Sample records for visiting scientist programs

  1. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    Progress reports of the Visiting Scientist Program covering the period from 1 Jul. - 30 Sep. 1992 are included. Topics covered include space science and earth science. Other topics covered include cosmic rays, magnetic clouds, solar wind, satellite data, high resolution radiometer, and microwave scattering.

  2. Scientist in Residence.

    ERIC Educational Resources Information Center

    Thiel, David V.

    1990-01-01

    Describes a secondary school visitation program by scientists in Australia. The program was designed to increase students' motivation related to science, especially physics. Discusses the effects of the program. (YP)

  3. Goddard Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Under this Indefinite Delivery Indefinite Quantity (IDIQ) contract, USRA was expected to provide short term (from I day up to I year) personnel as required to provide a Visiting Scientists Program to support the Earth Sciences Directorate (Code 900) at the Goddard Space Flight Center. The Contractor was to have a pool, or have access to a pool, of scientific talent, both domestic and international, at all levels (graduate student to senior scientist), that would support the technical requirements of the following laboratories and divisions within Code 900: 1) Global Change Data Center (902); 2) Laboratory for Atmospheres (Code 910); 3) Laboratory for Terrestrial Physics (Code 920); 4) Space Data and Computing Division (Code 930); 5) Laboratory for Hydrospheric Processes (Code 970). The research activities described below for each organization within Code 900 were intended to comprise the general scope of effort covered under the Visiting Scientist Program.

  4. A visiting scientist program for the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Kerr, Frank J.

    1995-01-01

    During this project, Universities Space Research Association provided program management and the administration for overseeing the performance of the total contractual effort. The program director and administrative staff provided the expertise and experience needed to efficiently manage the program.USRA provided a program coordinator and v visiting scientists to perform scientific research with Burst and Transient Source Experiment (BATSE) data. This research was associated with the primary scientific objectives of BATSE and with the various BATSE collaborations which were formed in response to the Compton Gamma Ray Observatory Guest Investigator Program. USRA provided administration for workshops, colloquia, the preparation of scientific documentation, etc. and also provided flexible program support in order to meet the on-going needs of MSFC's BATSE program. USRA performed tasks associated with the recovery, archiving, and processing of scientific data from BATSE. A bibliography of research in the astrophysics discipline is attached as Appendix 1. Visiting Scientists and Research Associates performed activities on this project, and their technical reports are attached as Appendix 2.

  5. Research posts for women

    NASA Astrophysics Data System (ADS)

    The National Science Foundation (NSF) is accepting proposals for its Visiting Professorships for Women (VPW) program. Under this program, female scientists and engineers who are experienced in independent research can undertake advanced research as visiting professors at universities or research institutions that have the necessary facilities. In addition to research, each visiting professor takes on lecturing, counseling, and “other interactive activities” intended to increase the visibility of female scientists at the host institution and to encourage other women to pursue careers in science and engineering, according to NSF.

  6. Visiting Professorships

    NASA Astrophysics Data System (ADS)

    Applications are now being accepted for the National Science Foundation (NSF) Visiting Professorships for Women Program. Under this program, women scientists and engineers from industry, government, and academia can be visiting professors at academic institutions in the United States.The program's objectives are to provide opportunities for women to advance their careers in the disciplines of science and engineering that are supported by NSF to provide greater visibility and wider opportunities for women scientists and engineers employed in industry, government, and academic institutions, and to provide encouragement for other women to pursue careers in science and engineering through the awardees' research, lecturing, counseling, and mentoring activities.

  7. Visiting Scholars Program | FNLCR Staging

    Cancer.gov

    The Visiting Scholars Program (VSP) is a scientific partnership program that offers extramural scientists access to the intellectual capital and state-of-the-art facilities of the Frederick National Laboratory for Cancer Research (FNLCR), the only na

  8. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  9. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2002-01-01

    The long-term goal of the University Corporation for Atmospheric Research (UCAR) Visiting Scientist Program at the National Ice Center (NIC) is to recruit the highest quality visiting scientists in the ice research community for the broad purpose of strengthening the relationship between the operational and research communities in the atmospheric and oceanic sciences. The University Corporation for Atmospheric Research supports the scientific community by creating, conducting, and coordinating projects that strengthen education and research in the atmospheric, oceanic and earth sciences. UCAR accomplishes this mission by building partnerships that are national or global in scope. The goal of UCAR is to enable researchers and educators to take on issues and activities that require the combined and collaborative capabilities of a broadly engaged scientific community.

  10. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.

  11. Visiting Scholars Program | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The Visiting Scholars Program (VSP) provides a unique opportunity for scientists to collaborate with the Frederick National Laboratory for Cancer Research (FNLCR), the only federal national laboratory in the United States devoted exclusively to b

  12. The proposed EROSpace institute, a national center operated by space grant universities

    USGS Publications Warehouse

    Smith, Paul L.; Swiden, LaDell R.; Waltz, Frederick A.

    1993-01-01

    The "EROSpace Institute" is a proposed visiting scientist program in associated with the U.S. Geological Survey's EROS Data Center (EDC). The Institute would be operated by a consortium of universities, possible drawn from NASA's Space Grant College and Fellowship Program consortia and the group of 17 capability-enhancement consortia, or perhaps from consortia though out the nation with a topical interest in remote sensing. The National Center for Atmospheric Research or the Goddard Institute for Space Studies provide models for the structure of such an institute. The objectives of the Institute are to provide ready access to the body of data housed at the EDC and to increase the cadre of knowledgeable and trained scientists able to deal with the increasing volume of remote sensing data to become available from the Earth Observing System. The Institute would have a staff of about 100 scientists at any one time, about half permanent staff, and half visiting scientists. The latter would include graduate and undergraduate students, as well as faculty on temporary visits, summer fellowships, or sabbatical leaves. The Institute would provide office and computing facilities, as well as Internet linkages to the home institutions so that scientists could continue to participate in the program from their home base.

  13. Improving the Climate for Female Scientists at the National Center for Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Killeen, T. L.

    2003-12-01

    In the summer of 2000, at the invitation of the former Director of the National Center for Atmospheric Research (NCAR), a committee of senior female scientists affiliated with the American Physical Society's Committee on the Status of Women in Physics visited NCAR and NCAR's parent organization, the University Corporation for Atmospheric Research (UCAR). The purpose of the site visit was to develop recommendations designed to improve the climate for women scientists at NCAR. This site visit and the subsequent written report and response from NCAR/UCAR management were instrumental in the establishment of a series of new programs and recruitment/mentoring activities that have had a significant impact at NCAR. The APS Committee's report included recommendations in the areas of: staff recruitment and demographic balance; communication and consistent implementation of policies; mentoring and career development programs; and "family friendliness". The constructive and helpful report of the visiting APS committee was openly shared with staff and led to a series of discussions, debates, actions, and programs at NCAR that continue to this day. This poster will describe the APS Committee's recommendations, the institutional process that occurred in response to this study, and the resulting actions and their impact at the national center. Specific progress since the site visit has included a doubling of the percentage participation by females in the ladder (tenure-equivalent) scientist track at NCAR to a level that now significantly exceeds the national average for tenured or tenure-track female faculty at Ph.D.-granting institutions in the geosciences.

  14. CGH Short Term Scientist Exchange Program (STSEP)

    Cancer.gov

    STSEP promotes collaborative research between established U.S. and foreign scientists from low, middle, and upper-middle income countries (LMICs) by supporting, in part, exchange visits of cancer researchers between U.S. and foreign laboratories.

  15. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  16. Evaluation of the Enhanced Assessment Grants (EAGs) SimScientists Program: Site Visit Findings. CRESST Report 791

    ERIC Educational Resources Information Center

    Herman, Joan; Dai, Yunyun; Htut, Aye Mon; Martinez, Marcela; Rivera, Nichole

    2011-01-01

    This evaluation report addresses the implementation, utility, and feasibility of SimScientists' simulation-based assessments for middle school science classrooms, with particular attention to the use of accommodations available in the program. Data were collected from a convenience sample of five schools and eight teachers across three states…

  17. Microgravity sciences application visiting scientist program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Contract NAS8-38785, Microgravity Experimental and Theoretical Research, is a project involving a large number of individual research programs related to: determination of the structure of human serum albumin and other biomedically important proteins; analysis of thermodynamic properties of various proteins and models of protein nucleation; development of experimental techniques for the growth of protein crystals in space; study of the physics of electrical double layers in the mechanics of liquid interfaces; computational analysis of vapor crystal growth processes in microgravity; analysis of the influence of magnetic fields in damping residual flows in directional solidification processes; crystal growth and characterization of II-VI semiconductor alloys; and production of thin films for nonlinear optics. It is not intended that the programs will be necessarily limited to this set at any one time. The visiting scientists accomplishing these programs shall serve on-site at MSFC to take advantage of existing laboratory facilities and the daily opportunities for technical communications with various senior scientists.

  18. NASA chief scientist visit

    NASA Image and Video Library

    2011-07-19

    NASA Chief Scientist Dr. Waleed Abdalati visited Stennis Space Center on July 19, to learn about the extensive science capabilities onsite. Shown at right are: (seated, l to r), Stennis Center Director Patrick Scheuermann; Dr. Abdalati; U.S. Navy Rear Adm. Jonathan White; NOAA National Data Buoy Center Program Manager Shannon McArthur; (standing, l to r) Stennis Project Directorate Assistant Director Anne Peek; Stennis Applied Science & Technology Project Office Chief Duane Armstrong; and Stennis Project Directorate Director Keith Brock.

  19. New Visiting Scholars Program at Frederick National Laboratory | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The Frederick National Laboratory for Cancer Research is now accepting Expressions of Interest to its new Visiting Scholars Program (VSP). VSP is a unique opportunity for researchers to work on important cancer and AIDS projects with teams of scientists at the only federal national laboratory in the United States devoted exclusively to biomedical research.

  20. Novel approaches for inspiring students and electrifying the public

    NASA Astrophysics Data System (ADS)

    Lidström, Suzy; Read, Alex; Parke, Stephen; Allen, Roland; Goldfarb, Steven; Mehlhase, Sascha; Ekelöf, Tord; Walker, Alan

    2014-03-01

    We will briefly summarize a wide variety of innovative approaches for inspiring students and stimulating broad public interest in fundamental physics research, as exemplified by recent activities related to the Higgs boson discovery and Higgs-Englert Nobel Prize on behalf of the Swedish Academy, CERN, Fermilab, and the Niels Bohr Institute. Personal interactions with the scientists themselves can be particularly electrifying, and these were encouraged by the wearing of ``Higgs Boson? Ask Me!'' badges, which will be made available to those attending this talk. At CERN, activities include Virtual Visits, (Google) Hangout with CERN, initiatives to grab attention (LEGO models, music videos, art programs, pins, etc.), substantive communication (lab visits and events, museum exhibits, traveling exhibits, local visits, Masterclasses, etc.), and educational activities (summer student programs, semester abroad programs, internships, graduate programs, etc.). For serious students and their teachers, or scientists in other areas, tutorial articles are appropriate. These are most effective if they also incorporate innovative approaches - for example, attractive figures that immediately illustrate the concepts, analogies that will resonate with the reader, and a broadening of perspective. Physica Scripta, Royal Swedish Academy of Sciences.

  1. National Ice Center Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2001-01-01

    The objectives of the work done by Dr. Kim Partington were to manage NASA's polar research program, including its strategic direction, research funding and interagency and international collaborations. The objectives of the UCAR Visiting Scientist Program at the National Ice Center (NIC) are to: (1) Manage a visiting scientist program for the NIC Science Center in support of the mission of the NIC; (2) Provide a pool of researchers who will share expertise with the NIC and the science community; (3) Facilitate communications between the research and operational communities for the purpose of identifying work ready for validation and transition to an operational environment; and (4) Act as a focus for interagency cooperation. The NIC mission is to provide worldwide operational sea ice analyses and forecasts for the armed forces of the US and allied nations, the Departments of Commerce and Transportation, and other US Government and international agencies, and the civil sector. The NIC produces these analyses and forecasts of Arctic, Antarctic, Great Lakes, and Chesapeake Bay ice conditions to support customers with global, regional, and tactical scale interests. The NIC regularly deploys Naval Ice Center NAVICECEN Ice Reconnaissance personnel to the Arctic and Antarctica in order to perform aerial ice observation and analysis in support of NIC customers. NIC ice data are a key part of the US contribution to international global climate and ocean observing systems.

  2. Colorado Lightning Mapping Array Collaborations through the GOES-R Visiting Scientist Program

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca

    2014-01-01

    For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term Prediction Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total lightning collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary lightning mapper product to the Aviation Weather Center and Storm Prediction Center. This year, SPoRT has collaborated with the Colorado Lightning Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and lightning safety, and formal evaluations to take place in the spring of 2014.

  3. Student-Teacher Astronomy Resource (STAR) Program

    NASA Astrophysics Data System (ADS)

    Gaboardi, M.; Humayun, M.; Dixon, P.

    2006-12-01

    Our NASA-funded E/PO program, the Student-Teacher Astronomy Resource (STAR) Program, designed around the Stardust and Genesis Missions, focuses on the reciprocal relationship between technological progress and advances in scientific understanding. We work directly with the public, teachers, classrooms, and individual school students. Both formal and informal evaluations suggest that our four-step approach to outreach has been effective. This annual program may serve as a model for the partnership between a national research institution, local scientists, and local teachers. The program has four components: 1."Space Stations" developed around the technology and science of the Genesis and Stardust Missions, are offered as child-friendly booths at the annual National High Magnetic Field Laboratory (NHMFL) Open House. The stations allow for direct interaction between the scientists and the public (over 3000 visitors). 2. STAR teachers (15) receive training and supplies to lead their classrooms through "Technology for Studying Comets". After attending a one-day in-service at the NHMFL, teachers can bring to their students an inquiry-based space science unit about which they are knowledgeable and excited. 3. We offer "Comet Tales," an informal education experience based on the NASA classroom activity "Comet Basics," to 15 local classrooms. We visit local classrooms and engage students with inquiry about comets, sampling of Wild 2, and what scientists hope to learn from the Stardust Mission. Visits occur during the two-week "Technology for Studying Comets" unit taught by each STAR teacher. 4. The "Stellar Students" component involves 15 high-achieving students in research activities. From each classroom visited during "Comet Tales," one student is selected to visit the NHMFL for a day. Parents and teachers of the students are invited for an awards ceremony and student presentations. Evaluation consisted of focus groups, informal observation, and questionnaires. Responses were overwhelmingly positive. This format allows us to continuously improve the design of our program and ensure that we meet the needs of our local school district.

  4. NASA space life sciences research and education support program

    NASA Technical Reports Server (NTRS)

    Jones, Terri K.

    1995-01-01

    USRA's Division of Space Life Sciences (DSLS) was established in 1983 as the Division of Space Biomedicine to facilitate participation of the university community in biomedical research programs at the NASA Johnson Space Center (JSC). The DSLS is currently housed in the Center for Advanced Space Studies (CASS), sharing quarters with the Division of Educational Programs and the Lunar and Planetary Institute. The DSLS provides visiting scientists for the Johnson Space Center; organizes conferences, workshops, meetings, and seminars; and, through subcontracts with outside institutions, supports NASA-related research at more than 25 such entities. The DSLS has considerable experience providing visiting scientists, experts, and consultants to work in concert with NASA Life Sciences researchers to define research missions and goals and to perform a wide variety of research administration and program management tasks. The basic objectives of this contract have been to stimulate, encourage, and assist research and education in the NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad have been recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system.

  5. Scientist in the Classroom: Highlights of a Plasma Outreach Program

    NASA Astrophysics Data System (ADS)

    Nagy, A.; Lee, R. L.

    2000-10-01

    The General Atomics education program ``Scientist in the Classroom'' now in its third year, uses scientists and engineers to present ``Plasma the fourth state of matter,'' to students in the classroom. A program goal is to make science an enjoyable experience while showing students how plasma plays an important role in their world. A fusion overview is presented, including topics on energy and environment. Using hands-on equipment, students manipulate a plasma discharge using magnets, observe its spectral properties and observe the plasma in a fluorescent tube. In addition, they observe physical properties of liquid nitrogen, and use an infrared camera to observe radiant heat energy. Several program benefits are; it costs less than facility tours, is more flexible in scheduling, and is adaptable for grades 2--adult. The program has doubled in coverage since last year, with over 2200 students at 20 schools visited by 8 scientists. Increased participation by the DIII-D staff in this program has been achieved by enlisting them to bring the program to their children's school.

  6. National Academy of Sciences: Helping Scientists Navigate & Troubleshoot Visa Issues

    NASA Astrophysics Data System (ADS)

    Bailey, Kathie

    2014-03-01

    The International Visitors Office (IVO) is a program operated by the Board on International Scientific Organizations of the National Academy of Sciences. The IVO serves as a resource on visa-related issues for scientists and students traveling to the United States for professional activities. The speaker will address visa issues for international scientists wishing to visit the United States, tips for trouble-shooting visa issues, and statistics on the current visa system.

  7. A Field Trip without Buses: Connecting Your Students to Scientists through a Virtual Visit

    ERIC Educational Resources Information Center

    Adedokun, Omolola; Parker, Loran Carleton; Loizzo, Jamie; Burgess, Wilella; Robinson, J. Paul

    2011-01-01

    One school offers zipTrips as an alternative to actual field trips taken outside of school. ZipTrips are web- and broadcast-delivered electronic field trips that include online videos, lesson plans, and a live, 45-minute interactive program consisting of four core components: an in-studio audience, live interaction with scientists, prerecorded…

  8. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Lee, R. L.

    1999-11-01

    The Fusion Education Program, with support from DOE, continues to promote pre-college science education for students and teachers using multiple approaches. An important part of our program is direct scientist-student interaction. Our ``Scientist in a Classroom'' program allows students to interact with scientists and engage in plasma science activities in the students' classroom. More than 1000 students from 11 schools have participated in this exciting program. Also, this year more than 800 students and teachers have visited the DIII--D facility and interacted with scientists to cover a broad range of technical and educational issues. Teacher-scientist interaction is imperative in professional development and each year more than 100 teachers attend workshops produced by the fusion education team. We also participate in unique learning opportunities. Members of the team, in collaboration with the San Diego County Office of Education, held a pioneering Internet-based Physics Olympiad for American and Siberian students. Our teamwork with educators helps shape material that is grade appropriate, relevant, and stimulates thinking in educators and students.

  9. (Coordinated research of chemotherapeutic agents and radiopharmaceuticals)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, P.C.

    1991-01-14

    The traveler received a United Nations Development Program (UNDP) Award for Distinguished Scientists to visit Indian Research Institutions including Central Drug Research Institute (CDRI), Lucknow, the host institution, in cooperation with the Council of Scientific and Industrial Research (CSIR) of India. At CDRI, the traveler had meetings to discuss progress and future directions of on-going collaborative research work on nucleosides and had the opportunity to initiate new projects with the divisions of pharmacology, biopolymers, and membrane biology. As a part of this program, the traveler also visited Sanjay Gandhi Post Graduate Institute (SGPI) of Medical Sciences, Lucknow; Board of Radiationmore » and Isotope Technology (BRIT) and Bhabha Atomic Research Center (BARC), Bombay; Variable Energy Cyclotron Center (VECC) and Indian Institute of Chemical Biology, Calcutta. He also attended the Indo-American Society of Nuclear Medicine Meeting held in Calcutta. The traveler delivered five seminars describing various aspects of radiopharmaceutical development at the Oak Ridge National Laboratory (ORNL) and discussed the opportunities for exchange visits to ORNL by Indian scientists.« less

  10. Community development in a Research Experience for Teachers (RET) program: Teacher growth and translation of the experience back to the classroom

    NASA Astrophysics Data System (ADS)

    Johnston, Carol Suzanne Chism

    This qualitative study explores how a scientific research experience helped seven secondary science teachers to grow professionally. The design of this Research Experience for Teachers (RET) program emphasized having teachers become members of university scientific research communities---participating in experimental design, data collection, analysis, and presenting of findings---in order to have a better understanding of research science. I conducted individual interviews with teacher and scientist participants, visited the teachers in their laboratories, videotaped classroom visits, and videotaped group meetings during the summers to learn what teachers brought back to their classrooms about the processes of science. I examined the teachers' views of research science, views shaped by their exposure to research science under the mentorship of a scientist participant. The teachers observed the collaborative efforts of research scientists and experienced doing scientific research, using technology and various experimental methods. Throughout their two-year experience, the teachers continually refined their images of scientists. I also examined how teachers in this program built a professional community as they developed curricula. Further, I investigated what the teachers brought from their experiences back to the classroom, deciding on a theme of "Communicating Science" as a way to convey aspects of scientific inquiry to students. Teacher growth as a result of this two-year program included developing more empathy for student learning and renewing their enthusiasm for both learning and teaching science. Teacher growth also included developing curricula to involve students in behaving as scientists. The teachers identified a few discrete communication practices of scientists that they deemed appropriate for students to adopt to increase their communication skills. Increased community building in classes to model scientific communities was seen as a way to motivate students and to help them to understand scientific concepts.

  11. One Model for Scientist Involvement in K-12 Education: Teachers Experiencing Antarctica and the Arctic Program

    NASA Astrophysics Data System (ADS)

    Meese, D.; Shipp, S. S.; Porter, M.; Bruccoli, A.

    2002-12-01

    Scientists involved in the NSF-funded Teachers Experiencing Antarctica and the Arctic (TEA) Program integrate a K-12 science teacher into their polar field project. Objectives of the program include: having the science teacher immersed in the experience of research; 2) through the teacher, leveraging the research experience to better inform teaching practices; and 3) sharing the experience with the broader educational and general community. The scientist - or qualified team member - stays involved with the teacher throughout the program as a mentor. Preparation of the teacher involves a week-long orientation presented by the TEA Program, and a two week pre-expedition visit at the scientist's institution. Orientation acquaints teachers with program expectations, logistical information, and an overview of polar science. While at the scientist's institution, the teacher meets the team, prepares for the field, and strengthens content knowledge. In the field, the teacher is a team member and educational liaison, responding to questions from students and colleagues by e-mail, and posting electronic journals describing the research experience. Upon return, the teachers work closely with colleagues to bring the experience of research into classrooms through creation of activities, design of longer-term student investigations, and presentations at scientific, educational, and community meetings. Interaction with the scientific team continues with a visit by the scientist to the teacher's classrooms, collaboration on presentations at scientific meetings, and consultation on classroom activities. In some cases, the teacher may participate in future expeditions. The involvement by scientists in mentor relationships, such as those of the TEA Program, is critical to improving science education. Many teachers of science have not had the opportunity to participate in field research, which offers valuable first-hand experience about the nature of science, as well as about specific content. The value to the scientist lies in deepening the understanding of current science education, increasing exposure to new ways to communicate information, and developing a path to having the research shared with the classroom and community via the TEA teacher's outreach. This long-term interaction between a scientist and a teacher can result in meaningful impact through increasing depth of understanding - not just about science content, but about the process of science. Equipped with this understanding based on experience, the teacher can multiply the impact with colleagues and students.

  12. Experimental magnetism research in Dhaka, Hanoi and Uppsala

    NASA Astrophysics Data System (ADS)

    Nordblad, Per

    2015-04-01

    Promoting basic science in developing countries is the aim of the International Science Program at Uppsala University, Sweden. This program, that some years ago celebrated its 50th anniversary, has been the main supporting agency of my more than 30 years of collaboration with research groups in Dhaka at Bangladesh University of Engineering and Technology and the Atomic Energy Commission, and research groups in Hanoi at the Vietnamese Academy of Science. Our common research on magnetism and magnetic materials has been built upon: (i) Longer visits (about half of their total PhD studies) by PhD students from Hanoi and Dhaka at Uppsala University that ends by PhD exams from their home Universities; (ii) short time visits (up to 2 months) by senior scientists to Uppsala for discussions and measurements; (iii) short visits by me and colleagues from Uppsala in Hanoi and Dhaka for discussions, workshops and conferences; (iv) mutual visits of scientists from Bangladesh and Vietnam to each other and neighboring countries (mostly India) for specific experiments and learning new methods and (v) some support for purchase of research equipment. The work with Dhaka and Hanoi and other countries has resulted in: development of internationally competitive research groups in Hanoi and Dhaka that independently publish in international journals, several PhDs that continue their work at the home institutes, numerous common publications in international scientific journals and not the least lasting professional and personal connections between scientists in Bangladesh, Vietnam, Thailand, Eritrea, India and Sweden.

  13. (Visit to the La Selva Biological Station, Costa Rica): Foreign trip report, February 28--March 5, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichle, D.E.

    1988-03-17

    The traveler attended the quarterly meeting of the National Board of Governors of The Nature Conservancy held in Costa Rica to highlight their international program in Central America. The traveler used this opportunity to visit the La Selva Biological Station of the Organization for Tropical Studies and to examine their ecosystem research project on wet lowland tropical forests. Discussions were held with the co-directors, faculty, students, and visiting scientists from the United States.

  14. Open Campus: Strategic Plan

    DTIC Science & Technology

    2016-05-01

    The formal and informal interactions among scientists, engineers, and business and technology specialists fostered by this environment will lead...pathways for highly trained graduates of science, technology, engineering, and mathematics (STEM) academic programs, and help academic institutions...engineering and mathematics (STEM) disciplines relevant to ARL science and technology programs. Under EPAs, visiting students and professors

  15. Neuroscientists' classroom visits positively impact student attitudes.

    PubMed

    Fitzakerley, Janet L; Michlin, Michael L; Paton, John; Dubinsky, Janet M

    2013-01-01

    The primary recommendation of the 2010 President's Council of Advisors on Science and Technology report on K-12 education was to inspire more students so that they are motivated to study science. Scientists' visits to classrooms are intended to inspire learners and increase their interest in science, but verifications of this impact are largely qualitative. Our primary goal was to evaluate the impact of a longstanding Brain Awareness classroom visit program focused on increasing learners understanding of their own brains. Educational psychologists have established that neuroscience training sessions can improve academic performance and shift attitudes of students from a fixed mindset to a growth mindset. Our secondary goal was to determine whether short interactive Brain Awareness scientist-in-the-classroom sessions could similarly alter learners' perceptions of their own potential to learn. Teacher and student surveys were administered in 4(th)-6(th) grade classrooms throughout Minnesota either before or after one-hour Brain Awareness sessions that engaged students in activities related to brain function. Teachers rated the Brain Awareness program as very valuable and said that the visits stimulated students' interest in the brain and in science. Student surveys probed general attitudes towards science and their knowledge of neuroscience concepts (particularly the ability of the brain to change). Significant favorable improvements were found on 10 of 18 survey statements. Factor analyses of 4805 responses demonstrated that Brain Awareness presentations increased positive attitudes toward science and improved agreement with statements related to growth mindset. Overall effect sizes were small, consistent with the short length of the presentations. Thus, the impact of Brain Awareness presentations was positive and proportional to the efforts expended, demonstrating that short, scientist-in-the-classroom visits can make a positive contribution to primary school students' attitudes toward science and learning.

  16. Scientific and technological exchange between the U.S.A. and the people's republic of China to mitigate the impact of biting and nuisance flies and their associated diseases

    USDA-ARS?s Scientific Manuscript database

    The above group of scientists visited China through the USDA Foreign Agricultural Service, Scientific Cooperative Exchange Program (SCEP) with the People’s Republic of China from 17 May 2014 through 30 May 2014. This presentation will present highlights of the visit where we met with Chinese scient...

  17. 21 CFR 20.88 - Communications with State and local government officials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... State government scientist visiting the Food and Drug Administration on the agency's premises as part of... requires the visiting State government scientist to sign a written commitment to protect the confidentiality of the information, and the visiting State government scientist provides a written assurance that...

  18. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    NASA Astrophysics Data System (ADS)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  19. Encouraging Girls into Science and Technology with Feminine Role Model: Does This Work?

    ERIC Educational Resources Information Center

    Bamberger, Yael M.

    2014-01-01

    This study examines the effect of a program that aimed to encourage girls to choose a science, technology, engineering, and mathematics (STEM) career in Israel. The program involved school visits to a high-tech company and meeting with role model female scientists. Sixty ninth-grade female students from a Jewish modern-orthodox single-sex…

  20. Encouraging Girls into Science and Technology with Feminine Role Model: Does This Work?

    NASA Astrophysics Data System (ADS)

    Bamberger, Yael M.

    2014-08-01

    This study examines the effect of a program that aimed to encourage girls to choose a science, technology, engineering, and mathematics (STEM) career in Israel. The program involved school visits to a high-tech company and meeting with role model female scientists. Sixty ninth-grade female students from a Jewish modern-orthodox single-sex secondary school in the same city as the company participated in the study. The control group contained 30 girls from the same classes who did not participate in the program. Data were collected through pre-post questionnaires, observations, and focus group interviews. It was analyzed for three main themes: perceptions of scientists and engineers, capability of dealing with STEM, and future career choice. Findings indicated respect toward the women scientists as being smart and creative, but significant negative change on the perceptions of women scientists/engineers, the capability of dealing with STEM, and the STEM career choices. Possible causes for these results are discussed, as well as implications for education.

  1. Scientists as Correspondents: Exploratorium "Ice Stories" for International Polar Year Project Educational Outreach

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Fall, K. R.; Miller, M.; Higdon, R.; Andrews, M.; O'Donnell, K.

    2008-12-01

    As part of the 2007-2009 International Polar Year (IPY), an educational outreach developed by the Exploratorium science museum of San Francisco builds on prior high latitude programs to: 1) create public awareness of IPY research; 2) increase public understanding of the scientific process; and, 3) stimulate a new relationship between scientists and outreach. Funded by the National Science Foundation, a key "Ice Stories" innovation is to facilitate "scientist correspondents" reporting directly to the public. To achieve this, scientists were furnished multimedia equipment and training to produce material for middle school students to adults. Scientists submitted blogs of text, images, and video from the field which were edited, standardized for format, and uploaded by Exploratorium staff, who coordinated website content and management. Online links to educational partner institutions and programs from prior Exploratorium high latitude programs will extend "Ice Stories" site visits beyond the @250,000 unique in-house users/year to more than 28 million webpage users/year overall. We review relevant technical issues, the variety of scientist participation, and what worked best and recommendations for similar efforts in the future as a legacy for the IPY.

  2. Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program

    NASA Astrophysics Data System (ADS)

    Urquhart, M.; Hairston, M.

    2007-12-01

    We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.

  3. Drawings of Scientists

    Science.gov Websites

    Who's the Scientist? Seventh graders describe scientists before and after a visit to Fermilab really liked this description. Was it written before or after the visit to Fermilab? See what the kids

  4. Building Effective Pipelines to Increase Diversity in the Geosciences

    NASA Astrophysics Data System (ADS)

    Snow, E.; Robinson, C. R.; Neal-Mujahid, R.

    2017-12-01

    The U.S. Geological Survey (USGS) recognizes and understands the importance of a diverse workforce in advancing our science. Valuing Differences is one of the guiding principles of the USGS, and is the critical basis of the collaboration among the Youth and Education in Science (YES) program in the USGS Office of Science, Quality, and Integrity (OSQI), the Office of Diversity and Equal Opportunity (ODEO), and USGS science centers to build pipeline programs targeting diverse young scientists. Pipeline programs are robust, sustained relationships between two entities that provide a pathway from one to the other, in this case, from minority serving institutions to the USGS. The USGS has benefited from pipeline programs for many years. Our longest running program, with University of Puerto Rico Mayaguez (UPR), is a targeted outreach and internship program that has been managed by USGS scientists in Florida since the mid-1980's Originally begun as the Minority Participation in the Earth Sciences (MPES ) Program, it has evolved over the years, and in its several forms has brought dozens of interns to the USGS. Based in part on that success, in 2006 USGS scientists in Woods Hole MA worked with their Florida counterparts to build a pipeline program with City College of New York (CCNY). In this program, USGS scientists visit CCNY monthly, giving a symposium and meeting with students and faculty. The talks are so successful that the college created a course around them. In 2017, the CCNY and UPR programs brought 12 students to the USGS for summer internships. The CCNY model has been so successful that USGS is exploring creating similar pipeline programs. The YES office is coordinating with ODEO and USGS science centers to identify partner universities and build relationships that will lead to robust partnership where USGS scientists will visit regularly to engage with faculty and students and recruit students for USGS internships. The ideal partner universities will have a high population of underserved students, strong support for minority and first-generation students, proximity to a USGS office, and faculty and/or majors in several of the fields most important to USGS science: geology, geochemistry, energy, biology, ecology, environmental health, hydrology, climate science, GIS, high-capacity computing, and remote sensing.

  5. Journey Through the Universe: Tenth Anniversary in 2014!

    NASA Astrophysics Data System (ADS)

    Harvey, J.

    2014-07-01

    Hawaii will celebrate its tenth anniversary of the flagship Journey through the Universe program that began in 2004. The Gemini-led initiative has engaged hundreds of astronomers and astronomy educators that have visited over 2,700 classrooms, visiting over 60,000 students over the course of the last nine years. The scientists have brought excitement and inspiration about the life-long possibilities available in science, technology and mathematics to our students. The Journey program nurtures our students' innate curiosity, offers workshops for hundreds of teachers in Science, Technology, Engineering, and Math (STEM) education, and provides an opportunity for our community members to visit the classrooms alongside our astronomers. This ten-day annual event also includes Family Science Events that are enjoyed by thousands. For the 2013 program, our governor, Neil Abercrombie, inquired about the program and its enormous impact on Hawaii's students. Governor Abercrombie actively participated by visiting classrooms at different schools and attending our chamber of commerce appreciation event. This paper will share how the Journey program came to be and what is anticipated for the tenth anniversary. Journey through the Universe is a model outreach initiative that could be duplicated in other locations.

  6. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  7. 21 CFR 20.89 - Communications with foreign government officials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... concerning an investigation; or (C) The disclosure is to a foreign scientist visiting the Food and Drug... visiting foreign scientist to sign a written commitment to protect the confidentiality of the information, and the scientist provides a written assurance that he or she has no financial interest in the...

  8. The Center for Star Formation Studies

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Bell, K. R.; Laughlin, G.

    2002-01-01

    The Center for Star Formation Studies, a consortium of scientists from the Space Science Division at Ames and the Astronomy Departments of the University of California at Berkeley and Santa Cruz, conducts a coordinated program of theoretical research on star and planet formation. Under the directorship of D. Hollenbach (Ames), the Center supports postdoctoral fellows, senior visitors, and students; meets regularly at Ames to exchange ideas and to present informal seminars on current research; hosts visits of outside scientists; and conducts a week-long workshop on selected aspects of star and planet formation each summer.

  9. Who Benefits From Your AGU Donation?

    NASA Astrophysics Data System (ADS)

    Howard, Claire

    2014-09-01

    When you give to AGU, you are giving to programs and initiatives that affect you, your fellow scientists, and the entire world. From section and focus group newsletters to student scholarships to struggling communities, there is an opportunity for you to engage and make a difference. Visit http://giving.agu.org to make your impact.

  10. Summer of Innovation Kick Off

    NASA Image and Video Library

    2010-06-09

    NASA Administrator Charles Bolden, left, along with teachers and middle school students visit High Bay One in the Spacecraft Assembly Building as part of the kick off to NASA's Summer of Innovation program at the Jet Propulsion Laboratory in Pasadena, Calif., Thursday, June 10, 2010. Through the program, NASA will engage thousands of middle school students and teachers in stimulating math and science-based education programs with the goal of increasing the number of future scientists, mathematicians, and engineers. Photo Credit: (NASA/Bill Ingalls)

  11. JTEC monograph on biodegradable polymers and plastics in Japan: Research, development, and applications

    NASA Technical Reports Server (NTRS)

    Lenz, Robert W.

    1995-01-01

    A fact-finding team of American scientists and engineers visited Japan to assess the status of research and development and applications in biodegradable polymers. The visit was sponsored by the National Science Foundation and industry. In Japan, the team met with representatives of 31 universities, government ministries and institutes, companies, and associations. Japan's national program on biodegradable polymers and plastics evaluates new technologies, testing methods, and potential markets for biodegradables. The program is coordinated by the Biodegradable Plastics Society of Japan, which seeks to achieve world leadership in biodegradable polymer technology and identify commercial opportunities for exploiting this technology. The team saw no major new technology breakthroughs. Japanese scientists and engineers are focusing on natural polymers from renewable resources, synthetic polymers, and bacterially-produced polymers such as polyhydroxyalkanoates, poly(amino acids), and polysaccharides. The major polymers receiving attention are the Zeneca PHBV copolymers, Biopol(registered trademark), poly(lactic acid) from several sources, polycaprolactone, and the new synthetic polyester, Bionolle(registered trademark), from Showa High Polymer. In their present state of development, these polymers all have major deficiencies that inhibit their acceptance for large-scale applications.

  12. Promoting Pre-college Science Education

    NASA Astrophysics Data System (ADS)

    Taylor, P. L.; Lee, R. L.

    2000-10-01

    The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.

  13. Neuroscientists’ Classroom Visits Positively Impact Student Attitudes

    PubMed Central

    Fitzakerley, Janet L.; Michlin, Michael L.; Paton, John; Dubinsky, Janet M.

    2013-01-01

    The primary recommendation of the 2010 President’s Council of Advisors on Science and Technology report on K-12 education was to inspire more students so that they are motivated to study science. Scientists’ visits to classrooms are intended to inspire learners and increase their interest in science, but verifications of this impact are largely qualitative. Our primary goal was to evaluate the impact of a longstanding Brain Awareness classroom visit program focused on increasing learners understanding of their own brains. Educational psychologists have established that neuroscience training sessions can improve academic performance and shift attitudes of students from a fixed mindset to a growth mindset. Our secondary goal was to determine whether short interactive Brain Awareness scientist-in-the-classroom sessions could similarly alter learners’ perceptions of their own potential to learn. Teacher and student surveys were administered in 4th-6th grade classrooms throughout Minnesota either before or after one-hour Brain Awareness sessions that engaged students in activities related to brain function. Teachers rated the Brain Awareness program as very valuable and said that the visits stimulated students’ interest in the brain and in science. Student surveys probed general attitudes towards science and their knowledge of neuroscience concepts (particularly the ability of the brain to change). Significant favorable improvements were found on 10 of 18 survey statements. Factor analyses of 4805 responses demonstrated that Brain Awareness presentations increased positive attitudes toward science and improved agreement with statements related to growth mindset. Overall effect sizes were small, consistent with the short length of the presentations. Thus, the impact of Brain Awareness presentations was positive and proportional to the efforts expended, demonstrating that short, scientist-in-the-classroom visits can make a positive contribution to primary school students’ attitudes toward science and learning. PMID:24358325

  14. "We are anxious to remain anonymous"*: the use of third party scientific and medical consultants by the Australian tobacco industry, 1969 to 1979

    PubMed Central

    Chapman, S

    2003-01-01

    Objective: To document the history of visits to Australia by tobacco industry sponsored scientists and news media reports about smoking and health matters generated by their visits. Design: Systematic keyword and opportunistic website searches of tobacco industry internal documents made available through the Master Settlement Agreement. Results: At least nine sponsored scientists visited Australia from 1969 until 1979. The industry sought to promote the scientists as independent from the industry and on occasion, scientists publicly lied about their industry connections. The industry was sometimes delighted with the extensive and favourable media coverage given to the visits. Conclusions: These media reports are likely to have influenced many who were exposed to them to believe that the evidence against smoking remained equivocal. PMID:14645946

  15. Annual program analysis of the NASA Space Life Sciences Research and Education Support Program

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The basic objectives of this contract are to stimulate, encourage, and assist research and education in NASA life sciences. Scientists and experts from a number of academic and research institutions in this country and abroad are recruited to support NASA's need to find a solution to human physiological problems associated with living and working in space and on extraterrestrial bodies in the solar system. To fulfill the contract objectives, a cadre of staff and visiting scientists, consultants, experts, and subcontractors has been assembled into a unique organization dedicated to the space life sciences. This organization, USRA's Division of Space Life Sciences, provides an academic atmosphere, provides an organizational focal point for science and educational activities, and serves as a forum for the participation of eminent scientists in the biomedical programs of NASA. The purpose of this report is to demonstrate adherence to the requirement of Contract NAS9-18440 for a written review and analysis of the productivity and success of the program. In addition, this report makes recommendations for future activities and conditions to further enhance the objectives of the program and provides a self-assessment of the cost performance of the contract.

  16. Bringing Hands-on Activities and Real Scientists to Students: Bishop Museum's X-treme Science Exhibit, Holoholo Science Program, and Planned Science Learning Center

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Fullerton, K.; Hoddick, C.; Ali, N.; Mosher, M. K.

    2002-12-01

    Bishop Museum developed the "X-treme Science: Exploring Oceans, Volcanoes, and Outer Space" museum exhibit in conjunction with NASA as part of their goal to increase educational outreach. A key element of the exhibit was the inclusion of real scientists describing what they do, and fostering the interaction between scientists and students. Highlights of the exhibit were interviews with local (Hawaii-based) scientists involved in current ocean, volcano, and space research. These interviews were based on questions that students provided, and were available during the exhibit at interactive kiosks. Lesson plans were developed by local teachers and scientists, and provided online to enhance the exhibit. However, one limitation of the museum exhibit was that not all students in the state could visit, or spend enough time with it. To serve more remote schools, and to provide for additional enrichment for those who did attend, the education department at Bishop Museum developed a traveling program with the X-treme Science exhibit as the basis. The Holoholo (Hawaiian for "fun outing") Science program brings a scientist into the classroom with a hands-on scientific inquiry activity. The activity is usually a simplified version of a problem that the scientist actually deals with. The students explore the activity, reach conclusions, and discuss their results. They are then given the opportunity to question the scientist about the activity and about what the scientist does. This allows students to understand that science is not something mystical, but rather something attainable. A key element of Holoholo remains the active participation of real-life scientists in the experience. The scientists who have participated in the program have had overwhelmingly positive experiences. Bishop Museum is developing a science learning center, with the objective of meeting local and national science standards using inquiry based science. The unifying theme of all three of these projects is involving students with active scientists who are accessible to them. AGU scientists are vital to realizing this goal.

  17. The Lassen Astrobiology Intern Program - Concept, Implementation and Evaluation

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.; Dueck, S. L.; Davis, H. B.; Parenteau, M. N.; Kubo, M. D.

    2014-12-01

    The program goal was to provide a hands-on astrobiology learning experience to high school students by introducing astrobiology and providing opportunities to conduct field and lab research with NASA scientists. The program sought to increase interest in interdisciplinary science, technology, engineering, math and related careers. Lassen Volcanic National Park (LVNP), Red Bluff High School and the Ames Team of the NASA Astrobiology Institute led the program. LVNP was selected because it shares aspects of volcanism with Mars and it hosts thermal springs with microbial mat communities. Students documented volcanic deposits, springs and microbial mats. They analyzed waters and sampled rocks, water and microorganisms. They cultured microorganisms and studied chemical reactions between rocks and simulated spring waters. Each student prepared a report to present data and discuss relationships between volcanic rocks and gases, spring waters and microbial mats. At a "graduation" event the students presented their findings to the Red Bluff community. They visited Ames Research Center to tour the facilities and learn about science and technology careers. To evaluate program impact, surveys were given to students after lectures, labs, fieldwork and discussions with Ames scientists. Students' work was scored using rubrics (labs, progress reports, final report, presentation). Students took pre/post tests on core astrobiology concepts. Parents, teachers, rangers, Ames staff and students completed end-of-year surveys on program impact. Several outcomes were documented. Students had a unique and highly valued learning experience with NASA scientists. They understood what scientists do through authentic scientific work, and what scientists are like as individuals. Students became knowledgeable about astrobiology and how it can be pursued in the lab and in the field. The students' interest increased markedly in astrobiology, interdisciplinary studies and science generally.

  18. Valuing snorkeling visits to the Florida Keys with stated and revealed preference models

    Treesearch

    Timothy Park; J. Michael Bowker; Vernon R. Leeworthy

    2002-01-01

    Coastal coral reefs, especially in the Florida Keys, are declining at a disturbing rate. Marine ecologists and reef scientists have emphasized the importance of establishing nonmarket values of coral reefs to assess the cost effectiveness of coral reef management and remediation programs. The purpose of this paper is to develop a travel cost--contingent valuation model...

  19. An Investigation of Student Engagement in a Global Warming Debate: Proof of Concept for K-12 Outreach at UCSB

    NASA Astrophysics Data System (ADS)

    Schweizer, D. M.; Kelly, G. J.; Gautier, C.

    2001-05-01

    As part of a community outreach program, the first author worked with a physical science teacher to co-create and co-teach a nine week global warming for his three seventh grade classes. The nine week program culminated in a debate on the causes of global warming. Students were divided into three groups: scientists supporting human contributions to global warming; scientists opposed to human contributions to global warming; and leaders of nations. In this study we investigate how using debate as a pedagogical tool for addressing earth system science concepts can both promote active student learning and present a realistic and dynamic view of science. Grounded in the perspective of science as sociocultural practices, our investigation draws from studies of school science focusing on the socially constructed nature of knowing and the use of argument as a pedagogical tool. We present evidence illustrating how the use of argument provided opportunities for students to interpret data sets, formulate and defend arguments, challenge competing interpretations and unearth relevant scientific questions about the environment. We also provide evidence of how students were able to use scientific evidence to support their thought processes. The results of this outreach experience serve as a foundation for the development of a new K-12 outreach program, Earth Connection, scheduled to begin at the University of California Santa Barbara, in Summer, 2001. Through the Earth Connection Visiting Teacher Program, UCSB science educators will visit local schools to work directly with teachers in their classroom settings. The Visiting Teacher Program provides a mutual benefit to teachers and students. Students gain the experience of having an expert come into their classroom to involve them in the process of science. Teachers are provided with professional development opportunities to help them continue addressing relevant earth system science issues in their classrooms.

  20. Research Projects, Technical Reports and Publications

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1996-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: Advanced Methods for Scientific Computing High Performance Networks During this report pefiod Professor Antony Jameson of Princeton University, Professor Wei-Pai Tang of the University of Waterloo, Professor Marsha Berger of New York University, Professor Tony Chan of UCLA, Associate Professor David Zingg of University of Toronto, Canada and Assistant Professor Andrew Sohn of New Jersey Institute of Technology have been visiting RIACS. January 1, 1996 through September 30, 1996 RIACS had three staff scientists, four visiting scientists, one post-doctoral scientist, three consultants, two research associates and one research assistant. RIACS held a joint workshop with Code 1 29-30 July 1996. The workshop was held to discuss needs and opportunities in basic research in computer science in and for NASA applications. There were 14 talks given by NASA, industry and university scientists and three open discussion sessions. There were approximately fifty participants. A proceedings is being prepared. It is planned to have similar workshops on an annual basis. RIACS technical reports are usually preprints of manuscripts that have been submitted to research 'ournals or conference proceedings. A list of these reports for the period January i 1, 1996 through September 30, 1996 is in the Reports and Abstracts section of this report.

  1. Global Transport Program

    NASA Astrophysics Data System (ADS)

    Oliver, Howard

    The aim of the NATO Science Committee's Global Transport Mechanisms in the Geosciences program is to stimulate and facilitate international collaboration among scientists of the member countries in the study of selected global transport mechanisms. The program organizers intend to sponsor advanced research workshops, advanced study institutes, conferences, collaborative research, research study, and lecture visits. NATO grants are available, but they are intended to cover only part of the expenses involved in the international aspects of the sponsored activities. Citizens or permanent residents of one of the member countries of NATO who possess qualifications appropriate to the proposed activity are eligible to apply.

  2. Storm Peak Laboratory 5th-6th Grade Climate and Weather Program

    NASA Astrophysics Data System (ADS)

    McCubbin, I. B.; Hallar, A. G.

    2008-12-01

    Storm Peak Laboratory (SPL) has created a place-based elementary school program, which has been implemented at five elementary schools in Northwest Colorado. Real understanding, not factual recall, is the primary goal and developing a desire to be lifelong learners in science is a secondary goal. The specific objectives of the program include the following: 1) Develop a weather and climate curriculum that teaches skills required by Colorado Student Assessment Program (CSAP). 2) Provide a hands-on place-based educational experience where students have an opportunity to use scientific equipment. 3) Provide students a three-day program that consists of an introduction, field program, and follow-up to help students grasp concepts and apply them to other school studies. 4) Provide all participating students with understanding of climate and weather 5) Build foundations for students to understand climate change. 6) Disseminate to alpine regions across the Western US, potentially impacting thousands of students that will experience the impacts of climate change during their lifetime. The SPL program spans three days for each school and includes five elementary schools. During the first day, a scientist and educators from SPL visit each classroom for two hours to introduce the concepts of climate and weather as well as teach students how to use scientific equipment. During the field program on the second day, students measure and record information about temperature, pressure, relative humidity, wind speed, and particle concentration while they travel to SPL via the gondola and chair lifts (in winter) or 4WD Suburbans (in fall). Once at the laboratory, students will meet with both SPL scientists and educators to tour the facility, discuss SPL research activities, and explore application of these activities to their curriculum. An alternative winter snowshoe program at the top of the gondola is offered to students who do not ski, where students have a program on snow science. At the end of the day each student has a data sheet with measurements recorded from 5 locations of different elevations to take back to the classroom. Following the field trip, SPL scientists and educators visit the school for a follow-up to help children grasp concepts, represent their data set collected in graphical formats, answer questions, and evaluate students" learning. Currently, approximately 250 students annually participate in the SPL 5th and 6th grade climate education program.

  3. NASA's Initiative to Develop Education through Astronomy (IDEA)

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-04-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitrnent by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) — a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  4. NASA's initiative to develop education through astronomy (IDEA)

    NASA Technical Reports Server (NTRS)

    Bennett, Jeffrey O.; Morrow, Cherilynn A.

    1994-01-01

    We describe a progressive program in science education called the Initiative to Develop Education through Astronomy (IDEA). IDEA represents a commitment by the Astrophysics Division of NASA Headquarters to pre-collegiate and public learning. The program enlists the full participation of research astronomers in taking advantage of the natural appeal of astronomy and the unique features of space astrophysics missions to generate valuable learning experiences and scientifically accurate and educationally effective products for students, teachers and citizens. One of the premier projects is called Flight Opportunities for Science Teacher EnRichment (FOSTER) - a program to fly teachers aboard the Kuiper Airborne Observatory during actual research missions. IDEA is managed by a visiting scientist with extensive educational background (each of the authors have served in this role), and the program is unique within NASA science divisions for having a full time scientist devoted to education. IDEA recognizes that the rapidly shifting social and political landscape has caused a fundamental change in how science is expected to contribute to society. It is in the enlightened self-interest of all research scientists to respond to the challenge of connecting forefront research to basic educational needs. IDEA is exploring the avenues needed to facilitate these connections, including supplementing research grants for educational purposes.

