Organization of area hV5/MT+ in subjects with homonymous visual field defects.
Papanikolaou, Amalia; Keliris, Georgios A; Papageorgiou, T Dorina; Schiefer, Ulrich; Logothetis, Nikos K; Smirnakis, Stelios M
2018-04-06
Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists within the blind field. This residual capacity has been linked to activity observed in the middle temporal area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic radiation lesions. To do so, we developed a new method, which models the boundaries of population receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 2) responses can also originate independent of area V1 input suggesting the existence of functional V1-bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual activity patterns across visual areas may be an important determinant of whether visual perception persists following visual cortical lesions. Copyright © 2018 Elsevier Inc. All rights reserved.
Matsui, Teppei; Ohki, Kenichi
2013-01-01
Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987
Compression and reflection of visually evoked cortical waves
Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young
2007-01-01
Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821
Dagnino, Bruno; Gariel-Mathis, Marie-Alice
2014-01-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172
Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2015-02-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.
Implications on visual apperception: energy, duration, structure and synchronization.
Bókkon, I; Vimal, Ram Lakhan Pandey
2010-07-01
Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation. In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or 'interactive hierarchical structuralism.' For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.
Visual field asymmetries in visual evoked responses
Hagler, Donald J.
2014-01-01
Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP. PMID:25527151
Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B.; Carbonell, Felix; Mendola, Janine D.
2016-01-01
Abstract Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects. PMID:26415043
Dawson, Debra Ann; Lam, Jack; Lewis, Lindsay B; Carbonell, Felix; Mendola, Janine D; Shmuel, Amir
2016-02-01
Numerous studies have demonstrated functional magnetic resonance imaging (fMRI)-based resting-state functional connectivity (RSFC) between cortical areas. Recent evidence suggests that synchronous fluctuations in blood oxygenation level-dependent fMRI reflect functional organization at a scale finer than that of visual areas. In this study, we investigated whether RSFCs within and between lower visual areas are retinotopically organized and whether retinotopically organized RSFC merely reflects cortical distance. Subjects underwent retinotopic mapping and separately resting-state fMRI. Visual areas V1, V2, and V3, were subdivided into regions of interest (ROIs) according to quadrants and visual field eccentricity. Functional connectivity (FC) was computed based on Pearson's linear correlation (correlation), and Pearson's linear partial correlation (correlation between two time courses after the time courses from all other regions in the network are regressed out). Within a quadrant, within visual areas, all correlation and nearly all partial correlation FC measures showed statistical significance. Consistently in V1, V2, and to a lesser extent in V3, correlation decreased with increasing eccentricity separation. Consistent with previously reported monkey anatomical connectivity, correlation/partial correlation values between regions from adjacent areas (V1-V2 and V2-V3) were higher than those between nonadjacent areas (V1-V3). Within a quadrant, partial correlation showed consistent significance between regions from two different areas with the same or adjacent eccentricities. Pairs of ROIs with similar eccentricity showed higher correlation/partial correlation than pairs distant in eccentricity. Between dorsal and ventral quadrants, partial correlation between common and adjacent eccentricity regions within a visual area showed statistical significance; this extended to more distant eccentricity regions in V1. Within and between quadrants, correlation decreased approximately linearly with increasing distances separating the tested ROIs. Partial correlation showed a more complex dependence on cortical distance: it decreased exponentially with increasing distance within a quadrant, but was best fit by a quadratic function between quadrants. We conclude that RSFCs within and between lower visual areas are retinotopically organized. Correlation-based FC is nonselectively high across lower visual areas, even between regions that do not share direct anatomical connections. The mechanisms likely involve network effects caused by the dense anatomical connectivity within this network and projections from higher visual areas. FC based on partial correlation, which minimizes network effects, follows expectations based on direct anatomical connections in the monkey visual cortex better than correlation. Last, partial correlation-based retinotopically organized RSFC reflects more than cortical distance effects.
Kamiyama, Akikazu; Fujita, Kazuhisa; Kashimori, Yoshiki
2016-12-01
Visual recognition involves bidirectional information flow, which consists of bottom-up information coding from retina and top-down information coding from higher visual areas. Recent studies have demonstrated the involvement of early visual areas such as primary visual area (V1) in recognition and memory formation. V1 neurons are not passive transformers of sensory inputs but work as adaptive processor, changing their function according to behavioral context. Top-down signals affect tuning property of V1 neurons and contribute to the gating of sensory information relevant to behavior. However, little is known about the neuronal mechanism underlying the gating of task-relevant information in V1. To address this issue, we focus on task-dependent tuning modulations of V1 neurons in two tasks of perceptual learning. We develop a model of the V1, which receives feedforward input from lateral geniculate nucleus and top-down input from a higher visual area. We show here that the change in a balance between excitation and inhibition in V1 connectivity is necessary for gating task-relevant information in V1. The balance change well accounts for the modulations of tuning characteristic and temporal properties of V1 neuronal responses. We also show that the balance change of V1 connectivity is shaped by top-down signals with temporal correlations reflecting the perceptual strategies of the two tasks. We propose a learning mechanism by which synaptic balance is modulated. To conclude, top-down signal changes the synaptic balance between excitation and inhibition in V1 connectivity, enabling early visual area such as V1 to gate context-dependent information under multiple task performances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Funk, Agnes P; Rosa, Marcello G P
1998-01-01
The first (V1) and second (V2) cortical visual areas exist in all mammals. However, the functional relationship between these areas varies between species. While in monkeys the responses of V2 cells depend on inputs from V1, in all non-primates studied so far V2 cells largely retain responsiveness to photic stimuli after destruction of V1.We studied the visual responsiveness of neurones in V2 of flying foxes after total or partial lesions of the primary visual cortex (V1). The main finding was that visual responses can be evoked in the region of V2 corresponding, in visuotopic co-ordinates, to the lesioned portion of V1 (‘lesion projection zone’; LPZ).The visuotopic organization of V2 was not altered by V1 lesions.The proportion of neurones with strong visual responses was significantly lower within the LPZs (31.5 %) than outside these zones, or in non-lesioned control hemispheres (> 70 %). LPZ cells showed weak direction and orientation bias, and responded consistently only at low spatial and temporal frequencies.The data demonstrate that the functional relationship between V1 and V2 of flying foxes resembles that observed in non-primate mammals. This observation contrasts with the ‘primate-like’ characteristics of the flying fox visual system reported by previous studies. PMID:9806999
Rosa, M G; Fritsches, K A; Elston, G N
1997-11-03
The organisation of the second visual area (V2) in marmoset monkeys was studied by means of extracellular recordings of responses to visual stimulation and examination of myelin- and cytochrome oxidase-stained sections. Area V2 forms a continuous cortical belt of variable width (1-2 mm adjacent to the foveal representation of V1, and 3-3.5 mm near the midline and on the tentorial surface) bordering V1 on the lateral, dorsal, medial, and tentorial surfaces of the occipital lobe. The total surface area of V2 is approximately 100 mm2, or about 50% of the surface area of V1 in the same individuals. In each hemisphere, the receptive fields of V2 neurones cover the entire contralateral visual hemifield, forming an ordered visuotopic representation. As in other simians, the dorsal and ventral halves of V2 represent the lower and upper contralateral quadrants, respectively, with little invasion of the ipsilateral hemifield. The representation of the vertical meridian forms the caudal border of V2, with V1, whereas a field discontinuity approximately coincident with the horizontal meridian forms the rostral border of V2, with other visually responsive areas. The bridge of cortex connecting dorsal and ventral V2 contains neurones with receptive fields centred within 1 degree of the centre of the fovea. The visuotopy, size, shape and location of V2 show little variation among individuals. Analysis of cortical magnification factor (CMF) revealed that the V2 map of the visual field is highly anisotropic: for any given eccentricity, the CMF is approximately twice as large in the dimension parallel to the V1/V2 border as it is perpendicular to this border. Moreover, comparison of V2 and V1 in the same individuals demonstrated that the representation of the central visual field is emphasised in V2, relative to V1. Approximately half of the surface area of V2 is dedicated to the representation of the central 5 degrees of the visual field. Calculations based on the CMF, receptive field scatter, and receptive field size revealed that the point-image size measured parallel to the V1/V2 border (2-3 mm) equals the width of a full cycle of cytochrome oxidase stripes in V2, suggesting a close correspondence between physiological and anatomical estimates of the dimensions of modular components in this area.
Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.
Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul
2018-01-08
Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.
Henriksson, Linda; Karvonen, Juha; Salminen-Vaparanta, Niina; Railo, Henry; Vanni, Simo
2012-01-01
The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies. PMID:22590626
Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.
Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde
2016-09-01
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Bressler, David W.; Fortenbaugh, Francesca C.; Robertson, Lynn C.; Silver, Michael A.
2013-01-01
Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. PMID:23562388
Functional size of human visual area V1: a neural correlate of top-down attention.
Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R
2014-06-01
Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.
Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study
Taylor, John-Paul; Firbank, Michael J.; He, Jiabao; Barnett, Nicola; Pearce, Sarah; Livingstone, Anthea; Vuong, Quoc; McKeith, Ian G.; O’Brien, John T.
2012-01-01
Background Visual hallucinations and visuoperceptual deficits are common in dementia with Lewy bodies, suggesting that cortical visual function may be abnormal. Aims To investigate: (1) cortical visual function using functional magnetic resonance imaging (fMRI); and (2) the nature and severity of perfusion deficits in visual areas using arterial spin labelling (ASL)-MRI. Method In total, 17 participants with dementia with Lewy bodies (DLB group) and 19 similarly aged controls were presented with simple visual stimuli (checkerboard, moving dots, and objects) during fMRI and subsequently underwent ASL-MRI (DLB group n = 15, control group n = 19). Results Functional activations were evident in visual areas in both the DLB and control groups in response to checkerboard and objects stimuli but reduced visual area V5/MT (middle temporal) activation occurred in the DLB group in response to motion stimuli. Posterior cortical perfusion deficits occurred in the DLB group, particularly in higher visual areas. Conclusions Higher visual areas, particularly occipito-parietal, appear abnormal in dementia with Lewy bodies, while there is a preservation of function in lower visual areas (V1 and V2/3). PMID:22500014
Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience
Binda, Paola; Benson, Noah C.; Bridge, Holly; Watkins, Kate E.
2015-01-01
Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. SIGNIFICANCE STATEMENT Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience. PMID:26354906
Bressler, David W; Fortenbaugh, Francesca C; Robertson, Lynn C; Silver, Michael A
2013-06-07
Endogenous visual spatial attention improves perception and enhances neural responses to visual stimuli at attended locations. Although many aspects of visual processing differ significantly between central and peripheral vision, little is known regarding the neural substrates of the eccentricity dependence of spatial attention effects. We measured amplitudes of positive and negative fMRI responses to visual stimuli as a function of eccentricity in a large number of topographically-organized cortical areas. Responses to each stimulus were obtained when the stimulus was attended and when spatial attention was directed to a stimulus in the opposite visual hemifield. Attending to the stimulus increased both positive and negative response amplitudes in all cortical areas we studied: V1, V2, V3, hV4, VO1, LO1, LO2, V3A/B, IPS0, TO1, and TO2. However, the eccentricity dependence of these effects differed considerably across cortical areas. In early visual, ventral, and lateral occipital cortex, attentional enhancement of positive responses was greater for central compared to peripheral eccentricities. The opposite pattern was observed in dorsal stream areas IPS0 and putative MT homolog TO1, where attentional enhancement of positive responses was greater in the periphery. Both the magnitude and the eccentricity dependence of attentional modulation of negative fMRI responses closely mirrored that of positive responses across cortical areas. Copyright © 2013 Elsevier Ltd. All rights reserved.
Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2017-07-05
The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.
Combining MRI and VEP imaging to isolate the temporal response of visual cortical areas
NASA Astrophysics Data System (ADS)
Carney, Thom; Ales, Justin; Klein, Stanley A.
2008-02-01
The human brain has well over 30 cortical areas devoted to visual processing. Classical neuro-anatomical as well as fMRI studies have demonstrated that early visual areas have a retinotopic organization whereby adjacent locations in visual space are represented in adjacent areas of cortex within a visual area. At the 2006 Electronic Imaging meeting we presented a method using sprite graphics to obtain high resolution retinotopic visual evoked potential responses using multi-focal m-sequence technology (mfVEP). We have used this method to record mfVEPs from up to 192 non overlapping checkerboard stimulus patches scaled such that each patch activates about 12 mm2 of cortex in area V1 and even less in V2. This dense coverage enables us to incorporate cortical folding constraints, given by anatomical MRI and fMRI results from the same subject, to isolate the V1 and V2 temporal responses. Moreover, the method offers a simple means of validating the accuracy of the extracted V1 and V2 time functions by comparing the results between left and right hemispheres that have unique folding patterns and are processed independently. Previous VEP studies have been contradictory as to which area responds first to visual stimuli. This new method accurately separates the signals from the two areas and demonstrates that both respond with essentially the same latency. A new method is introduced which describes better ways to isolate cortical areas using an empirically determined forward model. The method includes a novel steady state mfVEP and complex SVD techniques. In addition, this evolving technology is put to use examining how stimulus attributes differentially impact the response in different cortical areas, in particular how fast nonlinear contrast processing occurs. This question is examined using both state triggered kernel estimation (STKE) and m-sequence "conditioned kernels". The analysis indicates different contrast gain control processes in areas V1 and V2. Finally we show that our m-sequence multi-focal stimuli have advantages for integrating EEG and MEG for improved dipole localization.
Structural and functional changes across the visual cortex of a patient with visual form agnosia.
Bridge, Holly; Thomas, Owen M; Minini, Loredana; Cavina-Pratesi, Cristiana; Milner, A David; Parker, Andrew J
2013-07-31
Loss of shape recognition in visual-form agnosia occurs without equivalent losses in the use of vision to guide actions, providing support for the hypothesis of two visual systems (for "perception" and "action"). The human individual DF received a toxic exposure to carbon monoxide some years ago, which resulted in a persisting visual-form agnosia that has been extensively characterized at the behavioral level. We conducted a detailed high-resolution MRI study of DF's cortex, combining structural and functional measurements. We present the first accurate quantification of the changes in thickness across DF's occipital cortex, finding the most substantial loss in the lateral occipital cortex (LOC). There are reduced white matter connections between LOC and other areas. Functional measures show pockets of activity that survive within structurally damaged areas. The topographic mapping of visual areas showed that ordered retinotopic maps were evident for DF in the ventral portions of visual cortical areas V1, V2, V3, and hV4. Although V1 shows evidence of topographic order in its dorsal portion, such maps could not be found in the dorsal parts of V2 and V3. We conclude that it is not possible to understand fully the deficits in object perception in visual-form agnosia without the exploitation of both structural and functional measurements. Our results also highlight for DF the cortical routes through which visual information is able to pass to support her well-documented abilities to use visual information to guide actions.
Top-Down Beta Enhances Bottom-Up Gamma
Thompson, William H.
2017-01-01
Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake macaque primary visual area V1, higher visual area V4, and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection. SIGNIFICANCE STATEMENT Contemporary research indicates that the alpha-beta frequency band underlies top-down control, whereas the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency influences from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus-induced gamma-band processing, leading to enhancement of the selected stimulus. PMID:28592697
Scholte, H Steven; Jolij, Jacob; Fahrenfort, Johannes J; Lamme, Victor A F
2008-11-01
In texture segregation, an example of scene segmentation, we can discern two different processes: texture boundary detection and subsequent surface segregation [Lamme, V. A. F., Rodriguez-Rodriguez, V., & Spekreijse, H. Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex, 9, 406-413, 1999]. Neural correlates of texture boundary detection have been found in monkey V1 [Sillito, A. M., Grieve, K. L., Jones, H. E., Cudeiro, J., & Davis, J. Visual cortical mechanisms detecting focal orientation discontinuities. Nature, 378, 492-496, 1995; Grosof, D. H., Shapley, R. M., & Hawken, M. J. Macaque-V1 neurons can signal illusory contours. Nature, 365, 550-552, 1993], but whether surface segregation occurs in monkey V1 [Rossi, A. F., Desimone, R., & Ungerleider, L. G. Contextual modulation in primary visual cortex of macaques. Journal of Neuroscience, 21, 1698-1709, 2001; Lamme, V. A. F. The neurophysiology of figure ground segregation in primary visual-cortex. Journal of Neuroscience, 15, 1605-1615, 1995], and whether boundary detection or surface segregation signals can also be measured in human V1, is more controversial [Kastner, S., De Weerd, P., & Ungerleider, L. G. Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology, 83, 2453-2457, 2000]. Here we present electroencephalography (EEG) and functional magnetic resonance imaging data that have been recorded with a paradigm that makes it possible to differentiate between boundary detection and scene segmentation in humans. In this way, we were able to show with EEG that neural correlates of texture boundary detection are first present in the early visual cortex around 92 msec and then spread toward the parietal and temporal lobes. Correlates of surface segregation first appear in temporal areas (around 112 msec) and from there appear to spread to parietal, and back to occipital areas. After 208 msec, correlates of surface segregation and boundary detection also appear in more frontal areas. Blood oxygenation level-dependent magnetic resonance imaging results show correlates of boundary detection and surface segregation in all early visual areas including V1. We conclude that texture boundaries are detected in a feedforward fashion and are represented at increasing latencies in higher visual areas. Surface segregation, on the other hand, is represented in "reverse hierarchical" fashion and seems to arise from feedback signals toward early visual areas such as V1.
Burnat, Kalina; Hu, Tjing-Tjing; Kossut, Małgorzata; Eysel, Ulf T; Arckens, Lutgarde
2017-09-13
Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7. SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli. Copyright © 2017 the authors 0270-6474/17/378989-11$15.00/0.
Harrison, Charlotte; Jackson, Jade; Oh, Seung-Mock; Zeringyte, Vaida
2016-01-01
Multivariate pattern analysis of functional magnetic resonance imaging (fMRI) data is widely used, yet the spatial scales and origin of neurovascular signals underlying such analyses remain unclear. We compared decoding performance for stimulus orientation and eye of origin from fMRI measurements in human visual cortex with predictions based on the columnar organization of each feature and estimated the spatial scales of patterns driving decoding. Both orientation and eye of origin could be decoded significantly above chance in early visual areas (V1–V3). Contrary to predictions based on a columnar origin of response biases, decoding performance for eye of origin in V2 and V3 was not significantly lower than that in V1, nor did decoding performance for orientation and eye of origin differ significantly. Instead, response biases for both features showed large-scale organization, evident as a radial bias for orientation, and a nasotemporal bias for eye preference. To determine whether these patterns could drive classification, we quantified the effect on classification performance of binning voxels according to visual field position. Consistent with large-scale biases driving classification, binning by polar angle yielded significantly better decoding performance for orientation than random binning in V1–V3. Similarly, binning by hemifield significantly improved decoding performance for eye of origin. Patterns of orientation and eye preference bias in V2 and V3 showed a substantial degree of spatial correlation with the corresponding patterns in V1, suggesting that response biases in these areas originate in V1. Together, these findings indicate that multivariate classification results need not reflect the underlying columnar organization of neuronal response selectivities in early visual areas. NEW & NOTEWORTHY Large-scale response biases can account for decoding of orientation and eye of origin in human early visual areas V1–V3. For eye of origin this pattern is a nasotemporal bias; for orientation it is a radial bias. Differences in decoding performance across areas and stimulus features are not well predicted by differences in columnar-scale organization of each feature. Large-scale biases in extrastriate areas are spatially correlated with those in V1, suggesting biases originate in primary visual cortex. PMID:27903637
Human lateral geniculate nucleus and visual cortex respond to screen flicker.
Krolak-Salmon, Pierre; Hénaff, Marie-Anne; Tallon-Baudry, Catherine; Yvert, Blaise; Guénot, Marc; Vighetto, Alain; Mauguière, François; Bertrand, Olivier
2003-01-01
The first electrophysiological study of the human lateral geniculate nucleus (LGN), optic radiation, striate, and extrastriate visual areas is presented in the context of presurgical evaluation of three epileptic patients (Patients 1, 2, and 3). Visual-evoked potentials to pattern reversal and face presentation were recorded with depth intracranial electrodes implanted stereotactically. For Patient 1, electrode anatomical registration, structural magnetic resonance imaging, and electrophysiological responses confirmed the location of two contacts in the geniculate body and one in the optic radiation. The first responses peaked approximately 40 milliseconds in the LGN in Patient 1 and 60 milliseconds in the V1/V2 complex in Patients 2 and 3. Moreover, steady state visual-evoked potentials evoked by the unperceived but commonly experienced video-screen flicker were recorded in the LGN, optic radiation, and V1/V2 visual areas. This study provides topographic and temporal propagation characteristics of steady state visual-evoked potentials along human visual pathways. We discuss the possible relationship between the oscillating signal recorded in subcortical and cortical areas and the electroencephalogram abnormalities observed in patients suffering from photosensitive epilepsy, particularly video-game epilepsy. The consequences of high temporal frequency visual stimuli delivered by ubiquitous video screens on epilepsy, headaches, and eyestrain must be considered.
Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex
Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro
2009-01-01
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625
Oblique effect in visual area 2 of macaque monkeys
Shen, Guofu; Tao, Xiaofeng; Zhang, Bin; Smith, Earl L.; Chino, Yuzo M.
2014-01-01
The neural basis of an oblique effect, a reduced visual sensitivity for obliquely oriented stimuli, has been a matter of considerable debate. We have analyzed the orientation tuning of a relatively large number of neurons in the primary visual cortex (V1) and visual area 2 (V2) of anesthetized and paralyzed macaque monkeys. Neurons in V2 but not V1 of macaque monkeys showed clear oblique effects. This orientation anisotropy in V2 was more robust for those neurons that preferred higher spatial frequencies. We also determined whether V1 and V2 neurons exhibit a similar orientation anisotropy soon after birth. The oblique effect was absent in V1 of 4- and 8-week-old infant monkeys, but their V2 neurons showed a significant oblique effect. This orientation anisotropy in infant V2 was milder than that in adults. The results suggest that the oblique effect emerges in V2 based on the pattern of the connections that are established before birth and enhanced by the prolonged experience-dependent modifications of the neural circuitry in V2. PMID:24511142
NASA Technical Reports Server (NTRS)
Hof, P. R.; Ungerleider, L. G.; Webster, M. J.; Gattass, R.; Adams, M. M.; Sailstad, C. A.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1996-01-01
Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of corticocortically projecting neurons with distinct regional and laminar distribution in the monkey visual system. It is possible that the preferential distribution of neurofilament protein within feedforward connections to area MT and all feedback projections is related to other distinctive properties of these corticocortical projection neurons.
Bressler, David W.; Silver, Michael A.
2010-01-01
Spatial attention improves visual perception and increases the amplitude of neural responses in visual cortex. In addition, spatial attention tasks and fMRI have been used to discover topographic visual field representations in regions outside visual cortex. We therefore hypothesized that requiring subjects to attend to a retinotopic mapping stimulus would facilitate the characterization of visual field representations in a number of cortical areas. In our study, subjects attended either a central fixation point or a wedge-shaped stimulus that rotated about the fixation point. Response reliability was assessed by computing coherence between the fMRI time series and a sinusoid with the same frequency as the rotating wedge stimulus. When subjects attended to the rotating wedge instead of ignoring it, the reliability of retinotopic mapping signals increased by approximately 50% in early visual cortical areas (V1, V2, V3, V3A/B, V4) and ventral occipital cortex (VO1) and by approximately 75% in lateral occipital (LO1, LO2) and posterior parietal (IPS0, IPS1 and IPS2) cortical areas. Additionally, one 5-minute run of retinotopic mapping in the attention-to-wedge condition produced responses as reliable as the average of three to five (early visual cortex) or more than five (lateral occipital, ventral occipital, and posterior parietal cortex) attention-to-fixation runs. These results demonstrate that allocating attention to the retinotopic mapping stimulus substantially reduces the amount of scanning time needed to determine the visual field representations in occipital and parietal topographic cortical areas. Attention significantly increased response reliability in every cortical area we examined and may therefore be a general mechanism for improving the fidelity of neural representations of sensory stimuli at multiple levels of the cortical processing hierarchy. PMID:20600961
Two critical periods in early visual cortex during figure-ground segregation.
Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F
2012-11-01
The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.
Two critical periods in early visual cortex during figure–ground segregation
Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F
2012-01-01
The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure–ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure–ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure–ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure–ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96–119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236–259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure–ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure–ground segregation such as surface segregation. PMID:23170239
Simultaneous selection by object-based attention in visual and frontal cortex
Pooresmaeili, Arezoo; Poort, Jasper; Roelfsema, Pieter R.
2014-01-01
Models of visual attention hold that top-down signals from frontal cortex influence information processing in visual cortex. It is unknown whether situations exist in which visual cortex actively participates in attentional selection. To investigate this question, we simultaneously recorded neuronal activity in the frontal eye fields (FEF) and primary visual cortex (V1) during a curve-tracing task in which attention shifts are object-based. We found that accurate performance was associated with similar latencies of attentional selection in both areas and that the latency in both areas increased if the task was made more difficult. The amplitude of the attentional signals in V1 saturated early during a trial, whereas these selection signals kept increasing for a longer time in FEF, until the moment of an eye movement, as if FEF integrated attentional signals present in early visual cortex. In erroneous trials, we observed an interareal latency difference because FEF selected the wrong curve before V1 and imposed its erroneous decision onto visual cortex. The neuronal activity in visual and frontal cortices was correlated across trials, and this trial-to-trial coupling was strongest for the attended curve. These results imply that selective attention relies on reciprocal interactions within a large network of areas that includes V1 and FEF. PMID:24711379
Chaplin, Tristan A; Yu, Hsin-Hao; Rosa, Marcello G P
2013-04-01
The primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey. The receptive fields of neurons throughout V1 were mapped in two anesthetized animals using electrophysiological recordings. Following histological reconstruction, precise 3D reconstructions of the V1 surface and recording sites were generated. We found that the areal magnification factor (M(A) ) decreases with eccentricity following a function that has the same slope as that observed in larger diurnal primates, including macaque, squirrel, and capuchin monkeys, and humans. However, there was no systematic relationship between M(A) and polar angle. Despite individual variation in the shape of V1, the relationship between M(A) and eccentricity was preserved across cases. Comparison between V1 and the retinal ganglion cell density demonstrated preferential magnification of central space in the cortex. The size of the cortical compartment activated by a punctiform stimulus decreased from the foveal representation towards the peripheral representation. Nonetheless, the relationship between the receptive field sizes of V1 cells and the density of ganglion cells suggested that each V1 cell receives information from a similar number of retinal neurons, throughout the visual field. Copyright © 2012 Wiley Periodicals, Inc.
Visual brain plasticity induced by central and peripheral visual field loss.
Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel
2018-06-23
Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.
Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.
Zarella, Mark D; Ts'o, Daniel Y
2017-01-01
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.
Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2
Zarella, Mark D; Ts’o, Daniel Y
2017-01-01
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure–ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure–ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure–ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization. PMID:28761385
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex
Khalil, Reem; Levitt, Jonathan B.
2014-01-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018
Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.
Khalil, Reem; Levitt, Jonathan B
2014-10-01
Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.
De Weerd, Peter; Reithler, Joel; van de Ven, Vincent; Been, Marin; Jacobs, Christianne; Sack, Alexander T
2012-02-08
Practice-induced improvements in skilled performance reflect "offline " consolidation processes extending beyond daily training sessions. According to visual learning theories, an early, fast learning phase driven by high-level areas is followed by a late, asymptotic learning phase driven by low-level, retinotopic areas when higher resolution is required. Thus, low-level areas would not contribute to learning and offline consolidation until late learning. Recent studies have challenged this notion, demonstrating modified responses to trained stimuli in primary visual cortex (V1) and offline activity after very limited training. However, the behavioral relevance of modified V1 activity for offline consolidation of visual skill memory in V1 after early training sessions remains unclear. Here, we used neuronavigated transcranial magnetic stimulation (TMS) directed to a trained retinotopic V1 location to test for behaviorally relevant consolidation in human low-level visual cortex. Applying TMS to the trained V1 location within 45 min of the first or second training session strongly interfered with learning, as measured by impaired performance the next day. The interference was conditional on task context and occurred only when training in the location targeted by TMS was followed by training in a second location before TMS. In this condition, high-level areas may become coupled to the second location and uncoupled from the previously trained low-level representation, thereby rendering consolidation vulnerable to interference. Our data show that, during the earliest phases of skill learning in the lowest-level visual areas, a behaviorally relevant form of consolidation exists of which the robustness is controlled by high-level, contextual factors.
D'Souza, Dany V; Auer, Tibor; Frahm, Jens; Strasburger, Hans; Lee, Barry B
2016-03-01
Psychophysical sensitivity to red-green chromatic modulation decreases with visual eccentricity, compared to sensitivity to luminance modulation, even after appropriate stimulus scaling. This is likely to occur at a central, rather than a retinal, site. Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to stimuli designed to separately stimulate different afferent channels' [red-green, luminance, and short-wavelength (S)-cone] circular gratings were recorded as a function of visual eccentricity (±10 deg) and spatial frequency (SF) in human primary visual cortex (V1) and further visual areas (V2v, V3v). In V1, the SF tuning of BOLD fMRI responses became coarser with eccentricity. For red-green and luminance gratings, similar SF tuning curves were found at all eccentricities. The pattern for S-cone modulation differed, with SF tuning changing more slowly with eccentricity than for the other two modalities. This may be due to the different retinal distribution with eccentricity of this receptor type. A similar pattern held in V2v and V3v. This would suggest that transformation or spatial filtering of the chromatic (red-green) signal occurs beyond these areas.
Burton, Harold; McLaren, Donald G
2006-01-09
Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example.
Burton, Harold; McLaren, Donald G.
2013-01-01
Visual cortex activity in the blind has been shown in Braille literate people, which raise the question of whether Braille literacy influences cross-modal reorganization. We used fMRI to examine visual cortex activation during semantic and phonological tasks with auditory presentation of words in two late-onset blind individuals who lacked Braille literacy. Multiple visual cortical regions were activated in the Braille naive individuals. Positive BOLD responses were noted in lower tier visuotopic (e.g., V1, V2, VP, and V3) and several higher tier visual areas (e.g., V4v, V8, and BA 37). Activity was more extensive and cross-correlation magnitudes were greater during the semantic compared to the phonological task. These results with Braille naive individuals plausibly suggest that visual deprivation alone induces visual cortex reorganization. Cross-modal reorganization of lower tier visual areas may be recruited by developing skills in attending to selected non-visual inputs (e.g., Braille literacy, enhanced auditory skills). Such learning might strengthen remote connections with multisensory cortical areas. Of necessity, the Braille naive participants must attend to auditory stimulation for language. We hypothesize that learning to attend to non-visual inputs probably strengthens the remaining active synapses following visual deprivation, and thereby, increases cross-modal activation of lower tier visual areas when performing highly demanding non-visual tasks of which reading Braille is just one example. PMID:16198053
Wang, Quanxin; Tanigawa, Hisashi; Fujita, Ichiro
2017-04-01
Two distinct areas along the ventral visual stream of monkeys, the primary visual (V1) and inferior temporal (TE) cortices, exhibit different projection patterns of intrinsic horizontal axons with patchy terminal fields in adult animals. The differences between the patches in these 2 areas may reflect differences in cortical representation and processing of visual information. We studied the postnatal development of patches by injecting an anterograde tracer into TE and V1 in monkeys of various ages. At 1 week of age, labeled patches with distribution patterns reminiscent of those in adults were already present in both areas. The labeling intensity of patches decayed exponentially with projection distance in monkeys of all ages in both areas, but this trend was far less evident in TE. The number and extent of patches gradually decreased with age in V1, but not in TE. In V1, axonal and bouton densities increased postnatally only in patches with short projection distances, whereas in TE this density change occurred in patches with various projection distances. Thus, patches with area-specific distribution patterns are formed early in life, and area-specific postnatal developmental processes shape the connectivity of patches into adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A normalization model suggests that attention changes the weighting of inputs between visual areas
Cohen, Marlene R.
2017-01-01
Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1–MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations. PMID:28461501
A normalization model suggests that attention changes the weighting of inputs between visual areas.
Ruff, Douglas A; Cohen, Marlene R
2017-05-16
Models of divisive normalization can explain the trial-averaged responses of neurons in sensory, association, and motor areas under a wide range of conditions, including how visual attention changes the gains of neurons in visual cortex. Attention, like other modulatory processes, is also associated with changes in the extent to which pairs of neurons share trial-to-trial variability. We showed recently that in addition to decreasing correlations between similarly tuned neurons within the same visual area, attention increases correlations between neurons in primary visual cortex (V1) and the middle temporal area (MT) and that an extension of a classic normalization model can account for this correlation increase. One of the benefits of having a descriptive model that can account for many physiological observations is that it can be used to probe the mechanisms underlying processes such as attention. Here, we use electrical microstimulation in V1 paired with recording in MT to provide causal evidence that the relationship between V1 and MT activity is nonlinear and is well described by divisive normalization. We then use the normalization model and recording and microstimulation experiments to show that the attention dependence of V1-MT correlations is better explained by a mechanism in which attention changes the weights of connections between V1 and MT than by a mechanism that modulates responses in either area. Our study shows that normalization can explain interactions between neurons in different areas and provides a framework for using multiarea recording and stimulation to probe the neural mechanisms underlying neuronal computations.
Erlikhman, Gennady; Gurariy, Gennadiy; Mruczek, Ryan E.B.; Caplovitz, Gideon P.
2016-01-01
Oftentimes, objects are only partially and transiently visible as parts of them become occluded during observer or object motion. The visual system can integrate such object fragments across space and time into perceptual wholes or spatiotemporal objects. This integrative and dynamic process may involve both ventral and dorsal visual processing pathways, along which shape and spatial representations are thought to arise. We measured fMRI BOLD response to spatiotemporal objects and used multi-voxel pattern analysis (MVPA) to decode shape information across 20 topographic regions of visual cortex. Object identity could be decoded throughout visual cortex, including intermediate (V3A, V3B, hV4, LO1-2,) and dorsal (TO1-2, and IPS0-1) visual areas. Shape-specific information, therefore, may not be limited to early and ventral visual areas, particularly when it is dynamic and must be integrated. Contrary to the classic view that the representation of objects is the purview of the ventral stream, intermediate and dorsal areas may play a distinct and critical role in the construction of object representations across space and time. PMID:27033688
Degraded attentional modulation of cortical neural populations in strabismic amblyopia
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628
Degraded attentional modulation of cortical neural populations in strabismic amblyopia.
Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti
2016-01-01
Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI-informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye.
Neural representation of form-contingent color filling-in in the early visual cortex.
Hong, Sang Wook; Tong, Frank
2017-11-01
Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.
Laramée, Marie-Eve; Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde
2016-01-01
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed.
Smolders, Katrien; Hu, Tjing-Tjing; Bronchti, Gilles; Boire, Denis; Arckens, Lutgarde
2016-01-01
In blind individuals, visually deprived occipital areas are activated by non-visual stimuli. The extent of this cross-modal activation depends on the age at onset of blindness. Cross-modal inputs have access to several anatomical pathways to reactivate deprived visual areas. Ectopic cross-modal subcortical connections have been shown in anophthalmic animals but not in animals deprived of sight at a later age. Direct and indirect cross-modal cortical connections toward visual areas could also be involved, yet the number of neurons implicated is similar between blind mice and sighted controls. Changes at the axon terminal, dendritic spine or synaptic level are therefore expected upon loss of visual inputs. Here, the proteome of V1, V2M and V2L from P0-enucleated, anophthalmic and sighted mice, sharing a common genetic background (C57BL/6J x ZRDCT/An), was investigated by 2-D DIGE and Western analyses to identify molecular adaptations to enucleation and/or anophthalmia. Few proteins were differentially expressed in enucleated or anophthalmic mice in comparison to sighted mice. The loss of sight affected three pathways: metabolism, synaptic transmission and morphogenesis. Most changes were detected in V1, followed by V2M. Overall, cross-modal adaptations could be promoted in both models of early blindness but not through the exact same molecular strategy. A lower metabolic activity observed in visual areas of blind mice suggests that even if cross-modal inputs reactivate visual areas, they could remain suboptimally processed. PMID:27410964
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.
Zhuang, Chengxu; Wang, Yulong; Yamins, Daniel; Hu, Xiaolin
2017-01-01
Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas. PMID:29163117
Differential contribution of early visual areas to the perceptual process of contour processing.
Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A
2004-04-01
We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.
