Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Committee 213, Enhanced Flight Visions Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Visions Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing... Flight Visions Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held April 17-19...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing..., Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing... Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held October 2-4...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-18
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing..., Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held April...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... Committee 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation... 213, Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing..., Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held October...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY...-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing...: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held April...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY...: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY...-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing...: Enhanced Flight [[Page 38864
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-03
... Special Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... Special Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... Committee 213, Enhanced Flight Vision/Synthetic Vision Systems (EFVS/SVS) AGENCY: Federal Aviation..., Enhanced Flight Vision/ Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing this notice to advise the public of the seventeenth meeting of RTCA Special Committee 213, Enhanced Flight Vision...
Using Vision System Technologies for Offset Approaches in Low Visibility Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K.
2015-01-01
Flight deck-based vision systems, such as Synthetic Vision Systems (SVS) and Enhanced Flight Vision Systems (EFVS), have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in Next Generation Air Transportation System low visibility approach and landing operations at Chicago O'Hare airport. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and three instrument approach types (straight-in, 3-degree offset, 15-degree offset) were experimentally varied to test the efficacy of the SVS/EFVS HUD concepts for offset approach operations. The findings suggest making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD appear feasible. Regardless of offset approach angle or HUD concept being flown, all approaches had comparable ILS tracking during the instrument segment and were within the lateral confines of the runway with acceptable sink rates during the visual segment of the approach. Keywords: Enhanced Flight Vision Systems; Synthetic Vision Systems; Head-up Display; NextGen
Aspects of Synthetic Vision Display Systems and the Best Practices of the NASA's SVS Project
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Jones, Denise R.; Young, Steven D.; Arthur, Jarvis J.; Prinzel, Lawrence J.; Glaab, Louis J.; Harrah, Steven D.; Parrish, Russell V.
2008-01-01
NASA s Synthetic Vision Systems (SVS) Project conducted research aimed at eliminating visibility-induced errors and low visibility conditions as causal factors in civil aircraft accidents while enabling the operational benefits of clear day flight operations regardless of actual outside visibility. SVS takes advantage of many enabling technologies to achieve this capability including, for example, the Global Positioning System (GPS), data links, radar, imaging sensors, geospatial databases, advanced display media and three dimensional video graphics processors. Integration of these technologies to achieve the SVS concept provides pilots with high-integrity information that improves situational awareness with respect to terrain, obstacles, traffic, and flight path. This paper attempts to emphasize the system aspects of SVS - true systems, rather than just terrain on a flight display - and to document from an historical viewpoint many of the best practices that evolved during the SVS Project from the perspective of some of the NASA researchers most heavily involved in its execution. The Integrated SVS Concepts are envisagements of what production-grade Synthetic Vision systems might, or perhaps should, be in order to provide the desired functional capabilities that eliminate low visibility as a causal factor to accidents and enable clear-day operational benefits regardless of visibility conditions.
Awareness and Detection of Traffic and Obstacles Using Synthetic and Enhanced Vision Systems
NASA Technical Reports Server (NTRS)
Bailey, Randall E.
2012-01-01
Research literature are reviewed and summarized to evaluate the awareness and detection of traffic and obstacles when using Synthetic Vision Systems (SVS) and Enhanced Vision Systems (EVS). The study identifies the critical issues influencing the time required, accuracy, and pilot workload associated with recognizing and reacting to potential collisions or conflicts with other aircraft, vehicles and obstructions during approach, landing, and surface operations. This work considers the effect of head-down display and head-up display implementations of SVS and EVS as well as the influence of single and dual pilot operations. The influences and strategies of adding traffic information and cockpit alerting with SVS and EVS were also included. Based on this review, a knowledge gap assessment was made with recommendations for ground and flight testing to fill these gaps and hence, promote the safe and effective implementation of SVS/EVS technologies for the Next Generation Air Transportation System
A Hybrid Synthetic Vision System for the Tele-operation of Unmanned Vehicles
NASA Technical Reports Server (NTRS)
Delgado, Frank; Abernathy, Mike
2004-01-01
A system called SmartCam3D (SC3D) has been developed to provide enhanced situational awareness for operators of a remotely piloted vehicle. SC3D is a Hybrid Synthetic Vision System (HSVS) that combines live sensor data with information from a Synthetic Vision System (SVS). By combining the dual information sources, the operators are afforded the advantages of each approach. The live sensor system provides real-time information for the region of interest. The SVS provides information rich visuals that will function under all weather and visibility conditions. Additionally, the combination of technologies allows the system to circumvent some of the limitations from each approach. Video sensor systems are not very useful when visibility conditions are hampered by rain, snow, sand, fog, and smoke, while a SVS can suffer from data freshness problems. Typically, an aircraft or satellite flying overhead collects the data used to create the SVS visuals. The SVS data could have been collected weeks, months, or even years ago. To that extent, the information from an SVS visual could be outdated and possibly inaccurate. SC3D was used in the remote cockpit during flight tests of the X-38 132 and 131R vehicles at the NASA Dryden Flight Research Center. SC3D was also used during the operation of military Unmanned Aerial Vehicles. This presentation will provide an overview of the system, the evolution of the system, the results of flight tests, and future plans. Furthermore, the safety benefits of the SC3D over traditional and pure synthetic vision systems will be discussed.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.
2014-01-01
Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.
Flight Testing an Integrated Synthetic Vision System
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III
2005-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.
2013-01-01
Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.
Transition of Attention in Terminal Area NextGen Operations Using Synthetic Vision Systems
NASA Technical Reports Server (NTRS)
Ellis, Kyle K. E.; Kramer, Lynda J.; Shelton, Kevin J.; Arthur, Shelton, J. J., III; Prinzel, Lance J., III; Norman, Robert M.
2011-01-01
This experiment investigates the capability of Synthetic Vision Systems (SVS) to provide significant situation awareness in terminal area operations, specifically in low visibility conditions. The use of a Head-Up Display (HUD) and Head-Down Displays (HDD) with SVS is contrasted to baseline standard head down displays in terms of induced workload and pilot behavior in 1400 RVR visibility levels. Variances across performance and pilot behavior were reviewed for acceptability when using HUD or HDD with SVS under reduced minimums to acquire the necessary visual components to continue to land. The data suggest superior performance for HUD implementations. Improved attentional behavior is also suggested for HDD implementations of SVS for low-visibility approach and landing operations.
Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0
NASA Technical Reports Server (NTRS)
Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.
2001-01-01
A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.
Synthetic Vision Systems - Operational Considerations Simulation Experiment
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.
2007-01-01
Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents/accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.
Synthetic vision systems: operational considerations simulation experiment
NASA Astrophysics Data System (ADS)
Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.
2007-04-01
Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents / accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.
Enhanced and Synthetic Vision for Terminal Maneuvering Area NextGen Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Norman, R. Michael; Williams, Steven P.; Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III
2011-01-01
Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility ground (taxi) operations and approach/landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O Hare environment. Various scenarios tested the potential for EFVS for operations in visibility as low as 1000 ft runway visibility range (RVR) and SVS to enable lower decision heights (DH) than can currently be flown today. Expanding the EFVS visual segment from DH to the runway in visibilities as low as 1000 RVR appears to be viable as touchdown performance was excellent without any workload penalties noted for the EFVS concept tested. A lower DH to 150 ft and/or possibly reduced visibility minima by virtue of SVS equipage appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.
Flight Test Evaluation of Synthetic Vision Concepts at a Terrain Challenged Airport
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prince, Lawrence J., III; Bailey, Randell E.; Arthur, Jarvis J., III; Parrish, Russell V.
2004-01-01
NASA's Synthetic Vision Systems (SVS) Project is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation/Terrain Awareness and Warning System displays. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the tunnel guidance display concept used within the SVS concepts achieved required navigation performance (RNP) criteria.
Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.
2014-01-01
Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.
Flight Test Comparison Between Enhanced Vision (FLIR) and Synthetic Vision Systems
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.
2005-01-01
Limited visibility and reduced situational awareness have been cited as predominant causal factors for both Controlled Flight Into Terrain (CFIT) and runway incursion accidents. NASA s Synthetic Vision Systems (SVS) project is developing practical application technologies with the goal of eliminating low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance. A flight test evaluation was conducted in the summer of 2004 by NASA Langley Research Center under NASA s Aviation Safety and Security, Synthetic Vision System - Commercial and Business program. A Gulfstream G-V aircraft, modified and operated under NASA contract by the Gulfstream Aerospace Corporation, was flown over a 3-week period at the Reno/Tahoe International Airport and an additional 3-week period at the NASA Wallops Flight Facility to evaluate integrated Synthetic Vision System concepts. Flight testing was conducted to evaluate the performance, usability, and acceptance of an integrated synthetic vision concept which included advanced Synthetic Vision display concepts for a transport aircraft flight deck, a Runway Incursion Prevention System, an Enhanced Vision Systems (EVS), and real-time Database Integrity Monitoring Equipment. This paper focuses on comparing qualitative and subjective results between EVS and SVS display concepts.
Flight Simulator Evaluation of Display Media Devices for Synthetic Vision Concepts
NASA Technical Reports Server (NTRS)
Arthur, J. J., III; Williams, Steven P.; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.
2004-01-01
The Synthetic Vision Systems (SVS) Project of the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSP) is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft. To accomplish these safety and capacity improvements, the SVS concept is designed to provide a clear view of the world around the aircraft through the display of computer-generated imagery derived from an onboard database of terrain, obstacle, and airport information. Display media devices with which to implement SVS technology that have been evaluated so far within the Project include fixed field of view head up displays and head down Primary Flight Displays with pilot-selectable field of view. A simulation experiment was conducted comparing these display devices to a fixed field of view, unlimited field of regard, full color Helmet-Mounted Display system. Subject pilots flew a visual circling maneuver in IMC at a terrain-challenged airport. The data collected for this experiment is compared to past SVS research studies.
Synthetic Vision Enhances Situation Awareness and RNP Capabilities for Terrain-Challenged Approaches
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III
2003-01-01
The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria.
NASA Technical Reports Server (NTRS)
Bartolone, Anthony P.; Glabb, Louis J.; Hughes, Monica F.; Parrish, Russell V.
2005-01-01
Synthetic Vision Systems (SVS) displays provide pilots with a continuous view of terrain combined with integrated guidance symbology in an effort to increase situation awareness (SA) and decrease workload during operations in Instrument Meteorological Conditions (IMC). It is hypothesized that SVS displays can replicate the safety and operational flexibility of flight in Visual Meteorological Conditions (VMC), regardless of actual out-the-window (OTW) visibility or time of day. Significant progress has been made towards evolving SVS displays as well as demonstrating their ability to increase SA compared to conventional avionics in a variety of conditions. While a substantial amount of data has been accumulated demonstrating the capabilities of SVS displays, the ability of SVS to replicate the safety and operational flexibility of VMC flight performance in all visibility conditions is unknown to any specific degree. In order to more fully quantify the relationship of flight operations in IMC with SVS displays to conventional operations conducted in VMC, a fundamental comparison to current day general aviation (GA) flight instruments was warranted. Such a comparison could begin to establish the extent to which SVS display concepts are capable of maintaining an "equivalent level of safety" with the round dials they could one day replace, for both current and future operations. A combination of subjective and objective data measures were used to quantify the relationship between selected components of safety that are associated with flying an approach. Four information display methods ranging from a "round dials" baseline through a fully integrated SVS package that includes terrain, pathway based guidance, and a strategic navigation display, were investigated in this high fidelity simulation experiment. In addition, a broad spectrum of pilots, representative of the GA population, were employed for testing in an attempt to enable greater application of the results and determine if "equivalent levels of safety" are achievable through the incorporation of SVS technology regardless of a pilot's flight experience.
Can Effective Synthetic Vision System Displays be Implemented on Limited Size Display Spaces?
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Glaab, Lou J.; Prinzel, Lance J.; Elliott, Dawn M.
2004-01-01
The Synthetic Vision Systems (SVS) element of the NASA Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents, and to enhance operational capabilities of all types or aircraft. To accomplish these safety and situation awareness improvements, the SVS concepts are designed to provide a clear view of the world ahead through the display of computer generated imagery derived from an onboard database of terrain, obstacle and airport information. An important issue for the SVS concept is whether useful and effective Synthetic Vision System (SVS) displays can be implemented on limited size display spaces as would be required to implement this technology on older aircraft with physically smaller instrument spaces. In this study, prototype SVS displays were put on the following display sizes: (a) size "A' (e.g. 757 EADI), (b) form factor "D" (e.g. 777 PFD), and (c) new size "X" (Rectangular flat-panel, approximately 20 x 25 cm). Testing was conducted in a high-resolution graphics simulation facility at NASA Langley Research Center. Specific issues under test included the display size as noted above, the field-of-view (FOV) to be shown on the display and directly related to FOV is the degree of minification of the displayed image or picture. Using simulated approaches with display size and FOV conditions held constant no significant differences by these factors were found. Preferred FOV based on performance was determined by using approaches during which pilots could select FOV. Mean preference ratings for FOV were in the following order: (1) 30 deg., (2) Unity, (3) 60 deg., and (4) 90 deg., and held true for all display sizes tested. Limitations of the present study and future research directions are discussed.
NASA Astrophysics Data System (ADS)
Bartolone, Anthony P.; Glaab, Louis J.; Hughes, Monica F.; Parrish, Russell V.
2005-05-01
Synthetic Vision Systems (SVS) displays provide pilots with a continuous view of terrain combined with integrated guidance symbology in an effort to increase situation awareness (SA) and decrease workload during operations in Instrument Meteorological Conditions (IMC). It is hypothesized that SVS displays can replicate the safety and operational flexibility of flight in Visual Meteorological Conditions (VMC), regardless of actual out-the-window (OTW) visibility or time of day. Throughout the course of recent SVS research, significant progress has been made towards evolving SVS displays as well as demonstrating their ability to increase SA compared to conventional avionics in a variety of conditions. While a substantial amount of data has been accumulated demonstrating the capabilities of SVS displays, the ability of SVS to replicate the safety and operational flexibility of VMC flight performance in all visibility conditions is unknown to any specific degree. The previous piloted simulations and flight tests have shown better SA and path precision is achievable with SVS displays without causing an increase in workload, however none of the previous SVS research attempted to fully capture the significance of SVS displays in terms of their contribution to safety or operational benefits. In order to more fully quantify the relationship of flight operations in IMC with SVS displays to conventional operations conducted in VMC, a fundamental comparison to current day general aviation (GA) flight instruments was warranted. Such a comparison could begin to establish the extent to which SVS display concepts are capable of maintaining an "equivalent level of safety" with the round dials they could one day replace, for both current and future operations. Such a comparison was the focus of the SVS-ES experiment conducted under the Aviation Safety and Security Program's (AvSSP) GA Element of the SVS Project at NASA Langley Research Center in Hampton, Virginia. A combination of subjective and objective data measures were used in this preliminary research to quantify the relationship between selected components of safety that are associated with flying an approach. Four information display methods ranging from a "round dials" baseline through a fully integrated SVS package that includes terrain, pathway based guidance, and a strategic navigation display, were investigated in this high fidelity simulation experiment. In addition, a broad spectrum of pilots, representative of the GA population, were employed for testing in an attempt to enable greater application of the results and determine if "equivalent levels of safety" are achievable through the incorporation of SVS technology regardless of a pilot's flight experience.
Crew and Display Concepts Evaluation for Synthetic / Enhanced Vision Systems
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence J., III
2006-01-01
NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that strive to eliminate low-visibility conditions as a causal factor to civil aircraft accidents and replicate the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Enhanced Vision System (EVS) technologies are analogous and complementary in many respects to SVS, with the principle difference being that EVS is an imaging sensor presentation, as opposed to a database-derived image. The use of EVS in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting operations to civil airports. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved EVS that shows the required visual references on the pilot s Head-Up Display. An experiment was conducted to evaluate the complementary use of SVS and EVS technologies, specifically focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under the newly adopted FAA rules which provide operating credit for EVS. Overall, the experimental data showed that significant improvements in SA without concomitant increases in workload and display clutter could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying.
NASA Technical Reports Server (NTRS)
Boton, Matthew L.; Bass, Ellen J.; Comstock, James R., Jr.
2006-01-01
The evaluation of human-centered systems can be performed using a variety of different methodologies. This paper describes a human-centered systems evaluation methodology where participants watch 5-second non-interactive videos of a system in operation before supplying judgments and subjective measures based on the information conveyed in the videos. This methodology was used to evaluate the ability of different textures and fields of view to convey spatial awareness in synthetic vision systems (SVS) displays. It produced significant results for both judgment based and subjective measures. This method is compared to other methods commonly used to evaluate SVS displays based on cost, the amount of experimental time required, experimental flexibility, and the type of data provided.
NASA Technical Reports Server (NTRS)
Liu, Dahai; Goodrich, Ken; Peak, Bob
2006-01-01
This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on single pilot performance (SPP). Specifically, we evaluated the benefits and interactions of two levels of terrain portrayal, guidance symbology, and control-system response type on SPP in the context of lower-landing minima (LLM) approaches. Performance measures consisted of flight technical error (FTE) and pilot perceived workload. In this study, pilot rating, control type, and guidance symbology were not found to significantly affect FTE or workload. It is likely that transfer from prior experience, limited scope of the evaluation task, specific implementation limitations, and limited sample size were major factors in obtaining these results.
NASA Technical Reports Server (NTRS)
Bolton, Matthew L.; Bass, Ellen J.; Comstock, James R., Jr.
2006-01-01
Synthetic Vision Systems (SVS) depict computer generated views of terrain surrounding an aircraft. In the assessment of textures and field of view (FOV) for SVS, no studies have directly measured the 3 levels of spatial awareness: identification of terrain, its relative spatial location, and its relative temporal location. This work introduced spatial awareness measures and used them to evaluate texture and FOV in SVS displays. Eighteen pilots made 4 judgments (relative angle, distance, height, and abeam time) regarding the location of terrain points displayed in 112 5-second, non-interactive simulations of a SVS heads down display. Texture produced significant main effects and trends for the magnitude of error in the relative distance, angle, and abeam time judgments. FOV was significant for the directional magnitude of error in the relative distance, angle, and height judgments. Pilots also provided subjective terrain awareness ratings that were compared with the judgment based measures. The study found that elevation fishnet, photo fishnet, and photo elevation fishnet textures best supported spatial awareness for both the judgments and the subjective awareness measures.
Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Kramer, Lynda J.
2006-01-01
Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions.
NASA Technical Reports Server (NTRS)
Hughes, Monica F.; Glaab, Louis J.
2007-01-01
The Terrain Portrayal for Head-Down Displays (TP-HDD) simulation experiment addressed multiple objectives involving twelve display concepts (two baseline concepts without terrain and ten synthetic vision system (SVS) variations), four evaluation maneuvers (two en route and one approach maneuver, plus a rare-event scenario), and three pilot group classifications. The TP-HDD SVS simulation was conducted in the NASA Langley Research Center's (LaRC's) General Aviation WorkStation (GAWS) facility. The results from this simulation establish the relationship between terrain portrayal fidelity and pilot situation awareness, workload, stress, and performance and are published in the NASA TP entitled Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results. This is a collection of pilot comments during each run of the TP-HDD simulation experiment. These comments are not the full transcripts, but a condensed version where only the salient remarks that applied to the scenario, the maneuver, or the actual research itself were compiled.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Kramer, Lynda J.; Arthur, Trey; Parrish, Russell V.; Barry, John S.
2003-01-01
Limited visibility is the single most critical factor affecting the safety and capacity of worldwide aviation operations. Synthetic Vision Systems (SVS) technology can solve this visibility problem with a visibility solution. These displays employ computer-generated terrain imagery to present 3D, perspective out-the-window scenes with sufficient information and realism to enable operations equivalent to those of a bright, clear day, regardless of weather conditions. To introduce SVS display technology into as many existing aircraft as possible, a retrofit approach was defined that employs existing HDD display capabilities for glass cockpits and HUD capabilities for the other aircraft. This retrofit approach was evaluated for typical nighttime airline operations at a major international airport. Overall, 6 evaluation pilots performed 75 research approaches, accumulating 18 hours flight time evaluating SVS display concepts that used the NASA LaRC's Boeing B-757-200 aircraft at Dallas/Fort Worth International Airport. Results from this flight test establish the SVS retrofit concept, regardless of display size, as viable for tested conditions. Future assessments need to extend evaluation of the approach to operations in an appropriate, terrain-challenged environment with daytime test conditions.
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Williams, Steven P.; Nold, Dean E.
2003-01-01
A simulation study was conducted in 1994 at Langley Research Center that used 12 commercial airline pilots repeatedly flying complex Microwave Landing System (MLS)-type approaches to parallel runways under Category IIIc weather conditions. Two sensor insert concepts of 'Synthetic Vision Systems' (SVS) were used in the simulated flights, with a more conventional electro-optical display (similar to a Head-Up Display with raster capability for sensor imagery), flown under less restrictive visibility conditions, used as a control condition. The SVS concepts combined the sensor imagery with a computer-generated image (CGI) of an out-the-window scene based on an onboard airport database. Various scenarios involving runway traffic incursions (taxiing aircraft and parked fuel trucks) and navigational system position errors (both static and dynamic) were used to assess the pilots' ability to manage the approach task with the display concepts. The two SVS sensor insert concepts contrasted the simple overlay of sensor imagery on the CGI scene without additional image processing (the SV display) to the complex integration (the AV display) of the CGI scene with pilot-decision aiding using both object and edge detection techniques for detection of obstacle conflicts and runway alignment errors.
Effectively Transforming IMC Flight into VMC Flight: An SVS Case Study
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Hughes, Monic F.; Parrish, Russell V.; Takallu, Mohammad A.
2006-01-01
A flight-test experiment was conducted using the NASA LaRC Cessna 206 aircraft. Four primary flight and navigation display concepts, including baseline and Synthetic Vision System (SVS) concepts, were evaluated in the local area of Roanoke Virginia Airport, flying visual and instrument approach procedures. A total of 19 pilots, from 3 pilot groups reflecting the diverse piloting skills of the GA population, served as evaluation pilots. Multi-variable Discriminant Analysis was applied to three carefully selected and markedly different operating conditions with conventional instrumentation to provide an extension of traditional analysis methods as well as provide an assessment of the effectiveness of SVS displays to effectively transform IMC flight into VMC flight.
NASA Technical Reports Server (NTRS)
Bartolone, Anthony P.; Hughes, Monica F.; Wong, Douglas T.; Takallu, Mohammad A.
2004-01-01
Spatial disorientation induced by inadvertent flight into instrument meteorological conditions (IMC) continues to be a leading cause of fatal accidents in general aviation. The Synthetic Vision Systems General Aviation (SVS-GA) research element, an integral part of NASA s Aviation Safety and Security Program (AvSSP), is investigating a revolutionary display technology designed to mitigate low visibility events such as controlled flight into terrain (CFIT) and low-visibility loss of control (LVLoC). The integrated SVS Primary Flight Display (SVS-PFD) utilizes computer generated 3-dimensional imagery of the surrounding terrain augmented with flight path guidance symbology. This unique combination will provide GA pilots with an accurate representation of their environment and projection of their flight path, regardless of time of day or out-the-window (OTW) visibility. The initial Symbology Development for Head-Down Displays (SD-HDD) simulation experiment examined 16 display configurations on a centrally located high-resolution PFD installed in NASA s General Aviation Work Station (GAWS) flight simulator. The results of the experiment indicate that situation awareness (SA) can be enhanced without having a negative impact on flight technical error (FTE), by providing a general aviation pilot with an integrated SVS display to use when OTW visibility is obscured.
Advanced Pathway Guidance Evaluations on a Synthetic Vision Head-Up Display
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.
2005-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to potentially eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced guidance for commercial and business aircraft. This experiment evaluated the influence of different pathway and guidance display concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two pathway formats (dynamic and minimal tunnel presentations) were evaluated against a baseline condition (no tunnel) during simulated instrument meteorological conditions approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.
Pathway Design Effects on Synthetic Vision Head-Up Displays
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.
2004-01-01
NASA s Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. This experiment evaluated the influence of different tunnel and guidance concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two tunnel formats (dynamic, minimal) were evaluated against a baseline condition (no tunnel) during simulated IMC approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence on the tunnel formats. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.
STS-52 CANEX-2 Canadian Target Assembly (CTA) held by RMS over OV-102's PLB
1992-11-01
STS052-71-057 (22 Oct-1 Nov 1992) --- This 70mm frame, photographed with a handheld Hasselblad camera aimed through Columbia's aft flight deck windows, captures the operation of the Space Vision System (SVS) experiment above the cargo bay. Target dots have been placed on the Canadian Target Assembly (CTA), a small satellite, in the grasp of the Canadian-built remote manipulator system (RMS) arm. SVS utilized a Shuttle TV camera to monitor the dots strategically arranged on the satellite, to be tracked. As the satellite moved via the arm, the SVS computer measured the changing position of the dots and provided real-time television display of the location and orientation of the CTA. This type of displayed information is expected to help an operator guide the RMS or the Mobile Servicing System (MSS) of the future when berthing or deploying satellites. Also visible in the frame is the U.S. Microgravity Payload (USMP-01).
The Application of Lidar to Synthetic Vision System Integrity
NASA Technical Reports Server (NTRS)
Campbell, Jacob L.; UijtdeHaag, Maarten; Vadlamani, Ananth; Young, Steve
2003-01-01
One goal in the development of a Synthetic Vision System (SVS) is to create a system that can be certified by the Federal Aviation Administration (FAA) for use at various flight criticality levels. As part of NASA s Aviation Safety Program, Ohio University and NASA Langley have been involved in the research and development of real-time terrain database integrity monitors for SVS. Integrity monitors based on a consistency check with onboard sensors may be required if the inherent terrain database integrity is not sufficient for a particular operation. Sensors such as the radar altimeter and weather radar, which are available on most commercial aircraft, are currently being investigated for use in a real-time terrain database integrity monitor. This paper introduces the concept of using a Light Detection And Ranging (LiDAR) sensor as part of a real-time terrain database integrity monitor. A LiDAR system consists of a scanning laser ranger, an inertial measurement unit (IMU), and a Global Positioning System (GPS) receiver. Information from these three sensors can be combined to generate synthesized terrain models (profiles), which can then be compared to the stored SVS terrain model. This paper discusses an initial performance evaluation of the LiDAR-based terrain database integrity monitor using LiDAR data collected over Reno, Nevada. The paper will address the consistency checking mechanism and test statistic, sensitivity to position errors, and a comparison of the LiDAR-based integrity monitor to a radar altimeter-based integrity monitor.
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Takallu, Mohammad A.
2002-01-01
An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of pilot stress appear to be correlated with skin temperature measurements.
Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia; Coraor, Lee; Gandhi, Tarak; Hartman, Kerry; Yang, Mau-Tsuen
2000-01-01
The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design.
Analysis of Wallops Flight Test Data Through an Automated COTS System
NASA Technical Reports Server (NTRS)
Blackstock, Dexter Lee; Theobalds, Andre B.
2005-01-01
During the summer of 2004 NASA Langley Research Center flight tested a Synthetic Vision System (SVS) at the Reno/Tahoe International Airport (RNO) and the Wallops Flight Facility (WAL). The SVS included a Runway Incursion Prevention System (RIPS) to improve pilot situational awareness while operating near and on the airport surface. The flight tests consisted of air and ground operations to evaluate and validate the performance of the system. This paper describes the flight test and emphasizes how positioning data was collected, post processed and analyzed through the use of a COTS-derived software system. The system that was developed to analyze the data was constructed within the MATLAB(TM) environment. The software was modified to read the data, perform several if-then scenarios and produce the relevant graphs, figures and tables.
The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness
NASA Technical Reports Server (NTRS)
Uenking, Michael D.; Hughes, Monica F.
2002-01-01
The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. In this part of the experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during the experimental runs. This paper focuses on the experimental set-up and final physiological results of the TP-HDD simulation experiment. The physiological measures of skin temperature, heart rate, and muscle response, show a decreased engagement (while using the synthetic vision displays as compared to the baseline conventional display) of the sympathetic and somatic nervous system responses which, in turn, indicates a reduced level of mental workload. This decreased level of workload is expected to enable improvement in the pilot's situation and terrain awareness.
Integration of a 3D perspective view in the navigation display: featuring pilot's mental model
NASA Astrophysics Data System (ADS)
Ebrecht, L.; Schmerwitz, S.
2015-05-01
Synthetic vision systems (SVS) appear as spreading technology in the avionic domain. Several studies prove enhanced situational awareness when using synthetic vision. Since the introduction of synthetic vision a steady change and evolution started concerning the primary flight display (PFD) and the navigation display (ND). The main improvements of the ND comprise the representation of colored ground proximity warning systems (EGPWS), weather radar, and TCAS information. Synthetic vision seems to offer high potential to further enhance cockpit display systems. Especially, concerning the current trend having a 3D perspective view in a SVS-PFD while leaving the navigational content as well as methods of interaction unchanged the question arouses if and how the gap between both displays might evolve to a serious problem. This issue becomes important in relation to the transition and combination of strategic and tactical flight guidance. Hence, pros and cons of 2D and 3D views generally as well as the gap between the egocentric perspective 3D view of the PFD and the exocentric 2D top and side view of the ND will be discussed. Further a concept for the integration of a 3D perspective view, i.e., bird's eye view, in synthetic vision ND will be presented. The combination of 2D and 3D views in the ND enables a better correlation of the ND and the PFD. Additionally, this supports the building of pilot's mental model. The authors believe it will improve the situational and spatial awareness. It might prove to further raise the safety margin when operating in mountainous areas.
Terrain Portrayal for Head-Down Displays Flight Test
NASA Technical Reports Server (NTRS)
Hughes, Monica F.; Glaab, Louis J.
2003-01-01
The Synthetic Vision Systems General Aviation (SVS-GA) element of NASA's Aviation Safety Program is developing technology to eliminate low visibility induced General Aviation (GA) accidents through the application of synthetic vision techniques. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain (CFIT), as well as Low-Visibility Loss of Control (LVLOC) accidents. In addition to substantial safety benefits, SVS displays have many potential operational benefits that can lead to flight in instrument meteorological conditions (IMC) resembling those conducted in visual meteorological conditions (VMC). Potential benefits could include lower landing minimums, more approach options, reduced training time, etc. SVS conducted research will develop display concepts providing the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. The relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and pilot performance has been largely undefined. Comprised of coordinated simulation and flight test efforts, the terrain portrayal for head-down displays (TP-HDD) test series examined the effects of two primary elements of terrain portrayal: variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec/2,953ft) to very closely spaced data (1 arc-sec/98 ft). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay. The TP-HDD test series was designed to provide comprehensive data to enable design trades to optimize all SVS applications, as well as develop requirements and recommendations to facilitate the implementation and certification of SVS displays. The TP-HDD flight experiment utilized the NASA LaRC Cessna 206 Stationaire and evaluated eight terrain portrayal concepts in an effort to confirm and extend results from the previously conducted TP-HDD simulation experiment. A total of 15 evaluation pilots, of various qualifications, accumulated over 75 hours of dedicated research flight time at Newport News (PHF) and Roanoke (ROA), VA, airports from August through October, 2002. This report will present results from the portion of testing conducted at Roanoke, VA.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, Jason L.
2005-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results evinced the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.
2006-01-01
NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results showed the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.
Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation
NASA Technical Reports Server (NTRS)
Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.
2014-01-01
Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system disturbances. Subjects will adapt to wearing minifying glasses, resulting in decreased vestibular ocular reflex (VOR) gain. The VOR gain will then be intermittently measured while the subject readapts to normal vision, with and without optimal SVS. We expect that optimal SVS will cause a steepening of the adaptation curve. The third experiment will test the use of optimal SVS in an operationally relevant aerospace task, using the tilt translation sled at NASA Johnson Space Center, a test platform capable of recreating the tilt-gain and tilt-translation illusions associated with landing of a spacecraft post-space flight. In this experiment, a perception based manual control measure will be used to compare performance with and without optimal SVS. We expect performance to improve in this task when optimal SVS is applied. The ultimate goal of this work is to systematically investigate and further understand the potential benefits of stochastic vestibular stimulation in the context of human space flight so that it may be used in the future as a component of a comprehensive countermeasure plan for adaptation to G-transitions.
Synthetic vision systems: the effects of guidance symbology, display size, and field of view.
Alexander, Amy L; Wickens, Christopher D; Hardy, Thomas J
2005-01-01
Two experiments conducted in a high-fidelity flight simulator examined the effects of guidance symbology, display size, and geometric field of view (GFOV) within a synthetic vision system (SVS). In Experiment 1, 18 pilots flew highlighted and low-lighted tunnel-in-the-sky displays, as well as a less cluttered follow-me aircraft (FMA), through a series of curved approaches over rugged terrain. The results revealed that both tunnels supported better flight path tracking and lower workload levels than did the FMA because of the availability of more preview information. Increasing tunnel intensity had no benefit on tracking and, in fact, degraded traffic awareness because of clutter and attentional tunneling. In Experiment 2, 24 pilots flew a lowlighted tunnel configured according to different display sizes (small or large) and GFOVs (30 degrees or 60 degrees). Measures of flight path tracking and terrain awareness generally favored the 60 degrees GFOV; however, there were no effects of display size. Actual or potential applications of this research include understanding the impact of SVS properties on flight path tracking, traffic and terrain awareness, workload, and the allocation of attention.
NASA Astrophysics Data System (ADS)
Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank
2005-05-01
Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and laser scanner system is capable of providing near meter-level horizontal and vertical position estimates. Furthermore, the system under development capitalizes on 1) The position and integrity benefits provided by the Wide Area Augmentation System (WAAS) to reduce the initial search space size and; 2) The availability of high accuracy/resolution databases. This paper presents results from flight tests where the terrain reference navigator is used to provide guidance cues for a precision approach.
Database Integrity Monitoring for Synthetic Vision Systems Using Machine Vision and SHADE
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; Young, Steven D.
2005-01-01
In an effort to increase situational awareness, the aviation industry is investigating technologies that allow pilots to visualize what is outside of the aircraft during periods of low-visibility. One of these technologies, referred to as Synthetic Vision Systems (SVS), provides the pilot with real-time computer-generated images of obstacles, terrain features, runways, and other aircraft regardless of weather conditions. To help ensure the integrity of such systems, methods of verifying the accuracy of synthetically-derived display elements using onboard remote sensing technologies are under investigation. One such method is based on a shadow detection and extraction (SHADE) algorithm that transforms computer-generated digital elevation data into a reference domain that enables direct comparison with radar measurements. This paper describes machine vision techniques for making this comparison and discusses preliminary results from application to actual flight data.
NASA Technical Reports Server (NTRS)
Goel, R.; Rosenberg, M. J.; De Dios, Y. E.; Cohen, H. S.; Bloomberg, J. J.; Mulavara, A. P.
2016-01-01
Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable at different stimulation levels. Results from the balance task suggest that there are inter-individual differences and the minimum SVS amplitude was found to be in the range of 1 mA to 2.5 mA across subjects. SVS resulted in an average decrement of balance task performance in the range of 62%-73% across different measured variables at the minimum SVS amplitude in comparison to the control trial (no stimulus). Training using supra-threshold SVS stimulation is one of the sensory challenges used for preflight SA training designed to improve adaptability to novel gravitational environments. Inter-individual differences in response to SVS can help customize the SA training paradigms using minimal dosage required. Another application of using SVS is to simulate acute deterioration of vestibular sensory inputs in the evaluation of tests for assessing vestibular function.
CFIT Prevention Using Synthetic Vision
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Parrish, Russell V.
2003-01-01
In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents where a fully functioning airplane is inadvertently flown into the ground, water, or an obstacle. An experiment was conducted at NASA Langley Research Center investigating the presentation of a synthetic terrain database scene to the pilot on a Primary Flight Display (PFD). The major hypothesis for the experiment is that a synthetic vision system (SVS) will improve the pilot s ability to detect and avoid a potential CFIT compared to conventional flight instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Sixteen pilots each flew 22 approach - departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, the flight guidance cues were altered such that the departure path went into the terrain. All pilots with a SVS enhanced PFD (12 of 16 pilots) noticed and avoided the potential CFIT situation. All of the pilots who flew the anomaly with the baseline display configuration (which included a TAWS and VSD enhanced ND) had a CFIT event.
NASA Technical Reports Server (NTRS)
Young, Steve; UijtdeHaag, Maarten; Sayre, Jonathon
2003-01-01
Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data representing terrain, obstacles, and cultural features. As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. Further, updates to the databases may not be provided as changes occur. These issues limit the certification level and constrain the operational context of SVS for civil aviation. Previous work demonstrated the feasibility of using a realtime monitor to bound the integrity of Digital Elevation Models (DEMs) by using radar altimeter measurements during flight. This paper describes an extension of this concept to include X-band Weather Radar (WxR) measurements. This enables the monitor to detect additional classes of DEM errors and to reduce the exposure time associated with integrity threats. Feature extraction techniques are used along with a statistical assessment of similarity measures between the sensed and stored features that are detected. Recent flight-testing in the area around the Juneau, Alaska Airport (JNU) has resulted in a comprehensive set of sensor data that is being used to assess the feasibility of the proposed monitor technology. Initial results of this assessment are presented.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Hughes, Monica F.; Arthur, Jarvis J., III; Kramer, Lynda J.; Glaab, Louis J.; Bailey, Randy E.; Parrish, Russell V.; Uenking, Michael D.
2003-01-01
Because restricted visibility has been implicated in the majority of commercial and general aviation accidents, solutions will need to focus on how to enhance safety during instrument meteorological conditions (IMC). The NASA Synthetic Vision Systems (SVS) project is developing technologies to help achieve these goals through the synthetic presentation of how the outside world would look to the pilot if vision were not reduced. The potential safety outcome would be a significant reduction in several accident categories, such as controlled-flight-into-terrain (CFIT), that have restricted visibility as a causal factor. The paper describes two experiments that demonstrated the efficacy of synthetic vision technology to prevent CFIT accidents for both general aviation and commercial aircraft.
Terrain Portrayal for Synthetic Vision Systems Head-Down Displays Evaluation Results
NASA Technical Reports Server (NTRS)
Hughes, Monica F.; Glaab, Louis J.
2007-01-01
A critical component of SVS displays is the appropriate presentation of terrain to the pilot. At the time of this study, the relationship between the complexity of the terrain presentation and resulting enhancements of pilot SA and pilot performance had been largely undefined. The terrain portrayal for SVS head-down displays (TP-HDD) simulation examined the effects of two primary elements of terrain portrayal on the primary flight display (PFD): variations of digital elevation model (DEM) resolution and terrain texturing. Variations in DEM resolution ranged from sparsely spaced (30 arc-sec) to very closely spaced data (1 arc-sec). Variations in texture involved three primary methods: constant color, elevation-based generic, and photo-realistic, along with a secondary depth cue enhancer in the form of a fishnet grid overlay.
NASA Astrophysics Data System (ADS)
McKinley, John B.; Pierson, Roger; Ertem, M. C.; Krone, Norris J., Jr.; Cramer, James A.
2008-04-01
Flight tests were conducted at Greenbrier Valley Airport (KLWB) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Norris Electro Optical Systems Corporation (NEOC) developmental ultraviolet (UV) sensor. These flights were sponsored by NEOC under a Federal Aviation Administration program, and the ultraviolet concepts, technology, system mechanization, and hardware for landing during low visibility landing conditions have been patented by NEOC. Imagery from the UV sensor, HUD guidance cues, and out-the-window videos were separately recorded at the engineering workstation for each approach. Inertial flight path data were also recorded. Various configurations of portable UV emitters were positioned along the runway edge and threshold. The UV imagery of the runway outline was displayed on the HUD along with guidance generated from the mission computer. Enhanced Flight Vision System (EFVS) approaches with the UV sensor were conducted from the initial approach fix to the ILS decision height in both VMC and IMC. Although the availability of low visibility conditions during the flight test period was limited, results from previous fog range testing concluded that UV EFVS has the performance capability to penetrate CAT II runway visual range obscuration. Furthermore, independent analysis has shown that existing runway light emit sufficient UV radiation without the need for augmentation other than lens replacement with UV transmissive quartz lenses. Consequently, UV sensors should qualify as conforming to FAA requirements for EFVS approaches. Combined with Synthetic Vision System (SVS), UV EFVS would function as both a precision landing aid, as well as an integrity monitor for the GPS and SVS database.
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.
2004-01-01
In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.
Cognitive mapping based on synthetic vision?
NASA Astrophysics Data System (ADS)
Helmetag, Arnd; Halbig, Christian; Kubbat, Wolfgang; Schmidt, Rainer
1999-07-01
The analysis of accidents focused our work on the avoidance of 'Controlled Flight Into Terrain' caused by insufficient situation awareness. Analysis of safety concepts led us to the design of the proposed synthetic vision system that will be described. Since most information on these 3D-Displays is shown in a graphical way, it can intuitively be understood by the pilot. What are the new possibilities using SVS enhancing situation awareness? First, detection of ground collision hazard is possible by monitoring a perspective Primary Flight Display. Under the psychological point of view it is based on the perception of expanding objects in the visual flow field. Supported by a Navigation Display a local conflict resolution can be mentally worked out very fast. Secondly, it is possible to follow a 3D flight path visualized as a 'Tunnel in the sky.' This can further be improved by using a flight path prediction. These are the prerequisites for a safe and adequate movement in any kind of spatial environment. However situation awareness requires the ability of navigation and spatial problem solving. Both abilities are based on higher cognitive functions in real as well as in a synthetic environment. In this paper the current training concept will be analyzed. Advantages resulting from the integration of a SVS concerning pilot training will be discussed and necessary requirements in terrain depiction will be pinpointed. Finally a modified Computer Based Training for the familiarization with Salzburg Airport for a SVS equipped aircraft will be presented. It is developed by Darmstadt University of Technology in co-operation with Lufthansa Flight Training.
Certifiable database generation for SVS
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Damjanovic, Dejan; Kubbat, Wolfgang
2000-06-01
In future aircraft cockpits SVS will be used to display 3D physical and virtual information to pilots. A review of prototype and production Synthetic Vision Displays (SVD) from Euro Telematic, UPS Advanced Technologies, Universal Avionics, VDO-Luftfahrtgeratewerk, and NASA, are discussed. As data sources terrain, obstacle, navigation, and airport data is needed, Jeppesen-Sanderson, Inc. and Darmstadt Univ. of Technology currently develop certifiable methods for acquisition, validation, and processing methods for terrain, obstacle, and airport databases. The acquired data will be integrated into a High-Quality Database (HQ-DB). This database is the master repository. It contains all information relevant for all types of aviation applications. From the HQ-DB SVS relevant data is retried, converted, decimated, and adapted into a SVS Real-Time Onboard Database (RTO-DB). The process of data acquisition, verification, and data processing will be defined in a way that allows certication within DO-200a and new RTCA/EUROCAE standards for airport and terrain data. The open formats proposed will be established and evaluated for industrial usability. Finally, a NASA-industry cooperation to develop industrial SVS products under the umbrella of the NASA Aviation Safety Program (ASP) is introduced. A key element of the SVS NASA-ASP is the Jeppesen lead task to develop methods for world-wide database generation and certification. Jeppesen will build three airport databases that will be used in flight trials with NASA aircraft.
Advanced integrated enhanced vision systems
NASA Astrophysics Data System (ADS)
Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha
2003-09-01
In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.
NASA Technical Reports Server (NTRS)
Takallu, M. A.; Wong, D. T.; Uenking, M. D.
2002-01-01
An experimental investigation was conducted to study the effectiveness of modern flight displays in general aviation cockpits for mitigating Low Visibility Loss of Control and the Controlled Flight Into Terrain accidents. A total of 18 General Aviation (GA) pilots with private pilot, single engine land rating, with no additional instrument training beyond private pilot license requirements, were recruited to evaluate three different display concepts in a fixed-based flight simulator at the NASA Langley Research Center's General Aviation Work Station. Evaluation pilots were asked to continue flight from Visual Meteorological Conditions (VMC) into Instrument Meteorological Conditions (IMC) while performing a series of 4 basic precision maneuvers. During the experiment, relevant pilot/vehicle performance variables, pilot control inputs and physiological data were recorded. Human factors questionnaires and interviews were administered after each scenario. Qualitative and quantitative data have been analyzed and the results are presented here. Pilot performance deviations from the established target values (errors) were computed and compared with the FAA Practical Test Standards. Results of the quantitative data indicate that evaluation pilots committed substantially fewer errors when using the Synthetic Vision Systems (SVS) displays than when they were using conventional instruments. Results of the qualitative data indicate that evaluation pilots perceived themselves to have a much higher level of situation awareness while using the SVS display concept.
NASA Technical Reports Server (NTRS)
Young, Steven D.; Harrah, Steven D.; deHaag, Maarten Uijt
2002-01-01
Terrain Awareness and Warning Systems (TAWS) and Synthetic Vision Systems (SVS) provide pilots with displays of stored geo-spatial data (e.g. terrain, obstacles, and/or features). As comprehensive validation is impractical, these databases typically have no quantifiable level of integrity. This lack of a quantifiable integrity level is one of the constraints that has limited certification and operational approval of TAWS/SVS to "advisory-only" systems for civil aviation. Previous work demonstrated the feasibility of using a real-time monitor to bound database integrity by using downward-looking remote sensing technology (i.e. radar altimeters). This paper describes an extension of the integrity monitor concept to include a forward-looking sensor to cover additional classes of terrain database faults and to reduce the exposure time associated with integrity threats. An operational concept is presented that combines established feature extraction techniques with a statistical assessment of similarity measures between the sensed and stored features using principles from classical detection theory. Finally, an implementation is presented that uses existing commercial-off-the-shelf weather radar sensor technology.
Modifying and Testing ATC Controller Interface (CI) for Data Link Clearances
NASA Technical Reports Server (NTRS)
2001-01-01
The Controller-Pilot Data Link Communications (CPDLC) and Air Traffic Control workstation research was conducted as part of the 1997 NASA Low Visibility Landing and Surface Operations (LVLASO) demonstration program at Atlanta Hartsfield airport. Research activity under this grant increased the sophistication of the Controllers' Communication and Situational Awareness Terminal (C-CAST) and developed a VHF Data Link -Mode 2 communications platform. The research culminated with participation in the 2000 NASA Aviation Safety Program's Synthetic Vision System (SVS) / Runway Incursion Prevention System (RIPS) flight demonstration at Dallas-Fort Worth Airport.
Terrain Portrayal for Head-Down Displays Experiment
NASA Technical Reports Server (NTRS)
Hughes, Monica F.; Takallu, M. A.
2002-01-01
The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study has been conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and pilot performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. This paper focuses on the experimental set-up and preliminary qualitative results of the TP-HDD simulation experiment. In this experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during the experimental runs. Preliminary results indicate that all of the evaluation pilots favored SVS displays over standard gauges, in terms of terrain awareness, SA, and perceived pilot performance. Among the terrain portrayal concepts tested, most pilots preferred the higher-resolution DEM. In addition, with minimal training, low-hour VFR evaluation pilots were able to negotiate a precision approach using SVS displays with a tunnel in the sky guidance concept.
NASA Astrophysics Data System (ADS)
Friedrich, Axel; Raabe, Helmut; Schiefele, Jens; Doerr, Kai Uwe
1999-07-01
In future aircraft cockpit designs SVS (Synthetic Vision System) databases will be used to display 3D physical and virtual information to pilots. In contrast to pure warning systems (TAWS, MSAW, EGPWS) SVS serve to enhance pilot spatial awareness by 3-dimensional perspective views of the objects in the environment. Therefore all kind of aeronautical relevant data has to be integrated into the SVS-database: Navigation- data, terrain-data, obstacles and airport-Data. For the integration of all these data the concept of a GIS (Geographical Information System) based HQDB (High-Quality- Database) has been created at the TUD (Technical University Darmstadt). To enable database certification, quality- assessment procedures according to ICAO Annex 4, 11, 14 and 15 and RTCA DO-200A/EUROCAE ED76 were established in the concept. They can be differentiated in object-related quality- assessment-methods following the keywords accuracy, resolution, timeliness, traceability, assurance-level, completeness, format and GIS-related quality assessment methods with the keywords system-tolerances, logical consistence and visual quality assessment. An airport database is integrated in the concept as part of the High-Quality- Database. The contents of the HQDB are chosen so that they support both Flight-Guidance-SVS and other aeronautical applications like SMGCS (Surface Movement and Guidance Systems) and flight simulation as well. Most airport data are not available. Even though data for runways, threshold, taxilines and parking positions were to be generated by the end of 1997 (ICAO Annex 11 and 15) only a few countries fulfilled these requirements. For that reason methods of creating and certifying airport data have to be found. Remote sensing and digital photogrammetry serve as means to acquire large amounts of airport objects with high spatial resolution and accuracy in much shorter time than with classical surveying methods. Remotely sensed images can be acquired from satellite-platforms or aircraft-platforms. To achieve the highest horizontal accuracy requirements stated in ICAO Annex 14 for runway centerlines (0.50 meters), at the present moment only images acquired from aircraft based sensors can be used as source data. Still, ground reference by GCP (Ground Control-points) is obligatory. A DEM (Digital Elevation Model) can be created automatically in the photogrammetric process. It can be used as highly accurate elevation model for the airport area. The final verification of airport data is accomplished by independent surveyed runway- and taxiway- control-points. The concept of generation airport-data by means of remote sensing and photogrammetry was tested with the Stuttgart/Germany airport. The results proved that the final accuracy was within the accuracy specification defined by ICAO Annex 14.
NASA Technical Reports Server (NTRS)
Reveley, Mary S.
2003-01-01
The goal of the NASA Aviation Safety Program (AvSP) is to develop and demonstrate technologies that contribute to a reduction in the aviation fatal accident rate by a factor of 5 by the year 2007 and by a factor of 10 by the year 2022. Integrated safety analysis of day-to-day operations and risks within those operations will provide an understanding of the Aviation Safety Program portfolio. Safety benefits analyses are currently being conducted. Preliminary results for the Synthetic Vision Systems (SVS) and Weather Accident Prevention (WxAP) projects of the AvSP have been completed by the Logistics Management Institute under a contract with the NASA Glenn Research Center. These analyses include both a reliability analysis and a computer simulation model. The integrated safety analysis method comprises two principal components: a reliability model and a simulation model. In the reliability model, the results indicate how different technologies and systems will perform in normal, degraded, and failed modes of operation. In the simulation, an operational scenario is modeled. The primary purpose of the SVS project is to improve safety by providing visual-flightlike situation awareness during instrument conditions. The current analyses are an estimate of the benefits of SVS in avoiding controlled flight into terrain. The scenario modeled has an aircraft flying directly toward a terrain feature. When the flight crew determines that the aircraft is headed toward an obstruction, the aircraft executes a level turn at speed. The simulation is ended when the aircraft completes the turn.
Multifunctional millimeter-wave radar system for helicopter safety
NASA Astrophysics Data System (ADS)
Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.
2012-06-01
A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia; Coraor, Lee
2000-01-01
The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design. It is organized into three parts. Part I. Data modeling and camera characterization; Part II. Algorithms for detecting airborne obstacles; and Part III. Real time implementation of obstacle detection algorithms on the Datacube MaxPCI architecture. A list of publications resulting from this grant as well as a list of relevant publications resulting from prior NASA grants on this topic are presented.
NASA Technical Reports Server (NTRS)
Liu, Dahai; Goodrich, Kenneth H.; Peak, Bob
2010-01-01
This study investigated the effects of synthetic vision system (SVS) concepts and advanced flight controls on the performance of pilots flying a light, single-engine general aviation airplane. We evaluated the effects and interactions of two levels of terrain portrayal, guidance symbology, and flight control response type on pilot performance during the conduct of a relatively complex instrument approach procedure. The terrain and guidance presentations were evaluated as elements of an integrated primary flight display system. The approach procedure used in the study included a steeply descending, curved segment as might be encountered in emerging, required navigation performance (RNP) based procedures. Pilot performance measures consisted of flight technical performance, perceived workload, perceived situational awareness and subjective preference. The results revealed that an elevation based generic terrain portrayal significantly improved perceived situation awareness without adversely affecting flight technical performance or workload. Other factors (pilot instrument rating, control response type, and guidance symbology) were not found to significantly affect the performance measures.