  5. AGU scientists meet with legislators during Geosciences Congressional Visits Day

    NASA Astrophysics Data System (ADS)

    Uhlenbrock, Kristan

    2011-10-01

    This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.

  6. KSC-2015-1205

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Jared Entin, program scientist for NASA's Soil Moisture Active Passive mission, or SMAP, discusses the science and engineering of the mission with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  7. KSC-2015-1204

    NASA Image and Video Library

    2015-01-28

    VANDENBERG AIR FORCE BASE, Calif. – Jared Entin, program scientist for NASA's Soil Moisture Active Passive mission, or SMAP, discusses the science and engineering of the mission with the audience of a NASA Social held at Vandenberg Air Force Base in California. This NASA Social brought together mission scientists and engineers with an audience of 70 students, educators, social media managers, bloggers, photographers and videographers who were selected from a pool of 325 applicants from 45 countries to participate in launch activities and communicate their experience with social media followers. The SMAP mission is scheduled to launch from Vandenberg on Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Kim Shiflett

  8. Real World Connections Through Videoconferences

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth; Lytle, John (Technical Monitor)

    2002-01-01

    The Learning Technologies Project (LTP) is a partner in the National Aeronautics and Space Administration's (NASA's) educational technology program unit, an electronic community center that fosters interaction, collaboration, and sharing among educators, learners, and scientists. The goal of the NASA Glenn Research Center's Learning Technologies Project is to increase students' interest and proficiency in mathematics, science, and technology through the use of computing and communications technology and by using NASA's mission in aerospace technology as a theme. The primary components are: (1) Beginner's Guide to Aeronautics, including interactive simulation packages and teacher-created online activities. (2) NASA Virtual Visits, videoconferences (with online pre-post-conference activities) connecting students and teachers to NASA scientists and researchers.

  9. Research, conservation, and collaboration: The role of visiting scientists in developing countries

    USGS Publications Warehouse

    Foster, Mercedes S.

    1993-01-01

    As awareness of environmental problems and the need to protect our natural resources or use them wisely has grown, scientists have become increasingly interested in conservation. Some individuals are involved in conservation-related activities through research or teaching, but most of us participate only as citizens concerned about the world in which we live. Often, we decline to take an active role in conservation issues because we think that "it will take too much time away from our science," or that it is "too much trouble." Both perspectives, I think, are inaccurate. Sometimes investigators fail to participate because they are ignorant of the ways in which scientists (or scientific organizations) interface with conservation - in other words, of how one goes about getting personally involved. Whatever the reason, this lack of involvement is unfortunate, because scientists, and especially "whole organism" biologists (including ornithologists), can make unique contributions to conservation programs, as scientists, without a significant increase in effort or any change in the quality of their work. At the same time, they reap both professional and personal rewards.

  10. Opportunities in Education and Public Outreach for Scientists at the School of Ocean and Earth Sciences and Technology

    NASA Astrophysics Data System (ADS)

    Hicks, T.

    2004-12-01

    The School of Ocean and Earth Sciences and Technology (SOEST) at the University of Hawaii at Manoa is home to twelve diverse research institutes, programs and academic departments that focus on a wide range of earth and planetary sciences. SOEST's main outreach goals at the K-12 level are to increase the awareness of Hawaii's schoolchildren regarding earth, ocean, and space science, and to inspire them to consider a career in science. Education and public outreach efforts in SOEST include a variety of programs that engage students and the public in formal as well as informal educational settings, such as our biennial Open House, expedition web sites, Hawaii Ocean Science Bowl, museum exhibits, and programs with local schools. Some of the projects that allow for scientist involvement in E/PO include visiting local classrooms, volunteering in our outreach programs, submitting lessons and media files to our educational database of outreach materials relating to earth and space science research in Hawaii, developing E/PO materials to supplement research grants, and working with local museum staff as science experts.

  11. Developing an Education and Public Outreach (EPO) program for the Caltech Tectonics Observatory

    NASA Astrophysics Data System (ADS)

    Kovalenko, L.; Nadin, E.; Avouac, J.

    2008-12-01

    The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates. The timescales of these processes span from a few tens of seconds (the typical duration of an earthquake) to tens of millions of years (the time it takes to build mountains). Over the past four years, the TO has brought together 15 Caltech faculty from different fields, several visiting scientists from around the globe, and a few tens of graduate students and postdoctoral students, collaborating on scientific projects. A major objective of the TO now is to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about TO discoveries and advancements, and (3) make available the data and techniques developed by the TO for use in classrooms of all levels. To this effect, we have been developing our website for accessibility by the general public and writing educational web articles on TO research. A recent well-visited example is "The science behind the recent 2008 earthquake in China." We distribute animations that illustrate the mechanisms of earthquakes and tsunamis, and the various techniques used by TO scientists in their scientific investigations. The TO website also provides access to geodetic data collected by TO instruments and to the source models of recent large earthquakes as analyzed by TO scientists. The TO hosts tours of its facilities for local elementary school students and is working on developing education modules for high school and undergraduate classes. We are now working on a plan to offer short courses over the summer for undergraduate and graduate students in other institutions, in order to train them to analyze a variety of data and use techniques developed by TO scientists.

  12. SOFIA Education and Public Outreach (EPO): Scientist/Educator Partnerships at 41,000 Feet

    NASA Astrophysics Data System (ADS)

    Backman, D.; Devore, E.; Bennett, M.

    2003-12-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a unique opportunity for education and public outreach (EPO). SOFIA is the first research observatory -- airborne or ground-based -- in which close participation by educators and journalists is being designed into both the physical facility and the administrative structure of the observatory. With the overall goal of contributing to the public's awareness and understanding of science in general and astronomy in particular, the SOFIA EPO program will include formal K-12 and undergraduate educational activities, informal education, public outreach, and media relations. One of the most exciting and unique aspects of the SOFIA EPO program is the observatory's ability to carry up to 10 educators on science flights, enabling those educators to partner with scientists and participate in real research. Some 200 formal and informal educators per year are expected to participate in the SOFIA Airborne Astronomy Ambassadors program once full-scale operation is achieved. Educators who have participated in the Airborne Astronomy Ambassadors program will be encouraged to continue their scientific partnerships and will be supported in their efforts to carry new-found knowledge and enthusiasm to their students, other educators in their communities and the general public. The Airborne Astronomy Ambassadors will be supported as a national network via continued communications and material support from the SOFIA EPO program office, and will constitute a wide-spread outreach cadre for NASA and space sciences based on their experiences with airborne astronomy. Scientists, engineers, and other members of the SOFIA team will be encouraged to partner with local teachers and visit their classrooms as a part of the SOFIA Education Partners Program. Training for scientist-educators will be offered via the Astronomical Society of the Pacific's Project ASTRO network of astronomy education sites around the USA. This program will enable students to interact with scientists and other professionals on a one-to-one basis. Participating educators may fly onboard SOFIA with their scientist partners. Scientists who participate in this program will be able to work with educators and students in their local communities to forge long-lasting science education partnerships. The SOFIA EPO staff is interested in forming collaborations with interested organizations, other NASA missions, and individual astronomers. SOFIA is being developed and will be operated for NASA by USRA. The EPO program is being developed and will be operated jointly by the SETI Institute and the Astronomical Society of the Pacific.

  13. RIACS FY2002 Annual Report

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    2002-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. Operated by the Universities Space Research Association (a non-profit university consortium), RIACS is located at the NASA Ames Research Center, Moffett Field, California. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in September 2003. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology (IT) Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1) Automated Reasoning for Autonomous Systems; 2) Human-Centered Computing; and 3) High Performance Computing and Networking. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains including aerospace technology, earth science, life sciences, and astrobiology. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  14. The Arctic Visiting Speakers Program

    NASA Astrophysics Data System (ADS)

    Wiggins, H. V.; Fahnestock, J.

    2013-12-01

    The Arctic Visiting Speakers Program (AVS) is a program of the Arctic Research Consortium of the U.S. (ARCUS) and funded by the National Science Foundation. AVS provides small grants to researchers and other Arctic experts to travel and share their knowledge in communities where they might not otherwise connect. The program aims to: initiate and encourage arctic science education in communities with little exposure to arctic research; increase collaboration among the arctic research community; nurture communication between arctic researchers and community residents; and foster arctic science education at the local level. Individuals, community organizations, and academic organizations can apply to host a speaker. Speakers cover a wide range of arctic topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Preference is given to tours that reach broad and varied audiences, especially those targeted to underserved populations. Between October 2000 and July 2013, AVS supported 114 tours spanning 9 different countries, including tours in 23 U.S. states. Tours over the past three and a half years have connected Arctic experts with over 6,600 audience members. Post-tour evaluations show that AVS consistently rates high for broadening interest and understanding of arctic issues. AVS provides a case study for how face-to-face interactions between arctic scientists and general audiences can produce high-impact results. Further information can be found at: http://www.arcus.org/arctic-visiting-speakers.

  15. In Brief: Nominations requested for U.S. science medals

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    Scientists can help recognize the contributions of colleagues by submitting nominations for the National Medal of Science and the National Medal of Technology and Innovation, which are the highest honors the president bestows in science, technology, and innovation. The National Medal of Science, the nation's highest honor for American scientists and engineers, is given to individuals deserving special recognition for outstanding contributions to knowledge, or the total impact of their work, in the chemical, physical, biological, mathematical, engineering, or behavioral sciences. Nominations and three letters of support must be submitted by 31 March. For more information, contact program manager Mayra Montrose at nms@nsf.gov or +1-703-292-8040, or visit http://www.nsf.gov/od/nms/medal.jsp.

  16. RIACS

    NASA Technical Reports Server (NTRS)

    Moore, Robert C.

    1998-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities that serves as a bridge between NASA and the academic community. Under a five-year co-operative agreement with NASA, research at RIACS is focused on areas that are strategically enabling to the Ames Research Center's role as NASA's Center of Excellence for Information Technology. Research is carried out by a staff of full-time scientist,augmented by visitors, students, post doctoral candidates and visiting university faculty. The primary mission of RIACS is charted to carry out research and development in computer science. This work is devoted in the main to tasks that are strategically enabling with respect to NASA's bold mission in space exploration and aeronautics. There are three foci for this work: Automated Reasoning. Human-Centered Computing. and High Performance Computing and Networking. RIACS has the additional goal of broadening the base of researcher in these areas of importance to the nation's space and aeronautics enterprises. Through its visiting scientist program, RIACS facilitates the participation of university-based researchers, including both faculty and students, in the research activities of NASA and RIACS. RIACS researchers work in close collaboration with NASA computer scientists on projects such as the Remote Agent Experiment on Deep Space One mission, and Super-Resolution Surface Modeling.

  17. HumRRO Activities in Support of the Self-Pacing of Four U.S. Army TRADOC Programs of Instruction.

    DTIC Science & Technology

    1976-03-01

    Quality of input is improving (more high school graduates), but is not as good as they would like. Entry i requirements are: an EL of 90; not color...MOS 64C); and Fielw Wireman (36K). HumRRO scientists inter- acted with proponent school staff and with members of the TP.ADOC/TMI ad hoc group to...continued... -Ad) specific responsibilities for accomplishing course conversion. Prior to making site visits to the Military Police School , Transportation

  18. Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building

    NASA Astrophysics Data System (ADS)

    Habtezion, S.

    2015-12-01

    Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Fostering Earth Observation Regional Networks - Integrative and iterative approaches to capacity building Senay Habtezion (shabtezion@start.org) / Hassan Virji (hvirji@start.org)Global Change SySTem for Analysis, Training and Research (START) (www.start.org) 2000 Florida Avenue NW, Suite 200 Washington, DC 20009 USA As part of the Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD) project partnership effort to promote use of earth observations in advancing scientific knowledge, START works to bridge capacity needs related to earth observations (EOs) and their applications in the developing world. GOFC-GOLD regional networks, fostered through the support of regional and thematic workshops, have been successful in (1) enabling participation of scientists for developing countries and from the US to collaborate on key GOFC-GOLD and Land Cover and Land Use Change (LCLUC) issues, including NASA Global Data Set validation and (2) training young developing country scientists to gain key skills in EOs data management and analysis. Members of the regional networks are also engaged and reengaged in other EOs programs (e.g. visiting scientists program; data initiative fellowship programs at the USGS EROS Center and Boston University), which has helped strengthen these networks. The presentation draws from these experiences in advocating for integrative and iterative approaches to capacity building through the lens of the GOFC-GOLD partnership effort. Specifically, this presentation describes the role of the GODC-GOLD partnership in nurturing organic networks of scientists and EOs practitioners in Asia, Africa, Eastern Europe and Latin America.

  19. Convergence. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Needham, C.; McPherson, K.

    2004-03-10

    We contacted 125 scientists, ethicists, legal scholars, social scientists and informal science educators to participate in a short survey designed to identify critical issues related to nanotechnology. Fifty-six (45%) responded positively, and 46 completed the survey. We then conducted a series of interviews and site visits based on scientific area, and regional representation. Key points are summarized in the attached table. Based on the results of our surveys, we were able to construct three strong areas of ethical, legal, social, and environmental issues around which to build socratic dialogs in a standard Fred Friendly Seminar format. We were also ablemore » to identify 4 science center/museum partnerships and a proposal has been submitted to NSF's NISE Program. We are preparing to submit proposals to other agencies and foundations for support.« less

  20. Online Workspace to Connect Scientists with NASA's Science E/PO Efforts and Practitioners

    NASA Astrophysics Data System (ADS)

    Shipp, Stephanie; Bartolone , Lindsay; Peticolas, Laura; Woroner, Morgan; Dalton, Heather; Schwerin, Theresa; Smith, Denise

    2014-11-01

    There is a growing awareness of the need for a scientifically literate public in light of challenges facing society today, and also a growing concern about the preparedness of our future workforce to meet those challenges. Federal priorities for science, technology, engineering, and math (STEM) education call for improvement of teacher training, increased youth and public engagement, greater involvement of underrepresented populations, and investment in undergraduate and graduate education. How can planetary scientists contribute to these priorities? How can they “make their work and findings comprehensible, appealing, and available to the public” as called for in the Planetary Decadal Survey?NASA’s Science Mission Directorate (SMD) Education and Public Outreach (E/PO) workspace provides the SMD E/PO community of practice - scientists and educators funded to conduct SMD E/PO or those using NASA’s science discoveries in E/PO endeavors - with an online environment in which to communicate, collaborate, and coordinate activities, thus helping to increase effectiveness of E/PO efforts. The workspace offers interested scientists avenues to partner with SMD E/PO practitioners and learn about E/PO projects and impacts, as well as to advertise their own efforts to reach a broader audience. Through the workspace, scientists can become aware of opportunities for involvement and explore resources to improve professional practice, including literature reviews of best practices for program impact, mechanisms for engaging diverse audiences, and large- and small-scale program evaluation. Scientists will find “how to” manuals for getting started and increasing impact with public presentations, classroom visits, and other audiences, as well as primers with activity ideas and resources that can augment E/PO interactions with different audiences. The poster will introduce the workspace to interested scientists and highlight pathways to resources of interest that can help scientists more effectively contribute to national STEM education priorities. Visitors are encouraged to explore the growing collection of resources at http://smdepo.org.

  1. Space Life Sciences Research and Education Program

    NASA Technical Reports Server (NTRS)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  2. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM (Universidade Federal dos Vales do Jequinhonha e Mucuri) in Diamantina, Minas Gerais, Brasil. The https://earth2class.org/site/?p=12652 page provides a platform to create similar postings of workshops and educational resources for the Brazilian audience. E2C can serve as a model for similar programs at other institutions.

  3. Project Planet Earth: A Joint Project Between the NASA/Goddard Space Flight Center and the Girl Scouts of Central Maryland

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine; Anderson, Terry; Johnson, Courtrina; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Scientists of the NASA/GSFC and the staff of the Girl Scouts of Central Maryland (GSCM) have teamed up to introduce more girls and young women to earth system science. The girls now have the opportunity to earn the specially designed Planet Earth Council Patch. The Patch program includes a set of requirements tailored to the specific age level of the girl and the resource material to help the girl complete the requirements. At completion of the requirements the girl is awarded a patch to sew onto the back of her sash or vest. Girls do hands-on physical experiments, practice taking data, visit science centers and perform skits in order to complete the requirements. In addition to the Patch program, Project Planet Earth continues to encourage strong collaboration between the Girl Scouts of Maryland and NASA/GSFC. Girls volunteer at the GSFC visitor center during community events and in turn scientists are called on as keynote speakers and consultants for the Council. A special science interest group is forming for the teenage Girl Scouts of the Council that will network with scientists and help these young women pursue their interests, find internships and make career decisions.

  4. Get Involved in Education and Public Outreach! The Science Mission Directorate Science E/PO Forums Are Here to Help

    NASA Astrophysics Data System (ADS)

    Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Hsu, B. C.; Peticolas, L. M.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Education and Public Outreach (E/PO) Forums help to engage, extend, support, and coordinate the efforts of the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. The Forums have been developing toolkits and pathways to support planetary, Earth, astrophysics, and heliophysics scientists who are - or who are interested in becoming - involved in E/PO. These tools include: 1) Pathways to learn about SMD and E/PO community announcements and opportunities, share news about E/PO programs, let the E/PO community know you are interested in becoming involved, and discover education programs needing scientist input and/or support. These pathways include weekly e-news, the SMD E/PO online community workspace, monthly community calls, conferences and meetings of opportunity. 2) Portals to help you find out what education resources already exist, obtain resources to share with students of all levels - from K-12 to graduate students, - and disseminate your materials. These include E/PO samplers and toolkits (sampling of resources selected for scientists who work with students, teachers, and the public), the one-stop shop of reviewed resources from the NASA Earth and space science education portfolio NASAWavelength.org, and the online clearinghouse of Earth and space science higher education materials EarthSpace (http://www.lpi.usra.edu/earthspace). 3) Connections to education specialists who can help you design and implement meaningful E/PO programs - small to large. Education specialists can help you understand what research says about how people learn and effective practices for achieving your goals, place your programs in context (e.g., Beyond IYA, Sun-Earth Day, launch events, 50 Years of Solar System Exploration, Earth Science Week), and get your programs and products disseminated. 4) Connections to education professionals to collaborate with you on educational programs, involve intended audience members as partners to guide your programs, reach a broader audience, and insure impact with external partners through the E/PO community contact database and workspace profiles, conferences, meetings, and SMD E/PO community annual retreats. Recently developed, the NASA SMD Scientist Speaker's Bureau (http://www.lpi.usra.edu/education/speaker) offers an online portal to connect scientists interested in getting involved in E/PO projects - giving public talks, classroom visits, and virtual connections - with audiences. Learn more about the Forums and the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  5. Now’s the Time for Science in Space

    NASA Image and Video Library

    2017-01-25

    It’s easier than ever for researchers to get their experiments on the International Space Station: chief scientist Dr. Julie Robinson says scientists from nearly 100 countries around the world have been able to take advantage of the station to do research as access and funding have opened up. Since the station has been hosting science for more than fifteen years now, there has been enough time for station research results to have become new products that are helping people in their daily lives on Earth, and she says the increased access of today will lead to a huge wave of new results in just the next few years. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram

  6. KSC-2013-3980

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, from the left, Lisa May, MAVEN Program executive, Kelly Fast, Mars Program scientist, Sandra Cauffman, deputy project manager at the agency's Goddard Spaceflight Center, in Greenbelt, Md., and Chris Waters, systems design team lead at Lockheed Martin. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  7. KSC-2013-3981

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, from the left, Lisa May, MAVEN Program executive, Kelly Fast, Mars Program scientist, Sandra Cauffman, deputy project manager at the agency's Goddard Spaceflight Center, in Greenbelt, Md., and Chris Waters, systems design team lead at Lockheed Martin. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  8. KSC-2013-3982

    NASA Image and Video Library

    2013-11-16

    CAPE CANAVERAL, Fla. -- In the conference room of Operations Support Building II at NASA's Kennedy Space Center in Florida, social media participants listen to a briefing on the Mars Atmosphere and Volatile Evolution, or MAVEN, mission by, from the left, Lisa May, MAVEN Program executive, Kelly Fast, Mars Program scientist, Sandra Cauffman, deputy project manager at the agency's Goddard Spaceflight Center, in Greenbelt, Md., and Chris Waters, systems design team lead at Lockheed Martin. The social media participants gathered at the Florida spaceport for the launch of the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. Their visit included tours of key facilities and participating in presentations by key NASA leaders who updated the space agency's current efforts. Photo credit: NASA/Jim Grossman

  9. The Benefits of Being a Student of Teacher Researchers Experiences (sotre)

    NASA Astrophysics Data System (ADS)

    Eubanks, E.; Guinan, E.; Chiste, M.; Lavoie, A.

    2016-02-01

    Being a Student of Teacher Researcher Experiences (SoTRE), gets students excited for science. Eubanks brings real, current science to the classroom because of time spent in Teacher Researcher Experiences (TRE), where she works with researchers in and out of the field. She involves students in many programs including the National Oceanographic and Atmospheric Administration (NOAA), Polar TREC (Teachers and Researchers & Exploring & Collaboration), National Science Foundation (NSF) funded researchers, (EARTH) Education and Research: Testing Hypothesis, the RJ Dunlap Marine Conservation Program, C-DEBI (Center for Dark Energy Biosphere Investigations and (STARS) Sending Teachers Aboard Research Ships. Being in these programs gives students special privileges such as understanding unique research ideas, tracking tagged sharks, following daily journals written on location, taking part in cross-continental experiments, tracking real time data, exploring current research via posters or visiting universities. Furthermore, contacts made by a TRE give students an added set of resources. When doing experiments for class or advancing their education or career goals, Mrs. Eubanks helps students connect with scientists. This gives students a unique opportunity to learn from real scientists. Being part of these relationships with NOAA, Polar TREC, EARTH, RJ Dunlap, STARS and NSF funded scientists who are actively working, makes being SoTRE the ultimate learning experience. Many students have felt so strongly about the TRE relationship that they have presented at several local and international science conferences. Their message is to encourage scientists to partner with teachers. The benefits of participation in such conferences have included abstract writing and submission, travel, poster creation, networking and presentation, all tools that they will carry with them for a lifetime.

  10. Science Identity in Informal Education

    NASA Astrophysics Data System (ADS)

    Schon, Jennifer A.

    The national drive to increase the number of students pursuing Science Technology, Engineering, and Math (STEM) careers has brought science identity into focus for educators, with the need to determine what encourages students to pursue and persist in STEM careers. Science identity, the degree to which students think someone like them could be a scientist is a potential indicator of students pursuing and persisting in STEM related fields. Science identity, as defined by Carlone and Johnson (2007) consists of three constructs: competence, performance, and recognition. Students need to feel like they are good at science, can perform it well, and that others recognize them for these achievements in order to develop a science identity. These constructs can be bolstered by student visitation to informal education centers. Informal education centers, such as outdoor science schools, museums, and various learning centers can have a positive impact on how students view themselves as scientists by exposing them to novel and unique learning opportunities unavailable in their school. Specifically, the University of Idaho's McCall Outdoor Science School (MOSS) focuses on providing K-12 students with the opportunity to learn about science with a place-based, hands-on, inquiry-based curriculum that hopes to foster science identity development. To understand the constructs that lead to science identity formation and the impact the MOSS program has on science identity development, several questions were explored examining how students define the constructs and if the MOSS program impacted how they rate themselves within each construct. A mixed-method research approach was used consisting of focus group interviews with students and pre, post, one-month posttests for visiting students to look at change in science identity over time. Results from confirmatory factor analysis indicate that the instrument created is a good fit for examining science identity and the associated constructs for students attending the MOSS residential program. Analysis of results from paired-samples t-test indicates that MOSS does contribute to a positive change in science identity and this change does persist one month following the visit to MOSS, although a slight decline is seen. The results from this research and creation of this instrument provide useful tools for educators interested in increasing their students' science identity.

  11. Challenger Center's Window on the Universe

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J. J.; Smith, S.; Bobrowsky, M.; Radnofsky, M.; Perelmuter, J.-M.; Jaggar, L.

    2001-11-01

    Challenger Center for Space Science Education's Window on the Universe program aims to create a network of under-served communities across the nation dedicated to sustained science, math, and technology education. Window communities presently include Broken Arrow, OK; Muncie, IN; Moscow, ID; Nogales, AZ; Tuskegee, AL; Marquette, MI; Altamont, KS; Washington, D.C.; and other emerging sites. Window uses themes of human space flight and the space sciences as interdisciplinary means to inspire entire communities. Practicing scientists and engineers engaged in these disciplines are invited to volunteer to become a part of these communities for a week, each visitor reaching roughly 2000 K-12 students through individual classroom visits and Family Science Night events during an intense Window on the Universe Week. In the same Window Week, Challenger Center scientists and educators present a workshop for local educators to provide training in the use of a K-12 educational module built around a particular space science and exploration theme. Window communities follow a 3-year development: Year 1, join the network, experience Window Week presented by Challenger Center and visiting researchers; Year 2, same as Year 1 plus workshop on partnering with local organizations to develop sources of visiting researchers and to enhance connections with local resources; Year 3 and subsequent, the community stages its own Window Week, with Challenger Center providing new education modules and training workshops for "master educators" from the Window community, after which the master educators return home to conduct training workshops of their own. Challenger Center remains a resource and clearinghouse for Window communities to acquire experience, technical information, and opportunities for distance collaboration with other Window communities. Window on the Universe is dedicated to assessing degree of success vs. failure in each program component and as a whole, using pre- and post-assessment questionnaires to develop a sound basis for continual improvement. Window on the Universe is funded by NASA's Office of Space Flight and the Office of Space Science.

  12. GLOBE at Night: a Citizen-Science, Dark Skies Awareness Star Hunt during the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    GLOBE at Night is an international citizen-science event encouraging everyone, students, the general public, scientists and non-scientists, to measure local levels of light pollution and contribute observations online to a world map. This program is part of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at UCAR and the National Optical Astronomy Observatory, as well as Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in February or March, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how" and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.

  13. Demonstrating Climate Change and the Water Cycle to Fifth Grade Students

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.

    2005-12-01

    Scientists in academia often want to share their knowledge of and enthusiasm for science with K-12 students, but feel wary of the time commitment and logistical details involved with volunteer work. As a PhD student at UC Berkeley, I participated in the Community in the Classroom program, organized by the non-profit Community Resources for Science. CRS acts as the liaison between local schools and scientists in the community, taking care of all the administrative details regarding the classroom visits. Volunteers are asked to prepare a fun, hands-on presentation for a specific grade level, which is linked to elementary science standards. I chose to visit several fifth grade classrooms and talk about the connection between climate change and the water cycle in California. My presentation included a demonstration of the greenhouse effect, an experiment to see where the water on the outside of a cold glass comes from, and an investigation into the role of temperature in the phase changes of water, using plastic containers, icepacks and mitten warmers. The students were encouraged to make predictions about the impact of climate change on the water cycle based on their recent observations. I will share my demonstrations, discuss feedback from the students and teachers and offer suggestions to those interested in volunteer teaching.

  14. METAvivor Reps Visit NCI at Frederick | Poster

    Cancer.gov

    Three representatives of METAvivor visited NCI at Frederick on April 13 to meet and tour with Balamurugan Kuppusamy, Ph.D., staff scientist in the laboratory of Esta Sterneck, Ph.D., senior investigator, Laboratory of Cell and Developmental Signaling, Center for Cancer Research.  The purpose of the visit was to learn more about Kuppusamy’s research. Kuppusamy is a recipient of

  15. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.; Schrijver, C. J.; Bagenal, F.; Sojka, J. J.

    2013-12-01

    Title: Heliophysics Presentation Type: Poster Current Section/Focus Group: SPA-Solar and Heliosphere Physics (SH) Current Session: SH-01. SPA-Solar and Heliosphere Physics General Contributions Authors: Meg Austin1, Madhulika Guhathakurta2, Carolus Schrijver3, Frances Bagenal4, Jan Sojka5 1. UCAR Visiting Scientist Programs 2. NASA Living With a Star Program 3. Lockheed Martin Advanced Technology Center 4. Laboratory for Atmospheric and Space Physics, University of Colorado 5. Utah State University Abstract: Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks now being used at universities worldwide. Subsequent years have also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The textbooks are edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University. The books provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics aeronomy, space weather, planetary science and climate science. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors plan critical roles. Potential hosts may enter information about their research on a central database.

  16. Partnering Students, Scientists, and the Local Community in a Regionally-focused Field Campaign

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. W.; Lemone, M. A.; Seavey, M. M.; Washburne, J. C.

    2006-05-01

    The GLOBE Program (www.globe.gov) involves students and scientists in a worldwide environmental data collection effort. The GLOBE ONE field campaign (www.globe.gov/globeone) represents a model for a focused implementation of GLOBE via a geographically-specific project. The campaign, which occurred in Black Hawk County, Iowa from February 2004 to February 2006, was developed by GLOBE Principal Investigators (PIs), the GLOBE Program Office, and GLOBE Iowa. The central scientific objective was to compare quantitatively the environmental effects of various soil tillage techniques. In addition, student research projects were supported that spanned a variety of Earth science topics. The campaign established a partnership between students and scientists to collect a structured, multidisciplinary data set and also increase GLOBE visibility. The fact that GLOBE ONE occurred in a focused geographic area made it necessary to form a network for local support. This started with choosing an active GLOBE partner, namely the Iowa Academy of Science, who had the ability to oversee the local implementation of such a project. Once this partner was chosen, additional local groups needed to be recruited to support the project. The local network included K-12 schools, the County Conservation Board, the University of Northern Iowa, Hawkeye Community College, and community volunteers. This network collected data via automated instrumentation, first-hand observations, and through special events organized with a focus on a specific measurement. The first major step in supporting student research was a teacher training workshop held in March of 2006 that helped to provide tools for, and increase comfort levels with, promoting scientific inquiry in the classroom. Student-scientists interactions were promoted via scientist visits, video conferences, letters, and email exchanges. The culminating event was a Student Research Symposium held in February 2006 which gave students and scientists a chance to share their research efforts.

  17. European Nanotechnology Experts Visit NCL; Harmonize Best Practices for Nanomedicine Collaboration in Europe | FNLCR Staging

    Cancer.gov

    European nanotechnology experts visited the Nanotechnology Characterization Laboratory (NCL) to observe best practices and methods and to share their own knowledge with NCL scientists as they prepared to launch an NCL-like operation in Europe. The Eu

  18. NASA Science Mission Directorate Forum Support of Scientists and Engineers to Engage in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Buxner, S.; Grier, J.; Meinke, B. K.; Schneider, N. M.; Low, R.; Schultz, G. R.; Manning, J. G.; Fraknoi, A.; Gross, N. A.; Shipp, S. S.

    2015-12-01

    For the past six years, the NASA Science Education and Public Outreach (E/PO) Forums have supported the NASA Science Mission Directorate (SMD) and its E/PO community by enhancing the coherency and efficiency of SMD-funded E/PO programs. The Forums have fostered collaboration and partnerships between scientists with content expertise and educators with pedagogy expertise. As part of this work, in collaboration with the AAS Division of Planetary Sciences, we have interviewed SMD scientists, and more recently engineers, to understand their needs, barriers, attitudes, and understanding of education and outreach work. Respondents told us that they needed additional resources and professional development to support their work in education and outreach, including information about how to get started, ways to improve their communication, and strategies and activities for their teaching and outreach. In response, the Forums have developed and made available a suite of tools to support scientists and engineers in their E/PO efforts. These include "getting started" guides, "tips and tricks" for engaging in E/PO, vetted lists of classroom and outreach activities, and resources for college classrooms. NASA Wavelength (http://nasawavelength.org/), an online repository of SMD funded activities that have been reviewed by both educators and scientists for quality and accuracy, provides a searchable database of resources for teaching as well as ready-made lists by topic and education level, including lists for introductory college classrooms. Additionally, we have also supported scientists at professional conferences through organizing oral and poster sessions, networking activities, E/PO helpdesks, professional development workshops, and support for students and early careers scientists. For more information and to access resources for scientists and engineers, visit http://smdepo.org.

  19. The NASA Library and Researchers at Goddard: A Visitor's Perspective

    ERIC Educational Resources Information Center

    Powell, Jill H.

    2014-01-01

    Jill Powell, engineering librarian from Cornell University, visited the library at NASA Goddard in Greenbelt, Maryland in July 2013, interviewing library staff and selected NASA scientists. She studied the library's digital projects, publications, services, and operations. She also interviewed several NASA scientists on information-seeking…

  20. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  1. An alternative path to improving university Earth science teaching and developing the geoscience workforce: Postdoctoral research faculty involvement in clinical teacher preparation

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Sessa, J.; Ustunisik, G. K.; Nadeau, P. A.; Flores, K. E.; Ebel, D. S.

    2013-12-01

    It is estimated that by the year 2020 relative to 2009, there will be 28% more Earth Science jobs paying ≥ $75,000/year1 in the U.S.A. These jobs will require advanced degrees, but compared to all arts and science advanced degrees, the number of physical science M.S. and Ph.D. awarded per year decreased from 2.5% in 1980 to 1.5% in 20092. This decline is reflected on a smaller scale and at a younger age: in the New York City school system only 36% of all 8th graders have basic proficiency in science 3. These figures indicate that the lack achievement in science starts at a young age and then extends into higher education. Research has shown that students in grades 7 - 12 4,5 and in university level courses 6 both respond positively to high quality science teaching. However, much attention is focused on improving science teaching in grades 7- 12, whereas at many universities lower level science courses are taught by junior research and contingent faculty who typically lack formal training, and sometimes interest, in effective teaching. The danger here is that students might enter university intending to pursue geoscience degrees, but then encounter ineffective instructors, causing them to lose interest in geoscience and thus pursue other disciplines. The crux of the matter becomes how to improve the quality of university-level geoscience teaching, without losing sight of the major benchmark of success for research faculty - scholarly publications reporting innovative research results. In most cases, it would not be feasible to sidetrack the research goals of early career scientists by placing them into a formal teacher preparation program. But what happens when postdoctoral research scientists take an active role in clinical teacher preparation as part of their research appointments? The American Museum of Natural History's Masters of Arts in Teaching (AMNH-MAT) urban residency pilot program utilizes a unique approach to grade 7 - 12 Earth Science teacher preparation in that postdoctoral research scientists are directly involved in the clinical preparation of the teacher candidates7. In this program, professional educators and senior scientists guide and work closely with the postdoctoral scientists in developing lessons and field experiences for the teacher candidates. This exposes the postdoctoral scientists to pedagogical techniques. Furthermore, postdoctoral scientists make regular visits to partner schools and share their research interests with high school science students8. Regular assessments about the quality of the postdoctoral scientist's teaching, in the form of course evaluations and informal discussions with the teacher candidates and professional educators, further augments the postdoctoral scientists teaching skills. These experiences can ultimately improve university level science teaching, should the postdoctoral scientists find positions within a university setting. Here, five postdoctoral researchers present self-studies of changing instructional practice born of their involvement in clinical teacher preparation in the AMNH-MAT program.

  2. Learning with Teachers; A Scientist's Perspective

    NASA Astrophysics Data System (ADS)

    Czajkowski, K. P.

    2004-12-01

    Over the past six years, as an Assistant Professor and now as an Associate Professor, I have engaged in educational outreach activities with K-12 teachers and their students. In this presentation I will talk about the successes and failures that I have had as a scientist engaged in K-12 educational outreach, including teaching the Earth System Science Education Alliance (ESSEA) distance learning course, teaching inquiry-based science to pre-service teachers through the NASA Opportunities for Visionary Academics (NOVA) program, GLOBE, school visits, and research projects with teachers and students. I will reflect on the potential impact this has had on my career, negative and positive. I will present ways that I have been able to engage in educational outreach while remaining a productive scientist, publishing research papers, etc. Obtaining grant funding to support a team of educational experts to assist me perform outreach has been critical to my groups success. However, reporting for small educational grants from state agencies can often be overwhelming. The bottom line is that I find working with teachers and students rewarding and believe that it is a critical part of me being a scientist. Through the process of working with teachers I have learned pedagogy that has helped me be a better teacher in the university classroom.

  3. Nuclear science outreach program for high school girls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  4. Francis bitter national magnet laboratory annual report, July 1991 through June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    ;Contents: Reports on Laboratory Research Programs--Magneto-Optics and Semiconductor Physics, Superconductivity and Magnetism, Solid State Nuclear Magnetic Resonance, Condensed Matter Chemistry, Biomagnetism, Magnet Technology, Instrumentation, Molecular Biophysics, Carbon Filters and Fullerenes; Reports of Visiting Scientists--Reports of Users of the High Magnetic Field Facility, Reports of the Users of the Pulsed Field Facility, Reports of the Users of the High Field NMR Facility; Appendices--Publications and Meeting Speeches, Organization, Summary of High Magnetic Field Facility Use--January 1, 1984 through June 30, 1992, Geographic Distribution of High Magnetic Field Facility Users (Excluding FBNML Staff), Summary of Educational Activities.

  5. Francis Bitter National Magnet Laboratory annual report, July 1990 through June 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    The contents include: reports on laboratory research programs--magneto-optics and semiconductor physics, magnetism, superconductivity, solid state nuclear magnetic resonance, condensed matter chemistry, biomagnetism, magnet technology, instrumentation, molecular biophysics; reports of visiting scientists--reports of users of the high magnetic field facility, reports of users of the pulsed field facility, reports of users of the SQUID magnetometer and Mossbauer facility, reports of users of the high field NMR facility; appendices--publications and meeting speeches, organization, summary of high magnetic field facility use, user tables, geographic distribution of high magnetic field facility users, summary of educational activities.

  6. Francis Bitter National Magnet Laboratory annual report, July 1989 through June 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    Contents: Reports on laboratory research programs: Magneto-optics and semiconductor physics, Magnetism, Superconductivity, Solid state nuclear magnetic resonance, Condensed matter chemistry, Biomagnetism, Magnet technology, Molecular biophysics; Reports of visiting scientists: Reports of users of the High Magnetic Field Facility, Reports of users of the pulsed field facility, Reports of users of the squid magnetometer and Mossbauer facility, Reports of users of the high field NMR facility; Appendices: Publications and meeting speeches, Organization, Summary of high magnetic field facility use, User tables, Geographic distribution of high magnetic field facility users, Summary of educational activities.

  7. News in Brief

    NASA Astrophysics Data System (ADS)

    2012-12-01

    Vice President Shen Wenqing Meets with Ecuadorian Guests For the First Time a Chinese Researcher Gives the Plenary Lecture at the International Symposium on Combustion Vice President Shen Wenqing Meets with NSERC Executive Vice-President Vice President Sun Jiaguang Meets with CONICYT President Ten-Year Anniversary Workshop of NSFC-IIASA Young Scientists Summer Program Held in Beijing Vice President Shen Wenqing Meets Guest from K.T. Li Foundation The 6th ASIAHORCs General Meeting in Beijing President Chen Yiyu Meets with DFG Delegation Vice President Shen Yan Visited International Organizations in Italy and France Vice President Wang Jie Meets with CEO of Academy of Malaysia

  8. News in Brief

    NASA Astrophysics Data System (ADS)

    2011-12-01

    China Accomplishes International Evaluation on Science Funding and Management Performance Panel Meeting of NSFC-NIH Joint Program in Beijing NSFC and CAS's New Round Collaboration for Large Scientific Facilities Vice President Shen Wenqing Meets with President of the Helmholtz Association NSFC Supervision Delegation Visits to Japan and Korea NSFC Strengthens Ties with PIs of the Research Fund for International Young Scientists The 9th ASIAHORCs Meeting Held in Daejoen, Korea NSFC Vice President Meets with ICTP Director First U.S.-China Women Chemists Workshop in Beijing Vice President Attends 5th ASIAHORCs Meeting NSFC Vice President Attended IIASA Council Meeting NSFC Vice President Meets With JST Guests

  9. KSC-2009-6485

    NASA Image and Video Library

    2009-11-19

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft technicians secure one of the solar panels on the Solar Dynamics Observatory, or SDO, to the side of the spacecraft for launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-6831

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, secured to a Ransome table, has been bagged and is rotated into a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  11. KSC-2009-6829

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, secured to a Ransome table, has been bagged and is being rotated from a horizontal to a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  12. KSC-2009-6830

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., technicians from NASA's Goddard Space Flight Center rotate the bagged Solar Dynamics Observatory, or SDO, secured to a Ransome table, into a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  13. KSC-2009-6839

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., technicians from NASA's Goddard Space Flight Center secure the bagged Solar Dynamics Observatory, or SDO, onto a dolly for further processing. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  14. Early Career Investigator Opportunities in Geophysics with IRIS

    NASA Astrophysics Data System (ADS)

    Colella, H.; Sumy, D. F.; Schutt, D.

    2016-12-01

    Early career geoscientists face many challenges as they transition from senior level graduate students into postdoctoral researchers, tenure-track faculty positions, or the vast array of employment opportunities outside of academia. However, few receive adequate mentoring or guidance on how to successfully make the leap from graduate school to a fulfilling career. In recognition of these hurdles and challenges, the Incorporated Research Institutions for Seismology (IRIS) created an early-career investigator (ECI) program in 2011 to help reduce barriers for newly minted scientists, researchers, and educators on their path to success. The core mission of the ECI program is to organize practical resources and professional development opportunities for ECIs. The initiative has encouraged and supported collaboration between ECIs and senior scientists through colloquium lectureships and visiting scientist collaborations, which aimed to increase the visibility of ECIs and their research and to promote interaction between junior and senior scientists outside of their home institutions. Additionally, ECI-centric events are held at various national meetings to showcase the range of career paths available in geophysics, openly discuss the challenges ECIs face (e.g., work-life balance, job search difficulties, teaching challenges), expose participants to the ECI program's initiatives and resources, and better inform IRIS about the needs of the community. Post-workshop evaluations reveal ECIs are eager to have exposure to a variety of workforce options and a forum in which to ask difficult questions. Of note, there is a variety of cultural knowledge and expectations assumed in both the academic and professional worlds that is often not formally disseminated. The ECI program aims to better understand and facilitate transfer of this knowledge and reduce barriers to success for ECIs from both traditional and non-traditional backgrounds. The program also features webinars focused on a range of research and career topics, which can be attended in real-time or viewed on YouTube, with over 6,000 total views to date. Moving forward, an additional focus will be on intentional mentorship opportunities as we continue to build a productive, supportive, and successful early career community.

  15. Integrating Research and Education at the National Center for Atmospheric Research at the Interface of Formal and Informal Education

    NASA Astrophysics Data System (ADS)

    Johnson, R.; Foster, S.

    2005-12-01

    The National Center for Atmospheric Research (NCAR) in Boulder, Colorado, is a leading institution in scientific research, education and service associated with exploring and understanding our atmosphere and its interactions with the Sun, the oceans, the biosphere, and human society. NCAR draws thousands of public and scientific visitors from around the world to its Mesa Laboratory facility annually for educational as well as research purposes. Public visitors include adult visitors, clubs, and families on an informal visit to NCAR and its exhibits, as well as classroom and summer camp groups. Additionally, NCAR provides extensive computational and visualization services, which can be used not only for scientific, but also public informational purposes. As such, NCAR's audience provides an opportunity to address both formal and informal education through the programs that we offer. The University Corporation for Atmospheric Research (UCAR) Office of Education and Outreach works with NCAR to develop and implement a highly-integrated strategy for reaching both formal and informal audiences through programs that range from events and exhibits to professional development (for scientists and educators) and bilingual distance learning. The hallmarks of our program include close collaboration with scientists, multi-purposing resources where appropriate for maximum efficiency, and a commitment to engage populations historically underrepresented in science in the geosciences.

  16. Science & Technology Review October 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufderheide III, M B

    This month's issue has the following articles: (1) Important Missions, Great Science, and Innovative Technology--Commentary by Cherry A. Murray; (2) NanoFoil{reg_sign} Solders with Less Heat--Soldering and brazing to join an array of materials are now Soldering and brazing to join an array of materials are now possible without furnaces, torches, or lead; (3) Detecting Radiation on the Move--An award-winning technology can detect even small amounts An award-winning technology can detect even small amounts of radioactive material in transit; (4) Identifying Airborne Pathogens in Time to Respond--A mass spectrometer identifies airborne spores in less than A mass spectrometer identifies airborne sporesmore » in less than a minute with no false positives; (5) Picture Perfect with VisIt--The Livermore-developed software tool VisIt helps scientists The Livermore-developed software tool VisIt helps scientists visualize and analyze large data sets; (6) Revealing the Mysteries of Water--Scientists are using Livermore's Thunder supercomputer and new algorithms to understand the phases of water; and (7) Lightweight Target Generates Bright, Energetic X Rays--Livermore scientists are producing aerogel targets for use in inertial Livermore scientists are producing aerogel targets for use in inertial confinement fusion experiments and radiation-effects testing.« less

  17. GeneLab for High Schools: Data Mining for the Next Generation

    NASA Technical Reports Server (NTRS)

    Blaber, Elizabeth A.; Ly, Diana; Sato, Kevin Y.; Taylor, Elizabeth

    2016-01-01

    Modern biological sciences have become increasingly based on molecular biology and high-throughput molecular techniques, such as genomics, transcriptomics, and proteomics. NASA Scientists and the NASA Space Biology Program have aimed to examine the fundamental building blocks of life (RNA, DNA and protein) in order to understand the response of living organisms to space and aid in fundamental research discoveries on Earth. In an effort to enable NASA funded science to be available to everyone, NASA has collected the data from omics studies and curated them in a data system called GeneLab. Whilst most college-level interns, academics and other scientists have had some interaction with omics data sets and analysis tools, high school students often have not. Therefore, the Space Biology Program is implementing a new Summer Program for high-school students that aims to inspire the next generation of scientists to learn about and get involved in space research using GeneLabs Data System. The program consists of three main components core learning modules, focused on developing students knowledge on the Space Biology Program and Space Biology research, Genelab and the data system, and previous research conducted on model organisms in space; networking and team work, enabling students to interact with guest lecturers from local universities and their fellow peers, and also enabling them to visit local universities and genomics centers around the Bay area; and finally an independent learning project, whereby students will be required to form small groups, analyze a dataset on the Genelab platform, generate a hypothesis and develop a research plan to test their hypothesis. This program will not only help inspire high-school students to become involved in space-based research but will also help them develop key critical thinking and bioinformatics skills required for most college degrees and furthermore, will enable them to establish networks with their peers and connections with university Professors that may help them achieve their educational goals.

  18. Expanding the Operational Use of Total Lightning Ahead of GOES-R

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.

    2015-01-01

    NASA's Short-term Prediction Research and Transition Center (SPoRT) has been transitioning real-time total lightning observations from ground-based lightning mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama Lightning Mapping Array (NALMA). These early collaborations established a strong interest in the use of total lightning for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and lightning safety. SPoRT has used its experience to establish connections with new lightning mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total lightning observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) lightning mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total lightning, setting the stage for a real-time assessment during May-July 2014. With five lightning mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total lightning in varying situations. Several highlights include a much broader use of total lightning for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total lightning, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach Control Facilities (TRACON) region around an airport. These collaborations continue to demonstrate, from the operational perspective, the utility of total lightning and the importance of continued training and preparation in advance of the Geostationary Lightning Mapper.

  19. European Nanotechnology Experts Visit NCL; Harmonize Best Practices for Nanomedicine Collaboration in Europe | Frederick National Laboratory for Cancer Research

    Cancer.gov

    European nanotechnology experts visited the Nanotechnology Characterization Laboratory (NCL) to observe best practices and methods and to share their own knowledge with NCL scientists as they prepared to launch an NCL-like operation in Europe. The Eu

  20. High-Resolution Seismic Velocity and Attenuation Models of the Caucasus-Caspian Region

    DTIC Science & Technology

    2010-03-20

    investigators (Table 1) along with collaborating individuals from Kandilli Observatory (Dr. Niyazai Turkelli and Ugur Teoman), Azerbaijan Seismic Survey...student ( Ugur Teoman) visited the U.S. for several months in 2008 and worked at Missouri. A Georgian scientist (Dr. Tea Godaladze) also visited at

  1. Einstein and Millikan

    NASA Astrophysics Data System (ADS)

    Erwin, Charlotte

    2005-03-01

    Albert Einstein traveled to America by boat during the great depression to consult with scientists at the California Institute of Technology. He was a theoretical physicist, a Nobel Prize winner, and a 20th century folk hero. Few members of the general public understood his theories, but they idolized him all the same. The invitation came from physicist Robert Millikan, who had initiated a visiting-scholars program at Caltech shortly after he became head of the school in 1921. Einstein's visits to the campus in 1931, 1932, and 1933 capped Millikan's campaign to make Caltech one of the physics capitals of the world. Mount Wilson astronomer Edwin Hubble's discovery that redshifts are proportional to their distances from the observer challenged Einstein's cosmological picture of a static universe. The big question at Caltech in 1931 was whether Einstein would give up his cosmological constant and accept the idea of an expanding universe. By day, Einstein discussed his theory and its interpretation at length with Richard Tolman, Hubble, and the other scientists on the campus. By night, Einstein filled his travel diary with his personal impressions. During his third visit, Einstein sidestepped as long as possible the question of whether conditions in Germany might prevent his return there. After the January 30 announcement that Hitler had become chancellor of Germany, the question could no longer be evaded. He postponed his return trip for a few weeks and then went to Belgium for several months instead of to Berlin. In the fall of 1933, Albert Einstein returned to the United States as an emigre and became a charter member of Abraham Flexner's new Institute for Advanced Study in Princeton, New Jersey. Why did Einstein go to Princeton and not Pasadena?

  2. Biological warfare warriors, secrecy and pure science in the Cold War: how to understand dialogue and the classifications of science.

    PubMed

    Bud, Robert

    2014-01-01

    This paper uses a case study from the Cold War to reflect on the meaning at the time of the term 'Pure Science'. In 1961, four senior scientists from Britain's biological warfare centre at Porton Down visited Moscow both attending an International Congress and visiting Russian microbiological and biochemical laboratories. The reports of the British scientists in talking about a limited range of topics encountered in the Soviet Union expressed qualities of openness, sociologists of the time associated with pure science. The paper reflects on the discourses of "Pure Science", secrecy and security in the Cold War. Using Bakhtin's approach, I suggest the cordial communication between scientists from opposing sides can be seen in terms of the performance, or speaking, of one language among several at their disposal. Pure science was the language they were allowed to share outside their institutions, and indeed political blocs.