Wu, Jinglong; Chen, Kewei; Imajyo, Satoshi; Ohno, Seiichiro; Kanazawa, Susumu
2013-01-01
In human visual cortex, the primary visual cortex (V1) is considered to be essential for visual information processing; the fusiform face area (FFA) and parahippocampal place area (PPA) are considered as face-selective region and places-selective region, respectively. Recently, a functional magnetic resonance imaging (fMRI) study showed that the neural activity ratios between V1 and FFA were constant as eccentricities increasing in central visual field. However, in wide visual field, the neural activity relationships between V1 and FFA or V1 and PPA are still unclear. In this work, using fMRI and wide-view present system, we tried to address this issue by measuring neural activities in V1, FFA and PPA for the images of faces and houses aligning in 4 eccentricities and 4 meridians. Then, we further calculated ratio relative to V1 (RRV1) as comparing the neural responses amplitudes in FFA or PPA with those in V1. We found V1, FFA, and PPA showed significant different neural activities to faces and houses in 3 dimensions of eccentricity, meridian, and region. Most importantly, the RRV1s in FFA and PPA also exhibited significant differences in 3 dimensions. In the dimension of eccentricity, both FFA and PPA showed smaller RRV1s at central position than those at peripheral positions. In meridian dimension, both FFA and PPA showed larger RRV1s at upper vertical positions than those at lower vertical positions. In the dimension of region, FFA had larger RRV1s than PPA. We proposed that these differential RRV1s indicated FFA and PPA might have different processing strategies for encoding the wide field visual information from V1. These different processing strategies might depend on the retinal position at which faces or houses are typically observed in daily life. We posited a role of experience in shaping the information processing strategies in the ventral visual cortex. PMID:23991147
Pavan, Andrea; Ghin, Filippo; Donato, Rita; Campana, Gianluca; Mather, George
2017-08-15
A long-held view of the visual system is that form and motion are independently analysed. However, there is physiological and psychophysical evidence of early interaction in the processing of form and motion. In this study, we used a combination of Glass patterns (GPs) and repetitive Transcranial Magnetic Stimulation (rTMS) to investigate in human observers the neural mechanisms underlying form-motion integration. GPs consist of randomly distributed dot pairs (dipoles) that induce the percept of an oriented stimulus. GPs can be either static or dynamic. Dynamic GPs have both a form component (i.e., orientation) and a non-directional motion component along the orientation axis. GPs were presented in two temporal intervals and observers were asked to discriminate the temporal interval containing the most coherent GP. rTMS was delivered over early visual area (V1/V2) and over area V5/MT shortly after the presentation of the GP in each interval. The results showed that rTMS applied over early visual areas affected the perception of static GPs, but the stimulation of area V5/MT did not affect observers' performance. On the other hand, rTMS was delivered over either V1/V2 or V5/MT strongly impaired the perception of dynamic GPs. These results suggest that early visual areas seem to be involved in the processing of the spatial structure of GPs, and interfering with the extraction of the global spatial structure also affects the extraction of the motion component, possibly interfering with early form-motion integration. However, visual area V5/MT is likely to be involved only in the processing of the motion component of dynamic GPs. These results suggest that motion and form cues may interact as early as V1/V2. Copyright © 2017 Elsevier Inc. All rights reserved.
Neural Mechanisms of Cortical Motion Computation Based on a Neuromorphic Sensory System
Abdul-Kreem, Luma Issa; Neumann, Heiko
2015-01-01
The visual cortex analyzes motion information along hierarchically arranged visual areas that interact through bidirectional interconnections. This work suggests a bio-inspired visual model focusing on the interactions of the cortical areas in which a new mechanism of feedforward and feedback processing are introduced. The model uses a neuromorphic vision sensor (silicon retina) that simulates the spike-generation functionality of the biological retina. Our model takes into account two main model visual areas, namely V1 and MT, with different feature selectivities. The initial motion is estimated in model area V1 using spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering scheme originally suggested by Adelson and Bergen to make it consistent with the spike representation of the DVS. The responses of area V1 are weighted and pooled by area MT cells which are selective to different velocities, i.e. direction and speed. Such feature selectivity is here derived from compositions of activities in the spatio-temporal domain and integrating over larger space-time regions (receptive fields). In order to account for the bidirectional coupling of cortical areas we match properties of the feature selectivity in both areas for feedback processing. For such linkage we integrate the responses over different speeds along a particular preferred direction. Normalization of activities is carried out over the spatial as well as the feature domains to balance the activities of individual neurons in model areas V1 and MT. Our model was tested using different stimuli that moved in different directions. The results reveal that the error margin between the estimated motion and synthetic ground truth is decreased in area MT comparing with the initial estimation of area V1. In addition, the modulated V1 cell activations shows an enhancement of the initial motion estimation that is steered by feedback signals from MT cells. PMID:26554589
Attention Priority Map of Face Images in Human Early Visual Cortex.
Mo, Ce; He, Dongjun; Fang, Fang
2018-01-03
Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as attention priority maps. Until now, neural evidence of attention priority maps has been limited to studies involving simple artificial stimuli and much remains unknown about the neural correlates of priority maps of natural stimuli. Here, we show that attention priority maps of face stimuli could be found in primary visual cortex (V1) and the extrastriate cortex (V2 and V3). Moreover, representations in extrastriate visual areas are strongly modulated by image configuration. These findings extend our understanding of attention priority maps significantly by showing that they are modulated, not only by physical salience and task-goal relevance, but also by the configuration of stimuli images. Copyright © 2018 the authors 0270-6474/18/380149-09$15.00/0.
Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3
Polimeni, Jonathan R.; Tootell, Roger B.H.
2016-01-01
In nonhuman primates (NHPs), secondary visual cortex (V2) is composed of repeating columnar stripes, which are evident in histological variations of cytochrome oxidase (CO) levels. Distinctive “thin” and “thick” stripes of dark CO staining reportedly respond selectively to stimulus variations in color and binocular disparity, respectively. Here, we first tested whether similar color-selective or disparity-selective stripes exist in human V2. If so, available evidence predicts that such stripes should (1) radiate “outward” from the V1–V2 border, (2) interdigitate, (3) differ from each other in both thickness and length, (4) be spaced ∼3.5–4 mm apart (center-to-center), and, perhaps, (5) have segregated functional connections. Second, we tested whether analogous segregated columns exist in a “next-higher” tier area, V3. To answer these questions, we used high-resolution fMRI (1 × 1 × 1 mm3) at high field (7 T), presenting color-selective or disparity-selective stimuli, plus extensive signal averaging across multiple scan sessions and cortical surface-based analysis. All hypotheses were confirmed. V2 stripes and V3 columns were reliably localized in all subjects. The two stripe/column types were largely interdigitated (e.g., nonoverlapping) in both V2 and V3. Color-selective stripes differed from disparity-selective stripes in both width (thickness) and length. Analysis of resting-state functional connections (eyes closed) showed a stronger correlation between functionally alike (compared with functionally unlike) stripes/columns in V2 and V3. These results revealed a fine-scale segregation of color-selective or disparity-selective streams within human areas V2 and V3. Together with prior evidence from NHPs, this suggests that two parallel processing streams extend from visual subcortical regions through V1, V2, and V3. SIGNIFICANCE STATEMENT In current textbooks and reviews, diagrams of cortical visual processing highlight two distinct neural-processing streams within the first and second cortical areas in monkeys. Two major streams consist of segregated cortical columns that are selectively activated by either color or ocular interactions. Because such cortical columns are so small, they were not revealed previously by conventional imaging techniques in humans. Here we demonstrate that such segregated columnar systems exist in humans. We find that, in humans, color versus binocular disparity columns extend one full area further, into the third visual area. Our approach can be extended to reveal and study additional types of columns in human cortex, perhaps including columns underlying more cognitive functions. PMID:26865609
A theta rhythm in macaque visual cortex and its attentional modulation
Spyropoulos, Georgios; Fries, Pascal
2018-01-01
Theta rhythms govern rodent sniffing and whisking, and human language processing. Human psychophysics suggests a role for theta also in visual attention. However, little is known about theta in visual areas and its attentional modulation. We used electrocorticography (ECoG) to record local field potentials (LFPs) simultaneously from areas V1, V2, V4, and TEO of two macaque monkeys performing a selective visual attention task. We found a ≈4-Hz theta rhythm within both the V1–V2 and the V4–TEO region, and theta synchronization between them, with a predominantly feedforward directed influence. ECoG coverage of large parts of these regions revealed a surprising spatial correspondence between theta and visually induced gamma. Furthermore, gamma power was modulated with theta phase. Selective attention to the respective visual stimulus strongly reduced these theta-rhythmic processes, leading to an unusually strong attention effect for V1. Microsaccades (MSs) were partly locked to theta. However, neuronal theta rhythms tended to be even more pronounced for epochs devoid of MSs. Thus, we find an MS-independent theta rhythm specific to visually driven parts of V1–V2, which rhythmically modulates local gamma and entrains V4–TEO, and which is strongly reduced by attention. We propose that the less theta-rhythmic and thereby more continuous processing of the attended stimulus serves the exploitation of this behaviorally most relevant information. The theta-rhythmic and thereby intermittent processing of the unattended stimulus likely reflects the ecologically important exploration of less relevant sources of information. PMID:29848632
Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S
2017-09-06
The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.
Neuronal responses in visual area V2 (V2) of macaque monkeys with strabismic amblyopia.
Bi, H; Zhang, B; Tao, X; Harwerth, R S; Smith, E L; Chino, Y M
2011-09-01
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia.
Neuronal Responses in Visual Area V2 (V2) of Macaque Monkeys with Strabismic Amblyopia
Bi, H.; Zhang, B.; Tao, X.; Harwerth, R. S.; Smith, E. L.
2011-01-01
Amblyopia, a developmental disorder of spatial vision, is thought to result from a cascade of cortical deficits over several processing stages beginning at the primary visual cortex (V1). However, beyond V1, little is known about how cortical development limits the visual performance of amblyopic primates. We quantitatively analyzed the monocular and binocular responses of V1 and V2 neurons in a group of strabismic monkeys exhibiting varying depths of amblyopia. Unlike in V1, the relative effectiveness of the affected eye to drive V2 neurons was drastically reduced in the amblyopic monkeys. The spatial resolution and the orientation bias of V2, but not V1, neurons were subnormal for the affected eyes. Binocular suppression was robust in both cortical areas, and the magnitude of suppression in individual monkeys was correlated with the depth of their amblyopia. These results suggest that the reduced functional connections beyond V1 and the subnormal spatial filter properties of V2 neurons might have substantially limited the sensitivity of the amblyopic eyes and that interocular suppression was likely to have played a key role in the observed alterations of V2 responses and the emergence of amblyopia. PMID:21263036
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.
2016-01-01
Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527
Yu, Chunxiu; Sellers, Kristin K; Radtke-Schuller, Susanne; Lu, Jinghao; Xing, Lei; Ghukasyan, Vladimir; Li, Yuhui; Shih, Yen-Yu I; Murrow, Richard; Fröhlich, Flavio
2016-01-01
The role of higher-order thalamic structures in sensory processing remains poorly understood. Here, we used the ferret (Mustela putorius furo) as a novel model species for the study of the lateral posterior (LP)-pulvinar complex and its structural and functional connectivity with area 17 [primary visual cortex (V1)]. We found reciprocal anatomical connections between the lateral part of the LP nucleus of the LP-pulvinar complex (LPl) and V1. In order to investigate the role of this feedback loop between LPl and V1 in shaping network activity, we determined the functional interactions between LPl and the supragranular, granular and infragranular layers of V1 by recording multiunit activity and local field potentials. Coherence was strongest between LPl and the supragranular V1, with the most distinct peaks in the delta and alpha frequency bands. Inter-area interaction measured by spike-phase coupling identified the delta frequency band being dominated by the infragranular V1 and multiple frequency bands that were most pronounced in the supragranular V1. This inter-area coupling was differentially modulated by full-field synthetic and naturalistic visual stimulation. We also found that visual responses in LPl were distinct from those in V1 in terms of their reliability. Together, our data support a model of multiple communication channels between LPl and the layers of V1 that are enabled by oscillations in different frequency bands. This demonstration of anatomical and functional connectivity between LPl and V1 in ferrets provides a roadmap for studying the interaction dynamics during behaviour, and a template for identifying the activity dynamics of other thalamo-cortical feedback loops. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Disney, Anita A; Alasady, Hussein A; Reynolds, John H
2014-05-01
In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulation by acetylcholine (ACh) is a candidate mechanism for aspects of attention and in the primary visual cortex (V1) of the macaque, receptors for ACh (AChRs) are strongly expressed by inhibitory neurons. In particular, most PV neurons in macaque V1 express m1 muscarinic AChRs and exogenously applied ACh can cause the release of γ-aminobutyric acid. In contrast, few PV neurons in rat V1 express m1 AChRs. While this could be a species difference, it has also been argued that macaque V1 is anatomically unique when compared with other cortical areas in macaques. The aim of this study was to better understand the extent to which V1 offers a suitable model circuit for cholinergic anatomy in the macaque occipital lobe, and to explore cholinergic modulation as a biological basis for the changes in circuit behavior seen with attention. We compared expression of m1 AChRs by PV neurons between area V1 and the middle temporal visual area (MT) in macaque monkeys using dual-immunofluorescence confocal microscopy. We find that, as in V1, most PV neurons in MT express m1 AChRs but, unlike in V1, it appears that so do most excitatory neurons. This provides support for V1 as a model of cholinergic modulation of inhibition in macaque visual cortex, but not of cholinergic modulation of visual cortical circuits in general. We also propose that ACh acting via m1 AChRs is a candidate underlying mechanism for the strong effects of attention on narrow-spiking neurons observed in behaving animals.
Neuro-inspired smart image sensor: analog Hmax implementation
NASA Astrophysics Data System (ADS)
Paindavoine, Michel; Dubois, Jérôme; Musa, Purnawarman
2015-03-01
Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Sobel filters, Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (consumption of a few milliwatts) with such treatments inside, we studied and realized in 0.35μm CMOS technology prototypes of two image sensors in order to achieve the V1 and V2 processing of Hmax model.
Visually evoked responses in extrastriate area MT after lesions of striate cortex in early life.
Yu, Hsin-Hao; Chaplin, Tristan A; Egan, Gregory W; Reser, David H; Worthy, Katrina H; Rosa, Marcello G P
2013-07-24
Lesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions. Here we report a study of the middle temporal area (MT) of adult marmoset monkeys that received unilateral V1 lesions within 6 weeks of birth. In contrast with observations after similar lesions in adult monkeys, we found that virtually all neurons in the region of MT that was deprived of V1 inputs showed robust responses to visual stimulation. These responses were very similar to those recorded in neurons with receptive fields outside the lesion projection zones in terms of firing rate, signal-to-noise ratio, and latency. In addition, the normal retinotopic organization of MT was maintained. Nonetheless, we found evidence of a very specific functional deficit: direction selectivity, a key physiological characteristic of MT that is known to be preserved in many cells after adult V1 lesions, was absent. These results demonstrate that lesion-induced reorganization of afferent pathways is sufficient to develop robust visual function in primate extrastriate cortex, highlighting a likely mechanism for the sparing of vision after neonatal V1 lesions. However, they also suggest that interactions with V1 in early postnatal life are critical for establishing stimulus selectivity in MT.
Magosso, Elisa; Bertini, Caterina; Cuppini, Cristiano; Ursino, Mauro
2016-10-01
Hemianopic patients retain some abilities to integrate audiovisual stimuli in the blind hemifield, showing both modulation of visual perception by auditory stimuli and modulation of auditory perception by visual stimuli. Indeed, conscious detection of a visual target in the blind hemifield can be improved by a spatially coincident auditory stimulus (auditory enhancement of visual detection), while a visual stimulus in the blind hemifield can improve localization of a spatially coincident auditory stimulus (visual enhancement of auditory localization). To gain more insight into the neural mechanisms underlying these two perceptual phenomena, we propose a neural network model including areas of neurons representing the retina, primary visual cortex (V1), extrastriate visual cortex, auditory cortex and the Superior Colliculus (SC). The visual and auditory modalities in the network interact via both direct cortical-cortical connections and subcortical-cortical connections involving the SC; the latter, in particular, integrates visual and auditory information and projects back to the cortices. Hemianopic patients were simulated by unilaterally lesioning V1, and preserving spared islands of V1 tissue within the lesion, to analyze the role of residual V1 neurons in mediating audiovisual integration. The network is able to reproduce the audiovisual phenomena in hemianopic patients, linking perceptions to neural activations, and disentangles the individual contribution of specific neural circuits and areas via sensitivity analyses. The study suggests i) a common key role of SC-cortical connections in mediating the two audiovisual phenomena; ii) a different role of visual cortices in the two phenomena: auditory enhancement of conscious visual detection being conditional on surviving V1 islands, while visual enhancement of auditory localization persisting even after complete V1 damage. The present study may contribute to advance understanding of the audiovisual dialogue between cortical and subcortical structures in healthy and unisensory deficit conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1995-01-01
Visual function in monkeys is subserved at the cortical level by a large number of areas defined by their specific physiological properties and connectivity patterns. For most of these cortical fields, a precise index of their degree of anatomical specialization has not yet been defined, although many regional patterns have been described using Nissl or myelin stains. In the present study, an attempt has been made to elucidate the regional characteristics, and to varying degrees boundaries, of several visual cortical areas in the macaque monkey using an antibody to neurofilament protein (SMI32). This antibody labels a subset of pyramidal neurons with highly specific regional and laminar distribution patterns in the cerebral cortex. Based on the staining patterns and regional quantitative analysis, as many as 28 cortical fields were reliably identified. Each field had a homogeneous distribution of labeled neurons, except area V1, where increases in layer IVB cell and in Meynert cell counts paralleled the increase in the degree of eccentricity in the visual field representation. Within the occipitotemporal pathway, areas V3 and V4 and fields in the inferior temporal cortex were characterized by a distinct population of neurofilament-rich neurons in layers II-IIIa, whereas areas located in the parietal cortex and part of the occipitoparietal pathway had a consistent population of large labeled neurons in layer Va. The mediotemporal areas MT and MST displayed a distinct population of densely labeled neurons in layer VI. Quantitative analysis of the laminar distribution of the labeled neurons demonstrated that the visual cortical areas could be grouped in four hierarchical levels based on the ratio of neuron counts between infragranular and supragranular layers, with the first (areas V1, V2, V3, and V3A) and third (temporal and parietal regions) levels characterized by low ratios and the second (areas MT, MST, and V4) and fourth (frontal regions) levels characterized by high to very high ratios. Such density trends may correspond to differential representation of corticocortically (and corticosubcortically) projecting neurons at several functional steps in the integration of the visual stimuli. In this context, it is possible that neurofilament protein is crucial for the unique capacity of certain subsets of neurons to perform the highly precise mapping functions of the monkey visual system.
Schindler, Andreas; Bartels, Andreas
2017-05-01
Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hu, Meng; Liang, Hualou
2013-04-01
Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinear/nonstationary neural signal.
Attention Increases Spike Count Correlations between Visual Cortical Areas.
Ruff, Douglas A; Cohen, Marlene R
2016-07-13
Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. Copyright © 2016 the authors 0270-6474/16/367523-12$15.00/0.
Attention Increases Spike Count Correlations between Visual Cortical Areas
Cohen, Marlene R.
2016-01-01
Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. PMID:27413161
Retinotopy and attention to the face and house images in the human visual cortex.
Wang, Bin; Yan, Tianyi; Ohno, Seiichiro; Kanazawa, Susumu; Wu, Jinglong
2016-06-01
Attentional modulation of the neural activities in human visual areas has been well demonstrated. However, the retinotopic activities that are driven by face and house images and attention to face and house images remain unknown. In the present study, we used images of faces and houses to estimate the retinotopic activities that were driven by both the images and attention to the images, driven by attention to the images, and driven by the images. Generally, our results show that both face and house images produced similar retinotopic activities in visual areas, which were only observed in the attention + stimulus and the attention conditions, but not in the stimulus condition. The fusiform face area (FFA) responded to faces that were presented on the horizontal meridian, whereas parahippocampal place area (PPA) rarely responded to house at any visual field. We further analyzed the amplitudes of the neural responses to the target wedge. In V1, V2, V3, V3A, lateral occipital area 1 (LO-1), and hV4, the neural responses to the attended target wedge were significantly greater than those to the unattended target wedge. However, in LO-2, ventral occipital areas 1 and 2 (VO-1 and VO-2) and FFA and PPA, the differences were not significant. We proposed that these areas likely have large fields of attentional modulation for face and house images and exhibit responses to both the target wedge and the background stimuli. In addition, we proposed that the absence of retinotopic activity in the stimulus condition might imply no perceived difference between the target wedge and the background stimuli.
Inter-area correlations in the ventral visual pathway reflect feature integration
Freeman, Jeremy; Donner, Tobias H.; Heeger, David J.
2011-01-01
During object perception, the brain integrates simple features into representations of complex objects. A perceptual phenomenon known as visual crowding selectively interferes with this process. Here, we use crowding to characterize a neural correlate of feature integration. Cortical activity was measured with functional magnetic resonance imaging, simultaneously in multiple areas of the ventral visual pathway (V1–V4 and the visual word form area, VWFA, which responds preferentially to familiar letters), while human subjects viewed crowded and uncrowded letters. Temporal correlations between cortical areas were lower for crowded letters than for uncrowded letters, especially between V1 and VWFA. These differences in correlation were retinotopically specific, and persisted when attention was diverted from the letters. But correlation differences were not evident when we substituted the letters with grating patches that were not crowded under our stimulus conditions. We conclude that inter-area correlations reflect feature integration and are disrupted by crowding. We propose that crowding may perturb the transformations between neural representations along the ventral pathway that underlie the integration of features into objects. PMID:21521832
Cortical connective field estimates from resting state fMRI activity.
Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W
2014-01-01
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.
Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly
2017-01-01
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.
Vernon, Richard J W; Gouws, André D; Lawrence, Samuel J D; Wade, Alex R; Morland, Antony B
2016-05-25
Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to "functional" organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1-V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more "abstracted" representation, typically considered the preserve of "category-selective" extrastriate cortex, can nevertheless emerge in retinotopic regions. Visual areas are typically identified either through retinotopy (e.g., V1-V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore the nature of shape representations through the visual hierarchy. Two different representations emerged: the first reflected low-level shape properties (dependent on the spatial layout of the shape outline), whereas the second captured more abstract curvature-related shape features. Critically, early visual cortex represented low-level information but this diminished in the extrastriate cortex (LO-1/LO-2/LOC), in which the abstract representation emerged. Therefore, this work further elucidates the nature of shape representations in the LOC, provides insight into how those representations emerge from early retinotopic cortex, and crucially demonstrates that retinotopically tuned regions (LO-1/LO-2) are not necessarily constrained to retinotopic representations. Copyright © 2016 Vernon et al.
Vernon, Richard J. W.; Gouws, André D.; Lawrence, Samuel J. D.; Wade, Alex R.
2016-01-01
Representations in early visual areas are organized on the basis of retinotopy, but this organizational principle appears to lose prominence in the extrastriate cortex. Nevertheless, an extrastriate region, such as the shape-selective lateral occipital cortex (LO), must still base its activation on the responses from earlier retinotopic visual areas, implying that a transition from retinotopic to “functional” organizations should exist. We hypothesized that such a transition may lie in LO-1 or LO-2, two visual areas lying between retinotopically defined V3d and functionally defined LO. Using a rapid event-related fMRI paradigm, we measured neural similarity in 12 human participants between pairs of stimuli differing along dimensions of shape exemplar and shape complexity within both retinotopically and functionally defined visual areas. These neural similarity measures were then compared with low-level and more abstract (curvature-based) measures of stimulus similarity. We found that low-level, but not abstract, stimulus measures predicted V1–V3 responses, whereas the converse was true for LO, a double dissociation. Critically, abstract stimulus measures were most predictive of responses within LO-2, akin to LO, whereas both low-level and abstract measures were predictive for responses within LO-1, perhaps indicating a transitional point between those two organizational principles. Similar transitions to abstract representations were not observed in the more ventral stream passing through V4 and VO-1/2. The transition we observed in LO-1 and LO-2 demonstrates that a more “abstracted” representation, typically considered the preserve of “category-selective” extrastriate cortex, can nevertheless emerge in retinotopic regions. SIGNIFICANCE STATEMENT Visual areas are typically identified either through retinotopy (e.g., V1–V3) or from functional selectivity [e.g., shape-selective lateral occipital complex (LOC)]. We combined these approaches to explore the nature of shape representations through the visual hierarchy. Two different representations emerged: the first reflected low-level shape properties (dependent on the spatial layout of the shape outline), whereas the second captured more abstract curvature-related shape features. Critically, early visual cortex represented low-level information but this diminished in the extrastriate cortex (LO-1/LO-2/LOC), in which the abstract representation emerged. Therefore, this work further elucidates the nature of shape representations in the LOC, provides insight into how those representations emerge from early retinotopic cortex, and crucially demonstrates that retinotopically tuned regions (LO-1/LO-2) are not necessarily constrained to retinotopic representations. PMID:27225766
Decoding and reconstructing color from responses in human visual cortex.
Brouwer, Gijs Joost; Heeger, David J
2009-11-04
How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.
Zeki, Semir
2016-10-01
Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Choe, Kyoung Whan; Blake, Randolph
2014-01-01
Primary visual cortex (V1) forms the initial cortical representation of objects and events in our visual environment, and it distributes information about that representation to higher cortical areas within the visual hierarchy. Decades of work have established tight linkages between neural activity occurring in V1 and features comprising the retinal image, but it remains debatable how that activity relates to perceptual decisions. An actively debated question is the extent to which V1 responses determine, on a trial-by-trial basis, perceptual choices made by observers. By inspecting the population activity of V1 from human observers engaged in a difficult visual discrimination task, we tested one essential prediction of the deterministic view: choice-related activity, if it exists in V1, and stimulus-related activity should occur in the same neural ensemble of neurons at the same time. Our findings do not support this prediction: while cortical activity signifying the variability in choice behavior was indeed found in V1, that activity was dissociated from activity representing stimulus differences relevant to the task, being advanced in time and carried by a different neural ensemble. The spatiotemporal dynamics of population responses suggest that short-term priors, perhaps formed in higher cortical areas involved in perceptual inference, act to modulate V1 activity prior to stimulus onset without modifying subsequent activity that actually represents stimulus features within V1. PMID:24523561
Improved method for retinotopy constrained source estimation of visual evoked responses
Hagler, Donald J.; Dale, Anders M.
2011-01-01
Retinotopy constrained source estimation (RCSE) is a method for non-invasively measuring the time courses of activation in early visual areas using magnetoencephalography (MEG) or electroencephalography (EEG). Unlike conventional equivalent current dipole or distributed source models, the use of multiple, retinotopically-mapped stimulus locations to simultaneously constrain the solutions allows for the estimation of independent waveforms for visual areas V1, V2, and V3, despite their close proximity to each other. We describe modifications that improve the reliability and efficiency of this method. First, we find that increasing the number and size of visual stimuli results in source estimates that are less susceptible to noise. Second, to create a more accurate forward solution, we have explicitly modeled the cortical point spread of individual visual stimuli. Dipoles are represented as extended patches on the cortical surface, which take into account the estimated receptive field size at each location in V1, V2, and V3 as well as the contributions from contralateral, ipsilateral, dorsal, and ventral portions of the visual areas. Third, we implemented a map fitting procedure to deform a template to match individual subject retinotopic maps derived from functional magnetic resonance imaging (fMRI). This improves the efficiency of the overall method by allowing automated dipole selection, and it makes the results less sensitive to physiological noise in fMRI retinotopy data. Finally, the iteratively reweighted least squares (IRLS) method was used to reduce the contribution from stimulus locations with high residual error for robust estimation of visual evoked responses. PMID:22102418
Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex
2017-01-01
Magnocellular versus parvocellular (M-P) streams are fundamental to the organization of macaque visual cortex. Segregated, paired M-P streams extend from retina through LGN into V1. The M stream extends further into area V5/MT, and parts of V2. However, elsewhere in visual cortex, it remains unclear whether M-P-derived information (1) becomes intermixed or (2) remains segregated in M-P-dominated columns and neurons. Here we tested whether M-P streams exist in extrastriate cortical columns, in 8 human subjects (4 female). We acquired high-resolution fMRI at high field (7T), testing for M- and P-influenced columns within each of four cortical areas (V2, V3, V3A, and V4), based on known functional distinctions in M-P streams in macaque: (1) color versus luminance, (2) binocular disparity, (3) luminance contrast sensitivity, (4) peak spatial frequency, and (5) color/spatial interactions. Additional measurements of resting state activity (eyes closed) tested for segregated functional connections between these columns. We found M- and P-like functions and connections within and between segregated cortical columns in V2, V3, and (in most experiments) area V4. Area V3A was dominated by the M stream, without significant influence from the P stream. These results suggest that M-P streams exist, and extend through, specific columns in early/middle stages of human extrastriate cortex. SIGNIFICANCE STATEMENT The magnocellular and parvocellular (M-P) streams are fundamental components of primate visual cortical organization. These streams segregate both anatomical and functional properties in parallel, from retina through primary visual cortex. However, in most higher-order cortical sites, it is unknown whether such M-P streams exist and/or what form those streams would take. Moreover, it is unknown whether M-P streams exist in human cortex. Here, fMRI evidence measured at high field (7T) and high resolution revealed segregated M-P streams in four areas of human extrastriate cortex. These results suggest that M-P information is processed in segregated parallel channels throughout much of human visual cortex; the M-P streams are more than a convenient sorting property in earlier stages of the visual system. PMID:28724749
van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.
2014-01-01
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811
van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R
2014-10-07
Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.
Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon
2012-01-01
Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116
Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco
2017-09-01
The ability to catch objects when transiently occluded from view suggests their motion can be extrapolated. Intraparietal cortex (IPS) plays a major role in this process along with other brain structures, depending on the task. For example, interception of objects under Earth's gravity effects may depend on time-to-contact predictions derived from integration of visual signals processed by hMT/V5+ with a priori knowledge of gravity residing in the temporoparietal junction (TPJ). To investigate this issue further, we disrupted TPJ, hMT/V5+, and IPS activities with transcranial magnetic stimulation (TMS) while subjects intercepted computer-simulated projectile trajectories perturbed randomly with either hypo- or hypergravity effects. In experiment 1 , trajectories were occluded either 750 or 1,250 ms before landing. Three subject groups underwent triple-pulse TMS (tpTMS, 3 pulses at 10 Hz) on one target area (TPJ | hMT/V5+ | IPS) and on the vertex (control site), timed at either trajectory perturbation or occlusion. In experiment 2 , trajectories were entirely visible and participants received tpTMS on TPJ and hMT/V5+ with same timing as experiment 1 tpTMS of TPJ, hMT/V5+, and IPS affected differently the interceptive timing. TPJ stimulation affected preferentially responses to 1-g motion, hMT/V5+ all response types, and IPS stimulation induced opposite effects on 0-g and 2-g responses, being ineffective on 1-g responses. Only IPS stimulation was effective when applied after target disappearance, implying this area might elaborate memory representations of occluded target motion. Results are compatible with the idea that IPS, TPJ, and hMT/V5+ contribute to distinct aspects of visual motion extrapolation, perhaps through parallel processing. NEW & NOTEWORTHY Visual extrapolation represents a potential neural solution to afford motor interactions with the environment in the face of missing information. We investigated relative contributions by temporoparietal junction (TPJ), hMT/V5+, and intraparietal cortex (IPS), cortical areas potentially involved in these processes. Parallel organization of visual extrapolation processes emerged with respect to the target's motion causal nature: TPJ was primarily involved for visual motion congruent with gravity effects, IPS for arbitrary visual motion, whereas hMT/V5+ contributed at earlier processing stages. Copyright © 2017 the American Physiological Society.
Disney, Anita A; Alasady, Hussein A; Reynolds, John H
2014-01-01
Background In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulation by acetylcholine (ACh) is a candidate mechanism for aspects of attention and in the primary visual cortex (V1) of the macaque, receptors for ACh (AChRs) are strongly expressed by inhibitory neurons. In particular, most PV neurons in macaque V1 express m1 muscarinic AChRs and exogenously applied ACh can cause the release of γ-aminobutyric acid. In contrast, few PV neurons in rat V1 express m1 AChRs. While this could be a species difference, it has also been argued that macaque V1 is anatomically unique when compared with other cortical areas in macaques. Aims The aim of this study was to better understand the extent to which V1 offers a suitable model circuit for cholinergic anatomy in the macaque occipital lobe, and to explore cholinergic modulation as a biological basis for the changes in circuit behavior seen with attention. Materials and methods We compared expression of m1 AChRs by PV neurons between area V1 and the middle temporal visual area (MT) in macaque monkeys using dual-immunofluorescence confocal microscopy. Results and conclusion We find that, as in V1, most PV neurons in MT express m1 AChRs but, unlike in V1, it appears that so do most excitatory neurons. This provides support for V1 as a model of cholinergic modulation of inhibition in macaque visual cortex, but not of cholinergic modulation of visual cortical circuits in general. We also propose that ACh acting via m1 AChRs is a candidate underlying mechanism for the strong effects of attention on narrow-spiking neurons observed in behaving animals. PMID:24944872
Mikellidou, Kyriaki; Gouws, André D; Clawson, Hannah; Thompson, Peter; Morland, Antony B; Keefe, Bruce D
2016-01-01
We use the simple, but prominent Helmholtz's squares illusion in which a vertically striped square appears wider than a horizontally striped square of identical physical dimensions to determine whether functional magnetic resonance imaging (fMRI) BOLD responses in V1 underpin illusions of size. We report that these simple stimuli which differ in only one parameter, orientation, to which V1 neurons are highly selective elicited activity in V1 that followed their physical, not perceived size. To further probe the role of V1 in the illusion and investigate plausible extrastriate visual areas responsible for eliciting the Helmholtz squares illusion, we performed a follow-up transcranial magnetic stimulation (TMS) experiment in which we compared perceptual judgments about the aspect ratio of perceptually identical Helmholtz squares when no TMS was applied against selective stimulation of V1, LO1, or LO2. In agreement with fMRI results, we report that TMS of area V1 does not compromise the strength of the illusion. Only stimulation of area LO1, and not LO2, compromised significantly the strength of the illusion, consistent with previous research that LO1 plays a role in the processing of orientation information. These results demonstrate the involvement of a specific extrastriate area in an illusory percept of size.
Cortical interactions in vision and awareness: hierarchies in reverse.
Juan, Chi-Hung; Campana, Gianluca; Walsh, Vincent
2004-01-01
The anatomical connections between visual areas can be organized in 'feedforward', 'feedback' or 'horizontal' laminar patterns. We report here four experiments that test the function of some of the feedback projections in visual cortex. Projections from V5 to V1 have been suggested to be important in visual awareness, and in the first experiment we show this to be the case in the blindsight patient GY. This demonstration is replicated, in principle, in the second experiment and we also show the timing of the V5-V1 interaction to correspond to findings from single unit physiology. In the third experiment we show that V1 is important for stimulus detection in visual search arrays and that the timing of V1 interference with TMS is late (up to 240 ms after the onset of the visual array). Finally we report an experiment showing that the parietal cortex is not involved in visual motion priming, whereas V5 is, suggesting that the parietal cortex does not modulate V5 in this task. We interpret the data in terms of Bullier's recent physiological recordings and Ahissar and Hochstein's reverse hierarchy theory of vision.
Ts'o, Daniel Y; Zarella, Mark; Burkitt, Guy
2009-01-01
Among the crowning achievements of Hubel and Wiesel's highly influential studies on primary visual cortex is the description of the cortical hypercolumn, a set of cortical columns with functional properties spanning a particular parameter space. This fundamental concept laid the groundwork for the notion of a modular sensory cortex, canonical cortical circuits and an understanding of visual field coverage beyond simple retinotopy. Surprisingly, the search for and description of analogous hypercolumnar organizations in other cortical areas to date has been limited. In the present work, we have applied the hypercolumn concept to the functional organization of the second visual area, V2. We found it important to separate out the original definition of the hypercolumn from other associated observations and concepts, not all of which are applicable to V2. We present results indicating that, as in V1, the V2 hypercolumns for orientation and binocular interaction (disparity) run roughly orthogonal to each other. We quantified the ‘nearest neighbour’ periodicities for the hypercolumns for ocular dominance, orientation, colour and disparity, and found a marked similarity in the periodicities of all of these hypercolumns, both across hypercolumn type and across visual areas V1 and V2. The results support an underlying common mechanism that constrains the anatomical extent of hypercolumn systems, and highlight the original definition of the cortical hypercolumn. PMID:19525564
Toward a Unified Theory of Visual Area V4
Roe, Anna W.; Chelazzi, Leonardo; Connor, Charles E.; Conway, Bevil R.; Fujita, Ichiro; Gallant, Jack L.; Lu, Haidong; Vanduffel, Wim
2016-01-01
Visual area V4 is a midtier cortical area in the ventral visual pathway. It is crucial for visual object recognition and has been a focus of many studies on visual attention. However, there is no unifying view of V4’s role in visual processing. Neither is there an understanding of how its role in feature processing interfaces with its role in visual attention. This review captures our current knowledge of V4, largely derived from electrophysiological and imaging studies in the macaque monkey. Based on recent discovery of functionally specific domains in V4, we propose that the unifying function of V4 circuitry is to enable selective extraction of specific functional domain-based networks, whether it be by bottom-up specification of object features or by top-down attentionally driven selection. PMID:22500626
Visual acuity and visual field impairment in Usher syndrome.