NASA Technical Reports Server (NTRS)
UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.
2004-01-01
The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.
Design Considerations for Attitude State Awareness and Prevention of Entry into Unusual Attitudes
NASA Technical Reports Server (NTRS)
Ellis, Kyle K. E.; Prinzel, Lawrence J., III; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel; Verstynen, Harry; Hubbs, Clay; Wilkerson, James
2017-01-01
Loss of control - inflight (LOC-I) has historically represented the largest category of commercial aviation fatal accidents. A review of the worldwide transport airplane accidents (2001-2010) evinced that loss of attitude or energy state awareness was responsible for a large majority of the LOC-I events. A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that flight crew loss of attitude awareness or energy state awareness due to lack of external visual reference cues was a significant causal factor in 17 of the 18 reviewed flights. CAST recommended that "Virtual Day-Visual Meteorological Condition" (Virtual Day-VMC) displays be developed to provide the visual cues necessary to prevent loss-of-control resulting from flight crew spatial disorientation and loss of energy state awareness. Synthetic vision or equivalent systems (SVS) were identified for a design "safety enhancement" (SE-200). Part of this SE involves the conduct of research for developing minimum aviation system performance standards (MASPS) for these flight deck display technologies to aid flight crew attitude and energy state awareness similar to that of a virtual day-VMC-like environment. This paper will describe a novel experimental approach to evaluating a flight crew's ability to maintain attitude awareness and to prevent entry into unusual attitudes across several SVS optical flow design considerations. Flight crews were subjected to compound-event scenarios designed to elicit channelized attention and startle/surprise within the crew. These high-fidelity scenarios, designed from real-world events, enable evaluation of the efficacy of SVS at improving flight crew attitude awareness to reduce the occurrence of LOC-I incidents in commercial flight operations.
Predictability Experiments With the Navy Operational Global Atmospheric Prediction System
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Gelaro, R.; Rosmond, T. E.
2003-12-01
There are several areas of research in numerical weather prediction and atmospheric predictability, such as targeted observations and ensemble perturbation generation, where it is desirable to combine information about the uncertainty of the initial state with information about potential rapid perturbation growth. Singular vectors (SVs) provide a framework to accomplish this task in a mathematically rigorous and computationally feasible manner. In this study, SVs are calculated using the tangent and adjoint models of the Navy Operational Global Atmospheric Prediction System (NOGAPS). The analysis error variance information produced by the NRL Atmospheric Variational Data Assimilation System is used as the initial-time SV norm. These VAR SVs are compared to SVs for which total energy is both the initial and final time norms (TE SVs). The incorporation of analysis error variance information has a significant impact on the structure and location of the SVs. This in turn has a significant impact on targeted observing applications. The utility and implications of such experiments in assessing the analysis error variance estimates will be explored. Computing support has been provided by the Department of Defense High Performance Computing Center at the Naval Oceanographic Office Major Shared Resource Center at Stennis, Mississippi.
NASA Synthetic Vision EGE Flight Test
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J.; Kramer, Lynda J.; Comstock, J. Raymond; Bailey, Randall E.; Hughes, Monica F.; Parrish, Russell V.
2002-01-01
NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size 'A' head-down, size 'X' head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making approaches to Runway 25 and Runway 07 and simulated engine-out Cottonwood 2 and KREMM departures. The results of the study confirm the retrofit capability of the HUD and Size 'A' SVS concepts to significantly improve situation awareness and performance over current EFIS glass and non-glass instruments for difficult approaches in terrain-challenged environments.
Exhibition of Stochastic Resonance in Vestibular Perception
NASA Technical Reports Server (NTRS)
Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.
2016-01-01
Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz (OTO) with SVS up to 700 µA. A sinusoidal galvanic vestibular stimulation (GVS) perceptual threshold was also measured on each test day and used to normalize the SVS levels across subjects. In roll-tilt thresholds with SVS, the characteristic SR curve was qualitatively exhibited in 10 of 12 subjects, and the improvement in motion threshold was significant in 6 subjects, indicating that optimal SVS improved passive body motion perception in a way that is consistent with classical SR theory. A probabilistic comparison to numeric simulations further validated these experimental results. On the second test session, 4 out of the 10 SR exhibitors showed repeated improvement with SVS compared to the no SVS condition. Data collection is ongoing for the last two test sessions in which SCC and OTO only perceptual motion recognition thresholds are being measured with SVS. The final results of these test sessions will give insight into whether vestibular perceptual SR can occur when only one type of vestibular sensor is sensing motion or if it is more evident when sensory integration between the SCC and OTO is occurring during the motion. The overall purpose of this research is to further quantify the effects of SVS on various sensorimotor tasks and to gain a more fundamental understanding of how SVS causes SR in the vestibular system. In the context of human space flight, results from this research will help in understanding how SVS may be practically implemented in the future as a component of a comprehensive countermeasure plan for G-transition adaptation.
High speed research system study. Advanced flight deck configuration effects
NASA Technical Reports Server (NTRS)
Swink, Jay R.; Goins, Richard T.
1992-01-01
In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.
Runway Incursion Prevention System Testing at the Wallops Flight Facility
NASA Technical Reports Server (NTRS)
Jones, Denise R.
2005-01-01
A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.
Improving Early Adaptation Following Long Duration Spaceflight by Enhancing Vestibular Information
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Kofman, Igor; DeDios, Yiri E.; Galvan, Raquel; Miller, Chris; Peters, Brian; Cohen, Helen; Jeevarajan, Jerome; Reschke, Millard; Wood, Scott;
2014-01-01
Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after g-transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" -immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance (SR) to enhance information transfer by improving the brain's ability to detect vestibular signals especially when combined with balance training exercises for rapid improvement in functional skill, for standing and mobility. The countermeasure to improve post-flight balance and locomotor disturbances is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS). The techniques for improving signal detection using SVS may thus provide additional information to improve such strategic abilities and thus help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight. We have conducted a series of studies to document the efficacy of SVS stimulation on balance/locomotion tasks on unstable surfaces and motion tracking tasks during intra-vestibular system conflicts. In an initial study, we showed that SVS improved overall balance performance while standing on an unstable surface indicating that SVS may be sufficient to provide a comprehensive countermeasure approach for improving postural stability. In a second study, we showed that SVS improved locomotor performance on a treadmill mounted on an oscillating platform indicating that SVS may also be used to maximize locomotor performance during walking in unstable environments. In a third study, SVS was evaluated during an otolith-canal conflict scenario in a variable radius centrifuge at low frequency of oscillation (0.1 Hz) on both eye movements and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). Results show that SVS significantly reduced the timing difference between both the eye movement responses as well as the perceptual tracking responses with respect to the imposed tilt sensations. These results indicate that SVS can improve performance in sensory conflict scenarios like that experienced during space flight. Such a SR countermeasure will act synergistically along with the pre-and in-flight adaptability training protocols providing an integrated, multi-disciplinary countermeasure capable of fulfilling multiple requirements making it a comprehensive and cost effective countermeasure approach to enhance sensorimotor capabilities following long-duration space flight.
Improving Sensorimotor Function Using Stochastic Vestibular Stimulation
NASA Technical Reports Server (NTRS)
Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.
2014-01-01
Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial measurement units placed on the upper and lower torso of the subjects. Additionally, each individual’s threshold for illusory motion perception of suprasensory electrical vestibular stimulation is measured multiple times within and across days to better understand how multiple SVS test methods compare. The second study aims to demonstrate stochastic resonance in the vestibular system using a perception based motion recognition task. This task measures an individual’s velocity threshold of motion recognition using a 6-degree of freedom Stewart platform and a 3-down/1-up staircase procedure. For this study, thresholds are determined using 150 trials in the upright, head-centered roll tilt motion direction at a 0.2 Hz frequency. We aim to demonstrate the characteristic bell shaped curve associated with stochastic resonance with each subject’s motion recognition thresholds at varying SVS levels ranging from 0 to 1500 micro A. The curve includes the individual’s baseline threshold with no SVS, optimal or minimal threshold at some mid-level of SVS, and finally degraded or increased threshold at a high SVS level. An additional aim is to formally retest each subject at his or her individual optimal SVS level on a different day than the original testing for additional validity. The overall purpose of this research is to further quantify the effects of SVS on various sensorimotor tasks and investigate the practical implications of its use in the context of human space flight so that it may be implemented in the future as a component of a comprehensive countermeasure plan for adaptation to G-transitions.
Quantifying Pilot Visual Attention in Low Visibility Terminal Operations
NASA Technical Reports Server (NTRS)
Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.
2012-01-01
Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation
STS-52 deployment of LAGEOS / IRIS spacecraft from OV-102's payload bay (PLB)
NASA Technical Reports Server (NTRS)
1992-01-01
During STS-52 deployment activities, the Italian Research Interim Stage (IRIS), a spinning solid fuel rocket, lifts the Laser Geodynamic Satellite II (LAGEOS II) out of its support cradle and above the thermal shield aboard Columbia, Orbiter Vehicle (OV) 102. The remote manipulator system (RMS) arm, with Material Exposure in Low Earth Orbit (MELEO), is positioned above the port side sill longeron. On the mission-peculiar equipment support structure (MPESS) carriers in the center foreground is the United States (U.S.) Microgravity Payload 1 (USMP-1) with Space Acceleration Measurement System (SAMS), MEPHISTO (its French abbreviation), Lambda Point Experiment (LPE) cryostat assembly (identified by JPL insignia), and LPE vacuum maintenance assembly. Other payload bay (PLB) experiments visible in this image include: (on the starboard wall (left)) the Canadian Experiments 2 (CANEX-2) Space Vision System (SVS) Canadian Target Assembly (CTA) (foreground) and the Attitude Sensor Package (ASP);
Peñalva, Miguel A.; Zhang, Jun; Xiang, Xin; Pantazopoulou, Areti
2017-01-01
Hyphal tip cells of the fungus Aspergillus nidulans are useful for studying long-range intracellular traffic. Post-Golgi secretory vesicles (SVs) containing the RAB11 orthologue RabE engage myosin-5 as well as plus end– and minus end–directed microtubule motors, providing an experimental system with which to investigate the interplay between microtubule and actin motors acting on the same cargo. By exploiting the fact that depolymerization of F-actin unleashes SVs focused at the apex by myosin-5 to microtubule-dependent motors, we establish that the minus end–directed transport of SVs requires the dynein/dynactin supercomplex. This minus end–directed transport is largely unaffected by genetic ablation of the Hook complex adapting early endosomes (EEs) to dynein but absolutely requires p25 in dynactin. Thus dynein recruitment to two different membranous cargoes, namely EEs and SVs, requires p25, highlighting the importance of the dynactin pointed-end complex to scaffold cargoes. Finally, by studying the behavior of SVs and EEs in null and rigor mutants of kinesin-3 and kinesin-1 (UncA and KinA, respectively), we demonstrate that KinA is the major kinesin mediating the anterograde transport of SVs. Therefore SVs arrive at the apex of A. nidulans by anterograde transport involving cooperation of kinesin-1 with myosin-5 and can move away from the apex powered by dynein. PMID:28209731
Kang, Dong-Wan; Jeong, Han-Gil; Kim, Do Yeon; Yang, Wookjin; Lee, Seung-Hoon
2017-06-01
The susceptibility vessel sign (SVS) is a hypointense signal visualized because of the susceptibility effect of thrombi, sensitively detected on susceptibility-weighted magnetic resonance imaging. The relationship of SVS parameters with the stroke subtype and recanalization status after endovascular treatment remains uncertain. The data from 89 patients with acute stroke caused by anterior circulation infarcts who underwent susceptibility-weighted magnetic resonance imaging before endovascular treatment were examined. Independent reviewers, blinded to the stroke subtype and recanalization status, measured the SVS diameter, length, and estimated volume. The intra- and interrater agreements of the SVS parameters were assessed. The SVS was identified in 78% of the patients. SVS was more commonly associated with cardioembolism than with noncardioembolism ( P =0.01). The SVS diameter ( P <0.01) and length ( P =0.01) were larger in the cardioembolism group. The SVS diameter was larger in the recanalization group (thrombolysis in cerebral infarction ≥2b) than in the nonrecanalization group ( P =0.04). Multivariable analysis revealed that the SVS diameter was an independent predictor of cardioembolism (adjusted odds ratio, 1.97; 95% confidence interval, 1.34-2.90; P <0.01). There was no significant association between the SVS volume and the recanalization status (adjusted odds ratio, 1.003; 95% confidence interval, 0.999-1.006; P =0.12). The optimal cutoff value of the SVS diameter for the cardioembolism was 5.5 mm (sensitivity, 45.6%; specificity, 93.8%). Increased SVS diameter on susceptibility-weighted magnetic resonance imaging may predict cardioembolism. No clear association was found between SVS volume and endovascular recanalization. © 2017 The Authors.
Information hiding techniques for infrared images: exploring the state-of-the art and challenges
NASA Astrophysics Data System (ADS)
Pomponiu, Victor; Cavagnino, Davide; Botta, Marco; Nejati, Hossein
2015-10-01
The proliferation of Infrared technology and imaging systems enables a different perspective to tackle many computer vision problems in defense and security applications. Infrared images are widely used by the law enforcement, Homeland Security and military organizations to achieve a significant advantage or situational awareness, and thus is vital to protect these data against malicious attacks. Concurrently, sophisticated malware are developed which are able to disrupt the security and integrity of these digital media. For instance, illegal distribution and manipulation are possible malicious attacks to the digital objects. In this paper we explore the use of a new layer of defense for the integrity of the infrared images through the aid of information hiding techniques such as watermarking. In this context, we analyze the efficiency of several optimal decoding schemes for the watermark inserted into the Singular Value Decomposition (SVD) domain of the IR images using an additive spread spectrum (SS) embedding framework. In order to use the singular values (SVs) of the IR images with the SS embedding we adopt several restrictions that ensure that the values of the SVs will maintain their statistics. For both the optimal maximum likelihood decoder and sub-optimal decoders we assume that the PDF of SVs can be modeled by the Weibull distribution. Furthermore, we investigate the challenges involved in protecting and assuring the integrity of IR images such as data complexity and the error probability behavior, i.e., the probability of detection and the probability of false detection, for the applied optimal decoders. By taking into account the efficiency and the necessary auxiliary information for decoding the watermark, we discuss the suitable decoder for various operating situations. Experimental results are carried out on a large dataset of IR images to show the imperceptibility and efficiency of the proposed scheme against various attack scenarios.
Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture
NASA Technical Reports Server (NTRS)
Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.
2003-01-01
This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.
Sauer, Lauren M; Catlett, Christina; Tosatto, Robert; Kirsch, Thomas D
2014-02-01
The use of spontaneous volunteers (SV) is common after a disaster, but their limited training and experience can create a danger for the SVs and nongovernmental voluntary organizations (NVOs). We assessed the experience of NVOs with SVs during disasters, how they were integrated into the agency's infrastructure, their perceived value to previous responses, and liability issues associated with their use. Of the 51 National Voluntary Organizations Active in Disasters organizations that were contacted for surveys, 24 (47%) agreed to participate. Of the 24 participating organizations, 19 (72%) had encountered SVs during a response, most (79%) used them regularly, and 68% believed that SVs were usually useful. SVs were always credentialed by 2 organizations, and sometimes by 6 (31%). One organization always performed background checks; 53% provided just-in-time training for SVs; 26% conducted evaluations of SV performance; and 21% provided health or workers compensation benefits. Two organizations reported an SV death; 42% reported injuries; 32% accepted legal liability for the actions of SVs; and 16% were sued because of actions by SVs. The use of SVs is widespread, but NVOs are not necessarily structured to incorporate them effectively. More structured efforts to integrate SVs are critical to safe and effective disaster response.
Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying.
Craye, Goedele; Löbmann, Korbinian; Grohganz, Holger; Rades, Thomas; Laitinen, Riikka
2015-12-03
In this study, spray drying from aqueous solutions, using the surface-active agent sodium lauryl sulfate (SLS) as a solubilizer, was explored as a production method for co-amorphous simvastatin-lysine (SVS-LYS) at 1:1 molar mixtures, which previously have been observed to form a co-amorphous mixture upon ball milling. In addition, a spray-dried formulation of SVS without LYS was prepared. Energy-dispersive X-ray spectroscopy (EDS) revealed that SLS coated the SVS and SVS-LYS particles upon spray drying. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) showed that in the spray-dried formulations the remaining crystallinity originated from SLS only. The best dissolution properties and a "spring and parachute" effect were found for SVS spray-dried from a 5% SLS solution without LYS. Despite the presence of at least partially crystalline SLS in the mixtures, all the studied formulations were able to significantly extend the stability of amorphous SVS compared to previous co-amorphous formulations of SVS. The best stability (at least 12 months in dry conditions) was observed when SLS was spray-dried with SVS (and LYS). In conclusion, spray drying of SVS and LYS from aqueous surfactant solutions was able to produce formulations with improved physical stability for amorphous SVS.
A new approach on JPSS VIIRS BCS and SVS PRT calibration
NASA Astrophysics Data System (ADS)
Wang, Tung R.; Marschke, Steve; Borroto, Michael; Jones, Christopher M.; Chovit, Christopher
2015-05-01
A set of calibrated platinum resistance thermometers (PRT's) was used to monitor the temperature of a Blackbody Calibration Source (BCS) and Space View Source (SVS). BCS is Ground Support Equipment (GSE) used to validate the emissive band calibration of Visible Infrared Imaging Radiometer Suite (VIIRS) of the Joint Polar Satellite System (JPSS). Another GSE, the SVS was used as an optical simulator to provide zero radiance sources for all VIIRS bands. The required PRT temperature 1 uncertainty is less than 0.030K. A process was developed to calibrate the PRTs in its thermal block by selecting a single thermal bath fluid that is compatible with spaceflight, is easy to clean and supported the entire temperature range. The process involves thermal cycling the PRTs that are installed in an aluminum housing using RTV566A prior to calibration. The PRTs were calibrated thermal cycled again and then calibrated once more to verify repeatability. Once completed these PRTs were installed on both the BCS and SVS. The PRT calibration uncertainty was estimated and deemed sufficient to support the effective temperature requirements for the operating temperature range of the BCS and SVS.
Development of Sample Verification System for Sample Return Missions
NASA Technical Reports Server (NTRS)
Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Trebi-Ollennu, Ashitey; Manohara, Harish
2011-01-01
This paper describes the development of a proof of-concept sample verification system (SVS) for in-situ mass measurement of planetary rock and soil sample in future robotic sample return missions. Our proof-of-concept SVS device contains a 10 cm diameter pressure sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in proximity to an opposing substrate with a narrow gap. The deformation of the membrane makes the gap to be narrower, resulting in increased capacitance between the two nearly parallel plates. Capacitance readout circuitry on a nearby printed circuit board (PCB) transmits data via a low-voltage differential signaling (LVDS) interface. The fabricated SVS proof-of-concept device has successfully demonstrated approximately 1pF/gram capacitance change
Single visit surgery for pediatric ambulatory surgical procedures: a satisfaction and cost analysis.
Olson, Jacob K; Deming, Lisa A; King, Denis R; Rager, Terrence M; Gartner, Sarah; Huibregtse, Natalie; Moss, R Lawrence; Besner, Gail E
2017-10-10
Single visit surgery (SVS) consists of same-day pre-operative assessment and operation with telephone post-operative follow-up. This reduces family time commitment to 1 hospital trip rather than 2-3. We began SVS for ambulatory patients with clear surgical indications in 2013. We sought to determine family satisfaction, cost savings to families, and institutional financial feasibility of SVS. SVS patients were compared to age/case matched conventional surgery (CS) patients. Satisfaction was assessed by post-operative telephone survey. Family costs were calculated as the sum of lost revenue (based on median income) and transportation costs ($0.50/mile). Satisfaction was high in both groups (98% for SVS vs. 93% for CS; p=0.27). 40% of CS families indicated that they would have preferred SVS, whereas no SVS families indicated preference for the CS option (p<0.001). Distance from the hospital did not correlate with satisfaction. Estimated cost savings for an SVS family was $188. Reimbursement, hospital and physician charges, and day-of-surgery cancellation rates were similar. SVS provides substantial cost savings to families while maintaining patient satisfaction and equivalent institutional reimbursement. SVS is an effective approach to low-risk ambulatory surgical procedures that is less disruptive to families, facilitates access to pediatric surgical care, and reduces resource utilization. Cost Effectiveness Study. Level II. Copyright © 2017 Elsevier Inc. All rights reserved.
The neuroimaging of sacred values.
Vilarroya, Oscar; Hilferty, Joseph
2013-09-01
Sacred (or protected) values (SVs) constitute core beliefs that define primary reference groups. There is significant research on SVs at a behavioral level, but their neural underpinnings are just beginning to be discovered. In this paper, we highlight the current state of neuroimaging research concerning SVs. Given that SVs are considered to be strongly motivated by moral principles, we first provide an outline of the neural circuits that have been found to be involved in moral cognition. We then review various neuroimaging studies that have explored the notion of SVs. Specifically, we concentrate on neuroimaging studies dealing with intergroup bias and those that focus on social norms, since these are two basic dimensions of SVs that have been studied with neuroimaging techniques. Finally, we review two studies that have directly addressed SVs with neuroimaging techniques, and we offer suggestions for further avenues of study. © 2013 New York Academy of Sciences.
Egashira, Yoshihiro; Takase, Miki; Watanabe, Shoji; Ishida, Junji; Fukamizu, Akiyoshi; Kaneko, Ryosuke; Yanagawa, Yuchio; Takamori, Shigeo
2016-09-20
GABA acts as the major inhibitory neurotransmitter in the mammalian brain, shaping neuronal and circuit activity. For sustained synaptic transmission, synaptic vesicles (SVs) are required to be recycled and refilled with neurotransmitters using an H(+) electrochemical gradient. However, neither the mechanism underlying vesicular GABA uptake nor the kinetics of GABA loading in living neurons have been fully elucidated. To characterize the process of GABA uptake into SVs in functional synapses, we monitored luminal pH of GABAergic SVs separately from that of excitatory glutamatergic SVs in cultured hippocampal neurons. By using a pH sensor optimal for the SV lumen, we found that GABAergic SVs exhibited an unexpectedly higher resting pH (∼6.4) than glutamatergic SVs (pH ∼5.8). Moreover, unlike glutamatergic SVs, GABAergic SVs displayed unique pH dynamics after endocytosis that involved initial overacidification and subsequent alkalization that restored their resting pH. GABAergic SVs that lacked the vesicular GABA transporter (VGAT) did not show the pH overshoot and acidified further to ∼6.0. Comparison of luminal pH dynamics in the presence or absence of VGAT showed that VGAT operates as a GABA/H(+) exchanger, which is continuously required to offset GABA leakage. Furthermore, the kinetics of GABA transport was slower (τ > 20 s at physiological temperature) than that of glutamate uptake and may exceed the time required for reuse of exocytosed SVs, allowing reuse of incompletely filled vesicles in the presence of high demand for inhibitory transmission.
Lee, Suho; Jung, Kyung Jin; Jung, Hyun Suk; Chang, Sunghoe
2012-01-01
Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity. PMID:22666444
High-speed civil transport - Advanced flight deck challenges
NASA Technical Reports Server (NTRS)
Swink, Jay R.; Goins, Richard T.
1992-01-01
This paper presents the results of a nine month study of the HSCT flight deck challenges and assessment of its benefits. Operational requirements are discussed and the most significant findings for specified advanced concepts are highlighted. These concepts are a no nose-droop configuration, a far forward cockpit location and advanced crew monitoring and control of complex systems. Results indicate that the no nose-droop configuration is critically dependent on the design and development of a safe, reliable and certifiable synthetic vision system (SVS). This configuration would cause significant weight, performance and cost penalties. A far forward cockpit configuration with a tandem seating arrangement allows either an increase in additional payload or potential downsizing of the vehicle leading to increased performance efficiency and reductions in emissions. The technologies enabling such capabilities, which provide for Category III all-weather opreations on every flight represent a benefit multiplier in a 20005 ATM network in terms of enhanced economic viability and environmental acceptability.
Parents perspectives on whole genome sequencing for their children: qualified enthusiasm?
Anderson, J A; Meyn, M S; Shuman, C; Zlotnik Shaul, R; Mantella, L E; Szego, M J; Bowdin, S; Monfared, N; Hayeems, R Z
2017-08-01
To better understand the consequences of returning whole genome sequencing (WGS) results in paediatrics and facilitate its evidence-based clinical implementation, we studied parents' experiences with WGS and their preferences for the return of adult-onset secondary variants (SVs)-medically actionable genomic variants unrelated to their child's current medical condition that predict adult-onset disease. We conducted qualitative interviews with parents whose children were undergoing WGS as part of the SickKids Genome Clinic, a research project that studies the impact of clinical WGS on patients, families, and the healthcare system. Interviews probed parents' experience with and motivation for WGS as well as their preferences related to SVs. Interviews were analysed thematically. Of 83 invited, 23 parents from 18 families participated. These parents supported WGS as a diagnostic test, perceiving clear intrinsic and instrumental value. However, many parents were ambivalent about receiving SVs, conveying a sense of self-imposed obligation to take on the 'weight' of knowing their child's SVs, however unpleasant. Some parents chose to learn about adult-onset SVs for their child but not for themselves. Despite general enthusiasm for WGS as a diagnostic test, many parents felt a duty to learn adult-onset SVs. Analogous to 'inflicted insight', we call this phenomenon 'inflicted ought'. Importantly, not all parents of children undergoing WGS view the best interests of their child in relational terms, thereby challenging an underlying justification for current ACMG guidelines for reporting incidental secondary findings from whole exome and WGS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Insights into structural variations and genome rearrangements in prokaryotic genomes.
Periwal, Vinita; Scaria, Vinod
2015-01-01
Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Synthetic Vision for Lunar and Planetary Landing Vehicles
NASA Technical Reports Server (NTRS)
Williams, Steven P.; Arthur, Jarvis (Trey) J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III; Norman, R. Michael
2008-01-01
The Crew Vehicle Interface (CVI) group of the Integrated Intelligent Flight Deck Technologies (IIFDT) has done extensive research in the area of Synthetic Vision (SV), and has shown that SV technology can substantially enhance flight crew situation awareness, reduce pilot workload, promote flight path control precision and improve aviation safety. SV technology is being extended to evaluate its utility for lunar and planetary exploration vehicles. SV may hold significant potential for many lunar and planetary missions since the SV presentation provides a computer-generated view of the terrain and other significant environment characteristics independent of the outside visibility conditions, window locations, or vehicle attributes. SV allows unconstrained control of the computer-generated scene lighting, terrain coloring, and virtual camera angles which may provide invaluable visual cues to pilots/astronauts and in addition, important vehicle state information may be conformally displayed on the view such as forward and down velocities, altitude, and fuel remaining to enhance trajectory control and vehicle system status. This paper discusses preliminary SV concepts for tactical and strategic displays for a lunar landing vehicle. The technical challenges and potential solutions to SV applications for the lunar landing mission are explored, including the requirements for high resolution terrain lunar maps and an accurate position and orientation of the vehicle that is essential in providing lunar Synthetic Vision System (SVS) cockpit displays. The paper also discusses the technical challenge of creating an accurate synthetic terrain portrayal using an ellipsoid lunar digital elevation model which eliminates projection errors and can be efficiently rendered in real-time.
Zhan, Luke X; Branco, Bernardino C; Armstrong, David G; Mills, Joseph L
2015-04-01
The purpose of this study was to evaluate whether the new Society for Vascular Surgery (SVS) Wound, Ischemia, and foot Infection (WIfI) classification system correlates with important clinical outcomes for limb salvage and wound healing. A total of 201 consecutive patients with threatened limbs treated from 2010 to 2011 in an academic medical center were analyzed. These patients were stratified into clinical stages 1 to 4 on the basis of the SVS WIfI classification. The SVS objective performance goals of major amputation, 1-year amputation-free survival (AFS) rate, and wound healing time (WHT) according to WIfI clinical stages were compared. The mean age was 58 years (79% male, 93% with diabetes). Forty-two patients required major amputation (21%); 159 (78%) had limb salvage. The amputation group had a significantly higher prevalence of advanced stage 4 patients (P < .001), whereas the limb salvage group presented predominantly as stages 1 to 3. Patients in clinical stages 3 and 4 had a significantly higher incidence of amputation (P < .001), decreased AFS (P < .001), and delayed WHT (P < .002) compared with those in stages 1 and 2. Among patients presenting with stage 3, primarily as a result of wound and ischemia grades, revascularization resulted in accelerated WHT (P = .008). These data support the underlying concept of the SVS WIfI, that an appropriate classification system correlates with important clinical outcomes for limb salvage and wound healing. As the clinical stage progresses, the risk of major amputation increases, 1-year AFS declines, and WHT is prolonged. We further demonstrated benefit of revascularization to improve WHT in selected patients, especially those in stage 3. Future efforts are warranted to incorporate the SVS WIfI classification into clinical decision-making algorithms in conjunction with a comorbidity index and anatomic classification. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Age-related variations of varicose veins anatomy.
Caggiati, Alberto; Rosi, Caterina; Heyn, Rosemarie; Franceschini, Marco; Acconcia, Maria Cristina
2006-12-01
Primary varicose veins are commonly considered a progressive disease starting from the saphenous junctions and extending to tributaries in a retrograde fashion along the saphenous trunks. This theory has been criticized by studies indicating different patterns of development and progression of varicose veins. To contribute to the understanding of the pathogenesis of the disease, the anatomy of the venous bed was comparatively evaluated by duplex sonography in patients with varicose veins with a marked difference in age. The study included 100 varicose limbs in 82 patients aged < 30 years and 238 limbs in 183 patients aged > 60 years. Veins were designated as saphenous veins (SVs), tributaries of the SVs (STVs), and veins not connected with the SVs (NSVs). Four main anatomic patterns were comparatively evaluated: (1) varicose changes only along SVs, (2) varicose changes along SVs and STVs, (3) varicose changes only in STVs, and (4) varicose changes only in NSVs. SVs were normal in 44% of varicose limbs. In most limbs from young subjects, varicose changes afflicted only SVTs (25%) and NSVs (36%). Varicose SVs were more frequent in the older group (62%) than in younger one (39%) owing to a higher prevalence of limbs with combined SV and STV varicosities (respectively, 59% and 37%). In the older group, varicosities in the STVs were more frequently observed in association with incompetence of the SV trunks. The frequent occurrence of normal SVs in varicose limbs of all patients does not support the crucial role commonly credited to SVs in the pathogenesis of primary varicosities. Moreover, the SV trunks were normal in most varicose limbs from young patients. These findings suggest that varicose disease may progressively extend in an antegrade fashion, spreading from the STVs to the SVs. This hypothesis suggests that the saphenous trunks could be spared in the treatment of a relevant number of varicose legs. Prospective longitudinal studies with serial duplex evaluations of large series of extremities are necessary to confirm this hypothesis.
Satoh, Akira; Sugiyama, Tatsuya; Ooigawa, Hidetoshi; Nakajima, Hiroyuki; Ogura, Takeshi; Neki, Hiroaki; Morikawa, Eiharu
2010-01-01
Symptomatic vasospasm (SVS) is still a major cause of poor outcome in cases undergoing early surgical intervention for ruptured intracranial aneurysm. Among the numbers of therapeutic trials to prevent and ameliorate neurological deterioration due to SVS, removal or quenching of oxy-hemoglobin (OxyHb) from subarachnoid colts and administration of Mg(2+) (Mg) have especially been expected to be effective. In this report the authors investigated the effect of continuous cisternal irrigation (CCI) with mock CSF containing ascorbic acid (ASA) and Mg, performed after early surgery for ruptured aneurysm. Sixty-three cases which had received CCI were retrospectively compared with 40 control cases as to the incidence of SVS and outcome. Incidence of SVS was significantly less frequent (P < 0.05) in the CCI group (11%) than in the control group (25%). Severe and definitive SVS requiring additional specific treatment occurred only in 3.2% of the CCI group, while 22.5% in the control (P < 0.01). Overall outcome at discharge was significantly better in the CCI group than in the control (P < 0.01). Postoperative CCI with ASA and Mg was definitively effective in preventing SVS and in lessening severity of SVS if it occurs.
Mapping copy number variation by population-scale genome sequencing.
Mills, Ryan E; Walter, Klaudia; Stewart, Chip; Handsaker, Robert E; Chen, Ken; Alkan, Can; Abyzov, Alexej; Yoon, Seungtai Chris; Ye, Kai; Cheetham, R Keira; Chinwalla, Asif; Conrad, Donald F; Fu, Yutao; Grubert, Fabian; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Iakoucheva, Lilia M; Iqbal, Zamin; Kang, Shuli; Kidd, Jeffrey M; Konkel, Miriam K; Korn, Joshua; Khurana, Ekta; Kural, Deniz; Lam, Hugo Y K; Leng, Jing; Li, Ruiqiang; Li, Yingrui; Lin, Chang-Yun; Luo, Ruibang; Mu, Xinmeng Jasmine; Nemesh, James; Peckham, Heather E; Rausch, Tobias; Scally, Aylwyn; Shi, Xinghua; Stromberg, Michael P; Stütz, Adrian M; Urban, Alexander Eckehart; Walker, Jerilyn A; Wu, Jiantao; Zhang, Yujun; Zhang, Zhengdong D; Batzer, Mark A; Ding, Li; Marth, Gabor T; McVean, Gil; Sebat, Jonathan; Snyder, Michael; Wang, Jun; Ye, Kenny; Eichler, Evan E; Gerstein, Mark B; Hurles, Matthew E; Lee, Charles; McCarroll, Steven A; Korbel, Jan O
2011-02-03
Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.
General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision
NASA Technical Reports Server (NTRS)
Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.
2014-01-01
A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.
Measuring Values in Environmental Research: A Test of an Environmental Portrait Value Questionnaire
Bouman, Thijs; Steg, Linda; Kiers, Henk A. L.
2018-01-01
Four human values are considered to underlie individuals’ environmental beliefs and behaviors: biospheric (i.e., concern for environment), altruistic (i.e., concern for others), egoistic (i.e., concern for personal resources) and hedonic values (i.e., concern for pleasure and comfort). These values are typically measured with an adapted and shortened version of the Schwartz Value Survey (SVS), to which we refer as the Environmental-SVS (E-SVS). Despite being well-validated, recent research has indicated some concerns about the SVS methodology (e.g., comprehensibility, self-presentation biases) and suggested an alternative method of measuring human values: The Portrait Value Questionnaire (PVQ). However, the PVQ has not yet been adapted and applied to measure values most relevant to understand environmental beliefs and behaviors. Therefore, we tested the Environmental-PVQ (E-PVQ) – a PVQ variant of E-SVS –and compared it with the E-SVS in two studies. Our findings provide strong support for the validity and reliability of both the E-SVS and E-PVQ. In addition, we find that respondents slightly preferred the E-PVQ over the E-SVS (Study 1). In general, both scales correlate similarly to environmental self-identity (Study 1), energy behaviors (Studies 1 and 2), pro-environmental personal norms, climate change beliefs and policy support (Study 2). Accordingly, both methodologies show highly similar results and seem well-suited for measuring human values underlying environmental behaviors and beliefs. PMID:29743874
Goodney, Philip P; Schanzer, Andres; Demartino, Randall R; Nolan, Brian W; Hevelone, Nathanael D; Conte, Michael S; Powell, Richard J; Cronenwett, Jack L
2011-07-01
To develop standardized metrics for expected outcomes in lower extremity revascularization for critical limb ischemia (CLI), the Society for Vascular Surgery (SVS) has developed objective performance goals (OPGs) based on aggregate data from randomized trials of lower extremity bypass (LEB). It remains unknown, however, if these targets can be achieved in everyday vascular surgery practice. We applied SVS OPG criteria to 1039 patients undergoing 1039 LEB operations for CLI with autogenous vein (excluding patients on dialysis) within the Vascular Study Group of New England (VSGNE). Each of the individual OPGs was calculated within the VSGNE dataset, along with its surrounding 95% confidence intervals (CIs) and compared to published SVS OPGs using χ(2) comparisons and survival analysis. Across most risk strata, patients in the VSGNE and SVS OPG cohorts were similar (clinical high-risk [age >80 years and tissue loss]: 15.3% VSGNE; 16.2% SVS OPG; P = .58; anatomic high risk [infrapopliteal target artery]: 57.8% VSGNE; 60.2% SVS OPG; P = .32). However, the proportion of VSGNE patients designated as conduit high-risk (lack of single-segment great saphenous vein) was lower (10.2% VSGNE; 26.9% SVS OPG;P < .001). The primary safety endpoint, major adverse limb events (MALE) at 30 days, was lower in the VSGNE cohort (3.2%; 95% CI, 2.3-4.6) than the SVS OPG cohort (6.2%; 95% CI, 4.2-8.1; P = .05). The primary efficacy OPG endpoint, freedom from any MALE or postoperative death within the first year (MALE + postoperative death [POD]), was similar between VSGNE and SVS OPG cohorts (77%; 95% CI, 74%-80%) SVS OPG, 74% (95% CI, 71%-77%) VSGNE, P = .58). In the remaining safety and efficacy OPGs, the VSGNE cohort met or exceeded the benchmarks established by the SVS OPG cohort. Community and academic centers in everyday vascular surgery practice can meet OPGs derived from centers of excellence in LEB. Quality improvement initiatives, as well as clinical trials, should incorporate OPGs in their outcome measures to facilitate communication and comparison of risk-adjusted outcomes in the treatment of CLI. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Ran, Xueqin; Wang, Jiafu; Li, Sheng; Liu, Jianfeng
2018-01-01
Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and 51 candidate genes would be useful for the configuration phenotype in Xiang pig breed. PMID:29558483
Liu, Chang; Ran, Xueqin; Wang, Jiafu; Li, Sheng; Liu, Jianfeng
2018-01-01
Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and 51 candidate genes would be useful for the configuration phenotype in Xiang pig breed.
Overestimation of Susceptibility Vessel Sign: A Predictive Marker of Stroke Cause.
Zhang, Ruiting; Zhou, Ying; Liu, Chang; Zhang, Meixia; Yan, Shenqiang; Liebeskind, David S; Lou, Min
2017-07-01
The extent of blooming artifact may reflect the amount of paramagnetic material. We thus assessed the overestimation ratio of susceptibility vessel sign (SVS) on susceptibility-weighted imaging, defined as the extent of SVS width beyond the lumen and examined its value for predicting the stroke cause in acute ischemic stroke patients. We included consecutive acute ischemic stroke patients with proximal large artery occlusion who underwent both susceptibility-weighted imaging and time-of-flight magnetic resonance angiography within 8 hours poststroke onset. We calculated the length, width, and overestimation ratio of SVS on susceptibility-weighted imaging and then investigated their values for predicting the stroke cause, respectively. One-hundred eleven consecutive patients (72 female; mean age, 66.6±13.4 years) were enrolled, among whom 39 (35.1%) were diagnosed with cardiogenic embolism, 43 (38.7%) with large artery atherosclerosis, and 29 (26.1%) with undetermined cause. The presence, length, width, and overestimation ratio of SVS were all independently associated with the cause of cardiogenic embolism after adjusting for baseline National Institute of Health Stroke Scale and infarct volume. After excluded patients with undetermined cause, the sensitivity and specificity of overestimation ratio of SVS for cardiogenic embolism were 0.971 and 0.913; for the length of SVS, they were 0.629 and 0.739; for the width of SVS, they were 0.829 and 0.826, respectively. The overestimation ratio of SVS can predict cardiogenic embolism, with both high sensitivity and specificity, which can be helpful for the management of acute ischemic stroke patients in hyperacute stage. © 2017 American Heart Association, Inc.
Non-Pharmacological Countermeasure to Decrease Landing Sickness and Improve Functional Performance
NASA Technical Reports Server (NTRS)
Rosenberg, M. J. F.; Kreutzberg, G. A.; Galvan-Garza, R. C.; Mulavara, A. P.; Reschke, M. F.
2017-01-01
Upon return from long-duration spaceflight, 100% of crewmembers experience motion sickness (MS) symptoms. The interactions between crewmembers' adaptation to a gravitational transition, the performance decrements resulting from MS and/or use of promethazine (PMZ), and the constraints imposed by mission task demands could significantly challenge and limit an astronaut's ability to perform functional tasks during gravitational transitions. Stochastic resonance (SR) is "noise benefit": adding noise to a system might increase the information (examples to the left and above). Stochastic vestibular stimulation (SVS), or low levels of noise applied to the vestibular system, improves balance and locomotor performance (Goel et al. 2015, Mulavara et al. 2011, 2015). In hemi-lesioned rat models, Samoudi et al. 2012 found that SVS increased GABA release on the lesioned, but not the intact side. Activation of the GABA pathway is important in modulating MS and promoting adaptability (Cohen 2008) and was seen to reverse MS symptoms in rats after unilateral labyrinthectomy (Magnusson et al. 2000). Thus, SVS could be used to promote GABA pathways to reduce MS and promote adaptability, eliminate the need for PMZ or other performance-inhibiting drugs.
NASA Technical Reports Server (NTRS)
Rosenberg, M. J. F.; Kreutzberg, G. A.; Galvan-Garza, R. C.; Mulavara, A. P.; Reschke, M. F.
2017-01-01
Upon return from spaceflight, a majority of crewmembers experience motion sickness (MS) symptoms. The interactions between crewmembers' adaptation to a gravitational transition, the performance decrements resulting from MS and/or use of promethazine (PMZ), and the constraints imposed by mission task demands could significantly challenge and limit an astronaut's ability to perform functional tasks during gravitational transitions. No operational countermeasure currently exists to mitigate the risks associated with these sensorimotor disturbances. Stochastic resonance (SR) can be thought of simply as "noise benefit" or an increase in information transfer by a system when in the presence of a non-zero level of noise. We have shown that low levels of stochastic vestibular stimulation (SVS) improve balance and locomotor performance due to SR (Goel et al. 2015, Mulavara et al. 2011, 2015). Additionally, a study in a 6-hydroxydopamine (6-OHDA) hemi-lesioned rat model of Parkinson's disease demonstrated improvements in locomotor activity after low-level SVS delivery possibly due to an increase in nigral gamma-aminobutyric acid (GABA) release in a dopamine independent way (Samoudi et al. 2012). SVS specifically increased GABA release on the lesioned, but not the intact side. These results suggest that SVS can cause targeted alterations of GABA release to affect performance of functional tasks. Activation of the GABA pathway is important in modulating MS and promoting adaptability (Cohen 2008). Magnusson et al. (2000) supported this finding by showing that the administration of a GABAB agonist caused a reversal of the symptoms that is normally seen after unilateral labyrinthectomy. Thus, GABA could play a significant role in reducing MS and promoting adaptability. We have taken advantage of the SR mechanism as a modulator of neurotransmitters to develop a unique SVS countermeasure system to mitigate MS symptoms and improve functional performance after landing. Healthy subjects (n=20) participated in two test sessions, one in which they received +/-400 microA of SVS and one where they received no stimulation (0 microA); the study design was counterbalanced. Subjects began by performing a series of four functional tasks 3-5 times as baseline measurements of task performance. Then, to induce MS, subjects walked an obstacle course with up-down reversing prisms. If they completed the course before achieving our pre-determined level of MS, they were asked to read a poster while making large up-down head movements to a metronome while still wearing the reversing prism goggles. Subjects were stopped every two minutes and asked to report their MS symptoms. Using the Pensacola Scale for motion sickness, test operators evaluated the level of MS of each subject. Once a subject reached an 8 on this scale, which is equivalent to mild malaise, or 30 minutes had passed since the start of the MS induction, this protocol was stopped. Finally, immediately after MS induction, subjects were asked to complete the four functional tasks again. Although, 100% of our subjects experienced at least one MS symptom, only 55% of our subjects experienced stomach awareness to any degree. Without SVS, only 40% of subjects lasted the full 30-minute MS induction protocol, while 65% of subjects lasted the full 30 minutes with SVS, which is nearly a significant increase (p=0.056). In addition, subjects showed significant improvement from baseline when performing a tandem walk and a prone-to-stand test immediately after the MS induction protocol was stopped but the stimulation level was continued. The results are promising and future work includes comparing MS progression between PMZ and SVS directly in subjects that are provoked to a minimum of nausea. Low levels of SVS stimulation may serve as a non-pharmacological countermeasure to replace or reduce the PMZ dosage requirements and concurrently improve functional performance during transitions to new gravitational environments after spaceflight.
Chen, Jianguo; Jeppesen, Per Bendix; Nordentoft, Iver; Hermansen, Kjeld
2007-06-01
Chronic hyperglycemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and beta-cell turnover. The characteristic secretory defects are increased basal insulin secretion (BIS) and a selective loss of glucose-stimulated insulin secretion (GSIS). Several recent studies support the view that the acetyl-CoA carboxylase (ACC) plays a pivotal role for GSIS. We have shown that stevioside (SVS) enhances insulin secretion and ACC gene expression. Whether glucotoxicity influences ACC and whether this action can be counteracted by SVS are not known. To investigate this, we exposed isolated mouse islets as well as clonal INS-1E beta-cells for 48 h to 27 or 16.7 mM glucose, respectively. We found that 48-h exposure to high glucose impairs GSIS from mouse islets and INS-1E cells, an effect that is partly counteracted by SVS. The ACC dephosphorylation inhibitor okadaic acid (OKA, 10(-8) M), and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 10(-4) M), an activator of 5'-AMP protein kinase that phosphorylates ACC, eliminated the beneficial effect of SVS. 5-Tetrade-cyloxy-2-furancarboxylic acid (TOFA), the specific ACC inhibitor, blocked the effect of SVS as well. During glucotoxity, ACC gene expression, ACC protein, and phosphorylated ACC protein were increased in INS-1E beta-cells. SVS pretreatment further increased ACC gene expression with strikingly elevated ACC activity and increased glucose uptake accompanied by enhanced GSIS. Our studies show that glucose is a potent stimulator of ACC and that SVS to some extent counteracts glucotoxicity via increased ACC activity. SVS possesses the potential to alleviate negative effects of glucotoxicity in beta-cells via a unique mechanism of action.
Genome Editing of Structural Variations: Modeling and Gene Correction.
Park, Chul-Yong; Sung, Jin Jea; Kim, Dong-Wook
2016-07-01
The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xue, Wei; Jeong, Seungtaek; Ko, Jonghan; Tenhunen, John
2017-03-01
Nitrogen and water availability alter canopy structure and physiology, and thus crop growth, yielding large impacts on ecosystem-regulating/production provisions. However, to date, explicitly quantifying such impacts remains challenging partially due to lack of adequate methodology to capture spatial dimensions of ecosystem changes associated with nitrogen and water effects. A data fitting, where close-range remote-sensing measurements of vegetation indices derived from a handheld instrument and an unmanned aerial vehicle (UAV) system are linked to in situ leaf and canopy photosynthetic traits, was applied to capture and interpret inter- and intra-field variations in gross primary productivity (GPP) in lowland rice grown under flooded conditions (paddy rice, PD) subject to three nitrogen application rates and under rainfed conditions (RF) in an East Asian monsoon region of South Korea. Spatial variations (SVs) in both GPP and light use efficiency (LUEcabs) early in the growing season were enlarged by nitrogen addition. The nutritional effects narrowed over time. A shift in planting culture from flooded to rainfed conditions strengthened SVs in GPP and LUEcabs. Intervention of prolonged drought late in the growing season dramatically intensified SVs that were supposed to seasonally decrease. Nevertheless, nitrogen addition effects on SV of LUEcabs at the early growth stage made PD fields exert greater SVs than RF fields. SVs of GPP across PD and RF rice fields were likely related to leaf area index (LAI) development less than to LUEcabs, while numerical analysis suggested that considering strength in LUEcabs and its spatial variation for the same crop type tends to be vital for better evaluation in landscape/regional patterns of ecosystem photosynthetic productivity at critical phenology stages.
Sutt, Anna-Liisa; Cornwell, Petrea; Mullany, Daniel; Kinneally, Toni; Fraser, John F
2015-06-01
The aim of this study was to assess the effect of the introduction of in-line tracheostomy speaking valves (SVs) on duration of mechanical ventilation and time to verbal communication in patients requiring tracheostomy for prolonged mechanical ventilation in a predominantly cardiothoracic intensive care unit (ICU). We performed a retrospective preobservational-postobservational study using data from the ICU clinical information system and medical record. Extracted data included demographics, diagnoses and disease severity, mechanical ventilation requirements, and details on verbal communication and oral intake. Data were collected on 129 patients. Mean age was 59 ± 16 years, with 75% male. Demographics, case mix, and median time from intubation to tracheostomy (6 days preimplementation-postimplementation) were unchanged between timepoints. A significant decrease in time from tracheostomy to establishing verbal communication was observed (18 days preimplementation and 9 days postimplementation, P <.05). There was no difference in length of mechanical ventilation (20 days preimplementation-post) or time to decannulation (14 days preimplementation-postimplementation). No adverse events were documented in relation to the introduction of in-line SVs. In-line SVs were successfully implemented in mechanically ventilated tracheostomized patient population. This resulted in earlier verbal communication, no detrimental effect on ventilator weaning times, and no change in decannulation times. The purpose of the study was to compare tracheostomy outcomes in mechanically ventilated patients in a cardiothoracic ICU preintroduction and postintroduction of in-line SVs. It was hypothesized that in-line SVs would improve communication and swallowing specific outcomes with no increase in average time to decannulation or the number of adverse events. Copyright © 2015 Elsevier Inc. All rights reserved.
Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Salinari, Serenella; Colosimo, Alfredo; Bonelli, Stefano; Napoletano, Linda; Ferreira, Ana; Babiloni, Fabio
2015-01-01
In this study, we investigated the possibility to evaluate the impact of different avionic technologies on the mental workload of helicopter's pilots by measuring their brain activity with the EEG during a series of simulated missions carried out at AgustaWestland facilities in Yeovil (UK). The tested avionic technologies were: i) Head-Up Display (HUD); ii) Head-Mounted Display (HMD); iii) Full Conformal symbology (FC); iv) Flight Guidance (FG) symbology; v) Synthetic Vision System (SVS); and vi) Radar Obstacles (RO) detection system. It has been already demonstrated that in cognitive tasks, when the cerebral workload increases the EEG power spectral density (PSD) in theta band over frontal areas increases, and the EEG PSD in alpha band decreases over parietal areas. A mental workload index (MWL) has been here defined as the ratio between the frontal theta and parietal alpha EEG PSD values. Such index has been used for testing and comparing the different avionic technologies. Results suggested that the HUD provided a significant (p<;.05) workload reduction across all the flight scenarios with respect to the other technologies. In addition, the simultaneous use of FC and FG technologies (FC+FG) produced a significant decrement of the workload (p<;.01) with respect to the use of only the FC. Moreover, the use of the SVS technology provided on Head Down Display (HDD) with the simultaneous use of FC+FG and the RO seemed to produce a lower cerebral workload when compared with the use of only the FC. Interestingly, the workload estimation by means of subjective measures, provided by pilots through a NASA-TLX questionnaire, did not provide any significant differences among the different flight scenarios. These results suggested that the proposed MWL cognitive neurometrics could be used as a reliable measure of the user's mental workload, being a valid indicator for the comparison and the test of different avionic technologies.
Simulation Evaluation of Equivalent Vision Technologies for Aerospace Operations
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Williams, Steven P.; Wilz, Susan J.; Arthur, Jarvis J.
