its advanced stages may be slowed with high-dose antioxidant and zinc regimens. The value of screening for glaucoma is uncertain; management of this condition relies on topical ocular medications. Cataract symptoms include decreased visual acuity, decreased color perception, decreased contrast sensitivity, and glare disability. Lifestyle and environmental interventions can improve function in patients with cataracts, but surgery is commonly performed if the condition worsens. Diabetic retinopathy responds to tight glucose control, and severe cases marked by macular edema are treated with laser photocoagulation. Vision-enhancing devices can help magnify objects, and nonoptical interventions include special filters and enhanced lighting.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, tours the Orbiter Processing Facility on a visit to KSC. At right (hands up) is Conrad Nagel, chief of the Shuttle Project Office. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
Low Vision Rehabilitation for Adult African Americans in Two Settings.
Draper, Erin M; Feng, Rui; Appel, Sarah D; Graboyes, Marcy; Engle, Erin; Ciner, Elise B; Ellenberg, Jonas H; Stambolian, Dwight
2016-07-01
The Vision Rehabilitation for African Americans with Central Vision Impairment (VISRAC) study is a demonstration project evaluating how modifications in vision rehabilitation can improve the use of functional vision. Fifty-five African Americans 40 years of age and older with central vision impairment were randomly assigned to receive either clinic-based (CB) or home-based (HB) low vision rehabilitation services. Forty-eight subjects completed the study. The primary outcome was the change in functional vision in activities of daily living, as assessed with the Veteran's Administration Low-Vision Visual Function Questionnaire (VFQ-48). This included scores for overall visual ability and visual ability domains (reading, mobility, visual information processing, and visual motor skills). Each score was normalized into logit estimates by Rasch analysis. Linear regression models were used to compare the difference in the total score and each domain score between the two intervention groups. The significance level for each comparison was set at 0.05. Both CB and HB groups showed significant improvement in overall visual ability at the final visit compared with baseline. The CB group showed greater improvement than the HB group (mean of 1.28 vs. 0.87 logits change), though the group difference is not significant (p = 0.057). The CB group visual motor skills score showed significant improvement over the HB group score (mean of 3.30 vs. 1.34 logits change, p = 0.044). The differences in improvement of the reading and visual information processing scores were not significant (p = 0.054 and p = 0.509) between groups. Neither group had significant improvement in the mobility score, which was not part of the rehabilitation program. Vision rehabilitation is effective for this study population regardless of location. Possible reasons why the CB group performed better than the HB group include a number of psychosocial factors as well as the more standardized distraction-free work environment within the clinic setting.
DOT National Transportation Integrated Search
2015-01-01
This report documents the findings of the road condition reporting project where the feasibility of live reporting of the road : conditions with an Android camera and computer vision algorithms was tested. An app was developed that can collect videos...
Low Vision Research at the Schepens Eye Research Institute
2003-07-01
subjects is completed. Project 5 is also a continuation of the identification of factors that can predict dry eye complications of LASIK surgery. Patient enrollment is proceeding well and early analyses are complete.
Eco-logical successes : January 2011
DOT National Transportation Integrated Search
2011-01-01
This document identifies and explains each Eco-Logical signatory agency's strategic environmental programs, projects, and efforts that are either directly related to or share the vision set forth in Eco-Logical. A brief description of an agency's key...
Next Generation Surfactants for Improved Chemical Flooding Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell
2012-05-31
The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers,more » and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.« less
In vitro models for the prediction of in vivo performance of oral dosage forms.
Kostewicz, Edmund S; Abrahamsson, Bertil; Brewster, Marcus; Brouwers, Joachim; Butler, James; Carlert, Sara; Dickinson, Paul A; Dressman, Jennifer; Holm, René; Klein, Sandra; Mann, James; McAllister, Mark; Minekus, Mans; Muenster, Uwe; Müllertz, Anette; Verwei, Miriam; Vertzoni, Maria; Weitschies, Werner; Augustijns, Patrick
2014-06-16
Accurate prediction of the in vivo biopharmaceutical performance of oral drug formulations is critical to efficient drug development. Traditionally, in vitro evaluation of oral drug formulations has focused on disintegration and dissolution testing for quality control (QC) purposes. The connection with in vivo biopharmaceutical performance has often been ignored. More recently, the switch to assessing drug products in a more biorelevant and mechanistic manner has advanced the understanding of drug formulation behavior. Notwithstanding this evolution, predicting the in vivo biopharmaceutical performance of formulations that rely on complex intraluminal processes (e.g. solubilization, supersaturation, precipitation…) remains extremely challenging. Concomitantly, the increasing demand for complex formulations to overcome low drug solubility or to control drug release rates urges the development of new in vitro tools. Development and optimizing innovative, predictive Oral Biopharmaceutical Tools is the main target of the OrBiTo project within the Innovative Medicines Initiative (IMI) framework. A combination of physico-chemical measurements, in vitro tests, in vivo methods, and physiology-based pharmacokinetic modeling is expected to create a unique knowledge platform, enabling the bottlenecks in drug development to be removed and the whole process of drug development to become more efficient. As part of the basis for the OrBiTo project, this review summarizes the current status of predictive in vitro assessment tools for formulation behavior. Both pharmacopoeia-listed apparatus and more advanced tools are discussed. Special attention is paid to major issues limiting the predictive power of traditional tools, including the simulation of dynamic changes in gastrointestinal conditions, the adequate reproduction of gastrointestinal motility, the simulation of supersaturation and precipitation, and the implementation of the solubility-permeability interplay. It is anticipated that the innovative in vitro biopharmaceutical tools arising from the OrBiTo project will lead to improved predictions for in vivo behavior of drug formulations in the GI tract. Copyright © 2013 Elsevier B.V. All rights reserved.
Sanderson, E.W.; Redford, Kent; Weber, Bill; Aune, K.; Baldes, Dick; Berger, J.; Carter, Dave; Curtin, C.; Derr, James N.; Dobrott, S.J.; Fearn, Eva; Fleener, Craig; Forrest, Steven C.; Gerlach, Craig; Gates, C. Cormack; Gross, J.E.; Gogan, P.; Grassel, Shaun M.; Hilty, Jodi A.; Jensen, Marv; Kunkel, Kyran; Lammers, Duane; List, R.; Minkowski, Karen; Olson, Tom; Pague, Chris; Robertson, Paul B.; Stephenson, Bob
2008-01-01
Many wide-ranging mammal species have experienced significant declines over the last 200 years; restoring these species will require long-term, large-scale recovery efforts. We highlight 5 attributes of a recent range-wide vision-setting exercise for ecological recovery of the North American bison (Bison bison) that are broadly applicable to other species and restoration targets. The result of the exercise, the “Vermejo Statement” on bison restoration, is explicitly (1) large scale, (2) long term, (3) inclusive, (4) fulfilling of different values, and (5) ambitious. It reads, in part, “Over the next century, the ecological recovery of the North American bison will occur when multiple large herds move freely across extensive landscapes within all major habitats of their historic range, interacting in ecologically significant ways with the fullest possible set of other native species, and inspiring, sustaining and connecting human cultures.” We refined the vision into a scorecard that illustrates how individual bison herds can contribute to the vision. We also developed a set of maps and analyzed the current and potential future distributions of bison on the basis of expert assessment. Although more than 500,000 bison exist in North America today, we estimated they occupy <1% of their historical range and in no place express the full range of ecological and social values of previous times. By formulating an inclusive, affirmative, and specific vision through consultation with a wide range of stakeholders, we hope to provide a foundation for conservation of bison, and other wide-ranging species, over the next 100 years.
Hand–eye calibration using a target registration error model
Morgan, Isabella; Jayarathne, Uditha; Ma, Burton; Peters, Terry M.
2017-01-01
Surgical cameras are prevalent in modern operating theatres and are often used as a surrogate for direct vision. Visualisation techniques (e.g. image fusion) made possible by tracking the camera require accurate hand–eye calibration between the camera and the tracking system. The authors introduce the concept of ‘guided hand–eye calibration’, where calibration measurements are facilitated by a target registration error (TRE) model. They formulate hand–eye calibration as a registration problem between homologous point–line pairs. For each measurement, the position of a monochromatic ball-tip stylus (a point) and its projection onto the image (a line) is recorded, and the TRE of the resulting calibration is predicted using a TRE model. The TRE model is then used to guide the placement of the calibration tool, so that the subsequent measurement minimises the predicted TRE. Assessing TRE after each measurement produces accurate calibration using a minimal number of measurements. As a proof of principle, they evaluated guided calibration using a webcam and an endoscopic camera. Their endoscopic camera results suggest that millimetre TRE is achievable when at least 15 measurements are acquired with the tracker sensor ∼80 cm away on the laparoscope handle for a target ∼20 cm away from the camera. PMID:29184657
Supply, distribution, and capacity of optometrists in Indiana.
Marshall, E C
2000-05-01
The Indiana Optometric Association and the Indiana Health Care Professional Development Commission identified a need to collect and analyze data on the health professions workforce for formulating goals and strategies to accommodate demands for health care services in Indiana. This study looks at the supply, distribution, and services of optometrists practicing in Indiana. Data compiled by the Indiana State Department of Health, Indiana Health Care Development Commission, and the Project HOPE Center for Health Affairs were analyzed with the results of a survey of practitioner members of the Indiana Optometric Association. Supply, distribution, services, provider-to-population ratios, per capita demand, and optometric productivity were used to evaluate the current and future capacity of Indiana optometrists to the year 2010. An estimated 893 optometrists practiced in 86 of 92 counties and comprised 77% of the state's licensed eye and vision care workforce in 1995. Optometric workforce capacity appeared to be related to county population, but unrelated to the urban/rural classification or the per-capita income of Indiana counties. Contact lenses, disease, geriatrics, and pediatrics were the most prevalent areas of practice specialty. Optometrist capacity in Indiana is sufficient at both the state and county levels, and optometric services are appropriately distributed such that patient access to optometric care is geographically unburdened. Estimates regarding supply are elastic, depending on the assumptions applied.
Vita, Randi; Overton, James A; Mungall, Christopher J; Sette, Alessandro
2018-01-01
Abstract The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public. By presenting curated data in a searchable database, we have liberated it from the tables and figures of journal articles, making it more accessible and usable by immunologists. Recently, the principles of Findability, Accessibility, Interoperability and Reusability have been formulated as goals that data repositories should meet to enhance the usefulness of their data holdings. We here examine how the IEDB complies with these principles and identify broad areas of success, but also areas for improvement. We describe short-term improvements to the IEDB that are being implemented now, as well as a long-term vision of true ‘machine-actionable interoperability’, which we believe will require community agreement on standardization of knowledge representation that can be built on top of the shared use of ontologies. PMID:29688354
NASA Astrophysics Data System (ADS)
Yamamoto, Karen Kina
This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2) teaching and learning strategies that model a community of practicing scientists. This study also identified the main elements of professional development strategies essential for an innovative project's survival and growth: linking curriculum development to required pre-implementation inservice training, engaging project personnel in both of these phases recruiting, training a cadre of experienced FAST teachers as inservice trainers, and providing follow-up professional development seminars. In conclusion, the FAST project survived mainly because the longevity of its leaders gave stability and continuity to the project. Against many odds such as limited financial resources and a small number of staff positions relative to the project's scope, the leaders managed with whatever resources were available to link theory-based curriculum development with professional development and, thereby, increase the project's chances for survival and growth.
Martínez-Bueso, Pau; Moyà-Alcover, Biel
2014-01-01
Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (T s) and time-to-complete (T c)). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (T s = 7.09 (P < 0.001) and T c = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems. PMID:25295310
Reaction time for processing visual stimulus in a computer-assisted rehabilitation environment.
Sanchez, Yerly; Pinzon, David; Zheng, Bin
2017-10-01
To examine the reaction time when human subjects process information presented in the visual channel under both a direct vision and a virtual rehabilitation environment when walking was performed. Visual stimulus included eight math problems displayed on the peripheral vision to seven healthy human subjects in a virtual rehabilitation training (computer-assisted rehabilitation environment (CAREN)) and a direct vision environment. Subjects were required to verbally report the results of these math calculations in a short period of time. Reaction time measured by Tobii Eye tracker and calculation accuracy were recorded and compared between the direct vision and virtual rehabilitation environment. Performance outcomes measured for both groups included reaction time, reading time, answering time and the verbal answer score. A significant difference between the groups was only found for the reaction time (p = .004). Participants had more difficulty recognizing the first equation of the virtual environment. Participants reaction time was faster in the direct vision environment. This reaction time delay should be kept in mind when designing skill training scenarios in virtual environments. This was a pilot project to a series of studies assessing cognition ability of stroke patients who are undertaking a rehabilitation program with a virtual training environment. Implications for rehabilitation Eye tracking is a reliable tool that can be employed in rehabilitation virtual environments. Reaction time changes between direct vision and virtual environment.
ERIC Educational Resources Information Center
Plaza, I.; Arcega, F.; Castro, M.; Llamas, M.
2011-01-01
CESEI is the acronym of the Spanish Chapter of the Education Society of IEEE (the Institute of Electric and Electronics Engineers). Every year, the CESEI awards a prize for the best doctoral thesis and FDP (final (master) degree projects) about education. The thesis or the project must be developed in the areas of electrical engineering,…
Vision-Based Navigation and Parallel Computing
1990-08-01
33 5.8. Behizad Kamgar-Parsi and Behrooz Karngar-Parsi,"On Problem 5- lving with Hopfield Neural Networks", CAR-TR-462, CS-TR...Second. the hypercube connections support logarithmic implementations of fundamental parallel algorithms. such as grid permutations and scan...the pose space. It also uses a set of virtual processors to represent an orthogonal projection grid , and projections of the six dimensional pose space
The Cease Smoking Today (CS2day) Initiative: A Guide to Pursue the 2010 IOM Report Vision for CPD
ERIC Educational Resources Information Center
Cervero, Ronald M.; Moore, Donald E., Jr.
2011-01-01
This article reviews the articles in this supplement that describe a smoking cessation project, Cease Smoking Today (CS2day) that demonstrated successful outcomes: physician adoption of a smoking cessation guideline and an increase in smoking quit rates. The authors examine how the activities of the CS2day project compared to the principles and…
Jim Faulds
2015-10-29
All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.