  3. Ecotourism, sustainable development, and conservation education: Development of a tour guide training program in Tortuguero, Costa Rica

    NASA Astrophysics Data System (ADS)

    Jacobson, Susan K.; Robles, Rafael

    1992-11-01

    A tour guide training program was developed for rural communities near Costa Rica's Tortuguero National Park to respond to the impacts of the 24-fold increase in park visitation in the past decade, to involve local communities in resource management, and to provide regional environmental education. The development of the training course involved a survey of scientists and park managers to ascertain resource management needs, priorities for information to be disseminated, and impacts of tourism on the resource base. Current and potential tour guides were surveyed to identify their information needs, solicit their input in the training program, and to determine their knowledge and skills. Written questionnaires were developed and given to 400 tourists to determine their activities and environmental information needs, and hotel owners were censused to examine the economic feasibility of a local guide program. A pilot training course and guide program involving 12 Tortuguero residents demonstrated that a tour guide program: (1) helped mitigate negative tourism impacts on Tortuguero National Park's natural resources, particularly by regulating tourists on the park's 35-km beach used for nesting by endangered sea turtles; (2) provided environmental education to an important segment of the local community not traditionally reached through school or government development projects; (3) provided environmental information to tourists, thus enhancing their visit; and (4) provided local economic benefits through lucrative part-time employment, thereby allowing local people to participate more fully in the tourism system. An extended training course is being planned to provide further environmental education programming and to increase year-round employment opportunities for the tour guides.

  4. Bringing Scientists to Life

    ERIC Educational Resources Information Center

    Casey, Peter

    2010-01-01

    In this article, the author describes how he brings scientists to life when he visits schools. Having retired from teaching Drama and Theatre Studies in Liverpool for more than thirty years, the author set up his one-man Theatre-in-Education company, Blindseer Productions, and now takes his portrayals of Darwin, Galileo and Einstein to schools…

  5. Rochester scientist discovers new comet with Dark Energy Camera (DECam) at

    Science.gov Websites

    Sites Group MASS-DIMM New Projects NOAO Future Instrumentation DECam SAM LSST MONSOON What is MONSOON AURA Sites Group Talks and Meetings Upcoming Colloquia Sky Conditions CTIO Site Conditions TASCA colleagues believe. David Cameron, a visiting scientist in Eric Mamajek's research group in the Department of

  6. KSC-2014-2064

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing is Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  7. [Medical support on human resources and clinical laboratory in Myanmar].

    PubMed

    Koide, Norio

    2012-03-01

    I have been involved in medical cooperation programs between Myanmar and Japan for over 10 years. The purpose of the first visit to Myanmar was the investigation of hepatitis C spreading among thalassemia patients. I learned that the medical system was underdeveloped in this country, and have initiated several cooperation programs together with Professor Shigeru Okada, such as the "Protection against hepatitis C in Myanmar", "Scientist exchange between the Ministry of Health, Myanmar and Okayama University", and "Various activities sponsored by a Non-Profit Organization". As for clinical laboratories, the laboratory system itself is pre-constructed and the benefit of a clinical laboratory in modern medicine is not given to patients in Myanmar. The donation of drugs and reagents for laboratory tests is helpful, but it will be more helpful to assist the future leaders to learn modern medicine and develop their own various systems to support modern medicine. Our activity in the cooperation program is described.

  8. Ohio Space Grant Funds for Scholarship/Fellowship Students

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Ohio Aerospace Institute (OAT), a consortium of university, industry, and government, was formed to promote collaborative aerospace-related research, graduate education, and technology transfer among the nine Ohio universities with doctoral level engineering programs, NASA Lewis Research Center, Air Force Wright Laboratory, and industry. OAT provides enhanced opportunities for affiliates to utilize federal government research laboratories and facilities at Lewis Research Center (LeRC) and Wright Laboratory. As a component of the graduate education and research programs, students and faculty from the member universities, LeRC engineers and scientists, and visiting investigators from industry, government and non-member universities conduct collaborative research projects using the unique facilities at LeRC, and will participate in collaborative education programs. Faculty from the member universities who hold collateral appointments at OAT, and government and industry experts serving as adjunct faculty, can participate in the supervision of student research.

  9. Encouraging Teachers to Build Collaborations with Researchers; Examples From the Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Kane, M.

    2013-12-01

    Bringing experts into our schools allows for highly engaging lessons, encourages career thinking, adds authenticity to the topic, and allows student's questions to be answered by experts. Researchers can physically visit classrooms or appear through presentation technologies, such as Skype, or Google Hangouts. Virtual visits allow students to see laboratories and field sites. Collaborating with scientists builds the connective tissue that helps all educators and our students learn more deeply. When K-12 teachers collaborate with scientists and graduate students, teachers learn more science, and scientists learn more teaching. This growth of background knowledge is a win-win situation and helps us meet the expectations of the Common Core State Standards. Teachers need to feel encouraged to contact their local or regional scientists for support. Reaching out into the universities to make contact with polar scientists or graduate students is a good place to start. Building professional networks allows PI's to address the 'broader impact' requirement on many grant applications, and helps spread the university's work in the polar regions out to the general public. These collaborations also give teachers expert insights and current data to build authentic lessons, and excite their students to seek careers in the sciences. This presentation will focus on three completed interactive opportunities I have built with researchers in my classroom. Students adding daily sediment to their sediment core, after communications from the field with scientist Heidi Roop in Alaska.

  10. CESDIS

    NASA Technical Reports Server (NTRS)

    1994-01-01

    CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. Research areas of primary interest at CESDIS include: 1) High performance computing, especially software design and performance evaluation for massively parallel machines; 2) Parallel input/output and data storage systems for high performance parallel computers; 3) Data base and intelligent data management systems for parallel computers; 4) Image processing; 5) Digital libraries; and 6) Data compression. CESDIS funds multiyear projects at U. S. universities and colleges. Proposals are accepted in response to calls for proposals and are selected on the basis of peer reviews. Funds are provided to support faculty and graduate students working at their home institutions. Project personnel visit Goddard during academic recess periods to attend workshops, present seminars, and collaborate with NASA scientists on research projects. Additionally, CESDIS takes on specific research tasks of shorter duration for computer science research requested by NASA Goddard scientists.

  11. Globe At Night: A Dark-skies Awareness Campaign During The International Year Of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Isbell, D.; Pompea, S. M.; Smith, D. A.; Baker, T.

    2009-01-01

    GLOBE at Night is an international citizen-science event encouraging everyone, scientists, non-scientists, students and the general public, to measure local levels of light pollution and contribute the observations online to a world map. This program is a centerpiece of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) as well as the US IYA "Dark Skies are a Universal Resource” theme for 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at the National Optical Astronomy Observatory, the University Corporation for Atmospheric Research and the Environmental Systems Research Institute, along with the Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in each spring, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how” and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.

  12. Okeanos Explorer 2014 Gulf of Mexico Expedition: engaging and connecting with diverse and geographically dispersed audiences

    NASA Astrophysics Data System (ADS)

    Russell, C. W.; Elliott, K.; Lobecker, E.; McKenna, L.; Haynes, S.; Crum, E.; Gorell, F.

    2014-12-01

    From February to May 2014, NOAA Ship Okeanos Explorer conducted a telepresence-enabled ocean exploration expedition addressing NOAA and National deepwater priorities in the U.S. Gulf of Mexico. The community-driven expedition connected diverse and geographically dispersed audiences including scientists from industry, academia, and government, and educators, students, and the general public. Expedition planning included input from the ocean science and management community, and was executed with more than 70 scientists and students from 14 U.S. states participating from shore in real time. Training the next generation permeated operations: a mapping internship program trained undergraduate and graduate students; an ROV mentorship program trained young engineers to design, build and operate the system; and undergraduate through doctoral students around the country collaborated with expedition scientists via telepresence. Online coverage of the expedition included background materials, daily updates, and mission logs that received more than 100,000 visits by the public. Live video feeds of operations received more than 700,000 views online. Additionally, professional development workshops hosted in multiple locations throughout the spring introduced educators to the Okeanos Explorer Educational Materials Collection and the live expedition, and taught them how to use the website and education resources in their classrooms. Social media furthered the reach of the expedition to new audiences, garnered thousands of new followers and provided another medium for real-time interactions with the general public. Outreach continued through live interactions with museums and aquariums, Exploration Command Center tours, outreach conducted by partners, and media coverage in more than 190 outlets in the U.S. and Europe. Ship tours were conducted when the ship came in to port to engage local scientists, ocean managers, and educators. After the expedition, data and products were archived and quickly shared with ocean managers and scientists working in the region, providing a baseline of publicly available data and stimulating follow-on exploration, research and management activities within a few months of expedition completion.

  13. KSC-2011-3095

    NASA Image and Video Library

    2011-04-26

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, mission logo on the side of the United Launch Alliance Delta II rocket that will loft the spacecraft into lunar orbit. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. GRAIL is scheduled to launch September 8, 2011. For more information visit: http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jim Grossmann

  14. Space Art "Wheel of Optimism"

    NASA Image and Video Library

    2006-12-14

    Artist EV Day visited the Jet Propulsion Laboratory to learn about the Mars Exploration Rovers. She so intrigued the Mars scientists that she was given a sample rover wheel to work with in creating a piece of art titled "Wheel of Optimism" for NASA. Day took the wheel and created a Martian world within it complete with organic plantlife, rocks and a Martian landscape in the background. Day poetically grapples with the age old question of whether life on Mars exists or whether it is just an figment of our science fiction imaginations. Rover Tire, mixed media, 9-1/4 (diameter)x8 (depth). 2006. Copyrighted: For more information contact Curator, NASA Art Program.

  15. KSC-2009-6479

    NASA Image and Video Library

    2009-11-19

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft technicians secure the high-gain communications antenna on the Solar Dynamics Observatory, or SDO, against the spacecraft following testing to verify the spacecraft's readiness for launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  16. The Development and Assessment of Particle Physics Summer Program for High School Students

    NASA Astrophysics Data System (ADS)

    Prefontaine, Brean; Kurahashi Neilson, Naoko, , Dr.; Love, Christina, , Dr.

    2017-01-01

    A four week immersive summer program for high school students was developed and implemented to promote awareness of university level research. The program was completely directed by an undergraduate physics major and included a hands-on and student-led capstone project for the high school students. The goal was to create an adaptive and shareable curriculum in order to influence high school students' views of university level research and what it means to be a scientist. The program was assessed through various methods including a survey developed for this program, a scientific attitudes survey, weekly blog posts, and an oral exit interview. The curriculum included visits to local laboratories, an introduction to particle physics and the IceCube collaboration, an introduction to electronics and computer programming, and their capstone project: planning and building a scale model of the IceCube detector. At the conclusion of the program, the students participated an informal outreach event for the general public and gave an oral presentation to the Department of Physics at Drexel University. Assessment results and details concerning the curriculum and its development will be discussed.

  17. Scientists View Battery Under Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-04-10

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  18. Scientists View Battery Under Microscope

    ScienceCinema

    None

    2018-01-16

    PNNL researchers use a special microscope setup that shows the inside of a battery as it charges and discharges. This battery-watching microscope is located at EMSL, DOE's Environmental Molecular Sciences Laboratory that resides at PNNL. Researchers the world over can visit EMSL and use special instruments like this, many of which are the only one of their kind available to scientists.

  19. NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.

    2014-12-01

    Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.

  20. KSC-2012-4551

    NASA Image and Video Library

    2012-08-20

    CAPE CANAVERAL, Fla. - A mission science briefing was held at NASA Kennedy Space Center’s Press Site in Florida for the Radiation Belt Storm Probes, or RBSP, mission. From left, are George Diller, public affairs specialist and news conference moderator, Mona Kessel, RBSP program scientist from NASA Headquarters in Washington, Nicola Fox, RBSP deputy project scientist at Johns Hopkins Applied Physics Laboratory in Laurel, Md., Craig Kletzing, principal investigator from the University of Iowa, Harlan Spence, principal investigator from the University of New Hampshire, and Lou Lanzerotti, principal investigator from the New Jersey Institute of Technology. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Glenn Benson

  1. KSC-2012-4548

    NASA Image and Video Library

    2012-08-20

    CAPE CANAVERAL, Fla. - A mission science briefing was held at NASA Kennedy Space Center’s Press Site in Florida for the Radiation Belt Storm Probes, or RBSP, mission. From left, are George Diller, public affairs specialist and news conference moderator, Mona Kessel, RBSP program scientist from NASA Headquarters in Washington, Nicola Fox, RBSP deputy project scientist at Johns Hopkins Applied Physics Laboratory in Laurel, Md., Craig Kletzing, principal investigator from the University of Iowa, Harlan Spence, principal investigator from the University of New Hampshire, and Lou Lanzerotti, principal investigator from the New Jersey Institute of Technology. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Glenn Benson

  2. KSC-2012-4549

    NASA Image and Video Library

    2012-08-20

    CAPE CANAVERAL, Fla. - A mission science briefing was held at NASA Kennedy Space Center’s Press Site in Florida for the Radiation Belt Storm Probes, or RBSP, mission. From left, are George Diller, public affairs specialist and news conference moderator, Mona Kessel, RBSP program scientist from NASA Headquarters in Washington, Nicola Fox, RBSP deputy project scientist at Johns Hopkins Applied Physics Laboratory in Laurel, Md., Craig Kletzing, principal investigator from the University of Iowa, Harlan Spence, principal investigator from the University of New Hampshire, and Lou Lanzerotti, principal investigator from the New Jersey Institute of Technology. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Glenn Benson

  3. Small Worlds Week: An online celebration of planetary science using social media to reach millions

    NASA Astrophysics Data System (ADS)

    Mayo, Louis

    2015-11-01

    In celebration of the many recent discoveries from New Horizons, Dawn, Rosetta, and Cassini, NASA launched Small Worlds Week, an online, social media driven outreach program leveraging the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating social media event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success with 37 million potential views of the social media Q&A posts. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.

  4. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Cancer.gov

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM)

  5. Outreach to Scientists and Engineers at the Hanford Technical Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Karen A.

    Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than themore » traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use of the library. Scientists and engineers who require longer sessions can arrange half-hour training appointments in the researcher’s own office or at the library. Since the program was implemented staff made 165 visits to 1249 laboratory staff including some repeat consultation requests. New acquisitions lists are sent to individuals and groups that would be interested in recent journal, database, and books purchases. These lists are topic specific and targeted to groups and individuals with an interest in the field. For example newly acquired engineering resources are targeted at engineering groups. The new acquisitions list for engineering began mid year in 2005. An analysis of circulation statistics for engineering books in fiscal year 2005, 2006, and 2007 show that circulation increased each year with 2007 circulation nearly double that of 2005. This took place when overall circulation rose in FY06 but fell slightly in FY07. Outreach strategies tailored and individualized can be effective. Offering multiple outreach options offers researchers different ways to interact with library staff and services.« less

  6. AGU scientists urge Congress to invest in research and science education

    NASA Astrophysics Data System (ADS)

    Rothacker, Catherine

    2012-10-01

    With the "fiscal cliff" of sequestration drawing closer and threatening to hit basic science research funding with an 8.2% cut, according to an estimate by the Office of Management and Budget, congressional compromise on a budget plan is more urgent than ever. To discuss the value of scientific research and education with their senators and representatives, 55 Earth and space scientists from 17 states came to Washington, D. C., on 11-12 September to participate in the fifth annual Geosciences Congressional Visits Day sponsored by AGU and six other geoscience organizations. Although their specialties varied from space weather to soil science, the scientists engaged members of Congress and their staff in a total of 116 meetings to discuss a common goal: securing continued, steady investment in the basic scientific research that allows scientists to monitor natural hazards, manage water and energy resources, and develop technologies that spur economic growth and job creation. To make the most of these visits on 12 September, participants attended a training session the previous day, during which they learned about the details of the policy- making process and current legislative developments and practiced conducting a congressional meeting. Congressional Science Fellows, including past AGU fellow Rebecca French, described their experiences as scientists working on Capitol Hill, and White House policy analyst Bess Evans discussed the president's stance on sequestration and funding scientific research.

  7. Francis Bitter National Magnet Laboratory annual report, July 1988 through June 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    Contents include: reports on laboratory research programs--magneto-optics and semiconductor physics, magnetism, superconductivity, solid-state nuclear magnetic resonance, condensed-matter chemistry, biomagnetism, magnet technology, instrumentation for high-magnetic-field research, molecular biophysics; reports of visiting scientists--reports of users of the High Magnetic Field Facility, reports of users of the Pulsed Field Facility, reports of users of the SQUID Magnetometer and Moessbauer Facility, reports of users of the High-Field NMR Facility; Appendices--publications and meeting speeches, organization, summary of High-Field Magnet Facility use January 1, 1981 through December 31, 1988; geographic distribution of High-Field Magnet users (excluding laboratory staff); and summary of educational activities.

  8. Students on Ice: International Polar Year Expeditions

    NASA Astrophysics Data System (ADS)

    Green, G.

    2006-12-01

    The Students on Ice program has been introducing and connecting the next generation of Polar researchers and scientists to the Arctic and Antarctic Regions since 1999. To date, approximately 600 international high school and university students have participated on these powerful and award-winning educational expeditions. Traveling through the Antarctic and Arctic on ice-class vessels, the students connect with an international educational team, consisting of Polar scientists, educators, researchers and lecturers, and gain valuable first hand information through a variety of different educational formats. Students participate in lectures, seminars, group discussions, `hands-on' science experiments, and experience once-in-a-lifetime opportunities to view rare wildlife, and to visit remote locations of historic, cultural, and scientific significance. In celebration of the upcoming International Polar Years (IPY), Students on Ice is launching nine unique IPY youth expeditions between 2007 and 2009. Intended for high school students, university students, and interested educators, these expeditions are officially endorsed by the International Polar Year Joint Committee. The goals of the SOI-IPY youth expeditions, include raising awareness and understanding about Polar and environmental issues, development of Polar curriculum and resources, inspiring the next generation of scientists and researchers, and promoting the IPY to millions of youth around through outreach, media and partnership activities.

  9. Landfill to Learning Facility

    NASA Astrophysics Data System (ADS)

    Venner, Laura

    2008-05-01

    Engaging "K-to-Gray” audiences (children, families, and older adults) in scientific exploration and discovery is the main goal of the NJMC Center for Environmental and Scientific Education and the William D. McDowell Observatory located in Lyndhurst, NJ. Perched atop a closed and reclaimed municipal solid waste landfill, our new LEED - certified building (certification pending) and William D. McDowell observatory will bring hands-on scientific experiences to the 25,000 students and 3,000 adults that visit our site from the NY/NJ region each year. Our programs adhere to the New Jersey Core Curriculum Content Standards and are modified for accessibility for the underserved communities that visit us, specifically those individuals that have mobility, sensory, and/or cognitive ability differences. The programs are conducted in a classroom setting and are designed to nourish the individual's inquisitive nature and provide an opportunity to function as a scientist by, making observations, performing experiments and recording data. We have an $850,000, three year NSF grant that targets adults with disabilities and older adults with age related limitations in vision, hearing, cognition and/or mobility. From dip netting in the marsh to astronomical investigation of the cosmos, the MEC/CESE remains committed to reaching the largest audience possible and leaving them with a truly exceptional scientific experience that serves to educate and inspire.

  10. Summer enrichment partnership (SEP) - society of hispanic professional engineers (SHPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vela, C.E.

    1994-12-31

    SEP recruits talented Hispanic high school students in the Washington metropolitan area and seeks to increase the number of Hispanics who enter graduate programs in engineering and science. New students are exposed to engineering, experimental science and business, and visit R&D centers and corporations. Returning students take college level courses, such as Vector-Based Analytic Geometry and Probability and Statistics. Advanced students work on special projects. Hispanic engineers, scientists, and managers offer career guidance. Parental participation is actively encouraged. Students are selected based on: (a) commitment to succeed, (b) academic record, and (c) willingness to attend the program through graduation. Coursesmore » are taught by university faculty, with one teacher assistant per five students. Program evaluation encompasses: (1) student participation and performance, (2) school achievement, and (3) continuation to college. SEP is a partnership between the Society of Hispanic Professional Engineers, The Catholic University of America, NASA, school districts, parents and students, and Hispanic professionals.« less

  11. Drilling Deep Into STEM Education with JOIDES Resolution Education and Outreach Officers

    NASA Astrophysics Data System (ADS)

    Christiansen, E. A.

    2015-12-01

    During International Ocean Discovery Program (IODP) expeditions, IODP scientists and Education/Outreach (E/O) Officers enter classrooms and informal science venues via live Internet video links between the JOIDES Resolution (JR) and land-based learning centers. Post-expedition, E/O Officers, serving as JR Ambassadors, deepen and broaden the learning experience by bringing STEM from the JR to the general public through targeted outreach events at those land-based sites. Youth and adult learners participate in scientific inquiry through interactive activities linked directly to the video broadcast experience. Outreach venues include museums, summer camps, and after-school programs; classroom visits from E/O Officers encompass kindergarten to undergraduate school groups and often include professional development for educators. Events are hands-on with simulations, expedition samples, core models, and equipment available for interaction. This program can serve as a model for linking virtual and real experiences; deepening the educational value of virtual field trip events; and bringing cutting edge science into both classrooms and informal science venues.

  12. In Service to the Nation: The Geology Scientist Emeritus Program

    USGS Publications Warehouse

    Adrian, B.M.; Bybell, L.M.; Brady, S.R.

    2008-01-01

    The Geology Scientist Emeritus Program of the U.S. Geological Survey was established in 1986 as part of the Bureau's Volunteer for Science Program. The purpose of the Scientist Emeritus (SE) Program is to help support retired USGS senior scientists as they volunteer their expertise, intellect, and creativity in efforts that allow them to remain active in the geoscience community, enhance the program activities of the Geology Discipline, and serve the public. The SE Program is open to all scientists and technical experts who have demonstrated leadership qualities and contributed to the goals of the USGS during a productive career. As long as the individual applying has been a scientist or technical expert, he or she may be considered for the SE Program, regardless of their previous position with the USGS.

  13. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.; Bhattacharjee, A.; Longcope, D. W.; Sojka, J. J.

    2010-12-01

    Heliophysics Summer Schools. NASA Living With a Star and the University Corporation for Atmospheric Research, Visiting Scientist Programs sponsor the Heliophysics Summer Schools to build the next generation of scientists in this new field. The series of summer schools (commencing 2007) trains graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth’s troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks for use at universities worldwide. Subsequent years will both teach generations of students and faculty and develop the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. Heliophysics is a developing scientific discipline integrating studies of the Sun’s variability, the surrounding heliopsphere, and climate environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. The three volumes, “Plasma Physics of the Local Cosmos”, “Space Storms and Radiation: Causes and Effects” and “Evolving Solar Activity and the Climates of Space and Earth”, edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University, integrate such diverse topics for the first time as a coherent intellectual discipline. The books may be ordered through Cambridge University Press, and provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. Heliophysics Postdoctoral Program. Hosting/mentoring scientists and postdoctoral fellows are invited to apply to this new program designed to train the next generation of researchers in heliophysics. Two major topics of focus for LWS are the science of space weather and of the Sun-climate connection. Preference is given to applicants whose proposed research addresses one of these two foci; but any research program relevant to LWS is considered. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host institutions and mentoring scientists will play critical roles. Interested hosts may submit information about their research on a central database for this program: http://www.vsp.ucar.edu/Heliophysics/

  14. The Mother and Infant Home Visiting Program Evaluation: Early Findings on the Maternal, Infant, and Early Childhood Home Visiting Program. A Report to Congress. OPRE Report 2015-11

    ERIC Educational Resources Information Center

    Michalopoulos, Charles; Lee, Helen; Duggan, Anne; Lundquist, Erika; Tso, Ada; Crowne, Sarah Shea; Burrell, Lori; Somers, Jennifer; Filene, Jill H.; Knox, Virginia

    2015-01-01

    "The Mother and Infant Home Visiting Program Evaluation: Early Findings on the Maternal, Infant, and Early Childhood Home Visiting Program--A Report to Congress" presents the first findings from the Mother and Infant Home Visiting Program Evaluation (MIHOPE), the legislatively mandated national evaluation of the Maternal, Infant, and…

  15. Opportunities for Space Science Education Using Current and Future Solar System Missions

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.

    2010-12-01

    The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a unique glimpse into the Space Department’s “end-to-end” approach to mission design and execution. College students - both undergraduate and graduate - are recruited from around the U.S. to work with APL scientists and engineers who act as mentors to the students. Many students are put on summer projects that allow them to work with existing spacecraft systems, while others participate in projects that investigate the operational and science objectives of future planned spacecraft systems. In many cases these interns have returned to APL as full-time staff after graduation.

  16. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs - scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on the About page of our website, cosmoquest.org.

  17. KSC-2014-2062

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Mike Curie of NASA Public Affairs, Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  18. KSC-2014-2066

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  19. Summer Research Internships at Biosphere 2 Center

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Through the support of NASA's Mission to Planet Earth, Biosphere 2 Center hosted 10 research interns for a 10 week period during the summer of 1998. In addition, we were able to offer scholarships to 10 students for Columbia University summer field courses. Students participating in these programs were involved in numerous earth systems activities, collecting data in the field and conducting analyses in the laboratory. Students enrolled in the field program were expected to design independent research projects as part of their coursework. In addition to laboratory and field research, students participated in weekly research seminars by resident and visiting scientists. Field school students were involved in field trips exposing them to the geology and ecology of the region including Arizona Sonora Desert Museum, Mount Lemmon, Aravaipa Canyon and the Gulf of California. Interns participated in laboratory-based research. All students were expected to complete oral and written presentations of their work during the summer.

  20. Reaching the Next Generation of Marine Scientists

    NASA Astrophysics Data System (ADS)

    Joyce, J.

    2009-04-01

    The next generation of marine scientists are today at primary school, secondary school or at college. To encourage them in their career, and to introduce those who are as yet undecided to the wonders of marine science, the Irish Marine Institute has devised a series of three overlapping outreach programmes to reach children at all three levels. Beginning at primary school, the "Explorers" programme offers a range of resources to teachers to enable them to teach marine-related examples as part of the science or geography modules of the SESE curriculum. These include teacher training, expert visits to schools, the installation and stocking of aquaria, field trips and downloadable lesson plans. For older pupils, the "Follow the Fleet" programme is a web-based education asset that allows users to track individual merchant ships and research vessels across the world, to interact with senior crew members of ships and to learn about their cargoes, the ports they visit and the sea conditions along the way. Finally, the "Integrated Marine Exploration Programme (IMEP)" takes secondary school pupils and university students to sea aboard the Marine Institute's research vessels to give them a taste of life as a marine scientist or to educate them in the practical day-to-day sampling and data processing tasks that make up a marine scientist's job.

  1. Polar Science Weekend: A University / Science Center Collaboration

    NASA Astrophysics Data System (ADS)

    Stern, H. L.; Moritz, R. E.; Lettvin, E.; Schatz, D.; Russell, L.

    2008-12-01

    Polar Science Weekend (PSW) is a four-day event featuring hands-on activities, live demonstrations, and a variety of exhibits about the polar regions and current polar research, presented by scientists from the University of Washington's Polar Science Center, and held at Seattle's Pacific Science Center. PSW was conceived and organized jointly by the Polar Science Center and Pacific Science Center, which is Washington State's most well-attended museum. The first PSW in March 2006 drew over 5000 visitors, and subsequent PSWs in 2007 and 2008 have both surpassed that figure. The success of this university / science center partnership has made PSW an annual event, and has served as a model for Pacific Science Center's Portal to the Public program, in which partnerships with other scientific institutions have been built. Researchers at the Polar Science Center (PSC) study the physical processes controlling high-latitude oceans, atmosphere, sea ice, and ice sheets, and are involved in numerous IPY projects. PSC scientists also engage in many outreach efforts such as classroom visits and public lectures, but PSW stands out as the highlight of the year. The partnership with Pacific Science Center brings access to facilities, publicity, and a large audience that would not otherwise be readily available to PSC. Pacific Science Center, constructed for the 1962 World's Fair in Seattle, serves more than one million visitors per year. Pacific Science Center's mission is to inspire a lifelong interest in science, math and technology by engaging diverse communities through interactive and innovative exhibits and programs. PSW helps to advance this mission by bringing students, teachers, and families face-to-face with scientists who work in some of the most remote and challenging places on earth, to learn first-hand about polar research in a fun and informal setting. This is made possible only by the partnership with PSC. In this talk we will present descriptions and photos of PSW activities and exhibits such as Smashing Ice, Glacier Flow, and the Salinity Taste Test. We will also discuss the organizational effort behind PSW, including the recruiting of volunteers and sponsors, publicity, and funding. Finally, we will comment on the elements that make for a successful collaboration. PSW 2009 is scheduled for February 26 through March 1. For more information, visit http://psc.apl.washington.edu/psw/.

  2. Small Worlds Week: Raising Curiosity and Contributing to STEM

    NASA Astrophysics Data System (ADS)

    Ng, C.; Mayo, L.; Stephenson, B. E.; Keck, A.; Cline, T. D.; Lewis, E. M.

    2015-12-01

    Dwarf planets, comets, asteroids, and icy moons took center stage in the years 2014-2015 as multiple spacecraft (New Horizons, Dawn, Rosetta, Cassini) and ground-based observing campaigns observed these small and yet amazing celestial bodies. Just prior to the historic New Horizons encounter with the Pluto system, NASA celebrated Small Worlds Week (July 6-10) as a fully online program to highlight small worlds mission discoveries. Small Worlds Week leveraged the infrastructure of Sun-Earth Days that included a robust web design, exemplary education materials, hands-on fun activities, multimedia resources, science and career highlights, and a culminating event. Each day from July 6-9, a new class of solar system small worlds was featured on the website: Monday-comets, Tuesday-asteroids, Wednesday-icy moons, and Thursday-dwarf planets. Then on Friday, July 10, nine scientists from Goddard Space Flight Center, Jet Propulsion Laboratory, Naval Research Laboratory, and Lunar and Planetary Institute gathered online for four hours to answer questions from the public via Facebook and Twitter. Throughout the afternoon the scientists worked closely with a social media expert and several summer interns to reply to inquirers and to archive their chats. By all accounts, Small Worlds Week was a huge success. The group plans to improve and replicate the program during the school year with a more classroom focus, and then to build and extend the program to be held every year. For more information, visit http:// sunearthday.nasa.gov or catch us on Twitter, #nasasww.

  3. COS NUV Target Acquisition Monitor

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2017-08-01

    Visits PA, BA, & BB of this program verify all ACQ/IMAGE mode co-alignments by bootstrapping from PSA+MIRRORA. The assumption, which should be tested at some point, is that the PSA+MIRRORA WCA-to-PSA FSW offsets are still as accurate in defining the center of the PSA relative to the WCA as there were in SMOV. The details of the observations are given is the observing section.Visit PB was an on-hold contingency visit in case, for whatever reason, visit 2A of 14452, did not execute as planned in the fall of 2017. This program was replaced with a better program for aligning the FGGs so we needed to activate this visit to obtain the PSA/MIRRORA to PSA/MIRRORB ACQ/IMAGE alignment. Visit BA of this program takes back-to-back PSA/MIRRORB & BOA/MIRRORA ACQ/Images and images (with flashes) and also takes G230L, G285M as well as FUV LP3 G130M and G140L spectra to test the WCA-to-PSA offsets.Visit BB of this program takes back-to-back BOA/MIRRORA & BOA/MIRRORB ACQ/Images and images (with flashes) and also takes G225M, G185M, and FUV LP3 G160M spectra to test the WCA-to-PSA offsets. Visit BA of this program bootstraps off VIsit PB to co-align the PSA+MIRRORB ACQ/IMAGE mode to the BOA+MIRRORA. Visit BB of this program follows the style of Visit BA and bootstraps from the BOA+MIRRORA mode to the BOA+MIRRORB TA imaging mode. In all visits, lamp+target images are taken before and after the TA imaging mode that is being co-aligned (the second ACQ/IMAGE of the program.)All visits in this program are single orbit visits. This program is very similar to the NUV portion of the C24 version (14857). This program differs from the Cycle 23 version in that Visit PB (the old Visit 03) has been permanently upgraded from contingency to operational status. NOTE: Beginning with Cycle 25. ALL FUV exposures in this program have been moved to a separate monitoring program. This program will sequentially test the XD accuracy of FUV LP4 spectra. As needed, NUV ACQ/IMAGEs will reset the centering between grating tests.

  4. Enhancing Graduate Education and Research in Ocean Sciences at the Universidad de Concepcion (UDEC) and in Chile: Cooperation Between UDEC and Woods Hole Oceanographic Institution.

    NASA Astrophysics Data System (ADS)

    Farrington, J.; Pantoja, S.

    2007-05-01

    The Woods Hole Oceanographic Institution, USA (WHOI) and the University of Concepcion, Chile (UDEC) entered into an MOU to enhance graduate education and research in ocean sciences in Chile and enhance research for understanding the Southeastern Pacific Ocean. The MOU was drafted and signed after exchange visits of faculty. The formulation of a five year program of activities included: exchange of faculty for purposes of enhancing research, teaching and advising; visits of Chilean graduate students to WHOI for several months of supplemental study and research in the area of their thesis research; participation of Chilean faculty and graduate students in WHOI faculty led cruises off Chile and Peru (with Peruvian colleagues); a postdoctoral fellowship program for Chilean ocean scientists at WHOI; and the establishment of an Austral Summer Institute of advanced undergraduate and graduate level intensive two to three week courses on diverse topics at the cutting edge of ocean science research co-sponsored by WHOI and UDEC for Chilean and South American students with faculty drawn from WHOI and other U.S. universities with ocean sciences graduate schools and departments, e.g. Scripps Institution of Oceanography, University of Delaware. The program has been evaluated by external review and received excellent comments. The success of the program has been due mainly to: (1) the cooperative attitude and enthusiasm of the faculty colleagues of both Chilean Universities (especially UDEC) and WHOI, students and postdoctoral fellows, and (2) a generous grant from the Fundacion Andes- Chile enabling these activities.

  5. Wavelet-Based Signal and Image Processing for Target Recognition

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.

    2002-11-01

    The PI visited NSWC Dahlgren, VA, for six weeks in May-June 2002 and collaborated with scientists in the G33 TEAMS facility, and with Marilyn Rudzinsky of T44 Technology and Photonic Systems Branch. During this visit the PI also presented six educational seminars to NSWC scientists on various aspects of signal processing. Several items from the grant proposal were completed, including (1) wavelet-based algorithms for interpolation of 1-d signals and 2-d images; (2) Discrete Wavelet Transform domain based algorithms for filtering of image data; (3) wavelet-based smoothing of image sequence data originally obtained for the CRITTIR (Clutter Rejection Involving Temporal Techniques in the Infra-Red) project. The PI visited the University of Stellenbosch, South Africa to collaborate with colleagues Prof. B.M. Herbst and Prof. J. du Preez on the use of wavelet image processing in conjunction with pattern recognition techniques. The University of Stellenbosch has offered the PI partial funding to support a sabbatical visit in Fall 2003, the primary purpose of which is to enable the PI to develop and enhance his expertise in Pattern Recognition. During the first year, the grant supported publication of 3 referred papers, presentation of 9 seminars and an intensive two-day course on wavelet theory. The grant supported the work of two students who functioned as research assistants.

  6. Research Institute for Advanced Computer Science: Annual Report October 1998 through September 1999

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    1999-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center (ARC). It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. ARC has been designated NASA's Center of Excellence in Information Technology. In this capacity, ARC is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA ARC and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, and visiting scientist programs, designed to encourage and facilitate collaboration between the university and NASA information technology research communities.

  7. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, and visiting scientist programs, designed to encourage and facilitate collaboration between the university and NASA information technology research communities.

  8. Metal Mesh Fabrication and Testing for Infrared Astronomy and ISO Science Programs; ISO GO Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Oliversen, Ronald J. (Technical Monitor)

    2001-01-01

    This research program addresses astrophysics research with the Infrared Space Observatory's Long Wavelength Spectrometer (ISO-LWS), including efforts to supply ISO-LWS with superior metal mesh filters. This grant has, over the years, enabled Dr. Smith in his role as a Co-Investigator on the satellite, the PI (Principal Investigator) on the Extragalactic Science Team, and a member of the Calibration and performance working groups. The emphasis of the budget in this proposal is in support of Dr. Smith's Infrared Space Observatory research. This program began (under a different grant number) while Dr. Smith was at the Smithsonian's National Air and Space Museum, and was transferred to SAO with a change in number. While Dr. Smith was a visiting Discipline Scientist at NASA HQ the program was in abeyance, but it has resumed in full since his return to SAO. The Infrared Space Observatory mission was launched in November, 1996, and since then has successfully completed its planned lifetime mission. Data are currently being calibrated to the 2% level.

  9. Presentation Stations of the General Atomics Fusion Educational Program

    NASA Astrophysics Data System (ADS)

    Lee, R. L.; Fusion Group Education Outreach Team

    1996-11-01

    The General Atomics Fusion Group's Educational Program has been actively promoting fusion science and applications throughout San Diego County's secondary school systems for over three years. The educational program allows many students to learn more about nuclear fusion science, its applications, and what it takes to become an active participant in an important field of study. It also helps educators to better understand how to teach fusion science in their classroom. Tours of the DIII--D facility are a centerpiece of the program. Over 1000 students visited the DIII--D research facility during the 1995--1996 school year for a half-day of presentations, discussions, and hands-on learning. Interactive presentations are provided at six different stations by GA scientists and engineers to small groups of students during the tours. Stations include topics on energy, plasma science, the electromagnetic spectrum, radiation and risk assessment, and data acquisition. Included also is a tour of the DIII--D machine hall and model where students can see and discuss many aspects of the tokamak. Portions of each station will be presented and discussed.

  10. KSC-2014-2480

    NASA Image and Video Library

    2014-05-01

    VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, Orbital Sciences workers and technicians move their work platforms away from NASA's Orbiting Carbon Observatory-2, or OCO-2, in preparation for its lift from the transportation trailer. Testing and launch preparations now will get underway for its launch from Space Launch Complex 2 aboard a United Launch Alliance Delta II rocket, scheduled for July 1, 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. OCO-2 is a NASA Earth System Science Pathfinder Program mission managed by NASA's Jet Propulsion Laboratory JPL in Pasadena, California, for NASA's Science Mission Directorate in Washington. Orbital Sciences built the spacecraft and provides mission operations under JPL’s leadership. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Doug Gruben, 30th Space Wing

  11. Evaluation Study of the Exploratory Visit: An Innovative Outreach Activity of the ILGWU's Friendly Visiting Program

    ERIC Educational Resources Information Center

    Wright, Holly; And Others

    1977-01-01

    The exploratory visit to recent retirees, an outreach component of the International Ladies Garment Workers Union Friendly Visiting Program, was evaluated. A post-test only control group effect study revealed exploratory visits were effective in establishing a link between the program and the retiree. (Author)

  12. In Brief: National Medal of Science nomination deadline

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-03-01

    The deadline for nominations for the 2010 U.S. National Medal of Science is 31 March 2010. The Medal of Science, which is presented annually by the president of the United States to distinguished scientists and engineers, is the nation's highest honor for American scientists and engineers. For more information, visit http://www.nsf.gov/od/nms/nominations.jsp or contact Mayra Montrose at the U.S. National Science Foundation, mmontros@nsf.gov.

  13. Top scientists join Stephen Hawking at Perimeter Institute

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-03-01

    Nine leading researchers are to join Stephen Hawking as visiting fellows at the Perimeter Institute for Theoretical Physics in Ontario, Canada. The researchers, who include string theorists Leonard Susskind from Stanford University and Asoka Sen from the Harisch-Chandra Research Institute in India, will each spend a few months of the year at the institute as "distinguished research chairs". They will be joined by another 30 scientists to be announced at a later date.

  14. Scientist-Teacher-Student Interactions: Experiences around the Fall 2010 A-Train Symposium

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Rogers, M. A.; Charlevoix, D. J.; Kennedy, T.; Oostra, D. H.

    2010-12-01

    In late October 2010, the second A-Train Science Symposium will be held in New Orleans, LA. (The first such event was hosted by CNES in France in 2007.) In conjunction with the symposium, a multi-faceted education event is also being planned. This will include: - Onsite one-day teacher workshops for local teachers introducing remote sensing and the use of satellite data in the classroom - Visits by scientists to local classrooms for direct interaction with students the day after the symposium - A Student-Scientist Observation Campaign which will engage A-Train scientists in a social media website with teachers and students from around the world. This paper will focus primarily on the observation campaign. It will describe the rapid development and testing of a web-based framework to support student-scientist interaction. It will lay out the steps used to activate a (hopefully significant) number of students and teachers through the GLOBE Program (www.globe.gov) and the S’COOL Project (scool.larc.nasa.gov). It will describe the interaction during the event, which will be a 3-week period before, during and after the symposium. During this time, A-Train scientists will be posting interesting satellite observations on a social media website. Students will be able to comment, ask questions, and post their own observations of related phenomena observed from the ground. Scientists will respond to student questions, and comment or ask questions on student observations. In addition, student observations will be collected through the existing S’COOL and GLOBE websites, and combined into a common visualization tool that is easily accessible through the social media framework. A photo upload pilot system is also planned, taking advantage of advances in exif photo metadata in new electronics (cell phones, smart phones, digital cameras) to easily geolocate this imagery for correlation to satellite remote sensing data and images. It is our hope that this approach will be successful and can then serve as a model for other groups to engage with students - the future scientists of the world.

  15. ARC-2008-ACD08-0219-021

    NASA Image and Video Library

    2008-09-26

    Professor John Beddington, UK (United Kingdom) Government Chief Scientist Advisor visit to Ames on tour of the Small Satellites area Bldg 45 with ______and Ames Center Director Pete Worden (and a lunar lander prototype)

  16. NanoSPD activity in Ufa and International Cooperation

    NASA Astrophysics Data System (ADS)

    Reshetnikova, N.; Salakhova, M.

    2014-08-01

    This report presents main achievements of R&D activities of the Institute of Physics of Advanced Materials of Ufa State Aviation Technical University (IPAM USATU, Ufa, Russia) with a special attention to innovative potential of nanostructured metals and alloys produced by the severe plastic deformation (SPD) techniques. Several examples of the first promising applications of bulk nanostructured materials (BNM) as well as potential competing technologies are considered and discussed. The authors would like to focus special emphasis on international cooperation in view of numerous emerging projects as well as different conferences and seminars that pave the way to close and fruitful cooperation, working visits and exchange of young scientists. The possibilities of international cooperation through various foundations and programs are considered.

  17. Planting local seed for growth to nationwide E/PO efforts

    NASA Astrophysics Data System (ADS)

    Fox, N.; Beisser, K.; Mendez, F.; Cockrell, D.; Wilhide, B.

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is the home to hundreds of scientists and engineers, all involved in research, design and implementation of space missions. Many of these people actively seek out ways to raise awareness and interest in the local community by visiting schools, giving public lectures and supporting events held at the laboratory. During the past few years, APL has begun to foster a number of firm partnerships with organizations to further these community opportunities and provide a test bed for both formal and informal education activities through the Space Department E/PO office One of our ongoing partnerships is with the Maryland Science Center in Baltimore. A continual challenge faced by museums is how to stay current and allow visitors to experience the immediacy and excitement of scientific discovery. To help meet these challenges, the Maryland Science Center houses "SpaceLink", the Nation's first space, science and astronomy update center. Part media center, part discovery room, and part newsroom, the exhibit is a multi-purpose Professional Development Site for educators and a "classroom of the future" for K 12 students. APL scientists and- engineers regularly support SpaceLink's flexible programming, including scientist in residence, monthly credited seminars for educators (Teachers' Thursdays), a menu of Classroom Programs on request, Distance Learning Teacher Presentations, and special Live Events to highlight mission milestones and space-related anniversaries. This allows the guest scientists and engineers to interact directly with the public. These events also compliment the APL exhibits housed at the Science Center. JHU/APL offers an exciting environment for the study of applications in space by hosting the annual Maryland Summer Center for Space Science sponsored by the Maryland State Department of Education. Rising 6t h and 7t h grade students learn to harness the power of technology and keep pace with the expanding knowledge of space science. They experience the process involved in planning/launching a simulated space mission, including design/fabrication of instrumentation for a spacecraft. They are part of a Mission Team that built a spacecraft scale model complete with instrumentation and even give a full mission overview oral presentation to their peers. During this 2 week experience, the students interact with the APL scientists and engineers directly responsible for the featured missions. Scientists and engineers team up with Comcast Cablevision of Maryland, Cable in the Classroom, and the Maryland State Department of Education to give Maryland middle school students a true outer space experience focusing on specific NASA missions. The students move from behind their desks to behind the scenes of a deep- space mission at JHU/APL. The students hear mission briefings and take part in a special student press conference with mission team members. They don clean-room suits and tour the Lab's space facilities, including the Mission Operations Center, the space environment simulation lab, the vibration test lab, and the satellite communications facility. These local programs for outreach opportunities have often served as the test bed for national programs and partnerships. In this presentation we will review the local programs to show how the organizations benefit from the partnership with APL and also how the APL outreach programs gain a much wider and more appreciative audience. We will also show how these programs are being expanded to a more nationwide focus.

  18. What sparks interest in science? A naturalistic inquiry

    NASA Astrophysics Data System (ADS)

    Jackson, Julie Kay Cropper

    This study examined how career scientists became interested in science. Eight practicing scientists were asked a focus question, "What sparked your interest in science?" Their responses recorded during personal interviews and reported in correspondence frame this qualitative study. Analysis of the data revealed a variety of influences. The influences were coded, arranged into lists, and grouped by theme. A total of 18 themes emerged from the data. Five of the emerging themes were common across all of the participants. They were the influence of a family member, the influence of a teacher, being naturally curious, being interested in science, and reading books, magazines, and/or encyclopedias. Five themes were common among 5 to 7 participants. These themes included visiting museums, having broad exposure, enjoyment of mathematics, enjoying being outside, and freedom to play and explore. Eight themes were common among 2 to 4 of the participants. They were financial incentive, influence of religion, participation in science fairs, influence of the manned space program, having a scientist in the family, having the opportunity to teach others, not seeing self as a scientist, and first generation college graduate. The emerging themes were compared and contrasted with historical and contemporary literature. Vocational psychology's leading career choice and development literature was also aligned with the emerging themes. Data from this study supports tenets of Trait and Factor Theory, Developmental Theory, and Social Learning Theory. Reported data also supports the proposed movement toward a unified theory of career choice and development. A combination of personality traits, developmental stages, self-efficacy, and learning experiences influenced the vocational decisions of the scientists who participated in this study. The study concludes with suggestions for sparking and sustaining interest in science that people responsible for preparing future scientists may find useful. Included are methods for fostering natural curiosity and guidelines for parents and teachers.

  19. Home Visiting Family Support Programs: Benefits of the Maternal, Infant, and Early Childhood Home Visiting Program. Fact Sheet

    ERIC Educational Resources Information Center

    Home Visiting Campaign, 2015

    2015-01-01

    The federally funded, locally administered Maternal, Infant, and Early Childhood Home Visiting Program sponsors family support programs that are often called "home visiting" because they take place in the homes of at-risk families. These families often lack support, experience, and knowledge of basic parenting skills. Because children…

  20. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation (abstract)

    NASA Astrophysics Data System (ADS)

    Sutton, S.; Eng., P. J.; Jaski, Y. R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M.

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P≳360 GPa and T˜6000 K with the diamond anvil cell and P˜25 GPa and T˜2500 °C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers.

  1. SoTRE's Speak Up: Students Share the Benefits of Teacher Researcher Experiences

    NASA Astrophysics Data System (ADS)

    Eubanks, E.; Allen, S.; Farmer, S.; Jones, K.

    2016-12-01

    Being Students of Teacher Researcher Experiences (SoTRE) gives students special advantages that most students do not get. Teachers Elizabeth Eubanks and Steve Allen share their knowledge gained via partnerships with Teacher Researcher Experiences (TRE's) such as the National Oceanographic and Atmospheric Administration Teacher at Sea program (NOAA- TAS), Polar TREC (Teachers and Researchers & Exploring & Collaboration), National Science Foundation (NSF) funded researchers, (EARTH) Education and Research: Testing Hypothesis, the RJ Dunlap Marine Conservation Program, C-DEBI (Center for Dark Energy Biosphere Investigations and (STARS) Sending Teachers Aboard Research Ships, The Maury Project and Mate. Students gain special privileges such as understanding unique research ideas, tracking tagged sharks, following daily journals written on location, taking part in cross-continental experiments, tracking real time data, exploring current research via posters or visiting universities. Furthermore, contacts made by a TRE give students an added set of resources. When doing experiments for class or advancing their education or career goals Eubanks and Allen help students connect with scientists. Many students have felt so strongly about the TRE relationship that they have presented at several local and international science conferences. Their message is to encourage scientists to partner with teachers. The benefits of participation in such conferences have included abstract writing and submission, travel, poster creation, oral presentation, networking and personal research presentation, all tools that they will carry with them for a lifetime.

  2. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  3. KSC-2012-5686

    NASA Image and Video Library

    2012-10-06

    CAPE CANAVERAL, Fla. -- News and social media representatives participate in a space station and mission science briefing in NASA Kennedy Space Center's Press Site auditorium in Florida. On the dais from left are Michael Curie, NASA Public Affairs, Julie Robinson, program scientist for International Space Station at NASA's Johnson Space Center, Timothy Yeatman, interim chief scientist at the Center for the Advancement of Science in Space, Sheila Nielsen-Preiss, cell biologist at Montana State University, and Scott Smith, NASA nutritionist at NASA's Johnson Space Center. The briefing provided media with an overview of the experiments and payloads scheduled for launch on NASA's first Commercial Resupply Services, or CRS-1, mission to the International Space Station. Space Exploration Technologies Corp., or SpaceX, built both the mission's Falcon 9 rocket and Dragon capsule. Launch is scheduled for 8:35 p.m. EDT on Oct. 7 from Space Launch Complex 40 on Cape Canaveral Air Force Station. SpaceX CRS-1 is an important step toward making America’s microgravity research program self-sufficient by providing a way to deliver and return significant amounts of cargo, including science experiments, to and from the orbiting laboratory. NASA has contracted for 12 commercial resupply flights from SpaceX and eight from the Orbital Sciences Corp. For more information, visit http://www.nasa.gov/mission_pages/station/living/launch/index.html. Photo credit: NASA/Kim Shiflett

  4. Can You See the Stars? Citizen-Science Programs to Measure Night Sky Brightness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-05-01

    For the IYA2009 Dark Skies Awareness Cornerstone Project, partners in dark-sky, astronomy and environmental education are promoting three citizen-scientist programs that measure light pollution at local levels worldwide. These programs take the form of "star hunts", providing people with fun and direct ways to acquire heightened awareness about light pollution through first-hand observations of the night sky. Together the programs are spanning the entire IYA, namely: GLOBE at Night in March, Great World Wide Star Count in October, and How Many Stars during the rest of the year. Citizen-scientists - students, educators, amateur astronomers and the general public - measure the darkness of their local skies and contribute observations online to a world map. Anyone anywhere anytime can look within particular constellations for the faintest stars and match them to one of seven star maps. For more precise measurements, digital sky-brightness meters can be used. Measurements, along with the measurement location, time, and date, are submitted online, and within a few days to weeks a world map showing results is available. These measurements can be compared with data from previous years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements are available online via Google Earth or other tools and as downloadable datasets. Data from multiple locations in one city or region are especially interesting, and can be used as the basis of a class project or science fair experiment, or even to inform the development of public policy. In the last few years these programs successfully conducted campaigns in which more than 35,000 observations were submitted from over 100 countries. The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For further information about these and other Dark Skies Awareness programs, please visit www.darkskiesawareness.org.