2009-01-01
A fixed-based simulation experiment was conducted in NASA Langley Research Center s Integration Flight Deck simulator to investigate enabling technologies for equivalent visual operations (EVO) in the emerging Next Generation Air Transportation System operating environment. EVO implies the capability to achieve or even improve on the safety of current-day Visual Flight Rules (VFR) operations, maintain the operational tempos of VFR, and perhaps even retain VFR procedures - all independent of the actual weather and visibility conditions. Twenty-four air transport-rated pilots evaluated the use of Synthetic/Enhanced Vision Systems (S/EVS) and eXternal Vision Systems (XVS) technologies as enabling technologies for future all-weather operations. The experimental objectives were to determine the feasibility of XVS/SVS/EVS to provide for all weather (visibility) landing capability without the need (or ability) for a visual approach segment and to determine the interaction of XVS/EVS and peripheral vision cues for terminal area and surface operations. Another key element of the testing investigated the pilot's awareness and reaction to non-normal events (i.e., failure conditions) that were unexpectedly introduced into the experiment. These non-normal runs served as critical determinants in the underlying safety of all-weather operations. Experimental data from this test are cast into performance-based approach and landing standards which might establish a basis for future all-weather landing operations. Glideslope tracking performance appears to have improved with the elimination of the approach visual segment. This improvement can most likely be attributed to the fact that the pilots didn't have to simultaneously perform glideslope corrections and find required visual landing references in order to continue a landing. Lateral tracking performance was excellent regardless of the display concept being evaluated or whether or not there were peripheral cues in the side window. Although workload ratings were significantly less when peripheral cues were present compared to when there were none, these differences appear to be operationally inconsequential. Larger display concepts tested in this experiment showed significant situation awareness (SA) improvements and workload reductions compared to smaller display concepts. With a fixed display size, a color display was more influential in SA and workload ratings than a collimated display.
Human factors flight trial analysis for 3D SVS: part II
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Howland, Duncan; Maris, John; Pschierer, Christian; Wipplinger, Patrick; Meuter, Michael
2005-05-01
This paper describes flight trials performed in Centennial, CO using a Piper Cheyenne owned and operated by Marinvent. The goal of the flight trial was to evaluate the objective performance of pilots using conventional paper charts or a 3D SVS display. Six pilots flew thirty-six approaches to the Colorado Springs airport to accomplish this goal. As dependent variables, positional accuracy and situational awareness probe (SAP) statistics were measured while analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, NASA TLX, situation awareness rating technique (SART), Display Readability Rating, Display Flyability Rating and debriefing questionnaires. Three different settings (paper chart, electronic navigation chart, 3D SVS display) were evaluated in a totally randomized manner. This paper describes the comparison between the conventional paper chart and the 3D SVS display. The 3D SVS primary flight display provides a depiction of primary flight data as well as a 3D depiction of airports, terrain and obstacles. In addition, a 3D dynamic channel visualizing the selected approach procedure can be displayed. The result shows that pilots flying the 3D SVS display perform no worse than pilots with the conventional paper chart. Flight technical error and workload are lower, situational awareness is equivalent with conventional paper charts.
SvABA: genome-wide detection of structural variants and indels by local assembly.
Wala, Jeremiah A; Bandopadhayay, Pratiti; Greenwald, Noah F; O'Rourke, Ryan; Sharpe, Ted; Stewart, Chip; Schumacher, Steve; Li, Yilong; Weischenfeldt, Joachim; Yao, Xiaotong; Nusbaum, Chad; Campbell, Peter; Getz, Gad; Meyerson, Matthew; Zhang, Cheng-Zhong; Imielinski, Marcin; Beroukhim, Rameen
2018-04-01
Structural variants (SVs), including small insertion and deletion variants (indels), are challenging to detect through standard alignment-based variant calling methods. Sequence assembly offers a powerful approach to identifying SVs, but is difficult to apply at scale genome-wide for SV detection due to its computational complexity and the difficulty of extracting SVs from assembly contigs. We describe SvABA, an efficient and accurate method for detecting SVs from short-read sequencing data using genome-wide local assembly with low memory and computing requirements. We evaluated SvABA's performance on the NA12878 human genome and in simulated and real cancer genomes. SvABA demonstrates superior sensitivity and specificity across a large spectrum of SVs and substantially improves detection performance for variants in the 20-300 bp range, compared with existing methods. SvABA also identifies complex somatic rearrangements with chains of short (<1000 bp) templated-sequence insertions copied from distant genomic regions. We applied SvABA to 344 cancer genomes from 11 cancer types and found that short templated-sequence insertions occur in ∼4% of all somatic rearrangements. Finally, we demonstrate that SvABA can identify sites of viral integration and cancer driver alterations containing medium-sized (50-300 bp) SVs. © 2018 Wala et al.; Published by Cold Spring Harbor Laboratory Press.
Budget Online Learning Algorithm for Least Squares SVM.
Jian, Ling; Shen, Shuqian; Li, Jundong; Liang, Xijun; Li, Lei
2017-09-01
Batch-mode least squares support vector machine (LSSVM) is often associated with unbounded number of support vectors (SVs'), making it unsuitable for applications involving large-scale streaming data. Limited-scale LSSVM, which allows efficient updating, seems to be a good solution to tackle this issue. In this paper, to train the limited-scale LSSVM dynamically, we present a budget online LSSVM (BOLSSVM) algorithm. Methodologically, by setting a fixed budget for SVs', we are able to update the LSSVM model according to the updated SVs' set dynamically without retraining from scratch. In particular, when a new small chunk of SVs' substitute for the old ones, the proposed algorithm employs a low rank correction technology and the Sherman-Morrison-Woodbury formula to compute the inverse of saddle point matrix derived from the LSSVM's Karush-Kuhn-Tucker (KKT) system, which, in turn, updates the LSSVM model efficiently. In this way, the proposed BOLSSVM algorithm is especially useful for online prediction tasks. Another merit of the proposed BOLSSVM is that it can be used for k -fold cross validation. Specifically, compared with batch-mode learning methods, the computational complexity of the proposed BOLSSVM method is significantly reduced from O(n 4 ) to O(n 3 ) for leave-one-out cross validation with n training samples. The experimental results of classification and regression on benchmark data sets and real-world applications show the validity and effectiveness of the proposed BOLSSVM algorithm.
Kuwahara, Takashi; Kaneda, Shinya; Shimono, Kazuyuki
2016-01-01
We have previously demonstrated that Candida albicans requires multivitamins (MVs) or lipid to increase rapidly in parenteral nutrition (PN) solutions. In this study, in detail, the effects of vitamins on the growth of C. albicans in PN solutions without lipid were investigated. In the 1st experiment, a commercial PN solution without lipid was supplemented with water-soluble vitamins (SVs: vitamins B1, B2, B6, B12 and C, folic acid, nicotinamide, biotin and panthenol), water-insoluble vitamins (IVs: vitamins A, D, E and K) or both (MVs). In the 2nd experiment, the test solutions were prepared by supplementing the PN solution with one of each or all of the SVs. In the 3rd experiment, another commercial peripheral PN (PPN) solution without lipid was supplemented with SVs, nicotinic acid, biotin or both nicotinic acid and biotin. In each of the experiments, a specified number of C. albicans organisms was added to each test solution, and all of the test solutions were allowed to stand at room temperature (23-26ºC). The number of C. albicans was counted at 0, 24, 48 and 72 hours after the addition of the organism. In the 1st experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs, but increased slowly without the SVs, regardless of the addition of the IVs. In the 2nd experiment, the C. albicans increased rapidly in the PN solution supplemented with the SVs or biotin, but increased slowly with each of the other water-soluble vitamins. In the 3rd experiment, the C. albicans increased rapidly in the PPN solution supplemented with the SVs or biotin, but increased slowly with the addition of nicotinic acid. These results suggested that adding MVs or SVs to PN solutions without lipid promotes the growth of C. albicans, and that this effect is mostly attributable to biotin.
Kahms, Martin; Klingauf, Jürgen
2018-01-01
Styryl dyes and genetically encoded pH-sensitive fluorescent proteins like pHluorin are well-established tools for the optical analysis of synaptic vesicle (SV) recycling at presynaptic boutons. Here, we describe the development of a new class of fluorescent probes based on pH-sensitive organic dyes covalently bound to lipids, providing a promising complementary assay to genetically encoded fluorescent probes. These new optical tracers allow a pure read out of membrane turnover during synaptic activity and visualization of multiple rounds of stimulation-dependent SV recycling without genetic perturbation. Measuring the incorporation efficacy of different dye-labeled lipids into budding SVs, we did not observe an enrichment of lipids with affinity for liquid ordered membrane domains. But most importantly, we found no evidence for a static segregation of SVs into recycling and resting pools. A small but significant fraction of SVs that is reluctant to release during a first round of evoked activity can be exocytosed during a second bout of stimulation, showing fast intermixing of SV pools within seconds. Furthermore, we found that SVs recycling spontaneously have a higher chance to re-occupy release sites than SVs recycling during high-frequency evoked activity. In summary, our data provide strong evidence for a highly dynamic and use-dependent control of the fractions of releasable or resting SVs. PMID:29456492
How neurosecretory vesicles release their cargo.
Scalettar, Bethe A
2006-04-01
Neurons and related cell types often contain two major classes of neurosecretory vesicles, synaptic vesicles (SVs) and dense-core granules (DCGs), which store and release distinct cargo. SVs store and release classic neurotransmitters, which facilitate propagation of action potentials across the synaptic cleft, whereas DCGs transport, store, and release hormones, proteins, and neuropeptides, which facilitate neuronal survival, synaptic transmission, and learning. Over the past few years, there has been a major surge in our understanding of many of the key molecular mechanisms underlying cargo release from SVs and DCGs. This surge has been driven largely by the use of fluorescence microscopy (especially total internal reflection fluorescence microscopy) to visualize SVs or DCGs in living cells. This review highlights some of the recent insights into cargo release from neurosecretory vesicles provided by fluorescence microscopy, with emphasis on DCGs.
Comparing Mycobacterium tuberculosis genomes using genome topology networks.
Jiang, Jianping; Gu, Jianlei; Zhang, Liang; Zhang, Chenyi; Deng, Xiao; Dou, Tonghai; Zhao, Guoping; Zhou, Yan
2015-02-14
Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. In this work, we introduce a 'Genome Topology Network' (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of 'unfixed ortholog' has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/ , and allows re-annotating the 'lost' genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes were found to be affected by SVs in M. tuberculosis genomes. We believe that the GTN method will be suitable for the exploration of genomic SVs in connection with biological features of bacterial strains, and that GTN-based phylogenetic analysis will provide additional insights into whole genome-based phylogenetic analysis.
Nitrogen oxide in protostellar envelopes and shocks: the ASAI survey
NASA Astrophysics Data System (ADS)
Codella, C.; Viti, S.; Lefloch, B.; Holdship, J.; Bachiller, R.; Bianchi, E.; Ceccarelli, C.; Favre, C.; Jiménez-Serra, I.; Podio, L.; Tafalla, M.
2018-03-01
The high sensitivity of the IRAM 30-m Astrochemical Surveys At IRAM (ASAI) unbiased spectral survey in the mm window allows us to detect NO emission towards both the Class I object SVS13-A and the protostellar outflow shock L1157-B1. We detect the hyperfine components of the 2Π1/2J = 3/2 → 1/2 (at 151 GHz) and the 2Π1/2J = 5/2 → 3/2 (at 250 GHz) spectral pattern. The two objects show different NO profiles: (i) SVS13-A emits through narrow (1.5 km s-1) lines at the systemic velocity, while (ii) L1157-B1 shows broad (˜5 km s-1) blueshifted emission. For SVS13-A, the analysis leads to Tex ≥ 4 K, N(NO) ≤ 3 × 1015 cm-2, and indicates the association of NO with the protostellar envelope. In L1157-B1, NO is tracing the extended outflow cavity: Tex ≃ 4-5 K, and N(NO) = 5.5 ± 1.5 × 1015 cm-2. Using C18O, 13C18O, C17O, and 13C17O ASAI observations, we derive an NO fractional abundance less than ˜10-7 for the SVS13-A envelope, in agreement with previous measurements towards extended photodissociation regions (PDRs) and prestellar objects. Conversely, a definite X(NO) enhancement is measured towards L1157-B1, ˜6 × 10-6, showing that the NO production increases in shocks. The public code UCLCHEM was used to interpret the NO observations, confirming that the abundance observed in SVS13-A can be attained in an envelope with a gas density of 105 cm-3 and a kinetic temperature of 40 K. The NO abundance in L1157-B1 is reproduced with pre-shock densities of 105 cm-3 subjected to a ˜45 km s-1 shock.
Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals
Fassio, Anna; Fadda, Manuela; Benfenati, Fabio
2016-01-01
The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission. PMID:27242505
Molecular Machines Determining the Fate of Endocytosed Synaptic Vesicles in Nerve Terminals.
Fassio, Anna; Fadda, Manuela; Benfenati, Fabio
2016-01-01
The cycle of a synaptic vesicle (SV) within the nerve terminal is a step-by-step journey with the final goal of ensuring the proper synaptic strength under changing environmental conditions. The SV cycle is a precisely regulated membrane traffic event in cells and, because of this, a plethora of membrane-bound and cytosolic proteins are devoted to assist SVs in each step of the journey. The cycling fate of endocytosed SVs determines both the availability for subsequent rounds of release and the lifetime of SVs in the terminal and is therefore crucial for synaptic function and plasticity. Molecular players that determine the destiny of SVs in nerve terminals after a round of exo-endocytosis are largely unknown. Here we review the functional role in SV fate of phosphorylation/dephosphorylation of SV proteins and of small GTPases acting on membrane trafficking at the synapse, as they are emerging as key molecules in determining the recycling route of SVs within the nerve terminal. In particular, we focus on: (i) the cyclin-dependent kinase-5 (cdk5) and calcineurin (CN) control of the recycling pool of SVs; (ii) the role of small GTPases of the Rab and ADP-ribosylation factor (Arf) families in defining the route followed by SV in their nerve terminal cycle. These regulatory proteins together with their synaptic regulators and effectors, are molecular nanomachines mediating homeostatic responses in synaptic plasticity and potential targets of drugs modulating the efficiency of synaptic transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui
Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less
Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone.
Trappe, Kathrin; Emde, Anne-Katrin; Ehrlich, Hans-Christian; Reinert, Knut
2014-12-15
The landscape of structural variation (SV) including complex duplication and translocation patterns is far from resolved. SV detection tools usually exhibit low agreement, are often geared toward certain types or size ranges of variation and struggle to correctly classify the type and exact size of SVs. We present Gustaf (Generic mUlti-SpliT Alignment Finder), a sound generic multi-split SV detection tool that detects and classifies deletions, inversions, dispersed duplications and translocations of ≥ 30 bp. Our approach is based on a generic multi-split alignment strategy that can identify SV breakpoints with base pair resolution. We show that Gustaf correctly identifies SVs, especially in the range from 30 to 100 bp, which we call the next-generation sequencing (NGS) twilight zone of SVs, as well as larger SVs >500 bp. Gustaf performs better than similar tools in our benchmark and is furthermore able to correctly identify size and location of dispersed duplications and translocations, which otherwise might be wrongly classified, for example, as large deletions. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Nonmedical Use of Cough Syrup Among Secondary Vocational School Students
Wu, Qingfeng; Yu, Jincong; Yang, Chengwu; Chen, Jiayan; Yang, Longyu; Zhang, Hui; Teng, Shiwei; Li, Jiang; Yan, Dong; Cao, Jiepin; Zhao, Yanting; Wang, Zengzhen
2016-01-01
Abstract Nonmedical use of cough syrup (NUCS) among secondary vocational school (SVS) students has been an increasing concern for public health in China, but no data were available. This cross-sectional study aimed to investigate the epidemiological characters of NUCS as well as its risk factors among SVS students in China. From September 2013 to December 2014, a total of 13,614 SVS students were purposively selected through multistage sampling in 6 cities of China. Information on NUCS, demographics, family background, smoking and alcohol consumption, impulsiveness, sensation seeking, and parental monitoring were collected. Logistic regression was used to explore factors related to NUCS. The 12,923 (94.9%) valid responses (16.3 ± 1.0 years old, and 52.6% men) reported 3.47% (95% confidence interval: 3.15–3.79%) lifetime NUCS. Logistic regression indicated that smoking, part-time job experience, high level of impulsiveness, and sensation seeking were risk factors for NUCS, whereas urban living and high parental monitoring were protective ones. NUCS was prevalent among SVS students. Interventions that target on smoking, impulsiveness and sensation seeking control, improvement on parental monitoring may have considerable impact on NUCS among SVS students. PMID:26962800
Wu, Qingfeng; Yu, Jincong; Yang, Chengwu; Chen, Jiayan; Yang, Longyu; Zhang, Hui; Teng, Shiwei; Li, Jiang; Yan, Dong; Cao, Jiepin; Zhao, Yanting; Wang, Zengzhen
2016-03-01
Nonmedical use of cough syrup (NUCS) among secondary vocational school (SVS) students has been an increasing concern for public health in China, but no data were available. This cross-sectional study aimed to investigate the epidemiological characters of NUCS as well as its risk factors among SVS students in China.From September 2013 to December 2014, a total of 13,614 SVS students were purposively selected through multistage sampling in 6 cities of China. Information on NUCS, demographics, family background, smoking and alcohol consumption, impulsiveness, sensation seeking, and parental monitoring were collected. Logistic regression was used to explore factors related to NUCS.The 12,923 (94.9%) valid responses (16.3 ± 1.0 years old, and 52.6% men) reported 3.47% (95% confidence interval: 3.15-3.79%) lifetime NUCS. Logistic regression indicated that smoking, part-time job experience, high level of impulsiveness, and sensation seeking were risk factors for NUCS, whereas urban living and high parental monitoring were protective ones.NUCS was prevalent among SVS students. Interventions that target on smoking, impulsiveness and sensation seeking control, improvement on parental monitoring may have considerable impact on NUCS among SVS students.
Social vulnerability and bullying in children with Asperger syndrome.
Sofronoff, Kate; Dark, Elizabeth; Stone, Valerie
2011-05-01
Children with Asperger syndrome (AS) have IQ within the normal range but specific impairments in theory of mind, social interaction and communication skills. The majority receive education in mainstream schools and research suggests they are bullied more than typically developing peers. The current study aimed to evaluate factors that predict bullying for such children and also to examine a new measure, the Social Vulnerability Scale (SVS). One hundred and thirty three parents of children with AS completed the SVS and of these 92 parents completed both the SVS and questionnaires measuring anxiety, anger, behaviour problems, social skills and bullying. Regression analyses revealed that these variables together strongly predicted bullying, but that social vulnerability was the strongest predictor. Test-re-test and internal consistency analyses of the SVS demonstrated sound psychometric properties and factor analyses revealed two sub-scales: gullibility and credulity. Limitations of the study are acknowledged and suggestions for future research discussed.
Zhou, Jie J; Wang, Feng; Xu, Zhiwen; Lo, Wing-Sze; Lau, Ching-Fun; Chiang, Kyle P; Nangle, Leslie A; Ashlock, Melissa A; Mendlein, John D; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul
2014-07-11
Inflammatory and debilitating myositis and interstitial lung disease are commonly associated with autoantibodies (anti-Jo-1 antibodies) to cytoplasmic histidyl-tRNA synthetase (HisRS). Anti-Jo-1 antibodies from different disease-afflicted patients react mostly with spatially separated epitopes in the three-dimensional structure of human HisRS. We noted that two HisRS splice variants (SVs) include these spatially separated regions, but each SV lacks the HisRS catalytic domain. Despite the large deletions, the two SVs cross-react with a substantial population of anti-Jo-l antibodies from myositis patients. Moreover, expression of at least one of the SVs is up-regulated in dermatomyositis patients, and cell-based experiments show that both SVs and HisRS can be secreted. We suggest that, in patients with inflammatory myositis, anti-Jo-1 antibodies may have extracellular activity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Emery, Robert W; Solien, Eric
2013-01-01
The aim of this study was to determine whether the eSVS Mesh interferes with transit-time flow measurement (TTFM) assessing intraoperative coronary vein graft patency. In four swine undergoing off-pump bypass grafting to the anterior descending coronary artery, five TTFMs were sequentially obtained on meshed and bare grafts at baseline and under Dobutamine stress at five separate locations on the graft in each animal. The Medistim VeriQ was used for TTFM. The grafts were examined for patency after the swine were killed. There was no difference in hemodynamics or TTFM either at baseline or under Dobutamine stress between the eSVS Mesh covered and uncovered grafts. Dobutamine, however, significantly increased hemodynamics and graft flow parameters measured from baseline. The eSVS Mesh does not interfere with Doppler flow measurement in covered coronary vein grafts.
NASA Technical Reports Server (NTRS)
Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.
2016-01-01
Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.
Bourcier, Romain; Détraz, Lili; Serfaty, Jean Michel; Delasalle, Beatrice Guyomarch; Mirza, Mahmood; Derraz, Imad; Toulgoat, Frédérique; Naggara, Olivier; Toquet, Claire; Desal, Hubert
2017-11-01
The susceptibility vessel sign (SVS) on magnetic resonance imaging (MRI) is related to thrombus location, composition, and size in acute stroke. No previous study has determined its inter-MRI scanner variability. We aimed to compare the diagnostic accuracy in-vitro of four different MRI scanners for the characterization of histologic thrombus composition. Thirty-five manufactured thrombi analogs of different composition that were histologically categorized as fibrin-dominant, mixed, or red blood cell (RBC)-dominant were scanned on four different MRI units with T2* sequence. Nine radiologists, blinded to thrombus composition and MRI scanner model, classified twice, in a 2-week interval, the SVS of each thrombus as absent, questionable, or present. We calculated the weighted kappa with 95% confidence interval (CI), sensitivity, specificity and accuracy of the SVS on each MRI scanner to detect RBC-dominant thrombi. The SVS was present in 42%, absent in 33%, and questionable in 25% of thrombi. The interscanner agreement was moderate to good, ranging from .45 (CI: .37-.52) to .67 (CI: .61-.74). The correlation between the SVS and the thrombus composition was moderate (κ: .50 [CI: .44-.55]) to good κ: .76 ([CI: .72-.80]). Sensitivity, specificity, and accuracy to identify RBC-dominant clots were significantly different between MRI scanners (P < .001). The diagnostic accuracy of SVS to determine thrombus composition varies significantly among MRI scanners. Normalization of T2*sequences between scanners may be needed to better predict thrombus composition in multicenter studies. Copyright © 2017 by the American Society of Neuroimaging.
Exhibition of stochastic resonance in vestibular tilt motion perception.
Galvan-Garza, R C; Clark, T K; Mulavara, A P; Oman, C M
2018-04-03
Stochastic Resonance (SR) is a phenomenon broadly described as "noise benefit". The application of subsensory electrical Stochastic Vestibular Stimulation (SVS) via electrodes behind each ear has been used to improve human balance and gait, but its effect on motion perception thresholds has not been examined. This study investigated the capability of subsensory SVS to reduce vestibular motion perception thresholds in a manner consistent with a characteristic bell-shaped SR curve. We measured upright, head-centered, roll tilt Direction Recognition (DR) thresholds in the dark in 12 human subjects with the application of wideband 0-30 Hz SVS ranging from ±0-700 μA. To conservatively assess if SR was exhibited, we compared the proportions of both subjective and statistical SR exhibition in our experimental data to proportions of SR exhibition in multiple simulation cases with varying underlying SR behavior. Analysis included individual and group statistics. As there is not an established mathematical definition, three humans subjectively judged that SR was exhibited in 78% of subjects. "Statistically significant SR exhibition", which additionally required that a subject's DR threshold with SVS be significantly lower than baseline (no SVS), was present in 50% of subjects. Both percentages were higher than simulations suggested could occur simply by chance. For SR exhibitors, defined by subjective or statistically significant criteria, the mean DR threshold improved by -30% and -39%, respectively. The largest individual improvement was -47%. At least half of the subjects were better able to perceive passive body motion with the application of subsensory SVS. This study presents the first conclusive demonstration of SR in vestibular motion perception. Copyright © 2018 Elsevier Inc. All rights reserved.
Using Low Levels of Stochastic Vestibular Stimulation to Improve Balance Function
Goel, Rahul; Kofman, Igor; Jeevarajan, Jerome; De Dios, Yiri; Cohen, Helen S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.
2015-01-01
Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural responses in the medio-lateral (ML) direction, but its effect in improving balance function in both the ML and anterior-posterior (AP) directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0–30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45) subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100–500 μA for all the three directions, exhibiting stochastic resonance (SR) phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold) was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson’s disease or in astronauts returning from long-duration space flight. PMID:26295807
Sowan, Azizeh K
2014-07-01
Streaming videos (SVs) are commonly used multimedia applications in clinical health education. However, there are several negative aspects related to the production and delivery of SVs. Only a few published studies have included sufficient descriptions of the videos and the production process and design innovations. This paper describes the production of innovative SVs for medication administration skills for undergraduate nursing students at a public university in Jordan and focuses on the ethical and cultural issues in producing this type of learning resource. The curriculum development committee approved the modification of educational techniques for medication administration procedures to include SVs within an interactive web-based learning environment. The production process of the videos adhered to established principles for "protecting patients' rights when filming and recording" and included: preproduction, production and postproduction phases. Medication administration skills were videotaped in a skills laboratory where they are usually taught to students and also in a hospital setting with real patients. The lab videos included critical points and Do's and Don'ts and the hospital videos fostered real-world practices. The range of time of the videos was reasonable to eliminate technical difficulty in access. Eight SVs were produced that covered different types of the medication administration skills. The production of SVs required the collaborative efforts of experts in IT, multimedia, nursing and informatics educators, and nursing care providers. Results showed that the videos were well-perceived by students, and the instructors who taught the course. The process of producing the videos in this project can be used as a valuable framework for schools considering utilizing multimedia applications in teaching. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Yazbek, Sandrine; Prabhu, Sanjay P; Connaughton, Pauline; Grant, Patricia E; Gagoski, Borjan
2015-08-01
Single-voxel spectroscopy (SVS) is usually used in the pediatric population when a short acquisition time is crucial. To overcome the long acquisition time of 3-D phase-encoded chemical shift imaging (CSI) and lack of spatial coverage of single-voxel spectroscopy, efficient encoding schemes using spiral k-space trajectories have been successfully deployed, enabling acquisition of volumetric CSI in <5 min. We assessed feasibility of using 3-D spiral CSI sequence routinely in pediatric clinical settings by comparing its reconstructed spectra against SVS spectra. Volumetric spiral CSI obtained spectra from 2-cc isotropic voxels over a 16×16×10-cm region. SVS acquisition encoded a 3.4-cc (1.5-mm) isotropic voxel. Acquisition time was 3 min for every technique. Data were gathered prospectively from 11 random pediatric patients. Spectra from left basal ganglia were obtained using both techniques and were processed with post-processing software. The following metabolite ratios were calculated: N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), lactate/creatine (Lac/Cr) and N-acetylapartate/choline (NAA/Cho). We collected data on 11 children ages 4 days to 10 years. In 10/11 cases, spectral quality of both methods was acceptable. Considering 10/11 cases, we found a statistically significant difference between SVS and 3-D spiral CSI for all three ratios. However, this difference was fixed and was probably caused by a fixed bias. This means that 3-D spiral CSI can be used instead of SVS by removing the mean difference between the methods for each ratio. Accelerated 3-D CSI is feasible in pediatric patients and can potentially substitute for SVS.
Polymer physics predicts the effects of structural variants on chromatin architecture.
Bianco, Simona; Lupiáñez, Darío G; Chiariello, Andrea M; Annunziatella, Carlo; Kraft, Katerina; Schöpflin, Robert; Wittler, Lars; Andrey, Guillaume; Vingron, Martin; Pombo, Ana; Mundlos, Stefan; Nicodemi, Mario
2018-05-01
Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.
Tannen, Bradford L; Kolomeyer, Anton M; Turbin, Roger E; Frohman, Larry; Langer, Paul D; Oh, Cheongeun; Ghesani, Nasrin V; Zuckier, Lionel S; Chu, David S
2014-02-01
To investigate whether lacrimal gland uptake on (67)Ga-gallium citrate scintigraphy correlates with histopathologic evidence of sarcoidosis. A retrospective, pilot study of 31 patients with suspected sarcoidosis who underwent gallium scintigraphy and lacrimal gland biopsy. Lacrimal gland gallium uptake was assessed by subjective visual scoring (SVS) and lacrimal uptake ratio (LUR). Eleven (36%) patients had lacrimal gland biopsies containing noncaseating granulomas. A statistically significant correlation was found between lacrimal gland gallium uptake and biopsy positivity using SVS (p = 0.03) or LUR (p = 0.01). Using SVS, biopsy positivity rate increased from 0 to 50% in patients with mild to intense uptake. Using LUR, biopsy positivity rate increased linearly as the ratio increased from 13% (LUR < 4) to 100% (LUR > 8). Lacrimal biopsy positivity rate significantly correlated with gallium uptake on scintigraphy. Both SVS and LUR methods appear to correlate with histologic results and may potentially aid in patient selection for biopsy.
Soykan, Tolga; Kaempf, Natalie; Sakaba, Takeshi; Vollweiter, Dennis; Goerdeler, Felix; Puchkov, Dmytro; Kononenko, Natalia L; Haucke, Volker
2017-02-22
Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Recent data suggest that at physiological temperature SVs are internalized via clathrin-independent ultrafast endocytosis (UFE) within hundreds of milliseconds, while other studies have postulated a key role for clathrin-mediated endocytosis (CME) of SV proteins on a timescale of seconds to tens of seconds. Here we demonstrate using cultured hippocampal neurons as a model that at physiological temperature SV endocytosis occurs on several timescales from less than a second to several seconds, yet, is largely independent of clathrin. Clathrin-independent endocytosis (CIE) of SV membranes is mediated by actin-nucleating formins such as mDia1, which are required for the formation of presynaptic endosome-like vacuoles from which SVs reform. Our results resolve previous discrepancies in the field and suggest that SV membranes are predominantly retrieved via CIE mediated by formin-dependent actin assembly. Copyright © 2017 Elsevier Inc. All rights reserved.
A stochastic vortex structure method for interacting particles in turbulent shear flows
NASA Astrophysics Data System (ADS)
Dizaji, Farzad F.; Marshall, Jeffrey S.; Grant, John R.
2018-01-01
In a recent study, we have proposed a new synthetic turbulence method based on stochastic vortex structures (SVSs), and we have demonstrated that this method can accurately predict particle transport, collision, and agglomeration in homogeneous, isotropic turbulence in comparison to direct numerical simulation results. The current paper extends the SVS method to non-homogeneous, anisotropic turbulence. The key element of this extension is a new inversion procedure, by which the vortex initial orientation can be set so as to generate a prescribed Reynolds stress field. After validating this inversion procedure for simple problems, we apply the SVS method to the problem of interacting particle transport by a turbulent planar jet. Measures of the turbulent flow and of particle dispersion, clustering, and collision obtained by the new SVS simulations are shown to compare well with direct numerical simulation results. The influence of different numerical parameters, such as number of vortices and vortex lifetime, on the accuracy of the SVS predictions is also examined.
Development of an adaptive optics test-bed for relay mirror applications
NASA Astrophysics Data System (ADS)
Mansell, Justin D.; Jacobs, Arturo A.; Maynard, Morris
2005-08-01
The relay mirror concept involves deploying a passive optical station at a high altitude for relaying a beam from a laser weapon to a target. Relay mirrors have been proposed as a method of increasing the range of laser weapons that is less costly than deploying a larger number of laser weapons. Relay mirrors will only be effective if the beam spreading and beam quality degradation induced by atmospheric aberrations and thermal blooming can be mitigated. In this paper we present the first phase of a multi-year effort to develop a theoretical and experimental capability at Boeing-SVS to study these problems. A team from MZA and Boeing-SVS has developed a laboratory test-bed consisting of a distributed atmospheric path simulated by three liquid crystal phase screens, a Shack-Hartmann wavefront sensor, and a MEMS membrane deformable mirror. We present results of AO component calibration and evaluation, the system construction, and the system performance.
Novak, Peter; Novak, Vera
2006-05-04
Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44-79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS.
NASA Astrophysics Data System (ADS)
Dizaji, Farzad; Marshall, Jeffrey; Grant, John; Jin, Xing
2017-11-01
Accounting for the effect of subgrid-scale turbulence on interacting particles remains a challenge when using Reynolds-Averaged Navier Stokes (RANS) or Large Eddy Simulation (LES) approaches for simulation of turbulent particulate flows. The standard stochastic Lagrangian method for introducing turbulence into particulate flow computations is not effective when the particles interact via collisions, contact electrification, etc., since this method is not intended to accurately model relative motion between particles. We have recently developed the stochastic vortex structure (SVS) method and demonstrated its use for accurate simulation of particle collision in homogeneous turbulence; the current work presents an extension of the SVS method to turbulent shear flows. The SVS method simulates subgrid-scale turbulence using a set of randomly-positioned, finite-length vortices to generate a synthetic fluctuating velocity field. It has been shown to accurately reproduce the turbulence inertial-range spectrum and the probability density functions for the velocity and acceleration fields. In order to extend SVS to turbulent shear flows, a new inversion method has been developed to orient the vortices in order to generate a specified Reynolds stress field. The extended SVS method is validated in the present study with comparison to direct numerical simulations for a planar turbulent jet flow. This research was supported by the U.S. National Science Foundation under Grant CBET-1332472.
Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen
2012-01-01
Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain's ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable and provides imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles. SR using imperceptible stochastic electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS) applied to normal subjects has shown to improve the degree of association between the weak input periodic signals introduced via venous blood pressure receptors and the heart-rate responses. Also, application of SVS over 24 hours improves the long-term heart-rate dynamics and motor responsiveness as indicated by daytime trunk activity measurements in patients with multi-system atrophy, Parkinson s disease, or both, including patients who were unresponsive to standard therapy for Parkinson s disease. Recent studies conducted at the NASA JSC Neurosciences Laboratories showed that imperceptible SVS, when applied to normal young healthy subjects, leads to significantly improved balance performance during postural disturbances on unstable compliant surfaces. These studies have shown the benefit of SR noise characteristic optimization with imperceptible SVS in the frequency range of 0-30 Hz, and amplitudes of stimulation have ranged from 100 to 400 microamperes.
SVS: data and knowledge integration in computational biology.
Zycinski, Grzegorz; Barla, Annalisa; Verri, Alessandro
2011-01-01
In this paper we present a framework for structured variable selection (SVS). The main concept of the proposed schema is to take a step towards the integration of two different aspects of data mining: database and machine learning perspective. The framework is flexible enough to use not only microarray data, but other high-throughput data of choice (e.g. from mass spectrometry, microarray, next generation sequencing). Moreover, the feature selection phase incorporates prior biological knowledge in a modular way from various repositories and is ready to host different statistical learning techniques. We present a proof of concept of SVS, illustrating some implementation details and describing current results on high-throughput microarray data.
Effect of the nano-oxide layer as a Mn diffusion barrier in specular spin valves
NASA Astrophysics Data System (ADS)
Jang, S. H.; Kang, T.; Kim, H. J.; Kim, K. Y.
2002-07-01
In previous work an enhanced giant magnetoresistance (GMR) effect in spin valves (SVs) with a nano-oxide layer (NOL) after annealing at about 250-300 degC has been reported. We have shown that SVs with a NOL also have higher thermal stability of the MR ratio at 300 degC. From secondary-ion-mass spectroscopy and x-ray photoelectron spectroscopy depth profile analysis, the mechanism of the improved thermal stability of the SVs with a NOL is shown to be related to MnO formation within the NOL. Thus, Mn atoms from the FeMn layer are trapped, and Mn diffusion is inhibited by the NOL during annealing.
Utilization of the Space Vision System as an Augmented Reality System For Mission Operations
NASA Technical Reports Server (NTRS)
Maida, James C.; Bowen, Charles
2003-01-01
Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to flight hardware capable of utilizing this technology. This is the basis for this proposed Space Human Factors Engineering project, the determination of the display symbology within the performance limits of the Space Vision System that will objectively improve human performance. This utilization of existing flight hardware will greatly reduce the costs of implementation for flight. Besides being used onboard shuttle and space station and as a ground-based system for mission operational support, it also has great potential for science and medical training and diagnostics, remote learning, team learning, video/media conferencing, and educational outreach.
Support vector machine incremental learning triggered by wrongly predicted samples
NASA Astrophysics Data System (ADS)
Tang, Ting-long; Guan, Qiu; Wu, Yi-rong
2018-05-01
According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.
Kaempf, Natalie; Maritzen, Tanja
2017-01-01
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis. PMID:29085282
Plant acoustics: in the search of a sound mechanism for sound signaling in plants.
Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong
2016-08-01
Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Novak, Peter; Novak, Vera
2006-01-01
Background Previous studies have suggested that impaired proprioceptive processing in the striatum may contribute to abnormal gait in Parkinson's disease (PD). Methods This pilot study assessed the effects of enhanced proprioceptive feedback using step-synchronized vibration stimulation of the soles (S-VS) on gait in PD. S-VS was used in 8 PD subjects (3 women and 5 men, age range 44–79 years, on medication) and 8 age-matched healthy subjects (5 women and 3 men). PD subjects had mild or moderate gait impairment associated with abnormal balance, but they did not have gait freezing. Three vibratory devices (VDs) were embedded in elastic insoles (one below the heel and two below the forefoot areas) inserted into the shoes. Each VD operates independently and has a pressure switch that activates the underlying vibratory actuator. The VD delivered the 70-Hz suprathreshold vibration pulse upon touch by the heel or forefoot, and the vibration pulse was deactivated upon respective push-offs. Six-minute hallway walking was studied with and without S-VS. Gait characteristics were measured using the force-sensitive foot switches. The primary outcome was the stride variability expressed as a coefficient of variation (CV), a measure of gait steadiness. Secondary outcome measures were walking distance and speed, stride length and duration, cadence, stance, swing and double support duration, and respective CVs (if applicable). Results The walking speed (p < 0.04) and the CV of the stride interval (p < 0.02) differed between the groups and S-VS conditions. In the PD group, S-VS decreased stride variability (p < 0.002), increased walking speed (p < 0.0001), stride duration (p < 0.01), stride length (p < 0.0002), and cadence (p < 0.03). In the control group, S-VS decreased stride variability (p < 0.006) and increased gait speed (p < 0.03), but other locomotion parameters were not significantly altered. Conclusion Augmented sensory feedback improves parkinsonian gait steadiness in the short-term setting. Because the suprathreshold stimulation prevented blinding of subjects, the learning effect and increased attention can be a confounding factor underlying results. Long-term studies are needed to establish the clinical value of the S-VS. PMID:16674823
Saraidaridis, Julia T; Ergul, Emel; Patel, Virendra I; Stone, David H; Cambria, Richard P; Conrad, Mark F
2015-08-01
In 2009, the Society for Vascular Surgery (SVS) established objective performance goals (OPG) for lower extremity bypass (LEB) in patients with critical limb ischemia (CLI) based on pooled data from previously performed prospective studies in an effort to provide a benchmark and historical control for future trials. However, patients with a prosthetic conduit and end-stage renal disease were excluded from this cohort. In contemporary practice, many patients do not meet the criteria for SVS OPG inclusion, making generalization of the SVS OPG difficult. The goal of this study was to establish safety and efficacy measures for patients who were excluded from the original SVS OPG analysis. All patients who underwent LEB for CLI in the Vascular Study Group of New England (VSGNE) from 2003 to 2013 were identified. Patients were stratified into OPG-eligible and non-OPG-eligible cohorts. Outcomes included 30-day major adverse limb events, 30-day major adverse cardiovascular events, 1-year survival, and 1-year freedom from amputation. The SVS OPG methodology was used to create new performance goals for the non-OPG-eligible patients. We identified 3609 patients: 2360 OPG (65%) vs 1249 non-OPG (35%), and overall results were stratified as a function of OPG status. The 30-day major adverse limb event rate was 5.0% (5.5% non-OPG vs 4.4% OPG; P = .34), and the 30-day major adverse cardiovascular event rate was 7.3% (9.2% non-OPG vs 6.2% OPG; P = .001). At 1 year, survival was 84% (75.9% non-OPG vs 88.3% OPG; P < .001), and freedom from amputation was 86.9% (80.9% non-OPG vs 90.1% OPG; P < .001). The SVS OPG were attainable in New England for the population of patients who would have met SVS OPG study cohort inclusion criteria. However, 35% of the patients who underwent LEB for CLI in the last 10 years fell outside of these criteria by having end-stage renal disease or requiring a prosthetic conduit. We therefore suggest new benchmarks for these high-risk populations. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Cull, David L; Manos, Ginger; Hartley, Michael C; Taylor, Spence M; Langan, Eugene M; Eidt, John F; Johnson, Brent L
2014-12-01
The Society for Vascular Surgery (SVS) recently established the Lower Extremity Threatened Limb Classification System, a staging system using Wound characteristic, Ischemia, and foot Infection (WIfI) to stratify the risk for limb amputation at 1 year. Although intuitive in nature, this new system has not been validated. The purpose of the following study was to determine whether the WIfI system is predictive of limb amputation and wound healing. Between 2007 and 2010, we prospectively obtained data related to wound characteristics, extent of infection, and degree of postrevascularization ischemia in 139 patients with foot wounds who presented for lower extremity revascularization (158 revascularization procedures). After adapting those data to the WIfI classifications, we analyzed the influence of wound characteristics, extent of infection, and degree of ischemia on time to wound healing; empirical Kaplan-Meier survival curves were compared with theoretical outcomes predicted by WIfI expert consensus opinion. Of the 158 foot wounds, 125 (79%) healed. The median time to wound healing was 2.7 months (range, 1-18 months). Factors associated with wound healing included presence of diabetes mellitus (P = .013), wound location (P = .049), wound size (P = .007), wound depth (P = .004), and degree of ischemia (P < .001). The WIfI clinical stage was predictive of 1-year limb amputation (stage 1, 3%; stage 2, 10%; stage 3, 23%; stage 4, 40%) and wound nonhealing (stage 1, 8%; stage 2, 10%; stage 3, 23%; stage 4, 40%) and correlated with the theoretical outcome estimated by the SVS expert panel. The theoretical framework for risk stratification among patients with critical limb ischemia provided by the SVS expert panel appears valid. Further validation of the WIfI classification system with multicenter data is justified. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Salient value similarity, social trust, and attitudes toward wildland fire management strategies
Jerry J. Vaske; James D. Absher; Alan D. Bright
2007-01-01
Using the salient value similarity (SVS) model, we predicted that social trust mediated the relationship between SVS and attitudes toward prescribed burns and mechanical thinning. Data were obtained from a mail survey (n = 532) of Colorado residents living in the wildland-urban interface. Results indicated that respondents shared the same values as U...
Darling, Jeremy D.; McCallum, John C.; Soden, Peter A.; Meng, Yifan; Wyers, Mark C.; Hamdan, Allen D.; Verhagen, Hence H.J.; Schermerhorn, Marc L.
2016-01-01
OBJECTIVES The Society for Vascular Surgery (SVS) Lower Extremity Guidelines Committee has composed a new threatened lower extremity classification system that reflects the three major factors that impact amputation risk and clinical management: wound, ischemia, and foot infection (WIfI). Our goal was to evaluate the predictive ability of this scale following any infrapopliteal endovascular intervention for critical limb ischemia (CLI). METHODS From 2004 to 2014, a single institution, retrospective chart review was performed at the Beth Israel Deaconess Medical Center for all patients undergoing an infrapopliteal angioplasty for CLI. Throughout these years, 673 limbs underwent an infrapopliteal endovascular intervention for tissue loss (77%), rest pain (13%), stenosis of a previously treated vessel (5%), acute limb ischemia (3%), or claudication (2%). Limbs missing a grade in any WIfI component were excluded. Limbs were stratified into clinical stages 1 to 4 based on the SVS WIfI classification for 1-year amputation risk, as well as a novel WIfI composite score from 0 to 9. Outcomes included patient functional capacity, living status, wound healing, major amputation, major adverse limb events (MALE), RAS events (reintervention, major amputation, or stenosis [>3.5x step-up by duplex]), amputation-free survival (AFS), and mortality. Predictors were identified using Kaplan-Meier survival estimates and Cox regression models. RESULTS Of the 596 limbs with CLI, 551 were classified in all three WIfI domains on a scale of 0 (least severe) to 3 (most severe). Of these 551, 84% were treated for tissue loss and 16% for rest pain. A Cox regression model illustrated that an increase in clinical stage increases the rate of major amputation (Hazard Ratio (HR), 1.6; 95% Confidence Interval [CI], 1.1–2.3). Separate regression models showed that a one-unit increase in the WIfI composite score is associated with a decrease in wound healing (1.2 [1.1–1.4]) and an increase in the rate of RAS events (1.2 [1.1–1.4]) and major amputations (1.4 [1.2–1.8]). CONCLUSIONS This study supports the ability of the SVS WIfI classification system to predict 1-year amputation, RAS events, and wound healing in patients with CLI undergoing endovascular infrapopliteal revascularization procedures. PMID:27380993
Using large-scale genome variation cohorts to decipher the molecular mechanism of cancer.
Habermann, Nina; Mardin, Balca R; Yakneen, Sergei; Korbel, Jan O
2016-01-01
Characterizing genomic structural variations (SVs) in the human genome remains challenging, and there is a growing interest to understand somatic SVs occurring in cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis scars the genome when localized chromosome shattering and repair occur in a one-off catastrophe. Recent efforts led to the development of a set of conceptual criteria for the inference of chromothripsis events in cancer genomes and to the development of experimental model systems for studying this striking DNA alteration process in vitro. We discuss these approaches, and additionally touch upon current "Big Data" efforts that employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort to search for commonalities and differences in molecular DNA alteration processes in cancer. Copyright © 2016. Published by Elsevier SAS.
Malec, James F; Degiorgio, Lisa
2002-12-01
To determine whether successful participants along different postacute brain injury rehabilitation pathways differ on demographic, injury-related, disability, and outcome variables. Secondary analysis of pre- and posttreatment, and 1-year follow-up data obtained in a previous study of specialized vocational services (SVS) for persons with brain injury. Outpatient brain injury rehabilitation clinic. One hundred fourteen persons with acquired brain injury. Participants in 3 distinct rehabilitation pathways were studied: SVS only; SVS and a 3-h/wk community reintegration outpatient group; and SVS and 6-h/d comprehensive day treatment (CDT). Mayo-Portland Adaptability Inventory (MPAI); Vocational Independence Scale; and "success," as defined by community-based employment (CBE) at 1-year follow-up. The percentage (77%-85%) of participants in CBE at 1-year follow-up did not differ among the 3 pathways. CDT participants had more limited educational backgrounds, were less recently injured, and showed greater disability and more impaired self-awareness than those receiving limited intervention (ie, SVS or community reintegration outpatient group). MPAI scores for limited-intervention participants who were unsuccessful were similar in level to successful participants in CDT. Logistic regression models were developed to predict the probability of success with limited intervention and CDT. Different rehabilitation pathways result in CBE for a large percentage of persons with brain injury if the intensity of service is appropriately matched to the severity of the disability, the time since injury, and other participant characteristics. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Villar, Jesús; Blanco, Jesús; del Campo, Rafael; Andaluz-Ojeda, David; Díaz-Domínguez, Francisco J; Muriel, Arturo; Córcoles, Virgilio; Suárez-Sipmann, Fernando; Tarancón, Concepción; González-Higueras, Elena; López, Julia; Blanch, Lluis; Pérez-Méndez, Lina; Fernández, Rosa Lidia; Kacmarek, Robert M
2015-01-01
Objectives A recent update of the definition of acute respiratory distress syndrome (ARDS) proposed an empirical classification based on ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) at ARDS onset. Since the proposal did not mandate PaO2/FiO2 calculation under standardised ventilator settings (SVS), we hypothesised that a stratification based on baseline PaO2/FiO2 would not provide accurate assessment of lung injury severity. Design A prospective, multicentre, observational study. Setting A network of teaching hospitals. Participants 478 patients with eligible criteria for moderate (100
Villar, Jesús; Blanco, Jesús; del Campo, Rafael; Andaluz-Ojeda, David; Díaz-Domínguez, Francisco J; Muriel, Arturo; Córcoles, Virgilio; Suárez-Sipmann, Fernando; Tarancón, Concepción; González-Higueras, Elena; López, Julia; Blanch, Lluis; Pérez-Méndez, Lina; Fernández, Rosa Lidia; Kacmarek, Robert M
2015-03-27
A recent update of the definition of acute respiratory distress syndrome (ARDS) proposed an empirical classification based on ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO₂/FiO₂) at ARDS onset. Since the proposal did not mandate PaO₂/FiO₂ calculation under standardised ventilator settings (SVS), we hypothesised that a stratification based on baseline PaO₂/FiOv would not provide accurate assessment of lung injury severity. A prospective, multicentre, observational study. A network of teaching hospitals. 478 patients with eligible criteria for moderate (100
Horvath, Dragos; Marcou, Gilles; Varnek, Alexandre
2013-07-22
This study is an exhaustive analysis of the neighborhood behavior over a large coherent data set (ChEMBL target/ligand pairs of known Ki, for 165 targets with >50 associated ligands each). It focuses on similarity-based virtual screening (SVS) success defined by the ascertained optimality index. This is a weighted compromise between purity and retrieval rate of active hits in the neighborhood of an active query. One key issue addressed here is the impact of Tversky asymmetric weighing of query vs candidate features (represented as integer-value ISIDA colored fragment/pharmacophore triplet count descriptor vectors). The nearly a 3/4 million independent SVS runs showed that Tversky scores with a strong bias in favor of query-specific features are, by far, the most successful and the least failure-prone out of a set of nine other dissimilarity scores. These include classical Tanimoto, which failed to defend its privileged status in practical SVS applications. Tversky performance is not significantly conditioned by tuning of its bias parameter α. Both initial "guesses" of α = 0.9 and 0.7 were more successful than Tanimoto (at its turn, better than Euclid). Tversky was eventually tested in exhaustive similarity searching within the library of 1.6 M commercial + bioactive molecules at http://infochim.u-strasbg.fr/webserv/VSEngine.html , comparing favorably to Tanimoto in terms of "scaffold hopping" propensity. Therefore, it should be used at least as often as, perhaps in parallel to Tanimoto in SVS. Analysis with respect to query subclasses highlighted relationships of query complexity (simply expressed in terms of pharmacophore pattern counts) and/or target nature vs SVS success likelihood. SVS using more complex queries are more robust with respect to the choice of their operational premises (descriptors, metric). Yet, they are best handled by "pro-query" Tversky scores at α > 0.5. Among simpler queries, one may distinguish between "growable" (allowing for active analogs with additional features), and a few "conservative" queries not allowing any growth. These (typically bioactive amine transporter ligands) form the specific application domain of "pro-candidate" biased Tversky scores at α < 0.5.
Li, Yin; Hamilton, Katherine J; Lai, Anne Y; Burns, Katherine A; Li, Leping; Wade, Paul A; Korach, Kenneth S
2014-03-01
Diethylstilbestrol (DES) is a synthetic estrogen associated with adverse effects on reproductive organs. DES-induced toxicity of the mouse seminal vesicle (SV) is mediated by estrogen receptor α (ERα), which alters expression of seminal vesicle secretory protein IV (Svs4) and lactoferrin (Ltf) genes. We examined a role for nuclear receptor activity in association with DNA methylation and altered gene expression. We used the neonatal DES exposure mouse model to examine DNA methylation patterns via bisulfite conversion sequencing in SVs of wild-type (WT) and ERα-knockout (αERKO) mice. The DNA methylation status at four specific CpGs (-160, -237, -306, and -367) in the Svs4 gene promoter changed during mouse development from methylated to unmethylated, and DES prevented this change at 10 weeks of age in WT SV. At two specific CpGs (-449 and -459) of the Ltf gene promoter, DES altered the methylation status from methylated to unmethylated. Alterations in DNA methylation of Svs4 and Ltf were not observed in αERKO SVs, suggesting that changes of methylation status at these CpGs are ERα dependent. The methylation status was associated with the level of gene expression. In addition, gene expression of three epigenetic modifiers-DNMT3A, MBD2, and HDAC2-increased in the SV of DES-exposed WT mice. DES-induced hormonal toxicity resulted from altered gene expression of Svs4 and Ltf associated with changes in DNA methylation that were mediated by ERα. Alterations in gene expression of DNMT3A, MBD2, and HDAC2 in DES-exposed male mice may be involved in mediating the changes in methylation status in the SV. Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS. 2014. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ Health Perspect 122:262-268; http://dx.doi.org/10.1289/ehp.1307351.
NASA Technical Reports Server (NTRS)
Wolf, Michael
2012-01-01
A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.