The Ilac-Project Supporting Ancient Coin Classification by Means of Image Analysis
NASA Astrophysics Data System (ADS)
Kavelar, A.; Zambanini, S.; Kampel, M.; Vondrovec, K.; Siegl, K.
2013-07-01
This paper presents the ILAC project, which aims at the development of an automated image-based classification system for ancient Roman Republican coins. The benefits of such a system are manifold: operating at the suture between computer vision and numismatics, ILAC can reduce the day-to-day workload of numismatists by assisting them in classification tasks and providing a preselection of suitable coin classes. This is especially helpful for large coin hoard findings comprising several thousands of coins. Furthermore, this system could be implemented in an online platform for hobby numismatists, allowing them to access background information about their coin collection by simply uploading a photo of obverse and reverse for the coin of interest. ILAC explores different computer vision techniques and their combinations for the use of image-based coin recognition. Some of these methods, such as image matching, use the entire coin image in the classification process, while symbol or legend recognition exploit certain characteristics of the coin imagery. An overview of the methods explored so far and the respective experiments is given as well as an outlook on the next steps of the project.
Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.
Gibbon, J D; Holm, D D
2012-10-01
We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q.
Final Report on Video Log Data Mining Project
DOT National Transportation Integrated Search
2012-06-01
This report describes the development of an automated computer vision system that identities and inventories road signs : from imagery acquired from the Kansas Department of Transportations road profiling system that takes images every 26.4 : feet...
Autonomous Kinematic Calibration of the Robot Manipulator with a Linear Laser-Vision Sensor
NASA Astrophysics Data System (ADS)
Kang, Hee-Jun; Jeong, Jeong-Woo; Shin, Sung-Weon; Suh, Young-Soo; Ro, Young-Schick
This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The data collected by changing robot configuration and measuring the intersection points are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.
NASA Astrophysics Data System (ADS)
Lindberg Christensen, Lars; Russo, P.
2009-05-01
IYA2009 is a global collaboration between almost 140 nations and more than 50 international organisations sharing the same vision. Besides the common brand, mission, vision and goals, IAU established eleven cornerstones programmes to support the different IYA2009 stakeholder to organize events, activities under a common umbrella. These are global activities centred on specific themes and are aligned with IYA2009's main goals. Whether it is the support and promotion of women in astronomy, the preservation of dark-sky sites around the world or educating and explaining the workings of the Universe to millions, the eleven Cornerstones are key elements in the success of IYA2009. However, the process of implementing global projects across cultural boundaries is challenging and needs central coordination to preserve the pre-established goals. During this talk we will examine the ups and downs of coordinating such a project and present an overview of the principal achievements for the Cornerstones so far.
The Middle Eastern Regional Irrigation Management Information Systems project-update
USDA-ARS?s Scientific Manuscript database
The Middle Eastern Regional Irrigation Management Information Systems Project (MERIMIS) was formulated at a meeting of experts from the region in Jordan in 2003. Funded by the U.S. Department of State, it is a cooperative regional project bringing together participants from Israel, Jordan, Palestini...
Results of nine Connecticut Cancer Partnership implementation projects.
Morra, Marion E; Mowad, Linda Z; Hogarty, Lucinda Hill; Kettering, Shiu-Yu
2012-01-01
The Connecticut Cancer Partnership (Partnership), through funds from the Connecticut legislature, the AttorneyGeneral Fund and some limited federal funding, has spearheaded the implementation of a series of projects by Connecticut institutions and State of Connecticut departments. Among them are projects in prevention, detection, treatment, survivorship and end-of-life care, along with programs that target ethnic and uninsured populations. This article highlights funding sources, procedures for choosing projects and summaries for nine completed projects of interest to practicing physicians. It also includes a listing of additional projects currently underway. The use of shared funding among the State's partners highlights the energy of the Partnership in carrying out the common vision embodied in the Connecticut Cancer Plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel-Cox, J.A.
1999-07-01
The Environmental Monitoring for Public Access and Community Tracking (EMPACT) program is a unique initiative to provide time-relevant environmental information that is easily accessible and clearly communicated to residents in 86 of the nation's largest metropolitan areas. EMPACT is a US Environmental Protection Agency (EPA) program to use innovative and time-relevant monitoring and communication technologies. President Clinton articulated his vision for right-to-know programs when he directed the EPA to provide local environmental information to communities. EPA Administrator Carol Browner created EMPACT and other programs to meet this vision, giving EMPACT the goal of providing timely, useful and accurate environmental andmore » public health information to all Americans. This paper is an analysis of the status of the EMPACT program during its first 2 years. EMPACT has launched 27 environmental monitoring and communication projects, including metropolitan grants, EPA Headquarter and Regional projects, and research activities. These projects are located in 37 states and 68 cities throughout the United States, and represent significant progress towards EMPACT's goal of reaching 86 major metropolitan areas throughout all 50 states, the District of Columbia and Puerto Rico by 2001. These projects focus on five principles established by EPA Administrator Browner: using advanced technology and science, establishing partnerships, increasing public access to data, communicating useful action-oriented information, and establishing a framework for sharing monitoring techniques and data between projects.« less
Advanced Pathway Guidance Evaluations on a Synthetic Vision Head-Up Display
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.
2005-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to potentially eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced guidance for commercial and business aircraft. This experiment evaluated the influence of different pathway and guidance display concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two pathway formats (dynamic and minimal tunnel presentations) were evaluated against a baseline condition (no tunnel) during simulated instrument meteorological conditions approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.
Pathway Design Effects on Synthetic Vision Head-Up Displays
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.
2004-01-01
NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. This experiment evaluated the influence of different tunnel and guidance concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two tunnel formats (dynamic, minimal) were evaluated against a baseline condition (no tunnel) during simulated IMC approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence on the tunnel formats. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.
Helping Families Adjust to Economic Change. A Project Report.
ERIC Educational Resources Information Center
Matejic, Denise M.
A project was developed to gain more insight into family financial problems, to identify these problems, and to formulate educational strategies to deal with and help solve these problems. This project was conducted in three phases, which included community outreach, development of educational materials, and evaluation. Three communities with…
VISION-BASED MONITORING AND CONTROL OF CONSTRUCTION OPERATIONS CARBON FOOTPRINT
Automated and continuous carbon footprint monitoring of construction operations support the contractors and project managers with information required for assessment on carbon footprint of various construction operation alternatives. This can ultimately lead to reduction of...
Visible spectral imager for occultation and nightglow (VISION) for the PICASSO Mission
NASA Astrophysics Data System (ADS)
Saari, Heikki; Näsilä, Antti; Holmlund, Christer; Mannila, Rami; Näkki, Ismo; Ojanen, Harri J.; Fussen, Didier; Pieroux, Didier; Demoulin, Philippe; Dekemper, Emmanuel; Vanhellemont, Filip
2015-10-01
PICASSO - A PICo-satellite for Atmospheric and Space Science Observations is an ESA project led by the Belgian Institute for Space Aeronomy, in collaboration with VTT, Clyde Space Ltd. (UK), and the Centre Spatial de Liège (BE). VTT Technical Research Centre of Finland Ltd. will deliver the Visible Spectral Imager for Occultation and Nightglow (VISION) for the PICASSO mission. The VISION targets primarily the observation of the Earth's atmospheric limb during orbital Sun occultation. By assessing the radiation absorption in the Chappuis band for different tangent altitudes, the vertical profile of the ozone is retrieved. A secondary objective is to measure the deformation of the solar disk so that stratospheric and mesospheric temperature profiles are retrieved by inversion of the refractive raytracing problem. Finally, occasional full spectral observations of polar auroras are also foreseen. The VISION design realized with commercial of the shelf (CoTS) parts is described. The VISION instrument is small, lightweight (~500 g), Piezo-actuated Fabry-Perot Interferometer (PFPI) tunable spectral imager operating in the visible and near-infrared (430 - 800 nm). The spectral resolution over the whole wavelength range will be better than 10 nm @ FWHM. VISION has is 2.5° x 2.5° total field of view and it delivers maximum 2048 x 2048 pixel spectral images. The sun image size is around 0.5° i.e. ~500 pixels. To enable fast spectral data image acquisition VISION can be operated with programmable image sizes. VTT has previously developed PFPI tunable filter based AaSI Spectral Imager for the Aalto-1 Finnish CubeSat. In VISION the requirements of the spectral resolution and stability are tighter than in AaSI. Therefore the optimization of the of the PFPI gap control loop for the operating temperature range and vacuum conditions has to be improved. VISION optical, mechanical and electrical design is described.
BBN-Based Portfolio Risk Assessment for NASA Technology R&D Outcome
NASA Technical Reports Server (NTRS)
Geuther, Steven C.; Shih, Ann T.
2016-01-01
The NASA Aeronautics Research Mission Directorate (ARMD) vision falls into six strategic thrusts that are aimed to support the challenges of the Next Generation Air Transportation System (NextGen). In order to achieve the goals of the ARMD vision, the Airspace Operations and Safety Program (AOSP) is committed to developing and delivering new technologies. To meet the dual challenges of constrained resources and timely technology delivery, program portfolio risk assessment is critical for communication and decision-making. This paper describes how Bayesian Belief Network (BBN) is applied to assess the probability of a technology meeting the expected outcome. The network takes into account the different risk factors of technology development and implementation phases. The use of BBNs allows for all technologies of projects in a program portfolio to be separately examined and compared. In addition, the technology interaction effects are modeled through the application of object-oriented BBNs. The paper discusses the development of simplified project risk BBNs and presents various risk results. The results presented include the probability of project risks not meeting success criteria, the risk drivers under uncertainty via sensitivity analysis, and what-if analysis. Finally, the paper shows how program portfolio risk can be assessed using risk results from BBNs of projects in the portfolio.
Summerskill, Stephen; Marshall, Russell; Cook, Sharon; Lenard, James; Richardson, John
2016-03-01
The aim of the study is to understand the nature of blind spots in the vision of drivers of Large Goods Vehicles caused by vehicle design variables such as the driver eye height, and mirror designs. The study was informed by the processing of UK national accident data using cluster analysis to establish if vehicle blind spots contribute to accidents. In order to establish the cause and nature of blind spots six top selling trucks in the UK, with a range of sizes were digitized and imported into the SAMMIE Digital Human Modelling (DHM) system. A novel CAD based vision projection technique, which has been validated in a laboratory study, allowed multiple mirror and window aperture projections to be created, resulting in the identification and quantification of a key blind spot. The identified blind spot was demonstrated to have the potential to be associated with the scenarios that were identified in the accident data. The project led to the revision of UNECE Regulation 46 that defines mirror coverage in the European Union, with new vehicle registrations in Europe being required to meet the amended standard after June of 2015. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
A position and attitude vision measurement system for wind tunnel slender model
NASA Astrophysics Data System (ADS)
Cheng, Lei; Yang, Yinong; Xue, Bindang; Zhou, Fugen; Bai, Xiangzhi
2014-11-01
A position and attitude vision measurement system for drop test slender model in wind tunnel is designed and developed. The system used two high speed cameras, one is put to the side of the model and another is put to the position where the camera can look up the model. Simple symbols are set on the model. The main idea of the system is based on image matching technique between the 3D-digital model projection image and the image captured by the camera. At first, we evaluate the pitch angles, the roll angles and the position of the centroid of a model through recognizing symbols in the images captured by the side camera. And then, based on the evaluated attitude info, giving a series of yaw angles, a series of projection images of the 3D-digital model are obtained. Finally, these projection images are matched with the image which captured by the looking up camera, and the best match's projection images corresponds to the yaw angle is the very yaw angle of the model. Simulation experiments are conducted and the results show that the maximal error of attitude measurement is less than 0.05°, which can meet the demand of test in wind tunnel.
Colour and inclusivity: a visual communication design project with older people.
da Silva, Fernando Moreira
2012-01-01
In an ideal world, inclusive products and services would be the standard and not the exception. This paper presents a systematic approach to an overlap between Visual Communication Design, Printed Colour and Inclusive Design, for older people, with the aim to develop of a set of research-based ageing and ergonomics-centred communication design guidelines and recommendations for printed material (analogical displays). The approach included an initial extensive literature review in the area of colour, older people and ergonomics issues and vision common diseases, communication design. The second phase was the implementation of an experiment to measure the different colour experiences of the participants in two sample groups (one in UK and another one in Portugal), using printed material, to find out the colours one should use in analogical communication material, being aware of the colour contrast importance (foreground versus background) and the difficulties experienced by older people to read and understand lettering, signs. As main contribution of this research project, we developed a set of guidelines and recommendations based on the reviewed literature and the sample groups' findings, trying to demonstrate the importance of these guidelines when conceiving a new communicational design project in a way this project will achieve vision comfort and understandability, especially for older people, in an inclusive design perspective.
Real-time stereo generation for surgical vision during minimal invasive robotic surgery
NASA Astrophysics Data System (ADS)
Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod
2016-03-01
This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, tours the Orbiter Processing Facility on a visit to KSC. At left is Conrad Nagel, chief of the Shuttle Project Office. They are standing under the left wing and wheel well of the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, listens to Conrad Nagel, chief of the Shuttle Project Office (right), during a tour of the Orbiter Processing Facility on a visit to KSC. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
2004-05-13
KENNEDY SPACE CENTER, FLA. -- Adm. Craig E. Steidle (center), NASA’s associate administrator, Office of Exploration Systems, listens to Conrad Nagel, chief of the Shuttle Project Office (right), during a tour of the Orbiter Processing Facility on a visit to KSC. They are standing under the orbiter Discovery. The Office of Exploration Systems was established to set priorities and direct the identification, development and validation of exploration systems and related technologies to support the future space vision for America. Steidle’s visit included a tour of KSC to review the facilities and capabilities to be used to support the vision.
de Jesus, Daniela Lima; Villela, Flávio Fernandes; Orlandin, Luis Fernando; Eiji, Fernando Naves; Dantas, Daniel Oliveira; Alves, Milton Ruiz
2016-02-01
The purpose of this study was to evaluate the accuracy of Spot Vision Screening™ as an autorefractor by comparing refraction measurements to subjective clinical refractometry results in children and adult patients. One-hundred and thirty-four eyes of 134 patients were submitted to refractometry by Spot and clinical refractometry under cycloplegia. Patients, students, physicians, staff and children of staff from the Hospital das Clínicas (School of Medicine, University of São Paulo) aged 7-50 years without signs of ocular disease were examined. Only right-eye refraction data were analyzed. The findings were converted in magnitude vectors for analysis. The difference between Spot Vision Screening™ and subjective clinical refractometry expressed in spherical equivalents was +0.66±0.56 diopters (D), +0.16±0.27 D for the vector projected on the 90 axis and +0.02±0.15 D for the oblique vector. Despite the statistical significance of the difference between the two methods, we consider the difference non-relevant in a clinical setting, supporting the use of Spot Vision Screening™ as an ancillary method for estimating refraction.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.; Wu, Chris K.; Lin, Y. H.