  5. Family risk as a predictor of initial engagement and follow-through in a universal nurse home visiting program to prevent child maltreatment.

    PubMed

    Alonso-Marsden, Shelley; Dodge, Kenneth A; O'Donnell, Karen J; Murphy, Robert A; Sato, Jeannine M; Christopoulos, Christina

    2013-08-01

    As nurse home visiting to prevent child maltreatment grows in popularity with both program administrators and legislators, it is important to understand engagement in such programs in order to improve their community-wide effects. This report examines family demographic and infant health risk factors that predict engagement and follow-through in a universal home-based maltreatment prevention program for new mothers in Durham County, North Carolina. Trained staff members attempted to schedule home visits for all new mothers during the birthing hospital stay, and then nurses completed scheduled visits three to five weeks later. Medical record data was used to identify family demographic and infant health risk factors for maltreatment. These variables were used to predict program engagement (scheduling a visit) and follow-through (completing a scheduled visit). Program staff members were successful in scheduling 78% of eligible families for a visit and completing 85% of scheduled visits. Overall, 66% of eligible families completed at least one visit. Structural equation modeling (SEM) analyses indicated that high demographic risk and low infant health risk were predictive of scheduling a visit. Both low demographic and infant health risk were predictive of visit completion. Findings suggest that while higher demographic risk increases families' initial engagement, it might also inhibit their follow-through. Additionally, parents of medically at-risk infants may be particularly difficult to engage in universal home visiting interventions. Implications for recruitment strategies of home visiting programs are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. George Washington University Visa Project-Streamlining Our Visa and Immigration Systems for Scientists and Engineers

    NASA Astrophysics Data System (ADS)

    Teich, Albert H.

    2014-03-01

    Many scientists believe that current U.S. visa and immigration systems are out of sync with today's increasingly globalized science and technology. This talk will highlight specific proposals that would facilitate the recruitment of promising STEM students by U.S. universities and better enable international scientists and engineers to visit the United States for scientific conferences and research collaboration. Most of these proposals could be implemented without additional resources and without compromising U.S. security. The talk is based on the results of an 18 month study conducted at the George Washington University's Center for International Science & Technology Policy.

  7. Subtidal Dynamics of the Vietnamese Shelf: Ship- and Glider-Based Observations of Hydrographic Structure and Circulation

    DTIC Science & Technology

    2013-09-30

    glider endurance line off Vietnam, repeating NAGA sections that have not been occupied since the early 1960s, operated by Vietnamese scientists...1959-1961 NAGA expedition, using AUV gliders. We propose train the Vietnamese scientists by inviting and supporting them to visit OSU for a 1-2...biogeochemistry of the Vietnamese East Sea, including changes since the NAGA Expeditions In addition to planning, we have also been successful in bringing

  8. Training Family Medicine Residents to Perform Home Visits: A CERA Survey.

    PubMed

    Sairenji, Tomoko; Wilson, Stephen A; D'Amico, Frank; Peterson, Lars E

    2017-02-01

    Home visits have been shown to improve quality of care, save money, and improve outcomes. Primary care physicians are in an ideal position to provide these visits; of note, the Accreditation Council for Graduate Medical Education no longer requires home visits as a component of family medicine residency training. To investigate changes in home visit numbers and expectations, attitudes, and approaches to training among family medicine residency program directors. This research used the Council of Academic Family Medicine Educational Research Alliance (CERA) national survey of family medicine program directors in 2015. Questions addressed home visit practices, teaching and evaluation methods, common types of patient and visit categories, and barriers. There were 252 responses from 455 possible respondents, representing a response rate of 55%. At most programs, residents performed 2 to 5 home visits by graduation in both 2014 (69% of programs, 174 of 252) and 2015 (68%, 172 of 252). The vast majority (68%, 172 of 252) of program directors expect less than one-third of their graduates to provide home visits after graduation. Scheduling difficulties, lack of faculty time, and lack of resident time were the top 3 barriers to residents performing home visits. There appeared to be no decline in resident-performed home visits in family medicine residencies 1 year after they were no longer required. Family medicine program directors may recognize the value of home visits despite a lack of few formal curricula.

  9. A Worldwide Community of Primary and Secondary Students and Their Teachers Engage in and Contribute to Geoscience Research

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Kopplin, M. R.; Yule, S.

    2009-12-01

    The GLOBE (Global learning and Observations to Benefit the Environment) program is among the most successful long-term citizen scientist programs engaging K-12 students, in-service and pre-service teachers, as well as community members in different areas of geoscience investigations: atmosphere/weather, land cover biology, soils, hydrology, and vegetation phenology. What sustains this multi-nation project is the interest and collaboration among scientists, educators, students and the GLOBE Partnerships that are mostly self-supporting and function in the United States and in a hundred other countries. The GLOBE Program Office in the United States continues to offer, an overall coordinating and leadership function, a website, an infrastructure, management and support for web data entry and access, as well as visualizations, and a much used help desk. In Alaska, GLOBE research and activities are maintained through professional development workshops for educators, continued year-long support for teachers and their students (classroom visits, email, mail and newsletters) including program assessments, funded through federal grants to the University of Alaska Fairbanks. The current earth system science Seasons and Biomes project uses GLOBE protocols as well as newly developed ones to fit the needs of the locale, such as ice freeze-up and break-up seasonality protocols for rivers and lakes in tundra, taiga and other northern biomes, and mosquito phenology protocols for tropical and sub-tropical moist broadleaf forests and other biomes in Asia and Africa, invasive plant species for Africa, and modified plant phenology protocols for temperate deciduous forests in Australia. Students contribute data and use archived data as needed when they conduct geoscience research individually, in small groups or as a class and/or collaboratively with others in schools in other parts of the country and the world.

  10. 20 years in Tibet- The INDEPTH Transect

    NASA Astrophysics Data System (ADS)

    Brown, L. D.; Zhao, W.

    2011-12-01

    In 1991 a relatively small group of Chinese and U.S. scientists met to plan a modest set of geophysical surveys in the Himalaya of southern Tibet. The success of those pilot experiments developed into Project INDEPTH (INternational DEep Profiling of Tibet and the Himalaya), a major interdisciplinary, multinational effort to traverse the entire Himalaya-Tibet collision zone. With the recent completion of Phase IV, a series of geophysical and geological investigations across the boundary between the Tibet Plateau and the Qaidam Basin, Project INDEPTH has now largely fulfilled its initial vision. U.S. interest in deep reflection profiling of the Himalaya was stimulated in the late 70's by COCORP's success in mapping crustal scale, low-angle thrust faulting in the Appalachians of the SE U.S., and participation by COCORP scientists in several conferences in China that addressed Tibet in the early 80's. An informal meeting of Chinese, U.S., British and German scientists at the 1987 IASPEI meeting in Vancouver, Canada resulted in a formal invitation from Prof. Zhao Wenjin of the Chinese Academy of Geological Sciences for an international scouting party to visit Tibet in 1991 to assess the feasibility of crustal reflection profiling in the Himalaya. The report of that scouting party led to proposals to the U.S. National Science Foundation (Continental Dynamics Program) and the Chinese National Natural Science Foundation and Ministry of Geology and Mineral Resources to carry out a test survey of multichannel reflection profiling in the Himalayas, an experiment that came to be known as Phase I.. The dramatic success of Phase I in tracing the Main Himalayan detachment to depth launched the program's ambitious goal of traversing the entire Himalaya-Tibet Plateau collision zone. Along the way, INDEPTH grew from a simple test of the reflection method to a complex, multidisciplinary program that proved especially effective at integrating active and passive seismology with magnetotelluric techniques to characterize one of the earth's truly unique regions. While INDEPTH contributed a number of geoscientific "firsts", it also owes a great deal to the pioneering works that preceded it, particularly the 1981-1982 Sino-French expeditions and the 1985 Sino-British traverse, as well as key contributions from a number of individual Chinese and non-Chinese scientists who helped refine the evolving objectives of INDEPTH. Finally, whatever success INDEPTH has had is largely due the spirit of cooperation that grew out of the mutual trust that developed between the scientists of China, the U.S., Germany, Canada, Ireland, and Britain who faced many challenges over the course of this project.

  11. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  12. CULTURAL ADAPTATIONS OF EVIDENCE-BASED HOME-VISITATION MODELS IN TRIBAL COMMUNITIES.

    PubMed

    Hiratsuka, Vanessa Y; Parker, Myra E; Sanchez, Jenae; Riley, Rebecca; Heath, Debra; Chomo, Julianna C; Beltangady, Moushumi; Sarche, Michelle

    2018-05-01

    The Tribal Maternal, Infant, and Early Childhood Home Visiting (Tribal MIECHV) Program provides federal grants to tribes, tribal consortia, tribal organizations, and urban Indian organizations to implement evidence-based home-visiting services for American Indian and Alaska Native (AI/AN) families. To date, only one evidence-based home-visiting program has been developed for use in AI/AN communities. The purpose of this article is to describe the steps that four Tribal MIECHV Programs took to assess community needs, select a home-visiting model, and culturally adapt the model for use in AI/AN communities. In these four unique Tribal MIECHV Program settings, each program employed a rigorous needs-assessment process and developed cultural modifications in accordance with community strengths and needs. Adaptations occurred in consultation with model developers, with consideration of the conceptual rationale for the program, while grounding new content in indigenous cultures. Research is needed to improve measurement of home-visiting outcomes in tribal and urban AI/AN settings, develop culturally grounded home-visiting interventions, and assess the effectiveness of home visiting in AI/AN communities. © 2018 Michigan Association for Infant Mental Health.

  13. Free Workshop for Teachers at the 2013 AGU Fall Meeting

    NASA Astrophysics Data System (ADS)

    Tamalavage, Anne

    2013-10-01

    In keeping with its commitment to fostering the next generation of Earth and space scientists, AGU is partnering with the National Earth Science Teachers Association to hold the annual Geophysical Information for Teachers (GIFT) workshop at the 2013 AGU Fall Meeting. GIFT allows K-12 science educators (both classroom and informal) to hear from scientists about their latest Earth and space science research, explore new classroom resources for engaging students, and visit exhibits and technical sessions during the Fall Meeting.

  14. KSC-2012-3323

    NASA Image and Video Library

    2012-06-12

    CAPE CANAVERAL, Fla. – A panel session for participants in the International Space University's Space Studies Program 2012, or SSP, is held in the Operations Support Building II at NASA’s Kennedy Space Center in Florida. From left are Pete Worden, director, NASA Ames Research Center Yvonne Pendleton, observational astronomer, NASA Ames Research Center Scott Hubbard, professor, Stanford University Bill Nye, CEO, The Planetary Society and George Tahu, NASA program executive, Planetary Science Division, NASA Headquarters. The Soffen Memorial Panel session provided the opportunity for participants to engage with today's leaders in the planetary science field. The panel session is named in honor of Gerald Soffen, NASA scientist and leader of NASA's Viking Mars mission. The nine-week intensive SSP course is designed for post-graduate university students and professionals during the summer. The program is hosted by a different country each year, providing a unique educational experience for participants from around the globe. NASA Kennedy Space Center and Florida Tech are co-hosting this year's event which runs from June 4 to Aug. 3. For more information about the International Space University, visit http://www.isunet.edu. Photo credit: NASA/Tim Jacobs

  15. Developing tools and strategies for communicating climate change

    NASA Astrophysics Data System (ADS)

    Bader, D.; Yam, E. M.; Perkins, L.

    2011-12-01

    Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.

  16. Assessing the Deployment of Home Visiting: Learning from a State-Wide Survey of Home Visiting Programs.

    PubMed

    Fischer, Robert L; Anthony, Elizabeth R; Lalich, Nina; Nevar, Ann; Bakaki, Paul; Koroukian, Siran

    2016-03-01

    Large-scale planning for health and human services programming is required to inform effective public policy as well as deliver services to meet community needs. The present study demonstrates the value of collecting data directly from deliverers of home visiting programs across a state. This study was conducted in response to the Patient Protection and Affordable Care Act, which requires states to conduct a needs assessment of home visiting programs for pregnant women and young children to receive federal funding. In this paper, we provide a descriptive analysis of a needs assessment of home visiting programs in Ohio. All programs in the state that met the federal definition of home visiting were included in this study. Program staff completed a web-based survey with open- and close-ended questions covering program management, content, goals, and characteristics of the families served. Consistent with the research literature, program representatives reported great diversity with regard to program management, reach, eligibility, goals, content, and services delivered, yet consistently conveyed great need for home visiting services across the state. Results demonstrate quantitative and qualitative assessments of need have direct implications for public policy. Given the lack of consistency highlighted in Ohio, other states are encouraged to conduct a similar needs assessment to facilitate cross-program and cross-state comparisons. Data could be used to outline a capacity-building and technical assistance agenda to ensure states can effectively meet the need for home visiting in their state.

  17. Survey of Home Visiting Programs for Abused and Neglected Children and Their Families.

    ERIC Educational Resources Information Center

    Wasik, Barbara Hanna; Roberts, Richard N.

    1994-01-01

    This report on a survey of 224 home visitation programs that provide services for abused and neglected children and their families presents data on program characteristics, characteristics of home visits, credentials of home visitors, and program documentation procedures. Programs reported that training in parenting skills and parent coping were…

  18. Physician Scientist Training in the United States: A Survey of the Current Literature.

    PubMed

    Kosik, R O; Tran, D T; Fan, Angela Pei-Chen; Mandell, G A; Tarng, D C; Hsu, H S; Chen, Y S; Su, T P; Wang, S J; Chiu, A W; Lee, C H; Hou, M C; Lee, F Y; Chen, W S; Chen, Q

    2016-03-01

    The declining number of physician scientists is an alarming issue. A systematic review of all existing programs described in the literature was performed, so as to highlight which programs may serve as the best models for the training of successful physician scientists. Multiple databases were searched, and 1,294 articles related to physician scientist training were identified. Preference was given to studies that looked at number of confirmed publications and/or research grants as primary outcomes. Thirteen programs were identified in nine studies. Eighty-three percent of Medical Scientist Training Program (MSTP) graduates, 77% of Clinician Investigator Training Program (CI) graduates, and only 16% of Medical Fellows Program graduates entered a career in academics. Seventy-eight percent of MSTP graduates succeeded in obtaining National Institute of Health (NIH) grants, while only 15% of Mayo Clinic National Research Service Award-T32 graduates obtained NIH grants. MSTP physician scientists who graduated in 1990 had 13.5 ± 12.5 publications, while MSTP physician scientists who graduated in 1975 had 51.2 ± 38.3 publications. Additionally, graduates from the Mayo Clinic's MD-PhD Program, the CI Program, and the NSRA Program had 18.2 ± 20.1, 26.5 ± 24.5, and 17.9 ± 26.3 publications, respectively. MSTP is a successful model for the training of physician scientists in the United States, but training at the postgraduate level also shows promising outcomes. An increase in the number of positions available for training at the postgraduate level should be considered. © The Author(s) 2014.

  19. ARC-2011-ACD11-0206-036

    NASA Image and Video Library

    2011-12-01

    Neil DeGrasse Tyson, Astrophysicist with Hayden Planetarium, the American Museum of Natural History, visits the Ames Kepler Science Team during the 1000 days since Launch Review. at reception speaking with Dr. David Morrison, Ames Serior Scientist, NASA Astrobiology, on right.

  20. An Early Look at Families and Local Programs in the Mother and Infant Home Visiting Program Evaluation-Strong Start: Third Annual Report. OPRE Report 2016-37

    ERIC Educational Resources Information Center

    Lee, Helen; Crowne, Sarah; Faucetta, Kristen; Hughes, Rebecca

    2016-01-01

    The Mother and Infant Home Visiting Program Evaluation-Strong Start (MIHOPE-Strong Start) is the largest random assignment study to date to examine the effectiveness of home visiting services on improving birth outcomes and infant and maternal health care use for expectant mothers. The study includes local home visiting programs that use one of…

  1. Preventing Sexual Violence in Adolescence: Comparison of a Scientist-Practitioner Program and a Practitioner Program Using a Cluster-Randomized Design.

    PubMed

    Muck, Christoph; Schiller, Eva-Maria; Zimmermann, Maria; Kärtner, Joscha

    2018-02-01

    Numerous school-based prevention programs have been developed by scientists and practitioners to address sexual violence in adolescence. However, such programs struggle with two major challenges. First, the effectiveness of many well-established practitioner programs has not been rigorously evaluated. Second, effective scientific programs may be hard to implement into everyday school practice. Combining the knowledge of scientists and practitioners in a scientist-practitioner program could be a helpful compromise. The aim of the present study is to evaluate the effects of a scientist-practitioner program and a practitioner program using a cluster-randomized experimental design. Twenty-seven school classes were randomly assigned to either one of two programs or a control group. Outcome variables (knowledge, attitudes, behavior, and iatrogenic effects) were assessed at pretest, posttest, and a 6-month follow-up for 453 adolescents (55% female, Mage = 14.18). Short-term effects were found in both programs regarding general knowledge, knowledge of professional help, and victim-blaming attitudes. Long-term effects were found in both programs regarding general knowledge and knowledge of professional help and, in the practitioner program, in a reduction of victimization. No other effects were found on attitudes and behavior. No iatrogenic effects in the form of increased anxiety were found. Both the scientist-practitioner and the practitioner program show promise for the prevention of sexual violence in adolescence; in particular, the practitioner program may be a more cost-effective method.

  2. KSC-2011-4450

    NASA Image and Video Library

    2011-06-15

    CAPE CANAVERAL, Fla. -- In the Astrotech payload processing facility in Titusville, Fla., technicians prepare a solar panel for attachment to NASA's Gravity Recovery and Interior Laboratory, or GRAIL. The United Launch Alliance Delta II rocket that will carry the twin GRAIL spacecraft into lunar orbit is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://solarsystem.nasa.gov/grail. Photo credit: NASA/Frank Michaux

  3. 77 FR 47855 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... development outcomes for at- risk children through evidence-based home visiting programs. Under this program...: Proposed Project: Maternal, Infant and Early Childhood Home Visiting Program FY 2012 Non-Competing... Maternal, Infant, and Early Childhood Home Visiting Program, ( http://frwebgate.access.gpo.gov/cgi-bin...

  4. Electronic Handbooks Simplify Process Management

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Getting a multitude of people to work together to manage processes across many organizations for example, flight projects, research, technologies, or data centers and others is not an easy task. Just ask Dr. Barry E. Jacobs, a research computer scientist at Goddard Space Flight Center. He helped NASA develop a process management solution that provided documenting tools for process developers and participants to help them quickly learn, adapt, test, and teach their views. Some of these tools included editable files for subprocess descriptions, document descriptions, role guidelines, manager worksheets, and references. First utilized for NASA's Headquarters Directives Management process, the approach led to the invention of a concept called the Electronic Handbook (EHB). This EHB concept was successfully applied to NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, among other NASA programs. Several Federal agencies showed interest in the concept, so Jacobs and his team visited these agencies to show them how their specific processes could be managed by the methodology, as well as to create mockup versions of the EHBs.

  5. In Brief: Europe's freshwater fish threatened

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-11-01

    Two hundred of Europe's 522 freshwater fish species are threatened with extinction and 12 are already extinct, according to the Handbook of European Freshwater Fishes, published in collaboration with the World Conservation Union (IUCN) and released on 1 November 2007. IUCN notes that the main threats to fish species stem from development and population growth and include water withdrawals, large dams, and inappropriate fisheries management that has led to overfishing and the introduction of alien species. Authors Maurice Kottelat, former president of the European Ichthyological Society, and Jörg Freyhof, scientist from Leibniz Institute of Freshwater Ecology, noted that fish conservation should be managed by agencies in charge of conservation, and not as a crop by agencies in charge of agriculture. William Darwall, senior program officer with IUCN's Species Program, said the species ``are critical to the freshwater ecosystems upon which we do depend, such as for water purification and flood control.'' For more information, visit the Web site: http://www.iucn.org.

  6. KSC-2011-6769

    NASA Image and Video Library

    2011-09-07

    CAPE CANAVERAL, Fla. – – A Gravity Recovery and Interior Laboratory (GRAIL) mission science briefing is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are DC Agle, NASA Public Affairs; Robert Fogel, NASA’s GRAIL program scientist; Maria Zuber, GRAIL principal investigator with the Massachusetts Institute of Technology; Sami Asmar, GRAIL deputy project scientist, NASA’s Jet Propulsion Laboratory; and Leesa Hubbard, teacher in residence, Sally Ride Science, San Diego. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  7. KSC-2011-6767

    NASA Image and Video Library

    2011-09-07

    CAPE CANAVERAL, Fla. – – A Gravity Recovery and Interior Laboratory (GRAIL) mission science briefing is held in the NASA Press Site auditorium at NASA's Kennedy Space Center in Florida. From left are Robert Fogel, NASA’s GRAIL program scientist; Maria Zuber, GRAIL principal investigator with the Massachusetts Institute of Technology; Sami Asmar, GRAIL deputy project scientist, NASA’s Jet Propulsion Laboratory; and Leesa Hubbard, teacher in residence, Sally Ride Science, San Diego. GRAIL is scheduled to launch Sept. 8 aboard a United Launch Alliance Delta II Heavy rocket from Cape Canaveral Air Force Station in Florida. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Kim Shiflett

  8. AIRSAR deployment in Australia, September 1993: Management and objectives

    NASA Technical Reports Server (NTRS)

    Milne, A. K.; Tapley, I. J.

    1993-01-01

    Past co-operation between the NASA Earth Science and Applications Division and the CSIRO and Australian university researchers has led to a number of mutually beneficial activities. These include the deployment of the C-130 aircraft with TIMS, AIS, and NS001 sensors in Australia in 1985; collaboration between scientists from the USA and Australia in soils research which has extended for the past decade; and in the development of imaging spectroscopy where DSIRO and NASA have worked closely together and regularly exchanged visiting scientists. In May this year TIMS was flown in eastern Australia on board a CSIRO-owned aircraft together with a CSIRO-designed CO2 laser spectrometer. The Science Investigation Team for the Shuttle Imaging Radar (SIRC-C) Program includes one Australian Principal Investigator and ten Australian co-investigators who will work on nine projects related to studying land and near-shore surfaces after the Shuttle flight scheduled for April 1994. This long-term continued joint collaboration was progressed further with the deployment of AIRSAR downunder in September 1993. During a five week period, the DC-8 aircraft flew in all Australian states and collected data from some 65 individual test sites.

  9. Summer Research Internships at Biosphere 2 Center

    NASA Technical Reports Server (NTRS)

    Broecker, Wallace S.; Colodner, Debra; Griffin, Kevin

    1997-01-01

    Through the support of NASA's Mission to Planet Earth, Biosphere 2 Center hosted 11 research interns for 6 to 8 weeks each during the summer of 1997. In addition, we were able to offer scholarships to 14 students for Columbia University summer field courses. These two types of programs engaged students in much of the range of activity of practicing Earth Scientists, with an emphasis on the collection and analysis of data in both the field and the laboratory. Research interns and students in the field courses also played an important part in the design and evolution of their research projects. In addition to laboratory and field research, students participated in weekly research seminars by resident and visiting scientists. Research interns were exposed to the geology and ecology of the region via short field trips to the Arizona Sonora Desert Museum, Mount Lemmon, Aravaipa Canyon and the Gulf of California, while field course students were exposed to laboratory-based research via intern-led hands-on demonstrations of their work. All students made oral and written presentations of their work during the summer, and two of the research interns have applied to present their results at the National Conference on Undergraduate Research in Maryland in April, 1998.

  10. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2017-12-09

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  11. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema

    None

    2018-05-16

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  12. A Visit to the Lederman Science Center

    Science.gov Websites

    Lederman Science Center. With the hands-on exhibits, you can discover the tools and methods scientists use Lederman Science Center Roll over the rooms in the floor plan to see the pictures of rooms in the

  13. Changes in smoke alarm coverage following two fire department home visiting programs: what predicts success?

    PubMed

    Gielen, Andrea C; Perry, Elise C; Shields, Wendy C; McDonald, Eileen; Frattaroli, Shannon; Jones, Vanya

    2014-12-01

    Door-to-door canvassing and installation of smoke alarms have been found to be effective at increasing the number of homes protected. This analysis reports on how smoke alarm coverage changes six months after a home visiting program in a large urban sample, and how this change varies by characteristics of the residents and characteristics of the services delivered during the home visit. Fire department Standard and Enhanced home visiting programs were compared. During the home visit, fire fighters installed lithium battery smoke alarms. Residents in the Enhanced program received tailored education about fire safety. Six months after the home visit, participating residences were visited to complete a follow-up survey and to have the installed alarms checked. 81% of the 672 homes that had a working smoke alarm on every level of the home at the end of the home visit remained safe at follow-up, and 87% of the residents found the home visit was very useful, and these rates did not differ between the Enhanced and Standard programs. The degree to which firefighters delivered their services varied, although households in which the resident's engagement with the fire department team was rated as excellent were 3.96 times as likely to be safe at follow-up compared to those with poor or fair resident engagement (p=0.03). There is a need to better understand how to maximize the time spent with residents during smoke alarm home visiting programs. This study helps with the development of methods needed for implementing and evaluating such programs in real-world settings.

  14. Home visiting programs for HIV-affected families: a comparison of service quality between volunteer-driven and paraprofessional models.

    PubMed

    Kidman, Rachel; Nice, Johanna; Taylor, Tory; Thurman, Tonya R

    2014-10-02

    Home visiting is a popular component of programs for HIV-affected children in sub-Saharan Africa, but its implementation varies widely. While some home visitors are lay volunteers, other programs invest in more highly trained paraprofessional staff. This paper describes a study investigating whether additional investment in paraprofessional staffing translated into higher quality service delivery in one program context. Beneficiary children and caregivers at sites in KwaZulu-Natal, South Africa were interviewed after 2 years of program enrollment and asked to report about their experiences with home visiting. Analysis focused on intervention exposure, including visit intensity, duration and the kinds of emotional, informational and tangible support provided. Few beneficiaries reported receiving home visits in program models primarily driven by lay volunteers; when visits did occur, they were shorter and more infrequent. Paraprofessional-driven programs not only provided significantly more home visits, but also provided greater interaction with the child, communication on a larger variety of topics, and more tangible support to caregivers. These results suggest that programs that invest in compensation and extensive training for home visitors are better able to serve and retain beneficiaries, and they support a move toward establishing a professional workforce of home visitors to support vulnerable children and families in South Africa.

  15. CosmoQuest - Scientist Engagement with the Public and Schools via a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Buxner, Sanlyn; Gay, Pamela L.; Grier, Jennifer A.; Lehan, Cory; CosmoQuest Team

    2016-06-01

    CosmoQuest is a virtual research facility where science data can be analyzed by teams of interested citizen scientists from across the world. Scientists can apply to have their data analyzed through crowdsourcing in our online observatory, which generates validated and publishable results (Robbins et al 2014). Scientists have the opportunity to provide connections to teachers in classrooms so that students can analyze original data and understand the process that astronomers go through from image to result. Scientists can also teach online classes for different audiences including formal classroom teachers, informal educators, and lifelong learners to further the broader impacts of their work and increase engagement in their scientific endeavors. We provide training, through online and in-person workshops, on how to incorporate your datasets into the observatory and how to deliver online classes through our CosmoAcademy. This work is funded in part by NASA Cooperative Agreement Notice number NNX16AC68A. For more information, visit http://cosmoquest.org/.

  16. Perspective: PhD scientists completing medical school in two years: looking at the Miami PhD-to-MD program alumni twenty years later.

    PubMed

    Koniaris, Leonidas G; Cheung, Michael C; Garrison, Gwen; Awad, William M; Zimmers, Teresa A

    2010-04-01

    Producing and retaining physician-scientists remains a major challenge in advancing innovation, knowledge, and patient care across all medical disciplines. Various programs during medical school, including MD-PhD programs, have been instituted to address the need for continued production of physician-scientists. From 1971 through 1989, 508 students with a prior PhD in the sciences, mathematics, or engineering graduated in two years from an accelerated MD program at the University of Miami School of Medicine. The program, designed to address potential clinical physician shortages rather than physician-scientist shortages, quickly attracted many top-notch scientists to medicine. Many program graduates went to top-tier residencies, pursued research careers in academic medicine, and became academic leaders in their respective fields. A retrospective examination of graduates conducted in 2008-2009 demonstrated that approximately 59% took positions in academic university medical departments, 3% worked for governmental agencies, 5% entered industry as researchers or executives, and 33% opted for private practice. Graduates' positions included 85 full professors, 11 university directors or division heads, 14 academic chairs, 2 medical school deans, and 1 astronaut. Overall, 30% of graduates had obtained National Institutes of Health funding after completing the program. These results suggest that accelerated medical training for accomplished scientists can produce a large number of successful physician-scientists and other leaders in medicine. Furthermore, these results suggest that shortening the medical portion of combined MD-PhD programs might also be considered.

  17. Centralized Oversight of Physician–Scientist Faculty Development at Vanderbilt: Early Outcomes

    PubMed Central

    Brown, Abigail M.; Morrow, Jason D.; Limbird, Lee E.; Byrne, Daniel W.; Gabbe, Steven G.; Balser, Jeffrey R.; Brown, Nancy J.

    2013-01-01

    Purpose In 2000, faced with a national concern over the decreasing number of physician–scientists, Vanderbilt School of Medicine established the institutionally funded Vanderbilt Physician–Scientist Development (VPSD) program to provide centralized oversight and financial support for physician–scientist career development. In 2002, Vanderbilt developed the National Institutes of Health (NIH)-funded Vanderbilt Clinical Research Scholars (VCRS) program using a similar model of centralized oversight. The authors evaluate the impact of the VPSD and VCRS programs on early career outcomes of physician–scientists. Method Physician–scientists who entered the VPSD or VCRS programs from 2000 through 2006 were compared with Vanderbilt physician–scientists who received NIH career development funding during the same period without participating in the VPSD or VCRS programs. Results Seventy-five percent of VPSD and 60% of VCRS participants achieved individual career award funding at a younger age than the comparison cohort. This shift to career development award funding at a younger age among VPSD and VCRS scholars was accompanied by a 2.6-fold increase in the number of new K awards funded and a rate of growth in K-award dollars at Vanderbilt that outpaced the national rate of growth in K-award funding. Conclusions Analysis of the early outcomes of the VPSD and VCRS programs suggests that centralized oversight can catalyze growth in the number of funded physician–scientists at an institution. Investment in this model of career development for physician–scientists may have had an additive effect on the recruitment and retention of talented trainees and junior faculty. PMID:18820531

  18. Visiting Mom: A pilot evaluation of a prison-based visiting program serving incarcerated mothers and their minor children.

    PubMed

    Schubert, Erin C; Duininck, Megan; Shlafer, Rebecca J

    2016-01-01

    We describe an evaluation of a prison visiting program, Extended Visiting (EV), for incarcerated mothers and their children. Mothers ( N = 24) and caregivers ( N = 19) were interviewed regarding experiences with the program. Mothers identified benefits including maintaining a relationship with children, physical contact, motivation, privacy, peer support, and personal growth. Caregivers echoed mothers' appreciation for the opportunity to maintain mother-child relationships and physical contact. Mothers identified barriers including desire for overnight visits and more age-appropriate activities. Caregivers perceived travel time and costs and children's adverse reactions as barriers. When comparing EV to typical visiting, participants unanimously preferred EV.

  19. NASA Dryden Mission Manager Walter Klein poses with school children that visited the airport during AirSAR 2004

    NASA Image and Video Library

    2004-03-08

    NASA Dryden Mission Manager Walter Klein poses with school children that visited the airport during AirSAR 2004. In spanish, he explained to them the mission of the DC-8 AirSAR 2004 Mesoamerican campaign in Costa Rica. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  20. USRA/RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1992-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under a cooperative agreement with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. A flexible scientific staff is provided through a university faculty visitor program, a post doctoral program, and a student visitor program. Not only does this provide appropriate expertise but it also introduces scientists outside of NASA to NASA problems. A small group of core RIACS staff provides continuity and interacts with an ARC technical monitor and scientific advisory group to determine the RIACS mission. RIACS activities are reviewed and monitored by a USRA advisory council and ARC technical monitor. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) learning systems; (4) high performance networks and technology; and (5) graphics, visualization, and virtual environments. In the past year, parallel compiler techniques and adaptive numerical methods for flows in complicated geometries were identified as important problems to investigate for ARC's involvement in the Computational Grand Challenges of the next decade. We concluded a summer student visitors program during this six months. We had six visiting graduate students that worked on projects over the summer and presented seminars on their work at the conclusion of their visits. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period July 1, 1992 through December 31, 1992 is provided.

  1. Student Researcher Experiences (SRE): From the Field to Life as a Steward

    NASA Astrophysics Data System (ADS)

    Brown, J.; Jenkins, T.; Chase, Z.

    2017-12-01

    Florida is a beautiful place to live; water, woods and wildlife are abundant. Many people want to live or visit our area to enjoy our natural resources. However, more people and technology lead to more changes in our resources, and conservation of our natural resources becomes even more important. Youth with conservation interests can benefit greatly from partnerships with scientists and organizations involved in conservation. Partnering with the Florida Fish and Wildlife Conservation Commission biologists helps youth learn how to construct scientific research projects that are current and meaningful, and will supply data to secure the health of our natural resources. Partnerships with scientists gives youth opportunities to become critical thinkers, citizen scientists, stewards, and a voice for nature in their community.

  2. AGU climate scientists visit Capitol Hill

    NASA Astrophysics Data System (ADS)

    Hankin, Erik

    2012-02-01

    On 1 February 2012, AGU teamed with 11 other scientific societies to bring 29 scientists researching various aspects of climate change to Washington, D. C., for the second annual Climate Science Day on Capitol Hill. The participants represented a wide range of expertise, from meteorology to agriculture, paleoclimatology to statistics, but all spoke to the reality of climate change as demonstrated in their scientific research. With Congress debating environmental regulations and energy policy amid tight fiscal pressures, it is critical that lawmakers have access to the best climate science to help guide policy decisions. The scientists met with legislators and their staff to discuss the importance of climate science for their districts and the nation and offered their expertise as an ongoing resource to the legislators.

  3. Case Study of Home-School Visits

    ERIC Educational Resources Information Center

    Aguerrebere, Yolanda

    2009-01-01

    This case study evaluated one site of a California teacher home visit program. Home visits have been an important means of connecting families and schooling. In 1999, California inaugurated a statewide home visit program to promote effective partnership between home and school for low-achieving schools. At this site, families in 3 kindergarten…

  4. Effects of Pet and/or People Visits on Nursing Home.

    ERIC Educational Resources Information Center

    Hendy, Helen M.

    1987-01-01

    Compared effects of different visiting programs (people, people and pets, pets, no visit) on behaviors of nursing home residents. Found all three visiting programs increased behaviors of smiling and alertness in comparison to control conditions. Close proximity to person-alone visitor was associated with greatest number of positive resident…

  5. 77 FR 47856 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... and development outcomes for at risk children through evidence-based home visiting programs. Under...: Proposed Project: Maternal, Infant and Early Childhood Home Visiting Program FY 2012 Competitive Grant Non... the Maternal, Infant, and Early Childhood Home Visiting Program, ( http://frwebgate.access.gpo.gov/cgi...

  6. 78 FR 53150 - Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... and Services Administration Advisory Committee on the Maternal, Infant and Early Childhood Home... Maternal, Infant and Early Childhood Home Visiting Program Evaluation (MIECHVE). Authority: Section 10(a)(2... meeting: Name: Advisory Committee on the Maternal, Infant, and Early Childhood Home Visiting Program...

  7. Assessing Quality in Home Visiting Programs

    ERIC Educational Resources Information Center

    Korfmacher, Jon; Laszewski, Audrey; Sparr, Mariel; Hammel, Jennifer

    2013-01-01

    Defining quality and designing a quality assessment measure for home visitation programs is a complex and multifaceted undertaking. This article summarizes the process used to create the Home Visitation Program Quality Rating Tool (HVPQRT) and identifies next steps for its development. The HVPQRT measures both structural and dynamic features of…

  8. Financing and Managing University Research Equipment.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    Problems and practices in financing and managing research equipment are assessed, based on visits to 23 college, government, and industry laboratories and meetings with over 500 scientists, and college, government, and industry representatives. The following concerns are addressed: possible changes in federal/state laws, regulations, or policies…

  9. 1988 Year End Report for Road Following at Carnegie Mellon

    DTIC Science & Technology

    1989-05-01

    Christophe Robert, David Simon , Hans Thomas, Eddie Wyatt Visiting scientists: Yoshi Goto, Taka Fujimori, Keith Gremban, Hide Kuga, Masatoshi Okutomi Graduate...Acknowledgements Mike Blackwell, James Frazier, and David Simon made the NAVLAB experiments possible. Chuck Thorpe provided the path planner used in

  10. How do engineering attitudes vary by gender and motivation? Attractiveness of outreach science exhibitions in four countries

    NASA Astrophysics Data System (ADS)

    Salmi, Hannu; Thuneberg, Helena; Vainikainen, Mari-Pauliina

    2016-11-01

    Outreach activities, like mobile science exhibitions, give opportunities to hands-on experiences in an attractive learning environment. We analysed attitudes, motivation and learning during a science exhibition visit, their relations to gender and future educational plans in Finland, Estonia, Latvia and Belgium (N = 1210 sixth-graders). Pupils' performance in a knowledge test improved after the visit. Autonomous motivation and attitudes towards science predicted situation motivation awakened in the science exhibition. Interestingly, the scientist attitude and the societal attitude were clearly separate dimensions. The third dimension was manifested in the engineering attitude typical for boys, who were keener on working with appliances, designing computer games and animations. Scientist and societal attitudes correlated positively and engineering attitude correlated negatively with the future educational plans of choosing the academic track in secondary education. The societal perspective on science was connected to above average achievement. In the follow-up test, these attitudes showed to be quite stable.

  11. Can typical US home visits affect infant attachment? Preliminary findings from a randomized trial of Healthy Families Durham.

    PubMed

    Berlin, Lisa J; Martoccio, Tiffany L; Appleyard Carmody, Karen; Goodman, W Benjamin; O'Donnell, Karen; Williams, Janis; Murphy, Robert A; Dodge, Kenneth A

    2017-12-01

    US government-funded early home visiting services are expanding significantly. The most widely implemented home visiting models target at-risk new mothers and their infants. Such home visiting programs typically aim to support infant-parent relationships; yet, such programs' effects on infant attachment quality per se are as yet untested. Given these programs' aims, and the crucial role of early attachments in human development, it is important to understand attachment processes in home visited families. The current, preliminary study examined 94 high-risk mother-infant dyads participating in a randomized evaluation of the Healthy Families Durham (HFD) home visiting program. We tested (a) infant attachment security and disorganization as predictors of toddler behavior problems and (b) program effects on attachment security and disorganization. We found that (a) infant attachment disorganization (but not security) predicted toddler behavior problems and (b) participation in HFD did not significantly affect infant attachment security or disorganization. Findings are discussed in terms of the potential for attachment-specific interventions to enhance the typical array of home visiting services.

  12. The Canadian clinician-scientist training program must be reinstated.

    PubMed

    Twa, David D W; Squair, Jordan W; Skinnider, Michael A; Ji, Jennifer X

    2015-11-03

    Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHR's mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the program's cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research.

  13. The Chemistry of Early Self-Replicating Systems

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.

    1996-01-01

    The NASA Specialized Center of Research and Training (NSCORT) in Exobiology is a consortium of scientists at the University of California at San Diego (UCSD), The Salk Institute for Biological Studies (Salk) and The Scripps Research Institute (TSRI). All three institutions are located in close geographical proximity in La Jolla, California. The NSCORT/Exobiology is administered through the Scripps Institution of Oceanography. Since its inception in January 1992, the NSCORT in Exobiology has made major contributions with respect to the question of how life began on Earth. The Principal Investigators (PIs) and their associated Fellows have published numerous articles in peer reviewed journals on topics relevant to Exobiology. They have presented papers and sponsored symposia at several meetings of national and international scientific societies. A total of 30 undergraduate, 12 graduate and 15 postdoctoral Fellows have been supported by the NSCORT. The Fellows have met on their own at least once a month to discuss Exobiology topics and research progress. The NSCORT has arranged seminars and evening discussion meetings, and offered an undergraduate class on "Biochemical Evolution" as well as graduate courses dealing with topics in Exobiology. A visiting scientist program has allowed 11 scientists from the U.S. and 4 foreign countries to conduct cooperative research with the various PIs. An active outreach program has been initiated, which includes an Exobiology high school level teaching module and curriculum guide, and an elementary school level booklet about basic atomic structure and formation of the universe, Sun and Earth. A World Wide Web Homepage (http://www-chem.ucsd.edu/-nscort/ NSCORT.html) has been developed, which describes the NSCORT activities, research programs and Fellowship opportunities. The various activities of the NSCORT in Exobiology have received wide-spread coverage in both the scientific and public media. The major function of the NSCORT is the training of young scientists in the field of Exo- biology. Thus, the bulk of the $1,000,000 annual budget is used to support the research and training of undergraduate, graduate and post-doctoral Fellows who are selected on a competitive basis. About five Fellows at each level are supported each year. Our goal is to train scientists whose major research interest is Exobiology, but whose mastery in the classical fields of chemistry, biology and earth science is so strong that they outstanding candidates for either graduate school or academic tenure-track positions in departments at leading national and international Universities. Applicants for these Fellowships are solicited by advertisements in journals such as Science and Nature and in organizational newsletters such as the one published by the International Society for the Study of the Origin of Life (ISSOL), by contacting academic and NASA colleagues working in Exobiology or related fields and by recruiting students who have already been admitted into the various academic programs with which the PIs are affiliated.

  14. Dark Skies Awareness Programs for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  15. Advancing Pre-college Science and Mathematics Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Rick

    With support from the US Department of Energy, Office of Science, Fusion Energy Sciences, and General Atomics, an educational and outreach program primarily for grades G6-G13 was developed using the basic science of plasma and fusion as the content foundation. The program period was 1994 - 2015 and provided many students and teachers unique experiences such as a visit to the DIII-D National Fusion Facility to tour the nation’s premiere tokamak facility or to interact with interesting and informative demonstration equipment and have the opportunity to increase their understanding of a wide range of scientific content, including states of matter,more » the electromagnetic spectrum, radiation & radioactivity, and much more. Engaging activities were developed for classroom-size audiences, many made by teachers in Build-it Day workshops. Scientist and engineer team members visited classrooms, participated in science expositions, held workshops, produced informational handouts in paper, video, online, and gaming-CD format. Participants could interact with team members from different institutions and countries and gain a wider view of the world of science and engineering educational and career possibilities. In addition, multiple science stage shows were presented to audiences of up to 700 persons in a formal theatre setting over a several day period at Science & Technology Education Partnership (STEP) Conferences. Annually repeated participation by team members in various classroom and public venue events allowed for the development of excellent interactive skills when working with students, teachers, and educational administrative staff members. We believe this program has had a positive impact in science understanding and the role of the Department of Energy in fusion research on thousands of students, teachers, and members of the general public through various interactive venues.« less

  16. Visiting Mom: A pilot evaluation of a prison-based visiting program serving incarcerated mothers and their minor children

    PubMed Central

    Schubert, Erin C.; Duininck, Megan; Shlafer, Rebecca J.

    2016-01-01

    We describe an evaluation of a prison visiting program, Extended Visiting (EV), for incarcerated mothers and their children. Mothers (N = 24) and caregivers (N = 19) were interviewed regarding experiences with the program. Mothers identified benefits including maintaining a relationship with children, physical contact, motivation, privacy, peer support, and personal growth. Caregivers echoed mothers’ appreciation for the opportunity to maintain mother-child relationships and physical contact. Mothers identified barriers including desire for overnight visits and more age-appropriate activities. Caregivers perceived travel time and costs and children’s adverse reactions as barriers. When comparing EV to typical visiting, participants unanimously preferred EV. PMID:27867281

  17. LiMPETS: Scientists Contributions to Coastal Protection Program for Youth

    NASA Astrophysics Data System (ADS)

    Saltzman, J.; Osborn, D. A.

    2004-12-01

    In the West Coast National Marine Sanctuaries' LiMPETS (Long-term Monitoring Experiential Training for Students), scientists have partnered with local sanctuaries to develop an educational and scientifically-based monitoring program. With different levels of commitment and interest, scientists have contributed to developing protocols that youth can successfully use to monitor coastal habitats. LiMPETS was developed to address the gap in marine science education for high school students. The team of sanctuary educators together with local scientists collaborate and compromise to develop scientifically accurate and meaningful monitoring projects. By crossing the border between scientists and educators, LiMPETS has become a rich program which provides to teachers professional development, monitoring equipment, an online database, and field support. In the Sandy Beach Monitoring Project, we called on an expert on the sand crab Emerita analoga to help us modify the protocols that she uses to monitor crabs regularly. This scientist brings inspiration to teachers at teacher workshops by explaining how the student monitoring compliments her research. The Rocky Intertidal Monitoring Project was developed by scientists at University of California at Santa Cruz with the intention of passing on this project to an informal learning center. After receiving California Sea Grant funding, the protocols used for over 30 years with undergraduates were modified for middle and high school students. With the help of teachers, classroom activities were developed to train students for fieldwork. The online database was envisioned by the scientists to house the historical data from undergraduate students while growing with new data collected middle and high school students. The support of scientists in this program has been crucial to develop a meaningful program for both youth and resource managers. The hours that a scientist contributes to this program may be minimal, a weeklong workshop or even a part-time job. The framework of resource protection agencies partnering with scientists can be replicated to monitor other natural habitats. Through LiMPETS, scientists are helping to develop scientifically literate youth who are engaged in environmental monitoring.

  18. Clinician-scientist trainee: a German perspective.

    PubMed

    Bossé, Dominick; Milger, Katrin; Morty, Rory E

    2011-12-01

    Clinician-scientists are particularly well positioned to bring basic science findings to the patient's bedside; the ultimate objective of basic research in the health sciences. Concerns have recently been raised about the decreasing workforce of clinician-scientists in both the United States of America and in Canada; however, little is known about clinician-scientists elsewhere around the globe. The purpose of this article is two-fold: 1) to feature clinician-scientist training in Germany; and 2) to provide a comparison with the Canadian system. In a question/answer interview, Rory E. Morty, director of a leading clinician-scientist training program in Germany, and Katrin Milger, a physician and graduate from that program, draw a picture of clinician-scientist training and career opportunities in Germany, outlining the place of clinician-scientists in the German medical system, the advantages and drawbacks of this training, and government initiatives to promote training and career development of clinician-scientists. The interview is followed by a discussion comparing the German and Canadian clinician-scientist development programs, focusing on barriers to trainee recruitment and career progress, and efforts to eliminate the barriers encountered along this very demanding but also very rewarding career path.

  19. Skylab

    NASA Image and Video Library

    1972-06-02

    Berkley, California high school student, Jeanne L. Leventhal, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; and Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew during a tour of MSFC. Leventhal was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  20. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessmentmore » resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.« less

  1. KSC-2011-3921

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  2. KSC-2011-3927

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  3. KSC-2011-3930

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- The two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, are atop test stands in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  4. KSC-2011-3926

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  5. KSC-2011-3923

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians lower one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  6. KSC-2011-3929

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- The two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, are atop test stands in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  7. KSC-2011-3925

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  8. KSC-2011-3922

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  9. KSC-2011-3928

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians lower one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  10. Outreach to Underrepresented Groups in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Zwicker, A.; Ortiz, D.; Greco, S. L.

    2017-10-01

    Physics, and specifically plasma physics, has a recruitment and retention problem for women and historically underrepresented minorities at all levels of their academic careers. For example, women make up approximately 8% of the APS-DPP membership while making up 13% of APS membership at large. In this presentation, we describe outreach activities we have undertaken targeting retention of these groups after their undergraduate careers. These include: Targeted recruitment visits for undergraduate research internships, as well as plasma physics workshops aimed at undergraduate women in physics, faculty members of minority serving institutions, and underrepresented undergraduates. After the first year of implementation, we have already seen results, including students reached through these programs participating in SULI undergraduate internships at PPPL. This work was support by a Grant from the DOE Office of Workforce Development for Teachers and Scientists (WDTS).

  11. The International Space Station: A National Laboratory

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2012-01-01

    After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.