Reid, Keon A; Davis, Caitlin M; Dyer, R Brian; Kindt, James T
2018-03-01
Antimicrobial peptides (AMPs) act as host defenses against microbial pathogens. Here we investigate the interactions of SVS-1 (KVKVKVKV d P l PTKVKVKVK), an engineered AMP and anti-cancer β-hairpin peptide, with lipid bilayers using spectroscopic studies and atomistic molecular dynamics simulations. In agreement with literature reports, simulation and experiment show preferential binding of SVS-1 peptides to anionic over neutral bilayers. Fluorescence and circular dichroism studies of a Trp-substituted SVS-1 analogue indicate, however, that it will bind to a zwitterionic DPPC bilayer under high-curvature conditions and folds into a hairpin. In bilayers formed from a 1:1 mixture of DPPC and anionic DPPG lipids, curvature and lipid fluidity are also observed to promote deeper insertion of the fluorescent peptide. Simulations using the CHARMM C36m force field offer complementary insight into timescales and mechanisms of folding and insertion. SVS-1 simulated at an anionic mixed POPC/POPG bilayer folded into a hairpin over a microsecond, the final stage in folding coinciding with the establishment of contact between the peptide's valine sidechains and the lipid tails through a "flip and dip" mechanism. Partial, transient folding and superficial bilayer contact are seen in simulation of the peptide at a zwitterionic POPC bilayer. Only when external surface tension is applied does the peptide establish lasting contact with the POPC bilayer. Our findings reveal the influence of disruption to lipid headgroup packing (via curvature or surface tension) on the pathway of binding and insertion, highlighting the collaborative effort of electrostatic and hydrophobic interactions on interaction of SVS-1 with lipid bilayers. Copyright © 2017 Elsevier B.V. All rights reserved.
Gottlieb, Ronald H; Kumar, Prasanna; Loud, Peter; Klippenstein, Donald; Raczyk, Cheryl; Tan, Wei; Lu, Jenny; Ramnath, Nithya
2009-01-01
Our objective was to compare a newly developed semiquantitative visual scoring (SVS) method with the current standard, the Response Evaluation Criteria in Solid Tumors (RECIST) method, in the categorization of treatment response and reader agreement for patients with metastatic lung cancer followed by computed tomography. The 18 subjects (5 women and 13 men; mean age, 62.8 years) were from an institutional review board-approved phase 2 study that evaluated a second-line chemotherapy regimen for metastatic (stages III and IV) non-small cell lung cancer. Four radiologists, blinded to the patient outcome and each other's reads, evaluated the change in the patients' tumor burden from the baseline to the first restaging computed tomographic scan using either the RECIST or the SVS method. We compared the numbers of patients placed into the partial response, the stable disease (SD), and the progressive disease (PD) categories (Fisher exact test) and observer agreement (kappa statistic). Requiring the concordance of 3 of the 4 readers resulted in the RECIST placing 17 (100%) of 17 patients in the SD category compared with the SVS placing 9 (60%) of 15 patients in the partial response, 5 (33%) of the 15 patients in the SD, and 1 (6.7%) of the 15 patients in the PD categories (P < 0.0001). Interobserver agreement was higher among the readers using the SVS method (kappa, 0.54; P < 0.0001) compared with that of the readers using the RECIST method (kappa, -0.01; P = 0.5378). Using the SVS method, the readers more finely discriminated between the patient response categories with superior agreement compared with the RECIST method, which could potentially result in large differences in early treatment decisions for advanced lung cancer.
Sildenafil vaginal suppositories: preparation, characterization, in vitro and in vivo evaluation.
Shanmugam, Srinivasan; Kim, Young-Hun; Park, Jeong-Hee; Im, Ho Taek; Sohn, Young Taek; Kim, Kyeong Soo; Kim, Yong-Il; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon; Woo, Jong Soo
2014-06-01
The main objective was to investigate the in vitro release profile/kinetics, and in vivo plasma pharmacokinetics (PK) and organ biodistribution (BD) of the prepared sildenafil vaginal suppositories (SVS). Suppositories containing 25 mg of sildenafil were prepared by the cream melting technique using Witepsol H-15 as a suppository base. The suppositories were characterized for weight variation, content uniformity, hardness, disintegration time and crystallinity change. The in vitro dissolution in pH 4.5, and in vivo plasma PK and organ BD of sildenafil from SVS in female Sprague Dawley rats, were also investigated. The mean weight variation, content uniformity, hardness and disintegration time of the prepared SVS were 1.127 ± 0.020 g, 98.25 ± 2.50%, 2.5 ± 0.08 kg and 9 ± 1.0 min, respectively. The release of sildenafil from the SVS was more than 90% at 30 min, with a release kinetic of Hixson--Crowell model and non-Fickian diffusion (n = 0.464). The plasma PK study demonstrated a significantly lower Cmax (∼10 times) and AUC0-24 h (∼13 times) of sildenafil in plasma following intravaginal (IVG) administration of suppositories compared to oral (PO) administration of sildenafil solution. Nevertheless, the organ BD study showed a phenomenally higher Cmax (∼40 times) and AUC0-24 h (∼20 times) of sildenafil in uterus following IVG administration of suppositories than PO administration of sildenafil solution. This study demonstrated enhanced sildenafil exposure in the uterus following IVG administration of SVS, which could be used to target the uterus for therapeutic benefits.
NASA Technical Reports Server (NTRS)
Young, Steve; UijtdeHaag, Maarten; Campbell, Jacob
2004-01-01
To enable safe use of Synthetic Vision Systems at low altitudes, real-time range-to-terrain measurements may be required to ensure the integrity of terrain models stored in the system. This paper reviews and extends previous work describing the application of x-band radar to terrain model integrity monitoring. A method of terrain feature extraction and a transformation of the features to a common reference domain are proposed. Expected error distributions for the extracted features are required to establish appropriate thresholds whereby a consistency-checking function can trigger an alert. A calibration-based approach is presented that can be used to obtain these distributions. To verify the approach, NASA's DC-8 airborne science platform was used to collect data from two mapping sensors. An Airborne Laser Terrain Mapping (ALTM) sensor was installed in the cargo bay of the DC-8. After processing, the ALTM produced a reference terrain model with a vertical accuracy of less than one meter. Also installed was a commercial-off-the-shelf x-band radar in the nose radome of the DC-8. Although primarily designed to measure precipitation, the radar also provides estimates of terrain reflectivity at low altitudes. Using the ALTM data as the reference, errors in features extracted from the radar are estimated. A method to estimate errors in features extracted from the terrain model is also presented.
NASA Astrophysics Data System (ADS)
Park, Byeong-Hee; Sohn, Joon-Yong; Shin, Junhwa
2016-01-01
In this study, a hydrophilic copolymer of acrylonitrile (AN) and sodium vinylsulfonate (SVS) was grafted into a highly hydrophobic porous poly(tetrafluoroethylene) (PTFE) substrate using a gamma-ray irradiation method and the grafted substrate was used as a substrate for impregnating a hydrophilic ionomer, Nafion. The results of FT-IR and TGA analysis of the prepared substrate showed that the SVS/AN monomers were successfully grafted into the porous PTFE film. The results of degree of grafting, elemental analyzer, and contact angle analysis showed that the hydrophilicity of the prepared PTFE-g-P(AN-co-VS) substrate was increased with an increase in the amount of SVS/AN graft copolymers. Also, the results of FE-SEM and Gurley number measurement showed that the pores in the substrate were reduced as the amount of SVS/AN copolymers grafted into the substrate increased. The prepared porous PTFE-g-P(AN-co-VS) substrate at an irradiation dose of 70 kGy was found to impregnate Nafion ionomer effectively compared to the original porous PTFE substrate. These results suggest that the prepared PTFE-g-P(AN-co-VS) substrate can be effectively used for the impregnation of polymer electrolyte (Nafion) to prepare a reinforced composite membrane.
Glycolaldehyde in Perseus young solar analogs
NASA Astrophysics Data System (ADS)
De Simone, M.; Codella, C.; Testi, L.; Belloche, A.; Maury, A. J.; Anderl, S.; André, Ph.; Maret, S.; Podio, L.
2017-03-01
Context. The earliest evolutionary stages of low-mass protostars are characterised by the so-called hot-corino stage, when the newly born star heats the surrounding material and enrich the gas chemically. Studying this evolutionary phase of solar protostars may help understand the evolution of prebiotic complex molecules in the development of planetary systems. Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods: We obtained sub-arcsec angular resolution maps at 1.3 mm and 1.4 mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program. Results: Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC 1333-IRAS2A1, NGC 1333-IRAS4A2, NGC 1333-IRAS4B1, and SVS13-A. The NGC 1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies Eu from 37 K up to 375 K has been detected. We derived column densities ≥1015 cm-2 and rotational temperatures Trot between 115 K and 236 K, imaging for the first time hot-corinos around NGC 1333-IRAS4B1 and SVS13-A. Conclusions: In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (I.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (I.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of Lsubmm/Lint), or accretion luminosity (high Lint). Based on observations carried out with the IRAM Plateau de Bure interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Reduced datacube (FITS file) is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A121
Kibbe, Melina R; Dardik, Alan; Velazquez, Omaida C; Conte, Michael S
2015-04-01
The Society for Vascular Surgery (SVS) Foundation partnered with the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) in 1999 to initiate a competitive career development program that provides a financial supplement to surgeon-scientists receiving NIH K08 or K23 career development awards. Because the program has been in existence for 15 years, a review of the program's success has been performed. Between 1999 and 2013, 41 faculty members applied to the SVS Foundation program, and 29 from 21 different institutions were selected as awardees, resulting in a 71% success rate. Three women (10%) were among the 29 awardees. Nine awardees (31%) were supported by prior NIH F32 or T32 training grants. Awardees received their K award at an average of 3.5 years from the start of their faculty position, at the average age of 39.8 years. Thirteen awardees (45%) have subsequently received NIH R01 awards and five (17%) have received Veterans Affairs Merit Awards. Awardees received their first R01 at an average of 5.8 years after the start of their K award at the average age of 45.2 years. The SVS Foundation committed $9,350,000 to the Career Development Award Program. Awardees subsequently secured $45,108,174 in NIH and Veterans Affairs funds, resulting in a 4.8-fold financial return on investment for the SVS Foundation program. Overall, 23 awardees (79%) were promoted from assistant to associate professor in an average of 5.9 years, and 10 (34%) were promoted from associate professor to professor in an average of 5.2 years. Six awardees (21%) hold endowed professorships and four (14%) have secured tenure. Many of the awardees hold positions of leadership, including 12 (41%) as division chief and two (7%) as vice chair within a department of surgery. Eight (28%) awardees have served as president of a regional or national society. Lastly, 47 postdoctoral trainees have been mentored by recipients of the SVS Foundation Career Development Program on training grants or postdoctoral research fellowships. The SVS Foundation Career Development Program has been an effective vehicle to promote the development and independence of vascular surgeon-scientists in the field of academic vascular surgery. Published by Elsevier Inc.
Kawabata, M; Yamazaki, F; Guo, D W; Chatzisarantis, N L D
2017-12-01
The Subjective Vitality Scale (SVS: Ryan & Frederick, 1997) is a 7-item self-report instrument to measure one's level of vitality and has been widely used in psychological studies. However, there have been discrepancies in which version of the SVS (7- or 6-item version) employed between as well as within researchers. Moreover, Item 5 seems not be a good indicator of vitality from a content validity perspective. Therefore, the present study aimed to evaluate the validity and reliability of the SVS for Japanese and Singaporeans rigorously by comparing 3 measurement models (5-, 6-, and 7-item models). To this end, the scale was first translated from English to Japanese and then the Japanese and English versions of the scale were administered to Japanese (n = 268) and Singaporean undergraduate students (n = 289), respectively. The factorial and concurrent validity of the three models were examined independently on each of the samples. Furthermore, the covariance stability of the vitality responses was assessed over a 4-week time period for another independent Japanese sample (n = 140). The findings from this study indicated that from methodological and content validity perspectives, the 5-item model is considered most preferable for both language versions of the SVS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Identification of genomic indels and structural variations using split reads
2011-01-01
Background Recent studies have demonstrated the genetic significance of insertions, deletions, and other more complex structural variants (SVs) in the human population. With the development of the next-generation sequencing technologies, high-throughput surveys of SVs on the whole-genome level have become possible. Here we present split-read identification, calibrated (SRiC), a sequence-based method for SV detection. Results We start by mapping each read to the reference genome in standard fashion using gapped alignment. Then to identify SVs, we score each of the many initial mappings with an assessment strategy designed to take into account both sequencing and alignment errors (e.g. scoring more highly events gapped in the center of a read). All current SV calling methods have multilevel biases in their identifications due to both experimental and computational limitations (e.g. calling more deletions than insertions). A key aspect of our approach is that we calibrate all our calls against synthetic data sets generated from simulations of high-throughput sequencing (with realistic error models). This allows us to calculate sensitivity and the positive predictive value under different parameter-value scenarios and for different classes of events (e.g. long deletions vs. short insertions). We run our calculations on representative data from the 1000 Genomes Project. Coupling the observed numbers of events on chromosome 1 with the calibrations gleaned from the simulations (for different length events) allows us to construct a relatively unbiased estimate for the total number of SVs in the human genome across a wide range of length scales. We estimate in particular that an individual genome contains ~670,000 indels/SVs. Conclusions Compared with the existing read-depth and read-pair approaches for SV identification, our method can pinpoint the exact breakpoints of SV events, reveal the actual sequence content of insertions, and cover the whole size spectrum for deletions. Moreover, with the advent of the third-generation sequencing technologies that produce longer reads, we expect our method to be even more useful. PMID:21787423
Sentchilo, Vladimir S.; Perebituk, Alexander N.; Zehnder, Alexander J. B.; van der Meer, Jan Roelof
2000-01-01
Twenty different Pseudomonas strains utilizing m-toluate were isolated from oil-contaminated soil samples near Minsk, Belarus. Seventeen of these isolates carried plasmids ranging in size from 78 to about 200 kb (assigned pSVS plasmids) and encoding the meta cleavage pathway for toluene metabolism. Most plasmids were conjugative but of unknown incompatibility groups, except for one, which belonged to the IncP9 group. The organization of the genes for toluene catabolism was determined by restriction analysis and hybridization with xyl gene probes of pWW0. The majority of the plasmids carried xyl-type genes highly homologous to those of pWW53 and organized in a similar manner (M. T. Gallegos, P. A. Williams, and J. L. Ramos, J. Bacteriol. 179:5024–5029, 1997), with two distinguishable meta pathway operons, one upper pathway operon, and three xylS-homologous regions. All of these plasmids also possessed large areas of homologous DNA outside the catabolic genes, suggesting a common ancestry. Two other pSVS plasmids carried only one meta pathway operon, one upper pathway operon, and one copy each of xylS and xylR. The backbones of these two plasmids differed greatly from those of the others. Whereas these parts of the plasmids, carrying the xyl genes, were mostly conserved between plasmids of each group, the noncatabolic parts had undergone intensive DNA rearrangements. DNA sequencing of specific regions near and within the xylTE and xylA genes of the pSVS plasmids confirmed the strong homologies to the xyl genes of pWW53 and pWW0. However, several recombinations were discovered within the upper pathway operons of the pSVS plasmids and pWW0. The main genetic mechanisms which are thought to have resulted in the present-day configuration of the xyl operons are discussed in light of the diversity analysis carried out on the pSVS plasmids. PMID:10877777
Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.
2017-01-01
Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases. PMID:28117401
Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity
Farsi, Zohreh; Rammner, Burkhard; Woehler, Andrew; Lafer, Eileen M; Mim, Carsten; Jahn, Reinhard
2018-01-01
Newly-formed synaptic vesicles (SVs) are rapidly acidified by vacuolar adenosine triphosphatases (vATPases), generating a proton electrochemical gradient that drives neurotransmitter loading. Clathrin-mediated endocytosis is needed for the formation of new SVs, yet it is unclear when endocytosed vesicles acidify and refill at the synapse. Here, we isolated clathrin-coated vesicles (CCVs) from mouse brain to measure their acidification directly at the single vesicle level. We observed that the ATP-induced acidification of CCVs was strikingly reduced in comparison to SVs. Remarkably, when the coat was removed from CCVs, uncoated vesicles regained ATP-dependent acidification, demonstrating that CCVs contain the functional vATPase, yet its function is inhibited by the clathrin coat. Considering the known structures of the vATPase and clathrin coat, we propose a model in which the formation of the coat surrounds the vATPase and blocks its activity. Such inhibition is likely fundamental for the proper timing of SV refilling. PMID:29652249
Mapping and phasing of structural variation in patient genomes using nanopore sequencing.
Cretu Stancu, Mircea; van Roosmalen, Markus J; Renkens, Ivo; Nieboer, Marleen M; Middelkamp, Sjors; de Ligt, Joep; Pregno, Giulia; Giachino, Daniela; Mandrile, Giorgia; Espejo Valle-Inclan, Jose; Korzelius, Jerome; de Bruijn, Ewart; Cuppen, Edwin; Talkowski, Michael E; Marschall, Tobias; de Ridder, Jeroen; Kloosterman, Wigard P
2017-11-06
Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.
Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun
2016-01-01
An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. PMID:26833260
Habibollahi, Peiman; Shin, Benjamin; Shamchi, Sara P; Wachtel, Heather; Fraker, Douglas L; Trerotola, Scott O
2018-01-01
Parathyroid venous sampling (PAVS) is usually reserved for patients with persistent or recurrent hyperparathyroidism after parathyroidectomy with inconclusive noninvasive imaging studies. A retrospective study was performed to evaluate the diagnostic efficacy of super-selective PAVS (SSVS) in patients needing revision neck surgery with inconclusive imaging. Patients undergoing PAVS between 2005 and 2016 due to persistent or recurrent hyperparathyroidism following surgery were reviewed. PAVS was performed in all patients using super-selective technique. Single-value measurements within central neck veins performed as part of super-selective PAVS were used to simulate selective venous sampling (SVS) and allow for comparison to data, which might be obtained in a non-super-selective approach. 32 patients (mean age 51 ± 15 years; 8 men and 24 women) met inclusion and exclusion criteria. The sensitivity and positive predictive value (PPV) of SSVS for localizing the source of elevated PTH to a limited area in the neck or chest was 96 and 84%, respectively. Simulated SVS, on the other hand, had a sensitivity of 28% and a PPV of 89% based on the predefined gold standard. SSVS had a significantly higher sensitivity compared to simulated SVS (p < 0.001). SSVS is highly effective in localizing the source of hyperparathyroidism in patients undergoing revision surgery for hyperparathyroidism in whom noninvasive imaging studies are inconclusive. SSVS data had also markedly higher sensitivity for localizing disease in these patients compared to simulated SVS.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
Secular Variation in Slip (Invited)
NASA Astrophysics Data System (ADS)
Cowgill, E.; Gold, R. D.
2010-12-01
Faults show temporal variations in slip rate at time scales ranging from the hours following a major rupture to the millions of years over which plate boundaries reorganize. One such behavior is secular variation in slip (SVS), which we define as a pulse of accelerated strain release along a single fault that occurs at a frequency that is > 1 order of magnitude longer than the recurrence interval of earthquakes within the pulse. Although numerous mechanical models have been proposed to explain SVS, it has proven much harder to measure long (5-500 kyr) records of fault displacement as a function of time. Such fault-slip histories may be obtained from morphochronologic data, which are measurements of offset and age obtained from faulted landforms. Here we describe slip-history modeling of morphochronologic data and show how this method holds promise for obtaining long records of fault slip. In detail we place SVS in the context of other types of time-varying fault-slip phenomena, explain the importance of measuring fault-slip histories, summarize models proposed to explain SVS, review current approaches for measuring SVS in the geologic record, and illustrate the slip-history modeling approach we advocate here using data from the active, left-slip Altyn Tagh fault in NW Tibet. In addition to SVS, other types of temporal variation in fault slip include post-seismic transients, discrepancies between geologic slip rates and those derived from geodetic and/or paleoseismic data, and single changes in slip rate resulting from plate reorganization. Investigating secular variation in slip is important for advancing understanding of long-term continental deformation, fault mechanics, and seismic risk. Mechanical models producing such behavior include self-driven mode switching, changes in pore-fluid pressure, viscoelasticity, postseismic reloading, and changes in local surface loads (e.g., ice sheets, large lakes, etc.) among others. However, a key problem in testing these models is the paucity of long records of fault slip. Paleoseismic data are unlikely to yield such histories because measurements of the slip associated with each event are generally unavailable and long records require large accumulated offsets, which can result in structural duplication or omission of the stratigraphic records of events. In contrast, morphochronologic data capture both the age and offset of individual piercing points, although this approach generally does not resolve individual earthquake events. Because the uncertainties in both age and offset are generally large (5-15%) for individual markers, SVS is best resolved by obtaining suites of such measurements, in which case the errors can be used to reduce the range of slip histories common to all such data points. A suite of such data from the central Altyn Tagh fault reveals a pulse of accelerated strain release in the mid Holocene, with ~20 m of slip being released from ~6.7 to ~5.9 ka at a short-term rate (~28 mm/yr) that is 3 times greater than the average rate (~9 mm/yr). We interpret this pulse to represent a cluster of two to six, Mw > 7.2 earthquakes. To our knowledge, this is the first possible earthquake cluster detected using morphochronologic techniques.
Armstrong, Tess; Ly, Karrie V; Murthy, Smruthi; Ghahremani, Shahnaz; Kim, Grace Hyun J; Calkins, Kara L; Wu, Holden H
2018-05-04
In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children. This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability. Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MD within ). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρ c ) and Bland-Altman analysis (mean difference). P<0.05 was considered significant. In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρ c =0.994, and r=0.997 and ρ c =0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MD within =0.25% for PDFF. In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.
Singh, Gautam K.; Cupps, Brian; Pasque, Michael; Woodard, Pamela K.; Holland, Mark R.; Ludomirsky, Achiau
2013-01-01
Background Myocardial strain is a sensitive measure of ventricular systolic function. Two-dimensional speckle-tracking echocardiography (2DSE) is an angle-independent method for strain measurement but has not been validated in pediatric subjects. We evaluated the accuracy and reproducibility of 2DSE-measured strain against reference tagged MRI-measured strain in pediatric subjects with normal hearts and those with single ventricle (SV) of left ventricle (LV) morphology s/p Fontan procedure. Methods Peak systolic circumferential (CS) and longitudinal (LS) strains in segments (n = 16) of LVs in age and BSA matched 20 healthy and 12 pediatric subjects with tricuspid atresia s/p Fontan procedure were measured by 2DSE and tagged MRI. Average (global) and regional segmental strains measured by two methods were compared using Spearman and Bland-Altman analyses. Results 2DSE and tagged MRI measured global strains demonstrated close agreements, which were better for LS than CS and in normal LVs than in SVs (95% limits of agreement: +0.0% to +3.12%, −2.48 % to +1.08%, −4.6% to +1.8% and −3.6% to +1.8% respectively). There was variability in agreement between regional strains with wider limits in apical than in basal regions in normal LVs and heterogeneous in SVs. The strain values were significantly (p < 0.05) higher in normal LVs than in SVs except for basal LSs, which were similar in both cohorts. The regional strains in normal LVs demonstrated an apico-basal magnitude gradient whereas SVs showed heterogeneity. The reproducibility was the most robust for images obtained with frame rates between 60 and 90 frame/sec; global LS in both cohorts; and basal strains in normal LVs. Conclusions 2DSE-measured strains agree with MRI-measured strain globally but vary regionally particularly in SVs. Global strain may be more robust tool for the cardiac function evaluation than regional strain in SV physiology. The reliability of 2DSE measured strain is affected by the frame rate, nature of strain, and ventricular geometry. PMID:20850945
Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A
2010-06-01
The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.
NASA Astrophysics Data System (ADS)
Akhbardeh, Alireza; Junnila, Sakari; Koivuluoma, Mikko; Koivistoinen, Teemu; Värri, Alpo
2006-12-01
As we know, singular value decomposition (SVD) is designed for computing singular values (SVs) of a matrix. Then, if it is used for finding SVs of an [InlineEquation not available: see fulltext.]-by-1 or 1-by- [InlineEquation not available: see fulltext.] array with elements representing samples of a signal, it will return only one singular value that is not enough to express the whole signal. To overcome this problem, we designed a new kind of the feature extraction method which we call ''time-frequency moments singular value decomposition (TFM-SVD).'' In this new method, we use statistical features of time series as well as frequency series (Fourier transform of the signal). This information is then extracted into a certain matrix with a fixed structure and the SVs of that matrix are sought. This transform can be used as a preprocessing stage in pattern clustering methods. The results in using it indicate that the performance of a combined system including this transform and classifiers is comparable with the performance of using other feature extraction methods such as wavelet transforms. To evaluate TFM-SVD, we applied this new method and artificial neural networks (ANNs) for ballistocardiogram (BCG) data clustering to look for probable heart disease of six test subjects. BCG from the test subjects was recorded using a chair-like ballistocardiograph, developed in our project. This kind of device combined with automated recording and analysis would be suitable for use in many places, such as home, office, and so forth. The results show that the method has high performance and it is almost insensitive to BCG waveform latency or nonlinear disturbance.
Morrow, Isabel C.; Harper, Callista B.
2016-01-01
Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings. PMID:27810917
Integration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals
Cousin, Michael A.
2017-01-01
Central nerve terminals contain a limited number of synaptic vesicles (SVs) which mediate the essential process of neurotransmitter release during their activity-dependent fusion. The rapid and accurate formation of new SVs with the appropriate cargo is essential to maintain neurotransmission in mammalian brain. Generating SVs containing the correct SV cargo with the appropriate stoichiometry is a significant challenge, especially when multiple modes of endocytosis exist in central nerve terminals, which occur at different locations within the nerve terminals. These endocytosis modes include ultrafast endocytosis, clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) which are triggered by specific patterns of neuronal activity. This review article will assess the evidence for the role of classical adaptor protein complexes in SV retrieval, discuss the role of monomeric adaptors and how interactions between specific SV cargoes can facilitate retrieval. In addition it will consider the evidence for preassembled plasma membrane cargo complexes and their role in facilitating these endocytosis modes. Finally it will present a unifying model for cargo retrieval at the presynapse, which integrates endocytosis modes in time and space. PMID:28824381
Primary Synovial Sarcoma of the Thyroid Gland: Case Report and Review of the Literature
Boudin, Laurys; Fakhry, Nicolas; Chetaille, Bruno; Perrot, Delphine; Nguyen, Anh Tuan; Daidj, Nassima; Guiramand, Jérôme; Sarran, Anthony; Moureau-Zabotto, Laurence; Bertucci, François
2014-01-01
Synovial sarcoma (SVS) of the thyroid gland is exceedingly rare. We report the case of a 55-year-old man with a rapidly growing 7-cm neck mass. Because of suspicion of anaplastic thyroid carcinoma, a total thyroidectomy was planned, without preoperative cytology. During surgery, the tumor ruptured, leading to fragmented and incomplete resection. The morphological and immunohistochemical aspects suggested thyroid SVS, which was confirmed by fluorescent in situ hybridization (SYT gene rearrangement). The patient experienced immediate local relapse in close contact with large vessels and the thyroid cartilage and was referred to our institution. Doxorubicin-ifosfamide chemotherapy led to a minor response that authorized secondary conservative surgery. Because of microscopically incomplete resection, adjuvant radiotherapy was chosen and is ongoing 10 months after initial surgery. The prognosis of thyroid SVS is associated with a high risk for local and metastatic relapses. Pretreatment diagnosis is fundamental and may benefit from molecular analysis. Margin-free monobloc surgical excision is the best chance for cure, but adjuvant chemotherapy and radiotherapy deserve to be discussed. PMID:24575008
Primary synovial sarcoma of the thyroid gland: case report and review of the literature.
Boudin, Laurys; Fakhry, Nicolas; Chetaille, Bruno; Perrot, Delphine; Nguyen, Anh Tuan; Daidj, Nassima; Guiramand, Jérôme; Sarran, Anthony; Moureau-Zabotto, Laurence; Bertucci, François
2014-01-01
Synovial sarcoma (SVS) of the thyroid gland is exceedingly rare. We report the case of a 55-year-old man with a rapidly growing 7-cm neck mass. Because of suspicion of anaplastic thyroid carcinoma, a total thyroidectomy was planned, without preoperative cytology. During surgery, the tumor ruptured, leading to fragmented and incomplete resection. The morphological and immunohistochemical aspects suggested thyroid SVS, which was confirmed by fluorescent in situ hybridization (SYT gene rearrangement). The patient experienced immediate local relapse in close contact with large vessels and the thyroid cartilage and was referred to our institution. Doxorubicin-ifosfamide chemotherapy led to a minor response that authorized secondary conservative surgery. Because of microscopically incomplete resection, adjuvant radiotherapy was chosen and is ongoing 10 months after initial surgery. The prognosis of thyroid SVS is associated with a high risk for local and metastatic relapses. Pretreatment diagnosis is fundamental and may benefit from molecular analysis. Margin-free monobloc surgical excision is the best chance for cure, but adjuvant chemotherapy and radiotherapy deserve to be discussed.
Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin
2015-01-01
Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937
Wu, Yumei; O'Toole, Eileen T; Girard, Martine; Ritter, Brigitte; Messa, Mirko; Liu, Xinran; McPherson, Peter S; Ferguson, Shawn M; De Camilli, Pietro
2014-01-01
The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles (‘bulk’ endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis (CME) is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process. Massive formation of bulk endosomes was not defective, but rather enhanced, in the absence of dynamin 1 and 3. The subsequent conversion of bulk endosomes into SVs was not accompanied by the accumulation of clathrin coated buds on their surface and this process proceeded even after further clathrin knock-down, suggesting its independence of clathrin. These findings support the existence of a pathway for SV reformation that bypasses the requirement for clathrin and dynamin 1/3 and that operates during intense synaptic activity. DOI: http://dx.doi.org/10.7554/eLife.01621.001 PMID:24963135
Yamagata, Koichi; Yamanishi, Ayako; Kokubu, Chikara; Takeda, Junji; Sese, Jun
2016-05-05
An important challenge in cancer genomics is precise detection of structural variations (SVs) by high-throughput short-read sequencing, which is hampered by the high false discovery rates of existing analysis tools. Here, we propose an accurate SV detection method named COSMOS, which compares the statistics of the mapped read pairs in tumor samples with isogenic normal control samples in a distinct asymmetric manner. COSMOS also prioritizes the candidate SVs using strand-specific read-depth information. Performance tests on modeled tumor genomes revealed that COSMOS outperformed existing methods in terms of F-measure. We also applied COSMOS to an experimental mouse cell-based model, in which SVs were induced by genome engineering and gamma-ray irradiation, followed by polymerase chain reaction-based confirmation. The precision of COSMOS was 84.5%, while the next best existing method was 70.4%. Moreover, the sensitivity of COSMOS was the highest, indicating that COSMOS has great potential for cancer genome analysis. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sloan, G C; Hayward, T L; Allamandola, L J; Bregman, J D; DeVito, B; Hudgins, D M
1999-03-01
Long-slit 8-13 micrometers spectroscopy of the nebula around NGC 1333 SVS 3 reveals spatial variations in the strength and shape of emission features that are probably produced by polycyclic aromatic hydrocarbons (PAHs). Close to SVS 3, the 11.2 micrometers feature develops an excess at approximately 10.8-11.0 micrometers and a feature appears at approximately 10 micrometers. These features disappear with increasing distance from the central source, and they show striking similarities to recent laboratory data of PAH cations, providing the first identification of emission features arising specifically from ionized PAHs in the interstellar medium.
Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses
Sinha, Raunak; Ahmed, Saheeb; Jahn, Reinhard; Klingauf, Jurgen
2011-01-01
Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission. PMID:21844343
Shirao, Satoshi; Yoneda, Hiroshi; Ishihara, Hideyuki; Kajiwara, Koji; Suzuki, Michiyasu
2011-01-01
Background: There is a lack of unified information on diagnosis and treatment of cerebral vasospasm (CV) after subarachnoid hemorrhage (SAH) among the hospitals in Japan. Thus, the aim of the study was to define the current practice in this area based on a survey by Japanese neurosurgeons. Methods: A survey on diagnosis and treatment of CV was sent to 414 hospitals each of which performs >100 neurosurgeries annually. Results: Responses were received from 240 hospitals (58.0%). Because accurate criteria for diagnosis of symptomatic vasospasm (SVS) were used in only 33.8% of the hospitals, we proposed a clinical definition of SVS that was approved at the 25th Spasm Symposium (Consensus 2009). This definition is simplified as follows: (1) the presence of neurological worsening; (2) no other identifiable cause of neurological worsening; and (3) confirmation of vasospasm by medical examinations. The results also showed that the Fisher CT scale is used differently for patients with ICH or IVH, with 41.3% of cases with ICH/IVH based on SAH that met Fisher criteria classified into Fisher group 1, 2 or 3, and 46.3% classified into Fisher group 4. There were no major differences in prophylactic therapies of CV and therapy for cerebral ischemia among the hospitals. Endovascular treatment for vasospasm was performed in most hospitals (78.7%); however, the criteria differed among the hospitals: (1) angiographic vasospasm and SVS appeared (37.9%), (2) only when aggressive therapy was ineffective (41.4%). Conclusion: We established a clinical definition of SVS based on the results of this survey (Consensus 2009). PMID:21748027
Zhao, Chenguang; Bolan, Patrick J; Royce, Melanie; Lakkadi, Navneeth; Eberhardt, Steven; Sillerud, Laurel; Lee, Sang-Joon; Posse, Stefan
2012-11-01
To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). The two-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (∼7 min). A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48 ± 0.3 mmol/kg using SVS. Comparable results were obtained in two subjects using conventional MRSI. High lipid content in the spectra of nine tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ∼0.7 mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies. Copyright © 2012 Wiley Periodicals, Inc.
Zhao, Chenguang; Bolan, Patrick J.; Royce, Melanie; Lakkadi, Navneeth; Eberhardt, Steven; Sillerud, Laurel; Lee, Sang-Joon; Posse, Stefan
2012-01-01
Purpose To quantitatively measure tCho levels in healthy breasts using Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI). Material and Methods The 2-dimensional mapping of tCho at 3 Tesla across an entire breast slice using PEPSI and a hybrid spectral quantification method based on LCModel fitting and integration of tCho using the fitted spectrum were developed. This method was validated in 19 healthy females and compared with single voxel spectroscopy (SVS) and with PRESS prelocalized conventional Magnetic Resonance Spectroscopic Imaging (MRSI) using identical voxel size (8 cc) and similar scan times (~7 min). Results A tCho peak with a signal to noise ratio larger than 2 was detected in 10 subjects using both PEPSI and SVS. The average tCho concentration in these subjects was 0.45 ± 0.2 mmol/kg using PEPSI and 0.48±0.3 mmol/kg using SVS. Comparable results were obtained in 2 subjects using conventional MRSI. High lipid content in the spectra of 9 tCho negative subjects was associated with spectral line broadening of more than 26 Hz, which made tCho detection impossible. Conventional MRSI with PRESS prelocalization in glandular tissue in two of these subjects yielded tCho concentrations comparable to PEPSI. Conclusion The detection sensitivity of PEPSI is comparable to SVS and conventional PRESS-MRSI. PEPSI can be potentially used in the evaluation of tCho in breast cancer. A tCho threshold concentration value of ~0.7mmol/kg might be used to differentiate between cancerous and healthy (or benign) breast tissues based on this work and previous studies. PMID:22782667
Clinical and genetic features of cervical dystonia in a large multicenter cohort
Vemula, Satya R.; Xiao, Jianfeng; Thompson, Misty M.; Perlmutter, Joel S.; Wright, Laura J.; Jinnah, H.A.; Rosen, Ami R.; Hedera, Peter; Comella, Cynthia L.; Weissbach, Anne; Junker, Johanna; Jankovic, Joseph; Barbano, Richard L.; Reich, Stephen G.; Rodriguez, Ramon L.; Berman, Brian D.; Chouinard, Sylvain; Severt, Lawrence; Agarwal, Pinky; Stover, Natividad P.
2016-01-01
Objective: To characterize the clinical and genetic features of cervical dystonia (CD). Methods: Participants enrolled in the Dystonia Coalition biorepository (NCT01373424) with initial manifestation as CD were included in this study (n = 1,000). Data intake included demographics, family history, and the Global Dystonia Rating Scale. Participants were screened for sequence variants (SVs) in GNAL, THAP1, and Exon 5 of TOR1A. Results: The majority of participants were Caucasian (95%) and female (75%). The mean age at onset and disease duration were 45.5 ± 13.6 and 14.6 ± 11.8 years, respectively. At the time of assessment, 68.5% had involvement limited to the neck, shoulder(s), and proximal arm(s), whereas 47.4% had dystonia limited to the neck. The remaining 31.5% of the individuals exhibited more extensive anatomical spread. A head tremor was noted in 62% of the patients. Head tremor and laryngeal dystonia were more common in females. Psychiatric comorbidities, mainly depression and anxiety, were reported by 32% of the participants and were more common in females. Family histories of dystonia, parkinsonian disorder, and tremor were present in 14%, 11%, and 29% of the patients, respectively. Pathogenic or likely pathogenic SVs in THAP1, TOR1A, and GNAL were identified in 8 participants (0.8%). Two individuals harbored novel missense SVs in Exon 5 of TOR1A. Synonymous and noncoding SVs in THAP1 and GNAL were identified in 4% of the cohort. Conclusions: Head tremor, laryngeal dystonia, and psychiatric comorbidities are more common in female participants with CD. Coding and noncoding variants in GNAL, THAP1, and TOR1A make small contributions to the pathogenesis of CD. PMID:27123488
Anticancer β-hairpin peptides: membrane-induced folding triggers activity
Sinthuvanich, Chomdao; Veiga, Ana Salomé; Gupta, Kshitij; Gaspar, Diana; Blumenthal, Robert; Schneider, Joel P.
2012-01-01
Several cationic antimicrobial peptides (AMPs) have recently been shown to display anticancer activity via a mechanism that usually entails the disruption of cancer cell membranes. In this work, we designed an 18-residue anticancer peptide, SVS-1, whose mechanism of action is designed to take advantage of the aberrant lipid composition presented on the outer leaflet of cancer cell membranes, which makes the surface of these cells relatively electronegative relative to non-cancerous cells. SVS-1 is designed to remain unfolded and inactive in aqueous solution but preferentially fold at the surface of cancer cells, adopting an amphiphilic β-hairpin structure capable of membrane disruption. Membrane-induced folding is driven by electrostatic interaction between the peptide and the negatively charge membrane surface of cancer cells. SVS-1 is active against a variety of cancer cell lines such as A549 (lung carcinoma), KB (epidermal carcinoma), MCF-7 (breast carcinoma) and MDA-MB-436 (breast carcinoma). However, the cytotoxicity towards non-cancerous cells having typical membrane compositions, such as HUVEC and erythrocytes, is low. CD spectroscopy, appropriately designed peptide controls, cell-based studies, liposome leakage assays and electron microscopy support the intended mechanism of action, which leads to preferential killing of cancerous cells. PMID:22413859
Darling, Jeremy D.; McCallum, John C.; Soden, Peter A.; Guzman, Raul J.; Wyers, Mark C.; Hamdan, Allen D.; Verhagen, Hence J.; Schermerhorn, Marc L.
2017-01-01
OBJECTIVES The SVS WIfI (wound, ischemia, foot infection) classification system was proposed to predict 1-year amputation risk and potential benefit from revascularization. Our goal was to evaluate the predictive ability of this scale in a “real world” selection of patients undergoing a first time lower extremity revascularization for chronic limb threatening ischemia (CLTI). METHODS From 2005 to 2014, 1,336 limbs underwent a first time lower extremity revascularization for CLTI, of which 992 had sufficient data to classify all three WIfI components (wound, ischemia, and foot infection). Limbs were stratified into the SVS WIfI clinical stages (from 1 to 4) for 1-year amputation risk estimation, as well as a novel WIfI composite score from 0 to 9 (that weighs all WIfI variables equally) and a novel WIfI mean score from 0 to 3 (that can incorporate limbs missing any of the three WIfI components). Outcomes included major amputation, RAS events (revascularization, major amputation, or stenosis [>3.5× step-up by duplex]), and mortality. Predictors were identified using Cox regression models and Kaplan-Meier survival estimates. RESULTS Of the 1,336 first-time procedures performed, 992 limbs were classified in all three WIfI components (524 endovascular, 468 bypass; 26% rest pain, 74% tissue loss). Cox regression demonstrated that a one-unit increase in the WIfI clinical stage increases the risk of major amputation and RAS events in all limbs (Hazard Ratio [HR] 2.4; 95% Confidence Interval [CI] 1.7–3.2 and 1.2 [1.1–1.3], respectively). Separate models of the entire cohort, a bypass only cohort, and an endovascular only cohort showed that a one-unit increase in the WIfI mean score is associated with an increase in the risk of major amputation (all three cohorts; 5.3 [3.6–6.8], 4.1 [2.4–6.9], and 6.6 [3.8–11.6], respectively) and RAS events (all three cohorts; 1.7 [1.4–2.0], 1.9 [1.4–2.6], and 1.4 [1.1–1.9], respectively). The novel WIfI composite and WIfI mean scores were the only consistent predictors of mortality among the three cohorts, with the WIfI mean score proving most strongly predictive in the entire cohort (1.4 [1.1–1.7]), the bypass only cohort (1.5 [1.1–1.9]) and the endovascular only cohort (1.4 [1.0–1.8]). Although the individual WIfI wound component was able to predict mortality among all patients (1.1 [1.0–1.2]) and bypass only patients (1.2 [1.1–1.3]), no other individual WIfI component, nor the WIfI clinical stage, were able to significantly predict mortality among any cohort. CONCLUSION This study supports the ability of the SVS WIfI classification system to predict major amputation; however, the novel WIfI mean and WIfI composite scores predict amputation, RAS events, and mortality more consistently than any other current WIfI scoring system. The WIfI mean score allows inclusion of all limbs, and both novel scoring systems are easier to conceptualize, give equal weight to each WIfI component, and may provide clinicians more effective comparisons in outcomes between patients. PMID:28073665
Peptide mediated intracellular delivery of semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Kapur, Anshika; Safi, Malak; Domitrovic, Tatiana; Medina, Scott; Palui, Goutam; Johnson, John E.; Schneider, Joel; Mattoussi, Hedi
2017-02-01
As control over the growth, stabilization and functionalization of inorganic nanoparticles continue to advance, interest in integrating these materials with biological systems has steadily grown in the past decade. Much attention has been directed towards identifying effective approaches to promote cytosolic internalization of the nanoparticles while avoiding endocytosis. We describe the use of NωV virus derived gamma peptide and a chemically synthesized anticancer peptide, SVS-1 peptide, as vehicles to promote the non-endocytic uptake of luminescent quantum dots (QDs) inside live cells. The gamma peptide is expressed in E. coli as a fusion protein with poly-his tagged MBP (His-MBP-γ) to allow self-assembly onto QDs via metal-histidine conjugation. Conversely, the N-terminal cysteine residue of the SVS-1 peptide is attached to the functionalized QDs via covalent coupling chemistry. Epi-fluorescence microscopy images show that the QD-conjugate staining is distributed throughout the cytoplasm of cell cultures. Additionally, the QD staining does not show co-localization with transferrin-dye-labelled endosomes or DAPI stained nuclei. The QD uptake observed in the presence of physical and pharmacological endocytosis inhibitors further suggest that a physical translocation of QDs through the cell membrane is the driving mechanism for the uptake.
Assembly and diploid architecture of an individual human genome via single-molecule technologies
Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali
2015-01-01
We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality. PMID:26121404
Assembly and diploid architecture of an individual human genome via single-molecule technologies.
Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali
2015-08-01
We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.
Clearance Analysis of CTC2 (on ELC4) to S-TRRJ HRS Radiator Rotation Envelope
NASA Technical Reports Server (NTRS)
Liddle, Donn
2014-01-01
In response to the planned retirement of the Space Shuttle Program, International Space Station (ISS) management began stockpiling spare parts on the ISS. Many of the larger orbital replacement units were stored on the Expedite the Processing of Experiments to Space Station (EXPRESS) Logistics Carriers (ELCs) mounted on the end of the S3 and P3 truss segments, immediately outboard of the Thermal Radiator Rotary Joints (TRRJs) and their attached radiators. In an August 2009 computer-aided design (CAD) assessment, it was determined that mounting the Cargo Transport Container (CTC) 2 on the inboard face of ELC4 as planned would create insufficient clearance between the CTC2 and the rotational envelope of the radiators when the TRRJs were rotated to a gamma angle of 35.0 degrees. The true clearance would depend on how the Unpressurized Cargo Carrier Attachment System (UCCAS) was mounted to the S3 truss and how the ELC4 was attached to it. If the plane of the UCCAS attachment points were tilted even slightly inboard, it would significantly change the clearance between CTC2 and the Starboard TRRJ (S-TRRJ) radiators. Additionally, since CTC2 would be covered in multilayer insulation (MLI), the true outer profile of CTC2 was not captured in the CAD models used for the clearance assessment. It was possible that, even if the S-TRRJ radiators cleared CTC2, they could snag the MLI covering. In the fall of 2010, the Image Science and Analysis Group (ISAG) was asked to perform an on-orbit clearance analysis to determine the location of CTC2 on ELC4 and the S-TRRJ radiators at the angle of closest approach so that a positive clearance could be assured. To provide the measurements as quickly as possible to aid in the assessment, it was decided that the clearance analysis would be broken into two phases. Phase I: The location and orientation of the UCCAS fittings, which support and hold the ELC4 in place, would be measured relative to the ISS Analytical Coordinate System (ISSACS) as defined by nine preexisting Space Vision System (SVS) targets affixed to the forward/zenith side of the S1 and S3 truss segments. The location of the outboard edge of the S-TRRJ radiator would also be measured when positioned at the angle of closest approach to CTC2 (gamma = 35.0 degrees). This data would allow the Digital Pre-Assembly Group to predict how the ELC4 would sit on the UCCAS and how that would translate into the clearance between CTC2 and the S-TRRJ radiators. Phase II: After the ELC4 was delivered and installed into the UCCAS, the position of the CTC2 mounting plate on the inboard face of ELC4, would be measured in the ISSACS coordinate system relative to the SVS control points used in Phase I. Although CTC2 would not yet be mounted on ELC4, the working envelope of CTC2 could be mathematically added to the measured position of ELC4 to produce a best estimate for CTC2's mounted location. Comparing CTC2's best estimated location to the S-TRRJ radiator (measured in Phase I); relative to the ISSACS coordinate system, would provide a direct measurement of the expected clearance. Due to the impending delivery of ELC4 (scheduled for January 2011), planning for the Phase I clearance analysis began immediately. Using the Dynamic Onboard Ubiquitous Graphics (DOUG) program, ISAG designed a way to acquire images of the SVS control points on truss segments S1 and S3, the aft facing edge of the S-TRRJ Heat Rejection Subsystem (HRS) radiator, and the three UCCAS latch mechanisms mounted on the zenith face of the S3 truss using the Space Station Remote Manipulator System (SSRMS). To minimize the number of SSRMS movements, the Special Purpose Dexterous Manipulator (SPDM) would be attached to the SSRMS. This would make it possible to park the SPDM in one position and acquire multiple images by changing the viewing orientation of the SPDM body cameras using the pan/tilt units on which they are mounted. Using this implementation concept, ISAG identified four SSRMS/SPDM positions from which the majority of the needed imagery could be acquired. Five additional images would be acquired using the CP-3 external ISS camera mounted on the S1 truss immediately inboard of ELC4. Based on a photogrammetric simulation, it was estimated that the measured location of the HRS radiator and UCCAS latch points would be accurate to about 0.3 in. in each of the three axes relative to ISSACS. Working with ROBO, ISAG collected 78 images of the ISS December 29, 2010. From this imagery, the best 40 were selected for use in the analysis process. The images were radiometrically enhanced to improve color and contrast and loaded into the FotoG analysis software along with the camera parameters and control data, which consisted of the coordinates for the nine SVS targets on the S1 and S3 trusses in the ISSACS coordinate system.
Alternative role of HuD splicing variants in neuronal differentiation.
Hayashi, Satoru; Yano, Masato; Igarashi, Mana; Okano, Hirotaka James; Okano, Hideyuki
2015-03-01
HuD is a neuronal RNA-binding protein that plays an important role in neuronal differentiation of the nervous system. HuD has been reported to have three RNA recognition motifs (RRMs) and three splice variants (SVs) that differ in their amino acid sequences between RRM2 and RRM3. This study investigates whether these SVs have specific roles in neuronal differentiation. In primary neural epithelial cells under differentiating conditions, HuD splice variant 1 (HuD-sv1), which is a general form, and HuD-sv2 were expressed at all tested times, whereas HuD-sv4 was transiently expressed at the beginning of differentiation, indicating that HuD-sv4 might play a role compared different from that of HuD-sv1. Indeed, HuD-sv4 did not promote neuronal differentiation in epithelial cells, whereas HuD-sv1 did promote neuronal differentiation. HuD-sv4 overexpression showed less neurite-inducing activity than HuD-sv1 in mouse neuroblastoma N1E-115 cells; however, HuD-sv4 showed stronger growth-arresting activity. HuD-sv1 was localized only in the cytoplasm, whereas HuD-sv4 was localized in both the cytoplasm and the nuclei. The Hu protein has been reported to be involved in translation and alternative splicing in the cytoplasm and nuclei, respectively. Consistent with this observation, HuD-sv1 showed translational activity on p21, which plays a role in growth arrest and neuronal differentiation, whereas HuD-sv4 did not. By contrast, HuD-sv4 showed stronger pre-mRNA splicing activity than did HuD-sv1 on Clasp2, which participates in cell division. Therefore, HuD SVs might play a role in controlling the timing of proliferation/differentiation switching by controlling the translation and alternative splicing of target genes. © 2014 Wiley Periodicals, Inc.
Is seminal vesiculectomy necessary in all patients with biopsy Gleason score 6?
Gofrit, Ofer N; Zorn, Kevin C; Shikanov, Sergey A; Zagaja, Gregory P; Shalhav, Arieh L
2009-04-01
Radiotherapists are excluding the seminal vesicles (SVs) from their target volume in cases of low-risk prostate cancer. However, these glands are routinely removed in every radical prostatectomy. Dissection of the SVs can damage the pelvic plexus, compromise trigonal, bladder neck, and cavernosal innervation, and contribute to delayed gain of continence and erectile function. In this study we evaluated the oncological benefit of routine removal of the SVs in currently operated patients. A total of 1003 patients (mean age, 59.7 years) with prostate cancer underwent robot-assisted radical prostatectomy between February 2003 and July 2007. Seminal vesicle invasion (SVI) was found in 46 of the operated patients (4.6%). Biopsy Gleason score (BGS), preoperative serum PSA, clinical tumor stage, percent of positive cores, and maximal percentage of cancer in a core had all a significant impact on the risk of SVI. Only 4/634 patients (0.6%) with BGS < or =6 suffered from SVI, as opposed to 42/369 (11.4%) with higher Gleason scores. Seminal vesiculectomy does not benefit more than 99% of the patients with BGS < or =6. Considering the potential neural and vascular damage associated with seminal vesiculectomy, we suggest that routine removal of these glands during radical prostatectomy in these cases is not necessary.
Mu, John C.; Tootoonchi Afshar, Pegah; Mohiyuddin, Marghoob; Chen, Xi; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B.; Wong, Wing H.; Lam, Hugo Y. K.