Edwards, A; Fishman, G A; Anderson, R J; Grover, S; Derlacki, D J
1998-02-01
To determine the extent of visual acuity and visual field impairment in patients with types 1 and 2 Usher syndrome. The records of 53 patients with type 1 and 120 patients with type 2 Usher syndrome were reviewed for visual acuity and visual field area at their most recent visit. Visual field areas were determined by planimetry of the II4e and V4e isopters obtained with a Goldmann perimeter. Both ordinary and logistic regression models were used to evaluate differences in visual acuity and visual field impairment between patients with type 1 and type 2 Usher syndrome. The difference in visual acuity of the better eye between patients with type 1 and type 2 varied by patient age (P=.01, based on a multiple regression model). The maximum difference in visual acuity between the 2 groups occurred during the third and fourth decades of life (with the type 1 patients being more impaired), while more similar acuities were seen in both younger and older patients. Fifty-one percent (n=27) of the type 1 patients had a visual acuity of 20/40 or better in at least 1 eye compared with 72% (n=87) of the type 2 patients (age-adjusted odds ratio, 3.9). Visual field area to both the II4e (P=.001) and V4e (P<.001) targets was more impaired in the better eye of type 1 patients than type 2 patients. A concentric central visual field greater than 20 degrees in at least 1 eye was present in 20 (59%) of the available 34 visual fields of type 1 patients compared with 70 (67%) of the available 104 visual fields of type 2 patients (age-adjusted odds ratio, 2.9) with the V4e target and in 6 (21%) of the available 29 visual fields of type 1 patients compared with 36 (38%) of the available 94 visual fields of type 2 patients (age-adjusted odds ratio, 4.9) with the II4e target. The fraction of patients who had a visual acuity of 20/40 or better and a concentric central visual field greater than 20 degrees to the II4e target in at least 1 eye was 17% (n=5) in the type 1 patients and 35% (n=33) in the type 2 patients (age-adjusted odds ratio, 3.9). Visual acuity and visual field area were more impaired in patients with type 1 than type 2 Usher syndrome. Of note, 27 of 53 type 1 (51%) and 87 of 120 type 2 (72%) patients had a visual acuity of 20/40 or better in at least 1 eye. These data are useful for overall counseling of patients with Usher syndrome.
Viswanathan, Pooja; Nieder, Andreas
2017-09-13
The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.
Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.
Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F
2014-01-01
The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.
High-level, but not low-level, motion perception is impaired in patients with schizophrenia.
Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia
2013-01-01
Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.
Perceptual learning selectively refines orientation representations in early visual cortex.
Jehee, Janneke F M; Ling, Sam; Swisher, Jascha D; van Bergen, Ruben S; Tong, Frank
2012-11-21
Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily 1 h training sessions. Training on average led to a twofold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1-V4) using signal detection measures, both before and after training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2-V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.
Kammer, T; Beck, S; Erb, M; Grodd, W
2001-11-01
To quantify phosphene thresholds evoked by transcranial magnetic stimulation (TMS) in the occipital cortex as a function of induced current direction. Phosphene thresholds were determined in 6 subjects. We compared two stimulator types (Medtronic-Dantec and Magstim) with monophasic pulses using the standard figure-of-eight coils and systematically varied hemisphere (left and right) and induced current direction (latero-medial and medio-lateral). Each measurement was made 3 times, with a new stimulation site chosen for each repetition. Only those stimulation sites were investigated where phosphenes were restricted to one visual hemifield. Coil positions were stereotactically registered. Functional magnetic resonance imaging (fMRI) of retinotopic areas was performed in 5 subjects to individually characterize the borders of visual areas; TMS stimulation sites were coregistered with respect to visual areas. Despite large interindividual variance we found a consistent pattern of phosphene thresholds. They were significantly lower if the direction of the induced current was oriented from lateral to medial in the occipital lobe rather than vice versa. No difference with respect to the hemisphere was found. Threshold values normalized to the square root of the stored energy in the stimulators were lower with the Medtronic-Dantec device than with the Magstim device. fMRI revealed that stimulation sites generating unilateral phosphenes were situated at V2 and V3. Variability of phosphene thresholds was low within a cortical patch of 2x2cm(2). Stimulation over V1 yields phosphenes in both visual fields. The excitability of visual cortical areas depends on the direction of the induced current with a preference for latero-medial currents. Although the coil positions used in this study were centered over visual areas V2 and V3, we cannot rule out the possibility that subcortical structures or V1 could actually be the main generator for phosphenes.
Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps
Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco
2012-01-01
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222
Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.
Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein
2012-10-15
Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.
Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F
2015-12-01
There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Thomson, Eric E.; Zea, Ivan; França, Wendy
2017-01-01
Abstract Adult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas. We also discovered that animals were able to integrate IR information into the ongoing visual processing stream in V1, performing a visual-IR integration task in which they had to combine IR and visual information. Furthermore, when the IR prosthesis was implanted in S1, rats showed no impairment in their ability to use their whiskers to perform a tactile discrimination task. Instead, in some rats, this ability was actually enhanced. Cumulatively, these findings suggest that cortical sensory neuroprostheses can rapidly augment the representational scope of primary sensory areas, integrating novel sources of information into ongoing processing while incurring minimal loss of native function. PMID:29279860
Heinen, Klaartje; Jolij, Jacob; Lamme, Victor A F
2005-09-08
Discriminating objects from their surroundings by the visual system is known as figure-ground segregation. This process entails two different subprocesses: boundary detection and subsequent surface segregation or 'filling in'. In this study, we used transcranial magnetic stimulation to test the hypothesis that temporally distinct processes in V1 and related early visual areas such as V2 or V3 are causally related to the process of figure-ground segregation. Our results indicate that correct discrimination between two visual stimuli, which relies on figure-ground segregation, requires two separate periods of information processing in the early visual cortex: one around 130-160 ms and the other around 250-280 ms.
Sakata, H; Taira, M; Kusunoki, M; Murata, A; Tanaka, Y
1997-08-01
Recent neurophysiological studies in alert monkeys have revealed that the parietal association cortex plays a crucial role in depth perception and visually guided hand movement. The following five classes of parietal neurons covering various aspects of these functions have been identified: (1) depth-selective visual-fixation (VF) neurons of the inferior parietal lobule (IPL), representing egocentric distance; (2) depth-movement sensitive (DMS) neurons of V5A and the ventral intraparietal (VIP) area representing direction of linear movement in 3-D space; (3) depth-rotation-sensitive (RS) neurons of V5A and the posterior parietal (PP) area representing direction of rotary movement in space; (4) visually responsive manipulation-related neurons (visual-dominant or visual-and-motor type) of the anterior intraparietal (AIP) area, representing 3-D shape or orientation (or both) of objects for manipulation; and (5) axis-orientation-selective (AOS) and surface-orientation-selective (SOS) neurons in the caudal intraparietal sulcus (cIPS) sensitive to binocular disparity and representing the 3-D orientation of the longitudinal axes and flat surfaces, respectively. Some AOS and SOS neurons are selective in both orientation and shape. Thus the dorsal visual pathway is divided into at least two subsystems, V5A, PP and VIP areas for motion vision and V6, LIP and cIPS areas for coding position and 3-D features. The cIPS sends the signals of 3-D features of objects to the AIP area, which is reciprocally connected to the ventral premotor (F5) area and plays an essential role in matching hand orientation and shaping with 3-D objects for manipulation.
Mikellidou, Kyriaki; Gouws, André D.; Clawson, Hannah; Thompson, Peter; Morland, Antony B.
2016-01-01
We use the simple, but prominent Helmholtz’s squares illusion in which a vertically striped square appears wider than a horizontally striped square of identical physical dimensions to determine whether functional magnetic resonance imaging (fMRI) BOLD responses in V1 underpin illusions of size. We report that these simple stimuli which differ in only one parameter, orientation, to which V1 neurons are highly selective elicited activity in V1 that followed their physical, not perceived size. To further probe the role of V1 in the illusion and investigate plausible extrastriate visual areas responsible for eliciting the Helmholtz squares illusion, we performed a follow-up transcranial magnetic stimulation (TMS) experiment in which we compared perceptual judgments about the aspect ratio of perceptually identical Helmholtz squares when no TMS was applied against selective stimulation of V1, LO1, or LO2. In agreement with fMRI results, we report that TMS of area V1 does not compromise the strength of the illusion. Only stimulation of area LO1, and not LO2, compromised significantly the strength of the illusion, consistent with previous research that LO1 plays a role in the processing of orientation information. These results demonstrate the involvement of a specific extrastriate area in an illusory percept of size. PMID:27733896
Wada, Atsushi; Sakano, Yuichi; Ando, Hiroshi
2016-01-01
Vision is important for estimating self-motion, which is thought to involve optic-flow processing. Here, we investigated the fMRI response profiles in visual area V6, the precuneus motion area (PcM), and the cingulate sulcus visual area (CSv)—three medial brain regions recently shown to be sensitive to optic-flow. We used wide-view stereoscopic stimulation to induce robust self-motion processing. Stimuli included static, randomly moving, and coherently moving dots (simulating forward self-motion). We varied the stimulus size and the presence of stereoscopic information. A combination of univariate and multi-voxel pattern analyses (MVPA) revealed that fMRI responses in the three regions differed from each other. The univariate analysis identified optic-flow selectivity and an effect of stimulus size in V6, PcM, and CSv, among which only CSv showed a significantly lower response to random motion stimuli compared with static conditions. Furthermore, MVPA revealed an optic-flow specific multi-voxel pattern in the PcM and CSv, where the discrimination of coherent motion from both random motion and static conditions showed above-chance prediction accuracy, but that of random motion from static conditions did not. Additionally, while area V6 successfully classified different stimulus sizes regardless of motion pattern, this classification was only partial in PcM and was absent in CSv. This may reflect the known retinotopic representation in V6 and the absence of such clear visuospatial representation in CSv. We also found significant correlations between the strength of subjective self-motion and univariate activation in all examined regions except for primary visual cortex (V1). This neuro-perceptual correlation was significantly higher for V6, PcM, and CSv when compared with V1, and higher for CSv when compared with the visual motion area hMT+. Our convergent results suggest the significant involvement of CSv in self-motion processing, which may give rise to its percept. PMID:26973588
Watakabe, Akiya; Komatsu, Yusuke; Sadakane, Osamu; Shimegi, Satoshi; Takahata, Toru; Higo, Noriyuki; Tochitani, Shiro; Hashikawa, Tsutomu; Naito, Tomoyuki; Osaki, Hironobu; Sakamoto, Hiroshi; Okamoto, Masahiro; Ishikawa, Ayako; Hara, Shin-ichiro; Akasaki, Takafumi; Sato, Hiromichi
2009-01-01
To study the molecular mechanism how cortical areas are specialized in adult primates, we searched for area-specific genes in macaque monkeys and found striking enrichment of serotonin (5-hydroxytryptamine, 5-HT) 1B receptor mRNA, and to a lesser extent, of 5-HT2A receptor mRNA, in the primary visual area (V1). In situ hybridization analyses revealed that both mRNA species were highly concentrated in the geniculorecipient layers IVA and IVC, where they were coexpressed in the same neurons. Monocular inactivation by tetrodotoxin injection resulted in a strong and rapid (<3 h) downregulation of these mRNAs, suggesting the retinal activity dependency of their expression. Consistent with the high expression level in V1, clear modulatory effects of 5-HT1B and 5-HT2A receptor agonists on the responses of V1 neurons were observed in in vivo electrophysiological experiments. The modulatory effect of the 5-HT1B agonist was dependent on the firing rate of the recorded neurons: The effect tended to be facilitative for neurons with a high firing rate, and suppressive for those with a low firing rate. The 5-HT2A agonist showed opposite effects. These results suggest that this serotonergic system controls the visual response in V1 for optimization of information processing toward the incoming visual inputs. PMID:19056862
Distinct roles of the cortical layers of area V1 in figure-ground segregation.
Self, Matthew W; van Kerkoerle, Timo; Supèr, Hans; Roelfsema, Pieter R
2013-11-04
What roles do the different cortical layers play in visual processing? We recorded simultaneously from all layers of the primary visual cortex while monkeys performed a figure-ground segregation task. This task can be divided into different subprocesses that are thought to engage feedforward, horizontal, and feedback processes at different time points. These different connection types have different patterns of laminar terminations in V1 and can therefore be distinguished with laminar recordings. We found that the visual response started 40 ms after stimulus presentation in layers 4 and 6, which are targets of feedforward connections from the lateral geniculate nucleus and distribute activity to the other layers. Boundary detection started shortly after the visual response. In this phase, boundaries of the figure induced synaptic currents and stronger neuronal responses in upper layer 4 and the superficial layers ~70 ms after stimulus onset, consistent with the hypothesis that they are detected by horizontal connections. In the next phase, ~30 ms later, synaptic inputs arrived in layers 1, 2, and 5 that receive feedback from higher visual areas, which caused the filling in of the representation of the entire figure with enhanced neuronal activity. The present results reveal unique contributions of the different cortical layers to the formation of a visual percept. This new blueprint of laminar processing may generalize to other tasks and to other areas of the cerebral cortex, where the layers are likely to have roles similar to those in area V1. Copyright © 2013 Elsevier Ltd. All rights reserved.
Two different streams form the dorsal visual system: anatomy and functions.
Rizzolatti, Giacomo; Matelli, Massimo
2003-11-01
There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.
Jayakumar, Jaikishan; Roy, Sujata; Dreher, Bogdan; Martin, Paul R; Vidyasagar, Trichur R
2013-01-01
We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT.
Amatrudo, Joseph M.; Weaver, Christina M.; Crimins, Johanna L.; Hof, Patrick R.; Rosene, Douglas L.; Luebke, Jennifer I.
2012-01-01
Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. Area V1 pyramidal neurons are much smaller than dlPFC neurons, with significantly less extensive dendritic arbors and far fewer dendritic spines. Relative to dlPFC neurons, V1 neurons have a significantly higher input resistance, depolarized resting membrane potential and higher action potential (AP) firing rates. Most V1 neurons exhibit both phasic and regular-spiking tonic AP firing patterns, while dlPFC neurons exhibit only tonic firing. Spontaneous postsynaptic currents are lower in amplitude and have faster kinetics in V1 than in dlPFC neurons, but are no different in frequency. Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA- and GABAA-receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning. PMID:23035077
Poort, Jasper; Self, Matthew W.; van Vugt, Bram; Malkki, Hemi; Roelfsema, Pieter R.
2016-01-01
Segregation of images into figures and background is fundamental for visual perception. Cortical neurons respond more strongly to figural image elements than to background elements, but the mechanisms of figure–ground modulation (FGM) are only partially understood. It is unclear whether FGM in early and mid-level visual cortex is caused by an enhanced response to the figure, a suppressed response to the background, or both. We studied neuronal activity in areas V1 and V4 in monkeys performing a texture segregation task. We compared texture-defined figures with homogeneous textures and found an early enhancement of the figure representation, and a later suppression of the background. Across neurons, the strength of figure enhancement was independent of the strength of background suppression. We also examined activity in the different V1 layers. Both figure enhancement and ground suppression were strongest in superficial and deep layers and weaker in layer 4. The current–source density profiles suggested that figure enhancement was caused by stronger synaptic inputs in feedback-recipient layers 1, 2, and 5 and ground suppression by weaker inputs in these layers, suggesting an important role for feedback connections from higher level areas. These results provide new insights into the mechanisms for figure–ground organization. PMID:27522074
Differential effect of visual motion adaption upon visual cortical excitability.
Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer
2017-03-01
The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.
Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K
2013-03-20
Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.
The effect of integration masking on visual processing in perceptual categorization.
Hélie, Sébastien
2017-08-01
Learning to recognize and categorize objects is an essential cognitive skill allowing animals to function in the world. However, animals rarely have access to a canonical view of an object in an uncluttered environment. Hence, it is essential to study categorization under noisy, degraded conditions. In this article, we explore how the brain processes categorization stimuli in low signal-to-noise conditions using multivariate pattern analysis. We used an integration masking paradigm with mask opacity of 50%, 60%, and 70% inside a magnetic resonance imaging scanner. The results show that mask opacity affects blood-oxygen-level dependent (BOLD) signal in visual processing areas (V1, V2, V3, and V4) but does not affect the BOLD signal in brain areas traditionally associated with categorization (prefrontal cortex, striatum, hippocampus). This suggests that when a stimulus is difficult to extract from its background (e.g., low signal-to-noise ratio), the visual system extracts the stimulus and that activity in areas typically associated with categorization are not affected by the difficulty level of the visual conditions. We conclude with implications of this result for research on visual attention, categorization, and the integration of these fields. Copyright © 2017 Elsevier Inc. All rights reserved.
Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex
Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank
2013-01-01
Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828
Furutani, Rui
2008-09-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V.
Brewer, Alyssa A.; Barton, Brian
2012-01-01
Although several studies have suggested that cortical alterations underlie such age-related visual deficits as decreased acuity, little is known about what changes actually occur in visual cortex during healthy aging. Two recent studies showed changes in primary visual cortex (V1) during normal aging; however, no studies have characterized the effects of aging on visual cortex beyond V1, important measurements both for understanding the aging process and for comparison to changes in age-related diseases. Similarly, there is almost no information about changes in visual cortex in Alzheimer's disease (AD), the most common form of dementia. Because visual deficits are often reported as one of the first symptoms of AD, measurements of such changes in the visual cortex of AD patients might improve our understanding of how the visual system is affected by neurodegeneration as well as aid early detection, accurate diagnosis and timely treatment of AD. Here we use fMRI to first compare the visual field map (VFM) organization and population receptive fields (pRFs) between young adults and healthy aging subjects for occipital VFMs V1, V2, V3, and hV4. Healthy aging subjects do not show major VFM organizational deficits, but do have reduced surface area and increased pRF sizes in the foveal representations of V1, V2, and hV4 relative to healthy young control subjects. These measurements are consistent with behavioral deficits seen in healthy aging. We then demonstrate the feasibility and first characterization of these measurements in two patients with mild AD, which reveal potential changes in visual cortex as part of the pathophysiology of AD. Our data aid in our understanding of the changes in the visual processing pathways in normal aging and provide the foundation for future research into earlier and more definitive detection of AD. PMID:24570669
Characterizing the effects of feature salience and top-down attention in the early visual system.
Poltoratski, Sonia; Ling, Sam; McCormack, Devin; Tong, Frank
2017-07-01
The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. We used high-resolution functional MRI (fMRI) at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN). Observers viewed arrays of spatially distributed gratings, where one of the gratings immediately to the left or right of fixation differed from all other items in orientation or motion direction, making it salient. To investigate the effects of directed attention, observers were cued to attend to the grating to the left or right of fixation, which was either salient or nonsalient. Results revealed reliable additive effects of top-down attention and stimulus-driven salience throughout visual areas V1-hV4. In comparison, the LGN exhibited significant attentional enhancement but was not reliably modulated by orientation- or motion-defined salience. Our findings indicate that top-down effects of spatial attention can influence visual processing at the earliest possible site along the visual pathway, including the LGN, whereas the processing of orientation- and motion-driven salience primarily involves feature-selective interactions that take place in early cortical visual areas. NEW & NOTEWORTHY While spatial attention allows for specific, goal-driven enhancement of stimuli, salient items outside of the current focus of attention must also be prioritized. We used 7T fMRI to compare salience and spatial attentional enhancement along the early visual hierarchy. We report additive effects of attention and bottom-up salience in early visual areas, suggesting that salience enhancement is not contingent on the observer's attentional state. Copyright © 2017 the American Physiological Society.
Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann
2015-01-01
In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the “parsing” of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA. PMID:26148062
Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann
2015-01-01
In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the "parsing" of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA.
Position Information Encoded by Population Activity in Hierarchical Visual Areas
Majima, Kei; Horikawa, Tomoyasu
2017-01-01
Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634
Heading Tuning in Macaque Area V6.
Fan, Reuben H; Liu, Sheng; DeAngelis, Gregory C; Angelaki, Dora E
2015-12-16
Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual-vestibular integration for self-motion perception. To understand how we successfully navigate our world, it is important to understand which parts of the brain process cues used to perceive our direction of self-motion (i.e., heading). Cortical area V6 has been implicated in heading computations based on human neuroimaging data, but direct measurements of heading selectivity in individual V6 neurons have been lacking. We provide the first demonstration that V6 neurons carry 3D visual heading signals, which are represented in an eye-centered reference frame. In contrast, we found almost no evidence for vestibular heading signals in V6, indicating that V6 is unlikely to contribute to multisensory integration of heading signals, unlike other cortical areas. These findings provide important constraints on the roles of V6 in self-motion perception. Copyright © 2015 the authors 0270-6474/15/3516303-12$15.00/0.
The role of primary auditory and visual cortices in temporal processing: A tDCS approach.
Mioni, G; Grondin, S; Forgione, M; Fracasso, V; Mapelli, D; Stablum, F
2016-10-15
Many studies showed that visual stimuli are frequently experienced as shorter than equivalent auditory stimuli. These findings suggest that timing is distributed across many brain areas and that "different clocks" might be involved in temporal processing. The aim of this study is to investigate, with the application of tDCS over V1 and A1, the specific role of primary sensory cortices (either visual or auditory) in temporal processing. Forty-eight University students were included in the study. Twenty-four participants were stimulated over A1 and 24 participants were stimulated over V1. Participants performed time bisection tasks, in the visual and the auditory modalities, involving standard durations lasting 300ms (short) and 900ms (long). When tDCS was delivered over A1, no effect of stimulation was observed on perceived duration but we observed higher temporal variability under anodic stimulation compared to sham and higher variability in the visual compared to the auditory modality. When tDCS was delivered over V1, an under-estimation of perceived duration and higher variability was observed in the visual compared to the auditory modality. Our results showed more variability of visual temporal processing under tDCS stimulation. These results suggest a modality independent role of A1 in temporal processing and a modality specific role of V1 in the processing of temporal intervals in the visual modality. Copyright © 2016 Elsevier B.V. All rights reserved.
Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta
2016-01-01
In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504
Poort, Jasper; Self, Matthew W; van Vugt, Bram; Malkki, Hemi; Roelfsema, Pieter R
2016-10-01
Segregation of images into figures and background is fundamental for visual perception. Cortical neurons respond more strongly to figural image elements than to background elements, but the mechanisms of figure-ground modulation (FGM) are only partially understood. It is unclear whether FGM in early and mid-level visual cortex is caused by an enhanced response to the figure, a suppressed response to the background, or both.We studied neuronal activity in areas V1 and V4 in monkeys performing a texture segregation task. We compared texture-defined figures with homogeneous textures and found an early enhancement of the figure representation, and a later suppression of the background. Across neurons, the strength of figure enhancement was independent of the strength of background suppression.We also examined activity in the different V1 layers. Both figure enhancement and ground suppression were strongest in superficial and deep layers and weaker in layer 4. The current-source density profiles suggested that figure enhancement was caused by stronger synaptic inputs in feedback-recipient layers 1, 2, and 5 and ground suppression by weaker inputs in these layers, suggesting an important role for feedback connections from higher level areas. These results provide new insights into the mechanisms for figure-ground organization. © The Author 2016. Published by Oxford University Press.
Mender, Bedeho M W; Stringer, Simon M
2015-01-01
We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions.
Mender, Bedeho M. W.; Stringer, Simon M.
2015-01-01
We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions. PMID:25717301
Jeffs, Janelle; Ichida, Jennifer M.; Federer, Frederick
2009-01-01
In primates, a split of the horizontal meridian (HM) representation at the V2 rostral border divides this area into dorsal (V2d) and ventral (V2v) halves (representing lower and upper visual quadrants, respectively), causing retinotopically neighboring loci across the HM to be distant within V2. How is perceptual continuity maintained across this discontinuous HM representation? Injections of neuroanatomical tracers in marmoset V2d demonstrated that cells near the V2d rostral border can maintain retinotopic continuity within their classical and extra-classical receptive field (RF), by making both local and long-range intra- and interareal connections with ventral cortex representing the upper visual quadrant. V2d neurons located <0.9–1.3 mm from the V2d rostral border, whose RFs presumably do not cross the HM, make nonretinotopic horizontal connections with V2v neurons in the supra- and infragranular layers. V2d neurons located <0.6–0.9 mm from the border, whose RFs presumably cross the HM, in addition make retinotopic local connections with V2v neurons in layer 4. V2d neurons also make interareal connections with upper visual field regions of extrastriate cortex, but not of MT or MTc outside the foveal representation. Labeled connections in ventral cortex appear to represent the “missing” portion of the connectional fields in V2d across the HM. We conclude that connections between dorsal and ventral cortex can create visual field continuity within a second-order discontinuous visual topography. PMID:18755777
Furutani, Rui
2008-01-01
The present investigation carried out Nissl, Klüver-Barrera, and Golgi studies of the cerebral cortex in three distinct genera of oceanic dolphins (Risso's dolphin, striped dolphin and bottlenose dolphin) to identify and classify cortical laminar and cytoarchitectonic structures in four distinct functional areas, including primary motor (M1), primary sensory (S1), primary visual (V1), and primary auditory (A1) cortices. The laminar and cytoarchitectonic organization of each of these cortical areas was similar among the three dolphin species. M1 was visualized as five-layer structure that included the molecular layer (layer I), external granular layer (layer II), external pyramidal layer (layer III), internal pyramidal layer (layer V), and fusiform layer (layer VI). The internal granular layer was absent. The cetacean sensory-related cortical areas S1, V1, and A1 were also found to have a five-layer organization comprising layers I, II, III, V and VI. In particular, A1 was characterized by the broadest layer I, layer II and developed band of pyramidal neurons in layers III (sublayers IIIa, IIIb and IIIc) and V. The patch organization consisting of the layer IIIb-pyramidal neurons was detected in the S1 and V1, but not in A1. The laminar patterns of V1 and S1 were similar, but the cytoarchitectonic structures of the two areas were different. V1 was characterized by a broader layer II than that of S1, and also contained the specialized pyramidal and multipolar stellate neurons in layers III and V. PMID:18625031
Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A
2017-11-13
Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shifting Attention within Memory Representations Involves Early Visual Areas
Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan
2012-01-01
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165
Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1
Li, Xiaobing; Chen, Yao; Lashgari, Reza; Bereshpolova, Yulia; Swadlow, Harvey A.; Lee, Barry B.; Alonso, Jose Manuel
2015-01-01
Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment. PMID:24464943
A Role for Mouse Primary Visual Cortex in Motion Perception.
Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo
2018-06-04
Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Balaram, Pooja; Hackett, Troy A; Kaas, Jon H
2013-05-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). Copyright © 2013 Elsevier B.V. All rights reserved.
Attention biases visual activity in visual short-term memory.
Kuo, Bo-Cheng; Stokes, Mark G; Murray, Alexandra M; Nobre, Anna Christina
2014-07-01
In the current study, we tested whether representations in visual STM (VSTM) can be biased via top-down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1-V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top-down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.
Lightness computation by the human visual system
NASA Astrophysics Data System (ADS)
Rudd, Michael E.
2017-05-01
A model of achromatic color computation by the human visual system is presented, which is shown to account in an exact quantitative way for a large body of appearance matching data collected with simple visual displays. The model equations are closely related to those of the original Retinex model of Land and McCann. However, the present model differs in important ways from Land and McCann's theory in that it invokes additional biological and perceptual mechanisms, including contrast gain control, different inherent neural gains for incremental, and decremental luminance steps, and two types of top-down influence on the perceptual weights applied to local luminance steps in the display: edge classification and spatial integration attentional windowing. Arguments are presented to support the claim that these various visual processes must be instantiated by a particular underlying neural architecture. By pointing to correspondences between the architecture of the model and findings from visual neurophysiology, this paper suggests that edge classification involves a top-down gating of neural edge responses in early visual cortex (cortical areas V1 and/or V2) while spatial integration windowing occurs in cortical area V4 or beyond.
Reading Embossed Capital Letters: An fMRI Study in Blind and Sighted Individuals
Burton, H.; McLaren, D.G.; Sinclair, R.J.
2013-01-01
Reading Braille activates visual cortex in blind people [Burton et al., J Neurophysiol 2002;87: 589-611; Sadato et al., Nature 1996;380:526-528; Sadato et al., Brain 1998;121:1213-1229]. Because learning Braille requires extensive training, we had sighted and blind people read raised block capital letters to determine whether all groups engage visual cortex similarly when reading by touch. Letters were passively rubbed across the right index finger at 30 mm/s using an MR-compatible drum stimulator. Age-matched sighted, early blind (lost sight 0–5 years), and late blind (lost sight >5.5 years) volunteers performed three tasks: stating an identified letter, stating a verb containing an identified letter, and feeling a moving smooth surface. Responses were voiced immediately after the drum stopped moving across the fingertip. All groups showed increased activity in visual areas V1 and V2 during both letter identification tasks. Blind compared to sighted participants showed greater activation increases predominantly in the parafoveal-peripheral portions of visuotopic areas and posterior parts of BA 20 and 37. Sighted participants showed suppressed activity in most of the same areas except for small positive responses bilaterally in V1, left V5/MT+, and bilaterally in BA 37/20. Blind individuals showed suppression of the language areas in the frontal cortex, while sighted individuals showed slight positive responses. Early blind showed a more extensive distribution of activity in superior temporal sulcal multisensory areas. These results show cross-modal reorganization of visual cortex and altered response dynamics in nonvisual areas that plausibly reflect mechanisms for adaptive plasticity in blindness. PMID:16142777
Neural representations of contextual guidance in visual search of real-world scenes.
Preston, Tim J; Guo, Fei; Das, Koel; Giesbrecht, Barry; Eckstein, Miguel P
2013-05-01
Exploiting scene context and object-object co-occurrence is critical in guiding eye movements and facilitating visual search, yet the mediating neural mechanisms are unknown. We used functional magnetic resonance imaging while observers searched for target objects in scenes and used multivariate pattern analyses (MVPA) to show that the lateral occipital complex (LOC) can predict the coarse spatial location of observers' expectations about the likely location of 213 different targets absent from the scenes. In addition, we found weaker but significant representations of context location in an area related to the orienting of attention (intraparietal sulcus, IPS) as well as a region related to scene processing (retrosplenial cortex, RSC). Importantly, the degree of agreement among 100 independent raters about the likely location to contain a target object in a scene correlated with LOC's ability to predict the contextual location while weaker but significant effects were found in IPS, RSC, the human motion area, and early visual areas (V1, V3v). When contextual information was made irrelevant to observers' behavioral task, the MVPA analysis of LOC and the other areas' activity ceased to predict the location of context. Thus, our findings suggest that the likely locations of targets in scenes are represented in various visual areas with LOC playing a key role in contextual guidance during visual search of objects in real scenes.
Functional specialization and generalization for grouping of stimuli based on colour and motion
Zeki, Semir; Stutters, Jonathan
2013-01-01
This study was undertaken to learn whether the principle of functional specialization that is evident at the level of the prestriate visual cortex extends to areas that are involved in grouping visual stimuli according to attribute, and specifically according to colour and motion. Subjects viewed, in an fMRI scanner, visual stimuli composed of moving dots, which could be either coloured or achromatic; in some stimuli the moving coloured dots were randomly distributed or moved in random directions; in others, some of the moving dots were grouped together according to colour or to direction of motion, with the number of groupings varying from 1 to 3. Increased activation was observed in area V4 in response to colour grouping and in V5 in response to motion grouping while both groupings led to activity in separate though contiguous compartments within the intraparietal cortex. The activity in all the above areas was parametrically related to the number of groupings, as was the prominent activity in Crus I of the cerebellum where the activity resulting from the two types of grouping overlapped. This suggests (a) that, the specialized visual areas of the prestriate cortex have functions beyond the processing of visual signals according to attribute, namely that of grouping signals according to colour (V4) or motion (V5); (b) that the functional separation evident in visual cortical areas devoted to motion and colour, respectively, is maintained at the level of parietal cortex, at least as far as grouping according to attribute is concerned; and (c) that, by contrast, this grouping-related functional segregation is not maintained at the level of the cerebellum. PMID:23415950
Chernyshev, Boris V; Pronko, Platon K; Stroganova, Tatiana A
2016-01-01
Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.
The organization of orientation selectivity throughout macaque visual cortex.
Vanduffel, Wim; Tootell, Roger B H; Schoups, Aniek A; Orban, Guy A
2002-06-01
A double-label deoxyglucose technique was used to study orientation columns throughout visual cortex in awake behaving macaques. Four macaques were trained to fixate while contrastreversing, stationary gratings or one-dimensional noise of a single orientation or an orthogonal orientation were presented, during uptake of [14C]deoxyglucose ([14C]DG) or [3H]DG, respectively. The two orthogonal stimulus orientations produced DG-labeled columns that were maximally separated in the two isotope maps (inter-digitated) in four areas: V1, V2, V3 and VP. The topographic change from interdigitated to overlapping columns occurred abruptly rather than gradually, at corresponding cortical area borders (e.g. VP and V4v, respectively). In addition, the data suggest that orientation column topography systematically changes with retinotopic eccentricity. In V1, the orientation columns systematically avoided the cytochrome oxidase blobs in the parafoveal representation, but converged closer to the blobs in the foveal representation. A control experiment indicated that this was unlikely to reflect eccentricity-dependent differences in cortical spatial frequency sensitivity. A similar eccentricity-dependent change in the topography of orientation columns occurred in V2. In parafoveal but not foveal visual field representations of V2, the orientation columns were centered on the thick cytochrome oxidase stripes, extended into the adjacent interstripe region, but were virtually absent in the thin stripes.
Functional connectivity of visual cortex in the blind follows retinotopic organization principles
Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno
2015-01-01
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. PMID:25869851
Integration of color, orientation, and size functional domains in the ventral pathway
Ghose, Geoffrey M.; Ts’o, Daniel Y.
2017-01-01
Abstract. Functional specialization within the extrastriate areas of the ventral pathway associated with visual form analysis is poorly understood. Studies comparing the functional selectivities of neurons within the early visual areas have found that there are more similar than different between the areas. We simultaneously imaged visually evoked activation over regions of V2 and V4 and parametrically varied three visual attributes for which selectivity exists in both areas: color, orientation, and size. We found that color selective regions were observed in both areas and were of similar size and spatial distribution. However, two major areal distinctions were observed: V4 contained a greater number and diversity of color-specific regions than V2 and exhibited a higher degree of overlap between domains for different functional attributes. In V2, size and color regions were largely segregated from orientation domains, whereas in V4 both color and size regions overlapped considerably with orientation regions. Our results suggest that higher-order composite selectivities in the extrastriate cortex may arise organically from the interactions afforded by an overlap of functional domains for lower order selectivities. PMID:28573155
Decoding information about dynamically occluded objects in visual cortex
Erlikhman, Gennady; Caplovitz, Gideon P.
2016-01-01
During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987
McDonald, J Scott; Seymour, Kiley J; Schira, Mark M; Spehar, Branka; Clifford, Colin W G
2009-05-01
The responses of orientation-selective neurons in primate visual cortex can be profoundly affected by the presence and orientation of stimuli falling outside the classical receptive field. Our perception of the orientation of a line or grating also depends upon the context in which it is presented. For example, the perceived orientation of a grating embedded in a surround tends to be repelled from the predominant orientation of the surround. Here, we used fMRI to investigate the basis of orientation-specific surround effects in five functionally-defined regions of visual cortex: V1, V2, V3, V3A/LO1 and hV4. Test stimuli were luminance-modulated and isoluminant gratings that produced responses similar in magnitude. Less BOLD activation was evident in response to gratings with parallel versus orthogonal surrounds across all the regions of visual cortex investigated. When an isoluminant test grating was surrounded by a luminance-modulated inducer, the degree of orientation-specific contextual modulation was no larger for extrastriate areas than for V1, suggesting that the observed effects might originate entirely in V1. However, more orientation-specific modulation was evident in extrastriate cortex when both test and inducer were luminance-modulated gratings than when the test was isoluminant; this difference was significant in area V3. We suggest that the pattern of results in extrastriate cortex may reflect a refinement of the orientation-selectivity of surround suppression specific to the colour of the surround or, alternatively, processes underlying the segmentation of test and inducer by spatial phase or orientation when no colour cue is available.
Mechanisms of Neuronal Computation in Mammalian Visual Cortex
Priebe, Nicholas J.; Ferster, David
2012-01-01
Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1—the cells that receive direct input from thalamic relay cells—and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel’s feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant. PMID:22841306
Poirot, Jordan; De Luna, Paolo; Rainer, Gregor
2016-04-01
We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, suggesting that single-neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF-dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feedforward inputs. Our findings complement previous literature in primates, rodents, and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex. Copyright © 2016 the American Physiological Society.
Saliency affects feedforward more than feedback processing in early visual cortex.
Emmanouil, Tatiana Aloi; Avigan, Philip; Persuh, Marjan; Ro, Tony
2013-07-01
Early visual cortex activity is influenced by both bottom-up and top-down factors. To investigate the influences of bottom-up (saliency) and top-down (task) factors on different stages of visual processing, we used transcranial magnetic stimulation (TMS) of areas V1/V2 to induce visual suppression at varying temporal intervals. Subjects were asked to detect and discriminate the color or the orientation of briefly-presented small lines that varied on color saliency based on color contrast with the surround. Regardless of task, color saliency modulated the magnitude of TMS-induced visual suppression, especially at earlier temporal processing intervals that reflect the feedforward stage of visual processing in V1/V2. In a second experiment we found that our color saliency effects were also influenced by an inherent advantage of the color red relative to other hues and that color discrimination difficulty did not affect visual suppression. These results support the notion that early visual processing is stimulus driven and that feedforward and feedback processing encode different types of information about visual scenes. They further suggest that certain hues can be prioritized over others within our visual systems by being more robustly represented during early temporal processing intervals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.
Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi
2017-07-01
Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.
2017-08-01
The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.
Stimulus Dependence of Correlated Variability across Cortical Areas
Cohen, Marlene R.
2016-01-01
The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was predicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. PMID:27413163
The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex.