  12. Using social media to quantify nature-based tourism and recreation

    PubMed Central

    Wood, Spencer A.; Guerry, Anne D.; Silver, Jessica M.; Lacayo, Martin

    2013-01-01

    Scientists have traditionally studied recreation in nature by conducting surveys at entrances to major attractions such as national parks. This method is expensive and provides limited spatial and temporal coverage. A new source of information is available from online social media websites such as flickr. Here, we test whether this source of “big data” can be used to approximate visitation rates. We use the locations of photographs in flickr to estimate visitation rates at 836 recreational sites around the world, and use information from the profiles of the photographers to derive travelers' origins. We compare these estimates to empirical data at each site and conclude that the crowd-sourced information can indeed serve as a reliable proxy for empirical visitation rates. This new approach offers opportunities to understand which elements of nature attract people to locations around the globe, and whether changes in ecosystems will alter visitation rates. PMID:24131963

  13. The Worker Exposure Failure Modes and Effects Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee C. Cadwallader

    2004-09-01

    This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchange has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries,more » and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working Group are also discussed.« less

  14. Activities of the US-Japan Safety Monitor Joint Working Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard L. Savercool; Lee C. Cadwallader

    2004-09-01

    This paper documents the activities of the US-Japan exchange in the area of personnel safety at magnetic and laser fusion experiments. A near-miss event with a visiting scientist to the US in 1992 was the impetus for forming the Joint Working Group on Fusion Safety. This exchnge has been under way for over ten years and has provided many safety insights for both US and Japanese facility personnel at national institutes and at universities. The background and activities of the Joint Working Group are described, including the facilities that have been visited for safety walkthroughs, the participants from both countries,more » and the main safety issues examined during visits. Based on these visits, some operational safety ideas to enhance experiment safety are given. The near-term future plans of the Safety Monitor Joint Working group are also discussed.« less

  15. Using social media to quantify nature-based tourism and recreation.

    PubMed

    Wood, Spencer A; Guerry, Anne D; Silver, Jessica M; Lacayo, Martin

    2013-10-17

    Scientists have traditionally studied recreation in nature by conducting surveys at entrances to major attractions such as national parks. This method is expensive and provides limited spatial and temporal coverage. A new source of information is available from online social media websites such as flickr. Here, we test whether this source of "big data" can be used to approximate visitation rates. We use the locations of photographs in flickr to estimate visitation rates at 836 recreational sites around the world, and use information from the profiles of the photographers to derive travelers' origins. We compare these estimates to empirical data at each site and conclude that the crowd-sourced information can indeed serve as a reliable proxy for empirical visitation rates. This new approach offers opportunities to understand which elements of nature attract people to locations around the globe, and whether changes in ecosystems will alter visitation rates.

  16. Building sustained partnerships in Greenland through shared science

    NASA Astrophysics Data System (ADS)

    Culler, L. E.; Albert, M. R.; Ayres, M. P.; Grenoble, L. A.; Virginia, R. A.

    2013-12-01

    Greenland is a hotspot for polar environmental change research due to rapidly changing physical and ecological conditions. Hundreds of international scientists visit the island each year to carry out research on diverse topics ranging from atmospheric chemistry to ice sheet dynamics to Arctic ecology. Despite the strong links between scientific, social, and political issues of rapid environmental change in Greenland, communication with residents of Greenland is often neglected by researchers. Reasons include language barriers, difficulties identifying pathways for communication, balancing research and outreach with limited resources, and limited social and cultural knowledge about Greenland by scientists. Dartmouth College has a legacy of work in the Polar Regions. In recent years, a National Science Foundation (NSF) Integrative Graduate Education and Research Traineeship (IGERT) in Polar Environmental Change funded training for 25 Ph.D. students in the Ecology, Earth Science, and Engineering graduate programs at Dartmouth. An overarching goal of this program is science communication between these disciplines and to diverse audiences, including communicating about rapid environmental change with students, residents, and the government of Greenland. Students and faculty in IGERT have been involved in the process of engaging with and sustaining partnerships in Greenland that support shared cultural and educational experiences. We have done this in three ways. First, a key component of our program has been hosting students from Ilisimatusarfik (the University of Greenland). Since 2009, five Greenlandic students have come to Dartmouth and formed personal connections with Dartmouth students while introducing their Greenlandic culture and language (Kalaallisut). Second, we have used our resources to extend our visits to Greenland, which has allowed time to engage with the community in several ways, including sharing our science via oral and poster presentations at Katuaq (cultural center in Nuuk) and being interviewed for a program that was broadcasted on Kalaallit Nunaat Radio. Third, students in the IGERT program have participated in Arctic science and educational initiatives by the Joint Committee, an international high-level government forum that promotes interactions between government, academic, and private institutions in Greenland, Denmark, and the U.S. Graduate students worked with high-school students and teachers from Greenland, Denmark, and the U.S. during the Joint Committee's scientific field school based in Kangerlussuaq, Greenland. We attribute our success in building sustained partnerships to allocating resources for cultural and social connections, working with the Joint Committee, maintaining connections with Greenlandic students, creative and collaborative approaches to communication, and connecting young researchers with high school students. Furthermore, our approach has been to participate in a conversation with Greenlanders rather than simply sharing our science and ideas. This has improved our communication skills and is helping our science become more accessible and relevant to the needs and interests of Greenland.

  17. 76 FR 12978 - Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... Administration for Children and Families Advisory Committee on the Maternal, Infant and Early Childhood Home...: Advisory Committee on the Maternal, Infant and Early Childhood Home Visiting Program Evaluation. Date and... and Early Childhood Home Visiting Program Evaluation will meet for its first session on Wednesday...

  18. The Value of Participating Scientists on NASA Planetary Missions

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Aye, Klaus-Michael; Baines, Kevin; Bland, Michael T.; Blewett, David T.; Brandt, Pontus; Diniega, Serina; Feaga, Lori M.; Johnson, Jeffrey R.; Y McSween, Harry; Neal, Clive; Paty, Carol S.; Rathbun, Julie A.; Schmidt, Britney E.

    2016-10-01

    NASA has a long history of supporting Participating Scientists on its planetary missions. On behalf of the NASA Planetary Assessment/Analysis Groups (OPAG, MEPAG, VEXAG, SBAG, LEAG and CAPTEM), we are conducting a study about the value of Participating Scientist programs on NASA planetary missions, and how the usefulness of such programs might be maximized.Inputs were gathered via a community survey, which asked for opinions about the value generated by the Participating Scientist programs (we included Guest Investigators and Interdisciplinary Scientists as part of this designation), and for the experiences of those who've held such positions. Perceptions about Participating Scientist programs were sought from the entire community, regardless of whether someone had served as a Participating Scientist or not. This survey was distributed via the Planetary Exploration Newsletter, the Planetary News Digest, the DPS weekly mailing, and the mailing lists for each of the Assessment/Analysis Groups. At the time of abstract submission, over 185 community members have responded, giving input on more than 20 missions flown over three decades. Early results indicate that the majority of respondents feel that Participating Scientist programs represent significant added value for NASA planetary missions, increasing the science return and enhancing mission team diversity in a number of ways. A second survey was prepared for input from mission leaders such as Principal Investigators and Project Scientists.Full results of this survey will be presented, along with recommendations for how NASA may wish to enhance Participating Scientist opportunities into its future missions. The output of the study will be a white paper, which will be delivered to NASA and made available to the science community and other interested groups.

  19. Meet EPA Exposure Scientist and National Program Director Dr. Tina Bahadori

    EPA Pesticide Factsheets

    Dr. Tina Bahadori leads EPA's Chemical Safety for Sustainability research program. She is an exposure scientist with extensive expertise developing and managing research programs that integrate exposure with health sciences.

  20. Theory! The Missing Link in Understanding the Performance of Neonate/Infant Home-Visiting Programs to Prevent Child Maltreatment: A Systematic Review

    PubMed Central

    Segal, Leonie; Sara Opie, Rachelle; Dalziel, Kim

    2012-01-01

    Context Home-visiting programs have been offered for more than sixty years to at-risk families of newborns and infants. But despite decades of experience with program delivery, more than sixty published controlled trials, and more than thirty published literature reviews, there is still uncertainty surrounding the performance of these programs. Our particular interest was the performance of home visiting in reducing child maltreatment. Methods We developed a program logic framework to assist in understanding the neonate/infant home-visiting literature, identified through a systematic literature review. We tested whether success could be explained by the logic model using descriptive synthesis and statistical analysis. Findings Having a stated objective of reducing child maltreatment—a theory or mechanism of change underpinning the home-visiting program consistent with the target population and their needs and program components that can deliver against the nominated theory of change—considerably increased the chance of success. We found that only seven of fifty-three programs demonstrated such consistency, all of which had a statistically significant positive outcome, whereas of the fifteen that had no match, none was successful. Programs with a partial match had an intermediate success rate. The relationship between program success and full, partial or no match was statistically significant. Conclusions Employing a theory-driven approach provides a new way of understanding the disparate performance of neonate/infant home-visiting programs. Employing a similar theory-driven approach could also prove useful in the review of other programs that embody a diverse set of characteristics and may apply to diverse populations and settings. A program logic framework provides a rigorous approach to deriving policy-relevant meaning from effectiveness evidence of complex programs. For neonate/infant home-visiting programs, it means that in developing these programs, attention to consistency of objectives, theory of change, target population, and program components is critical. PMID:22428693

  1. Theory! The missing link in understanding the performance of neonate/infant home-visiting programs to prevent child maltreatment: a systematic review.

    PubMed

    Segal, Leonie; Sara Opie, Rachelle; Dalziel, Kim

    2012-03-01

    Home-visiting programs have been offered for more than sixty years to at-risk families of newborns and infants. But despite decades of experience with program delivery, more than sixty published controlled trials, and more than thirty published literature reviews, there is still uncertainty surrounding the performance of these programs. Our particular interest was the performance of home visiting in reducing child maltreatment. We developed a program logic framework to assist in understanding the neonate/infant home-visiting literature, identified through a systematic literature review. We tested whether success could be explained by the logic model using descriptive synthesis and statistical analysis. Having a stated objective of reducing child maltreatment-a theory or mechanism of change underpinning the home-visiting program consistent with the target population and their needs and program components that can deliver against the nominated theory of change-considerably increased the chance of success. We found that only seven of fifty-three programs demonstrated such consistency, all of which had a statistically significant positive outcome, whereas of the fifteen that had no match, none was successful. Programs with a partial match had an intermediate success rate. The relationship between program success and full, partial or no match was statistically significant. Employing a theory-driven approach provides a new way of understanding the disparate performance of neonate/infant home-visiting programs. Employing a similar theory-driven approach could also prove useful in the review of other programs that embody a diverse set of characteristics and may apply to diverse populations and settings. A program logic framework provides a rigorous approach to deriving policy-relevant meaning from effectiveness evidence of complex programs. For neonate/infant home-visiting programs, it means that in developing these programs, attention to consistency of objectives, theory of change, target population, and program components is critical. © 2012 Milbank Memorial Fund.

  2. Cosmic Origins: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2003-12-01

    The Space Science Institute of Boulder, Colorado, is developing a 3,000 square-foot traveling exhibition, called Cosmic Origins, which will bring origins-related research and discoveries to students and the American public. Cosmic Origins will have three interrelated exhibit areas: Star Formation, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists' use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. Exhibit content will address age-old questions that form the basis of NASA's Origins and Astrobiology programs: Where did we come from? Are we alone? In addition to the exhibit, our project will include workshops for educators and docents at host sites, as well as a public Web site that will use a virtual rendering of exhibit content. The exhibit's size will permit it to visit medium sized museums in underserved regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005. A second 3-year tour is also planned for 2008. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. Current partners in the Cosmic Origins project include ASTC, the Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (e.g. PlanetQuest, SIRTF, and Kepler), New York Hall of Science, the SETI Institute, and the Space Telescope Science Institute. The exhibition is supported by grants from NSF and NASA. This report will focus on the Planet Quest part of the exhibition.

  3. Alien Earths: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2004-05-01

    Where did we come from? Are we alone? These age-old questions form the basis of NASA's Origins Program, a series of missions spanning the next twenty years that will use a host of space- and ground-based observatories to understand the origin and development of galaxies, stars, planets, and the conditions necessary to support life. The Space Science Institute in Boulder, CO, is developing a 3,000 square-foot traveling exhibition, called Alien Earths, which will bring origins-related research and discoveries to students and the American public. Alien Earths will have four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. The exhibit's size will permit it to visit medium sized museums in all regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005 at the Lawrence Hall of Science in Berkeley, California. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. In addition to the exhibit, the project includes workshops for educators and docents at host sites, as well as a public website that will use exhibit content to delve deeper into origins research. Current partners in the Alien Earths project include ASTC, Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (Navigator, SIRTF, and Kepler), the SETI Institute, and the Space Telescope Science Institute. (Supported by grants from NSF and NASA)

  4. Highlighting Your Science to NASA

    NASA Astrophysics Data System (ADS)

    Sharkey, C.

    2003-12-01

    An effort is underway to provide greater visibility within NASA headquarters, and to those who provide funding to NASA, of the outstanding work that is being performed by scientists involved in the Solar System Exploration Research and Analysis Programs, most of whom are DPS members. In support of this effort, a new feature has been developed for the NASA Headquarters Solar System Exploration Division web site whereby researchers can provide a synopsis of their current research results. The site (http://solarsystem.nasa.gov/spotlight/ - Username: your email address Password: sse) is an online submission area where NASA-funded scientists can upload the results of their research. There they provide their contact information, briefly describe their research, and upload any associated images or graphics. The information is available to a limited number of reviewers and writers at JPL. Each month, one researcher's work will be chosen as a science spotlight. After a writer interviews the scientist, a brief Power Point presentation that encapsulates their work will be given to Dr. Colleen Hartman at NASA headquarters. She will then present the exciting findings to Associate Administrator for Space Science, Dr. Ed Weiler. The information from some of these highlights can serve as a basis to bring Principal Investigators to NASA Headquarters for exposure to media through Space Science Updates on NASA television. In addition, the science results may also be incorporated into briefing material for the Office of Management and Budget and congressional staffers. Some spotlights will also be converted into feature stories for the Solar System Exploration website so the public, too, can learn about exciting new research. The site, http://solarsystem.nasa.gov/, is one of NASA's most visited. Over the past decade, there has been a trend of flat budgets for Research and Analysis activities. By giving more visibility to results of Solar System research, our goal is to encourage higher program funding levels from Congress and demonstrate the relevance of NASA research to the American public in general.

  5. New Tech Measures Artery Health: Engevity Cuff

    ScienceCinema

    Maltz, Jonathan

    2018-05-22

    Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.

  6. New Tech Measures Artery Health: Engevity Cuff

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltz, Jonathan

    2016-05-19

    Jonathan Maltz, a Berkeley Lab scientist in the Molecular Biophysics and Integrated Bioimaging division, explains a new technology developed at Berkeley Lab that could soon make detecting the process of plaque buildup in vessels a routine part of a visit to the doctor and, perhaps, home healthcare settings.

  7. Understanding the challenges of integrating scientists and clinical teachers in psychiatry education: findings from an innovative faculty development program.

    PubMed

    Martimianakis, Maria Athina Tina; Hodges, Brian D; Wasylenki, Donald

    2009-01-01

    Medical schools and departments of psychiatry around the world face challenges in integrating science with clinical teaching. This project was designed to identify attitudes toward the integration of science in clinical teaching and address barriers to collaboration between scientists and clinical teachers. The authors explored the interactions of 20 faculty members (10 scientists and 10 clinical teachers) taking part in a 1-year structured faculty development program, based on a partnership model, designed to encourage collaborative interaction between scientists and clinical teachers. Data were collected before, during, and after the program using participant observations, surveys, participant diaries, and focus groups. Qualitative data were analyzed iteratively using the method of meaning condensation, and further informed with descriptive statistics generated from the pre- and postsurveys. Scientists and clinicians were strikingly unfamiliar with each other's worldviews, work experiences, professional expectations, and approaches to teaching. The partnership model appeared to influence integration at a social level, and led to the identification of departmental structural barriers that aggravate the divide between scientists and clinical teachers. Issues related to the integration of social scientists in particular emerged. Creating a formal program to encourage interaction of scientists and clinical teachers provided a forum for identifying some of the barriers associated with the collaboration of scientists and clinical teachers. Our data point to directions for organizational structures and faculty development that support the integration of scientists from a wide range of disciplines with their clinical faculty colleagues.

  8. GO-FAAR Program | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  9. Climate and Global Change: Programs and Services Reaching Public and K-12 Audiences at a National Research Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Eastburn, T.; Munoz, R.; Lu, G.; Ammann, C.

    2004-05-01

    The study of climate and global change is an important on-going focal area for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies, and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year. This is accomplished through the implementation of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to exhibits which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 offers visitors a visually engaging and informative overview of information, graphics, artifacts, and interactives describing the Earth system's dynamic processes that contribute to and mediate climate change, the history of our planet's changing climate, and perspectives on geographic locations and societies around the world that have potential to be impacted by a changing climate. Climate Futures, an addition to this exhibit to open in the summer of 2004, will help visitors to understand why scientists seek to model the global climate system and how information about past and current climate are used to validate models and build scenarios for Earth's future climate, while clarifying the effects of natural and human-induced contributions to these predictions. UCAR-EO further strives to enhance public understanding and to dispel misconceptions about climate change by bringing scientists' explanations to visitors who learn about atmospheric sciences while on staff-guided tours and/or while using an audiotour developed in 2003 with a grant from the National Science Foundation. With advanced reservations, a limited number of visitors may experience demonstrations of climate models in the NCAR Visualization Laboratory. An instructional module for approximately 5,000 visiting school children and a teachers guide for the Climate Discovery Exhibit is in the development and field testing phase with a goal to promote interest in and understanding of how climate change studies align with K-12 science standards. Over the next year, much of the content will become available to national audiences via the new NCAR EO web site (www.ncar.ucar.edu/eo), UCAR-EO's summer teachers workshops, and sessions at the National Science Teacher Association meetings.

  10. Hawaii's Annual Journey Through the Universe Program

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Daou, D.; Day, B.; Slater, T. F.; Slater, S. J.

    2012-08-01

    Hawaii's annual Journey through the Universe program is a flagship Gemini public education and outreach event that engages the public, teachers, astronomers, engineers, thousands of local students and staff from all of the Mauna Kea Observatories. The program inspires, educates, and engages teachers, students, and their families as well as the community. From February 10-18, 2011, fifty-one astronomy educators from observatories on Mauna Kea and across the world visited over 6,500 students in 310 classrooms at 18 schools. Two family science events were held for over 2,500 people at the 'Imiloa Astronomy Education Center and the University of Hawaii at Hilo. The local Chamber of Commerce(s) held an appreciation celebration for the astronomers attended by over 170 members from the local government and business community. Now going into its eighth year in Hawaii, the 2012 Journey Through the Universe program will continue working with the observatories on Mauna Kea and with the NASA Lunar Science Institute (NLSI). As a new partner in our Journey program, NLSI will join the Journey team (Janice Harvey, Gemini Observatory, Journey Team Leader) and give an overview of the successes and future developments of this remarkable program and its growth. The future of America rests on our ability to train the next generation of scientists and engineers. Science education is key and Journey through the Universe opens the doors of scientific discovery for our students. www.gemini.edu/journey

  11. Preventing child maltreatment: Examination of an established statewide home-visiting program.

    PubMed

    Chaiyachati, Barbara H; Gaither, Julie R; Hughes, Marcia; Foley-Schain, Karen; Leventhal, John M

    2018-05-01

    Although home visiting has been used in many populations in prevention efforts, the impact of scaled-up home-visiting programs on abuse and neglect remains unclear. The objective of this study was to assess the impact of voluntary participation in an established statewide home-visiting program for socially high-risk families on child maltreatment as identified by Child Protective Services (CPS). Propensity score matching was used to compare socially high-risk families with a child born between January 1, 2008 and December 31, 2011 who participated in Connecticut's home-visiting program for first-time mothers and a comparison cohort of families who were eligible for the home-visiting program but did not participate. The main outcomes were child maltreatment investigations, substantiations, and out-of-home placements by CPS between January 1, 2008 and December 31, 2013. In the unmatched sample, families who participated in home-visiting had significantly higher median risk scores (P < .001). After matching families on measured confounders, the percentages of families with CPS investigations (21.1% vs. 20.9%, P = .86) were similar between the two groups. However, there was a 22% decreased likelihood of CPS substantiations (hazard ratio [HR] 0.78, 95% confidence interval [CI] 0.64-0.95) for families receiving home visiting. First substantiations also occurred later in the child's life among home-visited families. There was a trend toward decreased out-of-home placement (HR 0.73, 95% CI 0.53-1.02, P = .06). These results from a scaled-up statewide program highlight the potential of home visiting as an important approach to preventing child abuse and neglect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Crisis Nursery and Respite Care Programs: Site Visit Results of Staff and Family Interviews (Winter and Spring of 1991).

    ERIC Educational Resources Information Center

    Huntington, Gail S.; And Others

    Visits were made to selected respite care and crisis nursery programs in order to describe the programs and services they offered to families of young children with special needs and to learn more about the families who used the services and the staff who provided them. The visits to 10 crisis nurseries and 24 respite care programs resulted in…

  13. The disease management approach to cost containment.

    PubMed

    Goldstein, R

    1998-01-01

    Disease management has been around a long time, certainly since Pasteur. Its initial focus was to eliminate or contain epidemics. In the 20th century, American public health scientists and officials have used disease management to address a high-risk, often poor population. Currently, the population-based principles of disease management, including disease prevention activities, are being applied to noninfectious diseases. Two examples of public health disease prevention strategies are vaccinations and chlorination of water. Hospitals are now providing post-hospital disease management programs for selected chronic conditions that account for a high volume of repeat admissions or emergency department visits, such as chronic heart failure, asthma, and cancer. In other words, hospitals are spending money on a program that, if done right, will reduce their inpatient revenues. They are doing so for various reasons (e.g., because they have established at-risk financial partnerships with their physicians, or possibly because other area hospitals are doing it, or possibly because they want to keep the ancillaries [x-rays, laboratory, pharmacy, ambulatory surgery, etc]). Regardless of the reasons, hospital case managers will be charged with referring qualified patients to both hospital-based and provider-based disease management programs.

  14. a History of Funding for WOMEN’S Programs at the National Science Foundation: from Individual Powre Approaches to the Advance of Institutional Approaches

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Lane, Eliesh O'neil

    The biennial reports on women, minorities, and persons with disabilities produced by the National Science Foundation (NSF) because of congressional mandate laid the statistical foundation for NSF initiatives to redress the underrepresentation of these groups. Programs established in the 1980s such as Research Opportunities for Women, Visiting Professorships for Women, Graduate Fellowships for Women, and Career Advancement Awards provided support to individual women for their research. In the 1990s, the NSF also began to focus on systemic initiatives, creating the Program for Women and Girls, although it continued to address the problem through support of individual researchers in the newly created Professional Opportunities for Women in Research and Education (POWRE) initiative. The responses from more than 400 awardees during the 4 years of POWRE provide insights into the current issues these women perceive surrounding their grants, funding, and interactions with NSF bureaucracy and staff members. The results of the POWRE survey support the institutional, systemic thrust of the NSF’s new ADVANCE initiative to attempt to solve problems such as balancing career and family that cannot be addressed solely by supporting research projects of individual female scientists and engineers.

  15. An emergency room decision-support program that increased physician office visits, decreased emergency room visits, and saved money.

    PubMed

    Navratil-Strawn, Jessica L; Hawkins, Kevin; Wells, Timothy S; Ozminkowski, Ronald J; Hartley, Stephen K; Migliori, Richard J; Yeh, Charlotte S

    2014-10-01

    The objective of this study was to evaluate an Emergency Room having a Decision-Support (ERDS) program designed to appropriately reduce ER use among frequent users, defined as 3 or more visits within a 12-month period. To achieve this, adults with an AARP Medicare Supplement Insurance plan insured by UnitedHealthcare Insurance Company (for New York residents, UnitedHealthcare Insurance Company of New York) were eligible to participate in the program. These included 7070 individuals who elected to enroll in the ERDS program and an equal number of matched nonparticipants who were eligible but either declined or were unreachable. Program-related benefits were estimated by comparing the difference in downstream health care utilization and expenditures between engaged and not engaged individuals after using propensity score matching to adjust for case mix differences between these groups. As a result, compared with the not engaged, engaged individuals experienced better care coordination, evidenced by a greater reduction in ER visits (P=0.033) and hospital admissions (P=0.002) and an increase in office visits (P<0.001). The program was cost-effective, with a return on investment (ROI) of 1.24, which was calculated by dividing the total program savings ($3.41 million) by the total program costs ($2.75 million). The ROI implies that for every dollar invested in this program, $1.24 was saved, most of which was for the federal Medicare program. In conclusion, the decrease in ER visits and hospital admissions and the increase in office visits may indicate the program helped individuals to seek the appropriate levels of care.

  16. My Most Memorial Meeting - The June, 1997, San Diego Meeting

    NASA Astrophysics Data System (ADS)

    Philip, A. G. Davis

    1999-05-01

    At the June, 1997 AAS meeting in San Diego I arranged a topical session on the Shapley Visiting Lectureships Program. There were poster papers and speakers from the early days of the program, going back to the Visiting Lectureships Program of the AAS. Then the three past directors and the present director described their activities in running the program from 1979 to 1997. We had other speakers who described their many visits to institutions over the years and representatives from two institutions which had received many visits. This session provided much interesting information about the Shapley Program and its history. At the end of the program several people pledged, and then gave, a substantial sum to the Shapley Endowment Fund. Because of all these events and happenings, the San Diego Meeting was a highlight meeting for me. A second meeting with significance to the Shapley Program was the June, 1996 meeting in Madison, Wisconsin. At this meeting certificates were awarded to 31 lecturers who had made 15 or more Shapley visits and 18 lecturers who had made 25 or more visits. A dinner was held at which those lecturers in these two groups who were present at the meeting were personally awarded their certificates. The remaining certificates were mailed after the meeting. The success of the Shapley Program is directly related to the devotion of its group of lecturers who spend considerable time and effort in making the two day visits to host institutions.

  17. Strengthening education in human values - The Link between Recycling and Climate Change

    NASA Astrophysics Data System (ADS)

    Kastanidou, Sofia

    2014-05-01

    This work is an environmental education program of 50 hours- off curriculum, currently run by High school of Nikaia - Larissas. I as coordinator teacher, another two teachers and 24 students participate in this program. Intended learning outcomes: students will be able to define the importance of climate change, to evaluate the effect of human activities on climate, and to recognize the role of recycling in preventing global climate change. It is an environmental program with social goals. That means students have to understand the link between human and environment and learn how to combine environmental protection with human help. As a consequence collaboration has already begun between High school of Nikaia and the Paraplegic & Physically Disabled Association of Pella-Greece. This is a nonprofit association that collects plastic caps; with the contribution of a recycling company the Paraplegic Association converts plastic caps in wheelchairs and gives them to needy families. So, recycling caps becomes a meaningful form of environmental and social activism. Students are educated about the meaning of recycling and encouraged to collect all types of plastic caps; they are also educated in the meaning of helping people. Further, this environmental education program consists of two parts, a theoretical and a practical one: a) Theoretical part: education is an essential element of the global response to climate change, so students have to research on climate change; they visit the Center for Environmental Education in Florina and experience the aquatic ecosystem of Prespa lakes; specialists of the Centre inform students about the effects of climate change on wetlands; students have further to research how recycling can help fight global climate change as well as examine how recycling a key component of modern waste reduction is, as the third component of the "Reduce, Reuse, Recycle" waste hierarchy; they discover the interdependence of society, economy and the natural environment; they visit the City Cleaning-Recycling Services; scientists visit our school and engage students in the climate change issue; students are educated in developing ecological consciousness paths to a sustainable future. b) Practical part: students use recycled materials to build containers where everyone can put the plastic caps; they decorate containers with other recyclable materials such as magazine clippings, ribbons etc.; students are encouraged to contact local organizations (municipality, post office, and banks), sports clubs and shops, to inform people about their action and to put the containers for plastic caps in the place they work or in their houses; they collect plastic caps frequently at school; at the end of the environmental education program all the students visit Paraplegic & Physically Disabled Association in Pella-Yannitsa and deliver the collected caps. We hope that students will leave the program with new skills, experiences and knowledge that can be used to help themselves, their communities, their environment and future generations. "Our changing planet - our changing society for a better future".

  18. Who Drops out of Early Head Start Home Visiting Programs?

    ERIC Educational Resources Information Center

    Roggman, Lori A.; Cook, Gina A.; Peterson, Carla A.; Raikes, Helen H.

    2008-01-01

    Research Findings: Early Head Start home-based programs provide services through weekly home visits to families with children up to age 3, but families vary in how long they remain enrolled. In this study of 564 families in home-based Early Head Start programs, "dropping out" was predicted by specific variations in home visits and certain family…

  19. Welcome Home and Early Start: An Assessment of Program Quality and Outcomes

    ERIC Educational Resources Information Center

    Daro, Deborah, Howard, Eboni; Tobin, Jennifer; Harden, Allen

    2005-01-01

    Chapin Hall Center for Children at the University of Chicago, in collaboration with Westat Associates, designed and implemented a comprehensive evaluation of the Early Childhood Initiative's (ECI) two home visitation programs: Welcome Home, a universal home visitation program that provides a single home visit to all first-time and teen parents,…

  20. SUMMARY REPORT FOR THE NATIONAL ATMOSPHERIC DEPOSITION PROGRAM/NATIONAL TRENDS NETWORK (NADP/NTN) SITE VISITATION PROGRAM FOR THE PERIOD OCTOBER 1987 THROUGH SEPTEMBER 1988

    EPA Science Inventory

    The U.S Environmental Protection Agency (EPA) provides technical assistance to the NADP/NTN network through a site visitation program. esearch Triangle Institute, as contractor to EPA, conducts these visits. f deficiencies or nonstandard procedures are noted, the site operator an...

  1. Evaluation of a peer assessment approach for enhancing the organizational capacity of state injury prevention programs.

    PubMed

    Hunter, Wanda M; Schmidt, Ellen R; Zakocs, Ronda

    2005-01-01

    To conduct a formative and pilot impact evaluation of the State Technical Assessment Team (STAT) program, a visitation-based (visitatie) peer assessment program designed to enhance the organizational capacity of state health department injury prevention programs. The formative evaluation was based on observational, record review, and key informant interview data collected during the implementation of the first 7 STAT visits. Pilot impact data were derived from semi-structured interviews with state injury prevention personnel one year after the visit. Formative evaluation identified 6 significant implementation problems in the first visits that were addressed by the program planners, resulting in improvements to the STAT assessment protocol. Impact evaluation revealed that after one year, the 7 state injury prevention programs had acted on 81% of the recommendations received during their STAT visits. All programs reported gains in visibility and credibility within the state health department and increased collaboration and cooperation with other units and agencies. Other significant program advancements were also reported. Specific program standards and review procedures are important to the success of peer assessment programs such as STAT. Early impact evaluation suggests that peer assessment protocols using the visitatie model can lead to gains in organizational capacity.

  2. Challenges facing physician scientist trainees: a survey of trainees in Canada's largest undergraduate and postgraduate programs in a single centre.

    PubMed

    Ballios, Brian G; Rosenblum, Norman D

    2014-10-04

    A number of indicators suggest that the physician scientist career track is threatened. As such, it is an opportune time to evaluate current training models. Perspectives on physician scientist education and career path were surveyed in trainees at the University of Toronto, home to Canada's longest standing physician scientist training programs. Trainees from the Clinician Investigator Program (CIP) and MD/PhD Program at the University of Toronto were surveyed. Liekert-style closed-ended questions were used to assess future career goals, present and future perspectives and concerns about and beliefs on training. Demographic information was collected regarding year of study, graduate degree program and focus of clinical and health research. Statistical analysis included non-parametric tests for sub-group comparisons. Both groups of trainees were motivated to pursue a career as a physician scientist. While confident in their decision to begin and complete physician scientist training, they expressed concerns about the level of integration between clinical and research training in the current programs. They also expressed concerns about career outlook, including the ability to find stable and sustainable careers in academic medicine. Trainees highlighted a number of factors, including career mentorship, as essential for career success. These findings indicate that while trainees at different stages consistently express career motivation, they identified concerns that are program- and training stage-specific. These concerns mirror those highlighted in the medical education literature regarding threats to the physician scientist career path. Understanding these different and changing perspectives and exploring those differences could form an important basis for trainee program improvements both nationally and internationally.

  3. NOAO-S EPO Program team | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  4. Nobel Prize Recipient Eric Betzig Presents Lecture on Efforts to Improve High-Resolution Microscopy | Poster

    Cancer.gov

    Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM) in collaboration with scientists at NIH. PALM achieves 10-fold improvement in spatial resolution of cells, going from the resolution limit of approximately 250 nm in standard optical microscopy down to approximately 20 nm, thus producing a so-called “super-resolution” image. Spatial resolution refers to the clarity of an image or, in other words, the smallest details that can be observed from an image.

  5. The AAS Visiting Professor Programs: Three Anniversaries

    NASA Astrophysics Data System (ADS)

    Philip, A. G. Davis

    2003-05-01

    The AAS Program of Visiting Professors was started in 1958 with three astronomers as lecturers. They were Paul Merrill (Mt. Wilson and Palomar Observatories), Seth Nicholson (Mt. Wilson and Palomar Observatories) and Harlow Shapley (Harvard College Observatory). The program was run by a Committee on Visiting Professors from 1958 through 1963. The program was funded by grants from the National Science Foundation. The Executive Officer of the AAS, Paul Routley headed the program from the 1963 - 64 academic year through the 1968 - 69 academic year. Larry Fredrick headed the program for 1969 - 70 and then Hank Gurin headed it through 1973 -74, the last year of the program. At the end of this summer meeting, the combined Visiting Professors Program and the Shapley Program will be starting their 47th year. The Shapley Visiting Lectureships in Astronomy Program was started in the 1974 - 75 academic year under the leadership of Hank Gurin. The original funding came from the Perkin Fund and a three year grant from the Research Corporation. In 1975 the Shapley Endowment fund was set up to help pay the expenses of the program. In 1976 there was support from the Slipher fund which lasted through the 1978 - 79 academic year. From 1979 to the present the program is financed by the Shapley Endowment Fund and by the contributions made by institutions which host the visits. In the fall of 1998 the fee that Institutions pay to the AAS in support of their Shapley visits was reduced from 300 to 250 to make it easier for them to apply for visits. Members of the AAS have made contributions to the program over the years and we are very appreciative of this support. In 1974 there were 42 lecturers in the program, of whom four are still active giving lectures (George Carruthers, Larry Fredrick, Arlo Landolt and Davis Philip). After the summer meeting, the Shapley Program will be embarking on its 30th year. Now there are 82 astronomers in the program and we get from 40 to 60 requests a year. Shapley visits have been made to Canadian institutions since 1976 and to Mexican institutions since 1998. After the summer meeting it will be the start of the 10th year of my directing the program. On May 26 there will be a Shapley Dinner at Dyer Observatory in Nashville for the Shapley lecturers who are attending the AAS meeting and we will celebrate these three anniversaries.

  6. The Plastic Surgery Match: A Quantitative Analysis of Applicant Impressions From the Interview Visit.

    PubMed

    Frojo, Gianfranco; Tadisina, Kashyap Komarraju; Pressman, Zachary; Chibnall, John T; Lin, Alexander Y; Kraemer, Bruce A

    2016-12-01

    The integrated plastic surgery match is a competitive process not only for applicants but also for programs vying for highly qualified candidates. Interactions between applicants and program constituents are limited to a single interview visit. The authors aimed to identify components of the interview visit that influence applicant decision making when determining a final program rank list. Thirty-six applicants who were interviewed (100% response) completed the survey. Applicants rated the importance of 20 elements of the interview visit regarding future ranking of the program on a 1 to 5 Likert scale. Data were analyzed using descriptive statistics, hierarchical cluster analysis, analysis of variance, and Pearson correlations. A literature review was performed regarding the plastic surgery integrated residency interview process. Survey questions were categorized into four groups based on mean survey responses:1. Interactions with faculty and residents (mean response > 4),2. Information about the program (3.5-4),3. Ancillaries (food, amenities, stipends) (3-3.5),4. Hospital tour, hotel (<3).Hierarchical item cluster analysis and analysis of variance testing validated these groupings. Average summary scores were calculated for the items representing Interactions, Information, and Ancillaries. Correlation analysis between clusters yielded no significant correlations. A review of the literature yielded a paucity of data on analysis of the interview visit. The interview visit consists of a discrete hierarchy of perceived importance by applicants. The strongest independent factor in determining future program ranking is the quality of interactions between applicants and program constituents on the interview visit. This calls for further investigation and optimization of the interview visit experience.

  7. Scientist role models in the classroom: how important is gender matching?

    NASA Astrophysics Data System (ADS)

    Conner, Laura D. Carsten; Danielson, Jennifer

    2016-10-01

    Gender-matched role models are often proposed as a mechanism to increase identification with science among girls, with the ultimate aim of broadening participation in science. While there is a great deal of evidence suggesting that role models can be effective, there is mixed support in the literature for the importance of gender matching. We used the Eccles Expectancy Value model as a framework to explore how female science role models impact a suite of factors that might predict future career choice among elementary students. We predicted that impacts of female scientist role models would be more pronounced among girls than among boys, as such role models have the potential to normalise what is often perceived as a gender-deviant role. Using a mixed-methods approach, we found that ideas about scientists, self-concept towards science, and level of science participation changed equally across both genders, contrary to our prediction. Our results suggest that engaging in authentic science and viewing the female scientist as personable were keys to changes among students, rather than gender matching between the role model and student. These results imply that scientists in the schools programmes should focus on preparing the visiting scientists in these areas.

  8. PLASMA PHYSICS AND STATISTICAL MECHANICS IN BRUSSELS, BELGIUM,

    DTIC Science & Technology

    significant research in the theory and experiment of the Tonks-Dattner resonances in a cylindrical plasma column. The second visit was to Professors I ...Prigogine and R. Balescu , of the Faculte des Sciences, Universite Libre de Bruxelles, who together direct a large group of scientists working on all

  9. Solar Photovoltaic Technology Basics | NREL

    Science.gov Websites

    For more information about solar photovoltaic energy, visit the following resources: Solar PV Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the

  10. Rep. Delaney Learns about Breast Cancer Research at NCI at Frederick | Poster

    Cancer.gov

    By Andrea Frydl, Contributing Writer Rep. John Delaney (D-Md., 6th District) visited the NCI Campus at Frederick on October 21 to learn more about the research that scientists at NCI at Frederick are doing on breast cancer. October is Breast Cancer Awareness month.

  11. Use of the emergency department for less-urgent care among type 2 diabetics under a disease management program

    PubMed Central

    2009-01-01

    Background This study analyzed the likelihood of less-urgent emergency department (ED) visits among type 2 diabetic patients receiving care under a diabetes disease management (DM) program offered by the Louisiana State University Health Care Services Division (LSU HCSD). Methods All ED and outpatient clinic visits made by 6,412 type 2 diabetic patients from 1999 to 2006 were extracted from the LSU HCSD Disease Management (DM) Evaluation Database. Patient ED visits were classified as either urgent or less-urgent, and the likelihood of a less-urgent ED visit was compared with outpatient clinic visits using the Generalized Estimating Equation methodology for binary response to time-dependent variables. Results Patients who adhered to regular clinic visit schedules dictated by the DM program were less likely to use the ED for less urgent care with odds ratio of 0.1585. Insured patients had 1.13 to 1.70 greater odds of a less-urgent ED visit than those who were uninsured. Patients with better-managed glycated hemoglobin (A1c or HbA1c) levels were 82 times less likely to use less-urgent ED visits. Furthermore, being older, Caucasian, or a longer participant in the DM program had a modestly lower likelihood of less-urgent ED visits. The patient's Charlson Comorbidity Index (CCI), gender, prior hospitalization, and the admitting facility showed no effect. Conclusion Patients adhering to the DM visit guidelines were less likely to use the ED for less-urgent problems. Maintaining normal A1c levels for their diabetes also has the positive impact to reduce less-urgent ED usages. It suggests that successful DM programs may reduce inappropriate ED use. In contrast to expectations, uninsured patients were less likely to use the ED for less-urgent care. Patients in the DM program with Medicaid coverage were 1.3 times more likely to seek care in the ED for non-emergencies while commercially insured patients were nearly 1.7 times more likely to do so. Further research to understand inappropriate ED use among insured patients is needed. We suggest providing visit reminders, a call centre, or case managers to reduce the likelihood of less-urgent ED visit use among DM patients. By reducing the likelihood of unnecessary ED visits, successful DM programs can improve patient care. PMID:19968871

  12. Use of the emergency department for less-urgent care among type 2 diabetics under a disease management program.

    PubMed

    Chiou, Shang-Jyh; Campbell, Claudia; Horswell, Ronald; Myers, Leann; Culbertson, Richard

    2009-12-07

    This study analyzed the likelihood of less-urgent emergency department (ED) visits among type 2 diabetic patients receiving care under a diabetes disease management (DM) program offered by the Louisiana State University Health Care Services Division (LSU HCSD). All ED and outpatient clinic visits made by 6,412 type 2 diabetic patients from 1999 to 2006 were extracted from the LSU HCSD Disease Management (DM) Evaluation Database. Patient ED visits were classified as either urgent or less-urgent, and the likelihood of a less-urgent ED visit was compared with outpatient clinic visits using the Generalized Estimating Equation methodology for binary response to time-dependent variables. Patients who adhered to regular clinic visit schedules dictated by the DM program were less likely to use the ED for less urgent care with odds ratio of 0.1585. Insured patients had 1.13 to 1.70 greater odds of a less-urgent ED visit than those who were uninsured. Patients with better-managed glycated hemoglobin (A1c or HbA1c) levels were 82 times less likely to use less-urgent ED visits. Furthermore, being older, Caucasian, or a longer participant in the DM program had a modestly lower likelihood of less-urgent ED visits. The patient's Charlson Comorbidity Index (CCI), gender, prior hospitalization, and the admitting facility showed no effect. Patients adhering to the DM visit guidelines were less likely to use the ED for less-urgent problems. Maintaining normal A1c levels for their diabetes also has the positive impact to reduce less-urgent ED usages. It suggests that successful DM programs may reduce inappropriate ED use. In contrast to expectations, uninsured patients were less likely to use the ED for less-urgent care. Patients in the DM program with Medicaid coverage were 1.3 times more likely to seek care in the ED for non-emergencies while commercially insured patients were nearly 1.7 times more likely to do so. Further research to understand inappropriate ED use among insured patients is needed. We suggest providing visit reminders, a call centre, or case managers to reduce the likelihood of less-urgent ED visit use among DM patients. By reducing the likelihood of unnecessary ED visits, successful DM programs can improve patient care.

  13. Candidates for office 2004-2006

    NASA Astrophysics Data System (ADS)

    Timothy L. Killeen. AGU member since 1981. Director of the National Center for Atmospheric Research (NCAR); Senior Scientist, High Altitude Observatory; Adjunct Professor, University of Michigan. Major areas of interest include space physics and aeronomy remote sensing, and interdisciplinary science education. B.S., Physics and Astronomy (first class honors), 1972, University College London; Ph.D., Atomic and Molecular Physics, 1975, University College London. University of Michigan: Researcher and Professor of Atmospheric, Oceanic, and Space Sciences, 1978-2000 Director of the Space Physics Research Laboratory 1993-1998 Associate Vice-President for Research, 1997-2000. Visiting senior scientist at NASA Goddard Space Flight Center, 1992. Program Committee, American Association for the Advancement of Science; Council Member, American Meteorological Society; Editor-in-Chief, Journal of Atmospheric and Solar-Terrestrial Physics; Chair, Jerome K.Weisner National Policy Symposium on the Integration of Research and Education, 1999. Authored over 140 publications, 57 in AGU journals. Significant publications include: Interaction of low energy positrons with gaseous atoms and molecules, Atomic Physics, 4, 1975; Energetics and dynamics of the thermosphere, Reviews of Geophysics, 1987; The upper mesosphere and lower thermosphere, AGU Geophysical Monograph, 1995, Excellence in Teaching and Research awards, College of Engineering, University of Michigan; recipient of two NASA Achievement Awards; former chair, NASA Space Physics Subcommittee; former chair, National Science Foundation (NSF) Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) program; former member, NSF Advisory Committee for Geosciences, and chair of NSF's Atmospheric Sciences Subcommittee, 1999-2002 member, NASA Earth Science Enterprise Advisory Committee; member of various National Academy of Science/National Research Council Committees; cochair, American Association for the Advancement of Science National Meeting, 2003. AGU service includes: term as associate editor of Journal of Geophysical Research-Space Physics; chair, Panel on International Space Station; Global Climate Change Panel; Federal Budget Review Committee; member of AGU Program, Public Information, Awards, and Public Affairs committees; Chapman Conference Convener and Monograph editor; Section Secretary and Program Chair, Space and Planetary Relations Section; President of Space Physics and Aeronomy Section; AGU Council Member.

  14. KSC-2011-7879

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida is host to a Mars Science Laboratory (MSL) science briefing as part of preflight activities for the MSL mission. From left, NASA Public Affairs Officer Guy Webster moderates the conference featuring Michael Meyer, lead scientist for NASA Mars Exploration Program; John Grotzinger, project scientist for Mars Science Laboratory California Institute of Technology, Pasadena, Calif.; Michael Malin, principal investigator for the Mast Camera and Mars Descent Imager investigations on Curiosity, Malin Space Science Systems; Roger Wiens, principal investigator for Chemistry and Camera investigation on Curiosity, Los Alamos National Laboratory; David Blake, NASA principal investigator for Chemistry and Mineralogy investigation on Curiosity, NASA Ames Research Center; and Paul Mahaffy, NASA principal investigator for Sample Analysis at Mars investigation on Curiosity, NASA Goddard Space Flight Center. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-7878

    NASA Image and Video Library

    2011-11-22

    CAPE CANAVERAL, Fla. – NASA’s Kennedy Space Center in Florida is host to a Mars Science Laboratory (MSL) science briefing as part of preflight activities for the MSL mission. From left, NASA Public Affairs Officer Guy Webster moderates the conference featuring Michael Meyer, lead scientist for NASA Mars Exploration Program; John Grotzinger, project scientist for Mars Science Laboratory California Institute of Technology, Pasadena, Calif.; Michael Malin, principal investigator for the Mast Camera and Mars Descent Imager investigations on Curiosity, Malin Space Science Systems; Roger Wiens, principal investigator for Chemistry and Camera investigation on Curiosity, Los Alamos National Laboratory; David Blake, NASA principal investigator for Chemistry and Mineralogy investigation on Curiosity, NASA Ames Research Center; and Paul Mahaffy, NASA principal investigator for Sample Analysis at Mars investigation on Curiosity, NASA Goddard Space Flight Center. MSL’s components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Kim Shiflett

  16. RIACS

    NASA Technical Reports Server (NTRS)

    Moore, Robert C.

    1998-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities that serves as a bridge between NASA and the academic community. Under a five-year co-operative agreement with NASA, research at RIACS is focused on areas that are strategically enabling to the Ames Research Center's role as NASA's Center of Excellence for Information Technology. The primary mission of RIACS is charted to carry out research and development in computer science. This work is devoted in the main to tasks that are strategically enabling with respect to NASA's bold mission in space exploration and aeronautics. There are three foci for this work: (1) Automated Reasoning. (2) Human-Centered Computing. and (3) High Performance Computing and Networking. RIACS has the additional goal of broadening the base of researcher in these areas of importance to the nation's space and aeronautics enterprises. Through its visiting scientist program, RIACS facilitates the participation of university-based researchers, including both faculty and students, in the research activities of NASA and RIACS. RIACS researchers work in close collaboration with NASA computer scientists on projects such as the Remote Agent Experiment on Deep Space One mission, and Super-Resolution Surface Modeling.

  17. Benchmarks for Reducing Emergency Department Visits and Hospitalizations Through Community Health Workers Integrated Into Primary Care: A Cost-Benefit Analysis.

    PubMed

    Basu, Sanjay; Jack, Helen E; Arabadjis, Sophia D; Phillips, Russell S

    2017-02-01

    Uncertainty about the financial costs and benefits of community health worker (CHW) programs remains a barrier to their adoption. To determine how much CHWs would need to reduce emergency department (ED) visits and associated hospitalizations among their assigned patients to be cost-neutral from a payer's perspective. Using a microsimulation of patient health care utilization, costs, and revenues, we estimated what portion of ED visits and hospitalizations for different conditions would need to be prevented by a CHW program to fully pay for the program's expenses. The model simulated CHW programs enrolling patients with a history of at least 1 ED visit for a chronic condition in the prior year, utilizing data on utilization and cost from national sources. CHWs assigned to patients with uncontrolled hypertension and congestive heart failure, as compared with other common conditions, achieve cost-neutrality with the lowest number of averted visits to the ED. To achieve cost-neutrality, 4-5 visits to the ED would need to be averted per year by a CHW assigned a panel of 70 patients with uncontrolled hypertension or congestive heart failure-approximately 3%-4% of typical ED visits among such patients, respectively. Most other chronic conditions would require between 7% and 12% of ED visits to be averted to achieve cost-savings. Offsetting costs of a CHW program is theoretically feasible for many common conditions. Yet the benchmark for reducing ED visits and associated hospitalizations varies substantially by a patient's primary diagnosis.

  18. Impact of a Kentucky Maternal, Infant, and Early Childhood Home-Visitation Program on Parental Risk Factors

    ERIC Educational Resources Information Center

    Ferguson, Jonnisa M.; Vanderpool, Robin C.

    2013-01-01

    As public health organizations continue to implement maternal and child health home-visitation programs, more evaluation of these efforts is needed, particularly as it relates to improving parental behaviors. The purpose of our study was to assess the impact of families' participation in a home-visitation program offered by a central Kentucky…

  19. Tololo and Tourism | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications ‹› You are here CTIO Home » Outreach » Tololo and Tourism Tololo and Tourism Visits to Cerro

  20. The Role of the Campus Visit and Summer Orientation Program in the Modification of Student Expectations about College.

    ERIC Educational Resources Information Center

    Singer, Wren

    2003-01-01

    Studied the messages being conveyed to prospective students in campus visits and summer orientation sessions at the University of Wisconsin-Madison. Findings for 497 prospective students show that the visit and orientation program may be effective, but programs are trying to communicate too much. Findings also show the importance of the campus…

  1. DFRC Mission Manager Walter Klein passes out stickers and lithographs to underprivileged Costa Rican school children that visited the airport on Monday March 8, 2004

    NASA Image and Video Library

    2004-03-08

    NASA Dryden Mission Manager Walter Klein passes out Airborne Science stickers and lithographs to underprivileged school children that visited the airport on Monday March 8, 2004. In spanish, he explained to them the mission of the DC-8 AirSAR 2004 Mesoamerican campaign in Costa Rica. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  2. Transition from grant funding to a self-supporting burn telemedicine program in the western United States.