2015-01-01
A high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms. It was a necessary effort to completely reanalyze the HuRef genome as its previously published variants were mostly reported five years ago, suffering from compatibility, organization, and accuracy issues that prevent their direct use in benchmarking. Our extensive analysis and validation resulted in a gold set with high specificity and sensitivity. In contrast to the current gold sets of the NA12878 or HS1011 genomes, our gold set is the first that includes small variants, deletion SVs and insertion SVs up to a hundred thousand base-pairs. We demonstrate the utility of our HuRef gold set to benchmark several published SV detection tools. PMID:26412485
1995-11-01
Surgical video systems (SVSs), which typically consist of a video camera attached to an optical endoscope, a video processor, a light source, and a video monitor, are now being used to perform a significant number of minimally invasive surgical procedures. SVSs offer several advantages (e.g., multiple viewer visualization of the surgical site, increased clinician comfort) over nonvideo systems and have increased the practicality and convenience of minimally invasive surgery (MIS). Currently, SVSs are used by hospitals in their general, obstetric/gynecologic, orthopedic, thoracic, and urologic procedures, as well as in other specialties for which MIS is feasible. In this study, we evaluated 19 SVSs from 10 manufacturers, focusing on their use in laparoscopic applications in general surgery. We based our ratings on the usefulness of each system's video performance and features in helping clinicians provide safe and efficacious laparoscopic surgery. We rated 18 of the systems Acceptable because of their overall good performance and features. We rated 1 system Conditionally Acceptable because, compared with the other evaluated systems, this SVS presents a greater risk of thermal injury resulting from excessive heating at the distal tip of the laparoscope. Readers should be aware that our test results, conclusions, and ratings apply only to the specific systems and components tested in this Evaluation. In addition, although our discussion focuses on the laparoscopic application of SVSs, much of the information in this study also applies to other MIS applications, and the evaluated devices can be used in a variety of surgical procedures. To help hospitals gain the perspectives necessary to assess the appropriateness of specific SVSs to ensure that the needs of their patients, as well as the expectations of their clinicians, will be satisfied, we have included a Selection and Purchasing Guide that can be used as a supplement to our Evaluation findings. We have also included a Glossary of relevant terminology and the supplementary article, "Fiberoptic Illumination Systems and the Risk of Burns or Fire during Endoscopic Procedures," which addresses a safety concern with the use of these devices. While we made every effort to present the most current information, readers should recognize that this is a rapidly evolving technology, and developments occurring after our study was complete may not be reflected in the text. For additional information on topics related to this study, refer to the following Health Devices articles: (1) our Guidance Article, "Surgical Video Systems Used in Laparoscopy," 24(1), January 1995, which serves as an introduction to SVS terminology and includes a discussion of the significance of many SVS specifications; (2) our Evaluation, "Video Colonoscope Systems," 23(5), May 1994, which includes a detailed overview of video endoscopic applications and technology; and (3) our Evaluations of laparoscopic insufflators (21[5], May 1992, and 24[7], July 1995), which address issues related to the creation of a viewing and working space inside the peritoneal cavity to facilitate visualization in laparoscopic procedures.
An alternative ionospheric correction model for global navigation satellite systems
NASA Astrophysics Data System (ADS)
Hoque, M. M.; Jakowski, N.
2015-04-01
The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.
Fast Query-Optimized Kernel-Machine Classification
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; DeCoste, Dennis
2004-01-01
A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.
1986-04-01
forward modeling, with the pa- be telemetered via the ARGOS system for real - rameter changes needed to bring the predictions time evaluation, and the...integrated en ’i- rtinnental measurement svs fern. quisition system to the Winter MIZEX in I-ram To control and direct the experiment, real - time Strait...to measure, under- Electromagnetic sensing via aircraft and satellites stand, and model: will be employed in real time to identify eddy " Changes in
NASA Astrophysics Data System (ADS)
Vernaleken, Christoph; Mihalic, Lamir; Güttler, Mathias; Klingauf, Uwe
2006-05-01
Increasing traffic density on the aerodrome surface due to the continuous worldwide growth in the number of flight operations does not only cause capacity and efficiency problems, but also increases the risk of serious incidents and accidents on the airport movement area. Of these, Runway Incursions are the by far most safety-critical. In fact, the worst-ever accident in civil aviation, the collision of two Boeing B747s on Tenerife in 1977 with 583 fatalities, was caused by a Runway Incursion. Therefore, various Runway Safety programs have recently been initiated around the globe, often focusing on ground-based measures such as improved surveillance. However, as a lack of flight crew situational awareness is a key causal factor in many Runway Incursion incidents and accidents, there is a strong need for an onboard solution, which should be capable of interacting cooperatively with ground-based ATM systems, such as A-SMGCS where available. This paper defines the concept of preventive and reactive Runway Incursion avoidance and describes a Surface Movement Awareness & Alerting System (SMAAS) designed to alert the flight crew if they are at risk of infringing a runway. Both the SVS flight deck displays and the corresponding alerting algorithms utilize an ED 99A/RTCA DO-272A compliant aerodrome database, as well as airport operational, traffic and clearance data received via ADS-B or other data links, respectively. The displays provide the crew with enhanced positional, operational, clearance and traffic awareness, and they are used to visualize alerts. A future enhancement of the system will provide intelligent alerting for conflicts caused by surrounding traffic.
Endoscopy in the treatment of slit ventricle syndrome
Zheng, Jiaping; Chen, Guoqiang; Xiao, Qing; Huang, Yiyang; Guo, Yupeng
2017-01-01
The present study aimed to investigate the efficacy of endoscopy in the treatment of post-shunt placement for slit ventricle syndrome (SVS). Endoscopic surgery was performed on 18 patients with SVS between October 2004 and December 2012. Sex, age, causes of the hydrocephalus, ventricular size and imaging data were collected and analyzed. All patients were divided into two groups according to ventricular size and underwent endoscopic surgeries, including endoscopic third ventriculostomy (ETV), endoscopic aqueductoplasty and cystocisternostomy. All treated patients were observed postoperatively for a period of 2 to 3 weeks, and outpatient follow-up was subsequently scheduled for >12 months. Clinical results, including catheter adherence, shunt removal and complications, were analyzed during the follow-up period. The success rate of endoscopic surgery was indicated to be 82.7%. Syndromes caused by aqueductal stenosis in 15 patients who underwent ETV were relieved; however, syndromes in the 3 patients with cerebral cysticercosis, suprasellar arachnoid cysts, pinea larea glioma and communicating hydrocephalus, respectively, were not relieved and underwent shunt placement again. Brain parenchyma, choroid plexus and ependymal tissue were the predominant causes for catheter obstruction and the obstruction rate was indicated to be 77.8% (14/18). Complications, such as pseudobulbar paralysis, infection and intraventricular hemorrhage arose in 3 patients. The present study indicates that endoscopic treatments are effective and ETV may be considered as a recommended option in the treatment of post-shunt placement SVS in hydrocephalus patients. PMID:29042922
Darling, Jeremy D; McCallum, John C; Soden, Peter A; Meng, Yifan; Wyers, Mark C; Hamdan, Allen D; Verhagen, Hence J; Schermerhorn, Marc L
2016-09-01
The Society for Vascular Surgery (SVS) Lower Extremity Guidelines Committee has composed a new threatened lower extremity classification system that reflects the three major factors that impact amputation risk and clinical management: Wound, Ischemia, and foot Infection (WIfI). Our goal was to evaluate the predictive ability of this scale following any infrapopliteal endovascular intervention for critical limb ischemia (CLI). From 2004 to 2014, a single institution, retrospective chart review was performed at the Beth Israel Deaconess Medical Center for all patients undergoing an infrapopliteal angioplasty for CLI. Throughout these years, 673 limbs underwent an infrapopliteal endovascular intervention for tissue loss (77%), rest pain (13%), stenosis of a previously treated vessel (5%), acute limb ischemia (3%), or claudication (2%). Limbs missing a grade in any WIfI component were excluded. Limbs were stratified into clinical stages 1 to 4 based on the SVS WIfI classification for 1-year amputation risk, as well as a novel WIfI composite score from 0 to 9. Outcomes included patient functional capacity, living status, wound healing, major amputation, major adverse limb events, reintervention, major amputation, or stenosis (RAS) events (> ×3.5 step-up by duplex), amputation-free survival, and mortality. Predictors were identified using Kaplan-Meier survival estimates and Cox regression models. Of the 596 limbs with CLI, 551 were classified in all three WIfI domains on a scale of 0 (least severe) to 3 (most severe). Of these 551, 84% were treated for tissue loss and 16% for rest pain. A Cox regression model illustrated that an increase in clinical stage increases the rate of major amputation (hazard ratio [HR], 1.6; 95% confidence interval [CI], 1.1-2.3). Separate regression models showed that a one-unit increase in the WIfI composite score is associated with a decrease in wound healing (HR, 1.2; 95% CI, 1.1-1.4) and an increase in the rate of RAS events (HR, 1.2; 95% CI, 1.1-1.4) and major amputations (HR, 1.4; 95% CI, 1.2-1.8). This study supports the ability of the SVS WIfI classification system to predict 1-year amputation, RAS events, and wound healing in patients with CLI undergoing endovascular infrapopliteal revascularization procedures. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Jones, Leslie C.; Pope, Alan T.
2003-01-01
Spatial disorientation (SD) is a constant contributing factor to the rate of fatal aviation accidents. SD occurs as a result of perceptual errors that can be attributed in part to the inefficient presentation of synthetic orientation cues via the attitude indicator when external visual conditions are poor. Improvements in the design of the attitude indicator may help to eliminate instrumentation as a factor in the onset of SD. The goal of the present study was to explore several display concepts that may contribute to an improved attitude display. Specifically, the effectiveness of various display sizes, some that are used in current and some that are anticipated in future attitude displays that may incorporate Synthetic Vision Systems (SVS) concepts, was assessed. In addition, a concept known as an extended horizon line or Malcolm Horizon (MH) was applied and evaluated. Paired with the MH, the novel concept of a fixed reference line representing the central horizontal plane of the aircraft was also tested. Subjects performance on an attitude control task and secondary math workload task was measured across the various display sizes and conditions. The results, with regard to display size, confirmed the bigger is better concept, yielding better performance with the larger display sizes. A clear and significant improvement in attitude task performance was found with the addition of the extended horizon line. The extended or MH seemed to equalize attitude performance across display sizes, even for a central or foveal display as small as three inches in width.
NASA Technical Reports Server (NTRS)
Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.;
2010-01-01
The Indo-Gangetic Plain (IGP) of the northern Indian subcontinent produces anthropogenic pollution from urban, industrial and rural combustion sources nearly continuously and is affected by convection-induced winds driving desert and alluvial dust into the atmosphere during the premonsoon period. Within the IGP, the NASA Aerosol Robotic Network (AERONET) project initiated the TIGERZ measurement campaign in May 2008 with an intensive operational period from May 1 to June 23, 2008. Mesoscale spatial variability of aerosol optical depth (AOD, tau) measurements at 500mn was assessed at sites around Kanpur, India, with averages ranging from 0.31 to 0.89 for spatial variability study (SVS) deployments. Sites located downwind from the city of Kanpur indicated slightly higher average aerosol optical depth (delta Tau(sub 500)=0.03-0.09). In addition, SVS AOD area-averages were compared to the long-tenn Kanpur AERONET site data: Four SVS area-averages were within +/- 1 cr of the climatological mean of the Kanpur site, while one SVS was within 2sigma below climatology. For a SVS case using AERONET inversions, the 440-870mn Angstrom exponent of approximately 0.38, the 440-870mn absorption Angstrom exponent (AAE) of 1.15-1.53, and the sphericity parameter near zero suggested the occurrence of large, strongly absorbing, non-spherical aerosols over Kanpur (e.g., mixed black carbon and dust) as well as stronger absorption downwind of Kanpur. Furthermore, the 3km and lOkm Terra and Aqua MODIS C005 aerosol retrieval algorithms at tau(sub 550) were compared to the TIGERZ data set. Although MODIS retrievals at higher quality levels were comparable to the MODIS retrieval uncertainty, the total number of MODIS matchups (N) were reduced with subsequent quality levels (N=25, QA>=0; N=9,QA>=l; N=6, QA>=2; N=1, QA=3) over Kanpur during the premonsoon primarily due to the semi-bright surface, complex aerosol mixture and cloud-contaminated pixels. The TIGERZ 2008 data set provided a unique opportunity to measure the spatial and temporal variations of aerosol loading in the IGP. The strong aerosol absorption derived from ground-based sun/sky radiometer measurements suggested the presence of a predominately black carbon and dust mixture during the pre-monsoon period. Consistent with the elevated heat-pump hypothesis, these absorbing aerosols found across Kanpur and the greater IGP region during the pre-monsoon period likely induced regional atmospheric warming, which lead to a more rapid advance of the southwest Asian monsoon and above normal precipitation over northern India in June 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.
The Los Alamos RP-SVS Radiation Protection Services group designed and constructed a drop tower facility for TA- 55 support work. The drop mechanism was supplied by the Lansmont company in Monterey CA. Los Alamos staffers Murray Moore and Yong Tao have noticed that the system is not dropping loads correctly, and they have photographed aspects of the PDT- 80 model system. The first 10 photos show the platen loaded with a cylindrical steel bar. The next 10 photos are of the roller-cam mechanism in the drop tower, and the last 2 photos indicate the amount of looseness in the platenmore » when it is being pulled by a person.« less
Toni, Roberto; Casa, Claudia Della; Spaletta, Giulia; Marchetti, Giacomo; Mazzoni, Perseo; Bodria, Monica; Ravera, Simone; Dallatana, Davide; Castorina, Sergio; Riccioli, Vincenzo; Castorina, Emilio Giovanni; Antoci, Salvatore; Campanile, Enrico; Raise, Gabriella; Scalise, Gabriella; Rossi, Raffaella; Rossio, Raffaella; Ugolotti, Giorgio; Ugolottio, Giorgio; Martorella, Andrew; Roti, Elio; Rot, Elio; Sgallari, Fiorella; Pinchera, Aldo
2007-01-01
A new concept for ex situ endocrine organ bioengineering is presented, focused on the realization of a human bioartificial thyroid gland. It is based on the theoretical assumption and experimental evidence that symmetries in geometrical coordinates of the thyroid tissue remain invariant with respect to developmental, physiological or pathophysiological transformations occuring in the gland architecture. This topological arrangement is dependent upon physical connections established between cells, cell adhesion molecules and extracellular matrix, leading to the view that the thyroid parenchyma behaves like a deformable "putty", moulded onto an elastic stromal/vascular scaffold (SVS) dictating the final morphology of the gland. In particular, we have raised the idea that the geometry of the SVS per se provides pivotal epigenetic information to address the genetically-programmed, thyrocyte and endothelial/vascular proliferation and differentiation towards a functionally mature gland, making organ form a pre-requirementfor organ function. A number of experimental approaches are explored to obtain a reliable replica of a human thyroid SVS, and an informatic simulation is designed based on fractal growth of the thyroid intraparenchymal arterial tree. Various tissue-compatible and degradable synthetic or biomimetic polymers are discussed to act as a template of the thyroid SVS, onto which to co-seed autologous human thyrocyte (TPC) and endothelial/vascular (EVPC) progenitor cells. Harvest and expansion of both TPC and EVPC in primary culture are considered, with specific attention to the selection of normal thyrocytes growing at a satisfactory rate to colonize the synthetic matrix. In addition, both in vitro and in vivo techniques to authenticate TPC and EVPC lineage differentiation are reviewed, including immunocytochemistry, reverse trascriptase-polymerase chain reaction, flow cytomery and proteomics. Finally, analysis of viability of the thyroid construct following implantation in animal hosts is proposed, with the intent to obtain a bioartificial thyroid gland morphologically and functionally adequate for transplantation. We believe that the biotechnological scenario proposed herein may provide a template to construct other, more complex and clinically-relevant bioartificial endocrine organs ex situ, such as human pancreatic islets and the liver, and perhaps a new approach to brain bioengineering.
A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments
NASA Technical Reports Server (NTRS)
Parker, P. A.; Morton, M.; Draper, N.; Line, W.
2001-01-01
This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.
Detection of Obstacles in Monocular Image Sequences
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia
1997-01-01
The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Li, T; Yin, F
2015-06-15
Purpose: To investigate the choice of fixed margin or online adaptation when treating intermediate-risk prostate cancer including seminal vesicles (SV) using stereotactic body radiation therapy (SBRT). Methods: 9 prostate SBRT patients were retrospectively studied. All patients were implanted with fiducial markers in the prostate for daily localization and verification. Each patient had 5 pairs of pre-treatment and post-treatment cone-beam CT (CBCT) per protocol. SVs were contoured on planning CT and all CBCTs by one attending physician. Simultaneous integral boost (SIB) IMRT plans were developed to deliver 25Gy/5fx to the SV while delivering 37Gy/5fx to the prostate. A 3mm isotropic marginmore » was added to the prostate while a 5 mm isotropic margin was used for the SV. The planning CT was registered to daily pre-treatment and post-treatment CBCT based on fiducial markers in the prostate to mimic online prostate localization; and the SV on daily CBCT was transferred to the CT structure set after the prostates were aligned. Daily pre-treatment and post-treatment SV dose coverage and the organ-at-risk (OAR) sparing were evaluated for the SIB regimen. At least 95% of the SV need to receive the prescription dose (5Gy per fraction). Results: For the total of 90 daily SVs analyzed (ten CBCTs for each of nine patients), only 45 daily SVs (50%) were able to meet the coverage that 95% of the SV received 25Gy. The OAR sparing performance was acceptable for most of the dosimetric constraints in low-risk prostate SBRT protocol with only two exceptions in bladder V100 (cc). Conclusion: A fixed 5mm margin for SV is not sufficient to provide consistent daily dose coverage due to SV’s substantial inter- and intra-fractional motion relative to the prostate. This finding calls for innovative strategies in margin design as well as online treatment adaptation. This work is partially supported a master research grant from Varian Medical Systems.« less
NASA Astrophysics Data System (ADS)
Quang, H. D.; Hien, N. T.; Oh, S. K.; Sinh, N. H.; Yu, S. C.
2004-12-01
Specular spin valves (SVs) containing nano-oxide layers (NOLs) structured as substrate/seed/AF/P1/NOL/P2/Cu/F/NOL, have been fabricated. The NOLs were formed by natural oxidation in different ambient atmospheres of pure oxygen, oxygen/nitrogen and oxygen/argon gas mixtures. The fabrication conditions were optimized to enhance the magnetoresistance (MR) ratio, to suppress the interlayer coupling fields (Hf) between the free and pinned layers, to suppress the high interface density of the NOL, to ease the control of the NOL thickness and to form a smooth NOL/P2 interface for promoting specular electron scattering. The characteristics of our specular SVs are the MR ratio of 14.1%, the exchange bias field of 44-45 mT, and Hf weaker than 1.0 mT. The optimal conditions for oxidation time, total oxidation pressure and the annealing temperature were found to be 300 s, 0.14 Pa (oxygen/argon = 80/20) and 250°C, respectively. Also, the origin of thermal stability of MMn-based (M = Fe, Pt, Ir, etc) specular SVs has been explained in detail by chemical properties of NOL using secondary-ion mass spectroscopy and x-ray photoelectron spectroscopy depth profile analyses. Thermal stability turns out to be caused by a decrease in MR ratios at high temperatures (>250°C), which is a serious problem for device applications using the SV structure as a high density read head device.
Setting high-impact clinical research priorities for the Society for Vascular Surgery.
Kraiss, Larry W; Conte, Michael S; Geary, Randolph L; Kibbe, Melina; Ozaki, C Keith
2013-02-01
With the overall goal of enhancing the effectiveness and efficiency of vascular care, the Society for Vascular Surgery (SVS) recently completed a process by which it identified its top clinical research priorities to address critical gaps in knowledge guiding practitioners in prevention and treatment of vascular disease. After a survey of the SVS membership, a panel of SVS committee members and opinion leaders considered 53 distinct research questions through a structured process that resulted in identification of nine clinical issues that were felt to merit immediate attention by vascular investigators and external funding agencies. These are, in order of priority: (1) define optimal management of asymptomatic carotid stenosis, (2) compare the effectiveness of medical vs invasive treatment (open or endovascular) of vasculogenic claudication, (3) compare effectiveness of open vs endovascular infrainguinal revascularization as initial treatment of critical limb ischemia, (4) develop and compare the effectiveness of clinical strategies to reduce cardiovascular and other perioperative complications (eg, wound) after vascular intervention, (5) compare the effectiveness of strategies to enhance arteriovenous fistula maturation and durability, (6) develop best practices for management of chronic venous ulcer, (7) define optimal adjunctive medical therapy to enhance the success of lower extremity revascularization, (8) identify and evaluate medical therapy to prevent abdominal aortic aneurysm growth, and (9) evaluate ultrasound vs computed tomographic angiography surveillance after endovascular aneurysm repair. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Vaginismus and dyspareunia: relationship with general and sex-related moral standards.
Borg, Charmaine; de Jong, Peter J; Weijmar Schultz, Willibrord
2011-01-01
Relatively strong adherence to conservative values and/or relatively strict sex-related moral standards logically restricts the sexual repertoire and will lower the threshold for experiencing negative emotions in a sexual context. In turn, this may generate withdrawal and avoidance behavior, which is at the nucleus of vaginismus. To examine whether indeed strong adherence to conservative morals and/or strict sexual standards may be involved in vaginismus. The Schwartz Value Survey (SVS) to investigate the individual's value pattern and the Sexual Disgust Questionnaire (SDQ) to index the willingness to perform certain sexual activities as an indirect measure of sex-related moral standards. The SVS and SDQ were completed by three groups: women diagnosed with vaginismus (N=24), a group of women diagnosed with dyspareunia (N=24), and a healthy control group of women without sexual complaints (N=32). Specifically, the vaginismus group showed relatively low scores on liberal values together with comparatively high scores on conservative values. Additionally, the vaginismus group was more restricted in their readiness to perform particular sex-related behaviors than the control group. The dyspareunia group, on both the SVS and the SDQ, placed between the vaginismus and the control group, but not significantly different than either of the groups. The findings are consistent with the view that low liberal and high conservative values, along with restricted sexual standards, are involved in the development/maintenance of vaginismus. © 2010 International Society for Sexual Medicine.
NASA Astrophysics Data System (ADS)
Kwon, Youngsang
As evidence of global warming continues to increase, being able to predict the relationship between forest growth rate and climate factors will be vital to maintain the sustainability and productivity of forests. Comprehensive analyses of forest primary production across the eastern US were conducted using remotely sensed MODIS and field-based FIA datasets. This dissertation primarily explored spatial patterns of gross and net carbon uptake in the eastern USA, and addressed three objectives. 1) Examine the use of pixel- and plot-scale screening variables to validate MODIS GPP predictions with Forest Inventory and Analysis (FIA) NPP measures. 2) Assess the net primary production (NPP) from MODIS and FIA at increasing levels of spatial aggregation using a hexagonal tiling system. 3) Assess the carbon use efficiency (CUE) calculated using a direct ratio of MODIS NPP to MODIS GPP and a standardized ratio of FIA NPP to MODIS GPP. The first objective was analyzed using total of 54,969 MODIS pixels and co-located FIA plots to validate MODIS GPP estimates. Eight SVs were used to test six hypotheses about the conditions under which MODIS GPP would be most strongly validated. SVs were assessed in terms of the tradeoff between improved relations and reduced number of samples. MODIS seasonal variation and FIA tree density were the two most efficient SVs followed by basic quality checks for each data set. The sequential application of SVs provided an efficient dataset of 17,090 co-located MODIS pixels and FIA plots, that raised the Pearson's correlation coefficient from 0.01 for the complete dataset of 54,969 plots to 0.48 for this screened subset of 17,090 plots. The second objective was addressed by aggregating data over increasing spatial extents so as to not lose plot- and pixel-level information. These data were then analyzed to determine the optimal scale with which to represent the spatial pattern of NPP. The results suggested an optimal scale of 390 km2. At that scale MODIS and FIA were most strongly correlated while maximizing the number of observation. The maps conveyed both local-scale spatial structure from FIA and broad-scale climatic trends from MODIS. The third objective examined whether carbon use efficiency (CUE) was constant or variable in relation to forest types, and to geographic and climatic variables. The results indicated that while CUEs exhibited unclear patterns by forest types, CUEs are variable to other environmental variables. CUEs are most strongly related to the climatic factors of precipitation followed by temperature. More complex and weaker relationships were found for the geographic factors of latitude and altitude, as they reflected a combination of phenomenological driving forces. The results of the three objectives will help us to identify factors that control carbon cycles and to quantify forest productivity. This will help improve our knowledge about how forest primary productivity may change in relation to ongoing climate change.
Ziegler, Kenneth R; Dardik, Alan
2011-07-01
The Vascular Research Initiatives Conference (VRIC) is an annual conference organized by the Society for Vascular Surgery (SVS). The 2011 VRIC was held in Chicago (IL, USA) to precede and coincide with the first day of the meeting of the Council on Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) of the American Heart Association. The event is designed to present world class vascular research results, encourage collaboration between vascular surgeons and basic scientists in related disciplines, as well as to stimulate interest in research among aspiring academic vascular surgeons. The 2011 VRIC featured plenary sessions addressing peripheral arterial disease, vascular endothelium and thrombosis, aneurysms, and stem cells and tissue engineering. Recipients of the SVS partner grants with the National Institutes of Health K08 awardees presented their progress reports, and keynote addresses were given by Linda Graham and Frank LoGerfo.
Anaerobically Grown Escherichia coli Has an Enhanced Mutation Rate and Distinct Mutational Spectra
Shewaramani, Sonal; Finn, Thomas J.; Kassen, Rees; Rainey, Paul B.
2017-01-01
Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes. PMID:28103245
Molecular Mechanisms for the Coupling of Endocytosis to Exocytosis in Neurons
Xie, Zhenli; Long, Jiangang; Liu, Jiankang; Chai, Zuying; Kang, Xinjiang; Wang, Changhe
2017-01-01
Neuronal communication and brain function mainly depend on the fundamental biological events of neurotransmission, including the exocytosis of presynaptic vesicles (SVs) for neurotransmitter release and the subsequent endocytosis for SV retrieval. Neurotransmitters are released through the Ca2+- and SNARE-dependent fusion of SVs with the presynaptic plasma membrane. Following exocytosis, endocytosis occurs immediately to retrieve SV membrane and fusion machinery for local recycling and thus maintain the homeostasis of synaptic structure and sustained neurotransmission. Apart from the general endocytic machinery, recent studies have also revealed the involvement of SNARE proteins (synaptobrevin, SNAP25 and syntaxin), synaptophysin, Ca2+/calmodulin, and members of the synaptotagmin protein family (Syt1, Syt4, Syt7 and Syt11) in the balance and tight coupling of exo-endocytosis in neurons. Here, we provide an overview of recent progress in understanding how these neuron-specific adaptors coordinate to ensure precise and efficient endocytosis during neurotransmission. PMID:28348516
[Trust in organizations concerned with risks of the Great East Japan Earthquake].
Nakayachi, Kazuya; Kudo, Daisuke; Ozaki, Taku
2014-06-01
This study investigated the levels of public trust in organizations associated with the Great East Japan Earthquake. In Study 1 (N = 639), the levels of trust in eight organizations as well as the determinants of trust--perceived salient value similarity (SVS), ability, and motivation--were measured twice, first immediately after the earthquake and then a year later. The results indicated that the trust levels for six of the eight organizations had been preserved, supporting the double asymmetric effect of trust. The results of structural equation modeling (SEM) revealed that SVS explained trust more when the organization had been less trusted. Trust in the organization explains well the perceived reduction of the target risk. The results of SEM in Study 2 (N = 1,030) replicated those of Study 1, suggesting the stability of the explanatory power of the determinants of trust. Implications of the study for risk management practices are discussed.
Hehir-Kwa, Jayne Y; Marschall, Tobias; Kloosterman, Wigard P; Francioli, Laurent C; Baaijens, Jasmijn A; Dijkstra, Louis J; Abdellaoui, Abdel; Koval, Vyacheslav; Thung, Djie Tjwan; Wardenaar, René; Renkens, Ivo; Coe, Bradley P; Deelen, Patrick; de Ligt, Joep; Lameijer, Eric-Wubbo; van Dijk, Freerk; Hormozdiari, Fereydoun; Uitterlinden, André G; van Duijn, Cornelia M; Eichler, Evan E; de Bakker, Paul I W; Swertz, Morris A; Wijmenga, Cisca; van Ommen, Gert-Jan B; Slagboom, P Eline; Boomsma, Dorret I; Schönhuth, Alexander; Ye, Kai; Guryev, Victor
2016-10-06
Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.
NASA Astrophysics Data System (ADS)
Shiokawa, Yohei; Jung, JinWon; Otsuka, Takahiko; Sahashi, Masashi
2015-08-01
Nano-contact magnetoresistance (NCMR) spin-valves (SVs) using an AlOx nano-oxide-layer (NOL) have numerous nanocontacts in the thin AlOx oxide layer. The NCMR theoretically depends on the bulk scattering spin asymmetry ( β) of the ferromagnetic material in the nanocontacts. To determine the relationship between NCMR and β, we investigated the dependence of NCMR on the composition of the ferromagnetic material Co1-xFex. The samples were annealed at 270 °C and 380 °C to enhance the MR ratio. For both annealing temperatures, the magnetorsistance ratio in the low-resistance area product region at less than 1 Ω μm2 was maximized for Co0.5Fe0.5. To evaluate β exactly, we fabricated current-perpendicular-to-plane giant magnetoresistance SVs with Co1-xFex/Cu/Co1-xFex layers and used Valet and Fert's theory to solve the diffusion equation of the spin accumulation for a ferromagnetic layer/non-ferromagnetic layer of five layers with a finite diffusion length. The evaluated β for Co1-xFex was also maximized for Co0.5Fe0.5. Additionally, to determine the difference between the experimental MR ratio of NCMR SVs and the theoretical MR ratio, we fabricated Co0.5Fe0.5 with oxygen impurities and estimated the decrease in β with increasing oxygen impurity concentration. Our Co0.5Fe0.5 nano-contacts fabricated using ion-assisted oxidation may contain oxygen impurities, and the oxygen impurities might cause a decrease in β and the MR ratio.
Aberrant PD-L1 expression through 3'-UTR disruption in multiple cancers.
Kataoka, Keisuke; Shiraishi, Yuichi; Takeda, Yohei; Sakata, Seiji; Matsumoto, Misako; Nagano, Seiji; Maeda, Takuya; Nagata, Yasunobu; Kitanaka, Akira; Mizuno, Seiya; Tanaka, Hiroko; Chiba, Kenichi; Ito, Satoshi; Watatani, Yosaku; Kakiuchi, Nobuyuki; Suzuki, Hiromichi; Yoshizato, Tetsuichi; Yoshida, Kenichi; Sanada, Masashi; Itonaga, Hidehiro; Imaizumi, Yoshitaka; Totoki, Yasushi; Munakata, Wataru; Nakamura, Hiromi; Hama, Natsuko; Shide, Kotaro; Kubuki, Yoko; Hidaka, Tomonori; Kameda, Takuro; Masuda, Kyoko; Minato, Nagahiro; Kashiwase, Koichi; Izutsu, Koji; Takaori-Kondo, Akifumi; Miyazaki, Yasushi; Takahashi, Satoru; Shibata, Tatsuhiro; Kawamoto, Hiroshi; Akatsuka, Yoshiki; Shimoda, Kazuya; Takeuchi, Kengo; Seya, Tsukasa; Miyano, Satoru; Ogawa, Seishi
2016-06-16
Successful treatment of many patients with advanced cancer using antibodies against programmed cell death 1 (PD-1; also known as PDCD1) and its ligand (PD-L1; also known as CD274) has highlighted the critical importance of PD-1/PD-L1-mediated immune escape in cancer development. However, the genetic basis for the immune escape has not been fully elucidated, with the exception of elevated PD-L1 expression by gene amplification and utilization of an ectopic promoter by translocation, as reported in Hodgkin and other B-cell lymphomas, as well as stomach adenocarcinoma. Here we show a unique genetic mechanism of immune escape caused by structural variations (SVs) commonly disrupting the 3' region of the PD-L1 gene. Widely affecting multiple common human cancer types, including adult T-cell leukaemia/lymphoma (27%), diffuse large B-cell lymphoma (8%), and stomach adenocarcinoma (2%), these SVs invariably lead to a marked elevation of aberrant PD-L1 transcripts that are stabilized by truncation of the 3'-untranslated region (UTR). Disruption of the Pd-l1 3'-UTR in mice enables immune evasion of EG7-OVA tumour cells with elevated Pd-l1 expression in vivo, which is effectively inhibited by Pd-1/Pd-l1 blockade, supporting the role of relevant SVs in clonal selection through immune evasion. Our findings not only unmask a novel regulatory mechanism of PD-L1 expression, but also suggest that PD-L1 3'-UTR disruption could serve as a genetic marker to identify cancers that actively evade anti-tumour immunity through PD-L1 overexpression.
Glimcher, Paul W.
2011-01-01
The ability of human subjects to choose between disparate kinds of rewards suggests that the neural circuits for valuing different reward types must converge. Economic theory suggests that these convergence points represent the subjective values (SVs) of different reward types on a common scale for comparison. To examine these hypotheses and to map the neural circuits for reward valuation we had food and water-deprived subjects make risky choices for money, food, and water both in and out of a brain scanner. We found that risk preferences across reward types were highly correlated; the level of risk aversion an individual showed when choosing among monetary lotteries predicted their risk aversion toward food and water. We also found that partially distinct neural networks represent the SVs of monetary and food rewards and that these distinct networks showed specific convergence points. The hypothalamic region mainly represented the SV for food, and the posterior cingulate cortex mainly represented the SV for money. In both the ventromedial prefrontal cortex (vmPFC) and striatum there was a common area representing the SV of both reward types, but only the vmPFC significantly represented the SVs of money and food on a common scale appropriate for choice in our data set. A correlation analysis demonstrated interactions across money and food valuation areas and the common areas in the vmPFC and striatum. This may suggest that partially distinct valuation networks for different reward types converge on a unified valuation network, which enables a direct comparison between different reward types and hence guides valuation and choice. PMID:21994386
Jeppesen, Per B; Dyrskog, Stig E; Agger, Andreas; Gregersen, Soren; Colombo, Michele; Xiao, Jianzhong; Hermansen, Kjeld
2006-01-01
The diterpene glycoside stevioside (SVS) and soy bean protein isolate have both been shown to have beneficial effects in diabetes treatment. As they each show different benefits we investigated whether the combination of both substances shows an improvement in the treatment of diabetes in Goto-Kakizaki (GK) rats. Over the course of 4 wk, the rats were fed with the following four test diets (n = 12 per group): 1. Standard carbohydrate-rich laboratory diet (chow), 2. chow + SVS (0.03 g/kg BW/day), 3. 80% SPI + 20% chow and 4. 80% SPI + 20 % chow + SVS (0.03 g/kg BW/day). At the end of the course conscious rats underwent an intra-arterial glucose tolerance test (IAGTT) (2.0 g glucose/kg BW). Compared to normal chow diet, stevioside in combination with SPI shows the following beneficial effects in GK rats with mild type 2 diabetes: 1. a 56% reduction in plasma glucose (p < 0.001), 2. a 118% increase in first-phase insulin (p < 0.005), 3. a 20% reduction in glucagons (p < 0.05), 4. a 28% reduction in total cholesterol (p < 0.001), 5. a 13% reduction in FFA (p < 0.01), 6. a 49% reduction in TG (p < 0.001) and 7. a 11% reduction in the systolic blood pressure (p < 0.001). In conclusion, the combination of stevioside and SPI has synergistic positive effects on the characteristic features of the metabolic syndrome, i.e. hyperglycemia, hypertension and dyslipidemia.
SVS (Self-Propagating High-Temperature Synthesis)
2009-08-21
ISS020-E-032798 (21 Aug. 2009) --- Cosmonaut Roman Romanenko, Expedition 20 flight engineer, works with video equipment and a Russian payload TkhN-7 Self-Propagating High-Temperature Synthesis in the Zvezda Service Module of the International Space Station.
Science Comes Alive at NASA Goddard
2017-05-17
Science Comes Alive at NASA Goddard: Welcome to the NASA Goddard Space Flight Center. Where innovation and science never sleep and new discoveries never get old... At NASA Goddard. For Higher Resolutions and Other Versions: https://svs.gsfc.nasa.gov/12533
Kim, In-Hye; Kim, Si-Kwan; Kim, Eun-Hye; Kim, Sung-Won; Sohn, Sang-Hyun; Lee, Soo Cheol; Choi, Sangdun; Pyo, Suhkneung; Rhee, Dong-Kwon
2011-01-01
Ginseng (Panax ginseng Meyer) has been shown to have anti-aging effects in animal and clinical studies. However, the molecular mechanisms by which ginseng exerts these effects remain unknown. Here, the anti-aging effect of Korean red ginseng (KRG) in rat testes was examined by system biology analysis. KRG water extract prepared in feed pellets was administered orally into 12 month old rats for 4 months, and gene expression in testes was determined by microarray analysis. Microarray analysis identified 33 genes that significantly changed. Compared to the 2 month old young rats, 13 genes (Rps9, Cyp11a1, RT1-A2, LOC365778, Sv2b, RGD1565959, RGD1304748, etc.) were up-regulated and 20 genes (RT1-Db1, Cldn5, Svs5, Degs1, Vdac3, Hbb, LOC684355, Svs5, Tmem97, Orai1, Insl3, LOC497959, etc.) were down-regulated by KRG in the older rats. Ingenuity Pathway Analysis of untreated aged rats versus aged rats treated with KRG showed that the affected most was Cyp11a1, responsible for C21-steroid hormone metabolism, and the top molecular and cellular functions are organ morphology and reproductive system development and function. When genes in young rat were compared with those in the aged rat, sperm capacitation related genes were down-regulated in the old rat. However, when genes in the old rat were compared with those in the old rat treated with KRG, KRG treatment up-regulated C21-steroid hormone metabolism. Taken together, Cyp11a1 expression is decreased in the aged rat, however, it is up-regulated by KRG suggesting that KRG seems enhance testes function via Cyp11a1. PMID:23717070
Novel detectors for silicon based microdosimetry, their concepts and applications
NASA Astrophysics Data System (ADS)
Rosenfeld, Anatoly B.
2016-02-01
This paper presents an overview of the development of semiconductor microdosimetry and the most current (state-of-the-art) Silicon on Insulator (SOI) detectors for microdosimetry based mainly on research and development carried out at the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong with collaborators over the last 18 years. In this paper every generation of CMRP SOI microdosimeters, including their fabrication, design, and electrical and charge collection characterisation are presented. A study of SOI microdosimeters in various radiation fields has demonstrated that under appropriate geometrical scaling, the response of SOI detectors with the well-known geometry of microscopically sensitive volumes will record the energy deposition spectra representative of tissue cells of an equivalent shape. This development of SOI detectors for microdosimetry with increased complexity has improved the definition of microscopic sensitive volume (SV), which is modelling the deposition of ionising energy in a biological cell, that are led from planar to 3D SOI detectors with an array of segmented microscopic 3D SVs. The monolithic ΔE-E silicon telescope, which is an alternative to the SOI silicon microdosimeter, is presented, and as an example, applications of SOI detectors and ΔE-E monolithic telescope for microdosimetery in proton therapy field and equivalent neutron dose measurements out of field are also presented. An SOI microdosimeter "bridge" with 3D SVs can derive the relative biological effectiveness (RBE) in 12C ion radiation therapy that matches the tissue equivalent proportional counter (TEPC) quite well, but with outstanding spatial resolution. The use of SOI technology in experimental microdosimetry offers simplicity (no gas system or HV supply), high spatial resolution, low cost, high count rates, and the possibility of integrating the system onto a single device with other types of detectors.
Parallel Architectures and Parallel Algorithms for Integrated Vision Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi
1989-01-01
Computer vision is regarded as one of the most complex and computationally intensive problems. An integrated vision system (IVS) is a system that uses vision algorithms from all levels of processing to perform for a high level application (e.g., object recognition). An IVS normally involves algorithms from low level, intermediate level, and high level vision. Designing parallel architectures for vision systems is of tremendous interest to researchers. Several issues are addressed in parallel architectures and parallel algorithms for integrated vision systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Li, T; Lee, W
Purpose: To provide benchmark for seminal vesicles (SVs) margin selection to account for intra-fractional motion; and to investigate the effectiveness of two motion surrogates in predicting intra-fractional SV underdosage. Methods: 9 prostate SBRT patients were studied; each has five pairs of pre-treatment and post-treatment cone-beam CTs (CBCTs). Each pair of CBCTs was registered based on fiducial markers in the prostate. To provide “ground truth” for coverage evaluation, all pre-treatment SVs were expanded with isotropic margin of 1,2,3,5 and 8mm, and their overlap with post-treatment SVs were used to quantify intra-fractional coverage. Two commonly used motion surrogates, the center-of-mass (COM) andmore » the border of contour (the most distal points in SI/AP/LR directions) were evaluated using Receiver-Operating Characteristic (ROC) analyses for predicting SV underdosage due to intra-fractional motion. Action threshold of determining underdosage for each surrogate was calculated by selecting the optimal balancing between sensitivity and specificity. For comparison, margin for each surrogate was also calculated based on traditional margin recipe. Results: 90% post-treatment SV coverage can be achieved in 47%, 82%, 91%, 98% and 98% fractions for 1,2,3,5 and 8mm margins. 3mm margin ensured the 90% intra-fractional SV coverage in 90% fractions when prostate was aligned. The ROC analysis indicated the AUC for COM and border were 0.88 and 0.72. The underdosage threshold was 2.9mm for COM and 4.1mm for border. The Van Herk’s margin recipe recommended 0.5, 0 and 1.8mm margin in LR, AP and SI direction based on COM and for border, the corresponding margin was 2.1, 4.5 and 3mm. Conclusion: 3mm isotropic margin is the minimum required to mitigate the intra-fractional SV motion when prostate is aligned. ROC analysis reveals that both COM and border are acceptable predictors for SV underdosage with 2.9mm and 4.1mm action threshold. Traditional margin calculation is less reliable for this application. This work is partially supported a master research grant from Varian Medical Systems.« less
Trends in a changing vascular practice environment for members of the Society for Vascular Surgery
Matthews, Mika A. B.; Satiani, Bhagwan; Lohr, Joann M.
2013-01-01
Objective To survey the Society for Vascular Surgery (SVS) membership with regard to practice trends related to work effort, employment status, practice ownership, endovascular cases, and anticipated changes in practice in the near future. Methods A survey questionnaire was developed to gather information about member demographics and practice, hours worked, full-time (FT) or part-time status, employment status, practice ownership, competition for referrals, proportion of endovascular vs open procedures, and anticipated changes in practice in the next 3 years. We used SurveyMonkey and distributed the survey to all active vascular surgeon (VS) members of the SVS. Results The response rate was 207 of 2230 (10.7%). Two thirds were in private practice, and 21% were in solo practice. Twenty-four percent were employed by hospitals/health systems. Those VS under the age of 50 years were more likely to exclusively practice vascular surgery compared with VS over the age of 50 years (P = .0003). Sixty-eight of the physicians (32.7%) were between 50 and 59 years old, 186 (90.3%) were men, 192 (92.8%) worked FT (>36 hours of patient care per week), and almost two thirds worked >60 hours per week. Those in physician-owned practices worked >40 hours of patient care per week more often than did FT employed VS (P = .012). Younger VS (age <50 years) more frequently reported >50% of their workload being endovascular compared with older VS (age ≥50 years; P < .001). Eighty percent of FT VS planned to continue their current practice over the next 3 years. Of the 43.6% indicating loss of referrals, 82% pointed to cardiologists as the competition. Conclusions The current workforce is predominately male and works FT; one-third is between the ages of 50 and 59 years. Younger VS (age <50 years) are more likely to exclusively practice VS and have a higher caseload of endovascular procedures. Those in physician-owned practices are more likely to put in >40 hours of patient care per week than are FT employed VS. Longitudinal surveys of SVS members are imperative to help tailor educational, training, and practice management offerings, guide governmental activities, advocate for issues important to members, improve branding initiatives, and sponsor workforce analyses. PMID:23254185
GSFC_20171019_m12750_HSTMessier
2017-10-19
This is a recording from Goddard Facebook Live Event on October 19, 2017, promoting the Hubble Messier Catalog for amateur astronomers. Hosting is Erin Kisliuk with Michelle Thaller and Kevin Hartnett as talents. Download this program in multiple formats at: http://svs.gsfc.nasa.gov/12750
Horie, Nobutaka; Tateishi, Yohei; Morikawa, Minoru; Morofuji, Yoichi; Hayashi, Kentaro; Izumo, Tsuyoshi; Tsujino, Akira; Nagata, Izumi; Matsuo, Takayuki
2016-10-01
Acute ischemic stroke with major intracranial vessel occlusion is commonly due to cardioembolic or atherosclerosis-related in situ stenosis/occlusion, and immediate identification of these subtypes is important to establish the optimal treatment strategy. The aim of this study was to clarify the differences in clinical presentation, radiological findings, neurological temporal courses, and outcomes between these etiologies, which have not been fully evaluated. Consecutive emergency patients with acute ischemic stroke were retrospectively reviewed. Among them, patients with stroke with major intracranial vessel occlusion were analyzed with a focus on clinical and radiological findings, and a comparison was performed for those with cardioembolic or atherosclerosis-related in situ stenosis/occlusion. Of 1053 patients, 80 had stroke with acute major intracranial vessel occlusion (45 with cardioembolic and 35 with atherosclerosis-related in situ stenosis/occlusion). Interestingly, the susceptibility vessel sign (SVS) on T2-weighted MR angiography was more frequently detected in cardioembolic stroke (80.0%) than in atherosclerosis (in situ stenosis: 5.9%, chronic occlusion: 14.3%). Moreover, the proximal intra-arterial signal (IAS) on arterial spin labeling MRI and the distal IAS on fluid attenuated inversion recovery MRI was less frequently detected in chronic occlusion (27.3% and 50.0%, respectively) than in acute occlusion due to cardioembolic or in situ stenosis. Multivariate regression analysis showed that the SVS was significantly related to cardioembolism (adjusted odds ratio (OR): 21.68, P=0.004). Clinical characteristics of acute stroke with major intracranial vessel occlusion differ depending on the etiology. The SVS and proximal/distal IAS on MRI are useful to distinguish between cardioembolic and atherosclerotic-related in situ stenosis/occlusion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hay, L.; Knapp, L.
1996-01-01
Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.
The influence of nano-oxide layer on magnetostriction of sensing layer in bottom spin valves
NASA Astrophysics Data System (ADS)
Qiu, J. J.; Han, G. C.; Li, K. B.; Liu, Z. Y.; Zong, B. Y.; Wu, Y. H.
2006-05-01
The magnetostriction coefficient (λs) of ultrathin sputtered polycrystalline as-deposited and annealed Ta/Ni81Fe19(t)/Ta films was studied as a function of the thickness. λs and magnetoresistance (MR) of bottom-type spin valves (SVs) with nano-oxide layer (NOL) added in the pinned layer were investigated by using NiFe, Co90Fe10, and CoFe/NiFe/CoFe layers as free layer (FL), respectively. λs of SV with NOL increased slightly except that of CoFe FL. NOLs were added at different positions to study the effects of NOL on λs of CoFe FL. All λs of CoFe FL change from negative to positive and its absolute value also increases significantly with CoFeOx related NOL added below. Our λs and surface roughness results indicated that the structure of the film not the roughness dominates λs of ultrathin FL in SVs.
Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing.
Suzuki, Toshifumi; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Miyake, Noriko; Saitsu, Hirotomo; Takeda, Satoru; Matsumoto, Naomichi
2014-12-01
Structural variations (SVs), including translocations, inversions, deletions and duplications, are potentially associated with Mendelian diseases and contiguous gene syndromes. Determination of SV-related breakpoints at the nucleotide level is important to reveal the genetic causes for diseases. Whole-genome sequencing (WGS) by next-generation sequencers is expected to determine structural abnormalities more directly and efficiently than conventional methods. In this study, 14 SVs (9 balanced translocations, 1 inversion and 4 microdeletions) in 9 patients were analyzed by WGS with a shallow (5 × ) to moderate read coverage (20 × ). Among 28 breakpoints (as each SV has two breakpoints), 19 SV breakpoints had been determined previously at the nucleotide level by any other methods and 9 were uncharacterized. BreakDancer and Integrative Genomics Viewer determined 20 breakpoints (16 translocation, 2 inversion and 2 deletion breakpoints), but did not detect 8 breakpoints (2 translocation and 6 deletion breakpoints). These data indicate the efficacy of WGS for the precise determination of translocation and inversion breakpoints.
Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2
Kononenko, Natalia L.; Diril, M. Kasim; Puchkov, Dmytro; Kintscher, Michael; Koo, Seong Joo; Pfuhl, Gerit; Winter, York; Wienisch, Martin; Klingauf, Jürgen; Breustedt, Jörg; Schmitz, Dietmar; Maritzen, Tanja; Haucke, Volker
2013-01-01
Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the endocytic adaptor stonin 2 (Stn2) in mice compromises the fidelity of SV protein sorting, whereas the apparent speed of SV retrieval is increased. Loss of Stn2 leads to selective missorting of synaptotagmin 1 to the neuronal surface, an elevated SV pool size, and accelerated SV protein endocytosis. The latter phenotype is mimicked by overexpression of endocytosis-defective variants of synaptotagmin 1. Increased speed of SV protein retrieval in the absence of Stn2 correlates with an up-regulation of SV reformation from bulk endosomes. Our results are consistent with a model whereby Stn2 is required to preserve SV protein composition but is dispensable for maintaining the speed of SV recycling. PMID:23345427
An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence
Frahm, Silke; Antolin-Fontes, Beatriz; Görlich, Andreas; Zander, Johannes-Friedrich; Ahnert-Hilger, Gudrun; Ibañez-Tallon, Ines
2015-01-01
A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior. DOI: http://dx.doi.org/10.7554/eLife.11396.001 PMID:26623516
[Regulatory Mechanisms of PD-L1 Expression and Its Role in Immune Evasion].
Kataoka, Keisuke
2017-11-01
Immune checkpoint blockade therapy using anti-PD-1 or anti-PD-L1 antibodies can unleash anti-tumor immunity and induce durable remission in a variety ofhuman cancers. However, the regulatory mechanisms of PD-L1 expression mediating immune evasion ofcancer cells have not been fully elucidated, including the genetic alterations causing PD-L1 overexpression. Recently, we have reported a novel genetic mechanism ofimmune evasion associated with structural variations(SVs)disrupting the 3'-untranslated region(UTR)ofthe PD-L1 gene in various malignancies, such as aggressive lymphomas and gastrointestinal cancers. Despite a heterogenous nature ofthese SVs, they are closely associated with a marked upregulation of PD-L1 expression, which augments tumor growth and escape from anti-tumor immunity. Here we present an overview of the regulatory mechanisms of PD-L1 expression in cancer cells, highlighting the genetic mechanisms of PD-L1 constitutive activation, with specific focus on PD-L1 3'-UTR disruption.
Hi-Vision telecine system using pickup tube
NASA Astrophysics Data System (ADS)
Iijima, Goro
1992-08-01
Hi-Vision broadcasting, offering far more lifelike pictures than those produced by existing television broadcasting systems, has enormous potential in both industrial and commercial fields. The dissemination of the Hi-Vision system will enable vivid, movie theater quality pictures to be readily enjoyed in homes in the near future. To convert motion film pictures into Hi-Vision signals, a telecine system is needed. The Hi-Vision telecine systems currently under development are the "laser telecine," "flying-spot telecine," and "Saticon telecine" systems. This paper provides an overview of the pickup tube type Hi-Vision telecine system (referred to herein as the Saticon telecine system) developed and marketed by Ikegami Tsushinki Co., Ltd.
A Practical Solution Using A New Approach To Robot Vision
NASA Astrophysics Data System (ADS)
Hudson, David L.