Poort, Jasper; Raudies, Florian; Wannig, Aurel; Lamme, Victor A F; Neumann, Heiko; Roelfsema, Pieter R
2012-07-12
Our visual system segments images into objects and background. Figure-ground segregation relies on the detection of feature discontinuities that signal boundaries between the figures and the background and on a complementary region-filling process that groups together image regions with similar features. The neuronal mechanisms for these processes are not well understood and it is unknown how they depend on visual attention. We measured neuronal activity in V1 and V4 in a task where monkeys either made an eye movement to texture-defined figures or ignored them. V1 activity predicted the timing and the direction of the saccade if the figures were task relevant. We found that boundary detection is an early process that depends little on attention, whereas region filling occurs later and is facilitated by visual attention, which acts in an object-based manner. Our findings are explained by a model with local, bottom-up computations for boundary detection and feedback processing for region filling. Copyright © 2012 Elsevier Inc. All rights reserved.
Wong, Yvonne J; Aldcroft, Adrian J; Large, Mary-Ellen; Culham, Jody C; Vilis, Tutis
2009-12-01
We examined the role of temporal synchrony-the simultaneous appearance of visual features-in the perceptual and neural processes underlying object persistence. When a binding cue (such as color or motion) momentarily exposes an object from a background of similar elements, viewers remain aware of the object for several seconds before it perceptually fades into the background, a phenomenon known as object persistence. We showed that persistence from temporal stimulus synchrony, like that arising from motion and color, is associated with activation in the lateral occipital (LO) area, as measured by functional magnetic resonance imaging. We also compared the distribution of occipital cortex activity related to persistence to that of iconic visual memory. Although activation related to iconic memory was largely confined to LO, activation related to object persistence was present across V1 to LO, peaking in V3 and V4, regardless of the binding cue (temporal synchrony, motion, or color). Although persistence from motion cues was not associated with higher activation in the MT+ motion complex, persistence from color cues was associated with increased activation in V4. Taken together, these results demonstrate that although persistence is a form of visual memory, it relies on neural mechanisms different from those of iconic memory. That is, persistence not only activates LO in a cue-independent manner, it also recruits visual areas that may be necessary to maintain binding between object elements.
Knopf, Julian P; Hof, Patrick R; Oelschläger, Helmut H A
2016-01-01
We investigated the morphology of four primary neocortical projection areas (somatomotor, somatosensory, auditory, visual) qualitatively and quantitatively in the Indian river dolphins (Platanista gangetica gangetica, P. gangetica minor) with histological and stereological methods. For comparison, we included brains of other toothed whale species. Design-based stereology was applied to the primary neocortical areas (M1, S1, A1, V1) of the Indian river dolphins and compared to those of the bottlenose dolphin with respect to layers III and V. These neocortical fields were identified using existing electrophysiological and morphological data from marine dolphins as to their topography and histological structure, including the characteristics of the neuron populations concerned. In contrast to other toothed whales, the visual area (V1) of the 'blind' river dolphins seems to be rather small. M1 is displaced laterally and the auditory area (A1) is larger than in marine species with respect to total brain size. The layering is similar in the cortices of all the toothed whale brains investigated; a layer IV could not be identified. Cell density in layer III is always higher than in layer V. The maximal neuron density in P. gangetica gangetica is found in layer III of A1, followed by layers III in V1, S1, and M1. The cell density in layer V is at a similar level in all primary areas. There are, however, some differences in neuron density between the two subspecies of Indian river dolphins. Taken as a whole, it appears that the neocortex of platanistids exhibits a considerable expansion of the auditory field. Even more than other toothed whales, they seem to depend on their biosonar abilities for navigation, hunting, and communication in their riverine habitat. © 2016 S. Karger AG, Basel.
Binocular Stereoscopy in Visual Areas V-2, V-3, and V-3A of the Macaque Monkey
Hubel, David H.; Wiesel, Torsten N.; Yeagle, Erin M.; Lafer-Sousa, Rosa; Conway, Bevil R.
2015-01-01
Over 40 years ago, Hubel and Wiesel gave a preliminary report of the first account of cells in monkey cerebral cortex selective for binocular disparity. The cells were located outside of V-1 within a region referred to then as “area 18.” A full-length manuscript never followed, because the demarcation of the visual areas within this region had not been fully worked out. Here, we provide a full description of the physiological experiments and identify the locations of the recorded neurons using a contemporary atlas generated by functional magnetic resonance imaging; we also perform an independent analysis of the location of the neurons relative to an anatomical landmark (the base of the lunate sulcus) that is often coincident with the border between V-2 and V-3. Disparity-tuned cells resided not only in V-2, the area now synonymous with area 18, but also in V-3 and probably within V-3A. The recordings showed that the disparity-tuned cells were biased for near disparities, tended to prefer vertical orientations, clustered by disparity preference, and often required stimulation of both eyes to elicit responses, features strongly suggesting a role in stereoscopic depth perception. PMID:24122139
Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1.
Li, Xiaobing; Chen, Yao; Lashgari, Reza; Bereshpolova, Yulia; Swadlow, Harvey A; Lee, Barry B; Alonso, Jose Manuel
2015-07-01
Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Brightness and transparency in the early visual cortex.
Salmela, Viljami R; Vanni, Simo
2013-06-24
Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.
Vermaercke, Ben; Van den Bergh, Gert; Gerich, Florian; Op de Beeck, Hans
2015-01-01
Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007). The relative difficulty (error rate) of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1) over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO). Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al. (2014b), suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity that is related to behaviorally relevant stimulus differences.
Pitzalis, Sabrina; Strappini, Francesca; Bultrini, Alessandro; Di Russo, Francesco
2018-03-13
Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas. © 2018 Wiley Periodicals, Inc.
Sneve, Markus H; Sreenivasan, Kartik K; Alnæs, Dag; Endestad, Tor; Magnussen, Svein
2015-01-01
Retention of features in visual short-term memory (VSTM) involves maintenance of sensory traces in early visual cortex. However, the mechanism through which this is accomplished is not known. Here, we formulate specific hypotheses derived from studies on feature-based attention to test the prediction that visual cortex is recruited by attentional mechanisms during VSTM of low-level features. Functional magnetic resonance imaging (fMRI) of human visual areas revealed that neural populations coding for task-irrelevant feature information are suppressed during maintenance of detailed spatial frequency memory representations. The narrow spectral extent of this suppression agrees well with known effects of feature-based attention. Additionally, analyses of effective connectivity during maintenance between retinotopic areas in visual cortex show that the observed highlighting of task-relevant parts of the feature spectrum originates in V4, a visual area strongly connected with higher-level control regions and known to convey top-down influence to earlier visual areas during attentional tasks. In line with this property of V4 during attentional operations, we demonstrate that modulations of earlier visual areas during memory maintenance have behavioral consequences, and that these modulations are a result of influences from V4. Copyright © 2014 Elsevier Ltd. All rights reserved.
Perceptual learning as improved probabilistic inference in early sensory areas.
Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre
2011-05-01
Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.
Behrens, Janina R.; Kraft, Antje; Irlbacher, Kerstin; Gerhardt, Holger; Olma, Manuel C.; Brandt, Stephan A.
2017-01-01
Understanding processes performed by an intact visual cortex as the basis for developing methods that enhance or restore visual perception is of great interest to both researchers and medical practitioners. Here, we explore whether contrast sensitivity, a main function of the primary visual cortex (V1), can be improved in healthy subjects by repetitive, noninvasive anodal transcranial direct current stimulation (tDCS). Contrast perception was measured via threshold perimetry directly before and after intervention (tDCS or sham stimulation) on each day over 5 consecutive days (24 subjects, double-blind study). tDCS improved contrast sensitivity from the second day onwards, with significant effects lasting 24 h. After the last stimulation on day 5, the anodal group showed a significantly greater improvement in contrast perception than the sham group (23 vs. 5%). We found significant long-term effects in only the central 2–4° of the visual field 4 weeks after the last stimulation. We suspect a combination of two factors contributes to these lasting effects. First, the V1 area that represents the central retina was located closer to the polarization electrode, resulting in higher current density. Second, the central visual field is represented by a larger cortical area relative to the peripheral visual field (cortical magnification). This is the first study showing that tDCS over V1 enhances contrast perception in healthy subjects for several weeks. This study contributes to the investigation of the causal relationship between the external modulation of neuronal membrane potential and behavior (in our case, visual perception). Because the vast majority of human studies only show temporary effects after single tDCS sessions targeting the visual system, our study underpins the potential for lasting effects of repetitive tDCS-induced modulation of neuronal excitability. PMID:28860969
Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans
2017-03-20
From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inter- and Intrahemispheric Connectivity Differences When Reading Japanese Kanji and Hiragana
Kawabata Duncan, Keith J.; Twomey, Tae; Parker Jones, ‘Ōiwi; Seghier, Mohamed L.; Haji, Tomoki; Sakai, Katsuyuki; Price, Cathy J.; Devlin, Joseph T.
2014-01-01
Unlike most languages that are written using a single script, Japanese uses multiple scripts including morphographic Kanji and syllabographic Hiragana and Katakana. Here, we used functional magnetic resonance imaging with dynamic causal modeling to investigate competing theories regarding the neural processing of Kanji and Hiragana during a visual lexical decision task. First, a bilateral model investigated interhemispheric connectivity between ventral occipito–temporal (vOT) cortex and Broca's area (“pars opercularis”). We found that Kanji significantly increased the connection strength from right-to-left vOT. This is interpreted in terms of increased right vOT activity for visually complex Kanji being integrated into the left (i.e. language dominant) hemisphere. Secondly, we used a unilateral left hemisphere model to test whether Kanji and Hiragana rely preferentially on ventral and dorsal paths, respectively, that is, they have different intrahemispheric functional connectivity profiles. Consistent with this hypothesis, we found that Kanji increased connectivity within the ventral path (V1 ↔ vOT ↔ Broca's area), and that Hiragana increased connectivity within the dorsal path (V1 ↔ supramarginal gyrus ↔ Broca's area). Overall, the results illustrate how the differential processing demands of Kanji and Hiragana influence both inter- and intrahemispheric interactions. PMID:23382515
Inter- and intrahemispheric connectivity differences when reading Japanese Kanji and Hiragana.
Kawabata Duncan, Keith J; Twomey, Tae; Parker Jones, 'Ōiwi; Seghier, Mohamed L; Haji, Tomoki; Sakai, Katsuyuki; Price, Cathy J; Devlin, Joseph T
2014-06-01
Unlike most languages that are written using a single script, Japanese uses multiple scripts including morphographic Kanji and syllabographic Hiragana and Katakana. Here, we used functional magnetic resonance imaging with dynamic causal modeling to investigate competing theories regarding the neural processing of Kanji and Hiragana during a visual lexical decision task. First, a bilateral model investigated interhemispheric connectivity between ventral occipito-temporal (vOT) cortex and Broca's area ("pars opercularis"). We found that Kanji significantly increased the connection strength from right-to-left vOT. This is interpreted in terms of increased right vOT activity for visually complex Kanji being integrated into the left (i.e. language dominant) hemisphere. Secondly, we used a unilateral left hemisphere model to test whether Kanji and Hiragana rely preferentially on ventral and dorsal paths, respectively, that is, they have different intrahemispheric functional connectivity profiles. Consistent with this hypothesis, we found that Kanji increased connectivity within the ventral path (V1 ↔ vOT ↔ Broca's area), and that Hiragana increased connectivity within the dorsal path (V1 ↔ supramarginal gyrus ↔ Broca's area). Overall, the results illustrate how the differential processing demands of Kanji and Hiragana influence both inter- and intrahemispheric interactions.
Categorical clustering of the neural representation of color.
Brouwer, Gijs Joost; Heeger, David J
2013-09-25
Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical representation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons.
Categorical Clustering of the Neural Representation of Color
Heeger, David J.
2013-01-01
Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical representation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons. PMID:24068814
de Sousa, Alexandra A.; Proulx, Michael J.
2014-01-01
An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function. PMID:25009469
Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.
Angelucci, Alessandra; Rosa, Marcello G P
2015-01-01
As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.
Retinotopic mapping with Spin Echo BOLD at 7 Tesla
Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa
2010-01-01
For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431
Balaram, Pooja; Hackett, Troy A.; Kaas, Jon H.
2013-01-01
Glutamate is the primary neurotransmitter utilized by the mammalian visual system for excitatory neurotransmission. The sequestration of glutamate into synaptic vesicles, and the subsequent transport of filled vesicles to the presynaptic terminal membrane, is regulated by a family of proteins known as vesicular glutamate transporters (VGLUTs). Two VGLUT proteins, VGLUT1 and VGLUT2, characterize distinct sets of glutamatergic projections between visual structures in rodents and prosimian primates, yet little is known about their distributions in the visual system of anthropoid primates. We have examined the mRNA and protein expression patterns of VGLUT1 and VGLUT2 in the visual system of macaque monkeys, an Old World anthropoid primate, in order to determine their relative distributions in the superior colliculus, lateral geniculate nucleus, pulvinar complex, V1 and V2. Distinct expression patterns for both VGLUT1 and VGLUT2 identified architectonic boundaries in all structures, as well as anatomical subdivisions of the superior colliculus, pulvinar complex, and V1. These results suggest that VGLUT1 and VGLUT2 clearly identify regions of glutamatergic input in visual structures, and may identify common architectonic features of visual areas and nuclei across the primate radiation. Additionally, we find that VGLUT1 and VGLUT2 characterize distinct subsets of glutamatergic projections in the macaque visual system; VGLUT2 predominates in driving or feedforward projections from lower order to higher order visual structures while VGLUT1 predominates in modulatory or feedback projections from higher order to lower order visual structures. The distribution of these two proteins suggests that VGLUT1 and VGLUT2 may identify class 1 and class 2 type glutamatergic projections within the primate visual system (Sherman and Guillery, 2006). PMID:23524295
Neural architectures for stereo vision.
Parker, Andrew J; Smith, Jackson E T; Krug, Kristine
2016-06-19
Stereoscopic vision delivers a sense of depth based on binocular information but additionally acts as a mechanism for achieving correspondence between patterns arriving at the left and right eyes. We analyse quantitatively the cortical architecture for stereoscopic vision in two areas of macaque visual cortex. For primary visual cortex V1, the result is consistent with a module that is isotropic in cortical space with a diameter of at least 3 mm in surface extent. This implies that the module for stereo is larger than the repeat distance between ocular dominance columns in V1. By contrast, in the extrastriate cortical area V5/MT, which has a specialized architecture for stereo depth, the module for representation of stereo is about 1 mm in surface extent, so the representation of stereo in V5/MT is more compressed than V1 in terms of neural wiring of the neocortex. The surface extent estimated for stereo in V5/MT is consistent with measurements of its specialized domains for binocular disparity. Within V1, we suggest that long-range horizontal, anatomical connections form functional modules that serve both binocular and monocular pattern recognition: this common function may explain the distortion and disruption of monocular pattern vision observed in amblyopia.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.
Modularity in the Organization of Mouse Primary Visual Cortex
Ji, Weiqing; Gămănuţ, Răzvan; Bista, Pawan; D’Souza, Rinaldo D.; Wang, Quanxin; Burkhalter, Andreas
2015-01-01
SUMMARY Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2− zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams. PMID:26247867
Barton, Brian; Brewer, Alyssa A.
2017-01-01
The cortical hierarchy of the human visual system has been shown to be organized around retinal spatial coordinates throughout much of low- and mid-level visual processing. These regions contain visual field maps (VFMs) that each follows the organization of the retina, with neighboring aspects of the visual field processed in neighboring cortical locations. On a larger, macrostructural scale, groups of such sensory cortical field maps (CFMs) in both the visual and auditory systems are organized into roughly circular cloverleaf clusters. CFMs within clusters tend to share properties such as receptive field distribution, cortical magnification, and processing specialization. Here we use fMRI and population receptive field (pRF) modeling to investigate the extent of VFM and cluster organization with an examination of higher-level visual processing in temporal cortex and compare these measurements to mid-level visual processing in dorsal occipital cortex. In human temporal cortex, the posterior superior temporal sulcus (pSTS) has been implicated in various neuroimaging studies as subserving higher-order vision, including face processing, biological motion perception, and multimodal audiovisual integration. In human dorsal occipital cortex, the transverse occipital sulcus (TOS) contains the V3A/B cluster, which comprises two VFMs subserving mid-level motion perception and visuospatial attention. For the first time, we present the organization of VFMs in pSTS in a cloverleaf cluster. This pSTS cluster contains four VFMs bilaterally: pSTS-1:4. We characterize these pSTS VFMs as relatively small at ∼125 mm2 with relatively large pRF sizes of ∼2–8° of visual angle across the central 10° of the visual field. V3A and V3B are ∼230 mm2 in surface area, with pRF sizes here similarly ∼1–8° of visual angle across the same region. In addition, cortical magnification measurements show that a larger extent of the pSTS VFM surface areas are devoted to the peripheral visual field than those in the V3A/B cluster. Reliability measurements of VFMs in pSTS and V3A/B reveal that these cloverleaf clusters are remarkably consistent and functionally differentiable. Our findings add to the growing number of measurements of widespread sensory CFMs organized into cloverleaf clusters, indicating that CFMs and cloverleaf clusters may both be fundamental organizing principles in cortical sensory processing. PMID:28293182
Functional connectivity of visual cortex in the blind follows retinotopic organization principles.
Striem-Amit, Ella; Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S; Villringer, Arno; Amedi, Amir
2015-06-01
Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Coding of Border Ownership in Monkey Visual Cortex
Zhou, Hong; Friedman, Howard S.; von der Heydt, Rüdiger
2016-01-01
Areas V1 and V2 of the visual cortex have traditionally been conceived as stages of local feature representations. We investigated whether neural responses carry information about how local features belong to objects. Single-cell activity was recorded in areas V1, V2, and V4 of awake behaving monkeys. Displays were used in which the same local feature (contrast edge or line) could be presented as part of different figures. For example, the same light–dark edge could be the left side of a dark square or the right side of a light square. Each display was also presented with reversed contrast. We found significant modulation of responses as a function of the side of the figure in >50% of neurons of V2 and V4 and in 18% of neurons of the top layers of V1. Thus, besides the local contrast border information, neurons were found to encode the side to which the border belongs (“border ownership coding”). A majority of these neurons coded border ownership and the local polarity of luminance–chromaticity contrast. The others were insensitive to contrast polarity. Another 20% of the neurons of V2 and V4, and 48% of top layer V1, coded local contrast polarity, but not border ownership. The border ownership-related response differences emerged soon (<25 msec) after the response onset. In V2 and V4, the differences were found to be nearly independent of figure size up to the limit set by the size of our display (21°). Displays that differed only far outside the conventional receptive field could produce markedly different responses. When tested with more complex displays in which figure-ground cues were varied, some neurons produced invariant border ownership signals, others failed to signal border ownership for some of the displays, but neurons that reversed signals were rare. The influence of visual stimulation far from the receptive field center indicates mechanisms of global context integration. The short latencies and incomplete cue invariance suggest that the border-ownership effect is generated within the visual cortex rather than projected down from higher levels. PMID:10964965
Areas V1 and V2 show microsaccade-related 3-4-Hz covariation in gamma power and frequency.
Lowet, E; Roberts, M J; Bosman, C A; Fries, P; De Weerd, P
2016-05-01
Neuronal gamma-band synchronization (25-80 Hz) in visual cortex appears sustained and stable during prolonged visual stimulation when investigated with conventional averages across trials. However, recent studies in macaque visual cortex have used single-trial analyses to show that both power and frequency of gamma oscillations exhibit substantial moment-by-moment variation. This has raised the question of whether these apparently random variations might limit the functional role of gamma-band synchronization for neural processing. Here, we studied the moment-by-moment variation in gamma oscillation power and frequency, as well as inter-areal gamma synchronization, by simultaneously recording local field potentials in V1 and V2 of two macaque monkeys. We additionally analyzed electrocorticographic V1 data from a third monkey. Our analyses confirm that gamma-band synchronization is not stationary and sustained but undergoes moment-by-moment variations in power and frequency. However, those variations are neither random and nor a possible obstacle to neural communication. Instead, the gamma power and frequency variations are highly structured, shared between areas and shaped by a microsaccade-related 3-4-Hz theta rhythm. Our findings provide experimental support for the suggestion that cross-frequency coupling might structure and facilitate the information flow between brain regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
The spatiotopic 'visual' cortex of the blind
NASA Astrophysics Data System (ADS)
Likova, Lora
2012-03-01
Visual cortex activity in the blind has been shown in sensory tasks. Can it be activated in memory tasks? If so, are inherent features of its organization meaningfully employed? Our recent results in short-term blindfolded subjects imply that human primary visual cortex (V1) may operate as a modality-independent 'sketchpad' for working memory (Likova, 2010a). Interestingly, the spread of the V1 activation approximately corresponded to the spatial extent of the images in terms of their angle of projection to the subject. We now raise the questions of whether under long-term visual deprivation V1 is also employed in non-visual memory task, in particular in congenitally blind individuals, who have never had visual stimulation to guide the development of the visual area organization, and whether such spatial organization is still valid for the same paradigm that was used in blindfolded individuals. The outcome has implications for an emerging reconceptualization of the principles of brain architecture and its reorganization under sensory deprivation. Methods: We used a novel fMRI drawing paradigm in congenitally and late-onset blind, compared with sighted and blindfolded subjects in three conditions of 20s duration, separated by 20s rest-intervals, (i) Tactile Exploration: raised-line images explored and memorized; (ii) Tactile Memory Drawing: drawing the explored image from memory; (iii) Scribble: mindless drawing movements with no memory component. Results and Conclusions: V1 was strongly activated for Tactile Memory Drawing and Tactile Exploration in these totally blind subjects. Remarkably, after training, even in the memory task, the mapping of V1 activation largely corresponded to the angular projection of the tactile stimuli relative to the ego-center (i.e., the effective visual angle at the head); beyond this projective boundary, peripheral V1 signals were dramatically reduced or even suppressed. The matching extent of the activation in the congenitally blind rules out vision-based explanatory mechanisms, and supports the more radical idea of V1 as a modality-independent 'projection screen' or a 'sketchpad', whose mapping scales to the projective dimensions of objects explored in the peri-personal space.
Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.
Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor
2012-01-29
Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.
Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.
Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P
2016-02-08
In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wagatsuma, Nobuhiko; Sakai, Ko
2017-01-01
Border ownership (BO) indicates which side of a contour owns a border, and it plays a fundamental role in figure-ground segregation. The majority of neurons in V2 and V4 areas of monkeys exhibit BO selectivity. A physiological work reported that the responses of BO-selective cells show a rapid transition when a presented square is flipped along its classical receptive field (CRF) so that the opposite BO is presented, whereas the transition is significantly slower when a square with a clear BO is replaced by an ambiguous edge, e.g., when the square is enlarged greatly. The rapid transition seemed to reflect the influence of feedforward processing on BO selectivity. Herein, we investigated the role of feedforward signals and cortical interactions for time-courses in BO-selective cells by modeling a visual cortical network comprising V1, V2, and posterior parietal (PP) modules. In our computational model, the recurrent pathways among these modules gradually established the visual progress and the BO assignments. Feedforward inputs mainly determined the activities of these modules. Surrounding suppression/facilitation of early-level areas modulates the activities of V2 cells to provide BO signals. Weak feedback signals from the PP module enhanced the contrast gain extracted in V1, which underlies the attentional modulation of BO signals. Model simulations exhibited time-courses depending on the BO ambiguity, which were caused by the integration delay of V1 and V2 cells and the local inhibition therein given the difference in input stimulus. However, our model did not fully explain the characteristics of crucially slow transition: the responses of BO-selective physiological cells indicated the persistent activation several times longer than that of our model after the replacement with the ambiguous edge. Furthermore, the time-course of BO-selective model cells replicated the attentional modulation of response time in human psychophysical experiments. These attentional modulations for time-courses were induced by selective enhancement of early-level features due to interactions between V1 and PP. Our proposed model suggests fundamental roles of surrounding suppression/facilitation based on feedforward inputs as well as the interactions between early and parietal visual areas with respect to the ambiguity dependence of the neural dynamics in intermediate-level vision. PMID:28163688
Wagatsuma, Nobuhiko; Sakai, Ko
2016-01-01
Border ownership (BO) indicates which side of a contour owns a border, and it plays a fundamental role in figure-ground segregation. The majority of neurons in V2 and V4 areas of monkeys exhibit BO selectivity. A physiological work reported that the responses of BO-selective cells show a rapid transition when a presented square is flipped along its classical receptive field (CRF) so that the opposite BO is presented, whereas the transition is significantly slower when a square with a clear BO is replaced by an ambiguous edge, e.g., when the square is enlarged greatly. The rapid transition seemed to reflect the influence of feedforward processing on BO selectivity. Herein, we investigated the role of feedforward signals and cortical interactions for time-courses in BO-selective cells by modeling a visual cortical network comprising V1, V2, and posterior parietal (PP) modules. In our computational model, the recurrent pathways among these modules gradually established the visual progress and the BO assignments. Feedforward inputs mainly determined the activities of these modules. Surrounding suppression/facilitation of early-level areas modulates the activities of V2 cells to provide BO signals. Weak feedback signals from the PP module enhanced the contrast gain extracted in V1, which underlies the attentional modulation of BO signals. Model simulations exhibited time-courses depending on the BO ambiguity, which were caused by the integration delay of V1 and V2 cells and the local inhibition therein given the difference in input stimulus. However, our model did not fully explain the characteristics of crucially slow transition: the responses of BO-selective physiological cells indicated the persistent activation several times longer than that of our model after the replacement with the ambiguous edge. Furthermore, the time-course of BO-selective model cells replicated the attentional modulation of response time in human psychophysical experiments. These attentional modulations for time-courses were induced by selective enhancement of early-level features due to interactions between V1 and PP. Our proposed model suggests fundamental roles of surrounding suppression/facilitation based on feedforward inputs as well as the interactions between early and parietal visual areas with respect to the ambiguity dependence of the neural dynamics in intermediate-level vision.
Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J
2006-01-01
The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.
Analysis of total visual and ccd v-broadband observation of comet c/1995 o1 (hale-bopp): 1995-2003
NASA Astrophysics Data System (ADS)
de Almeida, A. A.; Boczko, R.; Lopes, A. R.; Sanzovo, G. C.
The wealth of available information on total visual magnitudes and broadband-V CCD observations of the exceptionally bright Comet C/1995 O1 (Hale-Bopp) proved to be an excellent opportunity to test the Semi-Empirical Method of Visual Magnitudes (de Almeida, Singh & Huebner, 1997) for very bright comets. The main objective is to extend the method to include total visual magnitude observations obtained with CCD detector and V filter in our analysis of total visual magnitudes and obtain a single light curve. We compare the CCD V-broadband careful observations of Liller (1997) by plotting then together with the total visual magnitude observations from experienced visual observers found in the International Comet Quarterly (ICQ) archive. We find a nice agreement despite of the fact that CCDs and V filter passbands detect systematically more coma than visual observers, since they have different responses to C2, which is the main emission from the coma, and consequently they should be used with larger apperture diameters. A data set of ˜400 CCD selected observations covering about the same 5 years time span of the ˜12,000 ICQ total visual magnitude observations were used in the analysis. A least-squares fit to the values yielded a relation for water production rates vs heliocentric distances for the pre- and post-perihelion phases and are converted into gas production rates (in g/s) released by the nucleus. The dimension of the nucleus as well as its effective active area is determined and compared to other works.
Davidesco, Ido; Harel, Michal; Ramot, Michal; Kramer, Uri; Kipervasser, Svetlana; Andelman, Fani; Neufeld, Miri Y; Goelman, Gadi; Fried, Itzhak; Malach, Rafael
2013-01-16
One of the puzzling aspects in the visual attention literature is the discrepancy between electrophysiological and fMRI findings: whereas fMRI studies reveal strong attentional modulation in the earliest visual areas, single-unit and local field potential studies yielded mixed results. In addition, it is not clear to what extent spatial attention effects extend from early to high-order visual areas. Here we addressed these issues using electrocorticography recordings in epileptic patients. The patients performed a task that allowed simultaneous manipulation of both spatial and object-based attention. They were presented with composite stimuli, consisting of a small object (face or house) superimposed on a large one, and in separate blocks, were instructed to attend one of the objects. We found a consistent increase in broadband high-frequency (30-90 Hz) power, but not in visual evoked potentials, associated with spatial attention starting with V1/V2 and continuing throughout the visual hierarchy. The magnitude of the attentional modulation was correlated with the spatial selectivity of each electrode and its distance from the occipital pole. Interestingly, the latency of the attentional modulation showed a significant decrease along the visual hierarchy. In addition, electrodes placed over high-order visual areas (e.g., fusiform gyrus) showed both effects of spatial and object-based attention. Overall, our results help to reconcile previous observations of discrepancy between fMRI and electrophysiology. They also imply that spatial attention effects can be found both in early and high-order visual cortical areas, in parallel with their stimulus tuning properties.
The Anatomical and Functional Organization of the Human Visual Pulvinar
Pinsk, Mark A.; Kastner, Sabine
2015-01-01
The pulvinar is the largest nucleus in the primate thalamus and contains extensive, reciprocal connections with visual cortex. Although the anatomical and functional organization of the pulvinar has been extensively studied in old and new world monkeys, little is known about the organization of the human pulvinar. Using high-resolution functional magnetic resonance imaging at 3 T, we identified two visual field maps within the ventral pulvinar, referred to as vPul1 and vPul2. Both maps contain an inversion of contralateral visual space with the upper visual field represented ventrally and the lower visual field represented dorsally. vPul1 and vPul2 border each other at the vertical meridian and share a representation of foveal space with iso-eccentricity lines extending across areal borders. Additional, coarse representations of contralateral visual space were identified within ventral medial and dorsal lateral portions of the pulvinar. Connectivity analyses on functional and diffusion imaging data revealed a strong distinction in thalamocortical connectivity between the dorsal and ventral pulvinar. The two maps in the ventral pulvinar were most strongly connected with early and extrastriate visual areas. Given the shared eccentricity representation and similarity in cortical connectivity, we propose that these two maps form a distinct visual field map cluster and perform related functions. The dorsal pulvinar was most strongly connected with parietal and frontal areas. The functional and anatomical organization observed within the human pulvinar was similar to the organization of the pulvinar in other primate species. SIGNIFICANCE STATEMENT The anatomical organization and basic response properties of the visual pulvinar have been extensively studied in nonhuman primates. Yet, relatively little is known about the functional and anatomical organization of the human pulvinar. Using neuroimaging, we found multiple representations of visual space within the ventral human pulvinar and extensive topographically organized connectivity with visual cortex. This organization is similar to other nonhuman primates and provides additional support that the general organization of the pulvinar is consistent across the primate phylogenetic tree. These results suggest that the human pulvinar, like other primates, is well positioned to regulate corticocortical communication. PMID:26156987
Top-down beta oscillatory signaling conveys behavioral context in early visual cortex.
Richter, Craig G; Coppola, Richard; Bressler, Steven L
2018-05-03
Top-down modulation of sensory processing is a critical neural mechanism subserving numerous important cognitive roles, one of which may be to inform lower-order sensory systems of the current 'task at hand' by conveying behavioral context to these systems. Accumulating evidence indicates that top-down cortical influences are carried by directed interareal synchronization of oscillatory neuronal populations, with recent results pointing to beta-frequency oscillations as particularly important for top-down processing. However, it remains to be determined if top-down beta-frequency oscillations indeed convey behavioral context. We measured spectral Granger Causality (sGC) using local field potentials recorded from microelectrodes chronically implanted in visual areas V1/V2, V4, and TEO of two rhesus macaque monkeys, and applied multivariate pattern analysis to the spatial patterns of top-down sGC. We decoded behavioral context by discriminating patterns of top-down (V4/TEO-to-V1/V2) beta-peak sGC for two different task rules governing correct responses to identical visual stimuli. The results indicate that top-down directed influences are carried to visual cortex by beta oscillations, and differentiate task demands even before visual stimulus processing. They suggest that top-down beta-frequency oscillatory processes coordinate processing of sensory information by conveying global knowledge states to early levels of the sensory cortical hierarchy independently of bottom-up stimulus-driven processing.
Gamberini, Michela; Bakola, Sophia; Passarelli, Lauretta; Burman, Kathleen J; Rosa, Marcello G P; Fattori, Patrizia; Galletti, Claudio
2016-04-01
The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.
Weinstein, Joel M; Gilmore, Rick O; Shaikh, Sumera M; Kunselman, Allen R; Trescher, William V; Tashima, Lauren M; Boltz, Marianne E; McAuliffe, Matthew B; Cheung, Albert; Fesi, Jeremy D
2012-07-01
We sought to characterize visual motion processing in children with cerebral visual impairment (CVI) due to periventricular white matter damage caused by either hydrocephalus (eight individuals) or periventricular leukomalacia (PVL) associated with prematurity (11 individuals). Using steady-state visually evoked potentials (ssVEP), we measured cortical activity related to motion processing for two distinct types of visual stimuli: 'local' motion patterns thought to activate mainly primary visual cortex (V1), and 'global' or coherent patterns thought to activate higher cortical visual association areas (V3, V5, etc.). We studied three groups of children: (1) 19 children with CVI (mean age 9y 6mo [SD 3y 8mo]; 9 male; 10 female); (2) 40 neurologically and visually normal comparison children (mean age 9y 6mo [SD 3y 1mo]; 18 male; 22 female); and (3) because strabismus and amblyopia are common in children with CVI, a group of 41 children without neurological problems who had visual deficits due to amblyopia and/or strabismus (mean age 7y 8mo [SD 2y 8mo]; 28 male; 13 female). We found that the processing of global as opposed to local motion was preferentially impaired in individuals with CVI, especially for slower target velocities (p=0.028). Motion processing is impaired in children with CVI. ssVEP may provide useful and objective information about the development of higher visual function in children at risk for CVI. © The Authors. Journal compilation © Mac Keith Press 2011.
Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren
2012-10-01
Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept. Copyright © 2011 Wiley Periodicals, Inc.
Supèr, Hans; Spekreijse, Henk; Lamme, Victor A F
2003-06-26
To look at an object its position in the visual scene has to be localized and subsequently appropriate oculo-motor behavior needs to be initiated. This kind of behavior is largely controlled by the cortical executive system, such as the frontal eye field. In this report, we analyzed neural activity in the visual cortex in relation to oculo-motor behavior. We show that in a figure-ground detection task, the strength of late modulated activity in the primary visual cortex correlates with the saccade latency. We propose that this may indicate that the variability of reaction times in the detection of a visual stimulus is reflected in low-level visual areas as well as in high-level areas.
Synaptic Correlates of Low-Level Perception in V1.
Gerard-Mercier, Florian; Carelli, Pedro V; Pananceau, Marc; Troncoso, Xoana G; Frégnac, Yves
2016-04-06
The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed to require attention-related processes, such as top-down feedback from higher cortical areas. Using intracellular techniques in the anesthetized cat and novel analysis methods, we reveal unexpected structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. These structural-functional biases provide a substrate, within V1, for contour detection and, more unexpectedly, global motion flow sensitivity at saccadic speed, even in the absence of attentional processes. We argue for the concept of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy changes with retinal flow statistics, and more generally for a renewed focus on intracortical computation. Copyright © 2016 the authors 0270-6474/16/363925-18$15.00/0.
Nurminen, Lauri; Angelucci, Alessandra
2014-01-01
The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770
Remapping of border ownership in the visual cortex.
O'Herron, Philip; von der Heydt, Rüdiger
2013-01-30
We see objects as having continuity although the retinal image changes frequently. How such continuity is achieved is hard to understand, because neurons in the visual cortex have small receptive fields that are fixed on the retina, which means that a different set of neurons is activated every time the eyes move. Neurons in areas V1 and V2 of the visual cortex signal the local features that are currently in their receptive fields and do not show "remapping" when the image moves. However, subsets of neurons in these areas also carry information about global aspects, such as figure-ground organization. Here we performed experiments to find out whether figure-ground organization is remapped. We recorded single neurons in macaque V1 and V2 in which figure-ground organization is represented by assignment of contours to regions (border ownership). We found previously that border-ownership signals persist when a figure edge is switched to an ambiguous edge by removing the context. We now used this paradigm to see whether border ownership transfers when the ambiguous edge is moved across the retina. In the new position, the edge activated a different set of neurons at a different location in cortex. We found that border ownership was transferred to the newly activated neurons. The transfer occurred whether the edge was moved by a saccade or by moving the visual display. Thus, although the contours are coded in retinal coordinates, their assignment to objects is maintained across movements of the retinal image.
Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G
2014-10-15
Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal "predictability" of the moving pattern. Such stimulus predictability, and its relationship to models of predictive coding, has found considerable support in recent years in accounting for a number of other perceptual and neural phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.
Topographic Organization for Delayed Saccades in Human Posterior Parietal Cortex
Schluppeck, Denis; Glimcher, Paul; Heeger, David J.
2008-01-01
Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contralateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC. PMID:15817644
Speed of feedforward and recurrent processing in multilayer networks of integrate-and-fire neurons.