    PubMed

    Russell, Katie W; Saffle, Jeffrey R; Theurer, Louanna; Cochran, Amalia L

    2015-12-01

    Many Americans have limited access to specialty burn care, and telemedicine has been proposed as a means to address this disparity. However, many telemedicine programs have been founded on grant support and then fail once the grant support expires. Our objective was to demonstrate that a burn telemedicine program can be financially viable. This retrospective review from 2005 to 2014 evaluated burn telemedicine visits and financial reimbursement during and after a Technology Opportunities Program grant to a regional burn center. In 2005, we had 12 telemedicine visits, which increased to 458 in 2014. In terms of how this compares to in-person clinic visits, we saw a consistent increase in telemedicine visits as a percentage of total clinic visits from .26% in 2005 to 14% in 2014. Median telemedicine reimbursement has been equivalent to in-person visits. Specialty telemedicine programs can successfully transition from grant-funded enterprises to self-sustaining. The availability of telemedicine services allows access to specialty expertise in a large and sparsely populated region without imposing an undue financial burden. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. NASA 360 - Talks Alien Ocean

    NASA Image and Video Library

    2015-11-13

    Could life exist on Europa? It may sound farfetched, but this Jovian moon is the most likely place to find life in our solar system thanks to an enormous underground ocean positioned just beneath its icy surface. Watch as Robert Pappalardo, Europa Project Scientist at NASA Jet Propulsion Laboratory, discusses Europa, its potential for life, and the upcoming mission that is being planned to visit this compelling moon. This video was developed from a live recording at the AIAA SPACE 2015 conference in September 2015. To watch the full talk given at the conference please visit: http://bit.ly/1LPWZwV

  4. KSC-2014-2061

    NASA Image and Video Library

    2014-04-13

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, agency and contractor officials discussed science and technology experiment payloads being transported to the International Space Station by the SpaceX-3 Commercial Resupply Services mission. Participating in the briefing, from the left, are Mike Curie of NASA Public Affairs, Camille Alleyne, assistant program scientist in the NASA ISS Program Science Office, and Michael Roberts, senior research pathway manager with the Center for the Advancement of Science in Space CASIS. Andy Petro of the agency's Space Technology Mission Directorate participated in the briefing by telephone from NASA Headquarters in Washington D.C. Scheduled for launch on April 14, 2014 atop a Falcon 9 rocket, the Dragon spacecraft will be marking its fourth trip to the space station. The SpaceX-3 mission carrying almost 2.5 tons of supplies, technology and science experiments is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/ Kim Shiflett

  5. COSMOS | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  6. Publications | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  7. Instruments | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  8. News | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  9. Astronomers | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  10. On the Characterization of Revisitation Patterns in Complex Human Dynamics - A Data Science Approach

    NASA Astrophysics Data System (ADS)

    Barbosa Filho, Hugo Serrano

    When it comes to visitation patterns, humans beings are extremely regular and predictable, with recurrent activities responsible for most of our movements. In recent years, we have seen scientists attempt to model and explain human dynamics and in particular human movement. Akin to other human behaviors, traveling patterns evolve from the convolution between internal and external factors. A better understanding on the mechanisms responsible for transforming and incorporating individual events into regular patterns is of fundamental importance. Many aspects of our complex lives are affected by human movements such as disease spread and epidemics modeling, city planning, wireless network development, and disaster relief, to name a few. Given the myriad of applications, it is clear that a complete understanding of how people move in space can lead to considerable benefits to our society. In most of the recent works, scientists have focused on the idea that people movements are biased towards frequently-visited locations. According to them, human movement is based on a exploration/exploitation dichotomy in which individuals choose new locations (exploration) or return to frequently-visited locations (exploitation). In this dissertation we present some of our contributions to the field, such as the presence of a recency effect in human mobility and Web browsing behaviors as well as the Returner vs. Explorers dichotomy in Web browsing trajectories.

  11. SMARTS Consortium | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  12. New Projects | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  13. Optical Engineering | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  14. Astronomer's Tools | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  15. Multimedia Gallery | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  16. Press Release | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  17. Astro Chile | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  18. Optical Spectrographs | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  19. Seminar Journalist | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  20. Employment Opportunities | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  1. CTIO Directors | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  2. PIRE Experience Reaches out to the Russian Far East and Augments Graduate Education Abroad

    NASA Astrophysics Data System (ADS)

    Almberg, L. D.; Eichelberger, J. C.; Izbekov, P.; Ushakov, S.; Vesna, E.

    2006-12-01

    NSF's Partners in International Research and Education (PIRE) program seeks to introduce American students to collaborative international science early in their graduate careers. The intent is that the next generation of American scientists will be better prepared to work at the international level. The emphases on partnership and learning about the culture of the host country is a welcome and productive change from the `grab and dash' approach that can characterize `Winter national' projects. Our PIRE project, US-Russia-Japan Partnership in Volcanological Research and Education, is an interdisciplinary investigation of the magma systems at Bezymianny and Shiveluch Volcanoes in Kamchatka, Russia and Mount St Helens in Washington, USA. We wish to understand how massive edifice collapse at all three volcanoes perturbed the magma systems and influenced subsequent and continuing eruptive behavior. Seven American graduate students from the universities of Alaska, Hawaii, Washington, Oregon, and Stanford embarked on a personal and professional development adventure in July and August, 2006. Their experience began in Fairbanks, AK with preparations for remote foreign field work and research planning with mentor scientists. The adventure continued in Petropavlosk-Kamchatsky, Kamchatka, which required circumnavigation of the world as no airlines fly between Anchorage and Petropavlovsk. Faculty at Kamchatka State University provided intensive short courses for two weeks, introducing students to Russian language, culture, geography and history while they adjusted to the new environment and met Russian counterparts at the Institute of Volcanology and Seismology. Afternoon discussions with Russian experts in volcanology, seismology, tectonics and tephrachronology were enlightening and influenced the research plans. Russian graduate and advanced undergraduate students joined the group at the helicopter accessed camp on Bezymianny volcano. Two young Russian scientists headed the field team. Students learned from one another and the accompaning senior scientists. This year of the five-year program was focused on sampling for petrology and geochemistry and establishment of continuous GPS sites. The team conducted the first work on products of the large eruption of May 9, 2006. The experience concluded with a one-week visit to Mount St Helens and the Cascade Volcano Observatory for a workshop with American students and scientists working on the current eruption there. Next year a new team will be fielded on a similar schedule. However, we will keep the 2006 team together with web-based video conferencing as the work progresses through laboratory analysis and interpretation and publication of results.

  3. A Comprehensive Approach to Partnering Scientists with Education and Outreach Activities at a National Laboratory

    NASA Astrophysics Data System (ADS)

    Foster, S. Q.

    2002-12-01

    With the establishment of an Office of Education and Outreach (EO) in 2000 and the adoption of a five-year EO strategic plan in 2001, the University Corporation for Atmospheric Research (UCAR) committed to augment the involvement of AGU scientists and their partners in education and public outreach activities that represent the full spectrum of research in the atmospheric and related sciences. In 2002, a comprehensive program is underway which invites scientists from UCAR, the National Center for Atmospheric Research (NCAR), and UCAR Office of Programs (UOP) into partnership with EO through volunteer orientation workshops, program specific training, skill-building in pedagogy, access to classroom resources, and program and instructor evaluation. Scientists contribute in one or several of the following roles: program partners who bridge research to education through collaborative grant proposals; science content advisors for publications, web sites, exhibits, and informal science events; science mentors for high school and undergraduate students; NCAR Mesa Laboratory tour guides; scientists in the schools; science education ambassadors to local and national community events; science speakers for EO programs, conferences, and meetings of local organization; and science wizards offering demonstrations at public events for children and families. This new EO initiative seeks to match the expertise and specific interests of scientists with appropriate activities, while also serving as a communications conduit through which ideas for new activities and resources can be seeded and eventually developed into viable, fully funded programs.

  4. Science Coordination in Support of the US Weather Research Program Office of the Lead Scientist (OLS) and for Coordination with the World Weather Research (WMO) Program

    NASA Technical Reports Server (NTRS)

    Gall, Robert

    2005-01-01

    This document is the final report of the work of the Office of the Lead Scientist (OLS) of the U.S. Weather Research Program (USWRP) and for Coordination of the World Weather Research Program (WWRP). The proposal was for a continuation of the duties and responsibilities described in the proposal of 7 October, 1993 to NSF and NOAA associated with the USWRP Lead Scientist then referred to as the Chief Scientist. The activities of the Office of the Lead Scientist (OLS) ended on January 31, 2005 and this report describes the activities undertaken by the OLS from February 1, 2004 until January 3 1, 2005. The OLS activities were under the cosponsorship of the agencies that are members of the Interagency Working Group (IWG) of the US WRP currently: NOAA, NSF, NASA, and DOD. The scope of the work described includes activities that were necessary to develop, facilitate and implement the research objectives of the USWRP consistent with the overall program goals and specific agency objectives. It included liaison with and promotion of WMO/WWW activities that were consistent with and beneficial to the USWRP programs and objectives. Funds covered several broad categories of activity including meetings convened by the Lead Scientist, OLS travel, partial salary and benefits support, publications, hard-copy dissemination of reports and program announcements and the development and maintenance of the USWRP website. In addition to funding covered by this grant, NCAR program funds provided co-sponsorship of half the salary and benefits resources of the USWRP Lead Scientist (.25 FTE) and the WWRP Chairman/Liaison (.167 FTE). Also covered by the grant were partial salaries for the Science Coordinator for the hurricane portion of the program and partial salary for a THORPEX coordinator.

  5. Mothers’ experiences in the Nurse-Family Partnership program: a qualitative case study

    PubMed Central

    2012-01-01

    Background Few studies have explored the experiences of low income mothers participating in nurse home visiting programs. Our study explores and describes mothers' experiences participating in the Nurse-Family Partnership (NFP) Program, an intensive home visiting program with demonstrated effectiveness, from the time of program entry before 29 weeks gestation until their infant's first birthday. Methods A qualitative case study approach was implemented. A purposeful sample of 18 low income, young first time mothers participating in a pilot study of the NFP program in Hamilton, Ontario, Canada partook in one to two face to face in-depth interviews exploring their experiences in the program. All interviews were digitally recorded and transcribed verbatim. Conventional content analysis procedures were used to analyze all interviews. Data collection and initial analysis were implemented concurrently. Results The mothers participating in the NFP program were very positive about their experiences in the program. Three overarching themes emerged from the data: 1. Getting into the NFP program; 2. The NFP nurse is an expert, but also like a friend providing support; and 3. Participating in the NFP program is making me a better parent. Conclusions Our findings provide vital information to home visiting nurses and to planners of home visiting programs about mothers' perspectives on what is important to them in their relationships with their nurses, how nurses and women are able to develop positive therapeutic relationships, and how nurses respond to mothers' unique life situations while home visiting within the NFP Program. In addition our findings offer insights into why and under what circumstances low income mothers will engage in nurse home visiting and how they expect to benefit from their participation. PMID:22953748

  6. Talks and Meetings | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  7. Contact at CTIO | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  8. Other Student Opportunities | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  9. Observing at NOAO South | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  10. Dark Sky Education | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  11. TASCA latest Image | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  12. EPO/CADIAS Calendar Activities | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  13. What is MONSOON | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  14. The Impact of Federal Programs and Policies on Manpower Planning for Scientists and Engineers: Problems and Progress.

    ERIC Educational Resources Information Center

    Scientific Manpower Commission, Washington, DC.

    This document reports the results of a workshop held to assess the impact of federal programs and legislation on manpower planning for scientists and engineers. Included are presentations relating to manpower utilization and planning via federal government agencies and professional societies for scientists and engineers. It was concluded that the…

  15. Education programs of the Institute for Optical Sciences at the University of Toronto

    NASA Astrophysics Data System (ADS)

    Istrate, Emanuel; Miller, R. J. Dwayne

    2009-06-01

    The Institute for Optical Sciences at the University of Toronto is an association of faculty members from various departments with research interests in optics. The institute has an extensive program of academic activities, for graduate and undergraduate students, as well as public outreach. For undergraduate students, we have a course on holography. We provide opportunities for students to gain optics experience through research by providing access to summer research positions and by enrolling them in the Research Skills Program, a summer course teaching the basic skills needed in research. For graduate students, we offer the Distinguished Visiting Scientists program, where world-renowned researchers come for a week, giving a series of 3 lectures and interacting closely with students and professors. The extended stay allows the program to run like a mini-course. We launched a Collaborative Master's Program in Optics, where students earn a degree from their home department, along with a certification of participation in the collaborative program. Physics, Chemistry and Engineering students attending together are exposed to the various points of view on optics, ranging from the pure to the applied sciences. For the general public, we offer the Stoicheff Lecture, a yearly public lecture on optics, organized with the Royal Canadian Institute. Our institute also initiated Science Rendezvous, a yearly public celebration of science across the Greater Toronto Area, with lab tours, demonstrations, and other opportunities to learn about science and those who are actively advancing it. This year, this event attracted over 20,000 attendees.

  16. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  17. SAGE-III Ready for Ozone Checkup

    NASA Image and Video Library

    2017-02-15

    A third-generation investigation into the state of the ozone layer of Earth’s atmosphere is scheduled for launch to the International Space Station on the SpaceX-10 cargo ship. Marilee Roell of NASA’s Langley Research Center explains how the third iteration of the Stratospheric Aerosol and Gas Experiment will measure ozone, aerosols and other components of the atmosphere for scientists who hope to see an improvement in the atmosphere’s ability to protect the planet—and everyone and everything on it—from harmful ultraviolet radiation. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/HQdMZ5OAU3U

  18. New Thematic Solar System Exploration Products for Scientists and Educators

    NASA Technical Reports Server (NTRS)

    Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn

    2004-01-01

    The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.

  19. KSC-2011-3907

    NASA Image and Video Library

    2011-05-20

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, spacecraft is offloaded from an Air Force C-17 cargo plane on the Shuttle Landing Facility at Kennedy Space Center in Florida. The spacecraft traveled from the Lockheed Martin plant in Denver, Colo., and will undergo further processing in the Astrotech payload processing facility in Titusville, Fla. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2011-3904

    NASA Image and Video Library

    2011-05-20

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, spacecraft is offloaded from an Air Force C-17 cargo plane on the Shuttle Landing Facility at Kennedy Space Center in Florida. The spacecraft traveled from the Lockheed Martin plant in Denver, Colo., and will undergo further processing in the Astrotech payload processing facility in Titusville, Fla. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Dimitri Gerondidakis

  1. KSC-2011-3901

    NASA Image and Video Library

    2011-05-20

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, spacecraft will be offloaded from an Air Force C-17 cargo plane on the Shuttle Landing Facility at Kennedy Space Center in Florida. The spacecraft traveled from the Lockheed Martin plant in Denver, Colo., and will undergo further processing in the Astrotech payload processing facility in Titusville, Fla. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Dimitri Gerondidakis

  2. KSC-2011-3903

    NASA Image and Video Library

    2011-05-20

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, spacecraft will be offloaded from an Air Force C-17 cargo plane on the Shuttle Landing Facility at Kennedy Space Center in Florida. The spacecraft traveled from the Lockheed Martin plant in Denver, Colo., and will undergo further processing in the Astrotech payload processing facility in Titusville, Fla. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2011-3902

    NASA Image and Video Library

    2011-05-20

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, spacecraft will be offloaded from an Air Force C-17 cargo plane on the Shuttle Landing Facility at Kennedy Space Center in Florida. The spacecraft traveled from the Lockheed Martin plant in Denver, Colo., and will undergo further processing in the Astrotech payload processing facility in Titusville, Fla. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2011-3906

    NASA Image and Video Library

    2011-05-20

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, spacecraft is offloaded from an Air Force C-17 cargo plane on the Shuttle Landing Facility at Kennedy Space Center in Florida. The spacecraft traveled from the Lockheed Martin plant in Denver, Colo., and will undergo further processing in the Astrotech payload processing facility in Titusville, Fla. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2011-3905

    NASA Image and Video Library

    2011-05-20

    CAPE CANAVERAL, Fla. -- NASA's Gravity Recovery and Interior Laboratory, or GRAIL, spacecraft is offloaded from an Air Force C-17 cargo plane on the Shuttle Landing Facility at Kennedy Space Center in Florida. The spacecraft traveled from the Lockheed Martin plant in Denver, Colo., and will undergo further processing in the Astrotech payload processing facility in Titusville, Fla. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Dimitri Gerondidakis

  6. Francis Bitter National Laboratory quarterly progress report, July 1, 1972--September 30, 1972

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1972-10-31

    Reports on research projects at Francis Bitter National Magnet Laboratory are presented on 19 different topics including the following: far infrared magneto-optics; quantum optics; soft x-rays and laser-produced plasmas; magneto-optical theory; magnetism and superconductivity; Mossbauer effect studies; superconducting thin films; amorphous semiconductors and superconductivity; nuclear magnetic resonance of biomolecules; low magnetic fields; superconducting medical magnet; magnetically guided catheters; magnetic separation; high current switching; development of guided electromagnetic flight; Alcator; high voltage discharges in cryocables; and low temperature thermometry in high magnetic fields. The Magnet Research and Technology Program and reports of visiting scientists are also included in this report. Reportsmore » on some research not supported by NSF are included, and the supporting agencies are indicated. A list of publications and speeches presented at meetings during the quarter covered by this report are included in an appendix.« less

  7. Gregory A. Merkel Greeted By Astronauts and MSFC Personnel

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Springfield, Massachusetts high school student, Gregory A. Merkel, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab Mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  8. Skylab

    NASA Image and Video Library

    1972-06-02

    Downey, California high school student, Donald W. Shellack, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Shellack was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  9. Skylab

    NASA Image and Video Library

    1972-06-02

    North Rochester, New York high school student, Robert L. Staehle, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Staehle was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  10. Skylab

    NASA Image and Video Library

    1972-06-02

    Littleton, Colorado high school student, Cheryl A. Peltz, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Peltz was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  11. Skylab

    NASA Image and Video Library

    1972-06-02

    Bayport, New York high school student, James E. Healy, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Healy was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  12. Skylab

    NASA Image and Video Library

    1972-06-02

    Berkley, Michigan high school student, Kirk M. Sherhart, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Sherhart was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  13. Skylab

    NASA Image and Video Library

    1972-06-02

    Springfield, Massachusetts high school student, Gregory A. Merkel, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Merkel was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab Mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  14. Skylab

    NASA Image and Video Library

    1972-06-02

    Youngstown, Ohio high school student, W. Brian Dunlap, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Dunlap was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  15. Skylab

    NASA Image and Video Library

    1972-06-02

    Garland, Texas high school student, Keith D. McGee, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. McGee was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab Mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  16. Skylab

    NASA Image and Video Library

    1972-06-02

    Atlanta, Georgia high school student, Neal W. Shannon, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Shannon was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  17. Skylab

    NASA Image and Video Library

    1972-06-02

    Oshkosh, Wisconsin high school student, Joe B. Zmolek, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Zmolek was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  18. Skylab

    NASA Image and Video Library

    1972-06-02

    Baton Rouge, Louisiana high school student, Joe W. Reihs, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Reihs was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  19. Skylab

    NASA Image and Video Library

    1972-06-02

    Houston, Texas high school student, Kathy L. Jackson, is greeted by astronauts Russell L. Schweickart (left) and Owen K. Garriott (center), and Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew during a tour of the Marshall Space Flight Center (MSFC). Jackson was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  20. Skylab

    NASA Image and Video Library

    1962-06-02

    St. Paul, Minnesota high school student, Roger Johnston, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Johnston was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  1. Skylab

    NASA Image and Video Library

    1972-06-02

    West Point, Nebraska high school student, Joel C. Wordekemper, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Wordekemper was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  2. Skylab

    NASA Image and Video Library

    1972-06-02

    Aiea, Hawaii high school student, John C. Hamilton, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Hamilton was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  3. Skylab

    NASA Image and Video Library

    1972-06-02

    Westbury, New York high school student, Keith L.Stein , is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Stein was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  4. Skylab

    NASA Image and Video Library

    1972-06-02

    Silverton, Oregon high school student, Daniel C. Bochsler, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Bochsler was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  5. Skylab

    NASA Image and Video Library

    1972-05-02

    Kent, Washinton high school student, Troy A. Crites, is greeted by (left to right): Astronauts Russell L. Schweickart, and Owen K. Garriott; Marshall Space Flight Center (MSFC) Skylab Program Manager, Leland Belew; and MSFC Director of Administration and Technical Services, David Newby, during a tour of MSFC. Crites was among 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. The nationwide scientific competition was sponsored by the National Science Teachers Association and the National Aeronautics and Space Administration (NASA). The winning students, along with their parents and sponsor teachers, visited MSFC where they met with scientists and engineers, participated in design reviews for their experiments, and toured MSFC facilities. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of additional equipment.

  6. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket

    NASA Technical Reports Server (NTRS)

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  7. KSC-2011-3924

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians begin to lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  8. KSC-2011-3919

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians prepare to lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  9. KSC-2011-3920

    NASA Image and Video Library

    2011-05-21

    CAPE CANAVERAL, Fla. -- Technicians begin to lift one of two spacecraft for NASA's Gravity Recovery and Interior Laboratory, or GRAIL, to a test stand in the Astrotech payload processing facility in Titusville, Fla. The twin spacecraft were built at the Lockheed Martin plant in Denver, Colo. The United Launch Alliance Delta II rocket that will carry GRAIL into lunar orbit already is fully stacked at NASA's Space Launch Complex 17B and launch is scheduled for Sept. 8. The GRAIL mission is a part of NASA's Discovery Program. GRAIL will fly twin spacecraft in tandem orbits around the moon for several months to measure its gravity field. The mission also will answer longstanding questions about Earth's moon and provide scientists a better understanding of how Earth and other rocky planets in the solar system formed. For more information, visit http://science.nasa.gov/missions/grail/. Photo credit: NASA/Jack Pfaller

  10. Corrosion Program

    DTIC Science & Technology

    2010-02-01

    April 2010 8-10 June 2010 3-5 August 2010 5 Corrosion Assistance Team ( CAT ) Visits Classroom Briefing • General Corrosion Theory • Preventive Maintenance...MD DC CAT Visit 2009 CAT Visit 2008 CAT Visit 2007 CAT Visit 2006 CAT Visit 2005 CAT Visits (calendar year) ME HI Germany ROK Honduras Egypt Japan DE 8

  11. Preparing the nurse scientist for academia and industry.

    PubMed

    Lewallen, Lynne P; Kohlenberg, Eileen

    2011-01-01

    The number of doctoral programs in nursing has been increasing. However, these programs tend to focus on preparing nurse scientists to conduct research, and many spend little time preparing doctoral students for the educator, clinical researcher, or administrator role. Leaders of doctoral programs have identified the need to prepare doctoral students in the functional roles they will assume upon graduation, in addition to the researcher role. This article describes a two-course (six-credit) sequence of courses within a research-focused PhD in Nursing program that provides didactic and experiential knowledge about the role of the nurse scientist in academia and industry settings. Students are highly satisfied with the courses, and report that the experiences have provided them with important knowledge and skills as they assume the scientist role.

  12. Science Educational Outreach Programs That Benefit Students and Scientists

    PubMed Central

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  13. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  14. Vietnamese Leaders Discuss Overhaul of Higher Education During U.S. Visit

    ERIC Educational Resources Information Center

    Wasley, Paula

    2007-01-01

    At a June 2007 forum, Vietnam's president and minister of education outlined an ambitious plan to overhaul their country's troubled educational system, while a panel of American academics and scientists highlighted the importance of higher education to Vietnam's rapidly growing economy and suggested potential models for reform. Two decades after…

  15. Speaking Personally--With John Seely Brown

    ERIC Educational Resources Information Center

    American Journal of Distance Education, 2008

    2008-01-01

    This article presents an interview with John Seely Brown, a visiting scholar at the University of Southern California and a former chief scientist of Xerox Corporation and director of its Palo Alto Research Center (PARC)--a position he held for nearly two decades. While head of PARC, Brown expanded the role of corporate research to include such…

  16. Improvements to the Visa Application System: Serving the S&T Community, Promoting The American Economy and Keeping Us Safe

    NASA Astrophysics Data System (ADS)

    Gillen, Mathew

    2014-03-01

    The speaker will address policy changes and improvements in visa processing that help scientists and students to visit and study in the United States. The speaker will also discuss challenges involved with balancing the needs of U.S. science with national security interests.

  17. KSC-2015-1028

    NASA Image and Video Library

    2015-01-06

    CAPE CANAVERAL, Fla. -- During a visit to NASA's Kennedy Space Center in Florida, NASA Chief Technologist David Miller, center, tours laboratories inside the Swamp Works facility. At right, Dr. Gioia Massa, NASA project scientist in the Engineering and Technology Directorate, discusses the VEGGIE plant growth system. At left is Karen Thompson, Kennedy's chief technologist. Photo credit: NASA/Kim Shiflett

  18. Culture and Behavior in Hawaii: An Annotated Bibliography. Hawaii Series Number 3.

    ERIC Educational Resources Information Center

    Rubano, Judith, Comp.

    The multi-ethnic character of the population of Hawaii has long attracted students of the behavioral sciences. Many of these scientists, and especially the visiting researchers, have encountered difficulty in obtaining or even locating literature specific to Hawaii and relevant to their fields of scientific interest. This bibliography is an effort…

  19. COS/FUV Mapping of Stray PtNe Lamp Light Through FCA

    NASA Astrophysics Data System (ADS)

    Oliveira, Cristina

    2010-09-01

    This program determines which cross-dispersion locations lead to wavecal lamp {PtNe} light leaking through the flat-field calibration aperture {FCA}. This unexpected effect, observed initially in program 12096, led to a shut down of the COS/FUV detector due to a global count rate violation in Segment A of the G140L/1230 setting. Detector? threshold ?is ?600,000 ?FEC ?counts ?in? 10 seconds ?on each ?segment. ?If ?this ?level? is ?exceeded, ?the? detector? shuts ?down? the ?HV.In program 12096, for the G140L/1230 setting, at +6" from the nominal position in the cross-dispersion direction, 180,000 cts/sec were observed through the FCA in Segment A, and 49,000 cts/sec in Segment B {PtNe/FCA}. The corresponding wavecal count rate {PtNe/WCA} is 685 cts/sec in Segment A, implying that there is a scale factor of 263 between the FCA and WCA count rates. This scale factor could not be verified for Segment B, given that the PtNe lamp does not produce counts at the short wavelengths seen by G140L/1230/FUVB. However, this scaling factor is expected to be the same for both segments.The scaling factor derived from program 12096 is then used to predict the FCA count rates seen with all the gratings, in off-nominal positions where light might leak through the FCA in the current program.There is no light leak between the nominal position and positions up to and including +3" {at least not in Mar 2010 when program 12096 executed}, but somewhere above +3" and certainly at +6" the PtNe light starts leaking through the FCA.Light is not predicted to leak at negative POS-TARG positions from the nominal, and the purpose of this program is to verify that as well.Visits 1N to 6N take data at positions from +1.0" to +6.0", while visits 1S to 6S take data at positions from -1.0" to -6.0". Visits 10 through 13 take data at the nominal position, 0.0".At each position in the detector data is taken with the following settings:G130M/1055/1291/1327, G160M/1577/1623, and G140L/1280/1105, in this order.LAMP2 with CURRENT=LOW is used in all of these visits. In addition, at each position, one exposure with LAMP1 CURRENT=MED is also taken with the G130M/1055 setting, which leads to total counts in 10 sec more than a factor of 10 below the 600,000 limit. This exposure is used so that the ratio of LAMP1/MED to LAMP2/LOW can be calculated for the FCA at each position {in conjunction with the data obtained in visits 11, 12, and 13; see below}. In addition, the G130M/1055 exposures with LAMP1/MED and LAMP2/LOW will be used to determine if the lamp spot size is changing at each position.Depending on the total counts estimated for each setting, either a typical wave exposure is taken or special flash commands are used. Details are given in each visit.Exposures obtained with LAMP1/CURRENT=LOW are expected to have a 20% smaller count rate than exposures obtained with LAMP1/CURRENT=MED. Exposures obtained with LAMP2/CURRENT=MED are expected to have count rates similar to those obtained with LAMP1/CURRENT=MED, and exposures obtained with LAMP2/CURRENT=LOW are expected to have a count rate which is 1/7 of that obtainedwith LAMP2/CURRENT=MED.VISIT 10 OBTAINS LAMP1/CURRENT=MED+ LOW SPECTRA AT ALL THE M SETTINGS USED IN THIS PROGRAM, AT THE NOMINAL POSITION {0.0"}.VISIT 11 OBTAINS LAMP2/CURRENT=MED SPECTRA AT ALL THE M SETTINGS USED IN THIS PROGRAM, AT THE NOMINAL POSITION {0.0"}.VISIT 12 OBTAINS LAMP2/CURRENT=LOW SPECTRA AT ALL THE M SETTINGS USED IN THIS PROGRAM, AT THE NOMINAL POSITION {0.0"}.VISIT 13 OBTAINS LAMP1/CURRENT=MED, LOW AND LAMP2/CURRENT=MED, LOW SPECTRA AT ALL OF THE L SETTINGS USED IN THIS PROGRAM, AT THE NOMINAL POSITION {0.0"}.THE GOAL OF THESE VISITS IS TO DETERMINE THE RATIOS OF THE DIFFERENT LAMP SETTINGS AT DIFFERENT WAVELENGTHS, TO HELP IN ANALYZING THE DATA OBTAINED IN VISITS WHERE ONLY LAMP2/LOW IS USED.ALSO, THESE DATA WILL BE USED TO PREDICT WHAT THE COUNTS WOULD BE WITH G140L/1280/LAMP1/MED AT THE +6.0" POSITION {VIS6N, WHERE LAMP2/LOW IS USED}. THESE COUNTS WILL BE COMPARED WITH THE COUNTS OBTAINED IN PROGRAM 12096 WITH G140L/1230/LAMP1/MED, MORE THAN ONE YEAR AGO, TO LOOK FOR VARIABILITY, POSSIBLY INDICATING CHANGES TO THE LAMP SPOT SIZE.Visits 10 through 13, all executed at the nominal position, pose no safety concerns.CONSTRAINTS:- Visits 1N, 2N, 3N can be executed back to back as no light is expected to leak through the FCA. Visit 1N should execute before visit 2N, which should execute before visit 3N.- Visits 1S, 2S, and 3S can be executed back to back and do not have constraints relative to the other visits. Visit 1S should execute before visit 2S, which should execute before visit 3S- Visits 10, 11, 12, and 13 {data obtained at nominal position}, can also be executed back to back and have no constraints relative to other visits. However, these visits should be scheduled as soon as possible, because results of data anaysis will be used to inform execution of program 12678.- There should be an interval of at least two days between any of the visits mentioned above and the other visits in this program {4N, 5N, 6N, 4S, 5S, 6S} which could see light leaking through the FCA.- Visits 4S and 4N can be scheduled in the same week, but they don't need to be.- Visits 5S and 5N can be scheduled in the same week, but they don't need to be.- There should be an interval of at least 3 weeks between visit 4N and visit 5N.- Visits 6S and 6N can be scheduled in the same week, but they don't need to be.- There should be an interval of at least 3 weeks between visit 5N and visit 6N.- Visits 1S through 5S should be scheduled as soon as possible, the same is true for visits 1N to 4N.

  20. Telescopes on Cerro Tololo & Cerro Pachon | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  1. Victor Blanco 4-m Telescope | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications

  2. CREASE 6.0 Catalog of Resources for Education in Ada and Software Engineering

    DTIC Science & Technology

    1992-02-01

    Programming Software Engineering Strong Typing Tasking Audene . Computer Scientists Terbook(s): Barnes, J. Programming in Ada, 3rd ed. Addison-Wesley...Ada. Concept: Abstract Data Types Management Overview Package Real-Time Programming Tasking Audene Computer Scientists Textbook(s): Barnes, J

  3. Home Visiting in Two Cultures

    ERIC Educational Resources Information Center

    Lamorey, Suzanne

    2017-01-01

    The home visiting component of early childhood education programs provides an important portal through which to observe family interactions as well as gain insights about the ethnotheories of the home visitor. Home visits were videotaped in the United States and in Turkey to analyze training and program effectiveness. One striking feature of this…

  4. Home Visitations for Delivering an Early Childhood Obesity Intervention in Denver: Parent and Patient Navigator Perspectives.

    PubMed

    Knierim, Shanna Doucette; Moore, Susan L; Raghunath, Silvia Gutiérrez; Yun, Lourdes; Boles, Richard E; Davidson, Arthur J

    2018-06-23

    Objective This qualitative study explored parent and patient navigator perspectives of home visitation as part of a childhood obesity program in a low-income, largely Latino population. Methods Three patient navigators and 25 parents who participated in a home-based, childhood obesity program participated in focus groups or interviews. Emergent themes were identified through content analysis of qualitative data. Results Three overall themes were identified. Patient navigators and parents perceived: (1) enabling characteristics of home-based program delivery which facilitated family participation and/or behavior change (i.e., convenience, increased accountability, inclusion of household members, delivery in a familiar, intimate setting, and individualized pace and content); (2) logistic and cultural challenges to home-based delivery which reduced family participation and program reach (i.e., difficulties scheduling visits, discomfort with visitors in the home, and confusion about the patient navigator's role); and (3) remediable home-based delivery challenges which could be ameliorated by additional study staff (e.g., supervision of children, safety concerns) or through organized group sessions. Both patient navigators and participating parents discussed an interest in group classes with separate, supervised child-targeted programming and opportunities to engage with other families for social support. Conclusions for Practice A home visitation program delivering a pediatric obesity prevention curriculum in Denver was convenient and held families accountable, but posed scheduling difficulties and raised safety concerns. Conducting home visits in pairs, adding obesity prevention curriculum to existing home visiting programs, or pairing the convenience of home visits with group classes may be future strategies to explore.

  5. The Shapley Program 1985 - 1990: The Virginia Years

    NASA Astrophysics Data System (ADS)

    Tolbert, C. R.

    1998-05-01

    The Shapley Program moved to the University of Virginia from the University of Delaware in the summer of 1985. Prior to moving to Charlottesville the program had been run by Harry Shipman. 1985 - 1986 was the year of Comet Halley, and it was also the year that the program reached its peak of visits made by the astronomical community. We scheduled 135 visits that year. Luckily, I was new on the job and didn't realize the effort that would be involved in coordinating that many visiting astronomers. One way or the other we got through the "big" year and, after consultation with the Council, established a maximum number of visits to be scheduled per year at 80. We maintained that number every year through the Virginia period. It was during this time that the office purchased its first computer and computerized the mailing list. We sent brochures to some 2,000 plus colleges and junior colleges throughout the US, Canada and Mexico. (regrettably, we never received a request form a Mexican school.) The fee charged to the school for each visit was \\75 per visit in the beginning and rose to \\200 per school by the end of the period. The rest of the costs of the program were borne by the Shapley Endowment Fund and the AAS Education Office. We waived the fee from a number of schools on request. In addition to being a Shapley Lecturer myself, I had the great pleasure during this period of receiving the many compliments about the program. There is no question that the Shapley Visiting Lectureships Program provides an excellent service to small colleges in both the US and Canada. Based on the reports of our success, the American Physical Society re-instituted their lecture program as did the American Optical Society.

  6. Development and outcomes of a program to translate the evidence for spinal manipulation into physical therapy practice

    PubMed Central

    Kramer, Christopher D; Koch, William H; Fritz, Julie M

    2013-01-01

    Objectives: To describe a program to translate evidence into practice for the use of manipulation with a sub-group of patients with low back pain and report the program's outcomes following implementation. We compared outcomes based on appropriate inclusion in the program and compliance with the evidence being translated. Methods: The evidence translation program was based on evidence that patients meeting two criteria (duration of symptoms <16 days, no symptoms distal to knee) were likely to respond to a physical therapy that included manipulation in the first two visits. Implementation addressed potential barriers with referring physicians, physical therapists, and scheduling staff to this evidence. Outcomes for patients in the program were tracked following implementation. Process outcomes were appropriateness of inclusion (met both criteria), compliance with evidence for providing thrust manipulation in the first two visits, and number of physical therapy visits. Clinical outcomes were based on Oswestry scores from the first, interim (after two to three visits), and final visit. Results: A total of 577 patients entered the evidence translation program (mean age  =  43.0, 56.8% female); 79.5% were appropriate inclusions and 83.0% received manipulation. The use of manipulation was associated with fewer visits (mean difference  =  0.54 visits, 95% CI: 0.037, 1.04, P  =  0.035), and appropriate inclusion was associated with greater Oswestry change (mean difference at the final visit  =  6.6 points, 95% CI: 1.6, 11.6; P  =  0.010). Discussion: Implementing evidence into practice is difficult; however, barriers can be anticipated and overcome. Tracking the outcomes of an implementation program is critical to evaluating its benefit to patients. Additional research using experimental designs are necessary to evaluate the effectiveness of various treatments implemented in physical therapy practice. PMID:24421630

  7. Impact of a Community Dental Access Program on Emergency Dental Admissions in Rural Maryland.

    PubMed

    Rowland, Sandi; Leider, Jonathon P; Davidson, Clare; Brady, Joanne; Knudson, Alana

    2016-12-01

    To characterize the expansion of a community dental access program (CDP) in rural Maryland providing urgent dental care to low-income individuals, as well as the CDP's impact on dental-related visits to a regional emergency department (ED). We used de-identified CDP and ED claims data to construct a data set of weekly counts of CDP visits and dental-related ED visits among Maryland adults. A time series model examined the association over time between visits to the CDP and ED visits for fiscal years (FYs) 2011 through 2015. The CDP served approximately 1600 unique clients across 2700 visits during FYs 2011 through 2015. The model suggested that if the CDP had not provided services during that time period, about 670 more dental-related visits to the ED would have occurred, resulting in $215 000 more in charges. Effective ED dental diversion programs can result in substantial cost savings to taxpayers, and more appropriate and cost-effective care for the patient. Community dental access programs may be a viable way to patch the dental safety net in rural communities while holistic solutions are developed.

  8. Impact of a Community Dental Access Program on Emergency Dental Admissions in Rural Maryland

    PubMed Central

    Rowland, Sandi; Davidson, Clare; Brady, Joanne; Knudson, Alana

    2016-01-01

    Objectives. To characterize the expansion of a community dental access program (CDP) in rural Maryland providing urgent dental care to low-income individuals, as well as the CDP’s impact on dental-related visits to a regional emergency department (ED). Methods. We used de-identified CDP and ED claims data to construct a data set of weekly counts of CDP visits and dental-related ED visits among Maryland adults. A time series model examined the association over time between visits to the CDP and ED visits for fiscal years (FYs) 2011 through 2015. Results. The CDP served approximately 1600 unique clients across 2700 visits during FYs 2011 through 2015. The model suggested that if the CDP had not provided services during that time period, about 670 more dental-related visits to the ED would have occurred, resulting in $215 000 more in charges. Conclusions. Effective ED dental diversion programs can result in substantial cost savings to taxpayers, and more appropriate and cost-effective care for the patient. Policy Implications. Community dental access programs may be a viable way to patch the dental safety net in rural communities while holistic solutions are developed. PMID:27736218

  9. Association of mandated language access programming and quality of care provided by mental health agencies.

    PubMed

    McClellan, Sean R; Snowden, Lonnie

    2015-01-01

    This study examined the association between language access programming and quality of psychiatric care received by persons with limited English proficiency (LEP). In 1999, the California Department of Mental Health required county Medicaid agencies to implement a "threshold language access policy" to meet the state's Title VI obligations. This policy required Medi-Cal agencies to provide language access programming, including access to interpreters and translated written material, to speakers of languages other than English if the language was spoken by at least 3,000, or 5%, of the county's Medicaid population. Using a longitudinal study design with a nonequivalent control group, this study examined the quality of care provided to Spanish speakers with LEP and a severe mental illness before and after implementation of mandatory language access programming. Quality was measured by receipt of at least two follow-up medication visits within 90 days or three visits within 180 days of an initial medication visit over a period of 38 quarter-years. On average, only 40% of Spanish-speaking clients received at least three medication follow-up visits within 180 days. In multivariate analyses, language access programming was not associated with receipt of at least two medication follow-up visits within 90 days or at least three visits within 180 days. This study found no evidence that language access programming led to increased rates of follow-up medication visits for clients with LEP.

  10. Using Virtual Reality to Bring Ocean Science Field Experiences to the Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Waite, A. J.; Rosenberg, A.; Frehm, V.; Gravinese, P.; Jackson, J.; Killingsworth, S.; Williams, C.

    2017-12-01

    While still in its infancy, the application of virtual reality (VR) technology to classroom education provides unparalleled opportunities to transport students to otherwise inaccessible localities and increase awareness of and engagement in STEAM fields. Here we share VR programming in development by the ANGARI Foundation, a 501(c)(3) nonprofit committed to advancing ocean science research and education. ANGARI Foundation's series of thematic VR films features the research of ocean scientists from onboard the Foundation's research vessel, R/V ANGARI. The films are developed and produced through an iterative process between expedition scientists, the film production team, and ANGARI staff and Educator Council members. Upon completion of filming, the K-12 and informal educators of ANGARI's Educator Council work with ANGARI staff and affiliated scientists to develop and implement standards-aligned (e.g. Next Generation Science Standards and International Baccalaureate) lesson plans for the classroom. The goal of ANGARI Foundation's VR films is to immerse broad audiences in the marine environment, while actively engaging them in the at-sea scientific methods of expert scientists, ultimately increasing knowledge of our oceans and promoting their conservation. The foundation's VR films and developed lessons are made available for free to the public via YouTube and www.ANGARI.org. While South Florida educators may request that ANGARI Foundation visit their classrooms and bring the necessary headsets to run the experience, the Foundation is also partnering with VR hardware companies to facilitate the acquisition and adoption of VR headsets by schools in the U.S. and abroad. In this presentation we will share our most recent VR film that highlights coral reef ecosystems and the Florida Reef Tract, taking an interdisciplinary approach to investigating how it has changed over time and the issues and opportunities it currently faces. We will also discuss classroom implementation of VR and the invaluable opportunities that the ANGARI VR series provides for educator professional development and public engagement as it continues to break down barriers between scientists and the public.

  11. A Cost-Benefit Analysis of a State-Funded Healthy Homes Program for Residents With Asthma: Findings From the New York State Healthy Neighborhoods Program.

    PubMed

    Gomez, Marta; Reddy, Amanda L; Dixon, Sherry L; Wilson, Jonathan; Jacobs, David E

    Despite considerable evidence that the economic and other benefits of asthma home visits far exceed their cost, few health care payers reimburse or provide coverage for these services. To evaluate the cost and savings of the asthma intervention of a state-funded healthy homes program. Pre- versus postintervention comparisons of asthma outcomes for visits conducted during 2008-2012. The New York State Healthy Neighborhoods Program operates in select communities with a higher burden of housing-related illness and associated risk factors. One thousand households with 550 children and 731 adults with active asthma; 791 households with 448 children and 551 adults with asthma events in the previous year. The program provides home environmental assessments and low-cost interventions to address asthma trigger-promoting conditions and asthma self-management. Conditions are reassessed 3 to 6 months after the initial visit. Program costs and estimated benefits from changes in asthma medication use, visits to the doctor for asthma, emergency department visits, and hospitalizations over a 12-month follow-up period. For the asthma event group, the per person savings for all medical encounters and medications filled was $1083 per in-home asthma visit, and the average cost of the visit was $302, for a benefit to program cost ratio of 3.58 and net benefit of $781 per asthma visit. For the active asthma group, per person savings was $613 per asthma visit, with a benefit to program cost ratio of 2.03 and net benefit of $311. Low-intensity, home-based, environmental interventions for people with asthma decrease the cost of health care utilization. Greater reductions are realized when services are targeted toward people with more poorly controlled asthma. While low-intensity approaches may produce more modest benefits, they may also be more feasible to implement on a large scale. Health care payers, and public payers in particular, should consider expanding coverage, at least for patients with poorly controlled asthma or who may be at risk for poor asthma control, to include services that address triggers in the home environment.

  12. 2013 Occupant Protection Risk Standing Review Panel Status Review Comments to the Human Research Program, Chief Scientist

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    On December 17, 2013, the OP Risk SRP, participants from the JSC, HQ, and NRESS participated in a WebEx/teleconference. The purpose of the call was to allow the SRP members to: 1. Receive an update by the Human Research Program (HRP) Chief Scientist or Deputy Chief Scientist on the status of NASA's current and future exploration plans and the impact these will have on the HRP. 2. Receive an update on any changes within the HRP since the 2012 SRP meeting. 3. Receive an update by the Element or Project Scientist(s) on progress since the 2012 SRP meeting. 4. Participate in a discussion with the HRP Chief Scientist, Deputy Chief Scientist, and the Element regarding possible topics to be addressed at the next SRP meeting.

  13. Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2011-07-20

    This report summarizes work carried out by the Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Team for the period of January 1, 2011 through June 30, 2011. It discusses highlights, overall progress, period goals, and collaborations and lists papers and presentations. To learn more about our project, please visit our UV-CDAT website (URL: http://uv-cdat.org). This report will be forwarded to the program manager for the Department of Energy (DOE) Office of Biological and Environmental Research (BER), national and international collaborators and stakeholders, and to researchers working on a wide range of other climate model, reanalysis, and observation evaluation activities. Themore » UV-CDAT executive committee consists of Dean N. Williams of Lawrence Livermore National Laboratory (LLNL); Dave Bader and Galen Shipman of Oak Ridge National Laboratory (ORNL); Phil Jones and James Ahrens of Los Alamos National Laboratory (LANL), Claudio Silva of Polytechnic Institute of New York University (NYU-Poly); and Berk Geveci of Kitware, Inc. The UV-CDAT team consists of researchers and scientists with diverse domain knowledge whose home institutions also include the National Aeronautics and Space Administration (NASA) and the University of Utah. All work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Working directly with BER climate science analysis projects, this consortium will develop and deploy data and computational resources useful to a wide variety of stakeholders, including scientists, policymakers, and the general public. Members of this consortium already collaborate with other institutions and universities in researching data discovery, management, visualization, workflow analysis, and provenance. The UV-CDAT team will address the following high-level visualization requirements: (1) Alternative parallel streaming statistics and analysis pipelines - Data parallelism, Task parallelism, Visualization parallelism; (2) Optimized parallel input/output (I/O); (3) Remote interactive execution; (4) Advanced intercomparison visualization; (5) Data provenance processing and capture; and (6) Interfaces for scientists - Workflow data analysis and visualization construction tools, and Visualization interfaces.« less

  14. RIS4E Science Journalism Program

    NASA Astrophysics Data System (ADS)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience and confidence with using journalistic equipment in the field and an improved understanding of how scientific research is conducted. Survey results indicate that the majority of participants are more likely to pursue science journalism as a career as a result of participating in this program. Their work is presented at ReportingRIS4E.com.

  15. The effect of a telephone-based health coaching disease management program on Medicaid members with chronic conditions.

    PubMed

    Lin, Wen-Chieh; Chien, Hung-Lun; Willis, Georgianna; O'Connell, Elizabeth; Rennie, Kate Staunton; Bottella, Heather M; Ferris, Timothy G

    2012-01-01

    Despite the growing popularity of disease management programs for chronic conditions, evidence regarding the effect of these programs has been mixed. In addition, few peer-reviewed studies have examined the effect of these programs on publicly insured populations. To examine the effect of a telephone-based health coaching disease management program on healthcare utilization and expenditures in Medicaid members with chronic conditions. Using a difference-in-differences analysis, we examined changes in hospitalizations, emergency department (ED) visits, ambulatory care visits, and Medicaid expenditures among program members for 1 year before and 2 years after their enrollment compared with a matched comparison group. Medicaid members aged 18 to 64 with a diagnosis of qualifying chronic conditions and 2 acute health service events of hospitalizations and/or ED visits within a 12-month period. Changes in acute hospitalizations, ambulatory care visits, and Medicaid expenditures before and after program enrollment were similar between the 2 study groups. However, during the second year after enrollment, program members had a significantly smaller decrease in ED visits than the comparisons (8% in program members and 23% in comparisons, P value=0.03). Compared with a matched comparison group, the telephone-based health coaching disease management program did not demonstrate significant effects on healthcare utilization and expenditures in Medicaid members with chronic conditions.

  16. What Matters for Excellence in PhD Programs? Latent Constructs of Doctoral Program Quality Used by Early Career Social Scientists

    ERIC Educational Resources Information Center

    Morrison, Emory; Rudd, Elizabeth; Zumeta, William; Nerad, Maresi

    2011-01-01

    This paper unpacks how social science doctorate-holders come to evaluate overall excellence in their PhD training programs based on their domain-specific assessments of aspects of their programs. Latent class analysis reveals that social scientists 6-10 years beyond their PhD evaluate the quality of their doctoral program with one of two…

  17. The United States Antarctic Program Data Center (USAP-DC): Recent Developments

    NASA Astrophysics Data System (ADS)

    Nitsche, F. O.; Bauer, R.; Arko, R. A.; Shane, N.; Carbotte, S. M.; Scambos, T.

    2017-12-01

    Antarctic earth and environmental science data are highly valuable, often unique research assets. They are acquired with substantial and expensive logistical effort, frequently in areas that will not be re-visited for many years. The data acquired in support of Antarctic research span a wide range of disciplines. Historically, data management for the US Antarctic Program (USAP) has made use of existing disciplinary data centers, and the international Antarctic Master Directory (AMD) has served as a central metadata catalog linking to data files hosted in these external repositories. However, disciplinary repositories do not exist for all USAP-generated data types and often it is unclear what repositories are appropriate, leading to many datasets being served locally from scientist's websites or not available at all. The USAP Data Center (USAP-DC; www.usap-dc.org), operated as part of the Interdisciplinary Earth Data Alliance (IEDA), contributes to the broader preservation of research data acquired with funding from NSF's Office of Polar Programs by providing a repository for diverse data from the Antarctic region. USAP-DC hosts data that spans the range of Antarctic research from snow radar to volcano observatory imagery to penguin counts to meteorological model outputs. Data services include data documentation, long-term preservation, and web publication, as well as scientist support for registration of data descriptions into the AMD in fulfillment of US obligations under the International Antarctic Treaty. In Spring 2016, USAP-DC and the NSIDC began a new collaboration to consolidate data services for Antarctic investigators and to integrate the NSF-funded glaciology collection at NSIDC with the collection hosted by USAP-DC. Investigator submissions for NSF's Glaciology program now make use of USAP-DC's web submission tools, providing a uniform interface for Antarctic investigators. The tools have been redesigned to collect a broader range of metadata. Each data submission is reviewed and verified by a specialist from the USAP-DC/NSIDC team depending on disciplinary focus of the submission. A recently updated web search interface is available to search data by title, NSF program, award, dataset contributor, large scale project (e.g. WAIS Divide Ice Core) or by specifying an area in map view.

  18. Geology, Geochronology, and EarthScope: The EarthScope AGeS Program and a new idea for a 4D Earth Initiative

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Arrowsmith, R.; Metcalf, J. R.; Rittenour, T. M.; Schoene, B.; Hole, J. A.; Pavlis, T. L.; Wagner, L. S.; Whitmeyer, S. J.; Williams, M. L.