1984-01-01
Up to now, robot vision systems have been designed to serve both application development and operational needs in inspection, assembly and material handling. This universal approach to robot vision is too costly for many practical applications. A new industrial vision system separates the function of application program development from on-line operation. A Vision Development System (VDS) is equipped with facilities designed to simplify and accelerate the application program development process. A complimentary but lower cost Target Application System (TASK) runs the application program developed with the VDS. This concept is presented in the context of an actual robot vision application that improves inspection and assembly for a manufacturer of electronic terminal keyboards. Applications developed with a VDS experience lower development cost when compared with conventional vision systems. Since the TASK processor is not burdened with development tools, it can be installed at a lower cost than comparable "universal" vision systems that are intended to be used for both development and on-line operation. The VDS/TASK approach opens more industrial applications to robot vision that previously were not practical because of the high cost of vision systems. Although robot vision is a new technology, it has been applied successfully to a variety of industrial needs in inspection, manufacturing, and material handling. New developments in robot vision technology are creating practical, cost effective solutions for a variety of industrial needs. A year or two ago, researchers and robot manufacturers interested in implementing a robot vision application could take one of two approaches. The first approach was to purchase all the necessary vision components from various sources. That meant buying an image processor from one company, a camera from another and lens and light sources from yet others. The user then had to assemble the pieces, and in most instances he had to write all of his own software to test, analyze and process the vision application. The second and most common approach was to contract with the vision equipment vendor for the development and installation of a turnkey inspection or manufacturing system. The robot user and his company paid a premium for their vision system in an effort to assure the success of the system. Since 1981, emphasis on robotics has skyrocketed. New groups have been formed in many manufacturing companies with the charter to learn about, test and initially apply new robot and automation technologies. Machine vision is one of new technologies being tested and applied. This focused interest has created a need for a robot vision system that makes it easy for manufacturing engineers to learn about, test, and implement a robot vision application. A newly developed vision system addresses those needs. Vision Development System (VDS) is a complete hardware and software product for the development and testing of robot vision applications. A complimentary, low cost Target Application System (TASK) runs the application program developed with the VDS. An actual robot vision application that demonstrates inspection and pre-assembly for keyboard manufacturing is used to illustrate the VDS/TASK approach.
A survey of current practice of vascular surgeons in venous disease management.
Bush, Ruth L; Gloviczki, Peter
2013-01-01
Acute venous thromboembolism and chronic venous diseases are common conditions that affect a large proportion of the United States population. The diagnosis of venous disease has improved, and the treatment options have rapidly evolved over the past decade. To date, it is unclear to what extent vascular surgeons have become involved in the modern management of venous disorders. This survey was undertaken to explore the current interest and practice of vascular surgeons in the contemporary care of venous disease. A survey was administered via a web-based platform to active and candidate members of the Society for Vascular Surgery (SVS). The survey included 30 questions investigating the characteristics of venous surgeons and scope of venous practice. Open-ended questions were also included for commentary. A total of 1879 surveys were sent to SVS members nationwide, and 385 members participated (response rate of 20.5%). The participants were mostly men (89.6%) with 37.7% practicing in an academic setting and 59.2% in private practice. The respondents treated superficial veins (92.9%) and deep veins (85.8%) in clinical practice, with 89.9% having their own vascular laboratory. A wide spectrum of interventions for superficial (91.9%), deep (85.8%), and perforator veins (52.7% endovenous, 19.4% subfascial endoscopic perforator surgery) are being performed by respondents. Only 26.2% had learned endovenous thermal ablation in their training program; however, over 96% of those performing venous interventions utilized this technique. Overall, the majority (85.5%) devoted 50% or less of practice to venous disorders. Respondents indicated that limitations to expansion of vein practices mainly involved challenges with third party payers, local competition, and existing large volumes of arterial interventions needing to be performed. Despite the widespread incorporation of venous disease into current vascular practices, 66.1% are not members of the American Venous Forum (AVF) or other venous society. Many believe there is still a lack of standardization of care and guidelines for venous disease. The care of patients with venous disease has become more widespread among SVS members, with most offering both deep and superficial venous interventions as well as incorporation of minimally invasive techniques into their treatment armamentarium. Dissemination and incorporation of protocols and guidelines into clinical practice as well as postgraduate courses in venous disease may be areas in which the SVS could facilitate members' involvement in the care of patients with venous disease. Published by Elsevier Inc.
Basic design principles of colorimetric vision systems
NASA Astrophysics Data System (ADS)
Mumzhiu, Alex M.
1998-10-01
Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.
Computational approaches to vision
NASA Technical Reports Server (NTRS)
Barrow, H. G.; Tenenbaum, J. M.
1986-01-01
Vision is examined in terms of a computational process, and the competence, structure, and control of computer vision systems are analyzed. Theoretical and experimental data on the formation of a computer vision system are discussed. Consideration is given to early vision, the recovery of intrinsic surface characteristics, higher levels of interpretation, and system integration and control. A computational visual processing model is proposed and its architecture and operation are described. Examples of state-of-the-art vision systems, which include some of the levels of representation and processing mechanisms, are presented.
NASA Missions Monitor a Waking Black Hole
2015-06-30
On June 15, NASA's Swift caught the onset of a rare X-ray outburst from a stellar-mass black hole in the binary system V404 Cygni. Astronomers around the world are watching the event. In this system, a stream of gas from a star much like the sun flows toward a 10 solar mass black hole. Instead of spiraling toward the black hole, the gas accumulates in an accretion disk around it. Every couple of decades, the disk switches into a state that sends the gas rushing inward, starting a new outburst. Read more: www.nasa.gov/feature/goddard/nasa-missions-monitor-a-waki... Credits: NASA's Goddard Space Flight Center Download this video in HD formats from NASA Goddard's Scientific Visualization Studio svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=11110
Maeda, Yoshikazu; Sato, Yoshitaka; Shibata, Satoshi; Bou, Sayuri; Yamamoto, Kazutaka; Tamamura, Hiroyasu; Fuwa, Nobukazu; Takamatsu, Shigeyuki; Sasaki, Makoto; Tameshige, Yuji; Kume, Kyo; Minami, Hiroki; Saga, Yusuke; Saito, Makoto
2018-05-01
We quantified interfractional movements of the prostate, seminal vesicles (SVs), and rectum during computed tomography (CT) image-guided proton therapy for prostate cancer and studied the range variation in opposed lateral proton beams. We analyzed 375 sets of daily CT images acquired throughout the proton therapy treatment of ten patients. We analyzed daily movements of the prostate, SVs, and rectum by simulating three image-matching strategies: bone matching, prostate center (PC) matching, and prostate-rectum boundary (PRB) matching. In the PC matching, translational movements of the prostate center were corrected after bone matching. In the PRB matching, we performed PC matching and correction along the anterior-posterior direction to match the boundary between the prostate and the rectum's anterior region. In each strategy, we evaluated systematic errors (Σ) and random errors (σ) by measuring the daily movements of certain points on each anatomic structure. The average positional deviations in millimeter of each point were determined by the Van Herk formula of 2.5Σ + 0.7σ. Using these positional deviations, we created planning target volumes of the prostate and SVs and analyzed the daily variation in the water equivalent length (WEL) from the skin surface to the target along the lateral beam directions using the density converted from the daily CT number. Based on this analysis, we designed prostate cancer treatment planning and evaluated the dose volume histograms (DVHs) for these strategies. The SVs' daily movements showed large variations over the superior-inferior direction, as did the rectum's anterior region. The average positional deviations of the prostate in the anterior, posterior, superior, inferior, and lateral sides (mm) in bone matching, PC matching, and PRB matching were (8.9, 9.8, 7.5, 3.6, 1.6), (5.6, 6.1, 3.5, 4.5, 1.9), and (8.6, 3.2, 3.5, 4.5, 1.9) (mm), respectively. Moreover, the ones of the SV tip were similarly (22.5, 15.5, 11.0, 7.6, 6.0), (11.8, 8.4, 7.8, 5.2, 6.3), and (9.9, 7.5, 7.8, 5.2, 6.3). PRB matching showed the smallest positional deviations at all portions except for the anterior portion of the prostate and was able to markedly reduce the positional deviations at the posterior portion. The averaged WEL variations at the distal and proximal sides of planning target volumes were estimated 7-9 mm and 4-6 mm, respectively, and showed the increasing of a few millimeters in PC and PRB matching compared to bone matching. In the treatment planning simulation, the DVH values of the rectum in PRB matching were reduced compared to those obtained with other matching strategies. The positional deviations for the prostate on the posterior side and the SVs were smaller by PRB matching than the other strategies and effectively reduced the rectal dose. 3D dose calculations indicate that PRB matching with CT image guidance may do a better job relative to other positioning methods to effectively reduce the rectal complications. The WEL variation was quite large, and the appropriate margin (approx. 10 mm) must be adapted to the proton range in an initial planning to maintain the coverage of target volumes throughout entire treatment. © 2018 American Association of Physicists in Medicine.
Biomimetic machine vision system.
Harman, William M; Barrett, Steven F; Wright, Cameron H G; Wilcox, Michael
2005-01-01
Real-time application of digital imaging for use in machine vision systems has proven to be prohibitive when used within control systems that employ low-power single processors without compromising the scope of vision or resolution of captured images. Development of a real-time machine analog vision system is the focus of research taking place at the University of Wyoming. This new vision system is based upon the biological vision system of the common house fly. Development of a single sensor is accomplished, representing a single facet of the fly's eye. This new sensor is then incorporated into an array of sensors capable of detecting objects and tracking motion in 2-D space. This system "preprocesses" incoming image data resulting in minimal data processing to determine the location of a target object. Due to the nature of the sensors in the array, hyperacuity is achieved thereby eliminating resolutions issues found in digital vision systems. In this paper, we will discuss the biological traits of the fly eye and the specific traits that led to the development of this machine vision system. We will also discuss the process of developing an analog based sensor that mimics the characteristics of interest in the biological vision system. This paper will conclude with a discussion of how an array of these sensors can be applied toward solving real-world machine vision issues.
Color image processing and vision system for an automated laser paint-stripping system
NASA Astrophysics Data System (ADS)
Hickey, John M., III; Hise, Lawson
1994-10-01
Color image processing in machine vision systems has not gained general acceptance. Most machine vision systems use images that are shades of gray. The Laser Automated Decoating System (LADS) required a vision system which could discriminate between substrates of various colors and textures and paints ranging from semi-gloss grays to high gloss red, white and blue (Air Force Thunderbirds). The changing lighting levels produced by the pulsed CO2 laser mandated a vision system that did not require a constant color temperature lighting for reliable image analysis.
Wearable Improved Vision System for Color Vision Deficiency Correction
Riccio, Daniel; Di Perna, Luigi; Sanniti Di Baja, Gabriella; De Nino, Maurizio; Rossi, Settimio; Testa, Francesco; Simonelli, Francesca; Frucci, Maria
2017-01-01
Color vision deficiency (CVD) is an extremely frequent vision impairment that compromises the ability to recognize colors. In order to improve color vision in a subject with CVD, we designed and developed a wearable improved vision system based on an augmented reality device. The system was validated in a clinical pilot study on 24 subjects with CVD (18 males and 6 females, aged 37.4 ± 14.2 years). The primary outcome was the improvement in the Ishihara Vision Test score with the correction proposed by our system. The Ishihara test score significantly improved (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$p = 0.03$ \\end{document}) from 5.8 ± 3.0 without correction to 14.8 ± 5.0 with correction. Almost all patients showed an improvement in color vision, as shown by the increased test scores. Moreover, with our system, 12 subjects (50%) passed the vision color test as normal vision subjects. The development and preliminary validation of the proposed platform confirm that a wearable augmented-reality device could be an effective aid to improve color vision in subjects with CVD. PMID:28507827
Knowledge-based machine vision systems for space station automation
NASA Technical Reports Server (NTRS)
Ranganath, Heggere S.; Chipman, Laure J.
1989-01-01
Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.
Biological Basis For Computer Vision: Some Perspectives
NASA Astrophysics Data System (ADS)
Gupta, Madan M.
1990-03-01
Using biology as a basis for the development of sensors, devices and computer vision systems is a challenge to systems and vision scientists. It is also a field of promising research for engineering applications. Biological sensory systems, such as vision, touch and hearing, sense different physical phenomena from our environment, yet they possess some common mathematical functions. These mathematical functions are cast into the neural layers which are distributed throughout our sensory regions, sensory information transmission channels and in the cortex, the centre of perception. In this paper, we are concerned with the study of the biological vision system and the emulation of some of its mathematical functions, both retinal and visual cortex, for the development of a robust computer vision system. This field of research is not only intriguing, but offers a great challenge to systems scientists in the development of functional algorithms. These functional algorithms can be generalized for further studies in such fields as signal processing, control systems and image processing. Our studies are heavily dependent on the the use of fuzzy - neural layers and generalized receptive fields. Building blocks of such neural layers and receptive fields may lead to the design of better sensors and better computer vision systems. It is hoped that these studies will lead to the development of better artificial vision systems with various applications to vision prosthesis for the blind, robotic vision, medical imaging, medical sensors, industrial automation, remote sensing, space stations and ocean exploration.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... financial statements and comments on surrogate country selection, respectively. TMI submitted comments... TMI for our consideration as potential SVs and surrogate financial ratios are sourced from India. Finally, on the record of this review, we have usable SV data (including financial data) from India, but...
Subjective Vitality and Patterns of Acculturation: Four Cases
ERIC Educational Resources Information Center
Ehala, Martin; Vedernikova, Elena
2015-01-01
The article presents a comparative analysis of the subjective vitalities (SVs) of the minority groups of Latvia (Russian-speakers), Lithuania (Russian-speakers and Poles) and Mari El (Maris) in the Russian Federation, with a particular focus on the Mari case. The same extended version of the SV questionnaire was used in quantitative surveys in all…
svviz: a read viewer for validating structural variants.
Spies, Noah; Zook, Justin M; Salit, Marc; Sidow, Arend
2015-12-15
Visualizing read alignments is the most effective way to validate candidate structural variants (SVs) with existing data. We present svviz, a sequencing read visualizer for SVs that sorts and displays only reads relevant to a candidate SV. svviz works by searching input bam(s) for potentially relevant reads, realigning them against the inferred sequence of the putative variant allele as well as the reference allele and identifying reads that match one allele better than the other. Separate views of the two alleles are then displayed in a scrollable web browser view, enabling a more intuitive visualization of each allele, compared with the single reference genome-based view common to most current read browsers. The browser view facilitates examining the evidence for or against a putative variant, estimating zygosity, visualizing affected genomic annotations and manual refinement of breakpoints. svviz supports data from most modern sequencing platforms. svviz is implemented in python and freely available from http://svviz.github.io/. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
Zhang, Li; Zhou, WeiDa
2013-12-01
This paper deals with fast methods for training a 1-norm support vector machine (SVM). First, we define a specific class of linear programming with many sparse constraints, i.e., row-column sparse constraint linear programming (RCSC-LP). In nature, the 1-norm SVM is a sort of RCSC-LP. In order to construct subproblems for RCSC-LP and solve them, a family of row-column generation (RCG) methods is introduced. RCG methods belong to a category of decomposition techniques, and perform row and column generations in a parallel fashion. Specially, for the 1-norm SVM, the maximum size of subproblems of RCG is identical with the number of Support Vectors (SVs). We also introduce a semi-deleting rule for RCG methods and prove the convergence of RCG methods when using the semi-deleting rule. Experimental results on toy data and real-world datasets illustrate that it is efficient to use RCG to train the 1-norm SVM, especially in the case of small SVs. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2002-01-01
The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.
NASA Astrophysics Data System (ADS)
Zhou, Guoqing; Tang, Guoqiang; Li, Tian; Pan, Guoxing; Deng, Zanhong; Zhang, Fapei
2017-03-01
The ferromagnetic electrode on which a clean high-quality electrode/interlayer interface is formed, is critical to achieve efficient injection of spin-dependent electrons in spintronic devices. In this work, we report on the preparation of graphene-passivated cobalt electrodes for application in vertical spin valves (SVs). In this strategy, high-quality monolayer and bi-layer graphene sheets have been grown directly on the crystal Co film substrates in a controllable process by chemical vapor deposition. The electrode is oxidation resistant and ensures a clean crystalline graphene/Co interface. The AlO x -based magnetic junction devices using such bottom electrodes, exhibit a negative tunnel magneto-resistance (TMR) of ca. 1.0% in the range of 5 K-300 K. Furthermore, we have also fabricated organic-based SVs employing a thin layer of fullerene C60 or an N-type polymeric semiconductor as the interlayer. The devices of both materials show a tunneling behavior of spin-polarized electron transport as well as appreciable TMR effect, demonstrating the high potential of such graphene-coated Co electrodes for organic-based spintronics.
Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.
Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei
2015-01-01
Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.
Coarse Graining to Investigate Membrane Induced Peptide Folding of Anticancer Peptides
NASA Astrophysics Data System (ADS)
Ganesan, Sai; Xu, Hongcheng; Matysiak, Silvina
Information about membrane induced peptide folding mechanisms using all-atom molecular dynamics simulations is a challenge due to time and length scale issues.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.These two dummy particles represent a fluctuating dipole,thus introducing structural polarization into the coarse-grained model.With this model,we were able to achieve significant α- β secondary structure content de novo,without any added bias.We extended the model to zwitterionic and anionic lipids,by adding oppositely charged dummy particles inside polar beads, to capture the ability of the head group region to form hydrogen bonds.We use zwitterionic POPC and anionic POPS as our model lipids, and a cationic anticancer peptide,SVS1,as our model peptide.We have characterized the driving forces for SVS1 folding on lipid bilayers with varying anionic and zwitterionic lipid compositions.Based on our results, dipolar interactions between peptide backbone and lipid head groups contribute to stabilize folded conformations.Cooperativity in folding is induced by both intra peptide and membrane-peptide interaction.
NASA Astrophysics Data System (ADS)
Jain, A. K.; Dorai, C.
Computer vision has emerged as a challenging and important area of research, both as an engineering and a scientific discipline. The growing importance of computer vision is evident from the fact that it was identified as one of the "Grand Challenges" and also from its prominent role in the National Information Infrastructure. While the design of a general-purpose vision system continues to be elusive machine vision systems are being used successfully in specific application elusive, machine vision systems are being used successfully in specific application domains. Building a practical vision system requires a careful selection of appropriate sensors, extraction and integration of information from available cues in the sensed data, and evaluation of system robustness and performance. The authors discuss and demonstrate advantages of (1) multi-sensor fusion, (2) combination of features and classifiers, (3) integration of visual modules, and (IV) admissibility and goal-directed evaluation of vision algorithms. The requirements of several prominent real world applications such as biometry, document image analysis, image and video database retrieval, and automatic object model construction offer exciting problems and new opportunities to design and evaluate vision algorithms.
Kraemer, Mark R; Sandoval-Garcia, Carolina; Bragg, Taryn; Iskandar, Bermans J
2017-09-01
OBJECTIVE The authors conducted a survey to evaluate differences in the understanding and management of shunt-dependent hydrocephalus among members of the American Society of Pediatric Neurosurgeons (ASPN). METHODS Surveys were sent to all 204 active ASPN members in September 2014. One hundred thirty responses were received, representing a 64% response rate. Respondents were asked 13 multiple-choice and free-response questions regarding 4 fundamental problems encountered in shunted-hydrocephalus management: shunt malfunction, chronic cerebrospinal fluid (CSF) overdrainage, chronic headaches, and slit ventricle syndrome (SVS). RESULTS Respondents agreed that shunt malfunction occurs most often as the result of ventricular catheter obstruction. Despite contrary evidence in the literature, most respondents (66%) also believed that choroid plexus is the tissue most often found in obstructed proximal catheters. However, free-text responses revealed that the respondents' understanding of the underlying pathophysiology of shunt obstruction was highly variable and included growth, migration, or adherence of choroid plexus, CSF debris, catheter position, inflammatory processes, and CSF overdrainage. Most respondents considered chronic CSF overdrainage to be a rare complication of shunting in their practice and reported wide variation in treatment protocols. Moreover, despite a lack of evidence in the literature, most respondents attributed chronic headaches in shunt patients to medical reasons (for example, migraines, tension). Accordingly, most respondents managed headaches with reassurance and/or referral to pain clinics. Lastly, there were variable opinions on the etiology of slit ventricle syndrome (SVS), which included early shunting, chronic overdrainage, and/or loss of brain compliance. Beyond shunt revision, respondents reported divergent SVS treatment preferences. CONCLUSIONS The survey shows that there is wide variability in the understanding and management of shunt-dependent hydrocephalus and its complications. Such discrepancies appear to be derived partly from inconsistent familiarity with existing literature but especially from a paucity of high-quality publications.
Xing, Libo; Zhang, Dong; Song, Xiaomin; Weng, Kai; Shen, Yawen; Li, Youmei; Zhao, Caiping; Ma, Juanjuan; An, Na; Han, Mingyu
2016-01-01
Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, ‘Nagafu No. 2’ and ‘Qinguan,’ which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in ‘Nagafu No. 2’ and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in ‘Qinguan.’ The ‘SNP,’ ‘INDEL,’ and ‘SV’ distributions were non-random, with variation-rich or -poor regions throughout the genomes. In ‘Nagafu No. 2’ and ‘Qinguan’ there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in ‘Nagafu No. 2,’ ‘Qinguan,’ and ‘Golden Delicious,’ identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between ‘Nagafu No. 2’ and ‘Qinguan.’ The genome variation data provided a foundation for the further exploration of apple diversity and gene–phenotype relationships, and for future research on molecular breeding to improve apple and related species. PMID:27446138
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob
Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due tomore » marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into account.« less
Field-based evaluations of horizontal flat-plate fish screens
Rose, B.P.; Mesa, M.G.; Barbin-Zydlewski, G.
2008-01-01
Diversions from streams are often screened to prevent the loss of or injury to fish. Hydraulic criteria meant to protect fish that encounter screens have been developed, but primarily for screens that are vertical to the water flow rather than horizontal. For this reason, we measured selected hydraulic variables and released wild rainbow trout Oncorhynchus mykiss over two types of horizontal flat-plate fish screens in the field. Our goal was to assess the efficacy of these screens under a variety of conditions in the field and provide information that could be used to develop criteria for safe fish passage. We evaluated three different invertedweir screens over a range of stream (0.24-1.77 m3/s) and diversion flows (0.10-0.31 m3/s). Approach velocities (AVs) ranged from 3 to 8 cm/s and sweeping velocities (SVs) from 69 to 143 cm/s. We also evaluated a simple backwatered screen over stream flows of 0.23-0.79 m3/s and diversion flows of 0.08-0.32 m3/s. The mean SVs for this screen ranged from 15 to 66 cm/s and the mean AVs from 1 to 5 cm/s. The survival rates of fish held for 24 h after passage over these screens exceeded 98%. Overall, the number of fish-screen contacts was low and the injuries related to passage were infrequent and consisted primarily of minor fin injuries. Our results indicate that screens of this type have great potential as safe and effective fish screens for small diversions. Care must be taken, however, to avoid operating conditions that produce shallow or no water over the screen surface, situations of high AVs and low SVs at backwatered screens, and situations producing a localized high AV with spiraling flow. ?? Copyright by the American Fisheries Society 2008.
Ameisen, David; Deroulers, Christophe; Perrier, Valérie; Bouhidel, Fatiha; Battistella, Maxime; Legrès, Luc; Janin, Anne; Bertheau, Philippe; Yunès, Jean-Baptiste
2014-01-01
Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools. Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries. We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format. Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics workflow.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.
2007-01-01
The use of enhanced vision systems in civil aircraft is projected to increase rapidly as the Federal Aviation Administration recently changed the aircraft operating rules under Part 91, revising the flight visibility requirements for conducting approach and landing operations. Operators conducting straight-in instrument approach procedures may now operate below the published approach minimums when using an approved enhanced flight vision system that shows the required visual references on the pilot's Head-Up Display. An experiment was conducted to evaluate the complementary use of synthetic vision systems and enhanced vision system technologies, focusing on new techniques for integration and/or fusion of synthetic and enhanced vision technologies and crew resource management while operating under these newly adopted rules. Experimental results specific to flight crew response to non-normal events using the fused synthetic/enhanced vision system are presented.
VLSI chips for vision-based vehicle guidance
NASA Astrophysics Data System (ADS)
Masaki, Ichiro
1994-02-01
Sensor-based vehicle guidance systems are gathering rapidly increasing interest because of their potential for increasing safety, convenience, environmental friendliness, and traffic efficiency. Examples of applications include intelligent cruise control, lane following, collision warning, and collision avoidance. This paper reviews the research trends in vision-based vehicle guidance with an emphasis on VLSI chip implementations of the vision systems. As an example of VLSI chips for vision-based vehicle guidance, a stereo vision system is described in detail.
Vision Systems with the Human in the Loop
NASA Astrophysics Data System (ADS)
Bauckhage, Christian; Hanheide, Marc; Wrede, Sebastian; Käster, Thomas; Pfeiffer, Michael; Sagerer, Gerhard
2005-12-01
The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed.
NASA Astrophysics Data System (ADS)
Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad
2009-02-01
In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.
Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck
2008-04-10
One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.
NASA Technical Reports Server (NTRS)
1972-01-01
A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.
Automating the Fireshed Assessment Process with ArcGIS
Alan Ager; Klaus Barber
2006-01-01
A library of macros was developed to automate the Fireshed process within ArcGIS. The macros link a number of vegetation simulation and wildfire behavior models (FVS, SVS, FARSITE, and FlamMap) with ESRI geodatabases, desktop software (Access, Excel), and ArcGIS. The macros provide for (1) an interactive linkage between digital imagery, vegetation data, FVS-FFE, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... terms of economic development.'' Id. Thus, we find India, the Philippines, Indonesia, Thailand, Ukraine... during the POR, the material terms of sale were established on the invoice date. The Department... Indian import SVs a surrogate freight cost using the shorter of the reported distance from the domestic...
Deep hierarchies in the primate visual cortex: what can we learn for computer vision?
Krüger, Norbert; Janssen, Peter; Kalkan, Sinan; Lappe, Markus; Leonardis, Ales; Piater, Justus; Rodríguez-Sánchez, Antonio J; Wiskott, Laurenz
2013-08-01
Computational modeling of the primate visual system yields insights of potential relevance to some of the challenges that computer vision is facing, such as object recognition and categorization, motion detection and activity recognition, or vision-based navigation and manipulation. This paper reviews some functional principles and structures that are generally thought to underlie the primate visual cortex, and attempts to extract biological principles that could further advance computer vision research. Organized for a computer vision audience, we present functional principles of the processing hierarchies present in the primate visual system considering recent discoveries in neurophysiology. The hierarchical processing in the primate visual system is characterized by a sequence of different levels of processing (on the order of 10) that constitute a deep hierarchy in contrast to the flat vision architectures predominantly used in today's mainstream computer vision. We hope that the functional description of the deep hierarchies realized in the primate visual system provides valuable insights for the design of computer vision algorithms, fostering increasingly productive interaction between biological and computer vision research.
A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems
Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo
2017-01-01
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187
A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.
Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo
2017-01-12
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.
Knowledge-based vision and simple visual machines.
Cliff, D; Noble, J
1997-01-01
The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong. PMID:9304684
A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems
NASA Astrophysics Data System (ADS)
Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo
2017-01-01
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.
3D morphology reconstruction using linear array CCD binocular stereo vision imaging system
NASA Astrophysics Data System (ADS)
Pan, Yu; Wang, Jinjiang
2018-01-01
Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III
2005-01-01
Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.
Vitamin D Levels in Takayasu's Arteritis and a Review of the Literature on Vasculitides.
Alibaz-Oner, Fatma; Asmaz-Haliloglu, Özlem; Gogas-Yavuz, Dilek; Can, Meryem; Haklar, Goncagul; Direskeneli, Haner
2016-09-01
Takayasu's arteritis (TAK) is a chronic, large-vessel vasculitis. Vitamin D, as a steroidal hormone, has recently been shown to have immunoregulatory and immunosuppressive effects. Low vitamin D levels are demonstrated in various autoimmune disorders. The aim of this study is to investigate vitamin D levels in patients with TAK. A comprehensive review of vitamin D levels in systemic vasculitides (SVs) is also performed. The study included 36 patients with TAK, 28 patients with Behçet's disease (BD) as disease control and 30 sex-matched healthy controls. Plasma 25-hydroxy vitamin D (25(OH) vit D) levels were measured with high-performance liquid chromatography. "Deficiency" was defined as 25(OH) vit D levels below 25 nmol/l and "insufficiency" as below 50 nmol/l. Plasma 25(OH) vit D levels were significantly lower in TAK patients (16.93 ± 10.62 nmol/l) than healthy controls (64.63 ± 21.82 nmol/l). Vitamin D level in BD patients (38.8 ± 20.9 nmol/l) is lower than healthy controls but higher than TAK patients. The frequency of vitamin D deficiency was 83.3% in patients with TAK compared to 3.3% in healthy controls. Plasma 25(OH) vit D levels were same between clinically active and inactive patients. In literature review, very few studies were found to investigate vitamin D in SVs. We observed a high prevalence of vitamin D deficiency in patients with TAK. As various immune effects of vitamin D on mononuclear cells and arterial endothelium is shown, vitamin D deficiency can be a predisposing factor for immune activation in SV. We therefore suggest monitorization and replacement of vitamin D status in all TAK and other SV patients. © 2015 Wiley Periodicals, Inc.
Malmberg, M Michelle; Shi, Fan; Spangenberg, German C; Daetwyler, Hans D; Cogan, Noel O I
2018-01-01
Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD). Complexity reduction genotyping-by-sequencing (GBS) methods, including GBS-transcriptomics (GBS-t), enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR) delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs), and identify structural variants (SVs). Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.
Goddard In The Galaxy [Music Video
2014-07-14
This video highlights the many ways NASA Goddard Space Flight Center explores the universe. So crank up your speakers and let the music be your guide. "My Songs Know What You Did In The Dark (Light Em Up)" Performed by Fall Out Boy Courtesy of Island Def Jam Music Group under license from Universal Music Enterprises Download the video here: svs.gsfc.nasa.gov/goto?11378 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Cross, Jack; Schneider, John; Cariani, Pete
2013-05-01
Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.
Evaluation of 5 different labeled polymer immunohistochemical detection systems.
Skaland, Ivar; Nordhus, Marit; Gudlaugsson, Einar; Klos, Jan; Kjellevold, Kjell H; Janssen, Emiel A M; Baak, Jan P A
2010-01-01
Immunohistochemical staining is important for diagnosis and therapeutic decision making but the results may vary when different detection systems are used. To analyze this, 5 different labeled polymer immunohistochemical detection systems, REAL EnVision, EnVision Flex, EnVision Flex+ (Dako, Glostrup, Denmark), NovoLink (Novocastra Laboratories Ltd, Newcastle Upon Tyne, UK) and UltraVision ONE (Thermo Fisher Scientific, Fremont, CA) were tested using 12 different, widely used mouse and rabbit primary antibodies, detecting nuclear, cytoplasmic, and membrane antigens. Serial sections of multitissue blocks containing 4% formaldehyde fixed paraffin embedded material were selected for their weak, moderate, and strong staining for each antibody. Specificity and sensitivity were evaluated by subjective scoring and digital image analysis. At optimal primary antibody dilution, digital image analysis showed that EnVision Flex+ was the most sensitive system (P < 0.005), with means of 8.3, 13.4, 20.2, and 41.8 gray scale values stronger staining than REAL EnVision, EnVision Flex, NovoLink, and UltraVision ONE, respectively. NovoLink was the second most sensitive system for mouse antibodies, but showed low sensitivity for rabbit antibodies. Due to low sensitivity, 2 cases with UltraVision ONE and 1 case with NovoLink stained false negatively. None of the detection systems showed any distinct false positivity, but UltraVision ONE and NovoLink consistently showed weak background staining both in negative controls and at optimal primary antibody dilution. We conclude that there are significant differences in sensitivity, specificity, costs, and total assay time in the immunohistochemical detection systems currently in use.
Real Time Target Tracking Using Dedicated Vision Hardware
NASA Astrophysics Data System (ADS)
Kambies, Keith; Walsh, Peter
1988-03-01
This paper describes a real-time vision target tracking system developed by Adaptive Automation, Inc. and delivered to NASA's Launch Equipment Test Facility, Kennedy Space Center, Florida. The target tracking system is part of the Robotic Application Development Laboratory (RADL) which was designed to provide NASA with a general purpose robotic research and development test bed for the integration of robot and sensor systems. One of the first RADL system applications is the closing of a position control loop around a six-axis articulated arm industrial robot using a camera and dedicated vision processor as the input sensor so that the robot can locate and track a moving target. The vision system is inside of the loop closure of the robot tracking system, therefore, tight throughput and latency constraints are imposed on the vision system that can only be met with specialized hardware and a concurrent approach to the processing algorithms. State of the art VME based vision boards capable of processing the image at frame rates were used with a real-time, multi-tasking operating system to achieve the performance required. This paper describes the high speed vision based tracking task, the system throughput requirements, the use of dedicated vision hardware architecture, and the implementation design details. Important to the overall philosophy of the complete system was the hierarchical and modular approach applied to all aspects of the system, hardware and software alike, so there is special emphasis placed on this topic in the paper.
Single-Vector Calibration of Wind-Tunnel Force Balances
NASA Technical Reports Server (NTRS)
Parker, P. A.; DeLoach, R.
2003-01-01
An improved method of calibrating a wind-tunnel force balance involves the use of a unique load application system integrated with formal experimental design methodology. The Single-Vector Force Balance Calibration System (SVS) overcomes the productivity and accuracy limitations of prior calibration methods. A force balance is a complex structural spring element instrumented with strain gauges for measuring three orthogonal components of aerodynamic force (normal, axial, and side force) and three orthogonal components of aerodynamic torque (rolling, pitching, and yawing moments). Force balances remain as the state-of-the-art instrument that provide these measurements on a scale model of an aircraft during wind tunnel testing. Ideally, each electrical channel of the balance would respond only to its respective component of load, and it would have no response to other components of load. This is not entirely possible even though balance designs are optimized to minimize these undesirable interaction effects. Ultimately, a calibration experiment is performed to obtain the necessary data to generate a mathematical model and determine the force measurement accuracy. In order to set the independent variables of applied load for the calibration 24 NASA Tech Briefs, October 2003 experiment, a high-precision mechanical system is required. Manual deadweight systems have been in use at Langley Research Center (LaRC) since the 1940s. These simple methodologies produce high confidence results, but the process is mechanically complex and labor-intensive, requiring three to four weeks to complete. Over the past decade, automated balance calibration systems have been developed. In general, these systems were designed to automate the tedious manual calibration process resulting in an even more complex system which deteriorates load application quality. The current calibration approach relies on a one-factor-at-a-time (OFAT) methodology, where each independent variable is incremented individually throughout its full-scale range, while all other variables are held at a constant magnitude. This OFAT approach has been widely accepted because of its inherent simplicity and intuitive appeal to the balance engineer. LaRC has been conducting research in a "modern design of experiments" (MDOE) approach to force balance calibration. Formal experimental design techniques provide an integrated view to the entire calibration process covering all three major aspects of an experiment; the design of the experiment, the execution of the experiment, and the statistical analyses of the data. In order to overcome the weaknesses in the available mechanical systems and to apply formal experimental techniques, a new mechanical system was required. The SVS enables the complete calibration of a six-component force balance with a series of single force vectors.
Pyramidal neurovision architecture for vision machines
NASA Astrophysics Data System (ADS)
Gupta, Madan M.; Knopf, George K.
1993-08-01
The vision system employed by an intelligent robot must be active; active in the sense that it must be capable of selectively acquiring the minimal amount of relevant information for a given task. An efficient active vision system architecture that is based loosely upon the parallel-hierarchical (pyramidal) structure of the biological visual pathway is presented in this paper. Although the computational architecture of the proposed pyramidal neuro-vision system is far less sophisticated than the architecture of the biological visual pathway, it does retain some essential features such as the converging multilayered structure of its biological counterpart. In terms of visual information processing, the neuro-vision system is constructed from a hierarchy of several interactive computational levels, whereupon each level contains one or more nonlinear parallel processors. Computationally efficient vision machines can be developed by utilizing both the parallel and serial information processing techniques within the pyramidal computing architecture. A computer simulation of a pyramidal vision system for active scene surveillance is presented.
Vision-based obstacle recognition system for automated lawn mower robot development
NASA Astrophysics Data System (ADS)
Mohd Zin, Zalhan; Ibrahim, Ratnawati
2011-06-01
Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.
IBM NJE protocol emulator for VAX/VMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engert, D.E.
1981-01-01
Communications software has been written at Argonne National Laboratory to enable a VAX/VMS system to participate as an end-node in a standard IBM network by emulating the Network Job Entry (NJE) protocol. NJE is actually a collection of programs that support job networking for the operating systems used on most large IBM-compatible computers (e.g., VM/370, MVS with JES2 or JES3, SVS, MVT with ASP or HASP). Files received by the VAX can be printed or saved in user-selected disk files. Files sent to the network can be routed to any node in the network for printing, punching, or job submission,more » as well as to a VM/370 user's virtual reader. Files sent from the VAX are queued and transmitted asynchronously to allow users to perform other work while files are awaiting transmission. No changes are required to the IBM software.« less
NASA Astrophysics Data System (ADS)
Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.
1989-03-01
The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.
Salient value similarity, social trust and attitudes toward wildland fire management strategies
J.J. Vaske; J.D. Absher; A.D. Bright
2007-01-01
We predicted that social trust in the USDA Forest Service would mediate the relationship between shared value similarity (SVS) and attitudes toward prescribed burning and mechanical thinning. Data were obtained from a mail survey (n = 532) of rural Colorado residents living in the wildland urban interface (WUI). A structural equation analysis was used to assess the...
Pivato, Alberto; Lavagnolo, Maria Cristina; Manachini, Barbara; Vanin, Stefano; Raga, Roberto; Beggio, Giovanni
2017-04-01
The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA) and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i) one based on the "substance-based" approach and (ii) a second based on the "matrix-based" approach. In the former the soil screening values (SVs) for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity. The results indicate that the "matrix-based" approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized "substance based" approach is (i) comparable in economic terms and in testing time, (ii) is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii) accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv) can be considered sufficiently conservative.
Gui, Linsheng; Jiang, Bijie; Zhang, Yaran; Zan, Linsen
2015-03-15
Silent information regulator 6 (SIRT6) belongs to the family of class III nicotinamide adenine dinucleotide (NAD)-dependent deacetylase and plays an essential role in DNA repair and metabolism. This study was conducted to detect potential polymorphisms of the bovine SIRT6 gene and explore their relationships with body measurement and carcass quality in Qinchuan cattle. Four sequence variants (SVs) were identified in intron 6, exon 7, exon 9, and 3' UTR, via sequencing technology conducted in 468 individual Qinchuan cattle. Eleven different haplotypes were identified, of which two major haplotypes had a frequency of 45.7% (-CACT-) and 14.8% (-CGTC-). Three SVs (SV2, SV3 and SV4) were significantly associated with some of the body measurements and carcass quality traits (P<0.05 or P<0.01), and the H2H7 (CC-GA-TT-TC) diplotype had better performance than other combinations. Our results suggest that some polymorphisms in SIRT6 are associated with production traits and may be used as candidates for marker-assisted selection (MAS) and management in beef cattle breeding programs. Copyright © 2015 Elsevier B.V. All rights reserved.
Cargo crowding at actin-rich regions along axons causes local traffic jams.
Sood, Parul; Murthy, Kausalya; Kumar, Vinod; Nonet, Michael L; Menon, Gautam I; Koushika, Sandhya P
2018-03-01
Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Child sexual abuse: an Italian perspective.
Cattaneo, Cristina; Ruspa, Marina; Motta, Tiziano; Gentilomo, Andrea; Scagnelli, Chiara
2007-06-01
The problem of child sexual abuse is a growing reality in Italy. The experience of over 200 children seen by the SVS (Soccorso Violenza Sessuale) Centre in Milan (the first Italian large-scale study) may give more information on the European situation. This study is a retrospective study based on information contained in the files of children beneath the age of 14 seen at the SVS Centre between May 1996 and May 2003, who arrived with a suspicion of child sexual abuse. Over 80% of all cases fell within the normal-aspecific category according to Adams' 2001 classification. This first Italian survey, though not based on substantiated cases but only on cases of suspected sexual abuse, supplies a perspective on a large northern European city such as Milan. Data seem similar to those published in other non-European studies, particularly as regards clinical signs observed. Thus, the results of this study, with all their limitations, start to give a perspective on the frequency and type of child population reaching this Italian center, what the scenarios are, what signs the children present and how infrequent it is to find clinical anogenital signs concerning for sexual abuse.
Augmented brain function by coordinated reset stimulation with slowly varying sequences.
Zeitler, Magteld; Tass, Peter A
2015-01-01
Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS). In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS.
Augmented brain function by coordinated reset stimulation with slowly varying sequences
Zeitler, Magteld; Tass, Peter A.
2015-01-01
Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventually lead to an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and abnormal synchrony. The spatiotemporal sequence by which all stimulation sites are stimulated exactly once is called the stimulation site sequence, or briefly sequence. So far, in simulations, pre-clinical and clinical applications CR was applied either with fixed sequences or rapidly varying sequences (RVS). In this computational study we show that appropriate repetition of the sequence with occasional random switching to the next sequence may significantly improve the anti-kindling effect of CR. To this end, a sequence is applied many times before randomly switching to the next sequence. This new method is called SVS CR stimulation, i.e., CR with slowly varying sequences. In a neuronal network with strong short-range excitatory and weak long-range inhibitory dynamic couplings SVS CR stimulation turns out to be superior to CR stimulation with fixed sequences or RVS. PMID:25873867
Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting
Di Giovanni, Jerome; Sheng, Zu-Hang
2015-01-01
Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin−/− neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin−/− phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca2+ sensor, we demonstrate that snapin–dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca2+ sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting. PMID:26108535
Novel polymorphisms of the APOA2 gene and its promoter region affect body traits in cattle.
Zhou, Yang; Li, Caixia; Cai, Hanfang; Xu, Yao; Lan, Xianyong; Lei, Chuzhao; Chen, Hong
2013-12-01
Apolipoprotein A-II (APOA2) is one of the major constituents of high-density lipoprotein and plays a critical role in lipid metabolism and obesity. However, similar research for the bovine APOA2 gene is lacking. In this study, polymorphisms of the bovine APOA2 gene and its promoter region were detected in 1021 cows from four breeds by sequencing and PCR-RFLP methods. Totally, we detected six novel mutations which included one mutation in the promoter region, two mutations in the exons and three mutations in the introns. There were four polymorphisms within APOA2 gene were analyzed. The allele A, T, T and G frequencies of the four loci were predominant in the four breeds when in separate or combinations analysis which suggested cows with those alleles to be more adapted to the steppe environment. The association analysis indicated three SVs in Nangyang cows, two SVs in Qinchun cows and the 9 haplotypes in Nangyang cows were significantly associated with body traits (P<0.05 or P<0.01). The results of this study suggested the bovine APOA2 gene may be a strong candidate gene for body traits in the cattle breeding program. © 2013.
Monovision techniques for telerobots
NASA Technical Reports Server (NTRS)
Goode, P. W.; Carnils, K.
1987-01-01
The primary task of the vision sensor in a telerobotic system is to provide information about the position of the system's effector relative to objects of interest in its environment. The subtasks required to perform the primary task include image segmentation, object recognition, and object location and orientation in some coordinate system. The accomplishment of the vision task requires the appropriate processing tools and the system methodology to effectively apply the tools to the subtasks. The functional structure of the telerobotic vision system used in the Langley Research Center's Intelligent Systems Research Laboratory is discussed as well as two monovision techniques for accomplishing the vision subtasks.
Design of a dynamic test platform for autonomous robot vision systems
NASA Technical Reports Server (NTRS)
Rich, G. C.
1980-01-01
The concept and design of a dynamic test platform for development and evluation of a robot vision system is discussed. The platform is to serve as a diagnostic and developmental tool for future work with the RPI Mars Rover's multi laser/multi detector vision system. The platform allows testing of the vision system while its attitude is varied, statically or periodically. The vision system is mounted on the test platform. It can then be subjected to a wide variety of simulated can thus be examined in a controlled, quantitative fashion. Defining and modeling Rover motions and designing the platform to emulate these motions are also discussed. Individual aspects of the design process are treated separately, as structural, driving linkages, and motors and transmissions.
2011-11-01
RX-TY-TR-2011-0096-01) develops a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica...01 summarizes the development of a novel computer vision sensor based upon the biological vision system of the common housefly , Musca domestica
Vehicle-based vision sensors for intelligent highway systems
NASA Astrophysics Data System (ADS)
Masaki, Ichiro
1989-09-01
This paper describes a vision system, based on ASIC (Application Specific Integrated Circuit) approach, for vehicle guidance on highways. After reviewing related work in the fields of intelligent vehicles, stereo vision, and ASIC-based approaches, the paper focuses on a stereo vision system for intelligent cruise control. The system measures the distance to the vehicle in front using trinocular triangulation. An application specific processor architecture was developed to offer low mass-production cost, real-time operation, low power consumption, and small physical size. The system was installed in the trunk of a car and evaluated successfully on highways.
Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur
2012-01-01
This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956
Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur
2012-01-01
This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.
Skrzat, Janusz; Sioma, Andrzej; Kozerska, Magdalena
2013-01-01
In this paper we present potential usage of the 3D vision system for registering features of the macerated cranial bones. Applied 3D vision system collects height profiles of the object surface and from that data builds a three-dimensional image of the surface. This method appeared to be accurate enough to capture anatomical details of the macerated bones. With the aid of the 3D vision system we generated images of the surface of the human calvaria which was used for testing the system. Performed reconstruction visualized the imprints of the dural vascular system, cranial sutures, and the three-layer structure of the cranial bones observed in the cross-section. We figure out that the 3D vision system may deliver data which can enhance estimation of sex from the osteological material.
Machine vision systems using machine learning for industrial product inspection
NASA Astrophysics Data System (ADS)
Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony
2002-02-01
Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.
Application of aircraft navigation sensors to enhanced vision systems
NASA Technical Reports Server (NTRS)
Sweet, Barbara T.
1993-01-01
In this presentation, the applicability of various aircraft navigation sensors to enhanced vision system design is discussed. First, the accuracy requirements of the FAA for precision landing systems are presented, followed by the current navigation systems and their characteristics. These systems include Instrument Landing System (ILS), Microwave Landing System (MLS), Inertial Navigation, Altimetry, and Global Positioning System (GPS). Finally, the use of navigation system data to improve enhanced vision systems is discussed. These applications include radar image rectification, motion compensation, and image registration.
FLORA™: Phase I development of a functional vision assessment for prosthetic vision users
Geruschat, Duane R; Flax, Marshall; Tanna, Nilima; Bianchi, Michelle; Fisher, Andy; Goldschmidt, Mira; Fisher, Lynne; Dagnelie, Gislin; Deremeik, Jim; Smith, Audrey; Anaflous, Fatima; Dorn, Jessy
2014-01-01
Background Research groups and funding agencies need a functional assessment suitable for an ultra-low vision population in order to evaluate the impact of new vision restoration treatments. The purpose of this study was to develop a pilot assessment to capture the functional vision ability and well-being of subjects whose vision has been partially restored with the Argus II Retinal Prosthesis System. Methods The Functional Low-Vision Observer Rated Assessment (FLORA) pilot assessment involved a self-report section, a list of functional vision tasks for observation of performance, and a case narrative summary. Results were analyzed to determine whether the interview questions and functional vision tasks were appropriate for this ultra-low vision population and whether the ratings suffered from floor or ceiling effects. Thirty subjects with severe to profound retinitis pigmentosa (bare light perception or worse in both eyes) were enrolled in a clinical trial and implanted with the Argus II System. From this population, twenty-six subjects were assessed with the FLORA. Seven different evaluators administered the assessment. Results All 14 interview questions were asked. All 35 functional vision tasks were selected for evaluation at least once, with an average of 20 subjects being evaluated for each test item. All four rating options -- impossible (33%), difficult (23%), moderate (24%) and easy (19%) -- were used by the evaluators. Evaluators also judged the amount of vision they observed the subjects using to complete the various tasks, with vision only occurring 75% on average with the System ON, and 29% with the System OFF. Conclusion The first version of the FLORA was found to contain useful elements for evaluation and to avoid floor and ceiling effects. The next phase of development will be to refine the assessment and to establish reliability and validity to increase its value as a functional vision and well-being assessment tool. PMID:25675964
Ozone minimum concentrations, 1979-2013
2014-09-10
This is a visualizations of ozone concentrations over the southern hemisphere. Minimum concentration of ozone in the southern hemisphere for each year from 1979-2013 (there is no data from 1995). Each image is the day of the year with the lowest concentration of ozone. A graph of the lowest ozone amount for each year is shown. Read more/download file: svs.gsfc.nasa.gov/vis/a010000/a011600/a011648/ NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
GPM Captures Hurricane Joaquin
2017-12-08
Joaquin became a tropical storm Monday evening (EDT) midway between the Bahamas and Bermuda and has now formed into Hurricane Joaquin, the 3rd of the season--the difference is Joaquin could impact the US East Coast. NASA's GPM satellite captured Joaquin Tuesday, September 29th at 21:39 UTC (5:39 pm EDT). Credit: NASA's Scientific Visualization Studio Data provided by the joint NASA/JAXA GPM mission. Download/read more: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4367 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Night vision: changing the way we drive
NASA Astrophysics Data System (ADS)
Klapper, Stuart H.; Kyle, Robert J. S.; Nicklin, Robert L.; Kormos, Alexander L.
2001-03-01
A revolutionary new Night Vision System has been designed to help drivers see well beyond their headlights. From luxury automobiles to heavy trucks, Night Vision is helping drivers see better, see further, and react sooner. This paper describes how Night Vision Systems are being used in transportation and their viability for the future. It describes recent improvements to the system currently in the second year of production. It also addresses consumer education and awareness, cost reduction, product reliability, market expansion and future improvements.
A Machine Vision System for Automatically Grading Hardwood Lumber - (Proceedings)
Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas H. Drayer; Joe G. Tront; Philip A. Araman; Robert L. Brisbon
1990-01-01
Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...
Banks, Caitlin L.; Pai, Mihir M.; McGuirk, Theresa E.; Fregly, Benjamin J.; Patten, Carolynn
2017-01-01
Muscle synergy analysis (MSA) is a mathematical technique that reduces the dimensionality of electromyographic (EMG) data. Used increasingly in biomechanics research, MSA requires methodological choices at each stage of the analysis. Differences in methodological steps affect the overall outcome, making it difficult to compare results across studies. We applied MSA to EMG data collected from individuals post-stroke identified as either responders (RES) or non-responders (nRES) on the basis of a critical post-treatment increase in walking speed. Importantly, no clinical or functional indicators identified differences between the cohort of RES and nRES at baseline. For this exploratory study, we selected the five highest RES and five lowest nRES available from a larger sample. Our goal was to assess how the methodological choices made before, during, and after MSA affect the ability to differentiate two groups with intrinsic physiologic differences based on MSA results. We investigated 30 variations in MSA methodology to determine which choices allowed differentiation of RES from nRES at baseline. Trial-to-trial variability in time-independent synergy vectors (SVs) and time-varying neural commands (NCs) were measured as a function of: (1) number of synergies computed; (2) EMG normalization method before MSA; (3) whether SVs were held constant across trials or allowed to vary during MSA; and (4) synergy analysis output normalization method after MSA. MSA methodology had a strong effect on our ability to differentiate RES from nRES at baseline. Across all 10 individuals and MSA variations, two synergies were needed to reach an average of 90% variance accounted for (VAF). Based on effect sizes, differences in SV and NC variability between groups were greatest using two synergies with SVs that varied from trial-to-trial. Differences in SV variability were clearest using unit magnitude per trial EMG normalization, while NC variability was less sensitive to EMG normalization method. No outcomes were greatly impacted by output normalization method. MSA variability for some, but not all, methods successfully differentiated intrinsic physiological differences inaccessible to traditional clinical or biomechanical assessments. Our results were sensitive to methodological choices, highlighting the need for disclosure of all aspects of MSA methodology in future studies. PMID:28912707
Banks, Caitlin L; Pai, Mihir M; McGuirk, Theresa E; Fregly, Benjamin J; Patten, Carolynn
2017-01-01
Muscle synergy analysis (MSA) is a mathematical technique that reduces the dimensionality of electromyographic (EMG) data. Used increasingly in biomechanics research, MSA requires methodological choices at each stage of the analysis. Differences in methodological steps affect the overall outcome, making it difficult to compare results across studies. We applied MSA to EMG data collected from individuals post-stroke identified as either responders (RES) or non-responders (nRES) on the basis of a critical post-treatment increase in walking speed. Importantly, no clinical or functional indicators identified differences between the cohort of RES and nRES at baseline. For this exploratory study, we selected the five highest RES and five lowest nRES available from a larger sample. Our goal was to assess how the methodological choices made before, during, and after MSA affect the ability to differentiate two groups with intrinsic physiologic differences based on MSA results. We investigated 30 variations in MSA methodology to determine which choices allowed differentiation of RES from nRES at baseline. Trial-to-trial variability in time-independent synergy vectors (SVs) and time-varying neural commands (NCs) were measured as a function of: (1) number of synergies computed; (2) EMG normalization method before MSA; (3) whether SVs were held constant across trials or allowed to vary during MSA; and (4) synergy analysis output normalization method after MSA. MSA methodology had a strong effect on our ability to differentiate RES from nRES at baseline. Across all 10 individuals and MSA variations, two synergies were needed to reach an average of 90% variance accounted for (VAF). Based on effect sizes, differences in SV and NC variability between groups were greatest using two synergies with SVs that varied from trial-to-trial. Differences in SV variability were clearest using unit magnitude per trial EMG normalization, while NC variability was less sensitive to EMG normalization method. No outcomes were greatly impacted by output normalization method. MSA variability for some, but not all, methods successfully differentiated intrinsic physiological differences inaccessible to traditional clinical or biomechanical assessments. Our results were sensitive to methodological choices, highlighting the need for disclosure of all aspects of MSA methodology in future studies.