1991-01-01
A system was developed for displaying computer graphics images of space objects and the use of the system was demonstrated as a testbed for evaluating vision systems for space applications. In order to evaluate vision systems, it is desirable to be able to control all factors involved in creating the images used for processing by the vision system. Considerable time and expense is involved in building accurate physical models of space objects. Also, precise location of the model relative to the viewer and accurate location of the light source require additional effort. As part of this project, graphics models of space objects such as the Solarmax satellite are created that the user can control the light direction and the relative position of the object and the viewer. The work is also aimed at providing control of hue, shading, noise and shadows for use in demonstrating and testing imaging processing techniques. The simulated camera data can provide XYZ coordinates, pitch, yaw, and roll for the models. A physical model is also being used to provide comparison of camera images with the graphics images.
ERIC Educational Resources Information Center
Boediono; And Others
The Educational Policy and Planning (EPP) Project assists the Indonesian Ministry of Education and Culture (MOEC) in establishing an information system to improve policy analysis and formulation. There are five elements of the project strategy: increase the ability of MOEC staff to create and use information for use in policy research, strengthen…
Projective formulation of Maggi's method for nonholonomic systems analysis
NASA Astrophysics Data System (ADS)
Blajer, Wojciech
1992-04-01
A projective interpretation of Maggi'a approach to dynamic analysis of nonholonomic systems is presented. Both linear and nonlinear constraint cases are treatment in unified fashion, using the language of vector spaces and tensor algebra analysis.
NASA Astrophysics Data System (ADS)
Qiu, Yiheng; Henderson, Thomas M.; Scuseria, Gustavo E.
2017-05-01
Projected Hartree-Fock theory provides an accurate description of many kinds of strong correlations but does not properly describe weakly correlated systems. Coupled cluster theory, in contrast, does the opposite. It therefore seems natural to combine the two so as to describe both strong and weak correlations with high accuracy in a relatively black-box manner. Combining the two approaches, however, is made more difficult by the fact that the two techniques are formulated very differently. In earlier work, we showed how to write spin-projected Hartree-Fock in a coupled-cluster-like language. Here, we fill in the gaps in that earlier work. Further, we combine projected Hartree-Fock and coupled cluster theory in a variational formulation and show how the combination performs for the description of the Hubbard Hamiltonian and for several small molecular systems.
NASA Astrophysics Data System (ADS)
Chen, Miawjane; Yan, Shangyao; Wang, Sin-Siang; Liu, Chiu-Lan
2015-02-01
An effective project schedule is essential for enterprises to increase their efficiency of project execution, to maximize profit, and to minimize wastage of resources. Heuristic algorithms have been developed to efficiently solve the complicated multi-mode resource-constrained project scheduling problem with discounted cash flows (MRCPSPDCF) that characterize real problems. However, the solutions obtained in past studies have been approximate and are difficult to evaluate in terms of optimality. In this study, a generalized network flow model, embedded in a time-precedence network, is proposed to formulate the MRCPSPDCF with the payment at activity completion times. Mathematically, the model is formulated as an integer network flow problem with side constraints, which can be efficiently solved for optimality, using existing mathematical programming software. To evaluate the model performance, numerical tests are performed. The test results indicate that the model could be a useful planning tool for project scheduling in the real world.
How Medicare Could Provide Dental, Vision, and Hearing Care for Beneficiaries.
Willink, Amber; Shoen, Cathy; Davis, Karen
2018-01-01
The Medicare program specifically excludes coverage of dental, vision, and hearing services. As a result, many beneficiaries do not receive necessary care. Those that do are subject to high out-of-pocket costs. Examine gaps in access to dental, vision, and hearing services for Medicare beneficiaries and design a voluntary dental, vision, and hearing benefit plan with cost estimates. Uses the Medicare Current Beneficiary Survey, Cost and Use File, 2012, with population and costs projected to 2016 values. Among Medicare beneficiaries, 75 percent of people who needed a hearing aid did not have one; 70 percent of people who had trouble eating because of their teeth did not go to the dentist in the past year; and 43 percent of people who had trouble seeing did not have an eye exam in the past year. Lack of access was particularly acute for poor beneficiaries. Because few people have supplemental insurance covering these additional services, among people who received care, three-fourths of their costs of dental and hearing services and 60 percent of their costs of vision services were paid out of pocket. We propose a basic benefit package for dental, vision, and hearing services offered as a premium-financed voluntary insurance option under Medicare. Assuming the benefit package could be offered for $25 per month, we estimate the total coverage costs would be $1.924 billion per year, paid for by premiums. Subsidies to reach low-income beneficiaries would follow the same design as the Part D subsidy.
Gender differences in a refractive surgery population of civilian aviators : final report.
DOT National Transportation Integrated Search
2000-07-01
INTRODUCTION. Refractive surgical procedures performed in the United States have increased in recent years and : continued growth is projected. Postoperative side effects can affect the quality of vision and may be unacceptable in a : cockpit environ...
Gender differences in a refractive surgery population of civilian aviators : final report.
DOT National Transportation Integrated Search
2000-07-01
INTRODUCTION. Refractive surgical procedures performed in the United States have increased in recent years and continued growth is projected. Postoperative side effects can affect the quality of vision and may be unacceptable in a cockpit environment...
This report from the Partnership for Sustainable Communities reports on the three years of progress since the Partnership started in 2009. It includes case studies of Partnership projects in communities around the country.
ERIC Educational Resources Information Center
Tervo, Juuso
2012-01-01
In "Postphysical Vision: Art Education's Challenge in an Age of Globalized Aesthetics (AMondofesto)" (2008) and "Beyond Aesthetics: Returning Force and Truth to Art and Its Education" (2009), jan jagodzinski argued for politics that go "beyond" representation--a project that radically questions visual culture…
Semi-autonomous parking for enhanced safety and efficiency.
DOT National Transportation Integrated Search
2017-06-01
This project focuses on the use of tools from a combination of computer vision and localization based navigation schemes to aid the process of efficient and safe parking of vehicles in high density parking spaces. The principles of collision avoidanc...
ERIC Educational Resources Information Center
Roueche, Suanne D.; Hudgens, A. Gayle
1980-01-01
Discusses the current status of and future projections for the National Institute of Education sponsored Program in Community College Education at the University of Texas at Austin, which was designed to produce a theory and method of literacy training for the culturally different student. (CAM)
The method of projected characteristics for the evolution of magnetic arches
NASA Technical Reports Server (NTRS)
Nakagawa, Y.; Hu, Y. Q.; Wu, S. T.
1987-01-01
A numerical method of solving fully nonlinear MHD equation is described. In particular, the formulation based on the newly developed method of projected characteristics (Nakagawa, 1981) suitable to study the evolution of magnetic arches due to motions of their foot-points is presented. The final formulation is given in the form of difference equations; therefore, the analysis of numerical stability is also presented. Further, the most important derivation of physically self-consistent, time-dependent boundary conditions (i.e. the evolving boundary equations) is given in detail, and some results obtained with such boundary equations are reported.
Academic Difficulty and Vision Symptoms Children with Concussion
Swanson, Mark W.; Weise, Katherine K.; Dreer, Laura E.; Johnston, James; Davis, Richard D.; Ferguson, Drew; Hale, M. Heath; Gould, Sara J.; Christy, Jennifer; Busettini, Claudio; Lee, Sarah D.; Swanson, Erin
2016-01-01
Purpose Academic difficulty is reported in children with prolonged post-concussive symptoms. Despite growing evidence that vestibular-ocular and vision-specific dysfunction are common in children following concussion, vision is rarely mentioned in return-to-learn protocols. The purpose of this project was to evaluate a cohort of children with prolonged post-concussive symptoms to determine if vision symptoms are associated with those reporting academic difficulty. Methods Data was obtained from the Children’s of Alabama Concussion Clinic REDCap dataset from the period January 2007 to October 2013. From this dataset of 1,033 concussion events, a cohort of 276 children aged 5–18 years with three or more concussion-related symptoms present for 10 days or more was identified. A cross-sectional cohort study was undertaken to evaluate the association of concussion symptoms, SCAT2 scores, demographic and concussion severity markers to reported educational difficulty among children with prolonged post-concussive symptoms. Univariate and multivariate logistic regression techniques were used to model the association of reported educational difficulty to self-reported vision abnormalities. Results Mean age was 13.8 years. Median time since the concussive event was 21 days, with 33% (95/276) reporting their concussion more than thirty days prior to data collection. Academic difficulty was reported by 29% (79/270) and vision abnormalities in 46% (128/274). After model reduction, vision symptoms (OR 2.17, 95% CI 1.02, 4.62), hearing disturbance (OR 2.39, 95% CI 1.06, 5.36) and concentration difficulty (OR 21.62, 95% CI 9.50, 44.47) remained associated with academic difficulty. For those with symptoms 30 days or more after concussion, only vision (OR 3.15, 95% CI 1.06, 9.38) and concentration difficulty (OR 15.33, 95% CI 4.99, 47.05) remained statistically significant. Conclusions Vision problems were commonly reported in children with concussions and were independently associated with those reporting academic difficulty. Comprehensive vision assessment should be considered in children reporting academic difficulty and in the development of return-to-learn protocols. PMID:27668641
Kaur, Gurvinder; Koshy, Jacob; Thomas, Satish; Kapoor, Harpreet; Zachariah, Jiju George; Bedi, Sahiba
2016-04-01
Early detection and treatment of vision problems in children is imperative to meet the challenges of childhood blindness. Considering the problems of inequitable distribution of trained manpower and limited access of quality eye care services to majority of our population, innovative community based strategies like 'Teachers training in vision screening' need to be developed for effective utilization of the available human resources. To evaluate the effectiveness of introducing teachers as the first level vision screeners. Teacher training programs were conducted for school teachers to educate them about childhood ocular disorders and the importance of their early detection. Teachers from government and semi-government schools located in Ludhiana were given training in vision screening. These teachers then conducted vision screening of children in their schools. Subsequently an ophthalmology team visited these schools for re-evaluation of children identified with low vision. Refraction was performed for all children identified with refractive errors and spectacles were prescribed. Children requiring further evaluation were referred to the base hospital. The project was done in two phases. True positives, false positives, true negatives and false negatives were calculated for evaluation. In phase 1, teachers from 166 schools underwent training in vision screening. The teachers screened 30,205 children and reported eye problems in 4523 (14.97%) children. Subsequently, the ophthalmology team examined 4150 children and confirmed eye problems in 2137 children. Thus, the teachers were able to correctly identify eye problems (true positives) in 47.25% children. Also, only 13.69% children had to be examined by the ophthalmology team, thus reducing their work load. Similarly, in phase 2, 46.22% children were correctly identified to have eye problems (true positives) by the teachers. By random sampling, 95.65% children were correctly identified as normal (true negatives) by the teachers. Considering the high true negative rates and reasonably good true positive rates and the wider coverage provided by the program, vision screening in schools by teachers is an effective method of identifying children with low vision. This strategy is also valuable in reducing the workload of the eye care staff.
Model-based video segmentation for vision-augmented interactive games
NASA Astrophysics Data System (ADS)
Liu, Lurng-Kuo
2000-04-01
This paper presents an architecture and algorithms for model based video object segmentation and its applications to vision augmented interactive game. We are especially interested in real time low cost vision based applications that can be implemented in software in a PC. We use different models for background and a player object. The object segmentation algorithm is performed in two different levels: pixel level and object level. At pixel level, the segmentation algorithm is formulated as a maximizing a posteriori probability (MAP) problem. The statistical likelihood of each pixel is calculated and used in the MAP problem. Object level segmentation is used to improve segmentation quality by utilizing the information about the spatial and temporal extent of the object. The concept of an active region, which is defined based on motion histogram and trajectory prediction, is introduced to indicate the possibility of a video object region for both background and foreground modeling. It also reduces the overall computation complexity. In contrast with other applications, the proposed video object segmentation system is able to create background and foreground models on the fly even without introductory background frames. Furthermore, we apply different rate of self-tuning on the scene model so that the system can adapt to the environment when there is a scene change. We applied the proposed video object segmentation algorithms to several prototype virtual interactive games. In our prototype vision augmented interactive games, a player can immerse himself/herself inside a game and can virtually interact with other animated characters in a real time manner without being constrained by helmets, gloves, special sensing devices, or background environment. The potential applications of the proposed algorithms including human computer gesture interface and object based video coding such as MPEG-4 video coding.
Altair Lunar Lander Development Status: Enabling Lunar Exploration
NASA Technical Reports Server (NTRS)
Laurini, Kathleen C.; Connolly, John F.
2009-01-01
As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a "minimum functionality" approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicle's safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to began Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. NASA intends to continue to seek industry involvement in project formulation activities. This paper will update the international coimmunity on the status of the Altair Project as it addresses the challenges of project formulation, including optinuzing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.
Being Relevant in Tough Times: TRIUMF's Five-Year Plan
Tim, Mayer [TRIUMF
2017-12-09
Perhaps better known to the international community than its own neighbors, TRIUMF is Canada's national laboratory for particle and nuclear physics. Working with the Canadian scientific community, TRIUMF has formulated a new vision to transform the laboratory and deliver a whole new level of performance and impact. The plan capitalizes on platform technologies (superconducting RF cavities for accelerator physics and radiotracers in nuclear medicine) and exploits Canada's role in ATLAS and the LHC. I will describe the key elements of the plan and discuss the science-policy landscape in which TRIUMF must make its case.