Panzeri, S; Rolls, E T; Battaglia, F; Lavis, R
2001-11-01
The speed of processing in the visual cortical areas can be fast, with for example the latency of neuronal responses increasing by only approximately 10 ms per area in the ventral visual system sequence V1 to V2 to V4 to inferior temporal visual cortex. This has led to the suggestion that rapid visual processing can only be based on the feedforward connections between cortical areas. To test this idea, we investigated the dynamics of information retrieval in multiple layer networks using a four-stage feedforward network modelled with continuous dynamics with integrate-and-fire neurons, and associative synaptic connections between stages with a synaptic time constant of 10 ms. Through the implementation of continuous dynamics, we found latency differences in information retrieval of only 5 ms per layer when local excitation was absent and processing was purely feedforward. However, information latency differences increased significantly when non-associative local excitation was included. We also found that local recurrent excitation through associatively modified synapses can contribute significantly to processing in as little as 15 ms per layer, including the feedforward and local feedback processing. Moreover, and in contrast to purely feed-forward processing, the contribution of local recurrent feedback was useful and approximately this rapid even when retrieval was made difficult by noise. These findings suggest that cortical information processing can benefit from recurrent circuits when the allowed processing time per cortical area is at least 15 ms long.
Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys.
Baldwin, Mary K L; Kaskan, Peter M; Zhang, Bin; Chino, Yuzo M; Kaas, Jon H
2012-02-15
Connections of primary (V1) and secondary (V2) visual areas were revealed in macaque monkeys ranging in age from 2 to 16 weeks by injecting small amounts of cholera toxin subunit B (CTB). Cortex was flattened and cut parallel to the surface to reveal injection sites, patterns of labeled cells, and patterns of cytochrome oxidase (CO) staining. Projections from the lateral geniculate nucleus and pulvinar to V1 were present at 4 weeks of age, as were pulvinar projections to thin and thick CO stripes in V2. Injections into V1 in 4- and 8-week-old monkeys labeled neurons in V2, V3, middle temporal area (MT), and dorsolateral area (DL)/V4. Within V1 and V2, labeled neurons were densely distributed around the injection sites, but formed patches at distances away from injection sites. Injections into V2 labeled neurons in V1, V3, DL/V4, and MT of monkeys 2-, 4-, and 8-weeks of age. Injections in thin stripes of V2 preferentially labeled neurons in other V2 thin stripes and neurons in the CO blob regions of V1. A likely thick stripe injection in V2 at 4 weeks of age labeled neurons around blobs. Most labeled neurons in V1 were in superficial cortical layers after V2 injections, and in deep layers of other areas. Although these features of adult V1 and V2 connectivity were in place as early as 2 postnatal weeks, labeled cells in V1 and V2 became more restricted to preferred CO compartments after 2 weeks of age. Copyright © 2011 Wiley-Liss, Inc.
Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.
2015-01-01
During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839
Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.
Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D
2013-10-01
Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.
Interconnections of the visual cortex with the frontal cortex in the rat.
Sukekawa, K
1988-01-01
Horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and autoradiography of tritiated leucine were used to trace the cortical origins and terminations of the connections between the visual and frontal cortices in the rat. Ipsilateral reciprocal connections between each subdivision of the visual cortex (areas 17, 18a and 18b) and the posterior half of the medial part of the frontal agranular cortex (PAGm), and their laminar organizations were confirmed. These connections did not appear to have a significant topographic organization. Although in areas 17 and 18b terminals or cells of origin in this fiber system were confined to the anterior half of these cortices, in area 18a they were observed spanning the anteroposterior extent of this cortex, with in part a column like organization. No evidence could be found for the participation of both the posterior parts of areas 17 and 18b and the anterior half of this frontal agranular cortex in these connections. Fibers from each subdivision of the visual cortex to the PAGm terminated predominantly in the lower part of layer I and in layer II. In area 17, this occipito-frontal projection was found to arise from the scattered pyramidal cells in layer V and more prominently from pyramidal cells in layer V of area 17/18a border. In area 18a, the fibers projecting to the PAGm originated mainly from pyramidal cells primarily in layer V and to a lesser extent in layers II, III and VI. Whereas in area 18b, this projection was found to arise mainly from pyramidal cells in layers II and III, to a lesser extent in layers V and VI, and less frequent in layer IV. On the other hand, the reciprocal projection to the visual cortex was found to originate largely from pyramidal cells in layers III and V of the PAGm. In areas 17 and 18a, these fibers terminated in layers I and VI, and in layers I, V and VI, respectively. Whereas in area 18b, they were distributed throughout all layers except layer II.
Horizontal tuning for faces originates in high-level Fusiform Face Area.
Goffaux, Valerie; Duecker, Felix; Hausfeld, Lars; Schiltz, Christine; Goebel, Rainer
2016-01-29
Recent work indicates that the specialization of face visual perception relies on the privileged processing of horizontal angles of facial information. This suggests that stimulus properties assumed to be fully resolved in primary visual cortex (V1; e.g., orientation) in fact determine human vision until high-level stages of processing. To address this hypothesis, the present fMRI study explored the orientation sensitivity of V1 and high-level face-specialized ventral regions such as the Occipital Face Area (OFA) and Fusiform Face Area (FFA) to different angles of face information. Participants viewed face images filtered to retain information at horizontal, vertical or oblique angles. Filtered images were viewed upright, inverted and (phase-)scrambled. FFA responded most strongly to the horizontal range of upright face information; its activation pattern reliably separated horizontal from oblique ranges, but only when faces were upright. Moreover, activation patterns induced in the right FFA and the OFA by upright and inverted faces could only be separated based on horizontal information. This indicates that the specialized processing of upright face information in the OFA and FFA essentially relies on the encoding of horizontal facial cues. This pattern was not passively inherited from V1, which was found to respond less strongly to horizontal than other orientations likely due to adaptive whitening. Moreover, we found that orientation decoding accuracy in V1 was impaired for stimuli containing no meaningful shape. By showing that primary coding in V1 is influenced by high-order stimulus structure and that high-level processing is tuned to selective ranges of primary information, the present work suggests that primary and high-level levels of the visual system interact in order to modulate the processing of certain ranges of primary information depending on their relevance with respect to the stimulus and task at hand. Copyright © 2015 Elsevier Ltd. All rights reserved.
Unravelling the development of the visual cortex: implications for plasticity and repair
Bourne, James A
2010-01-01
The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain. PMID:20722872
Eye Dominance Predicts fMRI Signals in Human Retinotopic Cortex
Mendola, Janine D.; Conner, Ian P.
2009-01-01
There have been many attempts to define eye dominance in normal subjects, but limited consensus exists, and relevant physiological data is scarce. In this study, we consider two different behavioral methods for assignment of eye dominance, and how well they predict fMRI signals evoked by monocular stimulation. Sighting eye dominance was assessed with two standard tests, the Porta Test, and a ‘hole in hand’ variation of the Miles Test. Acuity dominance was tested with a standard eye chart and with a computerized test of grating acuity. We found limited agreement between the sighting and acuity methods for assigning dominance in our individual subjects. We then compared the fMRI response generated by dominant eye stimulation to that generated by non-dominant eye, according to both methods, in 7 normal subjects. The stimulus consisted of a high contrast hemifield stimulus alternating with no stimulus in a blocked paradigm. In separate scans, we used standard techniques to label the borders of visual areas V1, V2, V3, VP, V4, V3A, and MT. These regions of interest (ROIs) were used to analyze each visual area separately. We found that percent change in fMRI BOLD signal was stronger for the dominant eye as defined by the acuity method, and this effect was significant for areas located in the ventral occipital territory (V1v, V2v, VP, V4). In contrast, assigning dominance based on sighting produced no significant interocular BOLD differences. We conclude that interocular BOLD differences in normal subjects exist, and may be predicted by acuity measures. PMID:17194544
Silvanto, Juha; Cattaneo, Zaira
2010-05-01
Cortical areas involved in sensory analysis are also believed to be involved in short-term storage of that sensory information. Here we investigated whether transcranial magnetic stimulation (TMS) can reveal the content of visual short-term memory (VSTM) by bringing this information to visual awareness. Subjects were presented with two random-dot displays (moving either to the left or to the right) and they were required to maintain one of these in VSTM. In Experiment 1, TMS was applied over the motion-selective area V5/MT+ above phosphene threshold during the maintenance phase. The reported phosphene contained motion features of the memory item, when the phosphene spatially overlapped with memory item. Specifically, phosphene motion was enhanced when the memory item moved in the same direction as the subjects' V5/MT+ baseline phosphene, whereas it was reduced when the motion direction of the memory item was incongruent with that of the baseline V5/MT+ phosphene. There was no effect on phosphene reports when there was no spatial overlap between the phosphene and the memory item. In Experiment 2, VSTM maintenance did not influence the appearance of phosphenes induced from the lateral occipital region. These interactions between VSTM maintenance and phosphene appearance demonstrate that activity in V5/MT+ reflects the motion qualities of items maintained in VSTM. Furthermore, these results also demonstrate that information in VSTM can modulate the pattern of visual activation reaching awareness, providing evidence for the view that overlapping neuronal populations are involved in conscious visual perception and VSTM. 2010. Published by Elsevier Inc.
Reyes, Laura D; Harland, Tessa; Reep, Roger L; Sherwood, Chet C; Jacobs, Bob
2016-01-01
The current study investigates neuron morphology in presumptive primary somatosensory (S1) and primary visual (V1) cortices of the Florida manatee (Trichechus manatus latirostris) as revealed by Golgi impregnation. Sirenians, including manatees, have an aquatic lifestyle, a large body size, and a relatively large lissencephalic brain. The present study examines neuron morphology in 3 cortical areas: in S1, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2) and in V1, dorsolateral cortex area 4 (DL4). Neurons exhibited a variety of morphological types, with pyramidal neurons being the most common. The large variety of neuron types present in the manatee cortex was comparable to that seen in other eutherian mammals, except for rodents and primates, where pyramid-shaped neurons predominate. A comparison between pyramidal neurons in S1 and V1 indicated relatively greater dendritic branching in S1. Across all 3 areas, the dendritic arborization pattern of pyramidal neurons was also similar to that observed previously in the afrotherian rock hyrax, cetartiodactyls, opossums, and echidnas but did not resemble the widely bifurcated dendrites seen in the large-brained African elephant. Despite adaptations for an aquatic environment, manatees did not share specific neuron types such as tritufted and star-like neurons that have been found in cetaceans. Manatees exhibit an evolutionarily primitive pattern of cortical neuron morphology shared with most other mammals and do not appear to have neuronal specializations for an aquatic niche. © 2016 S. Karger AG, Basel.
Contextual modulation of primary visual cortex by auditory signals.
Petro, L S; Paton, A T; Muckli, L
2017-02-19
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.
Contextual modulation of primary visual cortex by auditory signals
Paton, A. T.
2017-01-01
Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015
Mental Rotation Meets the Motion Aftereffect: The Role of hV5/MT+ in Visual Mental Imagery
ERIC Educational Resources Information Center
Seurinck, Ruth; de Lange, Floris P.; Achten, Erik; Vingerhoets, Guy
2011-01-01
A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects…
Matsuzaki, Naoyuki; Schwarzlose, Rebecca F.; Nishida, Masaaki; Ofen, Noa; Asano, Eishi
2015-01-01
Behavioral studies demonstrate that a face presented in the upright orientation attracts attention more rapidly than an inverted face. Saccades toward an upright face take place in 100-140 ms following presentation. The present study using electrocorticography determined whether upright face-preferential neural activation, as reflected by augmentation of high-gamma activity at 80-150 Hz, involved the lower-order visual cortex within the first 100 ms post-stimulus presentation. Sampled lower-order visual areas were verified by the induction of phosphenes upon electrical stimulation. These areas resided in the lateral-occipital, lingual, and cuneus gyri along the calcarine sulcus, roughly corresponding to V1 and V2. Measurement of high-gamma augmentation during central (circular) and peripheral (annular) checkerboard reversal pattern stimulation indicated that central-field stimuli were processed by the more polar surface whereas peripheral-field stimuli by the more anterior medial surface. Upright face stimuli, compared to inverted ones, elicited up to 23% larger augmentation of high-gamma activity in the lower-order visual regions at 40-90 ms. Upright face-preferential high-gamma augmentation was more highly correlated with high-gamma augmentation for central than peripheral stimuli. Our observations are consistent with the hypothesis that lower-order visual regions, especially those for the central field, are involved in visual cues for rapid detection of upright face stimuli. PMID:25579446
Cacciamani, Laura; Likova, Lora T
2017-05-01
The perirhinal cortex (PRC) is a medial temporal lobe structure that has been implicated in not only visual memory in the sighted, but also tactile memory in the blind (Cacciamani & Likova, 2016). It has been proposed that, in the blind, the PRC may contribute to modulation of tactile memory responses that emerge in low-level "visual" area V1 as a result of training-induced cortical reorganization (Likova, 2012, 2015). While some studies in the sighted have indicated that the PRC is indeed structurally and functionally connected to the visual cortex (Clavagnier, Falchier, & Kennedy, 2004; Peterson, Cacciamani, Barense, & Scalf, 2012), the PRC's direct modulation of V1 is unknown-particularly in those who lack the visual input that typically stimulates this region. In the present study, we tested Likova's PRC modulation hypothesis; specifically, we used fMRI to assess the PRC's Granger causal influence on V1 activation in the blind during a tactile memory task. To do so, we trained congenital and acquired blind participants on a unique memory-guided drawing technique previously shown to result in V1 reorganization towards tactile memory representations (Likova, 2012). The tasks (20s each) included: tactile exploration of raised line drawings of faces and objects, tactile memory retrieval via drawing, and a scribble motor/memory control. FMRI before and after a week of the Cognitive-Kinesthetic training on these tasks revealed a significant increase in PRC-to-V1 Granger causality from pre- to post-training during the memory drawing task, but not during the motor/memory control. This increase in causal connectivity indicates that the training strengthened the top-down modulation of visual cortex from the PRC. This is the first study to demonstrate enhanced directed functional connectivity from the PRC to the visual cortex in the blind, implicating the PRC as a potential source of the reorganization towards tactile representations that occurs in V1 in the blind brain (Likova, 2012). Copyright © 2017 Elsevier Inc. All rights reserved.
Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin
2014-08-01
An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The primary visual cortex in the neural circuit for visual orienting
NASA Astrophysics Data System (ADS)
Zhaoping, Li
The primary visual cortex (V1) is traditionally viewed as remote from influencing brain's motor outputs. However, V1 provides the most abundant cortical inputs directly to the sensory layers of superior colliculus (SC), a midbrain structure to command visual orienting such as shifting gaze and turning heads. I will show physiological, anatomical, and behavioral data suggesting that V1 transforms visual input into a saliency map to guide a class of visual orienting that is reflexive or involuntary. In particular, V1 receives a retinotopic map of visual features, such as orientation, color, and motion direction of local visual inputs; local interactions between V1 neurons perform a local-to-global computation to arrive at a saliency map that highlights conspicuous visual locations by higher V1 responses. The conspicuous location are usually, but not always, where visual input statistics changes. The population V1 outputs to SC, which is also retinotopic, enables SC to locate, by lateral inhibition between SC neurons, the most salient location as the saccadic target. Experimental tests of this hypothesis will be shown. Variations of the neural circuit for visual orienting across animal species, with more or less V1 involvement, will be discussed. Supported by the Gatsby Charitable Foundation.
Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding.
Ponce, Carlos R; Lomber, Stephen G; Livingstone, Margaret S
2017-05-10
In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive concurrent inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2|3 did not lead to consistent changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than V2|3-based pathways. We did not find any image features that predicted decoding accuracy differences between both interventions. Using the HMAX hierarchical model of visual recognition, we found that different groups of simulated "PIT" units with different input histories (lacking "V2|3" or "V4" input) allowed for comparable levels of object-decoding performance and that removing a large fraction of "PIT" activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding than cells in V2 projecting directly to PIT. SIGNIFICANCE STATEMENT Convolutional neural networks are the best models of the visual system, but most emphasize input transformations across a serial hierarchy akin to the primary "ventral stream" (V1 → V2 → V4 → IT). However, the ventral stream also comprises parallel "bypass" pathways: V1 also connects to V4, and V2 to IT. To explore the advantages of mixing long and short pathways in the macaque brain, we used cortical cooling to silence inputs to posterior IT and compared the findings with an HMAX model with parallel pathways. Copyright © 2017 the authors 0270-6474/17/375019-16$15.00/0.
Posterior Inferotemporal Cortex Cells Use Multiple Input Pathways for Shape Encoding
2017-01-01
In the macaque monkey brain, posterior inferior temporal (PIT) cortex cells contribute to visual object recognition. They receive concurrent inputs from visual areas V4, V3, and V2. We asked how these different anatomical pathways shape PIT response properties by deactivating them while monitoring PIT activity in two male macaques. We found that cooling of V4 or V2|3 did not lead to consistent changes in population excitatory drive; however, population pattern analyses showed that V4-based pathways were more important than V2|3-based pathways. We did not find any image features that predicted decoding accuracy differences between both interventions. Using the HMAX hierarchical model of visual recognition, we found that different groups of simulated “PIT” units with different input histories (lacking “V2|3” or “V4” input) allowed for comparable levels of object-decoding performance and that removing a large fraction of “PIT” activity resulted in similar drops in performance as in the cooling experiments. We conclude that distinct input pathways to PIT relay similar types of shape information, with V1-dependent V4 cells providing more quantitatively useful information for overall encoding than cells in V2 projecting directly to PIT. SIGNIFICANCE STATEMENT Convolutional neural networks are the best models of the visual system, but most emphasize input transformations across a serial hierarchy akin to the primary “ventral stream” (V1 → V2 → V4 → IT). However, the ventral stream also comprises parallel “bypass” pathways: V1 also connects to V4, and V2 to IT. To explore the advantages of mixing long and short pathways in the macaque brain, we used cortical cooling to silence inputs to posterior IT and compared the findings with an HMAX model with parallel pathways. PMID:28416597
Gilaie-Dotan, Sharon
2016-03-01
A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
VGLUT1 mRNA and protein expression in the visual system of prosimian galagos (Otolemur garnetti)
Balaram, Pooja; Hackett, Troy A; Kaas, Jon H
2011-01-01
The presynaptic storage and release of glutamate, an excitatory neurotransmitter, is modulated by a family of transport proteins known as vesicular glutamate transporters. Vesicular glutamate transporter 1 (VGLUT1) is widely distributed in the central nervous system of most mammalian and nonmammalian species, and regulates the uptake of glutamate into synaptic vesicles as well as the transport of filled glutamatergic vesicles to the terminal membrane during excitatory transmission. In rodents, VGLUT1 mRNA is primarily found in the neocortex, cerebellum, and hippocampus, and the VGLUT1 transport protein is involved in intercortical and corticothalamic projections that remain distinct from projections involving other VGLUT isoforms. With the exception of a few thalamic sensory nuclei, VGLUT1 mRNA is absent from subcortical areas and does not colocalize with other VGLUT mRNAs. VGLUT1 is similarly restricted to a few thalamic association nuclei and does not colocalize with other VGLUT proteins. However, recent work in primates has shown that VGLUT1 mRNA is also found in several subcortical nuclei as well as cortical areas, and that VGLUT1 may overlap with other VGLUT isoforms in glutamatergic projections. In order to expand current knowledge of VGLUT1 distributions in primates and gain insight on glutamatergic transmission in the visual system of primate species, we examined VGLUT1 mRNA and protein distributions in the lateral geniculate nucleus, pulvinar complex, superior colliculus, V1, V2, and the middle temporal area (MT) of prosimian galagos. We found that, similar to other studies in primates, VGLUT1 mRNA and protein are widely distributed in both subcortical and cortical areas. However, glutamatergic projections involving VGLUT1 are largely limited to intrinsic connections within subcortical and cortical areas, as well as the expected intercortical and corticothalamic projections. Additionally, VGLUT1 expression in galagos allowed us to identify laminar subdivisions of the superior colliculus, V1, V2, and MT. PMID:22912561
A unified selection signal for attention and reward in primary visual cortex.
Stănişor, Liviu; van der Togt, Chris; Pennartz, Cyriel M A; Roelfsema, Pieter R
2013-05-28
Stimuli associated with high rewards evoke stronger neuronal activity than stimuli associated with lower rewards in many brain regions. It is not well understood how these reward effects influence activity in sensory cortices that represent low-level stimulus features. Here, we investigated the effects of reward information in the primary visual cortex (area V1) of monkeys. We found that the reward value of a stimulus relative to the value of other stimuli is a good predictor of V1 activity. Relative value biases the competition between stimuli, just as has been shown for selective attention. The neuronal latency of this reward value effect in V1 was similar to the latency of attentional influences. Moreover, V1 neurons with a strong value effect also exhibited a strong attention effect, which implies that relative value and top-down attention engage overlapping, if not identical, neuronal selection mechanisms. Our findings demonstrate that the effects of reward value reach down to the earliest sensory processing levels of the cerebral cortex and imply that theories about the effects of reward coding and top-down attention on visual representations should be unified.
Effects of refractive errors on visual evoked magnetic fields.
Suzuki, Masaya; Nagae, Mizuki; Nagata, Yuko; Kumagai, Naoya; Inui, Koji; Kakigi, Ryusuke
2015-11-09
The latency and amplitude of visual evoked cortical responses are known to be affected by refractive states, suggesting that they may be used as an objective index of refractive errors. In order to establish an easy and reliable method for this purpose, we herein examined the effects of refractive errors on visual evoked magnetic fields (VEFs). Binocular VEFs following the presentation of a simple grating of 0.16 cd/m(2) in the lower visual field were recorded in 12 healthy volunteers and compared among four refractive states: 0D, +1D, +2D, and +4D, by using plus lenses. The low-luminance visual stimulus evoked a main MEG response at approximately 120 ms (M100) that reversed its polarity between the upper and lower visual field stimulations and originated from the occipital midline area. When refractive errors were induced by plus lenses, the latency of M100 increased, while its amplitude decreased with an increase in power of the lens. Differences from the control condition (+0D) were significant for all three lenses examined. The results of dipole analyses showed that evoked fields for the control (+0D) condition were explainable by one dipole in the primary visual cortex (V1), while other sources, presumably in V3 or V6, slightly contributed to shape M100 for the +2D or +4D condition. The present results showed that the latency and amplitude of M100 are both useful indicators for assessing refractive states. The contribution of neural sources other than V1 to M100 was modest under the 0D and +1D conditions. By considering the nature of the activity of M100 including its high sensitivity to a spatial frequency and lower visual field dominance, a simple low-luminance grating stimulus at an optimal spatial frequency in the lower visual field appears appropriate for obtaining data on high S/N ratios and reducing the load on subjects.
Selectivity to Translational Egomotion in Human Brain Motion Areas
Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare
2013-01-01
The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096
Alterations to global but not local motion processing in long-term ecstasy (MDMA) users.
White, Claire; Brown, John; Edwards, Mark
2014-07-01
Growing evidence indicates that the main psychoactive ingredient in the illegal drug "ecstasy" (methylendioxymethamphetamine) causes reduced activity in the serotonin and gamma-aminobutyric acid (GABA) systems in humans. On the basis of substantial serotonin input to the occipital lobe, recent research investigated visual processing in long-term users and found a larger magnitude of the tilt aftereffect, interpreted to reflect broadened orientation tuning bandwidths. Further research found higher orientation discrimination thresholds and reduced long-range interactions in the primary visual area of ecstasy users. The aim of the present research was to investigate whether serotonin-mediated V1 visual processing deficits in ecstasy users extend to motion processing mechanisms. Forty-five participants (21 controls, 24 drug users) completed two psychophysical studies: A direction discrimination study directly measured local motion processing in V1, while a motion coherence task tested global motion processing in area V5/MT. "Primary" ecstasy users (n = 18), those without substantial polydrug use, had significantly lower global motion thresholds than controls [p = 0.027, Cohen's d = 0.78 (large)], indicating increased sensitivity to global motion stimuli, but no difference in local motion processing (p = 0.365). These results extend on previous research investigating the long-term effects of illicit drugs on visual processing. Two possible explanations are explored: defuse attentional processes may be facilitating spatial pooling of motion signals in users. Alternatively, it may be that a GABA-mediated disruption to V5/MT processing is reducing spatial suppression and therefore improving global motion perception in ecstasy users.
Corticocortical feedback increases the spatial extent of normalization.
Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T
2014-01-01
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.
Corticocortical feedback increases the spatial extent of normalization
Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.
2014-01-01
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596
Masking interrupts figure-ground signals in V1.
Lamme, Victor A F; Zipser, Karl; Spekreijse, Henk
2002-10-01
In a backward masking paradigm, a target stimulus is rapidly (<100 msec) followed by a second stimulus. This typically results in a dramatic decrease in the visibility of the target stimulus. It has been shown that masking reduces responses in V1. It is not known, however, which process in V1 is affected by the mask. In the past, we have shown that in V1, modulations of neural activity that are specifically related to figure-ground segregation can be recorded. Here, we recorded from awake macaque monkeys, engaged in a task where they had to detect figures from background in a pattern backward masking paradigm. We show that the V1 figure-ground signals are selectively and fully suppressed at target-mask intervals that psychophysically result in the target being invisible. Initial response transients, signalling the features that make up the scene, are not affected. As figure-ground modulations depend on feedback from extrastriate areas, these results suggest that masking selectively interrupts the recurrent interactions between V1 and higher visual areas.
Interpersonal touch suppresses visual processing of aversive stimuli
Kawamichi, Hiroaki; Kitada, Ryo; Yoshihara, Kazufumi; Takahashi, Haruka K.; Sadato, Norihiro
2015-01-01
Social contact is essential for survival in human society. A previous study demonstrated that interpersonal contact alleviates pain-related distress by suppressing the activity of its underlying neural network. One explanation for this is that attention is shifted from the cause of distress to interpersonal contact. To test this hypothesis, we conducted a functional MRI (fMRI) study wherein eight pairs of close female friends rated the aversiveness of aversive and non-aversive visual stimuli under two conditions: joining hands either with a rubber model (rubber-hand condition) or with a close friend (human-hand condition). Subsequently, participants rated the overall comfortableness of each condition. The rating result after fMRI indicated that participants experienced greater comfortableness during the human-hand compared to the rubber-hand condition, whereas aversiveness ratings during fMRI were comparable across conditions. The fMRI results showed that the two conditions commonly produced aversive-related activation in both sides of the visual cortex (including V1, V2, and V5). An interaction between aversiveness and hand type showed rubber-hand-specific activation for (aversive > non-aversive) in other visual areas (including V1, V2, V3, and V4v). The effect of interpersonal contact on the processing of aversive stimuli was negatively correlated with the increment of attentional focus to aversiveness measured by a pain-catastrophizing scale. These results suggest that interpersonal touch suppresses the processing of aversive visual stimuli in the occipital cortex. This effect covaried with aversiveness-insensitivity, such that aversive-insensitive individuals might require a lesser degree of attentional capture to aversive-stimulus processing. As joining hands did not influence the subjective ratings of aversiveness, interpersonal touch may operate by redirecting excessive attention away from aversive characteristics of the stimuli. PMID:25904856
The impact on midlevel vision of statistically optimal divisive normalization in V1.
Coen-Cagli, Ruben; Schwartz, Odelia
2013-07-15
The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality.
Model-based analysis of pattern motion processing in mouse primary visual cortex
Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.
2015-01-01
Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738
Visual Field Map Clusters in Macaque Extrastriate Visual Cortex
Kolster, Hauke; Mandeville, Joseph B.; Arsenault, John T.; Ekstrom, Leeland B.; Wald, Lawrence L.; Vanduffel, Wim
2009-01-01
The macaque visual cortex contains more than 30 different functional visual areas, yet surprisingly little is known about the underlying organizational principles that structure its components into a complete ‘visual’ unit. A recent model of visual cortical organization in humans suggests that visual field maps are organized as clusters. Clusters minimize axonal connections between individual field maps that represent common visual percepts, with different clusters thought to carry out different functions. Experimental support for this hypothesis, however, is lacking in macaques, leaving open the question of whether it is unique to humans or a more general model for primate vision. Here we show, using high-resolution BOLD fMRI data in the awake monkey at 7 Tesla, that area MT/V5 and its neighbors are organized as a cluster with a common foveal representation and a circular eccentricity map. This novel view on the functional topography of area MT/V5 and satellites indicates that field map clusters are evolutionarily preserved and may be a fundamental organizational principle of the old world primate visual cortex. PMID:19474330
Development of visual cortical function in infant macaques: A BOLD fMRI study
Meeson, Alan; Munk, Matthias H. J.; Kourtzi, Zoe; Movshon, J. Anthony; Logothetis, Nikos K.; Kiorpes, Lynne
2017-01-01
Functional brain development is not well understood. In the visual system, neurophysiological studies in nonhuman primates show quite mature neuronal properties near birth although visual function is itself quite immature and continues to develop over many months or years after birth. Our goal was to assess the relative development of two main visual processing streams, dorsal and ventral, using BOLD fMRI in an attempt to understand the global mechanisms that support the maturation of visual behavior. Seven infant macaque monkeys (Macaca mulatta) were repeatedly scanned, while anesthetized, over an age range of 102 to 1431 days. Large rotating checkerboard stimuli induced BOLD activation in visual cortices at early ages. Additionally we used static and dynamic Glass pattern stimuli to probe BOLD responses in primary visual cortex and two extrastriate areas: V4 and MT-V5. The resulting activations were analyzed with standard GLM and multivoxel pattern analysis (MVPA) approaches. We analyzed three contrasts: Glass pattern present/absent, static/dynamic Glass pattern presentation, and structured/random Glass pattern form. For both GLM and MVPA approaches, robust coherent BOLD activation appeared relatively late in comparison to the maturation of known neuronal properties and the development of behavioral sensitivity to Glass patterns. Robust differential activity to Glass pattern present/absent and dynamic/static stimulus presentation appeared first in V1, followed by V4 and MT-V5 at older ages; there was no reliable distinction between the two extrastriate areas. A similar pattern of results was obtained with the two analysis methods, although MVPA analysis showed reliable differential responses emerging at later ages than GLM. Although BOLD responses to large visual stimuli are detectable, our results with more refined stimuli indicate that global BOLD activity changes as behavioral performance matures. This reflects an hierarchical development of the visual pathways. Since fMRI BOLD reflects neural activity on a population level, our results indicate that, although individual neurons might be adult-like, a longer maturation process takes place on a population level. PMID:29145469
Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion
Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric
2018-01-01
The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355
Predictive Feedback Can Account for Biphasic Responses in the Lateral Geniculate Nucleus
Jehee, Janneke F. M.; Ballard, Dana H.
2009-01-01
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain. PMID:19412529
Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics
Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun
2013-01-01
When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304
Williams, Rebecca J; Reutens, David C; Hocking, Julia
2015-11-01
Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.
Neural codes of seeing architectural styles
Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.
2017-01-01
Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people’s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture. PMID:28071765
Neural codes of seeing architectural styles.
Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B
2017-01-10
Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.
Distinct Effects of Trial-Driven and Task Set-Related Control in Primary Visual Cortex
Vaden, Ryan J.; Visscher, Kristina M.
2015-01-01
Task sets are task-specific configurations of cognitive processes that facilitate task-appropriate reactions to stimuli. While it is established that the trial-by-trial deployment of visual attention to expected stimuli influences neural responses in primary visual cortex (V1) in a retinotopically specific manner, it is not clear whether the mechanisms that help maintain a task set over many trials also operate with similar retinotopic specificity. Here, we address this question by using BOLD fMRI to characterize how portions of V1 that are specialized for different eccentricities respond during distinct components of an attention-demanding discrimination task: cue-driven preparation for a trial, trial-driven processing, task-initiation at the beginning of a block of trials, and task-maintenance throughout a block of trials. Tasks required either unimodal attention to an auditory or a visual stimulus or selective intermodal attention to the visual or auditory component of simultaneously presented visual and auditory stimuli. We found that while the retinotopic patterns of trial-driven and cue-driven activity depended on the attended stimulus, the retinotopic patterns of task-initiation and task-maintenance activity did not. Further, only the retinotopic patterns of trial-driven activity were found to depend on the presence of intermodal distraction. Participants who performed well on the intermodal selective attention tasks showed strong task-specific modulations of both trial-driven and task-maintenance activity. Importantly, task-related modulations of trial-driven and task-maintenance activity were in opposite directions. Together, these results confirm that there are (at least) two different processes for top-down control of V1: One, working trial-by-trial, differently modulates activity across different eccentricity sectors—portions of V1 corresponding to different visual eccentricities. The second process works across longer epochs of task performance, and does not differ among eccentricity sectors. These results are discussed in the context of previous literature examining top-down control of visual cortical areas. PMID:26163806
A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Raudies, Florian; Neumann, Heiko
2010-03-01
How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals. Copyright 2009 Elsevier Ltd. All rights reserved.
Peigneux, P; Salmon, E; van der Linden, M; Garraux, G; Aerts, J; Delfiore, G; Degueldre, C; Luxen, A; Orban, G; Franck, G
2000-06-01
Humans, like numerous other species, strongly rely on the observation of gestures of other individuals in their everyday life. It is hypothesized that the visual processing of human gestures is sustained by a specific functional architecture, even at an early prelexical cognitive stage, different from that required for the processing of other visual entities. In the present PET study, the neural basis of visual gesture analysis was investigated with functional neuroimaging of brain activity during naming and orientation tasks performed on pictures of either static gestures (upper-limb postures) or tridimensional objects. To prevent automatic object-related cerebral activation during the visual processing of postures, only intransitive postures were selected, i. e., symbolic or meaningless postures which do not imply the handling of objects. Conversely, only intransitive objects which cannot be handled were selected to prevent gesture-related activation during their visual processing. Results clearly demonstrate a significant functional segregation between the processing of static intransitive postures and the processing of intransitive tridimensional objects. Visual processing of objects elicited mainly occipital and fusiform gyrus activity, while visual processing of postures strongly activated the lateral occipitotemporal junction, encroaching upon area MT/V5, involved in motion analysis. These findings suggest that the lateral occipitotemporal junction, working in association with area MT/V5, plays a prominent role in the high-level perceptual analysis of gesture, namely the construction of its visual representation, available for subsequent recognition or imitation. Copyright 2000 Academic Press.
Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning
Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka
2012-01-01
Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849
Human blindsight is mediated by an intact geniculo-extrastriate pathway
Ajina, Sara; Pestilli, Franco; Rokem, Ariel; Kennard, Christopher; Bridge, Holly
2015-01-01
Although damage to the primary visual cortex (V1) causes hemianopia, many patients retain some residual vision; known as blindsight. We show that blindsight may be facilitated by an intact white-matter pathway between the lateral geniculate nucleus and motion area hMT+. Visual psychophysics, diffusion-weighted magnetic resonance imaging and fibre tractography were applied in 17 patients with V1 damage acquired during adulthood and 9 age-matched controls. Individuals with V1 damage were subdivided into blindsight positive (preserved residual vision) and negative (no residual vision) according to psychophysical performance. All blindsight positive individuals showed intact geniculo-hMT+ pathways, while this pathway was significantly impaired or not measurable in blindsight negative individuals. Two white matter pathways previously implicated in blindsight: (i) superior colliculus to hMT+ and (ii) between hMT+ in each hemisphere were not consistently present in blindsight positive cases. Understanding the visual pathways crucial for residual vision may direct future rehabilitation strategies for hemianopia patients. DOI: http://dx.doi.org/10.7554/eLife.08935.001 PMID:26485034
Color-Space-Based Visual-MIMO for V2X Communication †
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-01-01
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603
Color-Space-Based Visual-MIMO for V2X Communication.
Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo
2016-04-23
In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.
Tuleasca, Constantin; Witjas, Tatiana; Van de Ville, Dimitri; Najdenovska, Elena; Verger, Antoine; Girard, Nadine; Champoudry, Jerome; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Guedj, Eric; Régis, Jean
2018-03-01
Drug-resistant essential tremor (ET) can benefit from open standard stereotactic procedures, such as deep-brain stimulation or radiofrequency thalamotomy. Non-surgical candidates can be offered either high-focused ultrasound (HIFU) or radiosurgery (RS). All procedures aim to target the same thalamic site, the ventro-intermediate nucleus (e.g., Vim). The mechanisms by which tremor stops after Vim RS or HIFU remain unknown. We used voxel-based morphometry (VBM) on pretherapeutic neuroimaging data and assessed which anatomical site would best correlate with tremor arrest 1 year after Vim RS. Fifty-two patients (30 male, 22 female; mean age 71.6 years, range 49-82) with right-sided ET benefited from left unilateral Vim RS in Marseille, France. Targeting was performed in a uniform manner, using 130 Gy and a single 4-mm collimator. Neurological (pretherapeutic and 1 year after) and neuroimaging (baseline) assessments were completed. Tremor score on the treated hand (TSTH) at 1 year after Vim RS was included in a statistical parametric mapping analysis of variance (ANOVA) model as a continuous variable with pretherapeutic neuroimaging data. Pretherapeutic gray matter density (GMD) was further correlated with TSTH improvement. No a priori hypothesis was used in the statistical model. The only statistically significant region was right Brodmann area (BA) 18 (visual association area V2, p = 0.05, cluster size K c = 71). Higher baseline GMD correlated with better TSTH improvement at 1 year after Vim RS (Spearman's rank correlation coefficient = 0.002). Routine baseline structural neuroimaging predicts TSTH improvement 1 year after Vim RS. The relevant anatomical area is the right visual association cortex (BA 18, V2). The question whether visual areas should be included in the targeting remains open.