Machine Vision Systems for Processing Hardwood Lumber and Logs
Philip A. Araman; Daniel L. Schmoldt; Tai-Hoon Cho; Dongping Zhu; Richard W. Conners; D. Earl Kline
1992-01-01
Machine vision and automated processing systems are under development at Virginia Tech University with support and cooperation from the USDA Forest Service. Our goals are to help U.S. hardwood producers automate, reduce costs, increase product volume and value recovery, and market higher value, more accurately graded and described products. Any vision system is...
Machine vision system for inspecting characteristics of hybrid rice seed
NASA Astrophysics Data System (ADS)
Cheng, Fang; Ying, Yibin
2004-03-01
Obtaining clear images advantaged of improving the classification accuracy involves many factors, light source, lens extender and background were discussed in this paper. The analysis of rice seed reflectance curves showed that the wavelength of light source for discrimination of the diseased seeds from normal rice seeds in the monochromic image recognition mode was about 815nm for jinyou402 and shanyou10. To determine optimizing conditions for acquiring digital images of rice seed using a computer vision system, an adjustable color machine vision system was developed. The machine vision system with 20mm to 25mm lens extender produce close-up images which made it easy to object recognition of characteristics in hybrid rice seeds. White background was proved to be better than black background for inspecting rice seeds infected by disease and using the algorithms based on shape. Experimental results indicated good classification for most of the characteristics with the machine vision system. The same algorithm yielded better results in optimizing condition for quality inspection of rice seed. Specifically, the image processing can correct for details such as fine fissure with the machine vision system.
Vision Algorithms to Determine Shape and Distance for Manipulation of Unmodeled Objects
NASA Technical Reports Server (NTRS)
Montes, Leticia; Bowers, David; Lumia, Ron
1998-01-01
This paper discusses the development of a robotic system for general use in an unstructured environment. This is illustrated through pick and place of randomly positioned, un-modeled objects. There are many applications for this project, including rock collection for the Mars Surveyor Program. This system is demonstrated with a Puma560 robot, Barrett hand, Cognex vision system, and Cimetrix simulation and control, all running on a PC. The demonstration consists of two processes: vision system and robotics. The vision system determines the size and location of the unknown objects. The robotics part consists of moving the robot to the object, configuring the hand based on the information from the vision system, then performing the pick/place operation. This work enhances and is a part of the Low Cost Virtual Collaborative Environment which provides remote simulation and control of equipment.
AN INVESTIGATION OF VISION PROBLEMS AND THE VISION CARE SYSTEM IN RURAL CHINA.
Bai, Yunli; Yi, Hongmei; Zhang, Linxiu; Shi, Yaojiang; Ma, Xiaochen; Congdon, Nathan; Zhou, Zhongqiang; Boswell, Matthew; Rozelle, Scott
2014-11-01
This paper examines the prevalence of vision problems and the accessibility to and quality of vision care in rural China. We obtained data from 4 sources: 1) the National Rural Vision Care Survey; 2) the Private Optometrists Survey; 3) the County Hospital Eye Care Survey; and 4) the Rural School Vision Care Survey. The data from each of the surveys were collected by the authors during 2012. Thirty-three percent of the rural population surveyed self-reported vision problems. Twenty-two percent of subjects surveyed had ever had a vision exam. Among those who self-reported having vision problems, 34% did not wear eyeglasses. Fifty-four percent of those with vision problems who had eyeglasses did not have a vision exam prior to receiving glasses. However, having a vision exam did not always guarantee access to quality vision care. Four channels of vision care service were assessed. The school vision examination program did not increase the usage rate of eyeglasses. Each county-hospital was staffed with three eye-doctors having one year of education beyond high school, serving more than 400,000 residents. Private optometrists often had low levels of education and professional certification. In conclusion, our findings shows that the vision care system in rural China is inadequate and ineffective in meeting the needs of the rural population sampled.
A Machine Vision System for Automatically Grading Hardwood Lumber - (Industrial Metrology)
Richard W. Conners; Tai-Hoon Cho; Chong T. Ng; Thomas T. Drayer; Philip A. Araman; Robert L. Brisbon
1992-01-01
Any automatic system for grading hardwood lumber can conceptually be divided into two components. One of these is a machine vision system for locating and identifying grading defects. The other is an automatic grading program that accepts as input the output of the machine vision system and, based on these data, determines the grade of a board. The progress that has...
Machine Vision Giving Eyes to Robots. Resources in Technology.
ERIC Educational Resources Information Center
Technology Teacher, 1990
1990-01-01
This module introduces machine vision, which can be used for inspection, robot guidance and part sorting. The future for machine vision will include new technology and will bring vision systems closer to the ultimate vision processor, the human eye. Includes a student quiz, outcomes, and activities. (JOW)
3-D Signal Processing in a Computer Vision System
Dongping Zhu; Richard W. Conners; Philip A. Araman
1991-01-01
This paper discusses the problem of 3-dimensional image filtering in a computer vision system that would locate and identify internal structural failure. In particular, a 2-dimensional adaptive filter proposed by Unser has been extended to 3-dimension. In conjunction with segmentation and labeling, the new filter has been used in the computer vision system to...
Intensity measurement of automotive headlamps using a photometric vision system
NASA Astrophysics Data System (ADS)
Patel, Balvant; Cruz, Jose; Perry, David L.; Himebaugh, Frederic G.
1996-01-01
Requirements for automotive head lamp luminous intensity tests are introduced. The rationale for developing a non-goniometric photometric test system is discussed. The design of the Ford photometric vision system (FPVS) is presented, including hardware, software, calibration, and system use. Directional intensity plots and regulatory test results obtained from the system are compared to corresponding results obtained from a Ford goniometric test system. Sources of error for the vision system and goniometer are discussed. Directions for new work are identified.
The study of stereo vision technique for the autonomous vehicle
NASA Astrophysics Data System (ADS)
Li, Pei; Wang, Xi; Wang, Jiang-feng
2015-08-01
The stereo vision technology by two or more cameras could recovery 3D information of the field of view. This technology can effectively help the autonomous navigation system of unmanned vehicle to judge the pavement conditions within the field of view, and to measure the obstacles on the road. In this paper, the stereo vision technology in measuring the avoidance of the autonomous vehicle is studied and the key techniques are analyzed and discussed. The system hardware of the system is built and the software is debugged, and finally the measurement effect is explained by the measured data. Experiments show that the 3D reconstruction, within the field of view, can be rebuilt by the stereo vision technology effectively, and provide the basis for pavement condition judgment. Compared with unmanned vehicle navigation radar used in measuring system, the stereo vision system has the advantages of low cost, distance and so on, it has a good application prospect.
NASA Astrophysics Data System (ADS)
Zhang, Shuo; Liu, Shaochuang; Ma, Youqing; Qi, Chen; Ma, Hao; Yang, Huan
2017-06-01
The Chang'e-3 was the first lunar soft landing probe of China. It was composed of the lander and the lunar rover. The Chang'e-3 successful landed in the northwest of the Mare Imbrium in December 14, 2013. The lunar rover completed the movement, imaging and geological survey after landing. The lunar rover equipped with a stereo vision system which was made up of the Navcam system, the mast mechanism and the inertial measurement unit (IMU). The Navcam system composed of two cameras with the fixed focal length. The mast mechanism was a robot with three revolute joints. The stereo vision system was used to determine the position of the lunar rover, generate the digital elevation models (DEM) of the surrounding region and plan the moving paths of the lunar rover. The stereo vision system must be calibrated before use. The control field could be built to calibrate the stereo vision system in the laboratory on the earth. However, the parameters of the stereo vision system would change after the launch, the orbital changes, the braking and the landing. Therefore, the stereo vision system should be self calibrated on the moon. An integrated self calibration method based on the bundle block adjustment is proposed in this paper. The bundle block adjustment uses each bundle of ray as the basic adjustment unit and the adjustment is implemented in the whole photogrammetric region. The stereo vision system can be self calibrated with the proposed method under the unknown lunar environment and all parameters can be estimated simultaneously. The experiment was conducted in the ground lunar simulation field. The proposed method was compared with other methods such as the CAHVOR method, the vanishing point method, the Denavit-Hartenberg method, the factorization method and the weighted least-squares method. The analyzed result proved that the accuracy of the proposed method was superior to those of other methods. Finally, the proposed method was practical used to self calibrate the stereo vision system of the Chang'e-3 lunar rover on the moon.
An embedded vision system for an unmanned four-rotor helicopter
NASA Astrophysics Data System (ADS)
Lillywhite, Kirt; Lee, Dah-Jye; Tippetts, Beau; Fowers, Spencer; Dennis, Aaron; Nelson, Brent; Archibald, James
2006-10-01
In this paper an embedded vision system and control module is introduced that is capable of controlling an unmanned four-rotor helicopter and processing live video for various law enforcement, security, military, and civilian applications. The vision system is implemented on a newly designed compact FPGA board (Helios). The Helios board contains a Xilinx Virtex-4 FPGA chip and memory making it capable of implementing real time vision algorithms. A Smooth Automated Intelligent Leveling daughter board (SAIL), attached to the Helios board, collects attitude and heading information to be processed in order to control the unmanned helicopter. The SAIL board uses an electrolytic tilt sensor, compass, voltage level converters, and analog to digital converters to perform its operations. While level flight can be maintained, problems stemming from the characteristics of the tilt sensor limits maneuverability of the helicopter. The embedded vision system has proven to give very good results in its performance of a number of real-time robotic vision algorithms.
2014-01-01
Background Since microscopic slides can now be automatically digitized and integrated in the clinical workflow, quality assessment of Whole Slide Images (WSI) has become a crucial issue. We present a no-reference quality assessment method that has been thoroughly tested since 2010 and is under implementation in multiple sites, both public university-hospitals and private entities. It is part of the FlexMIm R&D project which aims to improve the global workflow of digital pathology. For these uses, we have developed two programming libraries, in Java and Python, which can be integrated in various types of WSI acquisition systems, viewers and image analysis tools. Methods Development and testing have been carried out on a MacBook Pro i7 and on a bi-Xeon 2.7GHz server. Libraries implementing the blur assessment method have been developed in Java, Python, PHP5 and MySQL5. For web applications, JavaScript, Ajax, JSON and Sockets were also used, as well as the Google Maps API. Aperio SVS files were converted into the Google Maps format using VIPS and Openslide libraries. Results We designed the Java library as a Service Provider Interface (SPI), extendable by third parties. Analysis is computed in real-time (3 billion pixels per minute). Tests were made on 5000 single images, 200 NDPI WSI, 100 Aperio SVS WSI converted to the Google Maps format. Conclusions Applications based on our method and libraries can be used upstream, as calibration and quality control tool for the WSI acquisition systems, or as tools to reacquire tiles while the WSI is being scanned. They can also be used downstream to reacquire the complete slides that are below the quality threshold for surgical pathology analysis. WSI may also be displayed in a smarter way by sending and displaying the regions of highest quality before other regions. Such quality assessment scores could be integrated as WSI's metadata shared in clinical, research or teaching contexts, for a more efficient medical informatics workflow. PMID:25565494
Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft
2017-06-01
International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing
Remote-controlled vision-guided mobile robot system
NASA Astrophysics Data System (ADS)
Ande, Raymond; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of the remote controlled emergency stop and vision systems for an autonomous mobile robot. The remote control provides human supervision and emergency stop capabilities for the autonomous vehicle. The vision guidance provides automatic operation. A mobile robot test-bed has been constructed using a golf cart base. The mobile robot (Bearcat) was built for the Association for Unmanned Vehicle Systems (AUVS) 1997 competition. The mobile robot has full speed control with guidance provided by a vision system and an obstacle avoidance system using ultrasonic sensors systems. Vision guidance is accomplished using two CCD cameras with zoom lenses. The vision data is processed by a high speed tracking device, communicating with the computer the X, Y coordinates of blobs along the lane markers. The system also has three emergency stop switches and a remote controlled emergency stop switch that can disable the traction motor and set the brake. Testing of these systems has been done in the lab as well as on an outside test track with positive results that show that at five mph the vehicle can follow a line and at the same time avoid obstacles.
Reconfigurable vision system for real-time applications
NASA Astrophysics Data System (ADS)
Torres-Huitzil, Cesar; Arias-Estrada, Miguel
2002-03-01
Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.
Klancar, Gregor; Kristan, Matej; Kovacic, Stanislav; Orqueda, Omar
2004-07-01
In this paper a global vision scheme for estimation of positions and orientations of mobile robots is presented. It is applied to robot soccer application which is a fast dynamic game and therefore needs an efficient and robust vision system implemented. General applicability of the vision system can be found in other robot applications such as mobile transport robots in production, warehouses, attendant robots, fast vision tracking of targets of interest and entertainment robotics. Basic operation of the vision system is divided into two steps. In the first, the incoming image is scanned and pixels are classified into a finite number of classes. At the same time, a segmentation algorithm is used to find corresponding regions belonging to one of the classes. In the second step, all the regions are examined. Selection of the ones that are a part of the observed object is made by means of simple logic procedures. The novelty is focused on optimization of the processing time needed to finish the estimation of possible object positions. Better results of the vision system are achieved by implementing camera calibration and shading correction algorithm. The former corrects camera lens distortion, while the latter increases robustness to irregular illumination conditions.
Latency in Visionic Systems: Test Methods and Requirements
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Arthur, J. J., III; Williams, Steven P.; Kramer, Lynda J.
2005-01-01
A visionics device creates a pictorial representation of the external scene for the pilot. The ultimate objective of these systems may be to electronically generate a form of Visual Meteorological Conditions (VMC) to eliminate weather or time-of-day as an operational constraint and provide enhancement over actual visual conditions where eye-limiting resolution may be a limiting factor. Empirical evidence has shown that the total system delays or latencies including the imaging sensors and display systems, can critically degrade their utility, usability, and acceptability. Definitions and measurement techniques are offered herein as common test and evaluation methods for latency testing in visionics device applications. Based upon available data, very different latency requirements are indicated based upon the piloting task, the role in which the visionics device is used in this task, and the characteristics of the visionics cockpit display device including its resolution, field-of-regard, and field-of-view. The least stringent latency requirements will involve Head-Up Display (HUD) applications, where the visionics imagery provides situational information as a supplement to symbology guidance and command information. Conversely, the visionics system latency requirement for a large field-of-view Head-Worn Display application, providing a Virtual-VMC capability from which the pilot will derive visual guidance, will be the most stringent, having a value as low as 20 msec.
Darling, Jeremy D; McCallum, John C; Soden, Peter A; Guzman, Raul J; Wyers, Mark C; Hamdan, Allen D; Verhagen, Hence J; Schermerhorn, Marc L
2017-03-01
The Society for Vascular Surgery (SVS) Wound, Ischemia and foot Infection (WIfI) classification system was proposed to predict 1-year amputation risk and potential benefit from revascularization. Our goal was to evaluate the predictive ability of this scale in a real-world selection of patients undergoing a first-time lower extremity revascularization for chronic limb-threatening ischemia (CLTI). From 2005 to 2014, 1336 limbs underwent a first-time lower extremity revascularization for CLTI, of which 992 had sufficient data to classify all three WIfI components (wound, ischemia, and foot infection). Limbs were stratified into the SVS WIfI clinical stages (from 1 to 4) for 1-year amputation risk estimation, a novel WIfI composite score from 0 to 9 (that weighs all WIfI variables equally), and a novel WIfI mean score from 0 to 3 (that can incorporate limbs missing any of the three WIfI components). Outcomes included major amputation; revascularization, major amputation, or stenosis (>3.5× step-up by duplex; RAS) events; and death. Predictors were identified using Cox regression models and Kaplan-Meier survival estimates. Of the 1336 first-time procedures performed, 992 limbs were classified in all three WIfI components (524 endovascular and 468 bypass; 26% rest pain and 74% tissue loss). Cox regression demonstrated that a one-unit increase in the WIfI clinical stage increases the risk of major amputation (hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.7-3.2) and RAS events in all limbs (HR, 1.2; 95% CI, 1.1-1.3). Separate models of the entire cohort, a bypass-only cohort, and an endovascular-only cohort showed that a one-unit increase in the WIfI mean score is associated with an increase in the risk of major amputation (all three cohorts: HR, 5.3 [95% CI, 3.6-6.8], 4.1 [2.4-6.9], and 6.6 [3.8-11.6], respectively) and RAS events (all three cohorts: HR, 1.7 [95% CI, 1.4-2.0], 1.9 [1.4-2.6], and 1.4 [1.1-1.9], respectively). The novel WIfI composite and WIfI mean scores were the only consistent predictors of death among the three cohorts, with the WIfI mean score proving most strongly predictive in the entire cohort (HR, 1.4; 95% CI, 1.1-1.7), the bypass-only cohort (HR, 1.5; 95% CI, 1.1-1.9), and the endovascular-only cohort (HR, 1.4; 95% CI, 1.0-1.8). Although the individual WIfI wound component was able to predict mortality among all patients (HR, 1.1; 95% CI, 1.0-1.2) and bypass-only patients (HR, 1.2; 95% CI, 1.1-1.3), neither the additional individual WIfI components nor the WIfI clinical stage were able to significantly predict mortality among any cohort. This study supports the ability of the SVS WIfI classification system to predict major amputation; however, the novel WIfI mean and WIfI composite scores predict amputation, RAS events, and mortality more consistently than any other current WIfI scoring system. The WIfI mean score allows inclusion of all limbs, and both novel scoring systems are easier to conceptualize, give equal weight to each WIfI component, and may provide clinicians more effective comparisons in outcomes between patients. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
Parallel asynchronous systems and image processing algorithms
NASA Technical Reports Server (NTRS)
Coon, D. D.; Perera, A. G. U.
1989-01-01
A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.
Subclones dominate at MDS progression following allogeneic hematopoietic cell transplant
Jacoby, Meagan A.; Duncavage, Eric J.; Chang, Gue Su; Miller, Christopher A.; Shao, Jin; Elliott, Kevin; Robinson, Joshua; Fulton, Robert S.; Fronick, Catrina C.; O’Laughlin, Michelle; Heath, Sharon E.; Welch, John S.; Link, Daniel C.; DiPersio, John F.; Westervelt, Peter; Ley, Timothy J.; Graubert, Timothy A.; Walter, Matthew J.
2018-01-01
Allogeneic hematopoietic cell transplantation (alloHCT) is a potentially curative treatment for myelodysplastic syndromes (MDS), but patients who relapse after transplant have poor outcomes. In order to understand the contribution of tumor clonal evolution to disease progression,we applied exome and error-corrected targeted sequencing coupled with copy number analysis to comprehensively define changes in the clonal architecture of MDS in response to therapy using 51 serially acquired tumor samples from 9 patients who progressed after an alloHCT. We show that small subclones before alloHCT can drive progression after alloHCT. Notably, at least one subclone expanded or emerged at progression in all patients. Newly acquired structural variants (SVs) were present in an emergent/expanding subclone in 8 of 9 patients at progression, implicating the acquisition of SVs as important late subclonal progression events. In addition, pretransplant therapy with azacitidine likely influenced the mutation spectrum and evolution of emergent subclones after alloHCT. Although subclone evolution is common, founding clone mutations are always present at progression and could be detected in the bone marrow as early as 30 and/or 100 days after alloHCT in 6 of 8 (75%) patients, often prior to clinical progression. In conclusion, MDS progression after alloHCT is characterized by subclonal expansion and evolution, which can be influenced by pretransplant therapy. PMID:29515031
Human values in the team leader selection process.
Rovira, Núria; Ozgen, Sibel; Medir, Magda; Tous, Jordi; Alabart, Joan Ramon
2012-03-01
The selection process of team leaders is fundamental if the effectiveness of teams is to be guaranteed. Human values have proven to be an important factor in the behaviour of individuals and leaders. The aim of this study is twofold. The first is to validate Schwartz's survey of human values. The second is to determine whether there are any relationships between the values held by individuals and their preferred roles in a team. Human values were measured by the items of the Schwartz Value Survey (SVS) and the preferred roles in a team were identified by the Belbin Self Perception Inventory (BSPI). The two questionnaires were answered by two samples of undergraduate students (183 and 177 students, respectively). As far as the first objective is concerned, Smallest Space Analysis (SSA) was performed at the outset to examine how well the two-dimensional circular structure, as postulated by Schwartz, was represented in the study population. Then, the results of this analysis were compared and contrasted with those of two other published studies; one by Schwartz (2006) and one by Ros and Grad (1991). As for the second objective, Pearson correlation coefficients were computed to assess the associations between the ratings on the SVS survey items and the ratings on the eight team roles as measured by the BSPI.
GSFC Information Systems Technology Developments Supporting the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Hughes, Peter; Dennehy, Cornelius; Mosier, Gary; Smith, Dan; Rykowski, Lisa
2004-01-01
The Vision for Space Exploration will guide NASA's future human and robotic space activities. The broad range of human and robotic missions now being planned will require the development of new system-level capabilities enabled by emerging new technologies. Goddard Space Flight Center is actively supporting the Vision for Space Exploration in a number of program management, engineering and technology areas. This paper provides a brief background on the Vision for Space Exploration and a general overview of potential key Goddard contributions. In particular, this paper focuses on describing relevant GSFC information systems capabilities in architecture development; interoperable command, control and communications; and other applied information systems technology/research activities that are applicable to support the Vision for Space Exploration goals. Current GSFC development efforts and task activities are presented together with future plans.
Computer Vision System For Locating And Identifying Defects In Hardwood Lumber
NASA Astrophysics Data System (ADS)
Conners, Richard W.; Ng, Chong T.; Cho, Tai-Hoon; McMillin, Charles W.
1989-03-01
This paper describes research aimed at developing an automatic cutup system for use in the rough mills of the hardwood furniture and fixture industry. In particular, this paper describes attempts to create the vision system that will power this automatic cutup system. There are a number of factors that make the development of such a vision system a challenge. First there is the innate variability of the wood material itself. No two species look exactly the same, in fact, they can have a significant visual difference in appearance among species. Yet a truly robust vision system must be able to handle a variety of such species, preferably with no operator intervention required when changing from one species to another. Secondly, there is a good deal of variability in the definition of what constitutes a removable defect. The hardwood furniture and fixture industry is diverse in the nature of the products that it makes. The products range from hardwood flooring to fancy hardwood furniture, from simple mill work to kitchen cabinets. Thus depending on the manufacturer, the product, and the quality of the product the nature of what constitutes a removable defect can and does vary. The vision system must be such that it can be tailored to meet each of these unique needs, preferably without any additional program modifications. This paper will describe the vision system that has been developed. It will assess the current system capabilities, and it will discuss the directions for future research. It will be argued that artificial intelligence methods provide a natural mechanism for attacking this computer vision application.
Audible vision for the blind and visually impaired in indoor open spaces.
Yu, Xunyi; Ganz, Aura
2012-01-01
In this paper we introduce Audible Vision, a system that can help blind and visually impaired users navigate in large indoor open spaces. The system uses computer vision to estimate the location and orientation of the user, and enables the user to perceive his/her relative position to a landmark through 3D audio. Testing shows that Audible Vision can work reliably in real-life ever-changing environment crowded with people.
Relating Standardized Visual Perception Measures to Simulator Visual System Performance
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Sweet, Barbara T.
2013-01-01
Human vision is quantified through the use of standardized clinical vision measurements. These measurements typically include visual acuity (near and far), contrast sensitivity, color vision, stereopsis (a.k.a. stereo acuity), and visual field periphery. Simulator visual system performance is specified in terms such as brightness, contrast, color depth, color gamut, gamma, resolution, and field-of-view. How do these simulator performance characteristics relate to the perceptual experience of the pilot in the simulator? In this paper, visual acuity and contrast sensitivity will be related to simulator visual system resolution, contrast, and dynamic range; similarly, color vision will be related to color depth/color gamut. Finally, we will consider how some characteristics of human vision not typically included in current clinical assessments could be used to better inform simulator requirements (e.g., relating dynamic characteristics of human vision to update rate and other temporal display characteristics).
Use of 3D vision for fine robot motion
NASA Technical Reports Server (NTRS)
Lokshin, Anatole; Litwin, Todd
1989-01-01
An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.
Three-dimensional vision enhances task performance independently of the surgical method.
Wagner, O J; Hagen, M; Kurmann, A; Horgan, S; Candinas, D; Vorburger, S A
2012-10-01
Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance. In this study, 34 individuals with varying laparoscopic experience (18 inexperienced individuals) performed three tasks to test spatial relationships, grasping and positioning, dexterity, precision, and hand-eye and hand-hand coordination. Each task was performed in 3D using binocular vision for open performance, the Viking 3Di Vision System for laparoscopic performance, and the DaVinci robotic system. The same tasks were repeated in 2D using an eye patch for monocular vision, conventional laparoscopy, and the DaVinci robotic system. Loss of 3D vision significantly increased the perceived difficulty of a task and the time required to perform it, independently of the approach (P < 0.0001-0.02). Simple tasks took 25 % to 30 % longer to complete and more complex tasks took 75 % longer with 2D than with 3D vision. Only the difficult task was performed faster with the robot than with laparoscopy (P = 0.005). In every case, 3D robotic performance was superior to conventional laparoscopy (2D) (P < 0.001-0.015). The more complex the task, the more 3D vision accelerates task completion compared with 2D vision. The gain in task performance is independent of the surgical method.
The precision measurement and assembly for miniature parts based on double machine vision systems
NASA Astrophysics Data System (ADS)
Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.
2015-02-01
In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.
Computer vision for foreign body detection and removal in the food industry
USDA-ARS?s Scientific Manuscript database
Computer vision inspection systems are often used for quality control, product grading, defect detection and other product evaluation issues. This chapter focuses on the use of computer vision inspection systems that detect foreign bodies and remove them from the product stream. Specifically, we wi...
A smart telerobotic system driven by monocular vision
NASA Technical Reports Server (NTRS)
Defigueiredo, R. J. P.; Maccato, A.; Wlczek, P.; Denney, B.; Scheerer, J.
1994-01-01
A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry.
Microscope self-calibration based on micro laser line imaging and soft computing algorithms
NASA Astrophysics Data System (ADS)
Apolinar Muñoz Rodríguez, J.
2018-06-01
A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.
An architecture for real-time vision processing
NASA Technical Reports Server (NTRS)
Chien, Chiun-Hong
1994-01-01
To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.
A Machine Vision Quality Control System for Industrial Acrylic Fibre Production
NASA Astrophysics Data System (ADS)
Heleno, Paulo; Davies, Roger; Correia, Bento A. Brázio; Dinis, João
2002-12-01
This paper describes the implementation of INFIBRA, a machine vision system used in the quality control of acrylic fibre production. The system was developed by INETI under a contract with a leading industrial manufacturer of acrylic fibres. It monitors several parameters of the acrylic production process. This paper presents, after a brief overview of the system, a detailed description of the machine vision algorithms developed to perform the inspection tasks unique to this system. Some of the results of online operation are also presented.
CT Image Sequence Analysis for Object Recognition - A Rule-Based 3-D Computer Vision System
Dongping Zhu; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman
1991-01-01
Research is now underway to create a vision system for hardwood log inspection using a knowledge-based approach. In this paper, we present a rule-based, 3-D vision system for locating and identifying wood defects using topological, geometric, and statistical attributes. A number of different features can be derived from the 3-D input scenes. These features and evidence...
NASA Technical Reports Server (NTRS)
Prinzel, L.J.; Kramer, L.J.
2009-01-01
A synthetic vision system is an aircraft cockpit display technology that presents the visual environment external to the aircraft using computer-generated imagery in a manner analogous to how it would appear to the pilot if forward visibility were not restricted. The purpose of this chapter is to review the state of synthetic vision systems, and discuss selected human factors issues that should be considered when designing such displays.
Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)
NASA Astrophysics Data System (ADS)
Ashcraft, Todd W.; Atac, Robert
2012-06-01
Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.
COMPARISON OF RECENTLY USED PHACOEMULSIFICATION SYSTEMS USING A HEALTH TECHNOLOGY ASSESSMENT METHOD.
Huang, Jiannan; Wang, Qi; Zhao, Caimin; Ying, Xiaohua; Zou, Haidong
2017-01-01
To compare the recently used phacoemulsification systems using a health technology assessment (HTA) model. A self-administered questionnaire, which included questions to gauge on the opinions of the recently used phacoemulsification systems, was distributed to the chief cataract surgeons in the departments of ophthalmology of eighteen tertiary hospitals in Shanghai, China. A series of senile cataract patients undergoing phacoemulsification surgery were enrolled in the study. The surgical results and the average costs related to their surgeries were all recorded and compared for the recently used phacoemulsification systems. The four phacoemulsification systems currently used in Shanghai are the Infiniti Vision, Centurion Vision, WhiteStar Signature, and Stellaris Vision Enhancement systems. All of the doctors confirmed that the systems they used would help cataract patients recover vision. A total of 150 cataract patients who underwent phacoemulsification surgery were enrolled in the present study. A significant difference was found among the four groups in cumulative dissipated energy, with the lowest value found in the Centurion group. No serious complications were observed and a positive trend in visual acuity was found in all four groups after cataract surgery. The highest total cost of surgery was associated with procedures conducted using the Centurion Vision system, and significant differences between systems were mainly because of the cost of the consumables used in the different surgeries. This HTA comparison of four recently used phacoemulsification systems found that each of system offers a satisfactory vision recovery outcome, but differs in surgical efficacy and costs.
Task-focused modeling in automated agriculture
NASA Astrophysics Data System (ADS)
Vriesenga, Mark R.; Peleg, K.; Sklansky, Jack
1993-01-01
Machine vision systems analyze image data to carry out automation tasks. Our interest is in machine vision systems that rely on models to achieve their designed task. When the model is interrogated from an a priori menu of questions, the model need not be complete. Instead, the machine vision system can use a partial model that contains a large amount of information in regions of interest and less information elsewhere. We propose an adaptive modeling scheme for machine vision, called task-focused modeling, which constructs a model having just sufficient detail to carry out the specified task. The model is detailed in regions of interest to the task and is less detailed elsewhere. This focusing effect saves time and reduces the computational effort expended by the machine vision system. We illustrate task-focused modeling by an example involving real-time micropropagation of plants in automated agriculture.
Health system vision of iran in 2025.
Rostamigooran, N; Esmailzadeh, H; Rajabi, F; Majdzadeh, R; Larijani, B; Dastgerdi, M Vahid
2013-01-01
Vast changes in disease features and risk factors and influence of demographic, economical, and social trends on health system, makes formulating a long term evolutionary plan, unavoidable. In this regard, to determine health system vision in a long term horizon is a primary stage. After narrative and purposeful review of documentaries, major themes of vision statement were determined and its context was organized in a work group consist of selected managers and experts of health system. Final content of the statement was prepared after several sessions of group discussions and receiving ideas of policy makers and experts of health system. Vision statement in evolutionary plan of health system is considered to be :"a progressive community in the course of human prosperity which has attained to a developed level of health standards in the light of the most efficient and equitable health system in visionary region(1) and with the regarding to health in all policies, accountability and innovation". An explanatory context was compiled either to create a complete image of the vision. Social values and leaders' strategic goals, and also main orientations are generally mentioned in vision statement. In this statement prosperity and justice are considered as major values and ideals in society of Iran; development and excellence in the region as leaders' strategic goals; and also considering efficiency and equality, health in all policies, and accountability and innovation as main orientations of health system.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... Document--Draft DO-XXX, Minimum Aviation Performance Standards (MASPS) for an Enhanced Flight Vision System... Discussion (9:00 a.m.-5:00 p.m.) Provide Comment Resolution of Document--Draft DO-XXX, Minimum Aviation.../Approve FRAC Draft for PMC Consideration--Draft DO- XXX, Minimum Aviation Performance Standards (MASPS...
Robust Spatial Autoregressive Modeling for Hardwood Log Inspection
Dongping Zhu; A.A. Beex
1994-01-01
We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...
Augmentation of Cognition and Perception Through Advanced Synthetic Vision Technology
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.; Arthur, Jarvis J.; Williams, Steve P.; McNabb, Jennifer
2005-01-01
Synthetic Vision System technology augments reality and creates a virtual visual meteorological condition that extends a pilot's cognitive and perceptual capabilities during flight operations when outside visibility is restricted. The paper describes the NASA Synthetic Vision System for commercial aviation with an emphasis on how the technology achieves Augmented Cognition objectives.
Industrial Inspection with Open Eyes: Advance with Machine Vision Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Niel, Kurt
Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less
Design And Implementation Of Integrated Vision-Based Robotic Workcells
NASA Astrophysics Data System (ADS)
Chen, Michael J.
1985-01-01
Reports have been sparse on large-scale, intelligent integration of complete robotic systems for automating the microelectronics industry. This paper describes the application of state-of-the-art computer-vision technology for manufacturing of miniaturized electronic components. The concepts of FMS - Flexible Manufacturing Systems, work cells, and work stations and their control hierarchy are illustrated in this paper. Several computer-controlled work cells used in the production of thin-film magnetic heads are described. These cells use vision for in-process control of head-fixture alignment and real-time inspection of production parameters. The vision sensor and other optoelectronic sensors, coupled with transport mechanisms such as steppers, x-y-z tables, and robots, have created complete sensorimotor systems. These systems greatly increase the manufacturing throughput as well as the quality of the final product. This paper uses these automated work cells as examples to exemplify the underlying design philosophy and principles in the fabrication of vision-based robotic systems.
Zhan, Dong; Yu, Long; Xiao, Jian; Chen, Tanglong
2015-04-14
Railway tunnel 3D clearance inspection is critical to guaranteeing railway operation safety. However, it is a challenge to inspect railway tunnel 3D clearance using a vision system, because both the spatial range and field of view (FOV) of such measurements are quite large. This paper summarizes our work on dynamic railway tunnel 3D clearance inspection based on a multi-camera and structured-light vision system (MSVS). First, the configuration of the MSVS is described. Then, the global calibration for the MSVS is discussed in detail. The onboard vision system is mounted on a dedicated vehicle and is expected to suffer from multiple degrees of freedom vibrations brought about by the running vehicle. Any small vibration can result in substantial measurement errors. In order to overcome this problem, a vehicle motion deviation rectifying method is investigated. Experiments using the vision inspection system are conducted with satisfactory online measurement results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engert, D.E.; Raffenetti, C.
NJE is communications software developed to enable a VAX VMS system to participate as an end-node in a standard IBM network by emulating the Network Job Entry (NJE) protocol. NJE supports job networking for the operating systems used on most large IBM-compatible computers (e.g., VM/370, MVS with JES2 or JES3, SVS, MVT with ASP or HASP). Files received by the VAX can be printed or saved in user-selected disk files. Files sent to the network can be routed to any network node for printing, punching, or job submission, or to a VM/370 user's virtual reader. Files sent from the VAXmore » are queued and transmitted asynchronously. No changes are required to the IBM software.DEC VAX11/780; VAX-11 FORTRAN 77 (99%) and MACRO-11 (1%); VMS 2.5; VAX11/780 with DUP-11 UNIBUS interface and 9600 baud synchronous modem..« less
Melo, Rossana C N; Weller, Peter F
2016-10-01
Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Tracking by Identification Using Computer Vision and Radio
Mandeljc, Rok; Kovačič, Stanislav; Kristan, Matej; Perš, Janez
2013-01-01
We present a novel system for detection, localization and tracking of multiple people, which fuses a multi-view computer vision approach with a radio-based localization system. The proposed fusion combines the best of both worlds, excellent computer-vision-based localization, and strong identity information provided by the radio system, and is therefore able to perform tracking by identification, which makes it impervious to propagated identity switches. We present comprehensive methodology for evaluation of systems that perform person localization in world coordinate system and use it to evaluate the proposed system as well as its components. Experimental results on a challenging indoor dataset, which involves multiple people walking around a realistically cluttered room, confirm that proposed fusion of both systems significantly outperforms its individual components. Compared to the radio-based system, it achieves better localization results, while at the same time it successfully prevents propagation of identity switches that occur in pure computer-vision-based tracking. PMID:23262485
Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.
Kobayashi, Yo; Sekiguchi, Yuta; Tomono, Yu; Watanabe, Hiroki; Toyoda, Kazutaka; Konishi, Kozo; Tomikawa, Morimasa; Ieiri, Satoshi; Tanoue, Kazuo; Hashizume, Makoto; Fujie, Masaktsu G
2010-01-01
Recently, a robotic system was developed to assist Single Port Endoscopic Surgery (SPS). However, the existing system required a manual change of vision field, hindering the surgical task and increasing the degrees of freedom (DOFs) of the manipulator. We proposed a surgical robot for SPS with dynamic vision field control, the endoscope view being manipulated by a master controller. The prototype robot consisted of a positioning and sheath manipulator (6 DOF) for vision field control, and dual tool tissue manipulators (gripping: 5DOF, cautery: 3DOF). Feasibility of the robot was demonstrated in vitro. The "cut and vision field control" (using tool manipulators) is suitable for precise cutting tasks in risky areas while a "cut by vision field control" (using a vision field control manipulator) is effective for rapid macro cutting of tissues. A resection task was accomplished using a combination of both methods.
Perceptual organization in computer vision - A review and a proposal for a classificatory structure
NASA Technical Reports Server (NTRS)
Sarkar, Sudeep; Boyer, Kim L.
1993-01-01
The evolution of perceptual organization in biological vision, and its necessity in advanced computer vision systems, arises from the characteristic that perception, the extraction of meaning from sensory input, is an intelligent process. This is particularly so for high order organisms and, analogically, for more sophisticated computational models. The role of perceptual organization in computer vision systems is explored. This is done from four vantage points. First, a brief history of perceptual organization research in both humans and computer vision is offered. Next, a classificatory structure in which to cast perceptual organization research to clarify both the nomenclature and the relationships among the many contributions is proposed. Thirdly, the perceptual organization work in computer vision in the context of this classificatory structure is reviewed. Finally, the array of computational techniques applied to perceptual organization problems in computer vision is surveyed.
FLORA™: Phase I development of a functional vision assessment for prosthetic vision users.
Geruschat, Duane R; Flax, Marshall; Tanna, Nilima; Bianchi, Michelle; Fisher, Andy; Goldschmidt, Mira; Fisher, Lynne; Dagnelie, Gislin; Deremeik, Jim; Smith, Audrey; Anaflous, Fatima; Dorn, Jessy
2015-07-01
Research groups and funding agencies need a functional assessment suitable for an ultra-low vision population to evaluate the impact of new vision-restoration treatments. The purpose of this study was to develop a pilot assessment to capture the functional visual ability and well-being of subjects whose vision has been partially restored with the Argus II Retinal Prosthesis System. The Functional Low-Vision Observer Rated Assessment (FLORA) pilot assessment involved a self-report section, a list of functional visual tasks for observation of performance and a case narrative summary. Results were analysed to determine whether the interview questions and functional visual tasks were appropriate for this ultra-low vision population and whether the ratings suffered from floor or ceiling effects. Thirty subjects with severe to profound retinitis pigmentosa (bare light perception or worse in both eyes) were enrolled in a clinical trial and implanted with the Argus II System. From this population, 26 subjects were assessed with the FLORA. Seven different evaluators administered the assessment. All 14 interview questions were asked. All 35 tasks for functional vision were selected for evaluation at least once, with an average of 20 subjects being evaluated for each test item. All four rating options—impossible (33 per cent), difficult (23 per cent), moderate (24 per cent) and easy (19 per cent)—were used by the evaluators. Evaluators also judged the amount of vision they observed the subjects using to complete the various tasks, with 'vision only' occurring 75 per cent on average with the System ON, and 29 per cent with the System OFF. The first version of the FLORA was found to contain useful elements for evaluation and to avoid floor and ceiling effects. The next phase of development will be to refine the assessment and to establish reliability and validity to increase its value as an assessment tool for functional vision and well-being. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.
The role of vision processing in prosthetic vision.
Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette
2012-01-01
Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.
Hierarchical Modelling Of Mobile, Seeing Robots
NASA Astrophysics Data System (ADS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-03-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Hierarchical modelling of mobile, seeing robots
NASA Technical Reports Server (NTRS)
Luh, Cheng-Jye; Zeigler, Bernard P.
1990-01-01
This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.
Enhanced/Synthetic Vision Systems - Human factors research and implications for future systems
NASA Technical Reports Server (NTRS)
Foyle, David C.; Ahumada, Albert J.; Larimer, James; Sweet, Barbara T.
1992-01-01
This paper reviews recent human factors research studies conducted in the Aerospace Human Factors Research Division at NASA Ames Research Center related to the development and usage of Enhanced or Synthetic Vision Systems. Research discussed includes studies of field of view (FOV), representational differences of infrared (IR) imagery, head-up display (HUD) symbology, HUD advanced concept designs, sensor fusion, and sensor/database fusion and evaluation. Implications for the design and usage of Enhanced or Synthetic Vision Systems are discussed.
Marking parts to aid robot vision
NASA Technical Reports Server (NTRS)
Bales, J. W.; Barker, L. K.
1981-01-01
The premarking of parts for subsequent identification by a robot vision system appears to be beneficial as an aid in the automation of certain tasks such as construction in space. A simple, color coded marking system is presented which allows a computer vision system to locate an object, calculate its orientation, and determine its identity. Such a system has the potential to operate accurately, and because the computer shape analysis problem has been simplified, it has the ability to operate in real time.
ROBOSIGHT: Robotic Vision System For Inspection And Manipulation
NASA Astrophysics Data System (ADS)
Trivedi, Mohan M.; Chen, ChuXin; Marapane, Suresh
1989-02-01
Vision is an important sensory modality that can be used for deriving information critical to the proper, efficient, flexible, and safe operation of an intelligent robot. Vision systems are uti-lized for developing higher level interpretation of the nature of a robotic workspace using images acquired by cameras mounted on a robot. Such information can be useful for tasks such as object recognition, object location, object inspection, obstacle avoidance and navigation. In this paper we describe efforts directed towards developing a vision system useful for performing various robotic inspection and manipulation tasks. The system utilizes gray scale images and can be viewed as a model-based system. It includes general purpose image analysis modules as well as special purpose, task dependent object status recognition modules. Experiments are described to verify the robust performance of the integrated system using a robotic testbed.
Martínez-Bueso, Pau; Moyà-Alcover, Biel
2014-01-01
Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (T s) and time-to-complete (T c)). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (T s = 7.09 (P < 0.001) and T c = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems. PMID:25295310
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
An overview of computer vision
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1982-01-01
An overview of computer vision is provided. Image understanding and scene analysis are emphasized, and pertinent aspects of pattern recognition are treated. The basic approach to computer vision systems, the techniques utilized, applications, the current existing systems and state-of-the-art issues and research requirements, who is doing it and who is funding it, and future trends and expectations are reviewed.
The Efficacy of Optometric Vision Therapy.
ERIC Educational Resources Information Center
Journal of the American Optometric Association, 1988
1988-01-01
This review aims to document the efficacy and validity of vision therapy for modifying and improving vision functioning. The paper describes the essential components of the visual system and disorders which can be physiologically and clinically identified. Vision therapy is defined as a clinical approach for correcting and ameliorating the effects…
Dale, Naomi; Sakkalou, Elena; O'Reilly, Michelle; Springall, Clare; De Haan, Michelle; Salt, Alison
2017-07-01
To investigate how vision relates to early development by studying vision and cognition in a national cohort of 1-year-old infants with congenital disorders of the peripheral visual system and visual impairment. This was a cross-sectional observational investigation of a nationally recruited cohort of infants with 'simple' and 'complex' congenital disorders of the peripheral visual system. Entry age was 8 to 16 months. Vision level (Near Detection Scale) and non-verbal cognition (sensorimotor understanding, Reynell Zinkin Scales) were assessed. Parents completed demographic questionnaires. Of 90 infants (49 males, 41 females; mean 13mo, standard deviation [SD] 2.5mo; range 7-17mo); 25 (28%) had profound visual impairment (light perception at best) and 65 (72%) had severe visual impairment (basic 'form' vision). The Near Detection Scale correlated significantly with sensorimotor understanding developmental quotients in the 'total', 'simple', and 'complex' groups (all p<0.001). Age and vision accounted for 48% of sensorimotor understanding variance. Infants with profound visual impairment, especially in the 'complex' group with congenital disorders of the peripheral visual system with known brain involvement, showed the greatest cognitive delay. Lack of vision is associated with delayed early-object manipulative abilities and concepts; 'form' vision appeared to support early developmental advance. This paper provides baseline characteristics for cross-sectional and longitudinal follow-up investigations in progress. A methodological strength of the study was the representativeness of the cohort according to national epidemiological and population census data. © 2017 Mac Keith Press.
Low computation vision-based navigation for a Martian rover
NASA Technical Reports Server (NTRS)
Gavin, Andrew S.; Brooks, Rodney A.
1994-01-01
Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.
An Integrated Calibration Technique for Stereo Vision Systems (PREPRINT)
2010-03-01
technique for stereo vision systems has been developed. To demonstrate and evaluate this calibration technique, multiple Wii Remotes (Wiimotes) from Nintendo ...from Nintendo were used to form stereo vision systems to perform 3D motion capture in real time. This integrated technique is a two-step process...Wiimotes) used in Nintendo Wii games. Many researchers have successfully dealt with the problem of camera calibration by taking images from a 2D
Software model of a machine vision system based on the common house fly.
Madsen, Robert; Barrett, Steven; Wilcox, Michael
2005-01-01
The vision system of the common house fly has many properties, such as hyperacuity and parallel structure, which would be advantageous in a machine vision system. A software model has been developed which is ultimately intended to be a tool to guide the design of an analog real time vision system. The model starts by laying out cartridges over an image. The cartridges are analogous to the ommatidium of the fly's eye and contain seven photoreceptors each with a Gaussian profile. The spacing between photoreceptors is variable providing for more or less detail as needed. The cartridges provide information on what type of features they see and neighboring cartridges share information to construct a feature map.
A dental vision system for accurate 3D tooth modeling.
Zhang, Li; Alemzadeh, K
2006-01-01
This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.
Health System Vision of Iran in 2025
Rostamigooran, N; Esmailzadeh, H; Rajabi, F; Majdzadeh, R; Larijani, B; Dastgerdi, M Vahid
2013-01-01
Background: Vast changes in disease features and risk factors and influence of demographic, economical, and social trends on health system, makes formulating a long term evolutionary plan, unavoidable. In this regard, to determine health system vision in a long term horizon is a primary stage. Method: After narrative and purposeful review of documentaries, major themes of vision statement were determined and its context was organized in a work group consist of selected managers and experts of health system. Final content of the statement was prepared after several sessions of group discussions and receiving ideas of policy makers and experts of health system. Results: Vision statement in evolutionary plan of health system is considered to be :“a progressive community in the course of human prosperity which has attained to a developed level of health standards in the light of the most efficient and equitable health system in visionary region1 and with the regarding to health in all policies, accountability and innovation”. An explanatory context was compiled either to create a complete image of the vision. Conclusion: Social values and leaders’ strategic goals, and also main orientations are generally mentioned in vision statement. In this statement prosperity and justice are considered as major values and ideals in society of Iran; development and excellence in the region as leaders’ strategic goals; and also considering efficiency and equality, health in all policies, and accountability and innovation as main orientations of health system. PMID:23865011
NASA Technical Reports Server (NTRS)
2005-01-01
The Transformational Concept of Operations (CONOPS) provides a long-term, sustainable vision for future U.S. space transportation infrastructure and operations. This vision presents an interagency concept, developed cooperatively by the Department of Defense (DoD), the Federal Aviation Administration (FAA), and the National Aeronautics and Space Administration (NASA) for the upgrade, integration, and improved operation of major infrastructure elements of the nation s space access systems. The interagency vision described in the Transformational CONOPS would transform today s space launch infrastructure into a shared system that supports worldwide operations for a variety of users. The system concept is sufficiently flexible and adaptable to support new types of missions for exploration, commercial enterprise, and national security, as well as to endure further into the future when space transportation technology may be sufficiently advanced to enable routine public space travel as part of the global transportation system. The vision for future space transportation operations is based on a system-of-systems architecture that integrates the major elements of the future space transportation system - transportation nodes (spaceports), flight vehicles and payloads, tracking and communications assets, and flight traffic coordination centers - into a transportation network that concurrently accommodates multiple types of mission operators, payloads, and vehicle fleets. This system concept also establishes a common framework for defining a detailed CONOPS for the major elements of the future space transportation system. The resulting set of four CONOPS (see Figure 1 below) describes the common vision for a shared future space transportation system (FSTS) infrastructure from a variety of perspectives.
Estimation of methane emission from California natural gas industry.
Kuo, Jeff; Hicks, Travis C; Drake, Brian; Chan, Tat Fu
2015-07-01
Energy generation and consumption are the main contributors to greenhouse gases emissions in California. Natural gas is one of the primary sources of energy in California. A study was recently conducted to develop current, reliable, and California-specific source emission factors (EFs) that could be used to establish a more accurate methane emission inventory for the California natural gas industry. Twenty-five natural gas facilities were surveyed; the surveyed equipment included wellheads (172), separators (131), dehydrators (17), piping segments (145), compressors (66), pneumatic devices (374), metering and regulating (M&R) stations (19), hatches (34), pumps (2), and customer meters (12). In total, 92,157 components were screened, including flanges (10,101), manual valves (10,765), open-ended lines (384), pressure relief valves (358), regulators (930), seals (146), threaded connections (57,061), and welded connections (12,274). Screening values (SVs) were measured using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. For a given SV range, the measured leak rates might span several orders of magnitude. The correlation equations between the leak rates and SVs were derived. All the component leakage rate histograms appeared to have the same trend, with the majority of leakage rates<0.02 cubic feet per minute (cfm). Using the cumulative distribution function, the geometric mean was found to be a better indicator than the arithmetic mean, as the mean for each group of leakage rates found. For most component types, the pegged EFs for SVs of ≥10,000 ppmV and of ≥50,000 ppmV are relatively similar. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 U.S. Environmental Protection Agency/Gas Research Institute (EPA/GRI) study. Twenty-five natural gas facilities in California were surveyed to develop current, reliable, and California-specific source emission factors (EFs) for the natural gas industry. Screening values were measured by using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 EPA/GRI study. The smaller EF values from this study might be partially attributable to the employment of the leak detection and repair program by most, if not all, of the facilities surveyed.
Short-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization.
Manos, Thanos; Zeitler, Magteld; Tass, Peter A
2018-01-01
In this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies.
Short-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization
Manos, Thanos; Zeitler, Magteld; Tass, Peter A.
2018-01-01
In this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies. PMID:29706900
NASA Technical Reports Server (NTRS)
Gennery, D.; Cunningham, R.; Saund, E.; High, J.; Ruoff, C.
1981-01-01
The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed.
The genetics of normal and defective color vision
Neitz, Jay; Neitz, Maureen
2011-01-01
The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectrum of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. PMID:21167193
NASA Astrophysics Data System (ADS)
Kuvychko, Igor
2001-10-01
Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.
Machine vision system for online inspection of freshly slaughtered chickens
USDA-ARS?s Scientific Manuscript database
A machine vision system was developed and evaluated for the automation of online inspection to differentiate freshly slaughtered wholesome chickens from systemically diseased chickens. The system consisted of an electron-multiplying charge-coupled-device camera used with an imaging spectrograph and ...