Stotz, Karola; Griffiths, Paul E
2008-03-01
We argue that philosophical and historical research can constitute a "Biohumanities" that deepens our understanding of biology itself engages in constructive "science criticism," helps formulate new "visions of biology," and facilitates "critical science communication." We illustrate these ideas with two recent "experimental philosophy" studies of the concept of the gene and of the concept of innateness conducted by ourselves and collaborators. We conclude that the complex and often troubled relations between science and society are critical to both parties, and argue that the philosophy and history of science can help to make this relationship work.
A vision fusion treatment system based on ATtiny26L
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqing; Zhang, Chunxi; Wang, Jiqiang
2006-11-01
Vision fusion treatment is an important and effective project to strabismus children. The vision fusion treatment system based on the principle for eyeballs to follow the moving visual survey pole is put forward first. In this system the original position of visual survey pole is about 35 centimeters far from patient's face before its moving to the middle position between the two eyeballs. The eyeballs of patient will follow the movement of the visual survey pole. When they can't follow, one or two eyeballs will turn to other position other than the visual survey pole. This displacement is recorded every time. A popular single chip microcomputer ATtiny26L is used in this system, which has a PWM output signal to control visual survey pole to move with continuously variable speed. The movement of visual survey pole accords to the modulating law of eyeballs to follow visual survey pole.
Machine vision methods for use in grain variety discrimination and quality analysis
NASA Astrophysics Data System (ADS)
Winter, Philip W.; Sokhansanj, Shahab; Wood, Hugh C.
1996-12-01
Decreasing cost of computer technology has made it feasible to incorporate machine vision technology into the agriculture industry. The biggest attraction to using a machine vision system is the computer's ability to be completely consistent and objective. One use is in the variety discrimination and quality inspection of grains. Algorithms have been developed using Fourier descriptors and neural networks for use in variety discrimination of barley seeds. RGB and morphology features have been used in the quality analysis of lentils, and probability distribution functions and L,a,b color values for borage dockage testing. These methods have been shown to be very accurate and have a high potential for agriculture. This paper presents the techniques used and results obtained from projects including: a lentil quality discriminator, a barley variety classifier, a borage dockage tester, a popcorn quality analyzer, and a pistachio nut grading system.
Binocular adaptive optics visual simulator.
Fernández, Enrique J; Prieto, Pedro M; Artal, Pablo
2009-09-01
A binocular adaptive optics visual simulator is presented. The instrument allows for measuring and manipulating ocular aberrations of the two eyes simultaneously, while the subject performs visual testing under binocular vision. An important feature of the apparatus consists on the use of a single correcting device and wavefront sensor. Aberrations are controlled by means of a liquid-crystal-on-silicon spatial light modulator, where the two pupils of the subject are projected. Aberrations from the two eyes are measured with a single Hartmann-Shack sensor. As an example of the potential of the apparatus for the study of the impact of the eye's aberrations on binocular vision, results of contrast sensitivity after addition of spherical aberration are presented for one subject. Different binocular combinations of spherical aberration were explored. Results suggest complex binocular interactions in the presence of monochromatic aberrations. The technique and the instrument might contribute to the better understanding of binocular vision and to the search for optimized ophthalmic corrections.
Cryogenic Fluid Management Technologies for Advanced Green Propulsion Systems
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Meyer, Michael L.; Tucker, Stephen P.
2007-01-01
In support of the Exploration Vision for returning to the Moon and beyond, NASA and its partners are developing and testing critical cryogenic fluid propellant technologies that will meet the need for high performance propellants on long-term missions. Reliable knowledge of low-gravity cryogenic fluid management behavior is lacking and yet is critical in the areas of tank thermal and pressure control, fluid acquisition, mass gauging, and fluid transfer. Such knowledge can significantly reduce or even eliminate tank fluid boil-off losses for long term missions, reduce propellant launch mass and required on-orbit margins, and simplify vehicle operations. The Propulsion and Cryogenic Advanced Development (PCAD) Project is performing experimental and analytical evaluation of several areas within Cryogenic Fluid Management (CFM) to enable NASA's Exploration Vision. This paper discusses the status of the PCAD CFM technology focus areas relative to the anticipated CFM requirements to enable execution of the Vision for Space Exploration.
NASA Technical Reports Server (NTRS)
Berthoz, A.; Pavard, B.; Young, L. R.
1975-01-01
The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.
How (and why) the visual control of action differs from visual perception
Goodale, Melvyn A.
2014-01-01
Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions. PMID:24789899
Computer vision for automatic inspection of agricultural produce
NASA Astrophysics Data System (ADS)
Molto, Enrique; Blasco, Jose; Benlloch, Jose V.
1999-01-01
Fruit and vegetables suffer different manipulations from the field to the final consumer. These are basically oriented towards the cleaning and selection of the product in homogeneous categories. For this reason, several research projects, aimed at fast, adequate produce sorting and quality control are currently under development around the world. Moreover, it is possible to find manual and semi- automatic commercial system capable of reasonably performing these tasks.However, in many cases, their accuracy is incompatible with current European market demands, which are constantly increasing. IVIA, the Valencian Research Institute of Agriculture, located in Spain, has been involved in several European projects related with machine vision for real-time inspection of various agricultural produces. This paper will focus on the work related with two products that have different requirements: fruit and olives. In the case of fruit, the Institute has developed a vision system capable of providing assessment of the external quality of single fruit to a robot that also receives information from other senors. The system use four different views of each fruit and has been tested on peaches, apples and citrus. Processing time of each image is under 500 ms using a conventional PC. The system provides information about primary and secondary color, blemishes and their extension, and stem presence and position, which allows further automatic orientation of the fruit in the final box using a robotic manipulator. Work carried out in olives was devoted to fast sorting of olives for consumption at table. A prototype has been developed to demonstrate the feasibility of a machine vision system capable of automatically sorting 2500 kg/h olives using low-cost conventional hardware.
Extrafoveal Video Extension for an Immersive Viewing Experience.
Turban, Laura; Urban, Fabrice; Guillotel, Philippe
2016-02-11
Between the recent popularity of virtual reality (VR) and the development of 3D, immersion has become an integral part of entertainment concepts. Head-mounted Display (HMD) devices are often used to afford users a feeling of immersion in the environment. Another technique is to project additional material surrounding the viewer, as is achieved using cave systems. As a continuation of this technique, it could be interesting to extend surrounding projection to current television or cinema screens. The idea would be to entirely fill the viewer's field of vision, thus providing them with a more complete feeling of being in the scene and part of the story. The appropriate content can be captured using large field of view (FoV) technology, using a rig of cameras for 110 to 360 capture, or created using computergenerated images. The FoV is, however, rather limited in its use for existing (legacy) content, achieving between 36 to 90 degrees () field, depending on the distance from the screen. This paper seeks to improve this FoV limitation by proposing computer vision techniques to extend such legacy content to the peripheral (extrafoveal) vision without changing the original creative intent or damaging the viewer's experience. A new methodology is also proposed for performing user tests in order to evaluate the quality of the experience and confirm that the sense of immersion has been increased. This paper thus presents: i) an algorithm to spatially extend the video based on human vision characteristics, ii) its subjective results compared to state-of-the-art techniques, iii) the protocol required to evaluate the quality of the experience (QoE), and iv) the results of the user tests.
JUPITER PROJECT - MERGING INVERSE PROBLEM FORMULATION TECHNOLOGIES
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project seeks to enhance and build on the technology and momentum behind two of the most popular sensitivity analysis, data assessment, calibration, and uncertainty analysis programs used in envi...
ERIC Educational Resources Information Center
Orr, Alberta L.
The American Indian Rehabilitation Project aimed to provide older American Indians with vision problems useful skills for carrying out daily activities as independently as possible and for preventing unnecessary dependence on others and premature and unwarranted institutionalization. The project goals were to: (1) develop a 5-day, seven-module…
Artificial Retina Project: Final Report for CRADA ORNL 01-0625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, E; Little, J
The U.S. Department of Energy’s Artificial Retina Project is a collaborative, multi-institutional effort to develop an implantable microelectronic retinal prosthesis that restores useful vision to people blinded by retinal diseases. The ultimate goal of the project is to restore reading ability, facial recognition, and unaided mobility in people with retinitis pigmentosa and age-related macular degeneration. The project taps into the unique research technologies and resources developed at DOE national laboratories to surmount the many technical challenges involved with developing a safe, effective, and durable product. The research team includes six DOE national laboratories, four universities, and private industry.
High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.
The NCC project: A quality management perspective
NASA Technical Reports Server (NTRS)
Lee, Raymond H.
1993-01-01
The Network Control Center (NCC) Project introduced the concept of total quality management (TQM) in mid-1990. The CSC project team established a program which focused on continuous process improvement in software development methodology and consistent deliveries of high quality software products for the NCC. The vision of the TQM program was to produce error free software. Specific goals were established to allow continuing assessment of the progress toward meeting the overall quality objectives. The total quality environment, now a part of the NCC Project culture, has become the foundation for continuous process improvement and has resulted in the consistent delivery of quality software products over the last three years.
Conjugate gradient based projection - A new explicit methodology for frictional contact
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Li, Maocheng; Sha, Desong
1993-01-01
With special attention towards the applicability to parallel computation or vectorization, a new and effective explicit approach for linear complementary formulations involving a conjugate gradient based projection methodology is proposed in this study for contact problems with Coulomb friction. The overall objectives are focussed towards providing an explicit methodology of computation for the complete contact problem with friction. In this regard, the primary idea for solving the linear complementary formulations stems from an established search direction which is projected to a feasible region determined by the non-negative constraint condition; this direction is then applied to the Fletcher-Reeves conjugate gradient method resulting in a powerful explicit methodology which possesses high accuracy, excellent convergence characteristics, fast computational speed and is relatively simple to implement for contact problems involving Coulomb friction.
Image Classification for Web Genre Identification
2012-01-01
recognition and landscape detection using the computer vision toolkit OpenCV1. For facial recognition , we researched the possibilities of using the...method for connecting these names with a face/personal photo and logo respectively. [2] METHODOLOGY For this project, we focused primarily on facial
Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Innovation in New Mexico Los Alamos Collaboration for Explosives Detection (LACED) SensorNexus Exascale Computing Project (ECP) User Facilities Center for Integrated Nanotechnologies (CINT) Los Alamos Neutron
Making a Statement with Philanthropy.
ERIC Educational Resources Information Center
Legon, Richard D.
2001-01-01
Discusses how a policy statement on board philanthropy can clarify fundraising expectations of all governing and foundation board members. Describes essential components of such a policy statement: mission and vision, recognition of board responsibility for fundraising, specific expectations, and commitment to project and campaign goals. Also…
A demonstration project in Oregon examined the feasibility of combining Federal environmental monitoring surveys. An integrated approach should remove duplication of effort and reduce the possibility of providing apparently conflicing information to policy makers and the public. ...
Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application.
Chhonker, Yashpal S; Prasad, Yarra Durga; Chandasana, Hardik; Vishvkarma, Akhilesh; Mitra, Kalyan; Shukla, Praveen K; Bhatta, Rabi S
2015-01-01
Fungal keratitis is the major cause of vision loss worldwide. Amphotericin-B is considered as the drug of choice for fungal infections. However, its use in ophthalmic drug delivery is limited by the low precorneal residence at ocular surface as a result of blinking reflex, tear turnover and nasopharyngeal drainage. We report Amphotericin-B loaded lecithin/chitosan nanoparticles for prolonged ocular application. The prepared nanoparticles were in the size range of 161.9-230.5 nm, entrapment efficiency of 70-75%, theoretical drug loading of 5.71% with positive zeta potential of 26.6-38.3 mV. As demonstrated by antifungal susceptibility against Candida albicans and Aspergillus fumigatus, nanoparticles were more effective than marketed formulation. They exhibited pronounced mucoadhesive properties. In-vivo pharmacokinetic studies in New Zealand albino rabbit eyes indicated improved bioavailablity (∼ 2.04 fold) and precorneal residence time (∼ 3.36 fold) by nanoparticles prepared from low molecular weight chitosan as compared with marketed formulation. Copyright © 2014. Published by Elsevier B.V.
Scorpion Hybrid Optical-based Inertial Tracker (HObIT) test results
NASA Astrophysics Data System (ADS)
Atac, Robert; Spink, Scott; Calloway, Tom; Foxlin, Eric
2014-06-01
High fidelity night-vision training has become important for many of the simulation systems being procured today. The end-users of these simulation-training systems prefer using their actual night-vision goggle (NVG) headsets. This requires that the visual display system stimulate the NVGs in a realistic way. Historically NVG stimulation was done with cathode-ray tube (CRT) projectors. However, this technology became obsolete and in recent years training simulators do NVG stimulation with laser, LCoS and DLP projectors. The LCoS and DLP projection technologies have emerged as the preferred approach for the stimulation of NVGs. Both LCoS and DLP technologies have advantages and disadvantages for stimulating NVGs. LCoS projectors can have more than 5-10 times the contrast capability of DLP projectors. The larger the difference between the projected black level and the brightest object in a scene, the better the NVG stimulation effects can be. This is an advantage of LCoS technology, especially when the proper NVG wavelengths are used. Single-chip DLP projectors, even though they have much reduced contrast compared to LCoS projectors, can use LED illuminators in a sequential red-green-blue fashion to create a projected image. It is straightforward to add an extra infrared (NVG wavelength) LED into this sequential chain of LED illumination. The content of this NVG channel can be independent of the visible scene, which allows effects to be added that can compensate for the lack of contrast inherent in a DLP device. This paper will expand on the differences between LCoS and DLP projectors for stimulating NVGs and summarize the benefits of both in night-vision simulation training systems.
Alcohol safety action projects evaluation of operations : data, table of results, and formulation
DOT National Transportation Integrated Search
1979-06-01
This volume contains the data used in the evaluation of 35 Alcohol Safety Action Projects implemented throughout the country. Historical background, discussion of analytic results and factors affecting impact detecion are contained in the document ti...