Lu, Kun-Han; Hung, Shao-Chin; Wen, Haiguang; Marussich, Lauren; Liu, Zhongming
2016-01-01
Complex, sustained, dynamic, and naturalistic visual stimulation can evoke distributed brain activities that are highly reproducible within and across individuals. However, the precise origins of such reproducible responses remain incompletely understood. Here, we employed concurrent functional magnetic resonance imaging (fMRI) and eye tracking to investigate the experimental and behavioral factors that influence fMRI activity and its intra- and inter-subject reproducibility during repeated movie stimuli. We found that widely distributed and highly reproducible fMRI responses were attributed primarily to the high-level natural content in the movie. In the absence of such natural content, low-level visual features alone in a spatiotemporally scrambled control stimulus evoked significantly reduced degree and extent of reproducible responses, which were mostly confined to the primary visual cortex (V1). We also found that the varying gaze behavior affected the cortical response at the peripheral part of V1 and in the oculomotor network, with minor effects on the response reproducibility over the extrastriate visual areas. Lastly, scene transitions in the movie stimulus due to film editing partly caused the reproducible fMRI responses at widespread cortical areas, especially along the ventral visual pathway. Therefore, the naturalistic nature of a movie stimulus is necessary for driving highly reliable visual activations. In a movie-stimulation paradigm, scene transitions and individuals’ gaze behavior should be taken as potential confounding factors in order to properly interpret cortical activity that supports natural vision. PMID:27564573
Cacciamani, Laura; Likova, Lora T.
2017-01-01
The perirhinal cortex (PRC) is a medial temporal lobe structure that has been implicated in not only visual memory in the sighted, but also tactile memory in the blind (Cacciamani & Likova, 2016). It has been proposed that, in the blind, the PRC may contribute to modulation of tactile memory responses that emerge in low-level “visual” area V1 as a result of training-induced cortical reorganization (Likova, 2012; 2015). While some studies in the sighted have indicated that the PRC is indeed structurally and functionally connected to the visual cortex (Clavagnier et al., 2004; Peterson et al., 2012), the PRC’s direct modulation of V1 is unknown—particularly in those who lack the visual input that typically stimulates this region. In the present study, we tested Likova’s PRC modulation hypothesis; specifically, we used fMRI to assess the PRC’s Granger causal influence on V1 activation in the blind during a tactile memory task. To do so, we trained congenital and acquired blind participants on a unique memory-guided drawing technique previously shown to result in V1 reorganization towards tactile memory representations (Likova, 2012). The tasks (20s each) included: tactile exploration of raised line drawings of faces and objects, tactile memory retrieval via drawing, and a scribble motor/memory control. FMRI before and after a week of the Cognitive-Kinesthetic training on these tasks revealed a significant increase in PRC-to-V1 Granger causality from pre- to post-training during the memory drawing task, but not during the motor/memory control. This increase in causal connectivity indicates that the training strengthened the top-down modulation of visual cortex from the PRC. This is the first study to demonstrate enhanced directed functional connectivity from the PRC to the visual cortex in the blind, implicating the PRC as a potential source of the reorganization towards tactile representations that occurs in V1 in the blind brain (Likova, 2012). PMID:28347878
Alfred Walter Campbell and the visual functions of the occipital cortex.
Macmillan, Malcolm
2014-07-01
In his pioneering cytoarchitectonic studies of the human brain, Alfred Walter Campbell identified two structurally different areas in the occipital lobes and assigned two different kinds of visual functions to them. The first area, the visuosensory, was essentially on the mesial surface of the calcarine fissure. It was the terminus of nervous impulses generated in the retina and was where simple visual sensations arose. The second area, the visuopsychic, which surrounded or invested the first, was where sensations were interpreted and elaborated into visual perceptions. I argue that Campbell's distinction between the two areas was the starting point for the eventual differentiation of areas V1-V5. After a brief outline of Campbell's early life and education in Australia and of his Scottish medical education and early work as a pathologist at the Lancashire County Lunatic Asylum at Rainhill near Liverpool, I summarise his work on the human brain. In describing the structures he identified in the occipital lobes, I analyse the similarities and differences between them and the related structures identified by Joseph Shaw Bolton. I conclude by proposing some reasons for how that work came to be overshadowed by the later studies of Brodmann and for the more general lack of recognition given Campbell and his work. Those reasons include the effect of the controversies precipitated by Campbell's alliance with Charles Sherrington over the functions of the sensory and motor cortices. Copyright © 2012 Elsevier Ltd. All rights reserved.
Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.
Pigarev, Ivan N; Levichkina, Ekaterina V
2016-01-01
Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.
A quantitative theory of gamma synchronization in macaque V1.
Lowet, Eric; Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter
2017-08-31
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other's phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.
A quantitative theory of gamma synchronization in macaque V1
Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter
2017-01-01
Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. PMID:28857743
Learning a New Selection Rule in Visual and Frontal Cortex.
van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R
2016-08-01
How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.
Janssens, Thomas; Orban, Guy A.
2014-01-01
The retinotopic organization of macaque occipitotemporal cortex rostral to area V4 and caudorostral to the recently described middle temporal (MT) cluster of the monkey (Kolster et al., 2009) is not well established. The proposed number of areas within this region varies from one to four, underscoring the ambiguity concerning the functional organization in this region of extrastriate cortex. We used phase-encoded retinotopic functional MRI mapping methods to reveal the functional topography of this cortical domain. Polar-angle maps showed one complete hemifield representation bordering area V4 anteriorly, split into dorsal and ventral counterparts corresponding to the lower and upper visual field quadrants, respectively. The location of this hemifield representation corresponds to area V4A. More rostroventrally, we identified three other complete hemifield representations. Two of these correspond to the dorsal and the ventral posterior inferotemporal areas (PITd and PITv, respectively) as identified in the Felleman and Van Essen (1991) scheme. The third representation has been tentatively named dorsal occipitotemporal area (OTd). Areas V4A, PITd, PITv, and OTd share a central visual field representation, similar to the areas constituting the MT cluster. Furthermore, they vary widely in size and represent the complete contralateral visual field. Functionally, these four areas show little motion sensitivity, unlike those of the MT cluster, and two of them, OTd and PITd, displayed pronounced two-dimensional shape sensitivity. In general, these results suggest that retinotopically organized tissue extends farther into rostral occipitotemporal cortex of the monkey than generally assumed. PMID:25080580
The impact on midlevel vision of statistically optimal divisive normalization in V1
Coen-Cagli, Ruben; Schwartz, Odelia
2013-01-01
The first two areas of the primate visual cortex (V1, V2) provide a paradigmatic example of hierarchical computation in the brain. However, neither the functional properties of V2 nor the interactions between the two areas are well understood. One key aspect is that the statistics of the inputs received by V2 depend on the nonlinear response properties of V1. Here, we focused on divisive normalization, a canonical nonlinear computation that is observed in many neural areas and modalities. We simulated V1 responses with (and without) different forms of surround normalization derived from statistical models of natural scenes, including canonical normalization and a statistically optimal extension that accounted for image nonhomogeneities. The statistics of the V1 population responses differed markedly across models. We then addressed how V2 receptive fields pool the responses of V1 model units with different tuning. We assumed this is achieved by learning without supervision a linear representation that removes correlations, which could be accomplished with principal component analysis. This approach revealed V2-like feature selectivity when we used the optimal normalization and, to a lesser extent, the canonical one but not in the absence of both. We compared the resulting two-stage models on two perceptual tasks; while models encompassing V1 surround normalization performed better at object recognition, only statistically optimal normalization provided systematic advantages in a task more closely matched to midlevel vision, namely figure/ground judgment. Our results suggest that experiments probing midlevel areas might benefit from using stimuli designed to engage the computations that characterize V1 optimality. PMID:23857950
Schwartz, Sophie; Vuilleumier, Patrik; Hutton, Chloe; Maravita, Angelo; Dolan, Raymond J; Driver, Jon
2005-06-01
Perceptual suppression of distractors may depend on both endogenous and exogenous factors, such as attentional load of the current task and sensory competition among simultaneous stimuli, respectively. We used functional magnetic resonance imaging (fMRI) to compare these two types of attentional effects and examine how they may interact in the human brain. We varied the attentional load of a visual monitoring task performed on a rapid stream at central fixation without altering the central stimuli themselves, while measuring the impact on fMRI responses to task-irrelevant peripheral checkerboards presented either unilaterally or bilaterally. Activations in visual cortex for irrelevant peripheral stimulation decreased with increasing attentional load at fixation. This relative decrease was present even in V1, but became larger for successive visual areas through to V4. Decreases in activation for contralateral peripheral checkerboards due to higher central load were more pronounced within retinotopic cortex corresponding to 'inner' peripheral locations relatively near the central targets than for more eccentric 'outer' locations, demonstrating a predominant suppression of nearby surround rather than strict 'tunnel vision' during higher task load at central fixation. Contralateral activations for peripheral stimulation in one hemifield were reduced by competition with concurrent stimulation in the other hemifield only in inferior parietal cortex, not in retinotopic areas of occipital visual cortex. In addition, central attentional load interacted with competition due to bilateral versus unilateral peripheral stimuli specifically in posterior parietal and fusiform regions. These results reveal that task-dependent attentional load, and interhemifield stimulus-competition, can produce distinct influences on the neural responses to peripheral visual stimuli within the human visual system. These distinct mechanisms in selective visual processing may be integrated within posterior parietal areas, rather than earlier occipital cortex.
Enhanced attentional gain as a mechanism for generalized perceptual learning in human visual cortex.
Byers, Anna; Serences, John T
2014-09-01
Learning to better discriminate a specific visual feature (i.e., a specific orientation in a specific region of space) has been associated with plasticity in early visual areas (sensory modulation) and with improvements in the transmission of sensory information from early visual areas to downstream sensorimotor and decision regions (enhanced readout). However, in many real-world scenarios that require perceptual expertise, observers need to efficiently process numerous exemplars from a broad stimulus class as opposed to just a single stimulus feature. Some previous data suggest that perceptual learning leads to highly specific neural modulations that support the discrimination of specific trained features. However, the extent to which perceptual learning acts to improve the discriminability of a broad class of stimuli via the modulation of sensory responses in human visual cortex remains largely unknown. Here, we used functional MRI and a multivariate analysis method to reconstruct orientation-selective response profiles based on activation patterns in the early visual cortex before and after subjects learned to discriminate small offsets in a set of grating stimuli that were rendered in one of nine possible orientations. Behavioral performance improved across 10 training sessions, and there was a training-related increase in the amplitude of orientation-selective response profiles in V1, V2, and V3 when orientation was task relevant compared with when it was task irrelevant. These results suggest that generalized perceptual learning can lead to modified responses in the early visual cortex in a manner that is suitable for supporting improved discriminability of stimuli drawn from a large set of exemplars. Copyright © 2014 the American Physiological Society.
Kinetics of visual field loss in Usher syndrome Type II.
Iannaccone, Alessandro; Kritchevsky, Stephen B; Ciccarelli, Maria Laura; Tedesco, Salvatore A; Macaluso, Claudio; Kimberling, William J; Somes, Grant W
2004-03-01
To characterize the kinetics of visual field decay in Usher syndrome type II. The area of 137 Goldmann visual fields (GVFs) delimited with the I4e and V4e targets was measured in each eye of 19 patients with an established diagnosis of Usher syndrome type II, and the average interocular GVF area for each patient at each time point was calculated. The average follow-up was 5.58 years. Symptomatic disease duration was defined as years elapsed after symptoms were first noted. The data set (n = 67 for the I4e target; n = 70 for the V4e target) was analyzed with a random coefficient mixed model to identify the best-fit model describing the decay of visual field size over time. The half-life of the residual visual field area (t(0.5)) was also calculated. The variable that best explained the decay of the GVF area was the duration of symptomatic disease. In an exponential model, the slope estimate for the natural log of the GVF area was -0.172 for the I4e target and -0.136 for the V4e target for each year of symptomatic disease. Accordingly, t(0.5) was approximately 4 years for the I4e target and 5 years for the V4e target. These estimates are very similar to those in previous studies of nonsyndromic retinitis pigmentosa (RP). This study suggests that the kinetics of GVF decline in Usher syndrome type II are, on average, very similar to other forms of RP and that, once the disease becomes symptomatic, GVF deterioration follows stereotyped kinetics, even in patients with late-onset retinal disease.
Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.
Siu, Caitlin R; Beshara, Simon P; Jones, David G; Murphy, Kathryn M
2017-06-21
Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan. SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most synapses in V1 are excitatory leaving unanswered how they change. So we studied expression of glutamatergic proteins in human V1 to determine their development. Here we report prolonged maturation of glutamatergic proteins, with five stages that map onto life-long changes in human visual perception. Thus, the apparent discrepancy between development of structure and function may be explained by life-long synaptic changes in human V1. Copyright © 2017 the authors 0270-6474/17/376031-12$15.00/0.
2012-01-01
Bakground To evaluate objectively the anatomical and functional changes of optic nerve in eyes with primary open angle glaucoma (POAG) by the joint use of optical coherence tomography (OCT) and multifocal visual evoked potentials (mfVEP). Methods 29 eyes with open angle glaucoma and visual field defects, as well as 20 eyes of 10 age-matched control normal subjects were tested. All participants underwent a complete ophthalmological examination. Moreover, Humphrey visual field test, OCT examination and recording of mfVEP were performed. Amplitude and implicit time of mfVEP, as well as RNFL thickness were measured. Differences in density components of mfVEP and in RNFL thickness among POAG eyes and control eyes were examined using Student’s t-test. Results In glaucomatous eyes the mean Retinal Response Density (RRD) was lower than normal in ring 1, 2 and 3 of mfVEP (p < 0.0001). Specifically the mean amplitude of mfVEP in POAG eyes was estimated at 34.2 ± 17.6 nV/deg2, 6.9 ± 4.8 nV/deg2 and 2.6 ± 1.6 nV/deg2 in rings 1, 2 and 3 respectively. In contrast the mean implicit time was similar to control eyes. In addition, the mean RNFL thickness in POAG eyes was estimated at 76.8 ± 26.6 μm in the superior area, 52.1 ± 16.3 μm in the temporal area, 75.9 ± 32.5 μm in the inferior area and 58.6 ± 19.4 μm in the nasal area. There was a statistically significant difference in RNFL thickness in all peripapillary areas (p < 0.0001) between POAG eyes and controls, with superior and inferior area to present the highest decrease. Conclusions Our study shows that, although Standard Automatic Perimetry is the gold standard to evaluate glaucomatous neuropathy, the joint use of mfVEP and OCT could be useful in better monitoring glaucoma progression. PMID:22856337
Dynamic representation of partially occluded objects in primate prefrontal and visual cortex
Choi, Hannah; Shea-Brown, Eric
2017-01-01
Successful recognition of partially occluded objects is presumed to involve dynamic interactions between brain areas responsible for vision and cognition, but neurophysiological evidence for the involvement of feedback signals is lacking. Here, we demonstrate that neurons in the ventrolateral prefrontal cortex (vlPFC) of monkeys performing a shape discrimination task respond more strongly to occluded than unoccluded stimuli. In contrast, neurons in visual area V4 respond more strongly to unoccluded stimuli. Analyses of V4 response dynamics reveal that many neurons exhibit two transient response peaks, the second of which emerges after vlPFC response onset and displays stronger selectivity for occluded shapes. We replicate these findings using a model of V4/vlPFC interactions in which occlusion-sensitive vlPFC neurons feed back to shape-selective V4 neurons, thereby enhancing V4 responses and selectivity to occluded shapes. These results reveal how signals from frontal and visual cortex could interact to facilitate object recognition under occlusion. PMID:28925354
Area 21a of cat visual cortex strongly modulates neuronal activities in the superior colliculus
Hashemi-Nezhad, M; Wang, C; Burke, W; Dreher, B
2003-01-01
We have examined the influence of cortico-tectal projections from one of the pattern-processing extrastriate visual cortical areas, area 21a, on the responses to visual stimuli of single neurones in the superior colliculi of adult cats. For this purpose area 21a was briefly inactivated by cooling to 10 °C using a Peltier device. Responses to visual stimuli before and during cooling as well as after rewarming ipsilateral area 21a were compared. In addition, in a subpopulation of collicular neurones we have studied the effects of reversible inactivation of ipsilateral striate cortex (area 17, area V1). When area 21a was cooled, the temperature of area 17 was kept at 36 °C and vice versa. In the majority of cases (41/65; 63 %), irrespective of the velocity response profiles of collicular neurones, inactivation of area 21a resulted in a significant decrease in magnitude of responses of neurones in the ipsilateral colliculus and only in a small proportion of cells (2/65; 3.1 %) was there a significant increase in the magnitude of responses. Inactivation of area 21a resulted in significant changes in the magnitude of responses of collicular cells located not only in the retino-recipient layers but also in the stratum griseum intermediale. In most cases, reversible inactivation of area 17 resulted in a greater reduction in the magnitude of responses of collicular cells than inactivation of area 21a. Reversible inactivation of area 21a also affected the direction selectivity indices and length tuning of most collicular cells tested. PMID:12794178
Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST.
Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B Suresh; Treue, Stefan
2017-01-01
Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. © The Author 2016. Published by Oxford University Press.
Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST
Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B. Suresh; Treue, Stefan
2017-01-01
Abstract Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. PMID:28365773
Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque
Kaneko, Takaaki; Saleem, Kadharbatcha S.; Berman, Rebecca A.; Leopold, David A.
2016-01-01
Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This “reafferent” motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. PMID:27629710
Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque.
Russ, Brian E; Kaneko, Takaaki; Saleem, Kadharbatcha S; Berman, Rebecca A; Leopold, David A
2016-09-14
Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This "reafferent" motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. Copyright © 2016 the authors 0270-6474/16/369580-10$15.00/0.
Tong, Frank; Harrison, Stephenie A; Dewey, John A; Kamitani, Yukiyasu
2012-11-15
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. Copyright © 2012 Elsevier Inc. All rights reserved.
Tong, Frank; Harrison, Stephenie A.; Dewey, John A.; Kamitani, Yukiyasu
2012-01-01
Orientation-selective responses can be decoded from fMRI activity patterns in the human visual cortex, using multivariate pattern analysis (MVPA). To what extent do these feature-selective activity patterns depend on the strength and quality of the sensory input, and might the reliability of these activity patterns be predicted by the gross amplitude of the stimulus-driven BOLD response? Observers viewed oriented gratings that varied in luminance contrast (4, 20 or 100%) or spatial frequency (0.25, 1.0 or 4.0 cpd). As predicted, activity patterns in early visual areas led to better discrimination of orientations presented at high than low contrast, with greater effects of contrast found in area V1 than in V3. A second experiment revealed generally better decoding of orientations at low or moderate as compared to high spatial frequencies. Interestingly however, V1 exhibited a relative advantage at discriminating high spatial frequency orientations, consistent with the finer scale of representation in the primary visual cortex. In both experiments, the reliability of these orientation-selective activity patterns was well predicted by the average BOLD amplitude in each region of interest, as indicated by correlation analyses, as well as decoding applied to a simple model of voxel responses to simulated orientation columns. Moreover, individual differences in decoding accuracy could be predicted by the signal-to-noise ratio of an individual's BOLD response. Our results indicate that decoding accuracy can be well predicted by incorporating the amplitude of the BOLD response into simple simulation models of cortical selectivity; such models could prove useful in future applications of fMRI pattern classification. PMID:22917989
Contour Curvature As an Invariant Code for Objects in Visual Area V4
Pasupathy, Anitha
2016-01-01
Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biological and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons (∼70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demonstrate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a foundation for behaviorally relevant object codes. SIGNIFICANCE STATEMENT Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first empirical support for this hypothesis, and its instantiation in single neurons of visual area V4. PMID:27194333
Differential processing of binocular and monocular gloss cues in human visual cortex
Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.
2016-01-01
The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596
Chen, Juan; Yu, Qing; Zhu, Ziyun; Peng, Yujia; Fang, Fang
2016-01-01
In natural scenes, multiple objects are usually presented simultaneously. How do specific areas of the brain respond to multiple objects based on their responses to each individual object? Previous functional magnetic resonance imaging (fMRI) studies have shown that the activity induced by a multiobject stimulus in the primary visual cortex (V1) can be predicted by the linear or nonlinear sum of the activities induced by its component objects. However, there has been little evidence from electroencephelogram (EEG) studies so far. Here we explored how V1 responded to multiple objects by comparing the EEG signals evoked by a three-grating stimulus with those evoked by its two components (the central grating and 2 flanking gratings). We focused on the earliest visual component C1 (onset latency of ∼50 ms) because it has been shown to reflect the feedforward responses of neurons in V1. We found that when the stimulus was unattended, the amplitude of the C1 evoked by the three-grating stimulus roughly equaled the sum of the amplitudes of the C1s evoked by its two components, regardless of the distances between these gratings. When the stimulus was attended, this linear spatial summation existed only when the three gratings were far apart from each other. When the three gratings were close to each other, the spatial summation became compressed. These results suggest that the earliest visual responses in V1 follow a linear summation rule when attention is not involved and that attention can affect the earliest interactions between multiple objects. Copyright © 2016 the American Physiological Society.
Induced and evoked neural correlates of orientation selectivity in human visual cortex.
Koelewijn, Loes; Dumont, Julie R; Muthukumaraswamy, Suresh D; Rich, Anina N; Singh, Krish D
2011-02-14
Orientation discrimination is much better for patterns oriented along the horizontal or vertical (cardinal) axes than for patterns oriented obliquely, but the neural basis for this is not known. Previous animal neurophysiology and human neuroimaging studies have demonstrated only a moderate bias for cardinal versus oblique orientations, with fMRI showing a larger response to cardinals in primary visual cortex (V1) and EEG demonstrating both increased magnitudes and reduced latencies of transient evoked responses. Here, using MEG, we localised and characterised induced gamma and transient evoked responses to stationary circular grating patches of three orientations (0, 45, and 90° from vertical). Surprisingly, we found that the sustained gamma response was larger for oblique, compared to cardinal, stimuli. This "inverse oblique effect" was also observed in the earliest (80 ms) evoked response, whereas later responses (120 ms) showed a trend towards the reverse, "classic", oblique response. Source localisation demonstrated that the sustained gamma and early evoked responses were localised to medial visual cortex, whilst the later evoked responses came from both this early visual area and a source in a more inferolateral extrastriate region. These results suggest that (1) the early evoked and sustained gamma responses manifest the initial tuning of V1 neurons, with the stronger response to oblique stimuli possibly reflecting increased tuning widths for these orientations, and (2) the classic behavioural oblique effect is mediated by an extrastriate cortical area and may also implicate feedback from extrastriate to primary visual cortex. Copyright © 2010 Elsevier Inc. All rights reserved.
Wall, Michael; Woodward, Kimberly R; Doyle, Carrie K; Artes, Paul H
2009-02-01
Standard automated perimetry (SAP) shows a marked increase in variability in damaged areas of the visual field. This study was conducted to test the hypothesis that larger stimuli are associated with more uniform variability, by investigating the retest variability of four perimetry tests: standard automated perimetry size III (SAP III), with the SITA standard strategy; SAP size V (SAP V), with the full-threshold strategy; Matrix (FDT II), and Motion perimetry. One eye each of 120 patients with glaucoma was examined on the same day with these four perimetric tests and retested 1 to 8 weeks later. The decibel scales were adjusted to make the test's scales numerically similar. Retest variability was examined by establishing the distributions of retest threshold estimates, for each threshold level observed at the first test. The 5th and 95th percentiles of the retest distribution were used as point-wise limits of retest variability. Regression analyses were performed to quantify the relationship between visual field sensitivity and variability. With SAP III, the retest variability increased substantially with reducing sensitivity. Corresponding increases with SAP V, Matrix, and Motion perimetry were considerably smaller or absent. With SAP III, sensitivity explained 22% of the retest variability (r(2)), whereas corresponding data for SAP V, Matrix, and Motion perimetry were 12%, 2%, and 2%, respectively. Variability of Matrix and Motion perimetry does not increase as substantially as that of SAP III in damaged areas of the visual field. Increased sampling with the larger stimuli of these techniques is the likely explanation for this finding. These properties may make these stimuli excellent candidates for early detection of visual field progression.
Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes.
Murray, Elizabeth; Bruno, Raimondo; Brown, John
2012-03-01
'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function. Copyright © 2012 John Wiley & Sons, Ltd.
Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.
Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel
2016-01-01
Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo
2018-02-01
We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.
The Cortical Network for Braille Writing in the Blind.
Likova, Lora T; Tyler, Christopher W; Cacciamani, Laura; Mineff, Kristyo; Nicholas, Spero
2016-01-01
Fundamental forms of high-order cognition, such as reading and writing, are usually studied in the context of one modality - vision. People without sight, however, use the kinesthetic-based Braille writing, and haptic-based Braille reading. We asked whether the cognitive and motor control mechanisms underlying writing and reading are modality-specific or supramodal. While a number of previous functional Magnetic Resonance Imaging (fMRI) studies have investigated the brain network for Braille reading in the blind, such studies on Braille writing are lacking. Consequently, no comparative network analysis of Braille writing vs. reading exists. Here, we report the first study of Braille writing, and a comparison of the brain organization for Braille writing vs Braille reading. FMRI was conducted in a Siemens 3T Trio scanner. Our custom MRI-compatible drawing/writing lectern was further modified to provide for Braille reading and writing. Each of five paragraphs of novel Braille text describing objects, faces and navigation sequences was read, then reproduced twice by Braille writing from memory, then read a second time. During Braille reading, the haptic-sensing of the Braille letters strongly activated not only the early visual area V1 and V2, but some highly specialized areas, such as the classical visual grapheme area and the Exner motor grapheme area. Braille-writing-from-memory, engaged a significantly more extensive network in dorsal motor, somatosensory/kinesthetic, dorsal parietal and prefrontal cortex. However, in contrast to the largely extended V1 activation in drawing-from-memory in the blind after training (Likova, 2012), Braille writing from memory generated focal activation restricted to the most foveal part of V1, presumably reflecting topographically the focal demands of such a "pin-pricking" task.
The Cortical Network for Braille Writing in the Blind
Likova, Lora T.; Tyler, Christopher W.; Cacciamani, Laura; Mineff, Kristyo; Nicholas, Spero
2017-01-01
Fundamental forms of high-order cognition, such as reading and writing, are usually studied in the context of one modality - vision. People without sight, however, use the kinesthetic-based Braille writing, and haptic-based Braille reading. We asked whether the cognitive and motor control mechanisms underlying writing and reading are modality-specific or supramodal. While a number of previous functional Magnetic Resonance Imaging (fMRI) studies have investigated the brain network for Braille reading in the blind, such studies on Braille writing are lacking. Consequently, no comparative network analysis of Braille writing vs. reading exists. Here, we report the first study of Braille writing, and a comparison of the brain organization for Braille writing vs Braille reading. FMRI was conducted in a Siemens 3T Trio scanner. Our custom MRI-compatible drawing/writing lectern was further modified to provide for Braille reading and writing. Each of five paragraphs of novel Braille text describing objects, faces and navigation sequences was read, then reproduced twice by Braille writing from memory, then read a second time. During Braille reading, the haptic-sensing of the Braille letters strongly activated not only the early visual area V1 and V2, but some highly specialized areas, such as the classical visual grapheme area and the Exner motor grapheme area. Braille-writing-from-memory, engaged a significantly more extensive network in dorsal motor, somatosensory/kinesthetic, dorsal parietal and prefrontal cortex. However, in contrast to the largely extended V1 activation in drawing-from-memory in the blind after training (Likova, 2012), Braille writing from memory generated focal activation restricted to the most foveal part of V1, presumably reflecting topographically the focal demands of such a “pin-pricking” task. PMID:28890944
Pretraining Cortical Thickness Predicts Subsequent Perceptual Learning Rate in a Visual Search Task.
Frank, Sebastian M; Reavis, Eric A; Greenlee, Mark W; Tse, Peter U
2016-03-01
We report that preexisting individual differences in the cortical thickness of brain areas involved in a perceptual learning task predict the subsequent perceptual learning rate. Participants trained in a motion-discrimination task involving visual search for a "V"-shaped target motion trajectory among inverted "V"-shaped distractor trajectories. Motion-sensitive area MT+ (V5) was functionally identified as critical to the task: after 3 weeks of training, activity increased in MT+ during task performance, as measured by functional magnetic resonance imaging. We computed the cortical thickness of MT+ from anatomical magnetic resonance imaging volumes collected before training started, and found that it significantly predicted subsequent perceptual learning rates in the visual search task. Participants with thicker neocortex in MT+ before training learned faster than those with thinner neocortex in that area. A similar association between cortical thickness and training success was also found in posterior parietal cortex (PPC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Contextual Modulation is Related to Efficiency in a Spiking Network Model of Visual Cortex.
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo; Vanni, Simo
2015-01-01
In the visual cortex, stimuli outside the classical receptive field (CRF) modulate the neural firing rate, without driving the neuron by themselves. In the primary visual cortex (V1), such contextual modulation can be parametrized with an area summation function (ASF): increasing stimulus size causes first an increase and then a decrease of firing rate before reaching an asymptote. Earlier work has reported increase of sparseness when CRF stimulation is extended to its surroundings. However, there has been no clear connection between the ASF and network efficiency. Here we aimed to investigate possible link between ASF and network efficiency. In this study, we simulated the responses of a biomimetic spiking neural network model of the visual cortex to a set of natural images. We varied the network parameters, and compared the V1 excitatory neuron spike responses to the corresponding responses predicted from earlier single neuron data from primate visual cortex. The network efficiency was quantified with firing rate (which has direct association to neural energy consumption), entropy per spike and population sparseness. All three measures together provided a clear association between the network efficiency and the ASF. The association was clear when varying the horizontal connectivity within V1, which influenced both the efficiency and the distance to ASF, DAS. Given the limitations of our biophysical model, this association is qualitative, but nevertheless suggests that an ASF-like receptive field structure can cause efficient population response.
Zold, Camila L.
2015-01-01
The primary visual cortex (V1) is widely regarded as faithfully conveying the physical properties of visual stimuli. Thus, experience-induced changes in V1 are often interpreted as improving visual perception (i.e., perceptual learning). Here we describe how, with experience, cue-evoked oscillations emerge in V1 to convey expected reward time as well as to relate experienced reward rate. We show, in chronic multisite local field potential recordings from rat V1, that repeated presentation of visual cues induces the emergence of visually evoked oscillatory activity. Early in training, the visually evoked oscillations relate to the physical parameters of the stimuli. However, with training, the oscillations evolve to relate the time in which those stimuli foretell expected reward. Moreover, the oscillation prevalence reflects the reward rate recently experienced by the animal. Thus, training induces experience-dependent changes in V1 activity that relate to what those stimuli have come to signify behaviorally: when to expect future reward and at what rate. PMID:26134643
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1.
Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Nieder, Andreas; Pourriahi, Paria; Nienborg, Hendrikje
2017-11-22
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus ("noise-correlation"). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state. Copyright © 2017 Seillier, Lorenz et al.
Serotonin Decreases the Gain of Visual Responses in Awake Macaque V1
Seillier, Lenka; Lorenz, Corinna; Kawaguchi, Katsuhisa; Ott, Torben; Pourriahi, Paria
2017-01-01
Serotonin, an important neuromodulator in the brain, is implicated in affective and cognitive functions. However, its role even for basic cortical processes is controversial. For example, in the mammalian primary visual cortex (V1), heterogenous serotonergic modulation has been observed in anesthetized animals. Here, we combined extracellular single-unit recordings with iontophoresis in awake animals. We examined the role of serotonin on well-defined tuning properties (orientation, spatial frequency, contrast, and size) in V1 of two male macaque monkeys. We find that in the awake macaque the modulatory effect of serotonin is surprisingly uniform: it causes a mainly multiplicative decrease of the visual responses and a slight increase in the stimulus-selective response latency. Moreover, serotonin neither systematically changes the selectivity or variability of the response, nor the interneuronal correlation unexplained by the stimulus (“noise-correlation”). The modulation by serotonin has qualitative similarities with that for a decrease in stimulus contrast, but differs quantitatively from decreasing contrast. It can be captured by a simple additive change to a threshold-linear spiking nonlinearity. Together, our results show that serotonin is well suited to control the response gain of neurons in V1 depending on the animal's behavioral or motivational context, complementing other known state-dependent gain-control mechanisms. SIGNIFICANCE STATEMENT Serotonin is an important neuromodulator in the brain and a major target for drugs used to treat psychiatric disorders. Nonetheless, surprisingly little is known about how it shapes information processing in sensory areas. Here we examined the serotonergic modulation of visual processing in the primary visual cortex of awake behaving macaque monkeys. We found that serotonin mainly decreased the gain of the visual responses, without systematically changing their selectivity, variability, or covariability. This identifies a simple computational function of serotonin for state-dependent sensory processing, depending on the animal's affective or motivational state. PMID:29042433
Wall, Michael; Zamba, Gideon K D; Artes, Paul H
2018-01-01
It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on "censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher.
Perceptual learning modifies the functional specializations of visual cortical areas.
Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang
2016-05-17
Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.
Korosoglou, G; Hansen, A; Bekeredjian, R; Filusch, A; Hardt, S; Wolf, D; Schellberg, D; Katus, H A; Kuecherer, H
2006-03-01
To evaluate whether myocardial parametric imaging (MPI) is superior to visual assessment for the evaluation of myocardial viability. Myocardial contrast echocardiography (MCE) was assessed in 11 pigs before, during, and after left anterior descending coronary artery occlusion and in 32 patients with ischaemic heart disease by using intravenous SonoVue administration. In experimental studies perfusion defect area assessment by MPI was compared with visually guided perfusion defect planimetry. Histological assessment of necrotic tissue was the standard reference. In clinical studies viability was assessed on a segmental level by (1) visual analysis of myocardial opacification; (2) quantitative estimation of myocardial blood flow in regions of interest; and (3) MPI. Functional recovery between three and six months after revascularisation was the standard reference. In experimental studies, compared with visually guided perfusion defect planimetry, planimetric assessment of infarct size by MPI correlated more significantly with histology (r2 = 0.92 versus r2 = 0.56) and had a lower intraobserver variability (4% v 15%, p < 0.05). In clinical studies, MPI had higher specificity (66% v 43%, p < 0.05) than visual MCE and good accuracy (81%) for viability detection. It was less time consuming (3.4 (1.6) v 9.2 (2.4) minutes per image, p < 0.05) than quantitative blood flow estimation by regions of interest and increased the agreement between observers interpreting myocardial perfusion (kappa = 0.87 v kappa = 0.75, p < 0.05). MPI is useful for the evaluation of myocardial viability both in animals and in patients. It is less time consuming than quantification analysis by regions of interest and less observer dependent than visual analysis. Thus, strategies incorporating this technique may be valuable for the evaluation of myocardial viability in clinical routine.
Multifocal ERG reveals long distance effects of a local bleach in the retina.
Kretschmann, U; Tornow, R P; Zrenner, E
1998-06-01
To examine the distribution of ERG-activity in the central visual field after local bleaching of the fovea, multifocal electroretinograms were recorded in eight normal volunteers before, during and after recurrent light exposure. During bleaching (90% bleached pigment), the response density (scalar product) of the foveal area (0-2 degrees eccentricity) decreased from 10.7 +/- 3.5 to 4.1 +/- 1.9 nV/degree2 (P < 0.001). The average activity in the extrafoveal macular area was unchanged, while the amplitudes were frequently (in 53 of 54 areas) enhanced at 5-30.5 degrees eccentricity. Here the average response density changed from 3.1 +/- 0.9 to 3.5 +/- 1.0 nV/degree2 (P < 0.001). A fast recovery of foveal responses after cessation of bleaching occurred. Besides a strong decrease of response in the directly bleached area, local bleaching led to enhanced activity mainly 3-27 degrees distant from the bleached area.
Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.
Revina, Yulia; Petro, Lucy S; Muckli, Lars
2017-09-22
Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding
Vinck, Martin; Batista-Brito, Renata; Knoblich, Ulf; Cardin, Jessica A.
2015-01-01
Spontaneous and sensory-evoked cortical activity is highly state-dependent, yet relatively little is known about transitions between distinct waking states. Patterns of activity in mouse V1 differ dramatically between quiescence and locomotion, but this difference could be explained by either motor feedback or a change in arousal levels. We recorded single cells and local field potentials from area V1 in mice head-fixed on a running wheel and monitored pupil diameter to assay arousal. Using naturally occurring and induced state transitions, we dissociated arousal and locomotion effects in V1. Arousal suppressed spontaneous firing and strongly altered the temporal patterning of population activity. Moreover, heightened arousal increased the signal-to-noise ratio of visual responses and reduced noise correlations. In contrast, increased firing in anticipation of and during movement was attributable to locomotion effects. Our findings suggest complementary roles of arousal and locomotion in promoting functional flexibility in cortical circuits. PMID:25892300
Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex.
Solomon, Selina S; Chen, Spencer C; Morley, John W; Solomon, Samuel G
2015-09-01
In humans and other primates, the analysis of visual motion includes populations of neurons in the middle-temporal (MT) area of visual cortex. Motion analysis will be constrained by the structure of neural correlations in these populations. Here, we use multi-electrode arrays to measure correlations in anesthetized marmoset, a New World monkey where area MT lies exposed on the cortical surface. We measured correlations in the spike count between pairs of neurons and within populations of neurons, for moving dot fields and moving gratings. Correlations were weaker in area MT than in area V1. The magnitude of correlations in area MT diminished with distance between receptive fields, and difference in preferred direction. Correlations during presentation of moving gratings were stronger than those during presentation of moving dot fields, extended further across cortex, and were less dependent on the functional properties of neurons. Analysis of the timescales of correlation suggests presence of 2 mechanisms. A local mechanism, associated with near-synchronous spiking activity, is strongest in nearby neurons with similar direction preference and is independent of visual stimulus. A global mechanism, operating over larger spatial scales and longer timescales, is independent of direction preference and is modulated by the type of visual stimulus presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.
van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R
2018-05-04
Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Differential processing of binocular and monocular gloss cues in human visual cortex.
Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E
2016-06-01
The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.
Memory-guided saccade processing in visual form agnosia (patient DF).
Rossit, Stéphanie; Szymanek, Larissa; Butler, Stephen H; Harvey, Monika
2010-01-01
According to Milner and Goodale's model (The visual brain in action, Oxford University Press, Oxford, 2006) areas in the ventral visual stream mediate visual perception and oV-line actions, whilst regions in the dorsal visual stream mediate the on-line visual control of action. Strong evidence for this model comes from a patient (DF), who suffers from visual form agnosia after bilateral damage to the ventro-lateral occipital region, sparing V1. It has been reported that she is normal in immediate reaching and grasping, yet severely impaired when asked to perform delayed actions. Here we investigated whether this dissociation would extend to saccade execution. Neurophysiological studies and TMS work in humans have shown that the posterior parietal cortex (PPC), on the right in particular (supposedly spared in DF), is involved in the control of memory-guided saccades. Surprisingly though, we found that, just as reported for reaching and grasping, DF's saccadic accuracy was much reduced in the memory compared to the stimulus-guided condition. These data support the idea of a tight coupling of eye and hand movements and further suggest that dorsal stream structures may not be sufficient to drive memory-guided saccadic performance.
Trade-off between curvature tuning and position invariance in visual area V4
Sharpee, Tatyana O.; Kouh, Minjoon; Reynolds, John H.
2013-01-01
Humans can rapidly recognize a multitude of objects despite differences in their appearance. The neural mechanisms that endow high-level sensory neurons with both selectivity to complex stimulus features and “tolerance” or invariance to identity-preserving transformations, such as spatial translation, remain poorly understood. Previous studies have demonstrated that both tolerance and selectivity to conjunctions of features are increased at successive stages of the ventral visual stream that mediates visual recognition. Within a given area, such as visual area V4 or the inferotemporal cortex, tolerance has been found to be inversely related to the sparseness of neural responses, which in turn was positively correlated with conjunction selectivity. However, the direct relationship between tolerance and conjunction selectivity has been difficult to establish, with different studies reporting either an inverse or no significant relationship. To resolve this, we measured V4 responses to natural scenes, and using recently developed statistical techniques, we estimated both the relevant stimulus features and the range of translation invariance for each neuron. Focusing the analysis on tuning to curvature, a tractable example of conjunction selectivity, we found that neurons that were tuned to more curved contours had smaller ranges of position invariance and produced sparser responses to natural stimuli. These trade-offs provide empirical support for recent theories of how the visual system estimates 3D shapes from shading and texture flows, as well as the tiling hypothesis of the visual space for different curvature values. PMID:23798444
EQUILUMINANCE CELLS IN VISUAL CORTICAL AREA V4
Bushnell, Brittany N.; Harding, Philip J.; Kosai, Yoshito; Bair, Wyeth; Pasupathy, Anitha
2011-01-01
We report a novel class of V4 neuron in the macaque monkey that responds selectively to equiluminant colored form. These "equiluminance" cells stand apart because they violate the well established trend throughout the visual system that responses are minimal at low luminance contrast and grow and saturate as contrast increases. Equiluminance cells, which compose about 22% of V4, exhibit the opposite behavior: responses are greatest near zero contrast and decrease as contrast increases. While equilumiance cells respond preferentially to equiluminant colored stimuli, strong hue tuning is not their distinguishing feature—some equilumiance cells do exhibit strong unimodal hue tuning but many show little or no tuning for hue. We find that equiluminance cells are color and shape selective to a degree comparable to other classes of V4 cells with more conventional contrast response functions. Those more conventional cells respond equally well to achromatic luminance and equiluminant color stimuli, analogous to color-luminance cells described in V1. The existence of equiluminance cells, which have not been reported in V1 or V2, suggests that chromatically-defined boundaries and shapes are given special status in V4 and raises the possibility that form at equiluminance and form at higher contrasts are processed in separate channels in V4. PMID:21880901
The Simplest Chronoscope V: A Theory of Dual Primary and Secondary Reaction Time Systems.
Montare, Alberto
2016-12-01
Extending work by Montare, visual simple reaction time, choice reaction time, discriminative reaction time, and overall reaction time scores obtained from college students by the simplest chronoscope (a falling meterstick) method were significantly faster as well as significantly less variable than scores of the same individuals from electromechanical reaction timers (machine method). Results supported the existence of dual reaction time systems: an ancient primary reaction time system theoretically activating the V5 parietal area of the dorsal visual stream that evolved to process significantly faster sensory-motor reactions to sudden stimulations arising from environmental objects in motion, and a secondary reaction time system theoretically activating the V4 temporal area of the ventral visual stream that subsequently evolved to process significantly slower sensory-perceptual-motor reactions to sudden stimulations arising from motionless colored objects. © The Author(s) 2016.
Bastos, A M; Litvak, V; Moran, R; Bosman, C A; Fries, P; Friston, K J
2015-03-01
This paper reports a dynamic causal modeling study of electrocorticographic (ECoG) data that addresses functional asymmetries between forward and backward connections in the visual cortical hierarchy. Specifically, we ask whether forward connections employ gamma-band frequencies, while backward connections preferentially use lower (beta-band) frequencies. We addressed this question by modeling empirical cross spectra using a neural mass model equipped with superficial and deep pyramidal cell populations-that model the source of forward and backward connections, respectively. This enabled us to reconstruct the transfer functions and associated spectra of specific subpopulations within cortical sources. We first established that Bayesian model comparison was able to discriminate between forward and backward connections, defined in terms of their cells of origin. We then confirmed that model selection was able to identify extrastriate (V4) sources as being hierarchically higher than early visual (V1) sources. Finally, an examination of the auto spectra and transfer functions associated with superficial and deep pyramidal cells confirmed that forward connections employed predominantly higher (gamma) frequencies, while backward connections were mediated by lower (alpha/beta) frequencies. We discuss these findings in relation to current views about alpha, beta, and gamma oscillations and predictive coding in the brain. Copyright © 2015. Published by Elsevier Inc.
Tang, Shiming; Zhang, Yimeng; Li, Zhihao; Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing
2018-04-26
One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of a large population of neurons within the superficial layers of area V1 with single-cell resolution, while simultaneously presenting a large set of natural visual stimuli, to provide the first direct measure of the population sparseness in awake primates. The results show that only 0.5% of neurons respond strongly to any given natural image - indicating a ten-fold increase in the inferred sparseness over previous measurements. These population activities are nevertheless necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural code in the primary visual cortex is both super-sparse and highly efficient. © 2018, Tang et al.
Lischka, Katharina; Ladel, Simone; Luksch, Harald; Weigel, Stefan
2018-02-15
The midbrain is an important subcortical area involved in distinct functions such as multimodal integration, movement initiation, bottom-up, and top-down attention. Our group is particularly interested in cellular computation of multisensory integration. We focus on the visual part of the avian midbrain, the optic tectum (TeO, counterpart to mammalian superior colliculus). This area has a layered structure with the great advantage of distinct input and output regions. In chicken, the TeO is organized in 15 layers where visual input targets the superficial layers while auditory input terminates in deeper layers. One specific cell type, the Shepherd's crook neuron (SCN), extends dendrites in both input regions. The characteristic feature of these neurons is the axon origin at the apical dendrite. The molecular identity of this characteristic region and thus, the site of action potential generation are of particular importance to understand signal flow and cellular computation in this neuron. We present immunohistochemical data of structural proteins (NF200, Ankyrin G, and Myelin) and ion channels (Pan-Na v , Na v 1.6, and K v 3.1b). NF200 is strongly expressed in the axon. Ankyrin G is mainly expressed at the axon initial segment (AIS). Myelination starts after the AIS as well as the distribution of Na v channels on the axon. The subtype Na v 1.6 has a high density in this region. K v 3.1b is restricted to the soma, the primary neurite and the axon branch. The distribution of functional molecules in SCNs provides insight into the information flow and the integration of sensory modalities in the TeO of the avian midbrain. © 2017 Wiley Periodicals, Inc.
Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang
2014-03-01
We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.
The role of feedback connections in shaping the responses of visual cortical neurons.
Bullier, J; Hupé, J M; James, A C; Girard, P
2001-01-01
The results of a previous study [Hupé et al. (1998) Nature, 394: 784-787] led us to conclude that feedback connections are important for differentiating a figure from the background, particularly in the case of low salience stimuli. This conclusion was principally based on the observation in area V3 neurons that inactivating MT by cooling led to a severe weakening of the center response and of the center-surround interactions, and that these effects were particularly strong for low salience stimuli. In the present paper, we first show that the results extend to areas V1 and V2. In particular, the inhibitory center-surround interactions in areas V1, V2 and V3 disappear almost completely in the absence of feedback input from MT for low salience stimuli, whereas the effects are much more limited for stimuli of middle and high salience. We then compare the results obtained in studies of feedback connections from MT to those obtained in a study of the feedback action of area V2 onto V1 neurons [Hupé et al. (2001) J. Neurophysiol., 85: 146-163], in which the same effects were observed on the center mechanism (decrease in response), but no effects were seen on the center-surround interactions. We conclude that feedback connections act in a non-linear fashion to boost the gain of the center mechanism and that they combine with horizontal connections to generate the center-surround interactions.
Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.
2015-01-01
Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450
Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L.; Nishimoto, Shinji; Ohzawa, Izumi
2014-01-01
Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. PMID:25297110
Flight-path estimation in passive low-altitude flight by visual cues
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.
1993-01-01
A series of experiments was conducted, in which subjects had to estimate the flight path while passively being flown in straight or in curved motion over several types of nominally flat, textured terrain. Three computer-generated terrain types were investigated: (1) a random 'pole' field, (2) a flat field consisting of random rectangular patches, and (3) a field of random parallelepipeds. Experimental parameters were the velocity-to-height (V/h) ratio, the viewing distance, and the terrain type. Furthermore, the effect of obscuring parts of the visual field was investigated. Assumptions were made about the basic visual-field information by analyzing the pattern of line-of-sight (LOS) rate vectors in the visual field. The experimental results support these assumptions and show that, for both a straight as well as a curved flight path, the estimation accuracy and estimation times improve with the V/h ratio. Error scores for the curved flight path are found to be about 3 deg in visual angle higher than for the straight flight path, and the sensitivity to the V/h ratio is found to be considerably larger. For the straight motion, the flight path could be estimated successfully from local areas in the far field. Curved flight-path estimates have to rely on the entire LOS rate pattern.
Yarch, Jeff; Federer, Frederick
2017-01-01
Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical to understanding how local processing in V1 relates to downstream processing. We have identified the local circuits of a population of cells in V1 layer (L)4B that project to area V2. These cells' local circuits differ from classical descriptions of L4B circuits in both the laminar and functional compartments targeted by their axons, and identify two neuron classes. Our results demonstrate that both local intra-V1 and extrinsic V1-to-V2 connections of L4B neurons preserve CO-stream segregation, suggesting that across-stream integration occurs downstream of V1, and that output targets dictate local V1 circuitry. PMID:28077720
Visual communication stimulates reproduction in Nile tilapia, Oreochromis niloticus (L.).
Castro, A L S; Gonçalves-de-Freitas, E; Volpato, G L; Oliveira, C
2009-04-01
Reproductive fish behavior is affected by male-female interactions that stimulate physiological responses such as hormonal release and gonad development. During male-female interactions, visual and chemical communication can modulate fish reproduction. The aim of the present study was to test the effect of visual and chemical male-female interaction on the gonad development and reproductive behavior of the cichlid fish Nile tilapia, Oreochromis niloticus (L.). Fifty-six pairs were studied after being maintained for 5 days under one of the four conditions (N = 14 for each condition): 1) visual contact (V); 2) chemical contact (Ch); 3) chemical and visual contact (Ch+V); 4) no sensory contact (Iso) - males and females isolated. We compared the reproductive behavior (nesting, courtship and spawning) and gonadosomatic index (GSI) of pairs of fish under all four conditions. Visual communication enhanced the frequency of courtship in males (mean +/- SEM; V: 24.79 +/- 3.30, Ch+V: 20.74 +/- 3.09, Ch: 0.1 +/- 0.07, Iso: 4.68 +/- 1.26 events/30 min; P < 0.05, two-way ANOVA with LSD post hoc test), induced spawning in females (3 spawning in V and also 3 in Ch+V condition), and increased GSI in males (mean +/- SEM; V: 1.39 +/- 0.08, Ch+V: 1.21 +/- 0.08, Ch: 1.04 +/- 0.07, Iso: 0.82 +/- 0.07%; P < 0.05, two-way ANOVA with LSD post hoc test). Chemical communication did not affect the reproductive behavior of pairs nor did it enhance the effects of visual contact. Therefore, male-female visual communication is an effective cue, which stimulates reproduction among pairs of Nile tilapia.
Kuo, Bo-Cheng; Lin, Szu-Hung; Yeh, Yei-Yu
2018-06-01
Visual short-term memory (VSTM) allows individuals to briefly maintain information over time for guiding behaviours. Because the contents of VSTM can be neutral or emotional, top-down influence in VSTM may vary with the affective codes of maintained representations. Here we investigated the neural mechanisms underlying the functional interplay of top-down attention with affective codes in VSTM using functional magnetic resonance imaging. Participants were instructed to remember both threatening and neutral objects in a cued VSTM task. Retrospective cues (retro-cues) were presented to direct attention to the hemifield of a threatening object (i.e., cue-to-threat) or a neutral object (i.e., cue-to-neutral) during VSTM maintenance. We showed stronger activity in the ventral occipitotemporal cortex and amygdala for attending threatening relative to neutral representations. Using multivoxel pattern analysis, we found better classification performance for cue-to-threat versus cue-to-neutral objects in early visual areas and in the amygdala. Importantly, retro-cues modulated the strength of functional connectivity between the frontoparietal and early visual areas. Activity in the frontoparietal areas became strongly correlated with the activity in V3a-V4 coding the threatening representations instructed to be relevant for the task. Together, these findings provide the first demonstration of top-down modulation of activation patterns in early visual areas and functional connectivity between the frontoparietal network and early visual areas for regulating threatening representations during VSTM maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cortical depth dependent population receptive field attraction by spatial attention in human V1.
Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O
2018-04-27
Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.
Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.
Badgaiyan, Rajendra D
2012-12-01
Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.
Neocortical Rebound Depolarization Enhances Visual Perception
Funayama, Kenta; Ban, Hiroshi; Chan, Allen W.; Matsuki, Norio; Murphy, Timothy H.; Ikegaya, Yuji
2015-01-01
Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. PMID:26274866
An extended retinotopic map of mouse cortex
Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack
2017-01-01
Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700
Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne
2017-04-01
We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.
Hemifield columns co-opt ocular dominance column structure in human achiasma.
Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A; Grant, Andrea N; Purington, Chris; Qiu, Cheng; Schallmo, Michael-Paul; Tjan, Bosco S
2018-01-01
In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T 2 -weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptive Changes in Early and Late Blind: A fMRI Study of Verb Generation to Heard Nouns
BURTON, H.; SNYDER, A. Z.; DIAMOND, J. B.; RAICHLE, M. E.
2013-01-01
Literacy for blind people requires learning Braille. Along with others, we have shown that reading Braille activates visual cortex. This includes striate cortex (V1), i.e., banks of calcarine sulcus, and several higher visual areas in lingual, fusiform, cuneus, lateral occipital, inferior temporal, and middle temporal gyri. The spatial extent and magnitude of magnetic resonance (MR) signals in visual cortex is greatest for those who became blind early in life. Individuals who lost sight as adults, and subsequently learned Braille, still exhibited activity in some of the same visual cortex regions, especially V1. These findings suggest these visual cortex regions become adapted to processing tactile information and that this cross-modal neural change might support Braille literacy. Here we tested the alternative hypothesis that these regions directly respond to linguistic aspects of a task. Accordingly, language task performance by blind persons should activate the same visual cortex regions regardless of input modality. Specifically, visual cortex activity in blind people ought to arise during a language task involving heard words. Eight early blind, six late blind, and eight sighted subjects were studied using functional magnetic resonance imaging (fMRI) during covert generation of verbs to heard nouns. The control task was passive listening to indecipherable sounds (reverse words) matched to the nouns in sound intensity, duration, and spectral content. Functional responses were analyzed at the level of individual subjects using methods based on the general linear model and at the group level, using voxel based ANOVA and t-test analyses. Blind and sighted subjects showed comparable activation of language areas in left inferior frontal, dorsolateral prefrontal, and left posterior superior temporal gyri. The main distinction was bilateral, left dominant activation of the same visual cortex regions previously noted with Braille reading in all blind subjects. The spatial extent and magnitude of responses was greatest on the left in early blind individuals. Responses in the late blind group mostly were confined to V1 and nearby portions of the lingual and fusiform gyri. These results confirm the presence of adaptations in visual cortex of blind people but argue against the notion that this activity during Braille reading represents somatosensory (haptic) processing. Rather, we suggest that these responses can be most parsimoniously explained in terms of linguistic operations. It remains possible that these responses represent adaptations which initially are for processing either sound or touch, but which are later generalized to the other modality during acquisition of Braille reading skills. PMID:12466452
Zamba, Gideon K. D.; Artes, Paul H.
2018-01-01
Purpose It has been shown that threshold estimates below approximately 20 dB have little effect on the ability to detect visual field progression in glaucoma. We aimed to compare stimulus size V to stimulus size III, in areas of visual damage, to confirm these findings by using (1) a different dataset, (2) different techniques of progression analysis, and (3) an analysis to evaluate the effect of censoring on mean deviation (MD). Methods In the Iowa Variability in Perimetry Study, 120 glaucoma subjects were tested every 6 months for 4 years with size III SITA Standard and size V Full Threshold. Progression was determined with three complementary techniques: pointwise linear regression (PLR), permutation of PLR, and linear regression of the MD index. All analyses were repeated on “censored'' datasets in which threshold estimates below a given criterion value were set to equal the criterion value. Results Our analyses confirmed previous observations that threshold estimates below 20 dB contribute much less to visual field progression than estimates above this range. These findings were broadly similar with stimulus sizes III and V. Conclusions Censoring of threshold values < 20 dB has relatively little impact on the rates of visual field progression in patients with mild to moderate glaucoma. Size V, which has lower retest variability, performs at least as well as size III for longitudinal glaucoma progression analysis and appears to have a larger useful dynamic range owing to the upper sensitivity limit being higher. PMID:29356822
Abnormal Visual Motion Processing is not a Cause of Dyslexia
Olulade, Olumide A.; Napoliello, Eileen M.; Eden, Guinevere F.
2013-01-01
SUMMARY Developmental dyslexia is a reading disorder, yet deficits also manifest in the magnocellular-dominated dorsal visual system. Uncertainty about whether visual deficits are causal or consequential to reading disability encumbers accurate identification and appropriate treatment of this common learning disability. Using fMRI, we demonstrate in typical readers a relationship between reading ability and activity in area V5/MT during visual motion processing and, as expected, also found lower V5/MT activity for dyslexic children compared to age-matched controls. However, when dyslexics were matched to younger controls on reading ability, no differences emerged, suggesting that weakness in V5/MT may not be causal to dyslexia. To further test for causality, dyslexics underwent a phonological-based reading intervention. Surprisingly, V5/MT activity increased along with intervention-driven reading gains, demonstrating that activity here is mobilized through reading. Our results provide strong evidence that visual magnocellular dysfunction is not causal to dyslexia, but may instead be consequential to impoverished reading. PMID:23746630
Specific excitatory connectivity for feature integration in mouse primary visual cortex
Molina-Luna, Patricia; Roth, Morgane M.
2017-01-01
Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1. PMID:29240769
Visual cortex activity predicts subjective experience after reading books with colored letters.
Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; van Es, Daniel M; Knapen, Tomas; Rouw, Romke
2016-07-29
One of the most astonishing properties of synesthesia is that the evoked concurrent experiences are perceptual. Is it possible to acquire similar effects after learning cross-modal associations that resemble synesthetic mappings? In this study, we examine whether brain activation in early visual areas can be directly related to letter-color associations acquired by training. Non-synesthetes read specially prepared books with colored letters for several weeks and were scanned using functional magnetic resonance imaging. If the acquired letter-color associations were visual in nature, then brain activation in visual cortex while viewing the trained black letters (compared to untrained black letters) should predict the strength of the associations, the quality of the color experience, or the vividness of visual mental imagery. Results showed that training-related activation of area V4 was correlated with differences in reported subjective color experience. Trainees who were classified as having stronger 'associator' types of color experiences also had more negative activation for trained compared to untrained achromatic letters in area V4. In contrast, the strength of the acquired associations (measured as the Stroop effect) was not reliably reflected in visual cortex activity. The reported vividness of visual mental imagery was related to veridical color activation in early visual cortex, but not to the acquired color associations. We show for the first time that subjective experience related to a synesthesia-training paradigm was reflected in visual brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hasegawa, Naoya; Kitamura, Hideaki; Murakami, Hiroatsu; Kameyama, Shigeki; Sasagawa, Mutsuo; Egawa, Jun; Tamura, Ryu; Endo, Taro; Someya, Toshiyuki
2013-01-01
Individuals with autistic spectrum disorder (ASD) demonstrate an impaired ability to infer the mental states of others from their gaze. Thus, investigating the relationship between ASD and eye gaze processing is crucial for understanding the neural basis of social impairments seen in individuals with ASD. In addition, characteristics of ASD are observed in more comprehensive visual perception tasks. These visual characteristics of ASD have been well-explained in terms of the atypical relationship between high- and low-level gaze processing in ASD. We studied neural activity during gaze processing in individuals with ASD using magnetoencephalography, with a focus on the relationship between high- and low-level gaze processing both temporally and spatially. Minimum Current Estimate analysis was applied to perform source analysis of magnetic responses to gaze stimuli. The source analysis showed that later activity in the primary visual area (V1) was affected by gaze direction only in the ASD group. Conversely, the right posterior superior temporal sulcus, which is a brain region that processes gaze as a social signal, in the typically developed group showed a tendency toward greater activation during direct compared with averted gaze processing. These results suggest that later activity in V1 relating to gaze processing is altered or possibly enhanced in high-functioning individuals with ASD, which may underpin the social cognitive impairments in these individuals. © 2013 S. Karger AG, Basel.
Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users.
Schierholz, Irina; Finke, Mareike; Schulte, Svenja; Hauthal, Nadine; Kantzke, Christoph; Rach, Stefan; Büchner, Andreas; Dengler, Reinhard; Sandmann, Pascale
2015-10-01
Auditory deprivation and the restoration of hearing via a cochlear implant (CI) can induce functional plasticity in auditory cortical areas. How these plastic changes affect the ability to integrate combined auditory (A) and visual (V) information is not yet well understood. In the present study, we used electroencephalography (EEG) to examine whether age, temporary deafness and altered sensory experience with a CI can affect audio-visual (AV) interactions in post-lingually deafened CI users. Young and elderly CI users and age-matched NH listeners performed a speeded response task on basic auditory, visual and audio-visual stimuli. Regarding the behavioral results, a redundant signals effect, that is, faster response times to cross-modal (AV) than to both of the two modality-specific stimuli (A, V), was revealed for all groups of participants. Moreover, in all four groups, we found evidence for audio-visual integration. Regarding event-related responses (ERPs), we observed a more pronounced visual modulation of the cortical auditory response at N1 latency (approximately 100 ms after stimulus onset) in the elderly CI users when compared with young CI users and elderly NH listeners. Thus, elderly CI users showed enhanced audio-visual binding which may be a consequence of compensatory strategies developed due to temporary deafness and/or degraded sensory input after implantation. These results indicate that the combination of aging, sensory deprivation and CI facilitates the coupling between the auditory and the visual modality. We suggest that this enhancement in multisensory interactions could be used to optimize auditory rehabilitation, especially in elderly CI users, by the application of strong audio-visually based rehabilitation strategies after implant switch-on. Copyright © 2015 Elsevier B.V. All rights reserved.
A Cortical Network for the Encoding of Object Change
Hindy, Nicholas C.; Solomon, Sarah H.; Altmann, Gerry T.M.; Thompson-Schill, Sharon L.
2015-01-01
Understanding events often requires recognizing unique stimuli as alternative, mutually exclusive states of the same persisting object. Using fMRI, we examined the neural mechanisms underlying the representation of object states and object-state changes. We found that subjective ratings of visual dissimilarity between a depicted object and an unseen alternative state of that object predicted the corresponding multivoxel pattern dissimilarity in early visual cortex during an imagery task, while late visual cortex patterns tracked dissimilarity among distinct objects. Early visual cortex pattern dissimilarity for object states in turn predicted the level of activation in an area of left posterior ventrolateral prefrontal cortex (pVLPFC) most responsive to conflict in a separate Stroop color-word interference task, and an area of left ventral posterior parietal cortex (vPPC) implicated in the relational binding of semantic features. We suggest that when visualizing object states, representational content instantiated across early and late visual cortex is modulated by processes in left pVLPFC and left vPPC that support selection and binding, and ultimately event comprehension. PMID:24127425
NASA Astrophysics Data System (ADS)
DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico
2017-02-01
Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.
Mechanisms of migraine aura revealed by functional MRI in human visual cortex
Hadjikhani, Nouchine; Sanchez del Rio, Margarita; Wu, Ona; Schwartz, Denis; Bakker, Dick; Fischl, Bruce; Kwong, Kenneth K.; Cutrer, F. Michael; Rosen, Bruce R.; Tootell, Roger B. H.; Sorensen, A. Gregory; Moskowitz, Michael A.
2001-01-01
Cortical spreading depression (CSD) has been suggested to underlie migraine visual aura. However, it has been challenging to test this hypothesis in human cerebral cortex. Using high-field functional MRI with near-continuous recording during visual aura in three subjects, we observed blood oxygenation level-dependent (BOLD) signal changes that demonstrated at least eight characteristics of CSD, time-locked to percept/onset of the aura. Initially, a focal increase in BOLD signal (possibly reflecting vasodilation), developed within extrastriate cortex (area V3A). This BOLD change progressed contiguously and slowly (3.5 ± 1.1 mm/min) over occipital cortex, congruent with the retinotopy of the visual percept. Following the same retinotopic progression, the BOLD signal then diminished (possibly reflecting vasoconstriction after the initial vasodilation), as did the BOLD response to visual activation. During periods with no visual stimulation, but while the subject was experiencing scintillations, BOLD signal followed the retinotopic progression of the visual percept. These data strongly suggest that an electrophysiological event such as CSD generates the aura in human visual cortex. PMID:11287655
Learning of goal-relevant and -irrelevant complex visual sequences in human V1.
Rosenthal, Clive R; Mallik, Indira; Caballero-Gaudes, Cesar; Sereno, Martin I; Soto, David
2018-06-12
Learning and memory are supported by a network involving the medial temporal lobe and linked neocortical regions. Emerging evidence indicates that primary visual cortex (i.e., V1) may contribute to recognition memory, but this has been tested only with a single visuospatial sequence as the target memorandum. The present study used functional magnetic resonance imaging to investigate whether human V1 can support the learning of multiple, concurrent complex visual sequences involving discontinous (second-order) associations. Two peripheral, goal-irrelevant but structured sequences of orientated gratings appeared simultaneously in fixed locations of the right and left visual fields alongside a central, goal-relevant sequence that was in the focus of spatial attention. Pseudorandom sequences were introduced at multiple intervals during the presentation of the three structured visual sequences to provide an online measure of sequence-specific knowledge at each retinotopic location. We found that a network involving the precuneus and V1 was involved in learning the structured sequence presented at central fixation, whereas right V1 was modulated by repeated exposure to the concurrent structured sequence presented in the left visual field. The same result was not found in left V1. These results indicate for the first time that human V1 can support the learning of multiple concurrent sequences involving complex discontinuous inter-item associations, even peripheral sequences that are goal-irrelevant. Copyright © 2018. Published by Elsevier Inc.
Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.
2012-01-01
Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381
Audio–visual interactions for motion perception in depth modulate activity in visual area V3A
Ogawa, Akitoshi; Macaluso, Emiliano
2013-01-01
Multisensory signals can enhance the spatial perception of objects and events in the environment. Changes of visual size and auditory intensity provide us with the main cues about motion direction in depth. However, frequency changes in audition and binocular disparity in vision also contribute to the perception of motion in depth. Here, we presented subjects with several combinations of auditory and visual depth-cues to investigate multisensory interactions during processing of motion in depth. The task was to discriminate the direction of auditory motion in depth according to increasing or decreasing intensity. Rising or falling auditory frequency provided an additional within-audition cue that matched or did not match the intensity change (i.e. intensity-frequency (IF) “matched vs. unmatched” conditions). In two-thirds of the trials, a task-irrelevant visual stimulus moved either in the same or opposite direction of the auditory target, leading to audio–visual “congruent vs. incongruent” between-modalities depth-cues. Furthermore, these conditions were presented either with or without binocular disparity. Behavioral data showed that the best performance was observed in the audio–visual congruent condition with IF matched. Brain imaging results revealed maximal response in visual area V3A when all cues provided congruent and reliable depth information (i.e. audio–visual congruent, IF-matched condition including disparity cues). Analyses of effective connectivity revealed increased coupling from auditory cortex to V3A specifically in audio–visual congruent trials. We conclude that within- and between-modalities cues jointly contribute to the processing of motion direction in depth, and that they do so via dynamic changes of connectivity between visual and auditory cortices. PMID:23333414
Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.
Shibata, Kazuhisa; Sasaki, Yuka; Kawato, Mitsuo; Watanabe, Takeo
2016-09-01
Visual perceptual learning (VPL) is long-term performance improvement as a result of perceptual experience. It is unclear whether VPL is associated with refinement in representations of the trained feature (feature-based plasticity), improvement in processing of the trained task (task-based plasticity), or both. Here, we provide empirical evidence that VPL of motion detection is associated with both types of plasticity which occur predominantly in different brain areas. Before and after training on a motion detection task, subjects' neural responses to the trained motion stimuli were measured using functional magnetic resonance imaging. In V3A, significant response changes after training were observed specifically to the trained motion stimulus but independently of whether subjects performed the trained task. This suggests that the response changes in V3A represent feature-based plasticity in VPL of motion detection. In V1 and the intraparietal sulcus, significant response changes were found only when subjects performed the trained task on the trained motion stimulus. This suggests that the response changes in these areas reflect task-based plasticity. These results collectively suggest that VPL of motion detection is associated with the 2 types of plasticity, which occur in different areas and therefore have separate mechanisms at least to some degree. © The Author 2016. Published by Oxford University Press.
Adaptive changes in early and late blind: a fMRI study of Braille reading.
Burton, H; Snyder, A Z; Conturo, T E; Akbudak, E; Ollinger, J M; Raichle, M E
2002-01-01
Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string "######". This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex.
Adaptive Changes in Early and Late Blind: A fMRI Study of Braille Reading
SNYDER, A. Z.; CONTURO, T. E.; AKBUDAK, E.; OLLINGER, J. M.; RAICHLE, M. E.
2013-01-01
Braille reading depends on remarkable adaptations that connect the somatosensory system to language. We hypothesized that the pattern of cortical activations in blind individuals reading Braille would reflect these adaptations. Activations in visual (occipital-temporal), frontal-language, and somatosensory cortex in blind individuals reading Braille were examined for evidence of differences relative to previously reported studies of sighted subjects reading print or receiving tactile stimulation. Nine congenitally blind and seven late-onset blind subjects were studied with fMRI as they covertly performed verb generation in response to reading Braille embossed nouns. The control task was reading the nonlexical Braille string “######”. This study emphasized image analysis in individual subjects rather than pooled data. Group differences were examined by comparing magnitudes and spatial extent of activated regions first determined to be significant using the general linear model. The major adaptive change was robust activation of visual cortex despite the complete absence of vision in all subjects. This included foci in peri-calcarine, lingual, cuneus and fusiform cortex, and in the lateral and superior occipital gyri encompassing primary (V1), secondary (V2), and higher tier (VP, V4v, LO and possibly V3A) visual areas previously identified in sighted subjects. Subjects who never had vision differed from late blind subjects in showing even greater activity in occipital-temporal cortex, provisionally corresponding to V5/MT and V8. In addition, the early blind had stronger activation of occipital cortex located contralateral to the hand used for reading Braille. Responses in frontal and parietal cortex were nearly identical in both subject groups. There was no evidence of modifications in frontal cortex language areas (inferior frontal gyrus and dorsolateral prefrontal cortex). Surprisingly, there was also no evidence of an adaptive expansion of the somatosensory or primary motor cortex dedicated to the Braille reading finger(s). Lack of evidence for an expected enlargement of the somatosensory representation may have resulted from balanced tactile stimulation and gross motor demands during Braille reading of nouns and the control fields. Extensive engagement of visual cortex without vision is discussed in reference to the special demands of Braille reading. It is argued that these responses may represent critical language processing mechanisms normally present in visual cortex. PMID:11784773
Sundberg, Kristy A.; Mitchell, Jude F.; Gawne, Timothy J.
2012-01-01
Many previous studies have demonstrated that changes in selective attention can alter the response magnitude of visual cortical neurons, but there has been little evidence for attention affecting response latency. Small latency differences, though hard to detect, can potentially be of functional importance, and may also give insight into the mechanisms of neuronal computation. We therefore reexamined the effect of attention on the response latency of both single units and the local field potential (LFP) in primate visual cortical area V4. We find that attention does produce small (1–2 ms) but significant reductions in the latency of both the spiking and LFP responses. Though attention, like contrast elevation, reduces response latencies, we find that the two have different effects on the magnitude of the LFP. Contrast elevations increase and attention decreases the magnitude of the initial deflection of the stimulus-evoked LFP. Both contrast elevation and attention increase the magnitude of the spiking response. We speculate that latencies may be reduced at higher contrast because stronger stimulus inputs drive neurons more rapidly to spiking threshold, while attention may reduce latencies by placing neurons in a more depolarized state closer to threshold before stimulus onset. PMID:23136440
Bernstein, Lynne E.; Jiang, Jintao; Pantazis, Dimitrios; Lu, Zhong-Lin; Joshi, Anand
2011-01-01
The talking face affords multiple types of information. To isolate cortical sites with responsibility for integrating linguistically relevant visual speech cues, speech and non-speech face gestures were presented in natural video and point-light displays during fMRI scanning at 3.0T. Participants with normal hearing viewed the stimuli and also viewed localizers for the fusiform face area (FFA), the lateral occipital complex (LOC), and the visual motion (V5/MT) regions of interest (ROIs). The FFA, the LOC, and V5/MT were significantly less activated for speech relative to non-speech and control stimuli. Distinct activation of the posterior superior temporal sulcus and the adjacent middle temporal gyrus to speech, independent of media, was obtained in group analyses. Individual analyses showed that speech and non-speech stimuli were associated with adjacent but different activations, with the speech activations more anterior. We suggest that the speech activation area is the temporal visual speech area (TVSA), and that it can be localized with the combination of stimuli used in this study. PMID:20853377
González-Hernández, J A; Pita-Alcorta, C; Padrón, A; Finalé, A; Galán, L; Martínez, E; Díaz-Comas, L; Samper-González, J A; Lencer, R; Marot, M
2014-10-01
Basic visual dysfunctions are commonly reported in schizophrenia; however their value as diagnostic tools remains uncertain. This study reports a novel electrophysiological approach using checkerboard visual evoked potentials (VEP). Sources of spectral resolution VEP-components C1, P1 and N1 were estimated by LORETA, and the band-effects (BSE) on these estimated sources were explored in each subject. BSEs were Z-transformed for each component and relationships with clinical variables were assessed. Clinical effects were evaluated by ROC-curves and predictive values. Forty-eight patients with schizophrenia (SZ) and 55 healthy controls participated in the study. For each of the 48 patients, the three VEP components were localized to both dorsal and ventral brain areas and also deviated from a normal distribution. P1 and N1 deviations were independent of treatment, illness chronicity or gender. Results from LORETA also suggest that deficits in thalamus, posterior cingulum, precuneus, superior parietal and medial occipitotemporal areas were associated with symptom severity. While positive symptoms were more strongly related to sensory processing deficits (P1), negative symptoms were more strongly related to perceptual processing dysfunction (N1). Clinical validation revealed positive and negative predictive values for correctly classifying SZ of 100% and 77%, respectively. Classification in an additional independent sample of 30 SZ corroborated these results. In summary, this novel approach revealed basic visual dysfunctions in all patients with schizophrenia, suggesting these visual dysfunctions represent a promising candidate as a biomarker for schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.
Miconi, Thomas; VanRullen, Rufin
2016-02-01
Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.