Trauma-Informed Part C Early Intervention: A Vision, A Challenge, A New Reality
ERIC Educational Resources Information Center
Gilkerson, Linda; Graham, Mimi; Harris, Deborah; Oser, Cindy; Clarke, Jane; Hairston-Fuller, Tody C.; Lertora, Jessica
2013-01-01
Federal directives require that any child less than 3 years old with a substantiated case of abuse be referred to the early intervention (EI) system. This article details the need and presents a vision for a trauma-informed EI system. The authors describe two exemplary program models which implement this vision and recommend steps which the field…
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
Landmark navigation and autonomous landing approach with obstacle detection for aircraft
NASA Astrophysics Data System (ADS)
Fuerst, Simon; Werner, Stefan; Dickmanns, Dirk; Dickmanns, Ernst D.
1997-06-01
A machine perception system for aircraft and helicopters using multiple sensor data for state estimation is presented. By combining conventional aircraft sensor like gyros, accelerometers, artificial horizon, aerodynamic measuring devices and GPS with vision data taken by conventional CCD-cameras mounted on a pan and tilt platform, the position of the craft can be determined as well as the relative position to runways and natural landmarks. The vision data of natural landmarks are used to improve position estimates during autonomous missions. A built-in landmark management module decides which landmark should be focused on by the vision system, depending on the distance to the landmark and the aspect conditions. More complex landmarks like runways are modeled with different levels of detail that are activated dependent on range. A supervisor process compares vision data and GPS data to detect mistracking of the vision system e.g. due to poor visibility and tries to reinitialize the vision system or to set focus on another landmark available. During landing approach obstacles like trucks and airplanes can be detected on the runway. The system has been tested in real-time within a hardware-in-the-loop simulation. Simulated aircraft measurements corrupted by noise and other characteristic sensor errors have been fed into the machine perception system; the image processing module for relative state estimation was driven by computer generated imagery. Results from real-time simulation runs are given.
Neuromorphic vision sensors and preprocessors in system applications
NASA Astrophysics Data System (ADS)
Kramer, Joerg; Indiveri, Giacomo
1998-09-01
A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.
Enhanced Vision for All-Weather Operations Under NextGen
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Kramer, Lynda J.; Williams, Steven P.
2010-01-01
Recent research in Synthetic/Enhanced Vision technology is analyzed with respect to existing Category II/III performance and certification guidance. The goal is to start the development of performance-based vision systems technology requirements to support future all-weather operations and the NextGen goal of Equivalent Visual Operations. This work shows that existing criteria to operate in Category III weather and visibility are not directly applicable since, unlike today, the primary reference for maneuvering the airplane is based on what the pilot sees visually through the "vision system." New criteria are consequently needed. Several possible criteria are discussed, but more importantly, the factors associated with landing system performance using automatic and manual landings are delineated.
A Vision for Systems Engineering Applied to Wind Energy (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felker, F.; Dykes, K.
2015-01-01
This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.
NASA Technical Reports Server (NTRS)
1990-01-01
Biofeedtrac, Inc.'s Accommotrac Vision Trainer, invented by Dr. Joseph Trachtman, is based on vision research performed by Ames Research Center and a special optometer developed for the Ames program by Stanford Research Institute. In the United States, about 150 million people are myopes (nearsighted), who tend to overfocus when they look at distant objects causing blurry distant vision, or hyperopes (farsighted), whose vision blurs when they look at close objects because they tend to underfocus. The Accommotrac system is an optical/electronic system used by a doctor as an aid in teaching a patient how to contract and relax the ciliary body, the focusing muscle. The key is biofeedback, wherein the patient learns to control a bodily process or function he is not normally aware of. Trachtman claims a 90 percent success rate for correcting, improving or stopping focusing problems. The Vision Trainer has also proved effective in treating other eye problems such as eye oscillation, cross eyes, and lazy eye and in professional sports to improve athletes' peripheral vision and reaction time.
NASA Technical Reports Server (NTRS)
Crouch, Roger
2004-01-01
Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.
Bunevicius, Adomas; Katkute, Arune; Bunevicius, Robertas
2008-11-01
To evaluate the prevalence of anxiety and depression in medical students and in humanities students. To assess the relationship between symptoms of anxiety, symptoms of depression and Big-Five personality dimensions and vulnerability to stress in medical students. Randomly selected 338 medical students and 73 humanities students were evaluated for symptoms of anxiety and depression using the Hospital Anxiety and Depression Scale (HADS), for Big-Five personality dimensions using the Ten-Item Personality Inventory (TIPI), and for vulnerability to stress using the Stress Vulnerability Scale (SVS). Symptoms of anxiety and symptoms of depression were prevalent in medical students (43% and 14%, respectively) and in humanities students (52% and 12%, respectively). In medical students the score on the HADS anxiety subscale and the score on the HADS depression subscale correlated negatively with the score on the TIPI Emotional Stability scale (r = -0.39, p < 0.01 and r = -0.2, p < 0.01, respectively) and correlated positively with the score on the SVS (r = 0.38, p < 0.01 and r = 0.44, p < 0.01, respectively). Symptoms of anxiety and depression are prevalent in medical students and in humanities students. Severity of symptoms of anxiety and symptoms of depression in medical students is negatively related to emotional stability and positively related to stress vulnerability.
Cooper, David N.; Bacolla, Albino; Férec, Claude; Vasquez, Karen M.; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min
2011-01-01
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher-order features of the genomic architecture. The human genome is now recognized to contain ‘pervasive architectural flaws’ in that certain DNA sequences are inherently mutation-prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of non-canonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair, and may serve to increase mutation frequencies in generalized fashion (i.e. both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. PMID:21853507
Schwarz, Karin; Schmitz, Frank
2017-03-20
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD + , the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design
Andreae, Clio A.; Sessions, Richard B.; Virji, Mumtaz
2018-01-01
Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis. PMID:29547646
Bioinformatic analysis of meningococcal Msf and Opc to inform vaccine antigen design.
Andreae, Clio A; Sessions, Richard B; Virji, Mumtaz; Hill, Darryl J
2018-01-01
Neisseria meningitidis is an antigenically and genetically variable Gram-negative bacterium and a causative agent of meningococcal meningitis and septicaemia. Meningococci encode many outer membrane proteins, including Opa, Opc, Msf, fHbp and NadA, identified as being involved in colonisation of the host and evasion of the immune response. Although vaccines are available for the prevention of some types of meningococcal disease, none currently offer universal protection. We have used sequences within the Neisseria PubMLST database to determine the variability of msf and opc in 6,500 isolates. In-silico analysis revealed that although opc is highly conserved, it is not present in all isolates, with most isolates in clonal complex ST-11 lacking a functional opc. In comparison, msf is found in all meningococcal isolates, and displays diversity in the N-terminal domain. We identified 20 distinct Msf sequence variants (Msf SV), associated with differences in number of residues within the putative Vn binding motifs. Moreover, we showed distinct correlations with certain Msf SVs and isolates associated with either hyperinvasive lineages or those clonal complexes associated with a carriage state. We have demonstrated differences in Vn binding between three Msf SVs and generated a cross reactive Msf polyclonal antibody. Our study has highlighted the importance of using large datasets to inform vaccine development and provide further information on the antigenic diversity exhibited by N. meningitidis.
Homework system development with the intention of supporting Saudi Arabia's vision 2030
NASA Astrophysics Data System (ADS)
Elgimari, Atifa; Alshahrani, Shafya; Al-shehri, Amal
2017-10-01
This paper suggests a web-based homework system. The suggested homework system can serve targeted students with ages of 7-11 years old. By using the suggested homework system, hard copies of homeworks were replaced by soft copies. Parents were involved in the education process electronically. It is expected to participate in applying Saudi Arabia's Vision 2030, specially in the education sector, where it considers the primary education is its foundation stone, as the success of the Vision depends in large assess on reforms in the education system generating a better basis for employment of young Saudis.
Object tracking with stereo vision
NASA Technical Reports Server (NTRS)
Huber, Eric
1994-01-01
A real-time active stereo vision system incorporating gaze control and task directed vision is described. Emphasis is placed on object tracking and object size and shape determination. Techniques include motion-centroid tracking, depth tracking, and contour tracking.
NASA Astrophysics Data System (ADS)
Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping
2017-12-01
In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.
NASA Technical Reports Server (NTRS)
Lewandowski, Leon; Struckman, Keith
1994-01-01
Microwave Vision (MV), a concept originally developed in 1985, could play a significant role in the solution to robotic vision problems. Originally our Microwave Vision concept was based on a pattern matching approach employing computer based stored replica correlation processing. Artificial Neural Network (ANN) processor technology offers an attractive alternative to the correlation processing approach, namely the ability to learn and to adapt to changing environments. This paper describes the Microwave Vision concept, some initial ANN-MV experiments, and the design of an ANN-MV system that has led to a second patent disclosure in the robotic vision field.
Wright, Cameron H G; Barrett, Steven F; Pack, Daniel J
2005-01-01
We describe a new approach to attacking the problem of robust computer vision for mobile robots. The overall strategy is to mimic the biological evolution of animal vision systems. Our basic imaging sensor is based upon the eye of the common house fly, Musca domestica. The computational algorithms are a mix of traditional image processing, subspace techniques, and multilayer neural networks.
Vision function testing for a suprachoroidal retinal prosthesis: effects of image filtering
NASA Astrophysics Data System (ADS)
Barnes, Nick; Scott, Adele F.; Lieby, Paulette; Petoe, Matthew A.; McCarthy, Chris; Stacey, Ashley; Ayton, Lauren N.; Sinclair, Nicholas C.; Shivdasani, Mohit N.; Lovell, Nigel H.; McDermott, Hugh J.; Walker, Janine G.; BVA Consortium,the
2016-06-01
Objective. One strategy to improve the effectiveness of prosthetic vision devices is to process incoming images to ensure that key information can be perceived by the user. This paper presents the first comprehensive results of vision function testing for a suprachoroidal retinal prosthetic device utilizing of 20 stimulating electrodes. Further, we investigate whether using image filtering can improve results on a light localization task for implanted participants compared to minimal vision processing. No controlled implanted participant studies have yet investigated whether vision processing methods that are not task-specific can lead to improved results. Approach. Three participants with profound vision loss from retinitis pigmentosa were implanted with a suprachoroidal retinal prosthesis. All three completed multiple trials of a light localization test, and one participant completed multiple trials of acuity tests. The visual representations used were: Lanczos2 (a high quality Nyquist bandlimited downsampling filter); minimal vision processing (MVP); wide view regional averaging filtering (WV); scrambled; and, system off. Main results. Using Lanczos2, all three participants successfully completed a light localization task and obtained a significantly higher percentage of correct responses than using MVP (p≤slant 0.025) or with system off (p\\lt 0.0001). Further, in a preliminary result using Lanczos2, one participant successfully completed grating acuity and Landolt C tasks, and showed significantly better performance (p=0.004) compared to WV, scrambled and system off on the grating acuity task. Significance. Participants successfully completed vision tasks using a 20 electrode suprachoroidal retinal prosthesis. Vision processing with a Nyquist bandlimited image filter has shown an advantage for a light localization task. This result suggests that this and targeted, more advanced vision processing schemes may become important components of retinal prostheses to enhance performance. ClinicalTrials.gov Identifier: NCT01603576.
Research into the Architecture of CAD Based Robot Vision Systems
1988-02-09
Vision and "Automatic Generation of Recognition Features for Com- puter Vision," Mudge, Turney and Volz, published in Robotica (1987). All of the...Occluded Parts," (T.N. Mudge, J.L. Turney, and R.A. Volz), Robotica , vol. 5, 1987, pp. 117-127. 5. "Vision Algorithms for Hypercube Machines," (T.N. Mudge
Vision, Leadership, and Change: The Case of Ramah Summer Camps
ERIC Educational Resources Information Center
Reimer, Joseph
2010-01-01
In his retrospective essay, Seymour Fox (1997) identified "vision" as the essential element that shaped the Ramah camp system. I will take a critical look at Fox's main claims: (1) A particular model of vision was essential to the development of Camp Ramah; and (2) That model of vision should guide contemporary Jewish educators in creating Jewish…
Image segmentation for enhancing symbol recognition in prosthetic vision.
Horne, Lachlan; Barnes, Nick; McCarthy, Chris; He, Xuming
2012-01-01
Current and near-term implantable prosthetic vision systems offer the potential to restore some visual function, but suffer from poor resolution and dynamic range of induced phosphenes. This can make it difficult for users of prosthetic vision systems to identify symbolic information (such as signs) except in controlled conditions. Using image segmentation techniques from computer vision, we show it is possible to improve the clarity of such symbolic information for users of prosthetic vision implants in uncontrolled conditions. We use image segmentation to automatically divide a natural image into regions, and using a fixation point controlled by the user, select a region to phosphenize. This technique improves the apparent contrast and clarity of symbolic information over traditional phosphenization approaches.
NASA's SDO Captures Mercury Transit Time-lapses SDO Captures Mercury Transit Time-lapse
2017-12-08
Less than once per decade, Mercury passes between the Earth and the sun in a rare astronomical event known as a planetary transit. The 2016 Mercury transit occurred on May 9th, between roughly 7:12 a.m. and 2:42 p.m. EDT. The images in this video are from NASA’s Solar Dynamics Observatory Music: Encompass by Mark Petrie For more info on the Mercury transit go to: www.nasa.gov/transit This video is public domain and may be downloaded at: svs.gsfc.nasa.gov/12235 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
2015-06-30
NASA’s Solar Dynamics Observatory caught this image of an eruption on the side of the sun on June 18, 2015. The eruption ultimately escaped the sun, growing into a substantial coronal mass ejection, or CME — a giant cloud of solar material traveling through space. This imagery is shown in the 304 Angstrom wavelength of extreme ultraviolet light, a wavelength that highlights material in the low parts of the sun’s atmosphere and that is typically colorized in red. The video clip covers about four hours of the event. Credit: NASA/Goddard/SDO Download: svs.gsfc.nasa.gov/goto?11908 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
77 FR 21861 - Special Conditions: Boeing, Model 777F; Enhanced Flight Vision System
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... System AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final special conditions; request for... with an advanced, enhanced flight vision system (EFVS). The EFVS consists of a head-up display (HUD) system modified to display forward-looking infrared (FLIR) imagery. The applicable airworthiness...
NASA Technical Reports Server (NTRS)
Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.
2007-01-01
Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.
Panoramic stereo sphere vision
NASA Astrophysics Data System (ADS)
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Enhanced operator perception through 3D vision and haptic feedback
NASA Astrophysics Data System (ADS)
Edmondson, Richard; Light, Kenneth; Bodenhamer, Andrew; Bosscher, Paul; Wilkinson, Loren
2012-06-01
Polaris Sensor Technologies (PST) has developed a stereo vision upgrade kit for TALON® robot systems comprised of a replacement gripper camera and a replacement mast zoom camera on the robot, and a replacement display in the Operator Control Unit (OCU). Harris Corporation has developed a haptic manipulation upgrade for TALON® robot systems comprised of a replacement arm and gripper and an OCU that provides haptic (force) feedback. PST and Harris have recently collaborated to integrate the 3D vision system with the haptic manipulation system. In multiple studies done at Fort Leonard Wood, Missouri it has been shown that 3D vision and haptics provide more intuitive perception of complicated scenery and improved robot arm control, allowing for improved mission performance and the potential for reduced time on target. This paper discusses the potential benefits of these enhancements to robotic systems used for the domestic homeland security mission.
Technical Challenges in the Development of a NASA Synthetic Vision System Concept
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Parrish, Russell V.; Kramer, Lynda J.; Harrah, Steve; Arthur, J. J., III
2002-01-01
Within NASA's Aviation Safety Program, the Synthetic Vision Systems Project is developing display system concepts to improve pilot terrain/situation awareness by providing a perspective synthetic view of the outside world through an on-board database driven by precise aircraft positioning information updating via Global Positioning System-based data. This work is aimed at eliminating visibility-induced errors and low visibility conditions as a causal factor to civil aircraft accidents, as well as replicating the operational benefits of clear day flight operations regardless of the actual outside visibility condition. Synthetic vision research and development activities at NASA Langley Research Center are focused around a series of ground simulation and flight test experiments designed to evaluate, investigate, and assess the technology which can lead to operational and certified synthetic vision systems. The technical challenges that have been encountered and that are anticipated in this research and development activity are summarized.
High-integrity databases for helicopter operations
NASA Astrophysics Data System (ADS)
Pschierer, Christian; Schiefele, Jens; Lüthy, Juerg
2009-05-01
Helicopter Emergency Medical Service missions (HEMS) impose a high workload on pilots due to short preparation time, operations in low level flight, and landings in unknown areas. The research project PILAS, a cooperation between Eurocopter, Diehl Avionics, DLR, EADS, Euro Telematik, ESG, Jeppesen, the Universities of Darmstadt and Munich, and funded by the German government, approached this problem by researching a pilot assistance system which supports the pilots during all phases of flight. The databases required for the specified helicopter missions include different types of topological and cultural data for graphical display on the SVS system, AMDB data for operations at airports and helipads, and navigation data for IFR segments. The most critical databases for the PILAS system however are highly accurate terrain and obstacle data. While RTCA DO-276 specifies high accuracies and integrities only for the areas around airports, HEMS helicopters typically operate outside of these controlled areas and thus require highly reliable terrain and obstacle data for their designated response areas. This data has been generated by a LIDAR scan of the specified test region. Obstacles have been extracted into a vector format. This paper includes a short overview of the complete PILAS system and then focus on the generation of the required high quality databases.
A Vision in Jeopardy: Royal Navy Maritime Autonomous Systems (MAS)
2017-03-31
Chapter 6 will propose a new MAS vision for the RN. However, before doing so, a fresh look at the problem is required. Consensus of the Problem, Not the... assessment , the RN has failed to deliver any sustainable MAS operational capability. A vision for MAS finally materialized in 2014. Yet, the vision...continuous investment and assessment , the RN has failed to deliver any sustainable MAS operational capability. A vision for MAS finally materialized in
Robot path planning using expert systems and machine vision
NASA Astrophysics Data System (ADS)
Malone, Denis E.; Friedrich, Werner E.
1992-02-01
This paper describes a system developed for the robotic processing of naturally variable products. In order to plan the robot motion path it was necessary to use a sensor system, in this case a machine vision system, to observe the variations occurring in workpieces and interpret this with a knowledge based expert system. The knowledge base was acquired by carrying out an in-depth study of the product using examination procedures not available in the robotic workplace and relates the nature of the required path to the information obtainable from the machine vision system. The practical application of this system to the processing of fish fillets is described and used to illustrate the techniques.
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-01-01
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate. PMID:26378533
Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.
Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling
2015-09-10
In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate.
Gait disorder rehabilitation using vision and non-vision based sensors: A systematic review
Ali, Asraf; Sundaraj, Kenneth; Ahmad, Badlishah; Ahamed, Nizam; Islam, Anamul
2012-01-01
Even though the amount of rehabilitation guidelines has never been greater, uncertainty continues to arise regarding the efficiency and effectiveness of the rehabilitation of gait disorders. This question has been hindered by the lack of information on accurate measurements of gait disorders. Thus, this article reviews the rehabilitation systems for gait disorder using vision and non-vision sensor technologies, as well as the combination of these. All papers published in the English language between 1990 and June, 2012 that had the phrases “gait disorder” “rehabilitation”, “vision sensor”, or “non vision sensor” in the title, abstract, or keywords were identified from the SpringerLink, ELSEVIER, PubMed, and IEEE databases. Some synonyms of these phrases and the logical words “and” “or” and “not” were also used in the article searching procedure. Out of the 91 published articles found, this review identified 84 articles that described the rehabilitation of gait disorders using different types of sensor technologies. This literature set presented strong evidence for the development of rehabilitation systems using a markerless vision-based sensor technology. We therefore believe that the information contained in this review paper will assist the progress of the development of rehabilitation systems for human gait disorders. PMID:22938548
The genetics of normal and defective color vision.
Neitz, Jay; Neitz, Maureen
2011-04-13
The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry. Copyright © 2010 Elsevier Ltd. All rights reserved.
Acquired color vision deficiency.
Simunovic, Matthew P
2016-01-01
Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations. Copyright © 2016 Elsevier Inc. All rights reserved.
A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis
NASA Technical Reports Server (NTRS)
Obergfell, Klaus
1991-01-01
The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.
Sabattini, E; Bisgaard, K; Ascani, S; Poggi, S; Piccioli, M; Ceccarelli, C; Pieri, F; Fraternali-Orcioni, G; Pileri, S A
1998-07-01
To assess a newly developed immunohistochemical detection system, the EnVision++. A large series of differently processed normal and pathological samples and 53 relevant monoclonal antibodies were chosen. A chessboard titration assay was used to compare the results provided by the EnVision++ system with those of the APAAP, CSA, LSAB, SABC, and ChemMate methods, when applied either manually or in a TechMate 500 immunostainer. With the vast majority of the antibodies, EnVision++ allowed two- to fivefold higher dilutions than the APAAP, LSAB, SABC, and ChemMate techniques, the staining intensity and percentage of expected positive cells being the same. With some critical antibodies (such as the anti-CD5), it turned out to be superior in that it achieved consistently reproducible results with differently fixed or overfixed samples. Only the CSA method, which includes tyramide based enhancement, allowed the same dilutions as the EnVision++ system, and in one instance (with the anti-cyclin D1 antibody) represented the gold standard. The EnVision++ is an easy to use system, which avoids the possibility of disturbing endogenous biotin and lowers the cost per test by increasing the dilutions of the primary antibodies. Being a two step procedure, it reduces both the assay time and the workload.
Sabattini, E; Bisgaard, K; Ascani, S; Poggi, S; Piccioli, M; Ceccarelli, C; Pieri, F; Fraternali-Orcioni, G; Pileri, S A
1998-01-01
AIM: To assess a newly developed immunohistochemical detection system, the EnVision++. METHODS: A large series of differently processed normal and pathological samples and 53 relevant monoclonal antibodies were chosen. A chessboard titration assay was used to compare the results provided by the EnVision++ system with those of the APAAP, CSA, LSAB, SABC, and ChemMate methods, when applied either manually or in a TechMate 500 immunostainer. RESULTS: With the vast majority of the antibodies, EnVision++ allowed two- to fivefold higher dilutions than the APAAP, LSAB, SABC, and ChemMate techniques, the staining intensity and percentage of expected positive cells being the same. With some critical antibodies (such as the anti-CD5), it turned out to be superior in that it achieved consistently reproducible results with differently fixed or overfixed samples. Only the CSA method, which includes tyramide based enhancement, allowed the same dilutions as the EnVision++ system, and in one instance (with the anti-cyclin D1 antibody) represented the gold standard. CONCLUSIONS: The EnVision++ is an easy to use system, which avoids the possibility of disturbing endogenous biotin and lowers the cost per test by increasing the dilutions of the primary antibodies. Being a two step procedure, it reduces both the assay time and the workload. Images PMID:9797726
A lightweight, inexpensive robotic system for insect vision.
Sabo, Chelsea; Chisholm, Robert; Petterson, Adam; Cope, Alex
2017-09-01
Designing hardware for miniaturized robotics which mimics the capabilities of flying insects is of interest, because they share similar constraints (i.e. small size, low weight, and low energy consumption). Research in this area aims to enable robots with similarly efficient flight and cognitive abilities. Visual processing is important to flying insects' impressive flight capabilities, but currently, embodiment of insect-like visual systems is limited by the hardware systems available. Suitable hardware is either prohibitively expensive, difficult to reproduce, cannot accurately simulate insect vision characteristics, and/or is too heavy for small robotic platforms. These limitations hamper the development of platforms for embodiment which in turn hampers the progress on understanding of how biological systems fundamentally work. To address this gap, this paper proposes an inexpensive, lightweight robotic system for modelling insect vision. The system is mounted and tested on a robotic platform for mobile applications, and then the camera and insect vision models are evaluated. We analyse the potential of the system for use in embodiment of higher-level visual processes (i.e. motion detection) and also for development of navigation based on vision for robotics in general. Optic flow from sample camera data is calculated and compared to a perfect, simulated bee world showing an excellent resemblance. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Implementation of a robotic flexible assembly system
NASA Technical Reports Server (NTRS)
Benton, Ronald C.
1987-01-01
As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.
Protyping machine vision software on the World Wide Web
NASA Astrophysics Data System (ADS)
Karantalis, George; Batchelor, Bruce G.
1998-10-01
Interactive image processing is a proven technique for analyzing industrial vision applications and building prototype systems. Several of the previous implementations have used dedicated hardware to perform the image processing, with a top layer of software providing a convenient user interface. More recently, self-contained software packages have been devised and these run on a standard computer. The advent of the Java programming language has made it possible to write platform-independent software, operating over the Internet, or a company-wide Intranet. Thus, there arises the possibility of designing at least some shop-floor inspection/control systems, without the vision engineer ever entering the factories where they will be used. It successful, this project will have a major impact on the productivity of vision systems designers.
Data-Fusion for a Vision-Aided Radiological Detection System: Sensor dependence and Source Tracking
NASA Astrophysics Data System (ADS)
Stadnikia, Kelsey; Martin, Allan; Henderson, Kristofer; Koppal, Sanjeev; Enqvist, Andreas
2018-01-01
The University of Florida is taking a multidisciplinary approach to fuse the data between 3D vision sensors and radiological sensors in hopes of creating a system capable of not only detecting the presence of a radiological threat, but also tracking it. The key to developing such a vision-aided radiological detection system, lies in the count rate being inversely dependent on the square of the distance. Presented in this paper are the results of the calibration algorithm used to predict the location of the radiological detectors based on 3D distance from the source to the detector (vision data) and the detectors count rate (radiological data). Also presented are the results of two correlation methods used to explore source tracking.
Test of Lander Vision System for Mars 2020
2016-10-04
A prototype of the Lander Vision System for NASA Mars 2020 mission was tested in this Dec. 9, 2014, flight of a Masten Space Systems Xombie vehicle at Mojave Air and Space Port in California. http://photojournal.jpl.nasa.gov/catalog/PIA20848
Driver's Enhanced Vision System (DEVS)
DOT National Transportation Integrated Search
1996-12-23
This advisory circular (AC) contains performance standards, specifications, and : recommendations for Drivers Enhanced Vision sSystem (DEVS). The FAA recommends : the use of the guidance in this publication for the design and installation of : DEVS e...
Vertically integrated photonic multichip module architecture for vision applications
NASA Astrophysics Data System (ADS)
Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong
2000-05-01
The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.
Design of direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging.
Wang, Lei; Shao, Zhengzheng; Tang, Wusheng; Liu, Jiying; Nie, Qianwen; Jia, Hui; Dai, Suian; Zhu, Jubo; Li, Xiujian
2017-10-20
A direct-vision Amici prism is a desired dispersion element in the value of spectrometers and spectral imaging systems. In this paper, we focus on designing a direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging systems. We illustrate a designed structure: E48R/N-SF4/E48R, from which we obtain 13 deg dispersion across the visible spectrum, which is equivalent to 700 line pairs/mm grating. We construct a simulative spectral imaging system with the designed direct-vision cyclo-olefin-polymer double Amici prism in optical design software and compare its imaging performance to a glass double Amici prism in the same system. The results of spot-size RMS demonstrate that the plastic prism can serve as well as their glass competitors and have better spectral resolution.
Near real-time stereo vision system
NASA Technical Reports Server (NTRS)
Anderson, Charles H. (Inventor); Matthies, Larry H. (Inventor)
1993-01-01
The apparatus for a near real-time stereo vision system for use with a robotic vehicle is described. The system is comprised of two cameras mounted on three-axis rotation platforms, image-processing boards, a CPU, and specialized stereo vision algorithms. Bandpass-filtered image pyramids are computed, stereo matching is performed by least-squares correlation, and confidence ranges are estimated by means of Bayes' theorem. In particular, Laplacian image pyramids are built and disparity maps are produced from the 60 x 64 level of the pyramids at rates of up to 2 seconds per image pair. The first autonomous cross-country robotic traverses (of up to 100 meters) have been achieved using the stereo vision system of the present invention with all computing done onboard the vehicle. The overall approach disclosed herein provides a unifying paradigm for practical domain-independent stereo ranging.
Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio
2016-12-17
Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.
Vosse, Bettine A H; Seelentag, Walter; Bachmann, Astrid; Bosman, Fred T; Yan, Pu
2007-03-01
The aim of this study was to evaluate specific immunostaining and background staining in formalin-fixed, paraffin-embedded human tissues with the 2 most frequently used immunohistochemical detection systems, Avidin-Biotin-Peroxidase (ABC) and EnVision+. A series of fixed tissues, including breast, colon, kidney, larynx, liver, lung, ovary, pancreas, prostate, stomach, and tonsil, was used in the study. Three monoclonal antibodies, 1 against a nuclear antigen (Ki-67), 1 against a cytoplasmic antigen (cytokeratin), and 1 against a cytoplasmic and membrane-associated antigen and a polyclonal antibody against a nuclear and cytoplasmic antigen (S-100) were selected for these studies. When the ABC system was applied, immunostaining was performed with and without blocking of endogenous avidin-binding activity. The intensity of specific immunostaining and the percentage of stained cells were comparable for the 2 detection systems. The use of ABC caused widespread cytoplasmic and rare nuclear background staining in a variety of normal and tumor cells. A very strong background staining was observed in colon, gastric mucosa, liver, and kidney. Blocking avidin-binding capacity reduced background staining, but complete blocking was difficult to attain. With the EnVision+ system no background staining occurred. Given the efficiency of the detection, equal for both systems or higher with EnVision+, and the significant background problem with ABC, we advocate the routine use of the EnVision+ system.
Machine vision for digital microfluidics
NASA Astrophysics Data System (ADS)
Shin, Yong-Jun; Lee, Jeong-Bong
2010-01-01
Machine vision is widely used in an industrial environment today. It can perform various tasks, such as inspecting and controlling production processes, that may require humanlike intelligence. The importance of imaging technology for biological research or medical diagnosis is greater than ever. For example, fluorescent reporter imaging enables scientists to study the dynamics of gene networks with high spatial and temporal resolution. Such high-throughput imaging is increasingly demanding the use of machine vision for real-time analysis and control. Digital microfluidics is a relatively new technology with expectations of becoming a true lab-on-a-chip platform. Utilizing digital microfluidics, only small amounts of biological samples are required and the experimental procedures can be automatically controlled. There is a strong need for the development of a digital microfluidics system integrated with machine vision for innovative biological research today. In this paper, we show how machine vision can be applied to digital microfluidics by demonstrating two applications: machine vision-based measurement of the kinetics of biomolecular interactions and machine vision-based droplet motion control. It is expected that digital microfluidics-based machine vision system will add intelligence and automation to high-throughput biological imaging in the future.
A computer vision system for the recognition of trees in aerial photographs
NASA Technical Reports Server (NTRS)
Pinz, Axel J.
1991-01-01
Increasing problems of forest damage in Central Europe set the demand for an appropriate forest damage assessment tool. The Vision Expert System (VES) is presented which is capable of finding trees in color infrared aerial photographs. Concept and architecture of VES are discussed briefly. The system is applied to a multisource test data set. The processing of this multisource data set leads to a multiple interpretation result for one scene. An integration of these results will provide a better scene description by the vision system. This is achieved by an implementation of Steven's correlation algorithm.
Eye vision system using programmable micro-optics and micro-electronics
NASA Astrophysics Data System (ADS)
Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.
2014-02-01
Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.
NASA Technical Reports Server (NTRS)
1995-01-01
NASA's Technology Transfer Office at Stennis Space Center worked with the Johns Hopkins Wilmer Eye Institute in Baltimore, Md., to incorporate NASA software originally developed by NASA to process satellite images into the Low Vision Enhancement System (LVES). The LVES, referred to as 'ELVIS' by its users, is a portable image processing system that could make it possible to improve a person's vision by enhancing and altering images to compensate for impaired eyesight. The system consists of two orientation cameras, a zoom camera, and a video projection system. The headset and hand-held control weigh about two pounds each. Pictured is Jacob Webb, the first Mississippian to use the LVES.
3D vision upgrade kit for the TALON robot system
NASA Astrophysics Data System (ADS)
Bodenhamer, Andrew; Pettijohn, Bradley; Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Chenault, David; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Kingston, David; Newell, Scott
2010-02-01
In September 2009 the Fort Leonard Wood Field Element of the US Army Research Laboratory - Human Research and Engineering Directorate, in conjunction with Polaris Sensor Technologies and Concurrent Technologies Corporation, evaluated the objective performance benefits of Polaris' 3D vision upgrade kit for the TALON small unmanned ground vehicle (SUGV). This upgrade kit is a field-upgradable set of two stereo-cameras and a flat panel display, using only standard hardware, data and electrical connections existing on the TALON robot. Using both the 3D vision system and a standard 2D camera and display, ten active-duty Army Soldiers completed seven scenarios designed to be representative of missions performed by military SUGV operators. Mission time savings (6.5% to 32%) were found for six of the seven scenarios when using the 3D vision system. Operators were not only able to complete tasks quicker but, for six of seven scenarios, made fewer mistakes in their task execution. Subjective Soldier feedback was overwhelmingly in support of pursuing 3D vision systems, such as the one evaluated, for fielding to combat units.
2017-11-12
The International Space Station received about 7,400 pounds of cargo, including new science and technology investigations, following the successful launch of Orbital ATK's Cygnus spacecraft from NASA's Wallops Flight Facility in Virginia on Sunday, Nov. 12, 2017. Orbital ATK's eighth contracted cargo delivery flight to the station launched at 7:19 a.m. EST on an Antares rocket from Pad 0A at Wallops, and arrived at the International Space Station Tuesday, Nov. 14, 2017. For more footage in higher resolution go to: https://svs.gsfc.nasa.gov/12778
Art, Illusion and the Visual System.
ERIC Educational Resources Information Center
Livingstone, Margaret S.
1988-01-01
Describes the three part system of human vision. Explores the anatomical arrangement of the vision system from the eyes to the brain. Traces the path of various visual signals to their interpretations by the brain. Discusses human visual perception and its implications in art and design. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-08-01
This article reports that there are literally hundreds of machine vision systems from which to choose. They range in cost from $10,000 to $1,000,000. Most have been designed for specific applications; the same systems if used for a different application may fail dismally. How can you avoid wasting money on inferior, useless, or nonexpandable systems. A good reference is the Automated Vision Association in Ann Arbor, Mich., a trade group comprised of North American machine vision manufacturers. Reputable suppliers caution users to do their homework before making an investment. Important considerations include comprehensive details on the objects to be viewed-thatmore » is, quantity, shape, dimension, size, and configuration details; lighting characteristics and variations; component orientation details. Then, what do you expect the system to do-inspect, locate components, aid in robotic vision. Other criteria include system speed and related accuracy and reliability. What are the projected benefits and system paybacks.. Examine primarily paybacks associated with scrap and rework reduction as well as reduced warranty costs.« less
ERIC Educational Resources Information Center
Chen, Kan; Stafford, Frank P.
A case study of machine vision was conducted to identify and analyze the employment effects of high technology in general. (Machine vision is the automatic acquisition and analysis of an image to obtain desired information for use in controlling an industrial activity, such as the visual sensor system that gives eyes to a robot.) Machine vision as…
Research on an autonomous vision-guided helicopter
NASA Technical Reports Server (NTRS)
Amidi, Omead; Mesaki, Yuji; Kanade, Takeo
1994-01-01
Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.
Computer graphics testbed to simulate and test vision systems for space applications
NASA Technical Reports Server (NTRS)
Cheatham, John B.
1991-01-01
Research activity has shifted from computer graphics and vision systems to the broader scope of applying concepts of artificial intelligence to robotics. Specifically, the research is directed toward developing Artificial Neural Networks, Expert Systems, and Laser Imaging Techniques for Autonomous Space Robots.
A robotic vision system to measure tree traits
USDA-ARS?s Scientific Manuscript database
The autonomous measurement of tree traits, such as branching structure, branch diameters, branch lengths, and branch angles, is required for tasks such as robotic pruning of trees as well as structural phenotyping. We propose a robotic vision system called the Robotic System for Tree Shape Estimati...
Machine vision for real time orbital operations
NASA Technical Reports Server (NTRS)
Vinz, Frank L.
1988-01-01
Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).
Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan
2016-04-22
The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.
The Recovery of Optical Quality after Laser Vision Correction
Jung, Hyeong-Gi
2013-01-01
Purpose To evaluate the optical quality after laser in situ keratomileusis (LASIK) or serial photorefractive keratectomy (PRK) using a double-pass system and to follow the recovery of optical quality after laser vision correction. Methods This study measured the visual acuity, manifest refraction and optical quality before and one day, one week, one month, and three months after laser vision correction. Optical quality parameters including the modulation transfer function, Strehl ratio and intraocular scattering were evaluated with a double-pass system. Results This study included 51 eyes that underwent LASIK and 57 that underwent PRK. The optical quality three months post-surgery did not differ significantly between these laser vision correction techniques. Furthermore, the preoperative and postoperative optical quality did not differ significantly in either group. Optical quality recovered within one week after LASIK but took between one and three months to recover after PRK. The optical quality of patients in the PRK group seemed to recover slightly more slowly than their uncorrected distance visual acuity. Conclusions Optical quality recovers to the preoperative level after laser vision correction, so laser vision correction is efficacious for correcting myopia. The double-pass system is a useful tool for clinical assessment of optical quality. PMID:23908570
Understanding of and applications for robot vision guidance at KSC
NASA Technical Reports Server (NTRS)
Shawaga, Lawrence M.
1988-01-01
The primary thrust of robotics at KSC is for the servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF). Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL), an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.
A laser-based vision system for weld quality inspection.
Huang, Wei; Kovacevic, Radovan
2011-01-01
Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved.
A Laser-Based Vision System for Weld Quality Inspection
Huang, Wei; Kovacevic, Radovan
2011-01-01
Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved. PMID:22344308
NASA Astrophysics Data System (ADS)
Astafiev, A.; Orlov, A.; Privezencev, D.
2018-01-01
The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III
2007-01-01
NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.
Appendix B: Rapid development approaches for system engineering and design
NASA Technical Reports Server (NTRS)
1993-01-01
Conventional processes often produce systems which are obsolete before they are fielded. This paper explores some of the reasons for this, and provides a vision of how we can do better. This vision is based on our explorations in improved processes and system/software engineering tools.
Vetrella, Amedeo Rodi; Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio
2016-01-01
Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS) receivers and Micro-Electro-Mechanical Systems (MEMS)-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS) receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase) exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision) to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information. PMID:27999318
Survey of computer vision-based natural disaster warning systems
NASA Astrophysics Data System (ADS)
Ko, ByoungChul; Kwak, Sooyeong
2012-07-01
With the rapid development of information technology, natural disaster prevention is growing as a new research field dealing with surveillance systems. To forecast and prevent the damage caused by natural disasters, the development of systems to analyze natural disasters using remote sensing geographic information systems (GIS), and vision sensors has been receiving widespread interest over the last decade. This paper provides an up-to-date review of five different types of natural disasters and their corresponding warning systems using computer vision and pattern recognition techniques such as wildfire smoke and flame detection, water level detection for flood prevention, coastal zone monitoring, and landslide detection. Finally, we conclude with some thoughts about future research directions.
Vision-guided micromanipulation system for biomedical application
NASA Astrophysics Data System (ADS)
Shim, Jae-Hong; Cho, Sung-Yong; Cha, Dong-Hyuk
2004-10-01
In these days, various researches for biomedical application of robots have been carried out. Particularly, robotic manipulation of the biological cells has been studied by many researchers. Usually, most of the biological cell's shape is sphere. Commercial biological manipulation systems have been utilized the 2-Dimensional images through the optical microscopes only. Moreover, manipulation of the biological cells mainly depends on the subjective viewpoint of an operator. Due to these reasons, there exist lots of problems such as slippery and destruction of the cell membrane and damage of the pipette tip etc. In order to overcome the problems, we have proposed a vision-guided biological cell manipulation system. The newly proposed manipulation system makes use of vision and graphic techniques. Through the proposed procedures, an operator can inject the biological cell scientifically and objectively. Also, the proposed manipulation system can measure the contact force occurred at injection of a biological cell. It can be transmitted a measured force to the operator by the proposed haptic device. Consequently, the proposed manipulation system could safely handle the biological cells without any damage. This paper presents the introduction of our vision-guided manipulation techniques and the concept of the contact force sensing. Through a series of experiments the proposed vision-guided manipulation system shows the possibility of application for precision manipulation of the biological cell such as DNA.
Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja
2016-03-01
Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.
Obstacles encountered in the development of the low vision enhancement system.
Massof, R W; Rickman, D L
1992-01-01
The Johns Hopkins Wilmer Eye Institute and the NASA Stennis Space Center are collaborating on the development of a new high technology low vision aid called the Low Vision Enhancement System (LVES). The LVES consists of a binocular head-mounted video display system, video cameras mounted on the head-mounted display, and real-time video image processing in a system package that is battery powered and portable. Through a phased development approach, several generations of the LVES can be made available to the patient in a timely fashion. This paper describes the LVES project with major emphasis on technical problems encountered or anticipated during the development process.
NASA Astrophysics Data System (ADS)
Singh, N. Nirmal; Chatterjee, Amitava; Rakshit, Anjan
2010-02-01
The present article describes the development of a peripheral interface controller (PIC) microcontroller-based system for interfacing external add-on peripherals with a real mobile robot, for real life applications. This system serves as an important building block of a complete integrated vision-based mobile robot system, integrated indigenously in our laboratory. The system is composed of the KOALA mobile robot in conjunction with a personal computer (PC) and a two-camera-based vision system where the PIC microcontroller is used to drive servo motors, in interrupt-driven mode, to control additional degrees of freedom of the vision system. The performance of the developed system is tested by checking it under the control of several user-specified commands, issued from the PC end.
Night vision: requirements and possible roadmap for FIR and NIR systems
NASA Astrophysics Data System (ADS)
Källhammer, Jan-Erik
2006-04-01
A night vision system must increase visibility in situations where only low beam headlights can be used today. As pedestrians and animals have the highest risk increase in night time traffic due to darkness, the ability of detecting those objects should be the main performance criteria, and the system must remain effective when facing the headlights of oncoming vehicles. Far infrared system has been shown to be superior to near infrared system in terms of pedestrian detection distance. Near infrared images were rated to have significantly higher visual clutter compared with far infrared images. Visual clutter has been shown to correlate with reduction in detection distance of pedestrians. Far infrared images are perceived as being more unusual and therefore more difficult to interpret, although the image appearance is likely related to the lower visual clutter. However, the main issue comparing the two technologies should be how well they solve the driver's problem with insufficient visibility under low beam conditions, especially of pedestrians and other vulnerable road users. With the addition of an automatic detection aid, a main issue will be whether the advantage of FIR systems will vanish given NIR systems with well performing automatic pedestrian detection functionality. The first night vision introductions did not generate the sales volumes initially expected. A renewed interest in night vision systems are however to be expected after the release of night vision systems by BMW, Mercedes and Honda, the latter with automatic pedestrian detection.
Accuracy improvement in a calibration test bench for accelerometers by a vision system
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Emilia, Giulio, E-mail: giulio.demilia@univaq.it; Di Gasbarro, David, E-mail: david.digasbarro@graduate.univaq.it; Gaspari, Antonella, E-mail: antonella.gaspari@graduate.univaq.it
2016-06-28
A procedure is described in this paper for the accuracy improvement of calibration of low-cost accelerometers in a prototype rotary test bench, driven by a brushless servo-motor and operating in a low frequency range of vibrations (0 to 5 Hz). Vibration measurements by a vision system based on a low frequency camera have been carried out, in order to reduce the uncertainty of the real acceleration evaluation at the installation point of the sensor to be calibrated. A preliminary test device has been realized and operated in order to evaluate the metrological performances of the vision system, showing a satisfactory behaviormore » if the uncertainty measurement is taken into account. A combination of suitable settings of the control parameters of the motion control system and of the information gained by the vision system allowed to fit the information about the reference acceleration at the installation point to the needs of the procedure for static and dynamic calibration of three-axis accelerometers.« less
NASA Astrophysics Data System (ADS)
Di, Si; Lin, Hui; Du, Ruxu
2011-05-01
Displacement measurement of moving objects is one of the most important issues in the field of computer vision. This paper introduces a new binocular vision system (BVS) based on micro-electro-mechanical system (MEMS) technology. The eyes of the system are two microlenses fabricated on a substrate by MEMS technology. The imaging results of two microlenses are collected by one complementary metal-oxide-semiconductor (CMOS) array. An algorithm is developed for computing the displacement. Experimental results show that as long as the object is moving in two-dimensional (2D) space, the system can effectively estimate the 2D displacement without camera calibration. It is also shown that the average error of the displacement measurement is about 3.5% at different object distances ranging from 10 cm to 35 cm. Because of its low cost, small size and simple setting, this new method is particularly suitable for 2D displacement measurement applications such as vision-based electronics assembly and biomedical cell culture.
Automated Grading of Rough Hardwood Lumber
Richard W. Conners; Tai-Hoon Cho; Philip A. Araman
1989-01-01
Any automatic hardwood grading system must have two components. The first of these is a computer vision system for locating and identifying defects on rough lumber. The second is a system for automatically grading boards based on the output of the computer vision system. This paper presents research results aimed at developing the first of these components. The...
A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection
D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin
1993-01-01
A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...
Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate
NASA Technical Reports Server (NTRS)
Sander, Michael J.
2006-01-01
As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments
New NASA 3D Animation Shows Seven Days of Simulated Earth Weather
2014-08-11
This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G
2015-02-01
Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.
Liu, Mei; Li, Mijie; Wang, Shaoqiang; Xu, Yao; Lan, Xianyong; Li, Zhuanjian; Lei, Chuzhao; Yang, Dongying; Jia, Yutang; Chen, Hong
2014-02-25
Forkhead box A2 (Foxa2) has been recognized as one of the most potent transcriptional activators that is implicated in the control of feeding behavior and energy homeostasis. However, similar researches about the effects of genetic variations of Foxa2 gene on growth traits are lacking. Therefore, this study detected Foxa2 gene polymorphisms by DNA pool sequencing, PCR-RFLP and PCR-ACRS methods in 822 individuals from three Chinese cattle breeds. The results showed that four sequence variants (SVs) were screened, including two mutations (SV1, g. 7005 C>T and SV2, g. 7044 C>G) in intron 4, one mutation (SV3, g. 8449 A>G) in exon 5 and one mutation (SV4, g. 8537 T>C) in the 3'UTR. Notably, association analysis of the single mutations with growth traits in total individuals (at 24months) revealed that significant statistical difference was found in four SVs, and SV4 locus was highly significantly associated with growth traits throughout all three breeds (P<0.05 or P<0.01). Meanwhile, haplotype combination CCCCAGTC also indicated remarkably associated to better chest girth and body weight in Jiaxian Red cattle (P<0.05). We herein described a comprehensive study on the variability of bovine Foxa2 gene that was predictive of molecular markers in cattle breeding for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.
Yamamoto, N; Satomi, J; Harada, M; Izumi, Y; Nagahiro, S; Kaji, R
2016-09-01
The aim of this study was to investigate the independent factors associated with the absence of recanalization approximately 24 h after intravenous administration of tissue-type plasminogen activator (IV TPA). The previous studies have been conducted using 1.5-Tesla (T) magnetic resonance imaging (MRI). We studied whether the characteristics of 3-T MRI findings were useful to predict outcome and recanalization after IV tPA. Patients with internal carotid artery (ICA) or middle cerebral artery (MCA) (horizontal portion, M1; Sylvian portion, M2) occlusion and treated by IV tPA were enrolled. We studied whether the presence of susceptibility vessel sign (SVS) at M1 and low clot burden score on T2*-weighted imaging (T2*-CBS) on 3-T MRI were associated with the absence of recanalization. A total of 49 patients were enrolled (27 men; mean age, 73.9 years). MR angiography obtained approximately 24 h after IV tPA revealed recanalization in 21 (42.9 %) patients. Independent factors associated with the absence of recanalization included ICA or proximal M1 occlusion (odds ratio, 69.6; 95 % confidence interval, 5.05-958.8, p = 0.002). In this study, an independent factor associated with the absence of recanalization may be proximal occlusion of the cerebral arteries rather than SVS in the MCA or low T2*-CBS on 3-T MRI.
Alahyane, N; Fonteille, V; Urquizar, C; Salemme, R; Nighoghossian, N; Pelisson, D; Tilikete, C
2008-01-01
Sensory-motor adaptation processes are critically involved in maintaining accurate motor behavior throughout life. Yet their underlying neural substrates and task-dependency bases are still poorly understood. We address these issues here by studying adaptation of saccadic eye movements, a well-established model of sensory-motor plasticity. The cerebellum plays a major role in saccadic adaptation but it has not yet been investigated whether this role can account for the known specificity of adaptation to the saccade type (e.g., reactive versus voluntary). Two patients with focal lesions in different parts of the cerebellum were tested using the double-step target paradigm. Each patient was submitted to two separate sessions: one for reactive saccades (RS) triggered by the sudden appearance of a visual target and the second for scanning voluntary saccades (SVS) performed when exploring a more complex scene. We found that a medial cerebellar lesion impaired adaptation of reactive-but not of voluntary-saccades, whereas a lateral lesion affected adaptation of scanning voluntary saccades, but not of reactive saccades. These findings provide the first evidence of an involvement of the lateral cerebellum in saccadic adaptation, and extend the demonstrated role of the cerebellum in RS adaptation to adaptation of SVS. The double dissociation of adaptive abilities is also consistent with our previous hypothesis of the involvement in saccadic adaptation of partially separated cerebellar areas specific to the reactive or voluntary task (Alahyane et al. Brain Res 1135:107-121 (2007)).
Stochastic subset selection for learning with kernel machines.
Rhinelander, Jason; Liu, Xiaoping P
2012-06-01
Kernel machines have gained much popularity in applications of machine learning. Support vector machines (SVMs) are a subset of kernel machines and generalize well for classification, regression, and anomaly detection tasks. The training procedure for traditional SVMs involves solving a quadratic programming (QP) problem. The QP problem scales super linearly in computational effort with the number of training samples and is often used for the offline batch processing of data. Kernel machines operate by retaining a subset of observed data during training. The data vectors contained within this subset are referred to as support vectors (SVs). The work presented in this paper introduces a subset selection method for the use of kernel machines in online, changing environments. Our algorithm works by using a stochastic indexing technique when selecting a subset of SVs when computing the kernel expansion. The work described here is novel because it separates the selection of kernel basis functions from the training algorithm used. The subset selection algorithm presented here can be used in conjunction with any online training technique. It is important for online kernel machines to be computationally efficient due to the real-time requirements of online environments. Our algorithm is an important contribution because it scales linearly with the number of training samples and is compatible with current training techniques. Our algorithm outperforms standard techniques in terms of computational efficiency and provides increased recognition accuracy in our experiments. We provide results from experiments using both simulated and real-world data sets to verify our algorithm.
Using Scientific Visualizations to Enhance Scientific Thinking In K-12 Geoscience Education
NASA Astrophysics Data System (ADS)
Robeck, E.
2016-12-01
The same scientific visualizations, animations, and images that are powerful tools for geoscientists can serve an important role in K-12 geoscience education by encouraging students to communicate in ways that help them develop habits of thought that are similar to those used by scientists. Resources such as those created by NASA's Scientific Visualization Studio (SVS), which are intended to inform researchers and the public about NASA missions, can be used in classrooms to promote thoughtful, engaged learning. Instructional materials that make use of those visualizations have been developed and are being used in K-12 classrooms in ways that demonstrate the vitality of the geosciences. For example, the Center for Geoscience and Society at the American Geosciences Institute (AGI) helped to develop a publication that outlines an inquiry-based approach to introducing students to the interpretation of scientific visualizations, even when they have had little to no prior experience with such media. To facilitate these uses, the SVS team worked with Center staff and others to adapt the visualizations, primarily by removing most of the labels and annotations. Engaging with these visually compelling resources serves as an invitation for students to ask questions, interpret data, draw conclusions, and make use of other processes that are key components of scientific thought. This presentation will share specific resources for K-12 teaching (all of which are available online, from NASA, and/or from AGI), as well as the instructional principles that they incorporate.