33 CFR 385.26 - Project Implementation Reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Implementation Report is a document that provides information on plan formulation and evaluation, engineering and..., environmental and/or economic benefits, engineering and design, costs, environmental impacts, real estate..., optimization and justification, cost-effectiveness, and engineering feasibility of the project; (xiii) Include...
Rodriguez-Gil, Jose L; Prosser, Ryan; Poirier, David; Lissemore, Linda; Thompson, Dean; Hanson, Mark; Solomon, Keith R
2017-02-01
The sensitivity of 15 aquatic species, including primary producers, benthic invertebrates, cladocerans, mollusks, and fish, to MON 0818, a commercial surfactant mixture of polyoxyethylene tallow amines, was evaluated in standard acute (48-96-h) laboratory tests. In addition, the potential for chronic toxicity (8 d) was evaluated with Ceriodaphnia dubia. Exposure concentrations were confirmed. No significant effects on any endpoint were observed in the chronic test. A tier-1 hazard assessment was conducted by comparing species sensitivity distributions based on the generated data, as well as literature data, with 4 exposure scenarios. This assessment showed moderate levels of hazard (43.1% of the species exposed at or above median effective concentration levels), for a chosen worst-case scenario-unintentional direct over-spray of a 15-cm-deep body of water with the maximum label application rate for the studied formulations (Roundup Original, Vision Forestry Herbicide; 12 L formulation ha -1 , equivalent to 4.27 kg acid equivalent [a.e.] ha -1 ). The hazard decreased to impairment of 20.9% of species under the maximum application rate for more typical uses (6 L formulation ha -1 , 2.14 kg a.e. ha -1 ), and down to 6.9% for a more frequently employed application rate (2.5 L formulation ha -1 , 0.89 kg a.e. ha -1 ). Finally, the percentage (3.8%) was less than the hazardous concentration for 5% of the species based on concentrations of MON 0818 calculated from maximum measured concentrations of glyphosate in the environment. Environ Toxicol Chem 2017;36:501-511. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Gil, Pablo
2017-10-01
University courses concerning Computer Vision and Image Processing are generally taught using a traditional methodology that is focused on the teacher rather than on the students. This approach is consequently not effective when teachers seek to attain cognitive objectives involving their students' critical thinking. This manuscript covers the development, implementation and assessment of a short project-based engineering course with MATLAB applications Multimedia Engineering being taken by Bachelor's degree students. The principal goal of all course lectures and hands-on laboratory activities was for the students to not only acquire image-specific technical skills but also a general knowledge of data analysis so as to locate phenomena in pixel regions of images and video frames. This would hopefully enable the students to develop skills regarding the implementation of the filters, operators, methods and techniques used for image processing and computer vision software libraries. Our teaching-learning process thus permits the accomplishment of knowledge assimilation, student motivation and skill development through the use of a continuous evaluation strategy to solve practical and real problems by means of short projects designed using MATLAB applications. Project-based learning is not new. This approach has been used in STEM learning in recent decades. But there are many types of projects. The aim of the current study is to analyse the efficacy of short projects as a learning tool when compared to long projects during which the students work with more independence. This work additionally presents the impact of different types of activities, and not only short projects, on students' overall results in this subject. Moreover, a statistical study has allowed the author to suggest a link between the students' success ratio and the type of content covered and activities completed on the course. The results described in this paper show that those students who took part in short projects made a significant improvement when compared to those who participated in long projects.
Alabama Black Belt eye care--optometry giving back.
Sanspree, Mary Jean; Allison, Carol; Goldblatt, Stephanie Hardwick; Pevsner, Diane
2008-12-01
The aim of this study was to describe the process used to meet the vision needs, as well as other health problems related to eye disease, of individuals in the rural Black Belt region of Alabama. This model includes a multidisciplinary collaborative effort that has developed into a replicable vision care delivery system. This study was a descriptive research study. Vision and health evaluations were made available to residents of rural counties with a specific focus on an area in Alabama known as the "Black Belt." The model for the project was designed with input from the collaborative partners who were responsible for each health and vision station. Participants in the Rural Alabama Diabetes and Glaucoma Initiative (RADGI) study involved 1,765 black women, 619 black men, and 315 others. The study included 2,699 participants in 7 counties. The reported ages of the patients ranged from 5 to 97 years, with a mean age of 44. Of the 2,699 patients, 39% (1,053) were found to have a visual acuity of < or =20/40. Spectacles were prescribed for 56% of the patients who required correction other than reading glasses. There was a 19% (513) referral rate for glaucoma. There was a 2.7% (73) referral rate for diabetic retinopathy. Two hundred sixteen patients presented with cataracts (8%) and were referred to eye care providers for follow-up evaluations. The 9.9% of patients who were known diabetics (267) were referred to either a general physician familiar with the patient history or, if no general physician was reported by the patient, another local physician for evaluation. Because there were no subspecialists in these local communities, the 10% of the patients (270) who were undiagnosed diabetics but showed the risk factor of a hemoglobin A1c greater than 7% were referred to a general physician or local emergency room for follow-up care. One thousand fifty-five patients (35.9%) with a blood pressure of greater than 140/90 mmHg were referred to a physician or to the emergency room as indicated either by systolic less than 140 and diastolic greater than 90. Based on the success of the RADGI project, the project was found to be a sound design for implementing a vision care delivery system in economically distressed rural areas that will address health disparities, barriers to health care, health care access, and patient clinical and educational follow-up.
Sensory Function: Insights From Wave 2 of the National Social Life, Health, and Aging Project
Kern, David W.; Wroblewski, Kristen E.; Chen, Rachel C.; Schumm, L. Philip; McClintock, Martha K.
2014-01-01
Objectives. Sensory function, a critical component of quality of life, generally declines with age and influences health, physical activity, and social function. Sensory measures collected in Wave 2 of the National Social Life, Health, and Aging Project (NSHAP) survey focused on the personal impact of sensory function in the home environment and included: subjective assessment of vision, hearing, and touch, information on relevant home conditions and social sequelae as well as an improved objective assessment of odor detection. Method. Summary data were generated for each sensory category, stratified by age (62–90 years of age) and gender, with a focus on function in the home setting and the social consequences of sensory decrements in each modality. Results. Among both men and women, older age was associated with self-reported impairment of vision, hearing, and pleasantness of light touch. Compared with women, men reported significantly worse hearing and found light touch less appealing. There were no gender differences for vision. Overall, hearing loss seemed to have a greater impact on social function than did visual impairment. Discussion. Sensory function declines across age groups, with notable gender differences for hearing and light touch. Further analysis of sensory measures from NSHAP Wave 2 may provide important information on how sensory declines are related to health, social function, quality of life, morbidity, and mortality in this nationally representative sample of older adults. PMID:25360015
Infrared Cephalic-Vein to Assist Blood Extraction Tasks: Automatic Projection and Recognition
NASA Astrophysics Data System (ADS)
Lagüela, S.; Gesto, M.; Riveiro, B.; González-Aguilera, D.
2017-05-01
Thermal infrared band is not commonly used in photogrammetric and computer vision algorithms, mainly due to the low spatial resolution of this type of imagery. However, this band captures sub-superficial information, increasing the capabilities of visible bands regarding applications. This fact is especially important in biomedicine and biometrics, allowing the geometric characterization of interior organs and pathologies with photogrammetric principles, as well as the automatic identification and labelling using computer vision algorithms. This paper presents advances of close-range photogrammetry and computer vision applied to thermal infrared imagery, with the final application of Augmented Reality in order to widen its application in the biomedical field. In this case, the thermal infrared image of the arm is acquired and simultaneously projected on the arm, together with the identification label of the cephalic-vein. This way, blood analysts are assisted in finding the vein for blood extraction, especially in those cases where the identification by the human eye is a complex task. Vein recognition is performed based on the Gaussian temperature distribution in the area of the vein, while the calibration between projector and thermographic camera is developed through feature extraction and pattern recognition. The method is validated through its application to a set of volunteers, with different ages and genres, in such way that different conditions of body temperature and vein depth are covered for the applicability and reproducibility of the method.
Using the auxiliary camera for system calibration of 3D measurement by digital speckle
NASA Astrophysics Data System (ADS)
Xue, Junpeng; Su, Xianyu; Zhang, Qican
2014-06-01
The study of 3D shape measurement by digital speckle temporal sequence correlation have drawn a lot of attention by its own advantages, however, the measurement mainly for depth z-coordinate, horizontal physical coordinate (x, y) are usually marked as image pixel coordinate. In this paper, a new approach for the system calibration is proposed. With an auxiliary camera, we made up the temporary binocular vision system, which are used for the calibration of horizontal coordinates (mm) while the temporal sequence reference-speckle-sets are calibrated. First, the binocular vision system has been calibrated using the traditional method. Then, the digital speckles are projected on the reference plane, which is moved by equal distance in the direction of depth, temporal sequence speckle images are acquired with camera as reference sets. When the reference plane is in the first position and final position, crossed fringe pattern are projected to the plane respectively. The control points of pixel coordinates are extracted by Fourier analysis from the images, and the physical coordinates are calculated by the binocular vision. The physical coordinates corresponding to each pixel of the images are calculated by interpolation algorithm. Finally, the x and y corresponding to arbitrary depth value z are obtained by the geometric formula. Experiments prove that our method can fast and flexibly measure the 3D shape of an object as point cloud.
Salisbury, F B; Clark, M A
1996-01-01
Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.
NASA Technical Reports Server (NTRS)
Salisbury, F. B.; Clark, M. A.
1996-01-01
Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.
NASA Astrophysics Data System (ADS)
Salisbury, F. B.; Clark, M. A. Z.
Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.
Special Technology Area Review on Micro-Opto-Electro-Mechanical-Systems (MOEMS)
1997-12-01
Optical Interference in Night Vision Systems "* DMD Assisted Intelligent Manufacturing of ................................................... SRI...CONCEPT ......................................... p. 8 FIGURE 3(a): DMD LIGHT SWITCHES...p. 9 FIGURE 3(b): SEM PHOTOMICROGRAPHS OF DMD CHIPS ........................................ p. 9 FIGURE 4: MULTI-USER MEMS PROJECTS (MUMPS
Towards Cross-Organizational Innovative Business Process Interoperability Services
NASA Astrophysics Data System (ADS)
Karacan, Ömer; Del Grosso, Enrico; Carrez, Cyril; Taglino, Francesco
This paper presents the vision and initial results of the COIN (FP7-IST-216256) European project for the development of open source Collaborative Business Process Interoperability (CBPip) in cross-organisational business collaboration environments following the Software-as-a-Service Utility (SaaS-U) paradigm.
Baughan, Emily; Fiori, Juliano
2015-10-01
This paper reflects on the foundational years of Save the Children, one of the oldest and largest Western humanitarian agencies and a mainstay of the humanitarian project. In doing so, it considers how and why, at an early stage, the organisation depoliticised its activities, centring its narrative on the innocent, pre-political child-the image of unsullied humanity. In addition, it seeks to recover the internationalist vision of Save the Children's 'forgotten founder', Dorothy Buxton. Save the Children's turn to non-politics is indicative of the broader depoliticisation of Western humanitarian action. Given the intensely contested spaces in which Western humanitarian non-governmental organisations (NGOs) operate, these entities cannot escape politics. This paper argues that Buxton's efforts to build an international solidarity network through humanitarian action after the end of the First World War in 1918 provide an instructive basis on which these NGOs can pursue a politics of solidarity in the present day. © 2015 The Author(s). Disasters © Overseas Development Institute, 2015.
Jordan, Timothy R; Paterson, Kevin B; Kurtev, Stoyan
2009-03-01
Many studies have claimed that hemispheric projections are split precisely at the foveal midline and so hemispheric asymmetry affects word recognition right up to the point of fixation. To investigate this claim, four-letter words and nonwords were presented to the left or right of fixation, either close to fixation in foveal vision or farther from fixation in extrafoveal vision. Presentation accuracy was controlled using an eyetracker linked to a fixation-contingent display. Words presented foveally produced identical performance on each side of fixation, but words presented extrafoveally showed a clear left-hemisphere (LH) advantage. Nonwords produced no evidence of hemispheric asymmetry in any location. Foveal stimuli also produced an identical word-nonword effect on each side of fixation, whereas extrafoveal stimuli produced a word-nonword effect only for LH (not right-hemisphere) displays. These findings indicate that functional unilateral projections to contralateral hemispheres exist in extrafoveal locations but provide no evidence of a functional division in hemispheric processing at fixation.
Flight Simulator Evaluation of Display Media Devices for Synthetic Vision Concepts
NASA Technical Reports Server (NTRS)
Arthur, J. J., III; Williams, Steven P.; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.
2004-01-01
The Synthetic Vision Systems (SVS) Project of the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSP) is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft. To accomplish these safety and capacity improvements, the SVS concept is designed to provide a clear view of the world around the aircraft through the display of computer-generated imagery derived from an onboard database of terrain, obstacle, and airport information. Display media devices with which to implement SVS technology that have been evaluated so far within the Project include fixed field of view head up displays and head down Primary Flight Displays with pilot-selectable field of view. A simulation experiment was conducted comparing these display devices to a fixed field of view, unlimited field of regard, full color Helmet-Mounted Display system. Subject pilots flew a visual circling maneuver in IMC at a terrain-challenged airport. The data collected for this experiment is compared to past SVS research studies.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576
PlantCV v2: Image analysis software for high-throughput plant phenotyping.
Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
NASA's First Year Progress with Fuel Cell Advanced Development in Support of the Exploration Vision
NASA Technical Reports Server (NTRS)
Hoberecht, Mark
2007-01-01
NASA Glenn Research Center (GRC), in collaboration with Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), Kennedy Space Center (KSC), and industry partners, is leading a proton-exchange-membrane fuel cell (PEMFC) advanced development effort to support the vision for Exploration. This effort encompasses the fuel cell portion of the Energy Storage Project under the Exploration Technology Development Program, and is directed at multiple power levels for both primary and regenerative fuel cell systems. The major emphasis is the replacement of active mechanical ancillary components with passive components in order to reduce mass and parasitic power requirements, and to improve system reliability. A dual approach directed at both flow-through and non flow-through PEMFC system technologies is underway. A brief overview of the overall PEMFC project and its constituent tasks will be presented, along with in-depth technical accomplishments for the past year. Future potential technology development paths will also be discussed.