    2015-12-01

    The EarthScope AGeS (Awards for Geochronology Student Research) program is a multi-year educational initiative aimed at enhancing interdisciplinary, innovative, and high-impact science by promoting training and new interactions between students, scientists, and geochronology labs at different institutions. The program offers support of up to $10,000 for graduate students to collect and interpret geochronology data that contribute to EarthScope science targets through visits to participating geochronology labs (www.earthscope.org/geochronology). The program was launched by a 2-day short course held before the 2014 National GSA meeting in Vancouver, at which 16 geochronology experts introduced 43 participants to the basic theory and applications of geochronology methods. By the first proposal submission deadline in spring 2015, 33 labs representing a broad range of techniques had joined the program by submitting lab plans that were posted on the EarthScope website. The lab plans provide information about preparation, realistic time frames for visits, and analytical costs. In the first year of the program, students submitted 47 proposals from 32 different institutions. Proposals were ranked by an independent panel, 10 were funded, and research associated with these projects is currently underway. The next proposal deadline will be held in spring 2016. The 4D-Earth initiative is an idea for a natural successor to the EarthScope program aimed at expanding the primarily 3D geophysical focus that captured a snapshot of present day North America into the 4th dimension of time (hence the connection to the prototypical AGeS program), and illuminating the crustal component that was below the resolution of much of the USArray image. Like EarthScope, the notion is that this initiative would integrate new infrastructure and usher in a new way of doing science. The overarching scientific motivation is to develop a Community Geologic Model for the 4-D Evolution of the North American continent to firmly answer long-standing questions of how the time-integrated processes of plate tectonics and surface processes produce the mantle and crustal structures we see today. A breakout session on this topic was held at the 2015 EarthScope National Meeting, and efforts are underway to solicit feedback to shape these ideas.

  19. Pilot Evaluation of a Home Visit Parent Training Program in Disadvantaged Families

    ERIC Educational Resources Information Center

    Leung, Cynthia; Tsang, Sandra; Heung, Kitty

    2013-01-01

    Objectives: The study reported the pilot evaluation of the Healthy Start Home Visit Program for disadvantaged Chinese parents with preschool children, delivered by trained parent assistants. Home visiting was used to make services more accessible to disadvantaged families. Method: The participants included 21 parent-child dyads. Outcome measures…

  20. New Research Strengthens Home Visiting Field: The Pew Home Visiting Campaign

    ERIC Educational Resources Information Center

    Doggett, Libby

    2013-01-01

    Extensive research has shown that home visiting parental education programs improve child and family outcomes, and they save money for states and taxpayers. Now, the next generation of research is deepening understanding of those program elements that are essential to success, ways to improve existing models, and factors to consider in tailoring…

  1. Science experiences of citizen scientists in entomology research

    NASA Astrophysics Data System (ADS)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.

  2. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... Visiting Fellow Measurement Science and Engineering Program are as follows: 1. To advance, through...

  3. Clinician scientist training program: a proposal for training medical students in clinical research.

    PubMed

    Mark, A L; Kelch, R P

    2001-11-01

    There is national alarm about a decline in the number of clinician scientists. Most of the proposed solutions have focused on housestaff and junior faculty. We propose a new national program for training medical students in clinical research. This program, coined "Clinician Scientist Training Program" (CSTP), would consist of a combined degree program in medicine (MD) and clinical research (eg, masters in translational research or masters in clinical epidemiology). Students could enroll in the program at any stage during medical school. After 3 years of medical school, students would spend at least 2 years in a combined didactic and mentored clinical research training program and then complete medical school. Students could elect to pursue more prolonged clinical research training toward a combined PhD and MD. The CSTP is designed to meet six critical challenges: 1) engage students early in clinical research training; 2) provide a didactic clinical research curriculum; 3) expose students to several years of mentored clinical research training; 4) promote debt prevention by providing tuition payments during medical education and a stipend during clinical research training; 5) facilitate prolonged exposure to a community of peers and mentors in a program with national and institutional identity and respect; and 6) permit enrollment in the program as students enter medical school or at any stage during medical school. If the success of the Medical Scientist Training Program in training medical students in basic research is a guide, the CSTP could become a linchpin for training future generations of clinician scientists.

  4. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    PubMed

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  5. News & Announcements

    NASA Astrophysics Data System (ADS)

    1999-08-01

    News from Journal House Perspective on JCE Online Recently a reader asked us for a perspective on JCE Onlinehow the chemical education community is receiving it and how the Journal staff itself views it. We share our responses below. Subscriber Numbers How many people subscribe to JCE Online+? As of June 1, 1999, our records show that 13% of individual JCE subscriptions in the USA include JCE Online+. This percentage has increased significantly during the past year- in June 1998 it was approximately 4% and December 1998 about 7%. Almost all subscribers to JCE Online subscribe to print as well. Since JCE Online has only very recently been made available to institutional subscribers, there are no numbers to report. There has been considerable interest in online from libraries. Given that JCE Online+ is a fairly recent subscriber option and that many subscribers have a wait-and-see approach to any new option, we feel that the numbers above are quite high. The steady growth is encouraging. Online Usage How many people visit our Web site? Statistics for the period January 1, 1999, through May 31, 1999, that may be of interest include:

    Total Pages Served 361,115

    Total Visits 138,377

    Total Unique Visitors 51,744

    Total Repeat Visitors 11,536

    Average Visit Length 03:05

    Average Requests/Visit 10.8

    Average Pages/Visit 2.6

    Average Daily Visits 916 Online Rationale and Expectations JCE Online is a very important part of the whole Journal, but we do not expect it to supplant print: online and print are very different media. Usage of JCE Online is growing steadily; our subscribers are realizing what we have learned: it is not possible to deliver the Journal in the print medium alone- print is no longer adequate to accomplish our mission. Examples of things not possible in print include:

    ·JCE Index to all 76 years of Journal issues, available all the time with responses within seconds.

    ·Supplementary materials that are important to only a limited number of our subscribers; materials that augment laboratory experiments are a good example.

    ·Supplementary videos, such as the videos, still images, and excerpts from interviews with nuclear chemists that give fuller meaning to the Viewpoints article "Chemistry of the Heaviest Elements- One Atom at a Time" referred to below.

    ·Internet feature columns are more effective in a dynamic medium. Two that are in place are Mathcad in the Chemistry Curriculum (edited by Theresa Zielinski) and Conceptual Questions and Challenge Problems (edited by William Robinson and Susan Nurrenbern).

    ·Buyers Guides have their content updated often and link to other useful sites. There is one for books and software and another for supplies and equipment. Elements Added to Periodic Table Two new transuranic elements have been added to the list in the Viewpoints article "Chemistry of the Heaviest ElementsOne Atom at a Time" by Darleane C. Hoffman and Diana M. Lee (JCE, 1999, 76, 331). The new elements have atomic numbers 118 and 116. The path to the discovery of these elements was predicted by Robert Smolanczuk, a young Polish theorist whose calculations led him to conclude that a lead-krypton collision technique could produce element 118, which then decays to element 116. Others questioned his results, but Hoffman invited him to join the team at the Lawrence Berkeley National Laboratory and a decision was made to try out his ideas. The result was almost complete verification of Smolanczuk's calculations. The experimental team was headed by Kenneth E. Gregorich; Darleane Hoffman is one of 15 codiscoverers of element 118. Awards Willard Gibbs Medal Lawrence F. Dahl of the University of Wisconsin-Madison is the recipient of 1999 Willard Gibbs Medal, the highest award of the Chicago Section of the American Chemical Society. It is awarded annually to a world-renowned scientist selected by a jury of panelists composed of eminent chemists elected by the Board of Directors of the Chicago Section. The award was presented at the Chicago Section's meeting in May 1999. Courses, Seminars, Meetings, Opportunities Grant Program for Senior Scientist Mentors The Camille and Henry Dreyfus Foundation announces a new initiative within its Special Grant Program in the Chemical Sciences: the Senior Scientist Mentors. Undergraduate participation in research is generally acknowledged to be one of the most effective ways for students to learn and appreciate chemistry. Key to a meaningful research experience is the advising and counseling a student can receive from leaders in chemical research. Application Details Emeritus faculty who maintain active research programs in the chemical sciences may apply for one of a limited number of awards that will allow undergraduates to do research under their guidance. Successful applicants, who are expected to be closely engaged in a mentoring relationship with the students, will receive grants of 10,000 annually for two years (20,000 total) for undergraduate stipends and modest research support. In approximately three pages, applicants should describe their ongoing research and the nature of the participation by undergraduates in the research activity. The role of the applicant as mentor should be clearly outlined. The application should also contain a curriculum vitae of no more than five pages that includes representative publications; a letter of support from the department chair that also commits appropriate space and facilities for the undergraduate participants; and a letter of support from a colleague (preferably from outside the department) who is familiar with the applicant's research and teaching. This initiative is open to all institutions that offer bachelor's or higher degrees in the chemical sciences. Use the standard cover page for the Special Grant Program in the Chemical Sciences, which is available at www.dreyfus.org. "Senior Scientist Mentors" should be entered as the project title. An original and five copies of the application are required. Applications should be received in the Foundation office (555 Madison Avenue, Suite 1305, New York, NY 10022) by September 1, 1999; awards will be announced toward the end of January 2000.

    Proposal Deadlines

    National Science Foundation Division of Undergraduate Education (DUE)

    • Course, Curriculum, and Laboratory Improvement (CCLI) June 7, 1999
    • NSF Collaboratives for Excellence in Teacher Preparation (CETP) Preliminary proposals, Track 1 May 1, 1999 Formal proposals, Track 1 September 1, 1999
    • DUE online 1999 guidelines, NSF 99-53 available at http://www.nsf.gov/cgi-bin/getpub?nsf9953
    For further information about NSF DUE programs consult the DUE Web site, http://www.ehr.nsf.gov/EHR/DUE/start.htm. Program deadlines are at http://www.ehr.nsf.gov/EHR/DUE/programs/programs.htm . To contact the DUE Information Center, phone: 703/306-1666; email: undergrad@nsf.gov.

    The Camille and Henry Dreyfus Foundation, Inc.

    • Camille Dreyfus Teacher-Scholar Awards Program: November 16, 1998
    • Henry Dreyfus Teacher-Scholar Awards Program: July 1, 1999
    • New Faculty Awards Program: May 14, 1999
    • Faculty Start-up Grants for Undergraduate Institutions: May 14, 1999
    • Scholar/Fellow Program for Undergraduate Institutions: July 1, 1999
    • Special Grant Program in the Chemical Sciences: July 15, 1999
    • Postdoctoral Program in Environmental Chemistry: February 26, 1999
    Further information may be obtained from The Camille and Henry Dreyfus Foundation, Inc., 555 Madison Avenue, Suite 1305, New York, NY 10022; phone: 212/753-1760; email: admin@dreyfus.org; WWW: http://www.dreyfus.org/

    Research Corporation

    • Cottrell College Science Awards: May 15 and November 15
    • Cottrell Scholars: First regular business day in September
    • Partners in Science: December 1 (the final opportunity for this program is summer 1999)
    • Research Opportunity Awards: May 1 and October 1
    • Research Innovation Awards: May 1
    Further information may be obtained from Research Corporation, 101 North Wilmot Road, Suite 250, Tucson, AZ 85711-3332; phone: 520/571-1111; fax: 520/571-1119; email: awards@rescorp.org; www: http://www.rescorp.org

  6. Let's Talk About Breastfeeding: The Importance of Delivering a Message in a Home Visiting Program.

    PubMed

    McGinnis, Sandra; Lee, Eunju; Kirkland, Kristen; Miranda-Julian, Claudia; Greene, Rose

    2018-05-01

    To examine the potential impact of paraprofessional home visitors in promoting breastfeeding initiation and continuation among a high-risk population. A secondary analysis of program data from a statewide home visitation program. Thirty-six Healthy Families New York sites across New York State. A total of 3521 pregnant mothers at risk of poor child health and developmental outcomes. Home visitors deliver a multifaceted intervention that includes educating high-risk mothers on benefits of breastfeeding, encouraging them to breastfeed and supporting their efforts during prenatal and postnatal periods. Home visitor-reported content and frequency of home visits, participant-reported breastfeeding initiation and duration, and covariates (Kempe Family Stress Index, race and ethnicity, region, nativity, marital status, age, and education). Logistic regression. Breastfeeding initiation increased by 1.5% for each 1-point increase in the percentage of prenatal home visits that included breastfeeding discussions. Breastfeeding continuation during the first 6 months also increased with the percentage of earlier home visits that included breastfeeding discussions. Additionally, if a participant receives 1 more home visit during the third month, her likelihood of breastfeeding at 6 months increases by 11%. Effect sizes varied by months postpartum. Delivering a breastfeeding message consistently during regular home visits is important for increasing breastfeeding rates. Given that home visiting programs target new mothers least likely to breastfeed, a more consistent focus on breastfeeding in this supportive context may reduce breastfeeding disparities.

  7. INL@Work Radiological Search & Response Training

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnage, Jennifer

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  8. Media Advisory -- Director of National Science Foundation to Visit Colorado

    Science.gov Websites

    Mines Green Center located 924 16th Street, Golden. Media may also join Dr. Lane at any of the following faculty and federal laboratory scientists, Colorado School of Mines Green Center, Metals Hall (180A School of Mines Green Center, Ted Adams Room (270), Golden. Maps and parking information are available

  9. Evaluation of Calipers II: Using Simulations to Assess Complex Learning Site Visit Findings. CRESST Report 821

    ERIC Educational Resources Information Center

    Matrundola, Deborah La Torre; Chang, Sandy; Herman, Joan

    2012-01-01

    The purpose of these case studies was to examine the ways technology and professional development supported the use of the SimScientists assessment systems. Qualitative research methodology was used to provide narrative descriptions of six classes implementing simulation-based assessments for either the topic of Ecosystems or Atoms and Molecules.…

  10. INL@Work Radiological Search & Response Training

    ScienceCinema

    Turnage, Jennifer

    2017-12-13

    Dealing with radiological hazards is just part of the job for many INL scientists and engineers. Dodging bullets isn't. But some Department of Defense personnel may have to do both. INL employee Jennifer Turnage helps train soldiers in the art of detecting radiological and nuclear material. For more information about INL's research projects, visit http://www.facebook.com/idahonationallaboratory.

  11. Pluto Express: Mission to Pluto

    NASA Technical Reports Server (NTRS)

    Giuliano, J. A.

    1996-01-01

    Pluto is the smallest, outermost and last-discovered planet in the Solar System and the only one that has never been visited by a spacecraft from Earth. Pluto and its relatively large satellite Charon are the destinations of a proposed spacecraft mission for the next decade, being developed for NASA by scientists and engineers at NASA's Jet Propulsion Laboratory.

  12. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    NASA Astrophysics Data System (ADS)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models and inquiry-based ocean sciences activities for children and families visiting informal institutions. The following COSIA partners have taught the course: Hampton University - Virginia Aquarium; Oregon State University - Hatfield Marine Science Visitor's Center; Rutgers University - Liberty Science Center; University of California, Berkeley - Lawrence Hall of Science; University of Southern California - Aquarium of the Pacific; and Scripps Institution of Oceanography - Birch Aquarium. Communicating Ocean Sciences has also been taught at Stanford, Woods Hole Oceanographic Institute, University of Oregon (GK-12 program), University of Washington, and others. Data from surveys of students demonstrates improvement in their understanding of how people learn and how to effectively communicate. Providing college students with a background in current learning theory, and applying that theory through practical science communication experiences, will empower future generations of scientists to meet the communication challenges they will encounter in their careers.

  13. Post-Interview Communication During Application to Orthopaedic Surgery Residency Programs.

    PubMed

    Brooks, Jaysson T; Reidler, Jay S; Jain, Amit; LaPorte, Dawn M; Sterling, Robert S

    2016-10-05

    Post-interview communication from residency programs to applicants is common during the U.S. residency match process. The goals of this study were to understand the frequency and type of post-interview communication, how this communication influences applicants' ranking of programs, whether programs use "second-look" visits to gauge or to encourage applicant interest, and the financial costs to applicants of second-look visits. A post-match survey was sent to 1,198 applicants to one academic orthopaedic residency program over 2 years. The response rates were 15% in 2014 and 31% in 2015, totaling 293 responses used for analysis. Sixty-four percent of applicants reported having post-interview communication with one or more programs. Seventeen percent said that communication caused them to rank the contacting program higher or to keep the program ranked as number 1. Twenty percent felt pressured to reveal their rank position, and 8% were asked to rank a program first in exchange for the program's promise to rank the applicant first. Applicants who received post-interview communication had odds that were 13.5 times higher (95% confidence interval, 6.2 to 30 times higher) of matching to the programs that contacted them. Ninety percent of applicants said that communication from a program did not change how they ranked the program with which they eventually matched. Seventeen percent were encouraged to attend second-look visits, incurring a mean cost of $600 (range, $20 to $8,000). Orthopaedic residency programs continue to communicate with applicants in ways that violate the National Resident Matching Program's Match Communication Code of Conduct, and they continue to encourage second-look visits. To improve the integrity of the match, we suggest that programs use no-reply e-mails to minimize influence and pressure on applicants, interviewers and applicants review the Code of Conduct on interview day and provide instructions on reporting violations to the National Resident Matching Program, all post-interview communication be directed to a standardized or neutral third party, and programs actively discourage second-look visits and stop requiring second-look visits. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  14. Science in Places of Grandeur: Communication and Engagement in National Parks.

    PubMed

    Watkins, Tim; Miller-Rushing, Abraham J; Nelson, Sarah J

    2018-05-14

    The United States has set aside over 400 national parks and other protected areas to be managed by the National Park Service (NPS). Collectively, these sites attract over 300 million visits per year which makes the NPS one of the largest informal education institutions in the country. Because the NPS supports and facilitates scientific studies in parks, the national park system provides abundant opportunity for biologists and other scientists to engage global audiences in learning, exploring, and even conducting science. Those opportunities are best pursued through collaborations among scientists and the professional communication staff (interpreters, educators, media specialists, etc.) of parks and their partner organizations. This article describes unique opportunities and rationale for such collaborations, presents several examples that highlight the range of activities and lessons drawn from them, and invites scientists to conduct studies in parks and bring their science into the public eye.

  15. The CACREP Site Visit Process

    ERIC Educational Resources Information Center

    Lee, Courtland C.

    2013-01-01

    An important step in the CACREP review process is the campus site visit. The visit involves a team, usually from comparable institutions, coming to a campus for a review of the counselor training program(s). The role of the team is to be the CACREP Board's representative on campus to verify the self-study. In this article, the author reviews…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, J. C.; Environmental Research

    The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at severalmore » former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic mistake sometimes made in the site characterization process is failure to use technically sound available data to form working hypotheses on hydrogeology, contaminant distribution, etc. for initial testing. (3) After assembling and interpreting existing data for the site, the entire technical team visits the site to identify as a group the site characteristics that might prohibit or enhance any particular technological approach. Logistic and community constraints are also identified at this point. (4) After the field visit, the team selects a suite of technologies appropriate to the problem and completes the design of the field program. No one technique works well at all sites, and a suite of techniques is necessary to delineate site features fully. In addition, multiple technologies are employed to increase confidence in conclusions about site features. Noninvasive and minimally invasive technologies are emphasized to minimize risk to the environment, the community, and the staff. In no case is the traditional approach of installing a massive number of monitoring wells followed. A dynamic work plan that outlines the program is produced for the sponsoring and regulatory agencies. The word ''dynamic'' is emphasized because the work plan is viewed as a guide, subject to modification, for the site characterization activity, rather than a document that is absolute and unchangeable. Therefore, the health and safety plan and the quality assurance/quality control plan must be broad and encompass all possible alterations to the plan. The cooperation of the regulating agency is essential in successful implementation of this process. The sponsoring and regulatory agencies are notified if significant changes to the site-specific work plan are necessary. (5) The entire team participates in the technical field program. Several technical activities are undertaken simultaneously. These may range from different surface geophysics investigations to vegetation sampling. Data from the various activities are reduced and interpreted each day by the technical staff. Various computer programs are used to visualize and integrate the data. However, people do the data interpretation and integration, not the computers, which are just one more tool at the site. At the end of the day, the staff members meet, review results, and modify the next day's program as necessary to optimize activities that are generating overlapping or confirming site details. Data are not arbitrarily discarded -- each finding must be explained and understood. Anomalous readings may be due to equipment malfunctions, laboratory error, or the inability of a technique to work in a given setting. The suite of selected technologies is adjusted in the field if necessary. (6) The end result of this process is the optimization of the field activity to produce a high-quality technical product that is cost and time effective.« less

  17. Relationship work in an early childhood home visiting program.

    PubMed

    Heaman, Maureen; Chalmers, Karen; Woodgate, Roberta; Brown, Judy

    2007-08-01

    A significant component of the work of public health nurses and paraprofessional home visitors who provide home visits to families with young children involves establishing relationships to effectively deliver the visiting program. The purpose of this qualitative and descriptive study was to describe the relationships among participants in a home visiting program in one regional health authority in the Canadian province of Manitoba. Interviews were carried out with 24 public health nurses, 14 home visitors, and 20 parents. The findings related to establishing, maintaining, and terminating relationships as well as factors influencing relationship work are described. Public health nurses and home visitors put significant effort into the work of establishing relationships with each other and their clients and require adequate training, sufficient human resources, and support from the program's administration to sustain these relationships.

  18. Development of a Curriculum in Laser Technology. Final Report.

    ERIC Educational Resources Information Center

    Wasserman, William J.

    A Seattle Central Community College project visited existing programs, surveyed need, and developed a curriculum for a future program in Laser-Electro-Optics (LEO) Technology. To establish contacts and view successful programs, project staff made visits to LEO technology programs at San Jose City College and Texas State Technical Institute, Center…

  19. A Home Visiting Asthma Education Program: Challenges to Program Implementation

    ERIC Educational Resources Information Center

    Brown, Josephine V.; Demi, Alice S.; Celano, Marianne P.; Bakeman, Roger; Kobrynski, Lisa; Wilson, Sandra R.

    2005-01-01

    This study describes the implementation of a nurse home visiting asthma education program for low-income African American families of young children with asthma. Of 55 families, 71% completed the program consisting of eight lessons. The achievement of learning objectives was predicted by caregiver factors, such as education, presence of father or…

  20. The Impact of a Citizen Science Program on Student Achievement and Motivation: A Social Cognitive Career Perspective

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.

    2012-01-01

    Citizen science programs are joint efforts between hobbyists and professional scientists designed to collect data to support scientific research. Through these programs, biologists study species population trends while citizen scientists improve their content knowledge and science skills. The purpose of the present mixed method quasi-experimental…

  1. NASA Ice, Cloud and land Elevation Satellite-2 Applications - Advancing Dialogue for More Effective Decisions and Societal benefits

    NASA Astrophysics Data System (ADS)

    Delgado Arias, S.; Brown, M. E.; Escobar, V. M.; Jasinski, M. F.; Neumann, T.

    2016-12-01

    Since 2012, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) Applications Program has worked to understand how future mission observations can be effectively used to inform operational sea ice forecasting for Arctic shipping, global flood risk monitoring, fire fuel mapping, and other applications. The ICESat-2 Applications Program has implemented various engagement and outreach activities, as well as an Early Adopter program, to facilitate dialogue between potential users, project scientists, science definition team members, NASA Headquarters and the mission's data distribution center. This dialogue clarifies how ICESat-2's science data can be integrated, improved or leveraged to advance science objectives aligned with or beyond those of the mission, and in support of a range of decisions and actions of benefit to communities across the globe. In this presentation, we will present an overview of the Program initiatives and highlight the research-to-applications chains that mission Early Adopters are helping build for ICESat-2. With a total of 19 Early Adopters and more than 400 people engaged as part of the applications community, ICESat-2 has positioned itself to ensure applications where its observations are used to meet the needs of decision makers, policy makers and managers at different scales. For more information visit: http://icesat-2.gsfc.nasa.gov/applications

  2. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, Christine; Shaner, Andrew; Smith Hackler, Amanda

    2016-10-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement, such as connecting them to opportunities, creating useful resources, and providing training. The advisory board will assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events.LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves.This poster will share the status and current findings of the scientist advisory board, and the lessons learned regarding planetary scientists' needs, abilities, and interests in participating in education and public engagement programs.

  3. Collaborating with Scientists in Education and Public Engagement

    NASA Astrophysics Data System (ADS)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2016-12-01

    The Education and Public Engagement team at the Lunar and Planetary Institute (LPI) is developing a scientific advisory board, to gather input from planetary scientists for ways that LPI can help them with public engagement (such as connecting them to opportunities, creating useful resources, and providing training). The advisory board will also assist in outlining possible roles of scientists in public engagement, provide feedback on LPI scientist engagement efforts, and encourage scientists to participate in various education and public engagement events. LPI's scientists have participated in a variety of education programs, including teacher workshops, family events, public presentations, informal educator trainings, and communication workshops. Scientists have helped conduct hands-on activities, participated in group discussions, and given talks, while sharing their own career paths and interests; these activities have provided audiences with a clearer vision of how science is conducted and how they can become engaged in science themselves. We will share the status and current findings of the scientist advisory board, and the resulting lessons learned regarding scientists' needs, abilities, and interests in participating in education and public engagement programs.

  4. 76 FR 7224 - National Institute of Mental Health; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Emphasis Panel; Biobehavioral Research Awards for Innovative New Scientists (BRAINS). Date: March 1, 2011... . (Catalogue of Federal Domestic Assistance Program Nos. 93.242, Mental Health Research Grants; 93.281, Scientist Development Award, Scientist Development Award for Clinicians, and Research Scientist Award; 93...

  5. Human Research Program Space Radiation Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Woloschak, Gayle; Steinberg-Wright, S.; Coleman, Norman; Grdina, David; Hill, Colin; Iliakis, George; Metting, Noelle; Meyers, Christina

    2010-01-01

    The Space Radiation Standing Review Panel (SRP) met at the NASA Johnson Space Center (JSC) on December 9-11, 2009 to discuss the areas of current and future research targeted by the Space Radiation Program Element (SRPE) of the Human Research Program (HRP). Using evidence-based knowledge as a background for identified risks to astronaut health and performance, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Space Radiation SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the demands placed on the HRP. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the SRP charge. The SRP made a final debriefing to the HRP Program Scientist, Dr. John B. Charles, on December 11, 2009. The SRP noted that current SRPE strategy is properly science-based and views this as the best assurance of the likelihood that answers to the questions posed as gaps in knowledge can be found, that the uncertainty in risk estimates can be reduced, and that a solid, cost-effective approach to risk reduction solutions is being developed. The current approach of the SRPE, based on the use of carefully focused research solicitations, requiring thorough peer-review and approaches demonstrated to be on the path to answering the NASA strategic questions, addressed to a broad extramural community of qualified scientists, optimally positioned to take advantage of serendipitous discoveries and to leverage scientific advances made elsewhere, is sound and appropriate. The SRP viewed with concern statements by HRP implying that the only science legitimately deserving support should be "applied" or, in some instances that the very term "research" might be frowned upon. We understand the desire of management to ensure that research stay focused on mission objectives, but the terms used are code words fraught with different meaning for scientists. Such expressions, taken at face value, convey a profoundly flawed view of science, can easily lead down counterproductive paths, and have the potential to irretrievably corrupt NASA requirements. The SRP understands and endorses the mandate to keep research efforts focused on the mission needs. However, thoughtful application of knowledge gained by understanding the mechanisms and pathways of biological effects cannot be replaced.

  6. Epoxi Has Its Sights On Hartley; Our Sights Are On Education And Public Outreach

    NASA Astrophysics Data System (ADS)

    Feaga, Lori M.; EPOXI E/PO Team

    2010-10-01

    The Deep Impact eXtended Investigation (DIXI) of NASA's EPOXI Discovery Program continues its thematic investigation of comets with a flyby of comet 103P/Hartley 2 on November 4, 2010. During the approach, encounter, and departure phase of the mission, the remaining instruments on the Deep Impact spacecraft will further explore the properties of comets. Ultimately, the planetary science community wants to better understand the diversity between comets and how these protoplanetary building blocks have evolved throughout their history in the Solar System. A goal of EPOXI Education and Public Outreach (E/PO) is to share in the excitement of comet science and their potential to preserve details of our origins. The DIXI E/PO team has been publicizing the flyby at many events across the US. The E/PO program is focused on a hands-on approach to learning about comets and their place in the Solar System. Many of the activities available on our website (epoxi.umd.edu) have been adapted from existing education materials and encompass results from several cometary missions. A newly developed and released educational activity called Comparing Comets has been implemented successfully in classrooms. The activity encourages students to make observations, interpretations and think like scientists for the day. The activity guides students through a scientific comparative analysis of two previously visited cometary nuclei, Tempel 1 and Wild 2, a process similar to that which the DIXI science team members will be undertaking when the spacecraft arrives at Hartley 2 and captures images of another comet. Comparing Comets includes audio files from scientists that gives the students and educators insight into the type of data that can be obtained by a mission and the methods that observational astronomers employ when deriving real scientific results from data.

  7. 40 Years Young: Social Media for the World's Longest-Running Earth-Observation Satellite Program

    NASA Astrophysics Data System (ADS)

    Riebeek, H.; Rocchio, L. E.; Taylor, M.; Owen, T.; Allen, J. E.; Keck, A.

    2012-12-01

    With social media becoming a communication juggernaut it is essential to harness the medium's power to foster better science communication. On July 23, 2012, the Landsat Earth-observing satellite program celebrated the 40th anniversary of the first Landsat launch. To more effectively communicate the impact and importance of Landsat's four-decade long data record a carefully planned social media event was designed to supplement the day's traditional media communications. The social media event, dubbed the "Landsat Social," was modeled on and supported by the NASA Social methodology. The Landsat Social was the first such event for NASA Earth science not associated with a launch. For the Landsat Social, 23 social media-savvy participants were selected to attend a joint NASA/U.S. Geological Survey Landsat anniversary press event at the Newseum in Washington, D.C. The participants subsequently toured the NASA Goddard Space Flight Facility in Greenbelt, Maryland where they had the opportunity to learn about the latest Landsat satellite; visit the Landsat mission control; download and work with Landsat data; and meet Landsat scientists and engineers. All Landsat Social participants had Twitter accounts and used the #Landsat and #NASASocial hashtags to unify their commentary throughout the day. A few key Landsat messages were communicated to the Landsat Social participants at the event's onset. Propagation of this messaging was witnessed for the duration of the Landsat Social; and a spike in online Landsat interest followed. Here, we examine the Landsat 40th anniversary social event, explain impacts made, and report lessons learned.; Landsat Social attendees are busy tweeting, texting, and blogging as Project Scientist Dr. Jim Irons talks about the Landsat Data Continuity Mission in front of the Hyperwall at NASA Goddard Space Flight Center. Photo courtesy Bill Hrybyk.

  8. NSF-CAREER outreach at the K-6 level through Project Excite, Center for Talent Development, School of Education and Social Policy at Northwestern University

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. D.; Cockrell, K.

    2011-12-01

    Many scientists can attribute their careers to some kind of impressionable exposure to experimentation and research at an early age. However, children across the country receive varying levels of exposure to professional scientists depending upon local resources and socioeconomic composition. Outreach goals under this NSF-CAREER award are predicated on the idea that children can develop a life-long interest in science and mathematics at a very early age. The PI has focused on geoscience education to local K-6 students who might not otherwise get exposure to the field at a critical stage of their intellectual development. Working with educators at Northwestern's Center for Talent Development, the PI leads Earth science modules in Project Excite, a longitudinal program that recruits minority third-grade students from local elementary schools for a six-year program involving regular visits to the Department of Earth and Planetary Sciences. The primary goal is to boost minority enrollment in advanced placement courses in science and mathematics at Evanston Township High School. Hands-on demonstration modules have been developed on Mars rovers, renewable energy, as well as rock and mineral identification. Research under this CAREER award examines the role of silicate minerals in Earth's deep water cycle from atomic to geophysical scales. Under laboratory-simulated mantle conditions of 400-700 km depth, high-pressure minerals can incorporate a remarkable amount of water into their structures, resulting in modified physical properties. Experimental studies focus on determining hydration mechanisms at the atomic scale, and understanding the influence of hydration on the behavior of Earth materials at high pressures. Results will provide geophysical indicators of mantle hydration and facilitate detection of potential deep-mantle reservoirs of water remotely using seismic waves.

  9. Heliophysics as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Greb, K.

    2015-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. Now in its tenth year, the School has resulted in the publication of five Heliophysics textbooks now being used at universities worldwide. The books provide a foundational reference for researchers in space physics, solar physics, aeronomy, space weather, planetary science and climate science, astrophysics, plasma physics,. In parallel, the School also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors plan critical roles. Potential hosts may enter information about their research on a central database.

  10. The GLOBE/Madagascar Malaria Project: Creating Student/Educator/Scientist Partnerships With Regional Impact

    NASA Astrophysics Data System (ADS)

    Brooks, D.; Boger, R.; Rafalimanana, A.

    2006-05-01

    Malaria is a parasitic disease spread by mosquitoes in the genus Anopheles. It causes more than 300,000,000 acute illnesses and more than one million deaths annually, including the death of one African child every 30 seconds. Recent epidemiological trends include increases in malaria mortality and the emergence of drug-resistant parasites. Some experts believe that predicted climate changes during the 21st century will bring malaria to areas where it is not now common. The GLOBE Program is currently collaborating with students, educators, scientists, health department officials, and government officials in Madagascar to develop a program that combines existing GLOBE protocols for measuring atmospheric and water quality parameters with a new protocol for collecting and identifying mosquito larvae at the genus (Anopheles and non-Anopheles) level. There are dozens of Anopheles species and sub-species that are adapted to a wide range of micro-environmental conditions encountered in Madagascar's variable climate. Local data collection is essential because mosquitoes typically spend their entire lives within a few kilometers of their breeding sites. The GLOBE Program provides an ideal framework for such a project because it offers a highly structured system for defining experiment protocols that ensure consistent procedures, a widely dispersed network of observing sites, and a centralized data collection and reporting system. Following a series of training activities in 2005, students in Madagascar are now beginning to collect data. Basic environmental parameters and first attempts at larvae collection and identification are presented. Results from this project can be used to increase public awareness of malaria, to provide new scientific data concerning environmental impacts on mosquito breeding, and to provide better information for guiding effective mitigation strategies. Problems encountered include difficulties in visiting and communicating with remote school sites. These are typical problems in developing tropical countries where malaria is endemic and their solution benefits the entire scientific and educational infrastructure in those countries.

  11. Heliophysics as a Scientific Discipline

    NASA Astrophysics Data System (ADS)

    Greb, K.; Austin, M.; Guhathakurta, M.

    2016-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliosphere, and climate environments. Over the past few centuries our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Progams sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of the summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. Now in its tenth year, the School has resulted in the publication of five Heliophysics textbooks now being used at universities worldwide. The books provide a foundational reference for researchers in space physics, solar physics, aeronomy, space weather, planetary science and climate science, astrophysics, plasma physics,. In parallel, the School also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The Jack Eddy Postdoctoral Fellowship Program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation researchers needed in heliophysics. The fellowships are for two years, and any U.S. university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors play critical roles. Potential hosts may enter information about their research on a central database.

  12. Preservice Teachers' Images of Scientists: Do Prior Science Experiences Make a Difference?

    NASA Astrophysics Data System (ADS)

    Milford, Todd M.; Tippett, Christine D.

    2013-06-01

    This article presents the results of a mixed methods study that used the Draw-a-Scientist Test as a visual tool for exploring preservice teachers' beliefs about scientists. A questionnaire was also administered to 165 students who were enrolled in elementary (K-8) and secondary (8-12) science methods courses. Taken as a whole, the images drawn by preservice teachers reflected the stereotype of a scientist as a man with a wild hairdo who wears a lab coat and glasses while working in a laboratory setting. However, results indicated statistically significant differences in stereotypical components of representations of scientists depending on preservice teachers' program and previous science experiences. Post degree students in secondary science methods courses created images of scientists with fewer stereotypical elements than drawings created by students in the regular elementary program.

  13. KSC-2013-4011

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. – During a news conference at NASA's Kennedy Space Center in Florida, officials outlined the agency’s plans for future human spaceflight, including an expedition to Mars. Participating in the briefing was Ellen Stofan, NASA chief scientist. The briefing took place the day prior to launch of the Mars Atmosphere and Volatile EvolutioN, or MAVEN, mission. MAVEN is being prepared for its scheduled launch on Nov 18, 2013 from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For information on the MAVEN mission, visit: http://www.nasa.gov/mission_pages/maven/main/index.html. For more on NASA Human Spaceflight, visit: http://www.spaceflight.nasa.gov/home/index.html. For information on the international Space Station, visit: http://www.nasa.gov/mission_pages/station/main/index.html Photo credit: NASA/Kim Shiflett

  14. OnSight: Multi-platform Visualization of the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Abercrombie, S. P.; Menzies, A.; Winter, A.; Clausen, M.; Duran, B.; Jorritsma, M.; Goddard, C.; Lidawer, A.

    2017-12-01

    A key challenge of planetary geology is to develop an understanding of an environment that humans cannot (yet) visit. Instead, scientists rely on visualizations created from images sent back by robotic explorers, such as the Curiosity Mars rover. OnSight is a multi-platform visualization tool that helps scientists and engineers to visualize the surface of Mars. Terrain visualization allows scientists to understand the scale and geometric relationships of the environment around the Curiosity rover, both for scientific understanding and for tactical consideration in safely operating the rover. OnSight includes a web-based 2D/3D visualization tool, as well as an immersive mixed reality visualization. In addition, OnSight offers a novel feature for communication among the science team. Using the multiuser feature of OnSight, scientists can meet virtually on Mars, to discuss geology in a shared spatial context. Combining web-based visualization with immersive visualization allows OnSight to leverage strengths of both platforms. This project demonstrates how 3D visualization can be adapted to either an immersive environment or a computer screen, and will discuss advantages and disadvantages of both platforms.

  15. Crowd-Sourcing with K-12 citizen scientists: The Continuing Evolution of the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Wegner, K.; Andersen, T. J.

    2016-12-01

    Twenty years ago, the Internet was still in its infancy, citizen science was a relatively unknown term, and the idea of a global citizen science database was unheard of. Then the Global Learning and Observations to Benefit the Environment (GLOBE) Program was proposed and this all changed. GLOBE was one of the first K-12 citizen science programs on a global scale. An initial large scale ramp-up of the program was followed by the establishment of a network of partners in countries and within the U.S. Now in the 21st century, the program has over 50 protocols in atmosphere, biosphere, hydrosphere and pedosphere, almost 140 million measurements in the database, a visualization system, collaborations with NASA satellite mission scientists (GPM, SMAP) and other scientists, as well as research projects by GLOBE students. As technology changed over the past two decades, it was integrated into the program's outreach efforts to existing and new members with the result that the program now has a strong social media presence. In 2016, a new app was launched which opened up GLOBE and data entry to citizen scientists of all ages. The app is aimed at fresh audiences, beyond the traditional GLOBE K-12 community. Groups targeted included: scouting organizations, museums, 4H, science learning centers, retirement communities, etc. to broaden participation in the program and increase the number of data available to students and scientists. Through the 20 years of GLOBE, lessons have been learned about changing the management of this type of large-scale program, the use of technology to enhance and improve the experience for members, and increasing community involvement in the program.

  16. Telling Your Story: Ocean Scientists in the K-12 Classroom

    NASA Astrophysics Data System (ADS)

    McWilliams, H.

    2006-12-01

    Most scientists and engineers are accustomed to presenting their research to colleagues or lecturing college or graduate students. But if asked to speak in front of a classroom full of elementary school or junior high school students, many feel less comfortable. TERC, as part of its work with The Center for Ocean Sciences Education Excellence-New England (COSEE-NE) has designed a workshop to help ocean scientists and engineers develop skills for working with K-12 teachers and students. We call this program: Telling Your Story (TYS). TYS has been offered 4 times over 18 months for a total audience of approximately 50 ocean scientists. We will discuss the rationale for the program, the program outline, outcomes, and what we have learned. ne.net/edu_project_3/index.php

  17. In search of plutonium: A nonproliferation journey

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  18. A Mythological, Philosophical and Astronomical approach of our solar system

    NASA Astrophysics Data System (ADS)

    Drivas, Sotirios; Kastanidou, Sofia

    2016-04-01

    Teaching Geography in the first Class of Gymnasium - secondary education we will focus in Solar System: Astronomical approach: Students will look and find the astronomical data of the planets, they will make comparisons between the sizes of their radius, they will find the distance from the Sun, they will search the relative motion, they will calculate the gravity on each planet, etc. Mythological approach: We will search the names and meanings of the planets based on Greek mythological origin. Philosophical approach: Regarding the philosophical approach of the "solar system" we will look and find: • Why planets are called so? • How did planets get their names? • What are the periods of Greek astronomy? • What were the astronomical instruments of ancient Greeks and who did built them? • What were the Greek philosophers and astronomers? When did they live and what did they discover? • Which method did Eratosthenes of Cyrene apply about 206B.C. to serve a real measurement of the earth's radius? • What was the relationship between science and religion in ancient Greece? Literature approach: At the end of the program students will write their opinion in subject "Having a friend from another planet" based on the book of Antoine de Saint - Exupéry "The little prince". Law approach: A jurist working in Secondary Education will visits our school and engages students in the Space Law. Artistic approach: Students will create their own posters of our planetary system. The best posters will be posted on the school bulletin board to display their work. Visit: Students and teachers will visit the Observatory of Larissa where they will see how observatory works and talk with scientists about their job. They will look through telescopes and observe the sun.

  19. The Discovery Dome: A Tool for Increasing Student Engagement

    NASA Astrophysics Data System (ADS)

    Brevik, Corinne

    2015-04-01

    The Discovery Dome is a portable full-dome theater that plays professionally-created science films. Developed by the Houston Museum of Natural Science and Rice University, this inflatable planetarium offers a state-of-the-art visual learning experience that can address many different fields of science for any grade level. It surrounds students with roaring dinosaurs, fascinating planets, and explosive storms - all immersive, engaging, and realistic. Dickinson State University has chosen to utilize its Discovery Dome to address Earth Science education at two levels. University courses across the science disciplines can use the Discovery Dome as part of their curriculum. The digital shows immerse the students in various topics ranging from astronomy to geology to weather and climate. The dome has proven to be a valuable tool for introducing new material to students as well as for reinforcing concepts previously covered in lectures or laboratory settings. The Discovery Dome also serves as an amazing science public-outreach tool. University students are trained to run the dome, and they travel with it to schools and libraries around the region. During the 2013-14 school year, our Discovery Dome visited over 30 locations. Many of the schools visited are in rural settings which offer students few opportunities to experience state-of-the-art science technology. The school kids are extremely excited when the Discovery Dome visits their community, and they will talk about the experience for many weeks. Traveling with the dome is also very valuable for the university students who get involved in the program. They become very familiar with the science content, and they gain experience working with teachers as well as the general public. They get to share their love of science, and they get to help inspire a new generation of scientists.

  20. Implementation Differences of Two Staffing Models in the German Home Visiting Program "Pro Kind"

    ERIC Educational Resources Information Center

    Brand, Tilman; Jungmann, Tanja

    2012-01-01

    As different competencies or professional backgrounds may affect the quality of program implementation, staffing is a critical issue in home visiting. In this study, N = 430 women received home visits delivered either by a tandem of a midwife and a social worker or by only one home visitor (primarily midwives, continuous model). The groups were…

  1. Tools You Can Use! E/PO Resources for Scientists and Faculty to Use and Contribute To: EarthSpace and the NASA SMD Scientist Speaker’s Bureau

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.

    2013-10-01

    The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at http://www.lpi.usra.edu/earthspace. Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at http://www.lpi.usra.edu/education/speaker.

  2. Methodology: Adapting the 'Training and Visit' System to Population Programmes.

    ERIC Educational Resources Information Center

    Asian-Pacific Population Programme News, 1985

    1985-01-01

    Provides suggestions for adapting the "training and visit" (T&V) system to population programs. Summarizes six main elements of a T&V system for population, health, and nutrition programs and describes four principles of agricultural extension programs. Implications of this process are also reviewed. (ML)

  3. A Solid Foundation: Key Capacities of Construction Pre-Apprenticeship Programs

    ERIC Educational Resources Information Center

    Helmer, Matt; Blair, Amy; Gerber, Allison

    2012-01-01

    This publication shares research from site visits conducted to construction pre-apprenticeship programs in Baltimore, Hartford, Milwaukee and Portland (OR). Findings from the site visits, which included interviews and focus groups with pre-apprenticeship program staff, public officials, philanthropic leaders, construction industry leaders and…

  4. Using a Geriatric Mentoring Narrative Program to Improve Medical Student Attitudes towards the Elderly

    ERIC Educational Resources Information Center

    Duke, Pamela; Cohen, Diane; Novack, Dennis

    2009-01-01

    This study examined first-year medical student attitudes concerning the elderly before and after instituting a geriatric mentoring program. The program began and ended with a survey designed to assess students' attitudes toward the elderly. During the mentoring program, students visited the same senior for four visits throughout the academic year.…

  5. A Teacher-Scientist Partnership as a Vehicle to Incorporate Climate Data in Secondary Science Curriculum

    NASA Astrophysics Data System (ADS)

    Hatheway, B.

    2013-12-01

    After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the teachers and scientists who participated. Lessons learned that will improve this model will also be discussed.

  6. Teaming Up with Scientists.

    ERIC Educational Resources Information Center

    Moreno, Nancy P.; Chang, Kimberly A.; Tharp, Barbara Z.; Denk, James P.; Roberts, J. Kyle; Cutler, Paula H.; Rahmati, Sonia

    2001-01-01

    Introduces the Science Education Leadership Fellows (SELF) program which is an innovative cooperation program between teachers and scientists. Engages teachers in subject areas such as microbiology, molecular biology, immunology, and other professional development activities. Presents an activity in which students observe bacteria cultures and…

  7. Science policy fellowships

    NASA Astrophysics Data System (ADS)

    To encourage scientists to contribute to public policy issues that involve the natural sciences, the Brookings Institution in Washington, D.C., has established a Science Policy Fellowship program, slated to begin with the 1981-1982 academic year. The program will bring senior scientists to Washington for 1 year to work with the Brookings staff on science policy issues.Fellowships will be awarded annually to three scientists from among candidates nominated by an advisory committee, by departments of natural science at universities and private research institutions, and by the public sector. The new program is supported by a 3-year grant from the Sloan Foundation.

  8. Mobile health care operations and return on investment in predominantly underserved children with asthma: the breathmobile program.

    PubMed

    Morphew, Tricia; Scott, Lyne; Li, Marilyn; Galant, Stanley P; Wong, Webster; Garcia Lloret, Maria I; Jones, Felita; Bollinger, Mary Elizabeth; Jones, Craig A

    2013-08-01

    Underserved populations have limited access to care. Improved access to effective asthma care potentially improves quality of life and reduces costs associated with emergency department (ED) visits. The purpose of this study is to examine return on investment (ROI) for the Breathmobile Program in terms of improved patient quality-adjusted life years saved and reduced costs attributed to preventable ED visits for 2010, with extrapolation to previous years of operation. It also examines cost-benefit related to reduced morbidity (ED visits, hospitalizations, and school absenteeism) for new patients to the Breathmobile Program during 2008-2009 who engaged in care (≥3 visits). This is a retrospective analysis of data for 15,986 pediatric patients, covering 88,865 visits, participating in 4 Southern California Breathmobile Programs (November 16, 1995-December 31, 2010). The ROI calculation expressed the cost-benefit ratio as the net benefits (ED costs avoided+relative value of quality-adjusted life years saved) over the per annum program costs (∼$500,000 per mobile). The ROI across the 4 California programs in 2010 was $6.73 per dollar invested. Annual estimated emergency costs avoided in the 4 regions were $2,541,639. The relative value of quality-adjusted life years saved was $24,381,000. For patients new to the Breathmobile Program during 2008-2009 who engaged in care (≥3 visits), total annual morbidity costs avoided per patient were $1395. This study suggests that mobile health care is a cost-effective strategy to deliver medical care to underserved populations, consistent with the Triple Aims of Therapy.

  9. An Interdisciplinary Network Making Progress on Climate Change Communication

    NASA Astrophysics Data System (ADS)

    Spitzer, W.; Anderson, J. C.; Bales, S.; Fraser, J.; Yoder, J. A.

    2012-12-01

    Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. Informal science education institutions can help bridge the gap between climate scientists and the public. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Ultimately, we need to take a strategic approach to the way climate change is communicated. An interdisciplinary approach is needed to bring together three key areas of expertise (as recommended by Pidgeon and Fischhoff, 2011): 1. Climate and decision science experts - who can summarize and explain what is known, characterize risks, and describe appropriate mitigation and adaptation strategies; 2. Social scientists - who can bring to bear research, theory, and best practices from cognitive, communication, knowledge acquisition, and social learning theory; and 3. Informal educators and program designers - who bring a practitioner perspective and can exponentially facilitate a learning process for additional interpreters. With support from an NSF CCEP Phase I grant, we have tested this approach, bringing together Interdisciplinary teams of colleagues for a five month "study circles" to develop skills to communicate climate change based on research in the social and cognitive sciences. In 2011, social scientists, Ph.D. students studying oceanography, and staff from more than 20 institutions that teach science to the public came together in these learning groups. Most participants were motivated to create new or revised training or public programs based on lessons learned together. The success of this program rests on a twofold approach that combines collaborative learning with a cognitive and social sciences research based approach to communications. The learning process facilitated trust and experimentation among co-learners to practice applications for communications that has continued beyond the study circle experience through the networks established during the process. Examples drawn from the study circle outputs suggest that this approach could have a transformative impact on informal science education on a broad scale. Ultimately, we envision informal science interpreters as "vectors" for effective science communication, ocean and climate scientists with enhanced communication skills, and increased public demand for explanation and dialogue about global issues.

  10. Research, Recruitment, and Assessment Strategies From The Dune Undergraduate Geomorphology and Geochronology (DUGG) REU Site at the University of Wisconsin-Platteville

    NASA Astrophysics Data System (ADS)

    Rawling, J.; Presiado, R. S.; Hanson, P. R.