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Lai, Gilbert; Haddadi, Amir
2014-06-01
This paper presents the latest advancements of the Haptics-based Immersive Tele-robotic System (HITS) project, a next generation Improvised Explosive Device (IED) disposal (IEDD) robotic interface containing an immersive telepresence environment for a remotely-controlled three-articulated-robotic-arm system. While the haptic feedback enhances the operator's perception of the remote environment, a third teleoperated dexterous arm, equipped with multiple vision sensors and cameras, provides stereo vision with proper visual cues, and a 3D photo-realistic model of the potential IED. This decentralized system combines various capabilities including stable and scaled motion, singularity avoidance, cross-coupled hybrid control, active collision detection and avoidance, compliance control and constrained motion to provide a safe and intuitive control environment for the operators. Experimental results and validation of the current system are presented through various essential IEDD tasks. This project demonstrates that a two-armed anthropomorphic Explosive Ordnance Disposal (EOD) robot interface can achieve complex neutralization techniques against realistic IEDs without the operator approaching at any time.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...
2017-12-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Competing Discourses of Scientific Identity among Postdoctoral Scholars in the Biomedical Sciences.
Price, Rebecca M; Kantrowitz-Gordon, Ira; Gordon, Sharona E
2018-06-01
The postdoctoral period is generally one of low pay, long hours, and uncertainty about future career options. To better understand how postdocs conceive of their present and future goals, we asked researchers about their scientific identities while they were in their postdoctoral appointments. We used discourse analysis to analyze interviews with 30 scholars from a research-intensive university or nearby research institutions to better understand how their scientific identities influenced their career goals. We identified two primary discourses: bench scientist and principal investigator (PI). The bench scientist discourse is characterized by implementing other people's scientific visions through work in the laboratory and expertise in experimental design and troubleshooting. The PI discourse is characterized by a focus on formulating scientific visions, obtaining funding, and disseminating results through publishing papers and at invited talks. Because these discourses represent beliefs, they can-and do-limit postdocs' understandings of what career opportunities exist and the transferability of skills to different careers. Understanding the bench scientist and PI discourses, and how they interact, is essential for developing and implementing better professional development programs for postdocs.
A Scalable Distributed Approach to Mobile Robot Vision
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin; Browning, Robert L.; Gribble, William S.
1997-01-01
This paper documents our progress during the first year of work on our original proposal entitled 'A Scalable Distributed Approach to Mobile Robot Vision'. We are pursuing a strategy for real-time visual identification and tracking of complex objects which does not rely on specialized image-processing hardware. In this system perceptual schemas represent objects as a graph of primitive features. Distributed software agents identify and track these features, using variable-geometry image subwindows of limited size. Active control of imaging parameters and selective processing makes simultaneous real-time tracking of many primitive features tractable. Perceptual schemas operate independently from the tracking of primitive features, so that real-time tracking of a set of image features is not hurt by latency in recognition of the object that those features make up. The architecture allows semantically significant features to be tracked with limited expenditure of computational resources, and allows the visual computation to be distributed across a network of processors. Early experiments are described which demonstrate the usefulness of this formulation, followed by a brief overview of our more recent progress (after the first year).
Multisensory integration of colors and scents: insights from bees and flowers.
Leonard, Anne S; Masek, Pavel
2014-06-01
Karl von Frisch's studies of bees' color vision and chemical senses opened a window into the perceptual world of a species other than our own. A century of subsequent research on bees' visual and olfactory systems has developed along two productive but independent trajectories, leaving the questions of how and why bees use these two senses in concert largely unexplored. Given current interest in multimodal communication and recently discovered interplay between olfaction and vision in humans and Drosophila, understanding multisensory integration in bees is an opportunity to advance knowledge across fields. Using a classic ethological framework, we formulate proximate and ultimate perspectives on bees' use of multisensory stimuli. We discuss interactions between scent and color in the context of bee cognition and perception, focusing on mechanistic and functional approaches, and we highlight opportunities to further explore the development and evolution of multisensory integration. We argue that although the visual and olfactory worlds of bees are perhaps the best-studied of any non-human species, research focusing on the interactions between these two sensory modalities is vitally needed.
Shamwell, E Jared; Nothwang, William D; Perlis, Donald
2018-05-04
Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to predict several probable hypotheses for the dense, pixel-level correspondence between a source image and an unseen target image. We show how our multi-hypothesis formulation provides increased robustness against dynamic, heteroscedastic sensor and motion noise by computing hypothesis image mappings and predictions at 76⁻357 Hz depending on the number of hypotheses being generated. MHDE fuses noisy, heterogeneous sensory inputs using two parallel, inter-connected architectural pathways and n (1⁻20 in this work) multi-hypothesis generating sub-pathways to produce n global correspondence estimates between a source and a target image. We evaluated MHDE on the KITTI Odometry dataset and benchmarked it against the vision-only DeepMatching and Deformable Spatial Pyramids algorithms and were able to demonstrate a significant runtime decrease and a performance increase compared to the next-best performing method.
Image model: new perspective for image processing and computer vision
NASA Astrophysics Data System (ADS)
Ziou, Djemel; Allili, Madjid
2004-05-01
We propose a new image model in which the image support and image quantities are modeled using algebraic topology concepts. The image support is viewed as a collection of chains encoding combination of pixels grouped by dimension and linking different dimensions with the boundary operators. Image quantities are encoded using the notion of cochain which associates values for pixels of given dimension that can be scalar, vector, or tensor depending on the problem that is considered. This allows obtaining algebraic equations directly from the physical laws. The coboundary and codual operators, which are generic operations on cochains allow to formulate the classical differential operators as applied for field functions and differential forms in both global and local forms. This image model makes the association between the image support and the image quantities explicit which results in several advantages: it allows the derivation of efficient algorithms that operate in any dimension and the unification of mathematics and physics to solve classical problems in image processing and computer vision. We show the effectiveness of this model by considering the isotropic diffusion.
NASA Astrophysics Data System (ADS)
Van Damme, T.
2015-04-01
Computer Vision Photogrammetry allows archaeologists to accurately record underwater sites in three dimensions using simple twodimensional picture or video sequences, automatically processed in dedicated software. In this article, I share my experience in working with one such software package, namely PhotoScan, to record a Dutch shipwreck site. In order to demonstrate the method's reliability and flexibility, the site in question is reconstructed from simple GoPro footage, captured in low-visibility conditions. Based on the results of this case study, Computer Vision Photogrammetry compares very favourably to manual recording methods both in recording efficiency, and in the quality of the final results. In a final section, the significance of Computer Vision Photogrammetry is then assessed from a historical perspective, by placing the current research in the wider context of about half a century of successful use of Analytical and later Digital photogrammetry in the field of underwater archaeology. I conclude that while photogrammetry has been used in our discipline for several decades now, for various reasons the method was only ever used by a relatively small percentage of projects. This is likely to change in the near future since, compared to the `traditional' photogrammetry approaches employed in the past, today Computer Vision Photogrammetry is easier to use, more reliable and more affordable than ever before, while at the same time producing more accurate and more detailed three-dimensional results.
Potato Operation: automatic detection of potato diseases
NASA Astrophysics Data System (ADS)
Lefebvre, Marc; Zimmerman, Thierry; Baur, Charles; Guegerli, Paul; Pun, Thierry
1995-01-01
The Potato Operation is a collaborative, multidisciplinary project in the domain of destructive testing of agricultural products. It aims at automatizing pulp sampling of potatoes in order to detect possible viral diseases. Such viruses can decrease fields productivity by a factor of up to ten. A machine, composed of three conveyor belts, a vision system, a robotic arm and controlled by a PC has been built. Potatoes are brought one by one from a bulk to the vision system, where they are seized by a rotating holding device. The sprouts, where the viral activity is maximum, are then detected by an active vision process operating on multiple views. The 3D coordinates of the sampling point are communicated to the robot arm holding a drill. Some flesh is then sampled by the drill, then deposited into an Elisa plate. After sampling, the robot arm washes the drill in order to prevent any contamination. The PC computer simultaneously controls these processes, the conveying of the potatoes, the vision algorithms and the sampling procedure. The master process, that is the vision procedure, makes use of three methods to achieve the sprouts detection. A profile analysis first locates the sprouts as protuberances. Two frontal analyses, respectively based on fluorescence and local variance, confirm the previous detection and provide the 3D coordinate of the sampling zone. The other two processes work by interruption of the master process.
2008-06-01
capabilities: • Goal 1: Protecting critical bases and defeating chemical, biological, rad and nuclear weapons. • Goal 2: Projecting and sustaining ...bases is the supply side of the equation, whereas projecting and sustaining forces is the equation’s consumption side. The product of this equation...dominance through comprehensive knowledge, focused execution, and coordinated sustainment shared cross fully netted maritime, joint, and combined forces.123
2010-04-01
project are the establishment of a telemedicine system for comprehensive diabetes management and the assessment of diabetic retinopathy that...virtually eliminate diabetic retinopathy as a cause of severe vision loss. Nevertheless, diabetes remains the leading cause of new blindness in working...Eye care module DESCRIPTION: The primary questions are: What are the costs associated with diabetic retinopathy evaluations performed by an
Design of retinal-projection-based near-eye display with contact lens.
Wu, Yuhang; Chen, Chao Ping; Mi, Lantian; Zhang, Wenbo; Zhao, Jingxin; Lu, Yifan; Guo, Weiqian; Yu, Bing; Li, Yang; Maitlo, Nizamuddin
2018-04-30
We propose a design of a retinal-projection-based near-eye display for achieving ultra-large field of view, vision correction, and occlusion. Our solution is highlighted by a contact lens combo, a transparent organic light-emitting diode panel, and a twisted nematic liquid crystal panel. Its design rules are set forth in detail, followed by the results and discussion regarding the field of view, angular resolution, modulation transfer function, contrast ratio, distortion, and simulated imaging.
Center for Neural Engineering: applications of pulse-coupled neural networks
NASA Astrophysics Data System (ADS)
Malkani, Mohan; Bodruzzaman, Mohammad; Johnson, John L.; Davis, Joel
1999-03-01
Pulsed-Coupled Neural Network (PCNN) is an oscillatory model neural network where grouping of cells and grouping among the groups that form the output time series (number of cells that fires in each input presentation also called `icon'). This is based on the synchronicity of oscillations. Recent work by Johnson and others demonstrated the functional capabilities of networks containing such elements for invariant feature extraction using intensity maps. PCNN thus presents itself as a more biologically plausible model with solid functional potential. This paper will present the summary of several projects and their results where we successfully applied PCNN. In project one, the PCNN was applied for object recognition and classification through a robotic vision system. The features (icons) generated by the PCNN were then fed into a feedforward neural network for classification. In project two, we developed techniques for sensory data fusion. The PCNN algorithm was implemented and tested on a B14 mobile robot. The PCNN-based features were extracted from the images taken from the robot vision system and used in conjunction with the map generated by data fusion of the sonar and wheel encoder data for the navigation of the mobile robot. In our third project, we applied the PCNN for speaker recognition. The spectrogram image of speech signals are fed into the PCNN to produce invariant feature icons which are then fed into a feedforward neural network for speaker identification.
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2003-08-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. The ability of human brain to emulate knowledge structures in the form of networks-symbolic models is found. And that means an important shift of paradigm in our knowledge about brain from neural networks to "cortical software". Symbols, predicates and grammars naturally emerge in such active multilevel hierarchical networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type decision structure created via multilevel hierarchical compression of visual information. Mid-level vision processes like clustering, perceptual grouping, separation of figure from ground, are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models works similar to frames and agents, combines learning, classification, analogy together with higher-level model-based reasoning into a single framework. Such models do not require supercomputers. Based on such principles, and using methods of Computational intelligence, an Image Understanding system can convert images into the network-symbolic knowledge models, and effectively resolve uncertainty and ambiguity, providing unifying representation for perception and cognition. That allows creating new intelligent computer vision systems for robotic and defense industries.
Restoration of vision after transplantation of photoreceptors.
Pearson, R A; Barber, A C; Rizzi, M; Hippert, C; Xue, T; West, E L; Duran, Y; Smith, A J; Chuang, J Z; Azam, S A; Luhmann, U F O; Benucci, A; Sung, C H; Bainbridge, J W; Carandini, M; Yau, K-W; Sowden, J C; Ali, R R
2012-05-03
Cell transplantation is a potential strategy for treating blindness caused by the loss of photoreceptors. Although transplanted rod-precursor cells are able to migrate into the adult retina and differentiate to acquire the specialized morphological features of mature photoreceptor cells, the fundamental question remains whether transplantation of photoreceptor cells can actually improve vision. Here we provide evidence of functional rod-mediated vision after photoreceptor transplantation in adult Gnat1−/− mice, which lack rod function and are a model of congenital stationary night blindness. We show that transplanted rod precursors form classic triad synaptic connections with second-order bipolar and horizontal cells in the recipient retina. The newly integrated photoreceptor cells are light-responsive with dim-flash kinetics similar to adult wild-type photoreceptors. By using intrinsic imaging under scotopic conditions we demonstrate that visual signals generated by transplanted rods are projected to higher visual areas, including V1. Moreover, these cells are capable of driving optokinetic head tracking and visually guided behaviour in the Gnat1−/− mouse under scotopic conditions. Together, these results demonstrate the feasibility of photoreceptor transplantation as a therapeutic strategy for restoring vision after retinal degeneration.
de Jesus, Daniela Lima; Villela, Flávio Fernandes; Orlandin, Luis Fernando; Eiji, Fernando Naves; Dantas, Daniel Oliveira; Alves, Milton Ruiz
2016-01-01
OBJECTIVE: The purpose of this study was to evaluate the accuracy of Spot Vision ScreeningTM as an autorefractor by comparing refraction measurements to subjective clinical refractometry results in children and adult patients. METHODS: One-hundred and thirty-four eyes of 134 patients were submitted to refractometry by Spot and clinical refractometry under cycloplegia. Patients, students, physicians, staff and children of staff from the Hospital das Clínicas (School of Medicine, University of São Paulo) aged 7-50 years without signs of ocular disease were examined. Only right-eye refraction data were analyzed. The findings were converted in magnitude vectors for analysis. RESULTS: The difference between Spot Vision ScreeningTM and subjective clinical refractometry expressed in spherical equivalents was +0.66±0.56 diopters (D), +0.16±0.27 D for the vector projected on the 90 axis and +0.02±0.15 D for the oblique vector. CONCLUSIONS: Despite the statistical significance of the difference between the two methods, we consider the difference non-relevant in a clinical setting, supporting the use of Spot Vision ScreeningTM as an ancillary method for estimating refraction. PMID:26934234
Vision based flight procedure stereo display system
NASA Astrophysics Data System (ADS)
Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng
2008-03-01
A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.
Synthetic Vision Displays for Planetary and Lunar Lander Vehicles
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Shelton, Kevin J.; Kramer, Lynda J.; Bailey, Randall E.; Norman, Robert M.
2008-01-01
Aviation research has demonstrated that Synthetic Vision (SV) technology can substantially enhance situation awareness, reduce pilot workload, improve aviation safety, and promote flight path control precision. SV, and related flight deck technologies are currently being extended for application in planetary exploration vehicles. SV, in particular, holds significant potential for many planetary missions since the SV presentation provides a computer-generated view for the flight crew of the terrain and other significant environmental characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts, not available from other vision technologies. In addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. The paper accompanies a conference demonstration that introduced a prototype NASA Synthetic Vision system for lunar lander spacecraft. The paper will describe technical challenges and potential solutions to SV applications for the lunar landing mission, including the requirements for high-resolution lunar terrain maps, accurate positioning and orientation, and lunar cockpit display concepts to support projected mission challenges.
Science and the Constellation Systems Program Office
NASA Technical Reports Server (NTRS)
Mendell, Wendell
2007-01-01
An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known, even in ILEWG. At the recent annual Lunar and Planetary Science Conference, I reviewed the evolution of the program as a function of Agency leadership and the constraints put on NASA by the President in his 2004 announcement. I plan to continue my long-time ILEWG tradition of reporting a personal view of the state of development of human exploration of the solar system, this time coming from within the program office tasked to implement the vision for the United States. The current NASA implementation of the Vision for Space Exploration is consistent with certain classical scenarios that have been discussed extensively in the literature. I will discuss the role of science within the Vision, both from official policy and from a de facto interaction. While science goals are not officially driving the implementation of the Vision, the tools of scientific exploration are integral to defining the extraterrestrial design environments. In this respect the sharing of results from international missions to the Moon can make significant contributions to the success of the future human activities.
Can the risk in public-private partnerships be classified?
Silva, Vera Luiza da Costa E; Turci, Silvana Rubano Barretto; Oliveira, Ana Paula Natividade de; Richter, Ana Paula
2017-10-19
In the coming years, public-private partnerships (PPPs) should play an increasingly relevant role as an important alternative for financing projects and infrastructure in public services. However, especially in public health, PPPs are not always a good alternative, since they may introduce distortions in the agenda that sets health needs, favoring companies' interests. Public agencies can benefit from collaboration with the private sector in areas where there is a lack of specialization, such as the development of research and technologies. Even in these cases, each institution's role needs to be defined in order to avoid conflicts of interest. This can be challenging when dealing with the formulation of public and regulatory policies, on the impacts of certain policies, especially in developing countries. To engage with the private sector without compromising the integrity of government actions requires a broad discussion by public health stakeholders, for clear reasons of conflicting visions and scopes between corporations and public health. Combined with this is the need for multi-sector approaches, with a high load of financial investments in the various dimensions of policies to control the most prevalent diseases, especially chronic non-communicable diseases (NCD). This article classifies PPPs in categories in order to minimize the potential risks of conflicts of interest than can impact public health. These categories are defined as possible, possible with caveats, and impossible for involvement with certain institutions.
The making of the Women in Biology forum (WiB) at Bioclues.
Singhania, Reeta Rani; Madduru, Dhatri; Pappu, Pranathi; Panchangam, Sameera; Suravajhala, Renuka; Chandrasekharan, Mohanalatha
2014-01-01
The Women in Biology forum (WiB) of Bioclues (India) began in 2009 to promote and support women pursuing careers in bioinformatics and computational biology. WiB was formed in order to help women scientists deprived of basic research, boost the prominence of women scientists particularly from developing countries, and bridge the gender gap to innovation. WiB has also served as a platform to highlight the work of established female scientists in these fields. Several award-winning women researchers have shared their experiences and provided valuable suggestions to WiB. Headed by Mohanalatha Chandrasekharan and supported by Dr. Reeta Rani Singhania and Renuka Suravajhala, WiB has seen major progress in the last couple of years particularly in the two avenues Mentoring and Research, off the four avenues in Bioclues: Mentoring, Outreach, Research and Entrepreneurship (MORE). In line with the Bioclues vision for bioinformatics in India, the WiB Journal Club (JoC) recognizes women scientists working on functional genomics and bioinformatics, and provides scientific mentorship and support for project design and hypothesis formulation. As a part of Bioclues, WiB members practice the group's open-desk policy and its belief that all members are free to express their own thoughts and opinions. The WiB forum appreciates suggestions and welcomes scientists from around the world to be a part of their mission to encourage women to pursue computational biology and bioinformatics.
NASA Astrophysics Data System (ADS)
Nidziy, Elena
2017-10-01
Dependence of the regional economic development from efficiency of financing of the construction of transport infrastructure is analyzed and proved in this article. Effective mechanism for infrastructure projects financing, public and private partnership, is revealed and its concrete forms are formulated. Here is proposed an optimal scenario for financing for the transport infrastructure, which can lead to positive transformations in the economy. Paper considers the advantages and risks of public and private partnership for subjects of contractual relations. At that, components for the assessment of economic effect of the implementation of infrastructure projects were proposed simultaneously with formulation of conditions for minimization risks. Results of the research could be used for solution of persistent problems in the development of transport infrastructure, issues of financial assurance of construction of infrastructure projects at the regional level.
Memorandum Order No. 151, 27 January 1988.
1988-01-01
This Order creates in the Philippines a National Government Center (NGC) Housing Committee to implement Proclamation No. 137 of 11 August 1987, which set aside 150 acres of land for the development of a housing project. The project is to serve as a prototype for developing land within the framework of the existing urban land reform laws. The Committee has the power to do the following: "b.1) Define the project's concept and strategies of implementation; b.2) formulate policies and guidelines on: b.2.1) land disposition, allocation and distribution of NGC housing site to bona fide residents subject to the provisions of Proclamation No. 137 dated August 11, 1987; b.2.2) population containment within the defined project area; b.2.3) qualified beneficiaries for the project; b.2.4) housing finance for beneficiaries; and b.2.5) project administration and other implementation requirements; b.3) formulate systems and procedures for project implementation; b.4) prepare the project's work program and budget; b.5) identify and mobilize fund resources for project implementation; b.6) monitor and evaluate all phases of project implementation; b.7) make final decisions on all cases and issues affecting project implementation which cannot be resolved at the operations level; b.8) call on any government department or agency for assistance whenever necessary." Further provisions of the order deal with the composition of the Committee, the Project Administrator, support agencies, and funding, among other things. full text
Alternatives to Pyrotechnic Distress Signals; Laboratory and Field Studies
2015-03-01
using night vision imaging systems (NVIS) with “minus-blue” filtering,” the project recommends additional research and testing leading to the inclusion...18 5.2.3 Background Images ...Example of image capture from radiant imaging colorimeter. ....................................................... 16 Figure 10. Laboratory setup
78 FR 53731 - North Pacific Fishery Management Council; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... meetings. SUMMARY: The North Pacific Fishery Management Council (Council) Ecosystem Committee will meet in... agenda will be as follows: Development of Ecosystem-based management (EMB) vision statement; Operationalizing EBM in Council projects, including the Aleutian Islands Fishery Ecosystem Plan, the Arctic Fishery...
The Lessons of Learning Expeditions.
ERIC Educational Resources Information Center
Rugen, Leah; Hartl, Scott
1994-01-01
Students in expeditionary learning schools spend most of their time engaged in sustained, in-depth studies of a single theme or topic. The experiences, lasting four to nine weeks, include strong intellectual, service, and physical dimensions. Intellectually rigorous projects and purposeful fieldwork provide a vision and an assessment strategy that…
Veterinary Pest Genomics Center | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag Department of Agriculture's Agricultural Research Service (ARS). The vision for this initiative is to collaborator for the Bioinformatics Education in Agricultural Sciences (BEAS) project funded by the Hispanic
How to Keep Your Sight for Life
... through early detection and treatment of eye diseases. This year marks the 40th anniversary of the National Eye ... 28, according to one recent NEI-funded study. This figure is projected to reach 5.5 million by the year 2020. Low vision and blindness increase significantly with ...
Information Infrastructure Sourcebook.
ERIC Educational Resources Information Center
Kahin, Brian, Ed.
This volume is designed to provide planners and policymakers with a single volume reference book on efforts to define and develop policy for the National Information Infrastructure. The sourcebook is divided into five sections: (1) official documents; (2) vision statements and position papers; (3) program and project descriptions (all sectors);…
Pavement Distress Evaluation Using 3D Depth Information from Stereo Vision
DOT National Transportation Integrated Search
2012-07-01
The focus of the current project funded by MIOH-UTC for the period 9/1/2010-8/31/2011 is to : enhance our earlier effort in providing a more robust image processing based pavement distress : detection and classification system. During the last few de...
Technology-Rich Schools Up Close
ERIC Educational Resources Information Center
Levin, Barbara B.; Schrum, Lynne
2013-01-01
This article observes that schools that use technology well have key commonalities, including a project-based curriculum and supportive, distributed leadership. The authors' research into tech-rich schools revealed that schools used three strategies to integrate technology successfully. They did so by establishing the vision and culture,…
A Look at the Condition of Education in Massachusetts
ERIC Educational Resources Information Center
d'Entremont, Chad
2014-01-01
Leaders engaged in Massachusetts' public higher education system--including at community colleges, state universities, and UMass--have demonstrated their strong commitment to improvement in recent years. The state Department of Higher Education's Vision Project is focused on reforms necessary to "produce the best educated citizenry and…
Environmental testing philosophy for a Sandia National Laboratories small satellite project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cap, J.S.; Rackley, N.G.
1996-03-01
Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.
ADOPTING THE PROBLEM BASED LEARNING APPROACH IN A GIS PROJECT MANAGEMENT CLASS
Problem Based Learning (PBL) is a process that emphasizes the need for developing problem solving skills through hands-on project formulation and management. A class adopting the PBL method provides students with an environment to acquire necessary knowledge to encounter, unders...
Incremental Improvement of Career Education in Utah. Final Report.
ERIC Educational Resources Information Center
Utah State Board of Education, Salt Lake City.
This is a project report on Utah's plans to effect "incremental improvements" in career education implementation in seven school districts. Project objectives are formulated as follow: effect incremental improvements in attendance area cones, strengthen career education leadership capabilities, develop staff competence to diffuse the…
ESEA Title I. Anatomy of an Elementary Project.
ERIC Educational Resources Information Center
Martin, Peter A.
School districts in New York State have been engaged in developing E.S.E.A. Title I projects since 1965. This document represents an attempt to formulate some aspects of this experience in a form useful for project directors. The content of this report is based on the recorded experiences of one school district during the summer of 1970 in running…
NASA Fixed Wing Project: Green Technologies for Future Aircraft Generation
NASA Technical Reports Server (NTRS)
DelRosario, Ruben
2014-01-01
The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advances in multidisciplinary technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the FW Project vision of revolutionary systems and technologies needed to achieve the challenging goals of aviation. Specifically, the primary focus of the FW Project is on the N+3 generation that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.
The paradox of pharmacy: A profession's house divided.
Brown, Daniel
2012-01-01
To describe the paradox in pharmacy between the vision of patient care and the reality of community pharmacy practice and to explore how integrated reimbursement for the retail prescription and linking cognitive patient care services directly to prescription processing could benefit the profession. A dichotomy exists between what many pharmacists do and what they've been trained to do. Pharmacy leaders have formulated a vision for pharmacists to become more involved in direct patient care. All graduates now receive PharmD-level training, and some leaders call for requirements of postgraduate residency training and board certification for pharmacists who provide patient care. How such requirements would relate to community pharmacy practice is unclear. The retail prescription remains the primary link between the pharmacist and the health care consumer. Cognitive services, such as medication therapy management (MTM), need to be integrated into the standard workflow of community pharmacies so as to become a natural extension of the professional services rendered in the process of filling a prescription. Current prescription fees are not sufficient to support legitimate professional services. A proposed integrated pricing system for retail prescriptions includes a $15 professional fee that is scaled upward for value-added services, such as MTM. Pharmacy includes a diversity of practice that has historically been a source of division. For pharmacists to reach their potential as patient care providers, the various factions within the profession must forge a unified vision of the future that addresses all realms of practice.
Fava, Joseph L.; Rosen, Rochelle K.; Vargas, Sara; Shaw, Julia G.; Kojic, E. Milu; Kiser, Patrick F.; Friend, David R.; Katz, David F.