    2013-12-01

    The goals of the DUGG REU project included providing students with 1) significant field and laboratory training in geomorphology and geochronology, 2) an opportunity to participate in a project of regional significance to geomorphologists and Quaternary scientists and 3) cohort building opportunities resulting in relationships that will serve them throughout their graduate and/or professional STEM careers. Each cohort was provided with three opportunities to visit their chosen study sites and collect data. Students were introduced to their sites with geophysical surveying by conducting ground-penetrating radar transects. During the second and third field excursions students collected subsurface sediment samples with either a bucket auger or a portable vibracoring device. Student generated data from previous trips, including preliminary OSL data before the third trip, better informed subsequent sampling strategies. In total, the students measured the particle-size distributions from ~950 samples taken from 160 sites and dated 65 sand samples using optically-stimulated luminescence (OSL) dating. Efforts made to ensure a diverse applicant pool included the standard NSF and university websites, targeted emails, targeted recruitment at conferences, university visits, and collaborations with other undergraduate research centers. In total, approximately 25% of the participating DUGG students were members of minority groups underrepresented in the sciences (n=5), 65% were women (n=14) and one was a veteran of the Iraq conflict. The DUGG project included a Council on Undergraduate Research review during year one of the program to have external input on the project, and an aggressive internal assessment protocol that evaluated five measures related to the impact the project was having on the students. Over the three years of the project, the multiple annual program assessments were able to document increases in participants' technology literacy, perception toward geosciences, research techniques, and oral presentation skills from the beginning to the end of each DUGG cycle. The DUGG program also yielded effective gains in the student's geoscience content knowledge as measured by the assessment instruments. It is clear from the project assessments that the three years of DUGG had significant successes, and was a direct result of the careful consideration of each year's experience and evaluations. The combination of multiple visits to the research sites, rapid data turn around, diversity recruitment, and rigorous assessment ensured the successful achievement of the program goals and resulted in exceptional experiences for the DUGG students.

  11. Learnscapes, transforming the world into an Open Air Museum.

    NASA Astrophysics Data System (ADS)

    Lucía, Ana

    2017-04-01

    Scientists are working everywhere, but scientific knowledge is still not widespread among people, and only limited to museums and a few other places. Learnscapes is a new tool for scientists to disseminate their work, making it accessible for people in the right place and at the right moment. It will be possible through a platform (both web and app) that allows tourists to access accurate scientific knowledge related to the place they are visiting and the studied objects they are interested in (river, mountains, monuments…): in this way, the visited place will acquire a higher value. Learnscapes will benefit people, science and territory. The objective is to cover the current gap of communication between science and people. Since the information will be geolocalized, the users will receive an alert when passing near a location with scientific information, this way they will better understand it, becoming more aware of the importance of the research. The audience or users of Learnscapes are curious people, who go to scientific museums, who are familiar with the technology and web apps and have a high level of education. Since curious people and geolocalized science are common worldwide, it is a clearly up-scalable project. Scientists will be able to feature a summary of their work in Learnscapes with little time investment. All the content will be open and freely available for the users and will have a DOI. At the same time, scientists that feature their work in Learnscapes, as well as research and funding institutions involved in the featured studies, will have their own profile that, even if virtual, will enable an interaction between scientist and society. In order to guarantee the scientific accuracy, two kinds of contents are accepted: (1) related to already published scientific results (in peer-reviewed publications) or (2) related to ongoing projects that still do not have published results but there is any kind of equipment installed outside the laboratories or research institutions and can be seen by the people passing by, this way it could substitute or complement the usual panels that scientist install at the monitoring stations. Learnscapes is not limited to any given discipline; nevertheless, since the scientific information included in the platform has to relate to a certain place, it is likely that Geosciences will take the most advantage of it. With Learnscapes scientists and research institutions will have the chance to spread their works with an innovative tool and to obtain visibility and social recognition. www.learnscapes.co

  12. 77 FR 27781 - Agency Information Collection Activities: Proposed Collection: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... progress towards a high-quality home visiting program or embedding their home visiting program into a comprehensive, high-quality early childhood system. Thirteen States were awarded Development Grants, and nine...

  13. Research and Technology 2004

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2004. It comprises 133 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  14. Research & Technology 2005

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This report selectively summarizes NASA Glenn Research Center's research and technology accomplishments for fiscal year 2005. It comprises 126 short articles submitted by the staff scientists and engineers. The report is organized into three major sections: Programs and Projects, Research and Technology, and Engineering and Technical Services. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to be a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Glenn-published technical reports, journal articles, and presentations prepared by Glenn staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Glenn contact person has been identified, and where possible, a reference document is listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. For more information, visit Glenn's Web site at http://www.nasa.gov/glenn/. This document is available online (http://www.grc.nasa.gov/WWW/RT/). For publicly available reports, visit the Glenn Technical Report Server (http://gltrs.grc.nasa.gov).

  15. ATLAS Virtual Visits: Bringing the World into the ATLAS Control Room

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.

    2012-12-01

    The newfound ability of Social Media to transform public communication back to a conversational nature provides HEP with a powerful tool for Outreach and Communication. By far, the most effective component of nearly any visit or public event is that fact that the students, teachers, media, and members of the public have a chance to meet and converse with real scientists. While more than 30,000 visitors passed through the ATLAS Visitor Centre in 2011, nearly 7 billion did not have a chance to make the trip. Clearly this is not for lack of interest. Rather, the costs of travel, in terms of time and money, and limited parking, put that number somewhat out of reach. On the other hand, during the LHC “First Physics” event of 2010, more than 2 million visitors joined the experiment control rooms via webcast for the celebration. This document presents a project developed for the ATLAS Experiment's Outreach and Education program that complements the webcast infrastructure with video conferencing and wireless sound systems, allowing the public to interact with hosts in the control room with minimal disturbance to the shifters. These “Virtual Visits” have included high school classes, LHC Masterclasses, conferences, expositions and other events in Europe, USA, Japan and Australia, to name a few. We discuss the technology used, potential pitfalls (and ways to avoid them), and our plans for the future.

  16. Development and implementation of a quality assurance infrastructure in a multisite home visitation program in Ohio and Kentucky.

    PubMed

    Ammerman, Robert T; Putnam, Frank W; Kopke, Jonathan E; Gannon, Thomas A; Short, Jodie A; Van Ginkel, Judith B; Clark, Margaret J; Carrozza, Mark A; Spector, Alan R

    2007-01-01

    As home visitation programs go to scale, numerous challenges are faced in implementation and quality assurance. This article describes the origins and implementation of Every Child Succeeds, a multisite home visitation program in southwestern Ohio and Northern Kentucky. In order to optimize quality assurance and generate new learning for the field, a Web-based system (eECS) was designed to systematically collect and use data. Continuous quality assurance procedures derived from business and industry have been established. Findings from data collection have documented outcomes, and have identified clinical needs that potentially undermine the impact of home visitation. An augmented module approach has been used to address these needs, and a program to treat maternal depression is described as an example of this approach. Challenges encountered are also discussed.

  17. Enhancing fire department home visiting programs: results of a community intervention trial.

    PubMed

    Gielen, Andrea C; Shields, Wendy; Frattaroli, Shannon; McDonald, Eileen; Jones, Vanya; Bishai, David; O'Brocki, Raymond; Perry, Elise C; Bates-Hopkins, Barbara; Tracey, Pat; Parsons, Stephanie

    2013-01-01

    This study evaluates the impact of an enhanced fire department home visiting program on community participation and installation of smoke alarms, and describes the rate of fire and burn hazards observed in homes. Communities were randomly assigned to receive either a standard or enhanced home visiting program. Before implementing the program, 603 household surveys were completed to determine comparability between the communities. During a 1-year intervention period, 171 home visits took place with 8080 homes. At baseline, 60% of homes did not have working smoke alarms on every level, 44% had unsafe water temperatures, and 72% did not have carbon monoxide alarms. Residents in the enhanced community relative to those in the standard community were significantly more likely to let the fire fighters into their homes (75 vs 62%). Among entered homes, those in the enhanced community were significantly more likely to agree to have smoke alarms installed (95 vs 92%), to be left with a working smoke alarm on every level of the home (84 vs 78%), and to have more smoke alarms installed per home visited (1.89 vs 1.74). The high baseline rates of home hazards suggest that fire department home visiting programs should take an "all hazards" approach. Community health workers and community partnerships can be effective in promoting fire departments' fire and life safety goals. Public health academic centers should partner with the fire service to help generate evidence on program effectiveness that can inform decision making about resource allocation for prevention.

  18. OCO-2 Booster on Stand

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – The United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is transferred into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  19. KSC-2014-2090

    NASA Image and Video Library

    2014-04-04

    VANDENBERG AIR FORCE BASE, Calif. – Processing is underway at Space Launch Complex 2 on Vandenberg Air Force Base in California for the upcoming launch of NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Kim Shiflett

  20. KSC-2014-2089

    NASA Image and Video Library

    2014-04-04

    VANDENBERG AIR FORCE BASE, Calif. – An American flag adorns the top of the Delta II launcher at Space Launch Complex 2 on Vandenberg Air Force Base in California where preparations are underway for the upcoming launch of NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Kim Shiflett

  1. OCO-2 Booster on Stand

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – Workers attach the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, to a lifting device at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  2. OCO-2 Booster on Stand

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – The United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  3. OCO-2 Booster on Stand

    NASA Image and Video Library

    2014-03-28

    VANDENBERG AIR FORCE BASE, Calif. – The United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is positioned next to the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  4. KSC-2014-2088

    NASA Image and Video Library

    2014-04-04

    VANDENBERG AIR FORCE BASE, Calif. – Processing is underway at Space Launch Complex 2 on Vandenberg Air Force Base in California for the upcoming launch of NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Kim Shiflett

  5. Implementation of evidence-based home visiting programs aimed at reducing child maltreatment: A meta-analytic review.

    PubMed

    Casillas, Katherine L; Fauchier, Angèle; Derkash, Bridget T; Garrido, Edward F

    2016-03-01

    In recent years there has been an increase in the popularity of home visitation programs as a means of addressing risk factors for child maltreatment. The evidence supporting the effectiveness of these programs from several meta-analyses, however, is mixed. One potential explanation for this inconsistency explored in the current study involves the manner in which these programs were implemented. In the current study we reviewed 156 studies associated with 9 different home visitation program models targeted to caregivers of children between the ages of 0 and 5. Meta-analytic techniques were used to determine the impact of 18 implementation factors (e.g., staff selection, training, supervision, fidelity monitoring, etc.) and four study characteristics (publication type, target population, study design, comparison group) in predicting program outcomes. Results from analyses revealed that several implementation factors, including training, supervision, and fidelity monitoring, had a significant effect on program outcomes, particularly child maltreatment outcomes. Study characteristics, including the program's target population and the comparison group employed, also had a significant effect on program outcomes. Implications of the study's results for those interested in implementing home visitation programs are discussed. A careful consideration and monitoring of program implementation is advised as a means of achieving optimal study results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Parent Involvement Affects Children's Cognitive Growth.

    ERIC Educational Resources Information Center

    Irvine, David J.; And Others

    As part of a longitudinal study of the New York State Experimental Prekindergarten Program, the effect of degree of parental involvement in the program on children's cognitive development was examined. Parent involvement included employment in the program, school visits, home visits by school personnel, group meetings, and incidental contacts such…

  7. Library | CTIO

    Science.gov Websites

    Program PIA Program GO-FAAR Program Other Opportunities Tourism Visits to Tololo Astro tourism in Chile Tourism in Chile Information for travelers Visit Tololo Media Relations News Press Release Publications , and books, most of which can be found at CTIO's La Serena library branch. Electronic Resources Access

  8. Preparing for the Validation Visit--Guidelines for Optimizing the Experience.

    ERIC Educational Resources Information Center

    Osborn, Hazel A.

    2003-01-01

    Urges child care programs to seek accreditation from NAEYC's National Academy of Early Childhood Programs to increase program quality and provides information on the validation process. Includes information on the validation visit and the validator's role and background. Offers suggestions for preparing the director, staff, children, and families…

  9. Toward Population Impact from Home Visiting

    ERIC Educational Resources Information Center

    Dodge, Kenneth A.; Goodman, W. Benjamin; Murphy, Robert; O'Donnell, Karen J.; Sato, Jeannine M.

    2013-01-01

    Although some home visiting programs have proven effective with the families they serve, no program has yet demonstrated broader impact on an entire county or state population. This article describes the Durham Connects program, which aims to achieve broad county-level effects by coalescing community agencies to serve early-intervention goals…

  10. Have Astronauts Visited Neptune? Student Ideas about How Scientists Study the Solar System

    ERIC Educational Resources Information Center

    Palma, Christopher; Plummer, Julia; Rubin, KeriAnn; Flarend, Alice; Ong, Yann Shiou; McDonald, Scott; Ghent, Chrysta; Gleason, Timothy; Furman, Tanya

    2017-01-01

    The nature of students' ideas about the scientific practices used by astronomers when studying objects in our Solar System is of widespread interest to discipline-based astronomy education researchers. A sample of middle-school, high-school, and college students (N = 42) in the U.S. were interviewed about how astronomers were able to learn about…

  11. Gordon F. Kirkbright bursary award, 2019

    NASA Astrophysics Data System (ADS)

    2018-09-01

    The Gordon F. Kirkbright bursary award is a prestigious annual award that assists a promising early career scientist of any nation to attend a recognised scientific meeting or visit a place of learning. (We define early career as being either a student, or an employee in a non-tenured academic post or in industry, within 7 years of award of PhD excluding career breaks).

  12. A Novel Course of Chemistry as a Scientific Discipline: How Do Prospective Teachers Perceive Nature of Chemistry through Visits to Research Groups?

    ERIC Educational Resources Information Center

    Vesterinen, Veli-Matti; Aksela, Maija

    2009-01-01

    To achieve sufficient pedagogical content knowledge on nature of chemistry related issues, teachers need structured opportunities for reflection and discussion. One way to provide those opportunities is through teacher-scientist interaction. This study is based on reflective essays of thirty prospective teachers who participated in a new course…

  13. Ice Storm Supercomputer

    ScienceCinema

    None

    2018-05-01

    A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed "Ice Storm" this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  14. NASA Dryden Mission Manager Walter Klein poses with school children that visited the DC-8 during AirSAR 2004 in Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-10

    NASA Dryden Mission Manager Walter Klein poses with school children that visited the DC-8 during AirSAR 2004 in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  15. Skier and Snowboarder Motivations and Knowledge Related to Voluntary Environmental Programs at an Alpine Ski Area

    NASA Astrophysics Data System (ADS)

    Little, Christopher M.; Needham, Mark D.

    2011-11-01

    Many alpine ski areas have recently adopted voluntary environmental programs (VEPs) such as using recycling, renewable energy, and biofuels to help reduce their environmental impacts. Studies have addressed the performance of these VEPs in mitigating environmental impacts of this industry, but little is known about visitor awareness and perceptions of these programs. This article addresses this knowledge gap by exploring skier and snowboarder knowledge of VEPs at a ski area and the influence of these programs on their motivations to visit this area currently and behavioral intentions to visit again in the future. Data were obtained from an onsite survey at the Mt. Bachelor ski area in Oregon, USA ( n = 429, 89.7% response rate). Few skiers and snowboarders were knowledgeable of VEPs at this area and fewer than 20% were motivated to visit on their current trip because of these programs. Other attributes such as scenery, snow conditions, and access were more important for influencing visitation. Up to 38% of skiers and snowboarders, however, intend to visit this ski area more often if it adopts and promotes more VEPs. Managers can use these results to inform communication and marketing of their environmental programs and performance to visitors. Additional implications for management and future research are discussed.

  16. Skier and snowboarder motivations and knowledge related to voluntary environmental programs at an alpine ski area.

    PubMed

    Little, Christopher M; Needham, Mark D

    2011-11-01

    Many alpine ski areas have recently adopted voluntary environmental programs (VEPs) such as using recycling, renewable energy, and biofuels to help reduce their environmental impacts. Studies have addressed the performance of these VEPs in mitigating environmental impacts of this industry, but little is known about visitor awareness and perceptions of these programs. This article addresses this knowledge gap by exploring skier and snowboarder knowledge of VEPs at a ski area and the influence of these programs on their motivations to visit this area currently and behavioral intentions to visit again in the future. Data were obtained from an onsite survey at the Mt. Bachelor ski area in Oregon, USA (n = 429, 89.7% response rate). Few skiers and snowboarders were knowledgeable of VEPs at this area and fewer than 20% were motivated to visit on their current trip because of these programs. Other attributes such as scenery, snow conditions, and access were more important for influencing visitation. Up to 38% of skiers and snowboarders, however, intend to visit this ski area more often if it adopts and promotes more VEPs. Managers can use these results to inform communication and marketing of their environmental programs and performance to visitors. Additional implications for management and future research are discussed.

  17. Andrei Sakharov Prize Talk: Supporting Repressed Scientists: Continuing Efforts

    NASA Astrophysics Data System (ADS)

    Birman, Joseph L.

    2010-02-01

    Some years ago, Max Perutz asked ``By What Right Do We Scientists Invoke Human Rights?" My presentation will start with mentioning actions of the international community which relate to this question. Such action as the creation in 1919 of the International Research Council, and continuing on to the present with the UN sanctioned International Council of Scientific Unions [ICSU], and other Committees such as those formed by APS, CCS, NYAS, AAAS which give support to repressed scientists around the world now. My own work has attempted to combine my individual initiatives with work as a member and officer of these groups. Together with like minded colleagues who are deeply affected when colleagues are discharged from their positions, exiled, imprisoned and subject to brutal treatment, often after mock ``trials", we react. On visits in 1968 to conferences in Budapest, and then in 1969 to Moscow, Tallin and Leningrad I became personally and deeply touched by the lives of colleagues who were seriously constrained by living under dictatorships. I could move freely into and out of their countries,speak openly about my work or any other matter. They could not, under penalty of possibly serious punishment. Yet, I felt these people were like my extended family. If my grandparents had not left Eastern Europe for the USA in the late 189Os our situations could have been reversed. A little later in the 197O's, ``refusenik" and ``dissident" scientists in the USSR needed support. Colleagues like Andrei Sakharov, Naum Meiman, Mark Azbel, Yakov Alpert, Yuri Orlov and others were being punished for exercising their rights under the UN sanctioned international protocals on ``Universality of Science and Free Circulation of Scientists". Their own governments [which signed these agreements] ignored the very protections they had supported. On frequent trips to the USSR during the 7Os,and 8Os I also seized the opportunity for ``individual initiative" to help these colleagues. I asked for, and got, the opportunity to meet some high level Soviet administrators such as vice President Velikhov of the Academy of Sciences as well as Laboratory directors, and pressed the cases of individual scientists by name. This led to a memorable double existence. During the days I was an ``official guest" of the USSR, while in the evening I would visit colleagues who were fired ; on weekends I participated in Refusenick ``Sunday" Seminars in an apartment in Moscow. This all changed in 1991 with the end of communism in the USSR. Unfortunatly various authorities in the new Russia still violate the UN protocals and scientists there need support even now. The need to continue both individual & group mode of support continues to the present, and now includes helping colleagues in China, Cuba, Iran, the USA [Wen Ho Lee case],and other locales around the world. Intervention for Liu Gang [imprisoned in Beijing], Professor Fang LiZhi, and others in China, the brothers Drs Allaei in Iran, was and is still necessary. In all these cases we must have reliable information. We publicize by direct contact with officials of the relevant country. And very important is that we press the U S government to intervene. Even the step of having a US official inquire about a repressed scientist makes a difference. Judge Brandeis of the U S Supreme Court is the attributed author of the saying that ``Sunlight is the best disinfectant". Sunlight on repression can help end it. When Andrei Sakharov first visited New York at the Academy of Sciences in 1988 he gave us advice which I paraphrase ``Keep alert and informed of violations of Human Rights everywhere and protest both individually and together". Scientific work has deep rewards when you discover a new aspect or explanation for natural phenomena. Supporting repressed colleagues as part of the fabric of scientific work adds another dimension. Namely our satisfaction upon greeting Sakharov, Fang, and others and we know that to some degree our efforts helped free them. This too is an answer to the Max Perutz question: our right is to help another scientist do his or her work, and to reap the reward of knowing we aided. Contact information for the Committee of Concerned Scientists [CCS], The APS Committee on International Freedom of Scientist [CIFS] and other groups efforts are easily obtained on the net. )

  18. Discover science: Hands-on science workshops for elementary teachers and summer science camps for elementary students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotlib, L.; Bibby, E.; Cullen, B.

    1994-12-31

    Teams of local mentor teachers (assisted by college students in the NC Teaching Fellows Program) run week-long workshops for elementary teachers (at four sites in 1993, six in 1994). Major funding for the camps is provided through The Glaxo Foundation, supplemented with local funds. The workshops focus on hands-on science (using inexpensive materials) and provide familiarity and experience with the new NC science curriculum and assessment program. The use of local resources is stressed (including visiting scientists and readily available store-bought materials). Each camp has its own theme and provides teachers with a variety of resources to be used withmore » students of all abilities. The mentor teachers then run week-long, all expense paid, non-residential science camps for elementary students (open to all students, but with females and minorities as target groups). Students take part in long-and short-term projects, working individually and in groups. Pre and post participation surveys of all participants were conducted and analyzed, with favorable results for both the student and teacher weeks. Additional activities include parent nights, and follow-up workshops. Eighty-nine teachers and 208 students participated in 1993.« less

  19. Assessing the Benefits of a Geropsychiatric Home-Visit Program for Medical Students

    ERIC Educational Resources Information Center

    Roane, David M.; Tucker, Jennifer; Eisenstadt, Ellen; Gomez, Maria; Kennedy, Gary J.

    2012-01-01

    Objective: Authors assessed the benefit of including medical students on geropsychiatric home-visits. Method: Medical students, during their psychiatry clerkship, were assigned to a home-visit group (N=43) or control group (N=81). Home-visit participants attended the initial visit of a home-bound geriatric patient. The Maxwell-Sullivan Attitude…

  20. Introducing HEP to schools through educational scenaria

    NASA Astrophysics Data System (ADS)

    Kourkoumelis, C.; Vourakis, S.

    2015-05-01

    Recent activities, towards the goal of introducing High Energy Physics in the school class, are reviewed. The most efficient method is a half or a full day workshop where the students are introduced to one of the large LHC experiments, follow a "virtual visit" to the experiment's Control Room and perform an interactive analysis of real data. Science cafes and visits to the CERN expositions are also very helpful, provided that the tours/discussions are led by an active scientist and/or a trained teacher. Several EU outreach projects provide databases rich with education scenaria and data analysis tools ready to be used by the teachers in order to bridge the gap between modern research and technology and school education.

  1. 77 FR 33225 - Agency Information Collection Activities: Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... progress towards a high-quality home visiting program or towards embedding their home visiting program into a comprehensive, high-quality early childhood system. Of State applicants to the competitive grant...

  2. Strengthening the network of mentored, underrepresented minority scientists and leaders to reduce HIV-related health disparities.

    PubMed

    Sutton, Madeline Y; Lanier, Yzette A; Willis, Leigh A; Castellanos, Ted; Dominguez, Ken; Fitzpatrick, Lisa; Miller, Kim S

    2013-12-01

    We reviewed data for the Minority HIV/AIDS Research Initiative (MARI), which was established in 2003 to support underrepresented minority scientists performing HIV prevention research in highly affected communities. MARI was established at the Centers for Disease Prevention and Control as a program of competitively awarded, mentored grants for early career researchers conducting HIV prevention research in highly affected racial/ethnic and sexual minority communities. We have described progress from 2003 to 2013. To date, MARI has mentored 27 scientist leaders using low-cost strategies to enhance the development of effective HIV prevention interventions. These scientists have (1) developed research programs in disproportionately affected communities of color, (2) produced first-authored peer-reviewed scientific and programmatic products (including articles and community-level interventions), and (3) obtained larger, subsequent funding awards for research and programmatic work related to HIV prevention and health disparities work. The MARI program demonstrates how to effectively engage minority scientists to conduct HIV prevention research and reduce racial/ethnic investigator disparities and serves as a model for programs to reduce disparities in other public health areas in which communities of color are disproportionately affected.

  3. Strengthening the Network of Mentored, Underrepresented Minority Scientists and Leaders to Reduce HIV-Related Health Disparities

    PubMed Central

    Lanier, Yzette A.; Willis, Leigh A.; Castellanos, Ted; Dominguez, Ken; Fitzpatrick, Lisa; Miller, Kim S.

    2013-01-01

    Objectives. We reviewed data for the Minority HIV/AIDS Research Initiative (MARI), which was established in 2003 to support underrepresented minority scientists performing HIV prevention research in highly affected communities. Methods. MARI was established at the Centers for Disease Prevention and Control as a program of competitively awarded, mentored grants for early career researchers conducting HIV prevention research in highly affected racial/ethnic and sexual minority communities. We have described progress from 2003 to 2013. Results. To date, MARI has mentored 27 scientist leaders using low-cost strategies to enhance the development of effective HIV prevention interventions. These scientists have (1) developed research programs in disproportionately affected communities of color, (2) produced first-authored peer-reviewed scientific and programmatic products (including articles and community-level interventions), and (3) obtained larger, subsequent funding awards for research and programmatic work related to HIV prevention and health disparities work. Conclusions. The MARI program demonstrates how to effectively engage minority scientists to conduct HIV prevention research and reduce racial/ethnic investigator disparities and serves as a model for programs to reduce disparities in other public health areas in which communities of color are disproportionately affected. PMID:24134360

  4. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    NASA Astrophysics Data System (ADS)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  5. Meta-analytic Evaluation of a Virtual Field Trip to Connect Middle School Students with University Scientists

    NASA Astrophysics Data System (ADS)

    Adedokun, Omolola A.; Liu, Jia; Parker, Loran Carleton; Burgess, Wilella

    2015-02-01

    Although virtual field trips are becoming popular, there are few empirical studies of their impacts on student outcomes. This study reports on a meta-analytic evaluation of the impact of a virtual field trip on student perceptions of scientists. Specifically, the study examined the summary effect of zipTrips broadcasts on evaluation participants' perceptions of scientists, as well as the moderating effect of program type on program impact. The results showed statistically significant effect of each broadcast, as well as statistically significant summary (combined) effect of zipTrips on evaluation participants' perceptions of scientists. Results of the moderation analysis showed that the effect was greater for the students that participated in the evaluation of the 8th grade broadcasts, providing additional insight into the role of program variation in predicting differential program impact. This study illustrates how meta-analysis, a methodology that should be of interest to STEM education researchers and evaluation practitioners, can be used to summarize the effects of multiple offerings of the same program. Other implications for STEM educators are discussed.

  6. Social Support Perspectives on Programs for Parents: Lessons from the Child Survival/Fair Start Home Visiting Programs.

    ERIC Educational Resources Information Center

    Larner, Mary

    This paper discusses home visiting programs for low income parents and infants and describes five such programs known collectively as the Child Survival/Fair Start (CS/FS) projects, funded by the Ford Foundation. It describes a conceptual model which links risk factors and intervention activities to effects on mothers and children and explains how…

  7. Community-Wide Education Outreach for the Ridge2000 Research Program

    NASA Astrophysics Data System (ADS)

    Goehring, E.

    2004-12-01

    Ridge2000 is a multidisciplinary NSF sponsored research initiative to explore Earth's spreading ridge system as an integrated whole. The Ridge2000 community is comprised of scientists from universities and research institutions across the country. Building on existing exemplary outreach efforts (e.g., REVEL, Dive&Discover, Volcanoes of the Deep Sea IMAX), Ridge2000 education outreach has begun to develop community-wide education offerings - programs to which Ridge2000 scientists and others may contribute. Community-wide efforts offer the advantages of serving larger audiences of scientists as well as educators and students and providing avenues for scientists interested in education outreach but with limited time or experience. Coordination of researchers' educational efforts also better leverages the resources of the funding agency - NSF. Here we discuss an exciting Ridge2000 pilot program called SEAS - Student Experiments At Sea. SEAS is a web-based program for middle and high school students to learn science by doing science. SEAS students study the exciting, relatively unexplored world of hydrothermal vents and learn to ask questions about this environment just as researchers do. SEAS goes beyond "follow-along" outreach by inviting students to participate in research through formal proposal and report competitions. The program was concept-tested during the 2003-2004 academic year, with 14 pilot teachers and approximately 800 students. Five student experiments were conducted at sea, with data posted to the website during the cruise. Student reports as well as scientist comments are posted there as well (http://www.ridge2000.org/SEAS/). It was an exciting year! Over 20 Ridge2000 scientists contributed their time and expertise to the SEAS program in its first year. Scientists are invited to contribute in a variety of ways, all of which help satisfy the requirement's of NSF's Broader Impacts Criterion. They may help develop curriculum topics, consult on experimental design, review student proposals and final reports, and/or host student experiments during a research cruise. Many contributions require less than a day's effort. By sharing the load, no one scientist is burdened, nor expected to contribute additional funding. Even better, the Ridge2000 office assumes responsibility for the program development, funding, evaluation and dissemination. When we work together, the possibilities are endless.

  8. COS LP4 FUV Target Acquisition Enabling and Verification

    NASA Astrophysics Data System (ADS)

    Penton, Steven V.

    2016-10-01

    This LP4 program is designed to verify the ability of the LV0058/LV0059 COS FSW to place an isolated point source at the center of the PSA, using FUV dispersed light target acquisition (TA) for COS (LP4-TA-COS). Tests will be performed for all 3 FUV TA modes (ACQ/SEARCH, ACQ/PEAKD, and ACQ/PEAKXD). It is sufficient to test ACQ/SEARCH and ACQ/PEAKD with only one grating, but all three FUV gratings need to be tested for the new (as of LV0054) ACQ/PEAKXD with NUM_POS>1 (also known internally, and in the spt files, as OPMODE=ACQ/PEAKD(XD) at the Fourth Lifetime Position (LP4). This program is modeled after the LP2 and LP3 versions of this program; 12797 and 13636.This program has specific visits to test each portion of the FUV spectroscopic TA process. Visits 01-05 will use the target AV18, while Visit 06 will observe (WD1657+343). Both targets are visible year round. For the LP4 enabling, several improvements to APT, the ground system, and the flight software (FSW) have greatly simplified the enabling process. There are now no non-standard exposures, or special commanding, in this program.Specifically; 1) We now use the LIFETIME-POS = LP4 functionality in APT & FSW to specify the LP. The old procedure of using LIFETIME-POS ="ALTERNATE" has been removed. FUV LPs are now called out by number (e.g., LP4). 2) We will be using the new NUM_POS > 1 PEAKXD algorithm at LP4 due to large geometric distortions (GD) at the "Y" detector positions of LP4. FUVA is particularly affected by GD rendering the old PEAKXD algorithm unable to center a target to the required XD accuracy at LP4. 3) Numerous FSW Patchable constants that were essential for PEAKXD operations at previous LPs are no longer required. These are the WCA-to-PSA offsets and XD plate-scales. Like PEAKD, the NUM_POS > 1 PEAKXD requires no patchable constant updates. At previous LPs, numerous updates to the patchable constants were required, this is not necessary for LP4 TA enabling.Prior to the submission of this program, all LP4 SIAF, aperture mechanism positions, TA subarrays, and grating foci have been appropriately installed (SMS2017.058). Visits 01-05 will test these parameters and a further update will be initiated, if required. The FSW at the beginning of this program is the patch updated LV0058. Between Visits 02 and 03 of thisprogram, LV0059 will be installed. This was instaled on May 8, 2017. Visits 03-06 will be executed using LV0059.Visit 01 tests ACQ/SEARCH and Visit 02 tests ACQ/PEAKD using the G130M grating. Visit 01 uses the C1291 cenwave as this produces the widest in XD (tallest) spectrum of any cenwave for which TA is allowed that fully covers both detector segments. Visit 02 uses the C1327 cenwave as this is the most different of the TA enabled G130M cenwaves. Visit 03-05 test ACQ/PEAKXD in its new NUM_POS > 1 form for each of the FUV gratings. This extension of the ACQ/PEAKD algorithm in the cross-dispersion direction (XD) has been available in the FSW since LV0054 and was put in place to handle the much larger geometric distortions found in the LP4 detector regions. Visit 03 tests ACQ/PEAKXD with the widest in XD (tallest) G130M cenwave, C1291. Visit 04 tests ACQ/PEAKXD with G160M/1600 and Visit 05 uses G140L/1280.Finally, Visit 06 tests all of the TA modes together, in combination, on a separate target (WD1657+343). This visit should be the first FUV Spectroscopic TA executed at LP4.The specific details of the testing of each visit are given in the Observing Description section and in the visit level comments.Visit 01 of this program (the ACQ/SEARCH test) will provide an initial test of the TA subarrays and SIAF entries. If needed, the subarrays and/or the SIAF entries will be adjusted before the execution of Visit 02. For this reason, Visit 02 is configured to execute 4-5 weeks after Visit 01.Visit 02 of this program (14907), the ACQ/PEAKD test, will verify and further test any updates that result from the Visit 01 analysis. In particular, this visit will test the TA subarrays during large along-dispersion AD offsets and provide the G130M AD plate scales.Visits 03-05 (the ACQ/PEAKXD tests) will further test the TA subarrays with large XD offsets and provide XD plate scales and WCA-to-PSA offsets for each FUV grating. (APT25.2.2)Visits 01 and 02 will occur before APT25.2 will be released ( June 2017) and will therefore not test the entire LP4 system end-to-end. APT25.2 exposes the new ACQ/PEAKXD to GOs and contains defaults suitable for LP4 FUV TAs. Visits 03-05 can execute as early as 4-5 weeks after Visit 02. However, we must test APT25.2, its associated TRANS, ground system commanding, and LV0059 using its new NUM_POS and STEP_SIZE in this program. We prefer to test this with all 3 FUV gratings and therefore require that Visits 03-05 should execute using the full APT25.2.2 configuration.Prior to Visit 06, LV0059 and APT25.2 must have been installed and the official switch to LP4 operations must have occurred. We request that Visit 06 be the first FUV Spectroscopic TA executed at LP4 and no other FUV spectroscopic TAs should occur for at least two weeks after the move to LP4 to ensure that LP4 spectroscopic TAs are working properly end-to-end from APT-to-archive.NUV imaging TAs are used to determine the correct (and initial) desired locations for LP4 FUV spectra.Note that the ETC runs here were made using ETC 25.1.1 and are therefore valid for Summer 2017. Some TDS drop may have occurred before these visits execute, but we have plenty of counts to do what we need to do in this program.Each visit intentionally moves the target in the AD or XD, using POS-TARGs, and with targets that are offset in RA and DEC. The RA/DEC target offsets are required for testing the accuracy of the TA, while the POS-TARGs are useful for determining the plate scales and validating the TA subarrays. In order for the targets to be offset correctly in AD and/or XD, the RA and DEC target offsets are tied to a Visit-specific orientation. These orientation requirements produce visits which are only valid for an 10-day window. Should a visit get delayed, new target RA and DEC offsets and orients must be re-calculated and the program re-submitted. Visit specific offsets and orientations are discussed in the visit level comments.

  9. Prenatal and infancy home visiting by nurses: from randomized trials to community replication.

    PubMed

    Olds, David L

    2002-09-01

    This paper summarizes a 25-year program of research that has attempted to improve the early health and development of low-income mothers and children and their future life trajectories with prenatal and infancy home visiting by nurses. The program has been tested in two separate large-scale randomized controlled trials with different populations living in different contexts. The program has been successful in improving parental care of the child as reflected in fewer injuries and ingestions that may be associated with child abuse and neglect; and maternal life-course, reflected in fewer subsequent pregnancies, greater work force participation, and reduced use of public assistance and food stamps. In the first trial, the program also produced long-term effects on the number of arrests, convictions, emergent substance use, and promiscuous sexual activity of 15-year-old children whose nurse-visited mothers were low-income and unmarried when they registered in the study during pregnancy. Since 1996, the program has been offered for public investment outside of research contexts. Careful attention has been given to ensuring that the program is replicated with fidelity to the model tested in the scientifically controlled studies by working with community leaders to ensure that organization and community contexts are favorable for the program; by providing the nurses with excellent training and technical assistance and detailed visit-by-visit guidelines; and by providing organizations with a web-based clinical information system that creates a basis for monitoring program performance and continuous quality improvement.

  10. A Cafe Scientifique for Teens

    NASA Astrophysics Data System (ADS)

    Hall, M.; Mayhew, M.

    2008-12-01

    It is well-known to those pursuing the quest to connect scientists to the public that an exceedingly hard-to- reach demographic is people of high school age. Typically, kids may tag along with their parents to museums until they reach adolescence, and then don't again appear in museums until they themselves have children. We have addressed this demographic challenge for free-choice-learning by developing a Cafe Scientifique program specifically for high school students. The Cafe Scientifique model for adults was developed in England and France, and has now spread like wildfire across the U.S. Typically, people come to a informal setting like a cafe, socialize and have food and drink, and then hear a short presentation by a scientist on a hot science topic in the news. This is followed by a period of lively discussion. We have followed this model for high school age students in four towns in northern New Mexico--Los Alamos, Santa Fe, Espanola, and Albuquerque--which represent a highly diverse demographic. We started this novel project with some trepidation, i.e. what if we build it and they don't come. But the program has proven popular beyond our expectations in all four towns. A part of the secret of success is the social setting, and-especially for this age group-the food provided. But we have also found that the kids are genuinely interested in the science topics, directing their own program, and interacting with scientists. We have often heard statements like, "I think it is important to be well-informed citizens". One of the most important aspects of the Cafes for the kids is to be able to discuss and argue about issues related to the science topic with the presenter and each other. It is an important part of the popularity that the Cafes do not involve school or parents, but also that we have strived to give the kids ownership of the program. Each town has a Youth Leadership Team-open to any teen-that discusses and prioritizes potential topics, conducts campaigns to advertise and draw other kids to the Cafes, and runs the meetings, while the adults stay in the background and provide support as needed. For each monthly Cafe in each town, we also organize a follow-up meeting, in which the participants explore some aspect of the month's topic in greater depth. We seek "hands-on" activities, but the follow-ups may also be field trips, visits to science-related organizations, or simply another meeting in the Cafe format in which a different point of view is presented. The Cafes are popular with the scientist-presenters as well. We work with them to develop their presentations, a 1-page essay, and a 1- page highly personalized bio. It is a particular challenge to get the scientists to give presentations appropriate for the youth and the informal setting, as opposed to what they are used to, presentations to peers at AGU meetings and the like. But typically, after some initial trepidation, they rise to the occasion. We are now seeking to make our model and our experience available to others who may wish to try a youth Cafe experiment themselves.

  11. The Rehabilitation Medicine Scientist Training Program

    PubMed Central

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  12. Examining Maternal Depression and Attachment Insecurity as Moderators of the Impacts of Home Visiting for At-Risk Mothers and Infants

    PubMed Central

    Duggan, Anne K.; Berlin, Lisa J.; Cassidy, Jude; Burrell, Lori; Tandon, S. Darius

    2009-01-01

    Home visiting programs for at-risk mothers and their infants have proliferated nationally in recent years, yet experimental studies of home visiting have yielded mixed findings. One promising strategy for explicating the effects of early home visiting is to examine moderators of program impacts. This study assessed the roles of maternal depression and attachment insecurity as moderators of the impacts of Healthy Families Alaska home visiting services for at-risk mothers and their infants. At-risk families (N = 325) were randomly assigned to home visiting or community services as usual (n = 162 and 163, respectively). Maternal depression and attachment insecurity (attachment anxiety and discomfort with trust/dependence) were measured at baseline. Maternal psychosocial and parenting outcomes were measured when children were 2 years old via maternal self-report, observation, and review of substantiated reports of child maltreatment. Maternal depression and attachment insecurity interacted in their moderation of program impacts. For several outcomes, home visiting impacts were greatest for non-depressed mothers with moderate to high discomfort with trust/dependence and for depressed mothers with low discomfort with trust/dependence. Implications for practice and policy are discussed. PMID:19634970

  13. Impacts on Emergency Department Visits from Personal Responsibility Provisions: Evidence from West Virginia's Medicaid Redesign.

    PubMed

    Gurley-Calvez, Tami; Kenney, Genevieve M; Simon, Kosali I; Wissoker, Douglas

    2016-08-01

    To examine the impact of a 2007 redesign of West Virginia's Medicaid program, which included an incentive and "nudging" scheme intended to encourage better health care behaviors and reduce Emergency Department (ED) visits. West Virginia Medicaid enrollment and claims data from 2005 to 2010. We utilized a "differences in differences" technique with individual and time fixed effects to assess the impact of redesign on ED visits. Starting in 2007, categorically eligible Medicaid beneficiaries were moved from traditional Medicaid to the new Mountain Health Choices (MHC) Program on a rolling basis, approximating a natural experiment. Members chose between a Basic plan, which was less generous than traditional Medicaid, or an Enhanced plan, which was more generous but required additional enrollment steps. Data were obtained from the West Virginia Bureau for Medical Services. We found that contrary to intentions, the MHC program increased ED visits. Those who selected or defaulted into the Basic plan experienced increased overall and preventable ED visits, while those who selected the Enhanced plan experienced a slight reduction in preventable ED visits; the net effect was an increase in ED visits, as most individuals enrolled in the Basic plan. © Health Research and Educational Trust.

  14. Examining maternal depression and attachment insecurity as moderators of the impacts of home visiting for at-risk mothers and infants.

    PubMed

    Duggan, Anne K; Berlin, Lisa J; Cassidy, Jude; Burrell, Lori; Tandon, S Darius

    2009-08-01

    Home visiting programs for at-risk mothers and their infants have proliferated nationally in recent years, yet experimental studies of home visiting have yielded mixed findings. One promising strategy for explicating the effects of early home visiting is to examine moderators of program impacts. This study assessed the roles of maternal depression and attachment insecurity as moderators of the impacts of Healthy Families Alaska home visiting services for at-risk mothers and their infants. At-risk families (N = 325) were randomly assigned to home visiting or community services as usual (n = 162 and 163, respectively). Maternal depression and attachment insecurity (attachment anxiety and discomfort with trust/dependence) were measured at baseline. Maternal psychosocial and parenting outcomes were measured when children were 2 years old via maternal self-report, observation, and review of substantiated reports of child maltreatment. Maternal depression and attachment insecurity interacted in their moderation of program impacts. For several outcomes, home visiting impacts were greatest for nondepressed mothers with moderate-to-high discomfort with trust/dependence and for depressed mothers with low discomfort with trust/dependence. Implications for practice and policy are discussed.

  15. Nutrition component in a comprehensive child development program. I. The home visitor's role in the prenatal intervention phase.

    PubMed

    Snowman, M K; Dibble, M V

    1979-02-01

    Nutritional services were integrated in a comprehensive child development program for sixty-eight disadvantaged urban families in an attempt to promote maximum cognitive and psychosocial functioning in their children. Child development trainers made weekly home visits beginning in pregnancy, which combined data gathering, direct nutritional counseling, and early sensory excercises for infants. This paper describes the prenatal home visit program, the training of the home visitors, how the 24-hr. food recall method was adapted for their use, the nature of the home visits, and the complex role of the home visitor. The group whose families participated in the prenatal home visits and were also followed for six months after the infants' birth scored higher on six-month Cattell Scales than did a control group who entered the program at six months of age. There were no stillbirths or neonatal deaths. The incidence of low-birth-weight infants was lower than the national averages. Participation in the program was high.

  16. Science in action: An interdisciplinary science education program

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.

  17. Heliophysics

    NASA Astrophysics Data System (ADS)

    Austin, M.; Guhathakurta, M.; Bhattacharjee, A.; Longcope, D. W.; Sojka, J. J.; Schrijver, C. J.; Siscoe, G. L.

    2011-12-01

    Heliophysics is a developing scientific discipline integrating studies of the Sun's variability, the surrounding heliopsphere, and climate environments. Over the past few centuries, our understanding of how the Sun drives space weather and climate on the Earth and other planets has advanced at an ever-increasing rate. NASA Living With a Star and the UCAR Visiting Scientist Programs, sponsor the annual Heliophysics Summer Schools to build the next generation of scientists in this emerging field. The highly successful series of summer schools (commencing 2007) trains a select group of graduate students, postdoctoral fellows and university faculty to learn and develop the science of heliophysics as a broad, coherent discipline that reaches in space from the Earth's troposphere to the depths of the Sun, and in time from the formation of the solar system to the distant future. The first three years of the school resulted in the publication of three textbooks now being used at universities worldwide. Subsequent years have also developed the complementary materials that support teaching of heliophysics at both graduate and undergraduate levels. The textbooks are edited by Carolus J. Schrijver, Lockheed Martin, and George L. Siscoe, Boston University. The books provide a foundational reference for researchers in heliophysics, astrophysics, plasma physics, space physics, solar physics, aeronomy, space weather, planetary science and climate science. The Jack Eddy Postdoctoral Fellowship program matches newly graduated postdoctorates with hosting mentors for the purpose of training the next generation of researchers needed in heliophysics. The fellowships are for two years, and any U.S university or research lab may apply to host a fellow. Two major topics of focus for the program are the science of space weather and of the Sun-climate connection. Since the goal of this fellowship program is to train Sun-Earth system researchers, preference is also given to research projects that cross the traditional heliophysics subdomains of the Sun, heliosphere, magnetosphere, and ionosphere/upper atmosphere, as well as Sun-climate investigations. Host mentors play critical roles. Potential hosts may enter information about their research on a central database. Application deadline: January 11, 2012

  18. Student Experiments on the Effects of Dam Removal on the Elwha River

    NASA Astrophysics Data System (ADS)

    Sandland, T. O.; Grack Nelson, A. L.

    2006-12-01

    The National Center for Earth Surface Dynamics (NCED) is an NSF funded Science and Technology Center devoted to developing a quantitative, predictive science of the ecological and physical processes that define and shape rivers and river networks. The Science Museum of Minnesota's (SMM) Earthscapes River Restoration classes provide k-12 students, teachers, and the public opportunities to explore NCED concepts and, like NCED scientists, move from a qualitative to a quantitative-based understanding of river systems. During a series of classes, students work with an experimental model of the Elwha River in Washington State to gain an understanding of the processes that define and shape river systems. Currently, two large dams on the Elwha are scheduled for removal to restore salmon habitat. Students design different dam removal scenarios to test and make qualitative observations describing and comparing how the modeled system evolves over time. In a following session, after discussing the ambiguity of the previous session's qualitative data, student research teams conduct a quantitative experiment to collect detailed measurements of the system. Finally, students interpret, critique, and compare the data the groups collected and ultimately develop and advocate a recommendation for the "ideal" dam removal scenario. SMM is currently conducting a formative evaluation of River Restoration classes to improve their educational effectiveness and guide development of an educator's manual. As of August 2006, pre- and post-surveys have been administered to 167 students to gauge student learning and engagement. The surveys have found the program successful in teaching students why scientists use river models and what processes and phenomena are at work in river systems. Most notable is the increase in student awareness of sediment in river systems. A post-visit survey was also administered to 20 teachers who used the models in their classrooms. This survey provided feedback about teachers' experience with the program and will help inform the development of a future educator's manual. All teachers found the program to be effective at providing opportunities for students to make qualitative observations and most (95%) found the program effective at providing students opportunities to make quantitative measurements. A full summary of evaluation results will be shared at the meeting.

  19. Access assured: a pilot program to finance primary care for uninsured patients using a monthly enrollment fee.

    PubMed

    Saultz, John W; Brown, David; Stenberg, Stephen; Rdesinski, Rebecca E; Tillotson, Carrie J; Eigner, Danielle; Devoe, Jennifer

    2010-01-01

    Access Assured is an experimental program being used by 2 academic family medicine practices to deliver primary care to an uninsured patient population using a monthly retainer payment system in addition to a sliding fee schedule for office visits. This prospective cohort study was designed to determine whether patients would join such a program, to describe the population of people who did so, and to assess the program's financial viability. We used data abstracted from our electronic medical record system to describe the demographic characteristics and care utilization patterns of those patients enrolling during the first year of the study, between February 1, 2008, and January 31, 2009. We also compared 2 subpopulations of enrollees defined by their eligibility for office fee discounts based on income. A total of 600 Access Assured members made 1943 office visits during the study period, receiving a total of 4538.22 relative value units of service. Based on the membership fee, office visit fee collections, and remaining accounts receivable, this resulted in an expected reimbursement rate of $42.88 per relative value units. Three hundred one of the 600 (50.2%) patients had incomes above 400% of the federal poverty level (FPL) at the time of each of their office visits and were therefore not eligible for any visit fee discount. Another 156 patients (26.0%) were eligible for a 100% discount of all visit fees based on their income below 200% of the FPL. Using a multivariable Poisson regression analysis of these 2 groups, we determined that age was a significant determinant of return visit rate, with a 0.7% increase in return visit rate for each additional year of age (P = .006). Women had a 26% higher return visit rate than men (P = .001). After accounting for age, sex, and clinic site, fee discount level based on income was not a significant independent determinant of return visit rate (P = .118). A retainer-based program to enroll uninsured patients being used in 2 academic family medicine clinics attracted 600 patients during its first year. The program was financially viable and resulted in an expansion of our service to uninsured patients. More than half of the patients had incomes above 400% of the FPL, suggesting that the population of uninsured Oregonians may be economically more diverse than suspected.

  20. Retaining clinician-scientists: nature versus nurture.

    PubMed

    Culican, Susan M; Rupp, Jason D; Margolis, Todd P

    2014-05-27

    In their IOVS article "Rejuvenating Clinician-Scientist Training" (published March 28, 2014), Balamurali Ambati and Judd Cahoon rightly point out the dearth of new clinician-scientists in ophthalmology. Within the context of their suggestions for increasing the number of successful clinician-scientists, they claim that the traditional MD-PhD training programs and K awards have failed to produce individuals who will carry on the important work of clinically relevant research that will improve patients' lives and sight. In this response we present data, including information on the career paths of graduates of the Washington University ophthalmology residency, that call into question the presumed failure of MD-PhD and K award programs and show that, in fact, graduates of these programs are more likely to succeed as clinician-scientists than are their peers who have not trained in such scientifically rigorous environments. We propose that, rather than a failure of early training programs, it may be obstacles that arise later in training and among junior faculty that prevent promising careers from reaching maturity. Funding, one rather large obstacle, takes the form of imbalanced start-up monies, less National Institutes of Health (NIH) funding awarded to young investigators, and study section composition that may work against those with clinically driven questions. We also explore the challenges faced in the culture surrounding residency and fellowship training. We agree with Ambati and Cahoon that there needs to be more innovation in the way training programs are structured, but we believe that the evidence supports supplementing the current model rather than scrapping it and starting over with unproven initiatives. The data on training programs supports the contention that those who have already made substantial investment and commitment to the clinician-scientist pathway through participation in MSTP or K training programs are the most likely to succeed on this career trajectory. To muffle the siren song of private practice and retain those best prepared for the clinician-scientist pathway requires additional investment as their careers mature through protected research time, mentorship, and advocacy. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

Top