2014-01-01
Abstract The effectiveness of any biomedical prevention technology relies on both biological efficacy and behavioral adherence. Microbicide trials have been hampered by low adherence, limiting the ability to draw meaningful conclusions about product effectiveness. Central to this problem may be an inadequate conceptualization of how product properties themselves impact user experience and adherence. Our goal is to expand the current microbicide development framework to include product “perceptibility,” the objective measurement of user sensory perceptions (i.e., sensations) and experiences of formulation performance during use. For vaginal gels, a set of biophysical properties, including rheological properties and measures of spreading and retention, may critically impact user experiences. Project LINK sought to characterize the user experience in this regard, and to validate measures of user sensory perceptions and experiences (USPEs) using four prototype topical vaginal gel formulations designed for pericoital use. Perceptibility scales captured a range of USPEs during the product application process (five scales), ambulation after product insertion (six scales), and during sexual activity (eight scales). Comparative statistical analyses provided empirical support for hypothesized relationships between gel properties, spreading performance, and the user experience. Project LINK provides preliminary evidence for the utility of evaluating USPEs, introducing a paradigm shift in the field of microbicide formulation design. We propose that these user sensory perceptions and experiences initiate cognitive processes in users resulting in product choice and willingness-to-use. By understanding the impact of USPEs on that process, formulation development can optimize both drug delivery and adherence. PMID:24180360
Morrow, Kathleen M; Fava, Joseph L; Rosen, Rochelle K; Vargas, Sara; Shaw, Julia G; Kojic, E Milu; Kiser, Patrick F; Friend, David R; Katz, David F
2014-01-01
Abstract The effectiveness of any biomedical prevention technology relies on both biological efficacy and behavioral adherence. Microbicide trials have been hampered by low adherence, limiting the ability to draw meaningful conclusions about product effectiveness. Central to this problem may be an inadequate conceptualization of how product properties themselves impact user experience and adherence. Our goal is to expand the current microbicide development framework to include product "perceptibility," the objective measurement of user sensory perceptions (i.e., sensations) and experiences of formulation performance during use. For vaginal gels, a set of biophysical properties, including rheological properties and measures of spreading and retention, may critically impact user experiences. Project LINK sought to characterize the user experience in this regard, and to validate measures of user sensory perceptions and experiences (USPEs) using four prototype topical vaginal gel formulations designed for pericoital use. Perceptibility scales captured a range of USPEs during the product application process (five scales), ambulation after product insertion (six scales), and during sexual activity (eight scales). Comparative statistical analyses provided empirical support for hypothesized relationships between gel properties, spreading performance, and the user experience. Project LINK provides preliminary evidence for the utility of evaluating USPEs, introducing a paradigm shift in the field of microbicide formulation design. We propose that these user sensory perceptions and experiences initiate cognitive processes in users resulting in product choice and willingness-to-use. By understanding the impact of USPEs on that process, formulation development can optimize both drug delivery and adherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slobotski, Stephanie,
2011-09-01
Under this project, the Ponca Tribe of Nebraska (PTN) will conduct An Energy Options Analysis (EOA) to empower Tribal Leadership with critical information to allow them to effectively screen energy options that will further develop the Tribe's long-term strategic plan and energy vision. The PTN will also provide community workshops to enhance Tribal Members' capabilities, skills and awareness of energy efficiency and conservation technology and practices. A 90- minute workshop will be conducted at each of the 5 sites and one-hundred tribal members will receive an erergy efficiency kit.
2012-03-01
PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CNA Corporation,4825 Mark Center Drive... industry & USMC OMFTS experience Project Team created BPR “activity model” (Oct-Dec 1995) OPNAV N513, N812; HQMC Plans, PP&O; MCCDC; NDC; SRA...Alexandria,VA,22311 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11
1992-03-01
construction were completed and data, "’dm blue prints and physical measurements, was entered concurrent with the coding of routines for data retrieval. While...desirable for that view to accurately reflect what a person (or camera) would see if they were to stand at the same point in the physical world. To... physical dimensions. A parallel projection does not perform this scaling and is therefore not suitable to our application. B. GENERAL PERSPECTIVE
Robot and Human Surface Operations on Solar System Bodies
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Easter, R.; Rodriguez, G.
2001-01-01
This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.
NASA Technical Reports Server (NTRS)
1991-01-01
The Center for Space Construction at the University of Colorado at Boulder was established in 1988 as a University Space Engineering Research Center. The mission of the Center is to conduct interdisciplinary engineering research which is critical to the construction of future space structures and systems and to educate students who will have the vision and technical skills to successfully lead future space construction activities. The research activities are currently organized around two central projects: Orbital Construction and Lunar Construction. Summaries of the research projects are included.
Geometric derivations of minimal sets of sufficient multiview constraints
Thomas, Orrin H.; Oshel, Edward R.
2012-01-01
Geometric interpretations of four of the most common determinant formulations of multiview constraints are given, showing that they all enforce the same geometry and that all of the forms commonly in use in the machine vision community are a subset of a more general form. Generalising the work of Yi Ma yields a new general 2 x 2 determinant trilinear and 3 x 3 determinant quadlinear. Geometric descriptions of degenerate multiview constraints are given, showing that it is necessary, but insufficient, that the determinant equals zero. Understanding the degeneracies leads naturally into proofs for minimum sufficient sets of bilinear, trilinear and quadlinear constraints for arbitrary numbers of conjugate observations.
Teaching Ecology to Undergraduates: A Practical Course Using Projects.
ERIC Educational Resources Information Center
Dangerfield, J. M.; And Others
1987-01-01
Describes how short-term laboratory projects were used to teach population and community ecology to undergraduate environmental science students. Directed students to formulate and implement their own hypotheses and experimental designs. Uses questionnaire results and written reports to assess the contribution of the course to student…
34 CFR 611.21 - What are the program's selection criteria for pre-applications?
Code of Federal Regulations, 2012 CFR
2012-07-01
... design. (2) In determining the quality of the project goals and objectives, the Secretary considers the following factors: (i) The extent to which the partnership's vision will produce significant and sustainable... preparing new teachers, the Secretary considers the extent to which— (i) Specific activities are designed...
34 CFR 611.21 - What are the program's selection criteria for pre-applications?
Code of Federal Regulations, 2011 CFR
2011-07-01
... design. (2) In determining the quality of the project goals and objectives, the Secretary considers the following factors: (i) The extent to which the partnership's vision will produce significant and sustainable... preparing new teachers, the Secretary considers the extent to which— (i) Specific activities are designed...
34 CFR 611.21 - What are the program's selection criteria for pre-applications?
Code of Federal Regulations, 2014 CFR
2014-07-01
... design. (2) In determining the quality of the project goals and objectives, the Secretary considers the following factors: (i) The extent to which the partnership's vision will produce significant and sustainable... preparing new teachers, the Secretary considers the extent to which— (i) Specific activities are designed...
34 CFR 611.21 - What are the program's selection criteria for pre-applications?
Code of Federal Regulations, 2013 CFR
2013-07-01
... design. (2) In determining the quality of the project goals and objectives, the Secretary considers the following factors: (i) The extent to which the partnership's vision will produce significant and sustainable... preparing new teachers, the Secretary considers the extent to which— (i) Specific activities are designed...
Unified Plant Growth Model (UPGM). 1. Background, objectives, and vision.
USDA-ARS?s Scientific Manuscript database
Since the development of the Environmental Policy Integrated Climate (EPIC) model in 1988, the EPIC-based plant growth code has been incorporated and modified into many agro-ecosystem models. The goals of the Unified Plant Growth Model (UPGM) project are: 1) integrating into one platform the enhance...
Documentary Visions, Theological Insights
ERIC Educational Resources Information Center
Alderman, Isaac M.; Beyers, Donald J.
2009-01-01
In an attempt to engage students' higher-order thinking skills, we developed a documentary filmmaking project for our introduction to theology course. By documenting certain aspects of the theology of John Wesley and John Henry Newman (God, creation, revelation, Jesus, the church), students were able to delve deeply into these themes, better…
Plutonium immobilization can loading FY99 component test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriikku, E.
2000-06-01
This report summarizes FY99 Can Loading work completed for the Plutonium Immobilization Project and it includes details about the Helium hood, cold pour cans, Can Loading robot, vision system, magnetically coupled ray cart and lifts, system integration, Can Loading glovebox layout, and an FY99 cost table.
Expanding the Union Contract: One Teacher's Perspective.
ERIC Educational Resources Information Center
Tuthill, Doug
1990-01-01
The National Education Association's approach to improving public education is founded on John Dewey's vision of democratic schooling and rational decision making, as the experience of Pinellas County, Florida, shows. This article describes the district's efforts to implement the Mastery in Learning project, a shared decision-making model.…
DOT National Transportation Integrated Search
2005-12-01
This volume provides an overview of the six studies that compose Phase II of the Enhanced Night Visibility project and the experimental plan for its third and final portion, Phase III. The Phase II studies evaluated up to 12 vision enhancement system...
VISIONS2 Learning for Life Initiative. Final Report.
ERIC Educational Resources Information Center
Orangeburg-Calhoun Technical Coll., Orangeburg, SC.
During the Learning for Life Initiative, a technical college and an adult education center partnered with two area businesses to develop and deliver job-specific workplace literacy and basic skills training to employees. Major activities of the initiative included the following: comprehensive staff development program for all project instructors,…
Operations and maintenance philosophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
DUNCAN, G.P.
1999-10-28
This Operations and Maintenance (O&M) Philosophy document is intended to establish a future O&M vision, with an increased focus on minimizing worker exposure, ensuring uninterrupted retrieval operations, and minimizing operation life-cycle cost. It is intended that this document would incorporate O&M lessons learned into on-going and future project upgrades.
Geometric Invariants and Object Recognition.
1992-08-01
University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of
Hunting for Monsters: Visual Arts Curriculum as Agonistic Inquiry
ERIC Educational Resources Information Center
Kalin, Nadine M.; Barney, Daniel T.
2014-01-01
This article explores the possibilities of placing curriculum design in close proximity with participatory contemporary art projects that potentially activate our capacities and willingness to re-vision the future of art education. In this curricular questing we have been drawn toward art that encompasses participatory forms--chiefly relational…
Project on National Security Reform: Vision Working Group Report and Scenarios
2010-07-01
from radiation produced by harmless, everyday substances such as bananas , cat litter, glass, and concrete.40 The DHS began installing first...solvable. The skills are potentially there, but the incentives and then the funding to make them emerge 234 and flower across the whole of the U.S
Aristotle's Educational Politics and the Aristotelian Renaissance in Philosophy of Education
ERIC Educational Resources Information Center
Curren, Randall
2010-01-01
This paper assesses the historical meaning and contemporary significance of Aristotle's educational ideas. It begins with a broad characterisation of the project of Aristotle's "Nicomachean Ethics" and "Politics", which he calls "political science" ("he politike episteme"), and the central place of education in his vision of statesmanship. It…
Code of Federal Regulations, 2010 CFR
2010-04-01
... of Property Disposition Program multifamily housing facilities. 9.152 Section 9.152 Housing and Urban... URBAN DEVELOPMENT § 9.152 Program accessibility: alterations of Property Disposition Program multifamily...) in such a project shall be accessible for persons with hearing or vision impairments. If state or...
Code of Federal Regulations, 2011 CFR
2011-04-01
... of Property Disposition Program multifamily housing facilities. 9.152 Section 9.152 Housing and Urban... URBAN DEVELOPMENT § 9.152 Program accessibility: alterations of Property Disposition Program multifamily...) in such a project shall be accessible for persons with hearing or vision impairments. If state or...
The North Carolina Division of Public Health's vision for healthy and sustainable communities.
Thomas, Cathy; Rhew, Lori K; Petersen, Ruth
2012-01-01
The North Carolina Division of Public Health is working to improve access to physical activity through changes in the built environment by participating in the Healthy Environments Collaborative and by leading the state's Communities Putting Prevention to Work project and the Shape Your World movement.
Whittle Communications and Channel One: Rhetorical Strategies of Innovation.
ERIC Educational Resources Information Center
Adams, Scott
A study examined the message features that influence an innovation's acceptance by a mass audience. The study looked at three strategies of innovational rhetoric (denial of controversy, subtle criticism of existing institutions, and projection of a rhetorical vision) used by a commercial broadcasting company, called Whittle Communications in 1989,…
Retraining Is Draining: Motivating Student Employees to High Performance and Longevity
ERIC Educational Resources Information Center
Alder, Nancy Lichten
2007-01-01
This article recounts successful strategies for increasing student staff commitment to the organization's vision and deadlines, inviting "buy in" for projects, and enhancing staff work relationships. The discussion will outline activities that have resulted in increased employee satisfaction with work, smoother interactions between coworkers,…
Primary Events in vision - Investigation of Basic Eye Responses.
1983-06-30
Lewis School of Applied & Engineering Physics CORNELL UNIVERSITY Ithaca, NY 30 JUNE 1983 SEF 2 PHASE REPORT Contract No. N62269.62-M-3270 APPROVED FOR...Ph.D. N62269-82-M-3270 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK School of Applied & Engineering Physics AREA
Reforming Copyright Is Possible
ERIC Educational Resources Information Center
Samuelson, Pamela
2012-01-01
The tantalizing vision of universal access to the cultural and scientific heritage of humanity seemed close to fulfillment in 2008, when Google announced the settlement of a class-action lawsuit charging that its Google Book Search project infringed copyright by scanning in-copyright books from major research-library collections. But it was not to…
ERIC Educational Resources Information Center
Henderson, Mary
1996-01-01
Discusses the Ahkwesahsne Science and Math Project, a holistic bioregional curriculum designed to help students of the Mohawk culture in Canada. The program aimed to stress the local ecosystem and develop a curriculum based in Mohawk culture while encouraging the students to also pursue the advanced levels of math and science. (AIM)
Outline Guide to Educational Reform Initiatives. ERS Research Digest.
ERIC Educational Resources Information Center
Educational Research Service, Arlington, VA.
Many educational reform initiatives are being tried in an effort to restructure the American school system. This guide compares major educational reform efforts by goal, vision, teaching and learning, and system components. The first section of the guide covers major systemic educational reform initiatives, including Accelerated Schools Project,…
Co-Creating Nano-Imaginaries: Report of a Delphi-Exercise
ERIC Educational Resources Information Center
Deblonde, Marian; Van Oudheusden, Michiel; Evers, Johan; Goorden, Lieve
2008-01-01
In the first phase of the research project Nanotechnologies for Tomorrow's Society (www.nanosoc.be), the research consortium explored a variety of futuristic visions or technoscientific imaginaries. This exploration took the form of a Policy Delphi, adapted to the particular objective of jointly constructing nano-imaginaries, taking participants'…
Crisis in the Caribbean: Teacher Education in the Dominican Republic.
ERIC Educational Resources Information Center
Smith, Sara Dawn
1992-01-01
In the Dominican Republic, poverty negatively affects education, including teacher education. Salaries fall, teachers lose prestige, and the quality of teaching candidates drops. The article examines the educational cycle of poverty, describes a K-12 teacher education project, and discusses a vision for the future. (SM)