2004-01-01
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334
Wang, Hao; Crewther, Sheila G.; Liang, Minglong; Laycock, Robin; Yu, Tao; Alexander, Bonnie; Crewther, David P.; Wang, Jian; Yin, Zhengqin
2017-01-01
Strabismic amblyopia is now acknowledged to be more than a simple loss of acuity and to involve alterations in visually driven attention, though whether this applies to both stimulus-driven and goal-directed attention has not been explored. Hence we investigated monocular threshold performance during a motion salience-driven attention task involving detection of a coherent dot motion target in one of four quadrants in adult controls and those with strabismic amblyopia. Psychophysical motion thresholds were impaired for the strabismic amblyopic eye, requiring longer inspection time and consequently slower target speed for detection compared to the fellow eye or control eyes. We compared fMRI activation and functional connectivity between four ROIs of the occipital-parieto-frontal visual attention network [primary visual cortex (V1), motion sensitive area V5, intraparietal sulcus (IPS) and frontal eye fields (FEF)], during a suprathreshold version of the motion-driven attention task, and also a simple goal-directed task, requiring voluntary saccades to targets randomly appearing along a horizontal line. Activation was compared when viewed monocularly by controls and the amblyopic and its fellow eye in strabismics. BOLD activation was weaker in IPS, FEF and V5 for both tasks when viewing through the amblyopic eye compared to viewing through the fellow eye or control participants' non-dominant eye. No difference in V1 activation was seen between the amblyopic and fellow eye, nor between the two eyes of control participants during the motion salience task, though V1 activation was significantly less through the amblyopic eye than through the fellow eye and control group non-dominant eye viewing during the voluntary saccade task. Functional correlations of ROIs within the attention network were impaired through the amblyopic eye during the motion salience task, whereas this was not the case during the voluntary saccade task. Specifically, FEF showed reduced functional connectivity with visual cortical nodes during the motion salience task through the amblyopic eye, despite suprathreshold detection performance. This suggests that the reduced ability of the amblyopic eye to activate the frontal components of the attention networks may help explain the aberrant control of visual attention and eye movements in amblyopes. PMID:28484381
Tao, Xiaofeng; Zhang, Bin; Shen, Guofu; Wensveen, Janice; Smith, Earl L; Nishimoto, Shinji; Ohzawa, Izumi; Chino, Yuzo M
2014-10-08
Experiencing different quality images in the two eyes soon after birth can cause amblyopia, a developmental vision disorder. Amblyopic humans show the reduced capacity for judging the relative position of a visual target in reference to nearby stimulus elements (position uncertainty) and often experience visual image distortion. Although abnormal pooling of local stimulus information by neurons beyond striate cortex (V1) is often suggested as a neural basis of these deficits, extrastriate neurons in the amblyopic brain have rarely been studied using microelectrode recording methods. The receptive field (RF) of neurons in visual area V2 in normal monkeys is made up of multiple subfields that are thought to reflect V1 inputs and are capable of encoding the spatial relationship between local stimulus features. We created primate models of anisometropic amblyopia and analyzed the RF subfield maps for multiple nearby V2 neurons of anesthetized monkeys by using dynamic two-dimensional noise stimuli and reverse correlation methods. Unlike in normal monkeys, the subfield maps of V2 neurons in amblyopic monkeys were severely disorganized: subfield maps showed higher heterogeneity within each neuron as well as across nearby neurons. Amblyopic V2 neurons exhibited robust binocular suppression and the strength of the suppression was positively correlated with the degree of hereogeneity and the severity of amblyopia in individual monkeys. Our results suggest that the disorganized subfield maps and robust binocular suppression of amblyopic V2 neurons are likely to adversely affect the higher stages of cortical processing resulting in position uncertainty and image distortion. Copyright © 2014 the authors 0270-6474/14/3413840-15$15.00/0.
Stereoscopic processing of crossed and uncrossed disparities in the human visual cortex.
Li, Yuan; Zhang, Chuncheng; Hou, Chunping; Yao, Li; Zhang, Jiacai; Long, Zhiying
2017-12-21
Binocular disparity provides a powerful cue for depth perception in a stereoscopic environment. Despite increasing knowledge of the cortical areas that process disparity from neuroimaging studies, the neural mechanism underlying disparity sign processing [crossed disparity (CD)/uncrossed disparity (UD)] is still poorly understood. In the present study, functional magnetic resonance imaging (fMRI) was used to explore different neural features that are relevant to disparity-sign processing. We performed an fMRI experiment on 27 right-handed healthy human volunteers by using both general linear model (GLM) and multi-voxel pattern analysis (MVPA) methods. First, GLM was used to determine the cortical areas that displayed different responses to different disparity signs. Second, MVPA was used to determine how the cortical areas discriminate different disparity signs. The GLM analysis results indicated that shapes with UD induced significantly stronger activity in the sub-region (LO) of the lateral occipital cortex (LOC) than those with CD. The results of MVPA based on region of interest indicated that areas V3d and V3A displayed higher accuracy in the discrimination of crossed and uncrossed disparities than LOC. The results of searchlight-based MVPA indicated that the dorsal visual cortex showed significantly higher prediction accuracy than the ventral visual cortex and the sub-region LO of LOC showed high accuracy in the discrimination of crossed and uncrossed disparities. The results may suggest the dorsal visual areas are more discriminative to the disparity signs than the ventral visual areas although they are not sensitive to the disparity sign processing. Moreover, the LO in the ventral visual cortex is relevant to the recognition of shapes with different disparity signs and discriminative to the disparity sign.
Optical images of visible and invisible percepts in the primary visual cortex of primates
Macknik, Stephen L.; Haglund, Michael M.
1999-01-01
We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus. PMID:10611363
Korosoglou, G; Hansen, A; Bekeredjian, R; Filusch, A; Hardt, S; Wolf, D; Schellberg, D; Katus, H A; Kuecherer, H
2006-01-01
Objective To evaluate whether myocardial parametric imaging (MPI) is superior to visual assessment for the evaluation of myocardial viability. Methods and results Myocardial contrast echocardiography (MCE) was assessed in 11 pigs before, during, and after left anterior descending coronary artery occlusion and in 32 patients with ischaemic heart disease by using intravenous SonoVue administration. In experimental studies perfusion defect area assessment by MPI was compared with visually guided perfusion defect planimetry. Histological assessment of necrotic tissue was the standard reference. In clinical studies viability was assessed on a segmental level by (1) visual analysis of myocardial opacification; (2) quantitative estimation of myocardial blood flow in regions of interest; and (3) MPI. Functional recovery between three and six months after revascularisation was the standard reference. In experimental studies, compared with visually guided perfusion defect planimetry, planimetric assessment of infarct size by MPI correlated more significantly with histology (r2 = 0.92 versus r2 = 0.56) and had a lower intraobserver variability (4% v 15%, p < 0.05). In clinical studies, MPI had higher specificity (66% v 43%, p < 0.05) than visual MCE and good accuracy (81%) for viability detection. It was less time consuming (3.4 (1.6) v 9.2 (2.4) minutes per image, p < 0.05) than quantitative blood flow estimation by regions of interest and increased the agreement between observers interpreting myocardial perfusion (κ = 0.87 v κ = 0.75, p < 0.05). Conclusion MPI is useful for the evaluation of myocardial viability both in animals and in patients. It is less time consuming than quantification analysis by regions of interest and less observer dependent than visual analysis. Thus, strategies incorporating this technique may be valuable for the evaluation of myocardial viability in clinical routine. PMID:15939722
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Visscher, Kristina M.
2015-01-01
Attention facilitates the processing of task-relevant visual information and suppresses interference from task-irrelevant information. Modulations of neural activity in visual cortex depend on attention, and likely result from signals originating in fronto-parietal and cingulo-opercular regions of cortex. Here, we tested the hypothesis that attentional facilitation of visual processing is accomplished in part by changes in how brain networks involved in attentional control interact with sectors of V1 that represent different retinal eccentricities. We measured the strength of background connectivity between fronto-parietal and cingulo-opercular regions with different eccentricity sectors in V1 using functional MRI data that were collected while participants performed tasks involving attention to either a centrally presented visual stimulus or a simultaneously presented auditory stimulus. We found that when the visual stimulus was attended, background connectivity between V1 and the left frontal eye fields (FEF), left intraparietal sulcus (IPS), and right IPS varied strongly across different eccentricity sectors in V1 so that foveal sectors were more strongly connected than peripheral sectors. This retinotopic gradient was weaker when the visual stimulus was ignored, indicating that it was driven by attentional effects. Greater task-driven differences between foveal and peripheral sectors in background connectivity to these regions were associated with better performance on the visual task and faster response times on correct trials. These findings are consistent with the notion that attention drives the configuration of task-specific functional pathways that enable the prioritized processing of task-relevant visual information, and show that the prioritization of visual information by attentional processes may be encoded in the retinotopic gradient of connectivty between V1 and fronto-parietal regions. PMID:26106320
Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
Freedman, David J.
2014-01-01
Summary The primate visual system consists of multiple hierarchically organized cortical areas, each specialized for processing distinct aspects of the visual scene. For example, color and form are encoded in ventral pathway areas such as V4 and inferior temporal cortex, while motion is preferentially processed in dorsal pathway areas such as the middle temporal area. Such representations often need to be integrated perceptually to solve tasks which depend on multiple features. We tested the hypothesis that the lateral intraparietal area (LIP) integrates disparate task-relevant visual features by recording from LIP neurons in monkeys trained to identify target stimuli composed of conjunctions of color and motion features. We show that LIP neurons exhibit integrative representations of both color and motion features when they are task relevant, and task-dependent shifts of both direction and color tuning. This suggests that LIP plays a role in flexibly integrating task-relevant sensory signals. PMID:25199703
Emergence of Orientation Selectivity in the Mammalian Visual Pathway
Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph
2013-01-01
Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085
Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.
Acerbo, Martin J; Lazareva, Olga F; McInnerney, John; Leiker, Emily; Wasserman, Edward A; Poremba, Amy
2012-10-01
In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Figure-ground discrimination in the avian brain: The nucleus rotundus and its inhibitory complex
Acerbo, Martin J.; Lazareva, Olga F.; McInnerney, John; Leiker, Emily; Wasserman, Edward A.; Poremba, Amy
2012-01-01
In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. PMID:22917681
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey.
Baumann, R; van der Zwan, R; Peterhans, E
1997-06-01
An important task of vision is the segregation of figure and ground in situations of spatial occlusion. Psychophysical evidence suggests that the depth order at contours is defined early in visual processing. We have analysed this process in the visual cortex of the alert monkey. The animals were trained on a visual fixation task which reinforced foveal viewing. During periods of active visual fixation, we recorded the responses of single neurons in striate and prestriate cortex (areas V1, V2, and V3/V3A). The stimuli mimicked situations of spatial occlusion, usually a uniform light (or dark) rectangle overlaying a grating texture of opposite contrast. The direction of figure and ground at the borders of these rectangles was defined by the direction of the terminating grating lines (occlusion cues). Neuronal responses were analysed with respect to figure-ground direction and contrast polarity at such contours. Striate neurons often failed to respond to such stimuli, or were selective for contrast polarity; others were non-selective. Some neurons preferred a certain combination of figure-ground direction and contrast polarity. These neurons were rare both in striate and prestriate cortex. The majority of neurons signalled figure-ground direction independent of contrast polarity. These neurons were only found in prestriate cortex. We explain these responses in terms of a model which also explains neuronal signals of illusory contours. These results suggest that occlusion cues are used at an early level of processing to segregate figure and ground at contours.
Riga, Maurizio S; Lladó-Pelfort, Laia; Artigas, Francesc; Celada, Pau
2017-12-06
5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT 1A /5-HT 2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT 1A and 5-HT 2A receptors. Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT 2A -R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT 1A -R antagonist WAY-100635. 5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity. The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT 1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity. Copyright © 2017. Published by Elsevier Ltd.
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
The prevailing view of human lateral occipitotemporal cortex (LOTC) organization suggests a single area selective for images of the human body (extrastriate body area, EBA) that highly overlaps with the human motion-selective complex (hMT+). Using functional magnetic resonance imaging with higher resolution (1.5mm voxels) than past studies (3–4mm voxels), we examined the fine-scale spatial organization of these activations relative to each other, as well as to visual field maps in LOTC. Rather than one contiguous EBA highly overlapping hMT+, results indicate three limb-selective activations organized in a crescent surrounding hMT+: (1) an activation posterior to hMT+ on the lateral occipital sulcus/middle occipital gyrus (LOS/MOG) overlapping the lower vertical meridian shared between visual field maps LO-2 and TO-1, (2) an activation anterior to hMT+ on the middle temporal gyrus (MTG) consistently overlapping the lower vertical meridian of TO-2 and extending outside presently defined visual field maps, and (3) an activation inferior to hMT+ on the inferotemporal gyrus (ITG) overlapping the parafoveal representation of the TO cluster. This crescent organization of limb-selective activations surrounding hMT+ is reproducible over a span of three years and is consistent across different image types used for localization. Further, these regions exhibit differential position properties: preference for contralateral image presentation decreases and preference for foveal presentation increases from the limb-selective LOS to the MTG. Finally, the relationship between limb-selective activations and visual field maps extends to the dorsal stream where a posterior IPS activation overlaps V7. Overall, our measurements demonstrate a series of LOTC limb-selective activations that 1) have separate anatomical and functional boundaries, 2) overlap distinct visual field maps, and 3) illustrate differential position properties. These findings indicate that category selectivity alone is an insufficient organization principle for defining brain areas. Instead, multiple properties are necessary in order to parcellate and understand the functional organization of high-level visual cortex. PMID:21439386
Braun, J
1994-02-01
In more than one respect, visual search for the most salient or the least salient item in a display are different kinds of visual tasks. The present work investigated whether this difference is primarily one of perceptual difficulty, or whether it is more fundamental and relates to visual attention. Display items of different salience were produced by varying either size, contrast, color saturation, or pattern. Perceptual masking was employed and, on average, mask onset was delayed longer in search for the least salient item than in search for the most salient item. As a result, the two types of visual search presented comparable perceptual difficulty, as judged by psychophysical measures of performance, effective stimulus contrast, and stability of decision criterion. To investigate the role of attention in the two types of search, observers attempted to carry out a letter discrimination and a search task concurrently. To discriminate the letters, observers had to direct visual attention at the center of the display and, thus, leave unattended the periphery, which contained target and distractors of the search task. In this situation, visual search for the least salient item was severely impaired while visual search for the most salient item was only moderately affected, demonstrating a fundamental difference with respect to visual attention. A qualitatively identical pattern of results was encountered by Schiller and Lee (1991), who used similar visual search tasks to assess the effect of a lesion in extrastriate area V4 of the macaque.
Eye shape and retinal topography in owls (Aves: Strigiformes).
Lisney, Thomas J; Iwaniuk, Andrew N; Bandet, Mischa V; Wylie, Douglas R
2012-01-01
The eyes of vertebrates show adaptations to the visual environments in which they evolve. For example, eye shape is associated with activity pattern, while retinal topography is related to the symmetry or 'openness' of the habitat of a species. Although these relationships are well documented in many vertebrates including birds, the extent to which they hold true for species within the same avian order is not well understood. Owls (Strigiformes) represent an ideal group for the study of interspecific variation in the avian visual system because they are one of very few avian orders to contain species that vary in both activity pattern and habitat preference. Here, we examined interspecific variation in eye shape and retinal topography in nine species of owl. Eye shape (the ratio of corneal diameter to eye axial length) differed among species, with nocturnal species having relatively larger corneal diameters than diurnal species. All the owl species have an area of high retinal ganglion cell (RGC) density in the temporal retina and a visual streak of increased cell density extending across the central retina from temporal to nasal. However, the organization and degree of elongation of the visual streak varied considerably among species and this variation was quantified using H:V ratios. Species that live in open habitats and/or that are more diurnally active have well-defined, elongated visual streaks and high H:V ratios (3.88-2.33). In contrast, most nocturnal and/or forest-dwelling owls have a poorly defined visual streak, a more radially symmetrical arrangement of RGCs and lower H:V ratios (1.77-1.27). The results of a hierarchical cluster analysis indicate that the apparent interspecific variation is associated with activity pattern and habitat as opposed to the phylogenetic relationships among species. In seven species, the presence of a fovea was confirmed and it is suggested that all strigid owls may possess a fovea, whereas the tytonid barn owl (Tyto alba) does not. A size-frequency analysis of cell soma area indicates that a number of different RGC classes are represented in owls, including a population of large RGCs (cell soma area >150 µm(2)) that resemble the giant RGCs reported in other vertebrates. In conclusion, eye shape and retinal topography in owls vary among species and this variation is associated with different activity patterns and habitat preferences, thereby supporting similar observations in other vertebrates. Copyright © 2012 S. Karger AG, Basel.
Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules
Qiu, Fangtu T.; von der Heydt, Rüdiger
2006-01-01
Figure-ground organization is a process by which the visual system identifies some image regions as foreground and others as background, inferring three-dimensional (3D) layout from 2D displays. A recent study reported that edge responses of neurons in area V2 are selective for side-of-figure, suggesting that figure-ground organization is encoded in the contour signals (border-ownership coding). Here we show that area V2 combines two strategies of computation, one that exploits binocular stereoscopic information for the definition of local depth order, and another that exploits the global configuration of contours (gestalt factors). These are combined in single neurons so that the ‘near’ side of the preferred 3D edge generally coincides with the preferred side-of-figure in 2D displays. Thus, area V2 represents the borders of 2D figures as edges of surfaces, as if the figures were objects in 3D space. Even in 3D displays gestalt factors influence the responses and can enhance or null the stereoscopic depth information. PMID:15996555
Figure and ground in the visual cortex: v2 combines stereoscopic cues with gestalt rules.
Qiu, Fangtu T; von der Heydt, Rüdiger
2005-07-07
Figure-ground organization is a process by which the visual system identifies some image regions as foreground and others as background, inferring 3D layout from 2D displays. A recent study reported that edge responses of neurons in area V2 are selective for side-of-figure, suggesting that figure-ground organization is encoded in the contour signals (border ownership coding). Here, we show that area V2 combines two strategies of computation, one that exploits binocular stereoscopic information for the definition of local depth order, and another that exploits the global configuration of contours (Gestalt factors). These are combined in single neurons so that the "near" side of the preferred 3D edge generally coincides with the preferred side-of-figure in 2D displays. Thus, area V2 represents the borders of 2D figures as edges of surfaces, as if the figures were objects in 3D space. Even in 3D displays, Gestalt factors influence the responses and can enhance or null the stereoscopic depth information.
Computational models of cortical visual processing.
Heeger, D J; Simoncelli, E P; Movshon, J A
1996-01-01
The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties. PMID:8570605
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
Deal, Samantha; Wambaugh, John; Judson, Richard; Mosher, Shad; Radio, Nick; Houck, Keith; Padilla, Stephanie
2016-09-01
One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Henry, Christopher A.
2013-01-01
A key property of neurons in primary visual cortex (V1) is the distinction between simple and complex cells. Recent reports in cat visual cortex indicate the categorization of simple and complex can change depending on stimulus conditions. We investigated the stability of the simple/complex classification with changes in drive produced by either contrast or modulation by the extraclassical receptive field (eCRF). These two conditions were reported to increase the proportion of simple cells in cat cortex. The ratio of the modulation depth of the response (F1) to the elevation of response (F0) to a drifting grating (F1/F0 ratio) was used as the measure of simple/complex. The majority of V1 complex cells remained classified as complex with decreasing contrast. Near contrast threshold, an equal proportion of simple and complex cells changed their classification. The F1/F0 ratio was stable between optimal and large stimulus areas even for those neurons that showed strong eCRF suppression. There was no discernible overall effect of surrounding spatial context on the F1/F0 ratio. Simple/complex cell classification is relatively stable across a range of stimulus drives, produced by either contrast or eCRF suppression. PMID:23303859
Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César
2015-10-01
Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.
A cross-validated cytoarchitectonic atlas of the human ventral visual stream.
Rosenke, Mona; Weiner, Kevin S; Barnett, Michael A; Zilles, Karl; Amunts, Katrin; Goebel, Rainer; Grill-Spector, Kalanit
2018-04-15
The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations. Copyright © 2017 Elsevier Inc. All rights reserved.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Decoding grating orientation from microelectrode array recordings in monkey cortical area V4.
Manyakov, Nikolay V; Van Hulle, Marc M
2010-04-01
We propose an invasive brain-machine interface (BMI) that decodes the orientation of a visual grating from spike train recordings made with a 96 microelectrodes array chronically implanted into the prelunate gyrus (area V4) of a rhesus monkey. The orientation is decoded irrespective of the grating's spatial frequency. Since pyramidal cells are less prominent in visual areas, compared to (pre)motor areas, the recordings contain spikes with smaller amplitudes, compared to the noise level. Hence, rather than performing spike decoding, feature selection algorithms are applied to extract the required information for the decoder. Two types of feature selection procedures are compared, filter and wrapper. The wrapper is combined with a linear discriminant analysis classifier, and the filter is followed by a radial-basis function support vector machine classifier. In addition, since we have a multiclass classification problen, different methods for combining pairwise classifiers are compared.
Proline and COMT Status Affect Visual Connectivity in Children with 22q11.2 Deletion Syndrome
Magnée, Maurice J. C. M.; Lamme, Victor A. F.; de Sain-van der Velden, Monique G. M.; Vorstman, Jacob A. S.; Kemner, Chantal
2011-01-01
Background Individuals with the 22q11.2 deletion syndrome (22q11DS) are at increased risk for schizophrenia and Autism Spectrum Disorders (ASDs). Given the prevalence of visual processing deficits in these three disorders, a causal relationship between genes in the deleted region of chromosome 22 and visual processing is likely. Therefore, 22q11DS may represent a unique model to understand the neurobiology of visual processing deficits related with ASD and psychosis. Methodology We measured Event-Related Potentials (ERPs) during a texture segregation task in 58 children with 22q11DS and 100 age-matched controls. The C1 component was used to index afferent activity of visual cortex area V1; the texture negativity wave provided a measure for the integrity of recurrent connections in the visual cortical system. COMT genotype and plasma proline levels were assessed in 22q11DS individuals. Principal Findings Children with 22q11DS showed enhanced feedforward activity starting from 70 ms after visual presentation. ERP activity related to visual feedback activity was reduced in the 22q11DS group, which was seen as less texture negativity around 150 ms post presentation. Within the 22q11DS group we further demonstrated an association between high plasma proline levels and aberrant feedback/feedforward ratios, which was moderated by the COMT 158 genotype. Conclusions These findings confirm the presence of early visual processing deficits in 22q11DS. We discuss these in terms of dysfunctional synaptic plasticity in early visual processing areas, possibly associated with deviant dopaminergic and glutamatergic transmission. As such, our findings may serve as a promising biomarker related to the development of schizophrenia among 22q11DS individuals. PMID:21998713
Feature extraction inspired by V1 in visual cortex
NASA Astrophysics Data System (ADS)
Lv, Chao; Xu, Yuelei; Zhang, Xulei; Ma, Shiping; Li, Shuai; Xin, Peng; Zhu, Mingning; Ma, Hongqiang
2018-04-01
Target feature extraction plays an important role in pattern recognition. It is the most complicated activity in the brain mechanism of biological vision. Inspired by high properties of primary visual cortex (V1) in extracting dynamic and static features, a visual perception model was raised. Firstly, 28 spatial-temporal filters with different orientations, half-squaring operation and divisive normalization were adopted to obtain the responses of V1 simple cells; then, an adjustable parameter was added to the output weight so that the response of complex cells was got. Experimental results indicate that the proposed V1 model can perceive motion information well. Besides, it has a good edge detection capability. The model inspired by V1 has good performance in feature extraction and effectively combines brain-inspired intelligence with computer vision.
Kaskan, Peter M.; Lu, Haidong D.; Dillenburger, Barbara C.; Roe, Anna W.; Kaas, Jon H.
2007-01-01
A significant concept in neuroscience is that sensory areas of the neocortex have evolved the remarkable ability to represent a number of stimulus features within the confines of a global map of the sensory periphery. Modularity, the term often used to describe the inhomogeneous nature of the neocortex, is without a doubt an important organizational principle of early sensory areas, such as the primary visual cortex (V1). Ocular dominance columns, one type of module in V1, are found in many primate species as well as in carnivores. Yet, their variable presence in some New World monkey species and complete absence in other species has been enigmatic. Here, we demonstrate that optical imaging reveals the presence of ocular dominance columns in the superficial layers of V1 of owl monkeys (Aotus trivirgatus), even though the geniculate inputs related to each eye are highly overlapping in layer 4. The ocular dominance columns in owl monkeys revealed by optical imaging are circular in appearance. The distance between left eye centers and right eye centers is approximately 650 μm. We find no relationship between ocular dominance centers and other modular organizational features such as orientation pinwheels or the centers of the cytochrome oxidase blobs. These results are significant because they suggest that functional columns may exist in the absence of obvious differences in the distributions of activating inputs and ocular dominance columns may be more widely distributed across mammalian taxa than commonly suggested. PMID:18974855
Natural course of visual field loss in patients with Type 2 Usher syndrome.
Fishman, Gerald A; Bozbeyoglu, Simge; Massof, Robert W; Kimberling, William
2007-06-01
To evaluate the natural course of visual field loss in patients with Type 2 Usher syndrome and different patterns of visual field loss. Fifty-eight patients with Type 2 Usher syndrome who had at least three visual field measurements during a period of at least 3 years were studied. Kinetic visual fields measured on a standard calibrated Goldmann perimeter with II4e and V4e targets were analyzed. The visual field areas in both eyes were determined by planimetry with the use of a digitalizing tablet and computer software and expressed in square inches. The data for each visual field area measurement were transformed to a natural log unit. Using a mixed model regression analysis, values for the half-life of field loss (time during which half of the remaining field area is lost) were estimated. Three different patterns of visual field loss were identified, and the half-life time for each pattern of loss was calculated. Of the 58 patients, 11 were classified as having pattern type I, 12 with pattern type II, and 14 with pattern type III. Of 21 patients whose visual field loss was so advanced that they could not be classified, 15 showed only a small residual central field (Group A) and 6 showed a residual central field with a peripheral island (Group B). The average half-life times varied between 3.85 and 7.37 for the II4e test target and 4.59 to 6.42 for the V4e target. There was no statistically significant difference in the half-life times between the various patterns of field loss or for the test targets. The average half-life times for visual field loss in patients with Usher syndrome Type 2 were statistically similar among those patients with different patterns of visual field loss. These findings will be useful for counseling patients with Type 2 Usher syndrome as to their prognosis for anticipated visual field loss.
Figure-ground activity in V1 and guidance of saccadic eye movements.
Supèr, Hans
2006-01-01
Every day we shift our gaze about 150.000 times mostly without noticing it. The direction of these gaze shifts are not random but directed by sensory information and internal factors. After each movement the eyes hold still for a brief moment so that visual information at the center of our gaze can be processed in detail. This means that visual information at the saccade target location is sufficient to accurately guide the gaze shift but yet is not sufficiently processed to be fully perceived. In this paper I will discuss the possible role of activity in the primary visual cortex (V1), in particular figure-ground activity, in oculo-motor behavior. Figure-ground activity occurs during the late response period of V1 neurons and correlates with perception. The strength of figure-ground responses predicts the direction and moment of saccadic eye movements. The superior colliculus, a gaze control center that integrates visual and motor signals, receives direct anatomical connections from V1. These projections may convey the perceptual information that is required for appropriate gaze shifts. In conclusion, figure-ground activity in V1 may act as an intermediate component linking visual and motor signals.
Tao, X.; Zhang, B.; Smith, E. L.; Nishimoto, S.; Ohzawa, I.
2012-01-01
We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features. PMID:22114163
Tracking blue cone signals in the primate brain.
Jayakumar, Jaikishan; Dreher, Bogdan; Vidyasagar, Trichur R
2013-05-01
In this paper, we review the path taken by signals originating from the short wavelength sensitive cones (S-cones) in Old World and New World primates. Two types of retinal ganglion cells (RGCs) carrying S-cone signals (blue-On and blue-Off cells) project to the dorsal lateral geniculate nucleus (dLGN) in the thalamus. In all primates, these S-cone signals are relayed through the 'dust-like' (konis in classical Greek) dLGN cells. In New World primates such as common marmoset, these very small cells are known to form distinct and spatially extensive, koniocellular layers. Although in Old World primates, such as macaques, koniocellular layers tend to be very thin, the adjacent parvocellular layers contain distinct koniocellular extensions. It appears that all S-cone signals are relayed through such konio cells, whether they are in the main koniocellular layers or in their colonies within the parvocellular layers of the dLGN. In the primary visual cortex, these signals begin to merge with the signals carried by the other two principal parallel channels, namely the magnocellular and parvocellular channels. This article will also review the possible routes taken by the S-cone signals to reach one of the topographically organised extrastriate visual cortical areas, the middle temporal area (area MT). This area is the major conduit for signals reaching the parietal cortex. Alternative visual inputs to area MT not relayed via the primary visual cortex area (V1) may provide the neurological basis for the phenomenon of 'blindsight' observed in human and non-human primates, who have partial or complete damage to the primary visual cortex. Short wavelength sensitive cone (S-cone) signals to area MT may also play a role in directing visual attention with possible implications for understanding the pathology in dyslexia and some of its treatment options. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.
Woi, Pui Juan; Kaur, Sharanjeet; Waugh, Sarah J.; Hairol, Mohd Izzuddin
2016-01-01
The human visual system is sensitive in detecting objects that have different luminance level from their background, known as first-order or luminance-modulated (LM) stimuli. We are also able to detect objects that have the same mean luminance as their background, only differing in contrast (or other attributes). Such objects are known as second-order or contrast-modulated (CM), stimuli. CM stimuli are thought to be processed in higher visual areas compared to LM stimuli, and may be more susceptible to ageing. We compared visual acuities (VA) of five healthy older adults (54.0±1.83 years old) and five healthy younger adults (25.4±1.29 years old) with LM and CM letters under monocular and binocular viewing. For monocular viewing, age had no effect on VA [F(1, 8)= 2.50, p> 0.05]. However, there was a significant main effect of age on VA under binocular viewing [F(1, 8)= 5.67, p< 0.05]. Binocular VA with CM letters in younger adults was approximately two lines better than that in older adults. For LM, binocular summation ratios were similar for older (1.16±0.21) and younger (1.15±0.06) adults. For CM, younger adults had higher binocular summation ratio (1.39±0.08) compared to older adults (1.12±0.09). Binocular viewing improved VA with LM letters for both groups similarly. However, in older adults, binocular viewing did not improve VA with CM letters as much as in younger adults. This could reflect a decline of higher visual areas due to ageing process, most likely higher than V1, which may be missed if measured with luminance-based stimuli alone. PMID:28184281
Gaglianese, A; Costagli, M; Ueno, K; Ricciardi, E; Bernardi, G; Pietrini, P; Cheng, K
2015-01-22
The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypassing the V1, through a direct pathway. We aimed at elucidating whether this direct route between LGN and hMT+ represents a 'fast lane' reserved to high-speed motion, as proposed previously, or it is merely involved in processing motion information irrespective of speeds. We evaluated functional magnetic resonance imaging (fMRI) responses elicited by moving visual stimuli and applied connectivity analyses to investigate the effect of motion speed on the causal influence between LGN and hMT+, independent of V1, using the Conditional Granger Causality (CGC) in the presence of slow and fast visual stimuli. Our results showed that at least part of the visual motion information from LGN reaches hMT+, bypassing V1, in response to both slow and fast motion speeds of the perceived stimuli. We also investigated whether motion speeds have different effects on the connections between LGN and functional subdivisions within hMT+: direct connections between LGN and MT-proper carry mainly slow motion information, while connections between LGN and MST carry mainly fast motion information. The existence of a parallel pathway that connects the LGN directly to hMT+ in response to both slow and fast speeds may explain why MT and MST can still respond in the presence of V1 lesions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Experience-dependent central vision deficits: Neurobiology and visual acuity.
Williams, Kate; Balsor, Justin L; Beshara, Simon; Beston, Brett R; Jones, David G; Murphy, Kathryn M
2015-09-01
Abnormal visual experience during childhood often leads to amblyopia, with strong links to binocular dysfunction that can include poor acuity in both eyes, especially in central vision. In animal models of amblyopia, the non-deprived eye is often considered normal and what limits binocular acuity. This leaves open the question whether monocular deprivation (MD) induces binocular dysfunction similar to what is found in amblyopia. In previous studies of MD cats, we found a loss of excitatory receptors restricted to the central visual field representation in visual cortex (V1), including both eyes' columns. This led us to ask two questions about the effects of MD: how quickly are receptors lost in V1? and is there an impact on binocular acuity? We found that just a few hours of MD caused a rapid loss of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor proteins across all of V1. But after a few days of MD, there was recovery in the visual periphery, leaving a loss of AMPA receptors only in the central region of V1. We reared animals with early MD followed by a long period of binocular vision and found binocular acuity deficits that were greatest in the central visual field. Our results suggest that the greater binocular acuity deficits in the central visual field are driven in part by the long-term loss of AMPA receptors in the central region of V1. Copyright © 2014 Elsevier Ltd. All rights reserved.
Novel Visualization of Large Health Related Data Sets
2015-03-01
Health Record Data: A Systematic Review B: McPeek Hinz E, Borland D, Shah H, West V, Hammond WE. Temporal Visualization of Diabetes Mellitus via Hemoglobin ...H, Borland D, McPeek Hinz E, West V, Hammond WE. Demonstration of Temporal Visualization of Diabetes Mellitus via Hemoglobin A1C Levels E... Hemoglobin A1c Levels and MultivariateVisualization of System-Wide National Health Service Data Using Radial Coordinates. (Copies in Appendix) 4.3
Fries, Pascal; Womelsdorf, Thilo; Oostenveld, Robert; Desimone, Robert
2008-04-30
Selective attention lends relevant sensory input priority access to higher-level brain areas and ultimately to behavior. Recent studies have suggested that those neurons in visual areas that are activated by an attended stimulus engage in enhanced gamma-band (30-70 Hz) synchronization compared with neurons activated by a distracter. Such precise synchronization could enhance the postsynaptic impact of cells carrying behaviorally relevant information. Previous studies have used the local field potential (LFP) power spectrum or spike-LFP coherence (SFC) to indirectly estimate spike synchronization. Here, we directly demonstrate zero-phase gamma-band coherence among spike trains of V4 neurons. This synchronization was particularly evident during visual stimulation and enhanced by selective attention, thus confirming the pattern inferred from LFP power and SFC. We therefore investigated the time course of LFP gamma-band power and found rapid dynamics consistent with interactions of top-down spatial and feature attention with bottom-up saliency. In addition to the modulation of synchronization during visual stimulation, selective attention significantly changed the prestimulus pattern of synchronization. Attention inside the receptive field of the recorded neuronal population enhanced gamma-band synchronization and strongly reduced alpha-band (9-11 Hz) synchronization in the prestimulus period. These results lend further support for a functional role of rhythmic neuronal synchronization in attentional stimulus selection.
Human V4 Activity Patterns Predict Behavioral Performance in Imagery of Object Color.
Bannert, Michael M; Bartels, Andreas
2018-04-11
Color is special among basic visual features in that it can form a defining part of objects that are engrained in our memory. Whereas most neuroimaging research on human color vision has focused on responses related to external stimulation, the present study investigated how sensory-driven color vision is linked to subjective color perception induced by object imagery. We recorded fMRI activity in male and female volunteers during viewing of abstract color stimuli that were red, green, or yellow in half of the runs. In the other half we asked them to produce mental images of colored, meaningful objects (such as tomato, grapes, banana) corresponding to the same three color categories. Although physically presented color could be decoded from all retinotopically mapped visual areas, only hV4 allowed predicting colors of imagined objects when classifiers were trained on responses to physical colors. Importantly, only neural signal in hV4 was predictive of behavioral performance in the color judgment task on a trial-by-trial basis. The commonality between neural representations of sensory-driven and imagined object color and the behavioral link to neural representations in hV4 identifies area hV4 as a perceptual hub linking externally triggered color vision with color in self-generated object imagery. SIGNIFICANCE STATEMENT Humans experience color not only when visually exploring the outside world, but also in the absence of visual input, for example when remembering, dreaming, and during imagery. It is not known where neural codes for sensory-driven and internally generated hue converge. In the current study we evoked matching subjective color percepts, one driven by physically presented color stimuli, the other by internally generated color imagery. This allowed us to identify area hV4 as the only site where neural codes of corresponding subjective color perception converged regardless of its origin. Color codes in hV4 also predicted behavioral performance in an imagery task, suggesting it forms a perceptual hub for color perception. Copyright © 2018 the authors 0270-6474/18/383657-12$15.00/0.
Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M
2012-05-01
Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
fMRI evidence for areas that process surface gloss in the human visual cortex
Sun, Hua-Chun; Ban, Hiroshi; Di Luca, Massimiliano; Welchman, Andrew E.
2015-01-01
Surface gloss is an important cue to the material properties of objects. Recent progress in the study of macaque’s brain has increased our understating of the areas involved in processing information about gloss, however the homologies with the human brain are not yet fully understood. Here we used human functional magnetic resonance imaging (fMRI) measurements to localize brain areas preferentially responding to glossy objects. We measured cortical activity for thirty-two rendered three-dimensional objects that had either Lambertian or specular surface properties. To control for differences in image structure, we overlaid a grid on the images and scrambled its cells. We found activations related to gloss in the posterior fusiform sulcus (pFs) and in area V3B/KO. Subsequent analysis with Granger causality mapping indicated that V3B/KO processes gloss information differently than pFs. Our results identify a small network of mid-level visual areas whose activity may be important in supporting the perception of surface gloss. PMID:25490434
Cumulative latency advance underlies fast visual processing in desynchronized brain state
Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan
2014-01-01
Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals. PMID:24347634
Cumulative latency advance underlies fast visual processing in desynchronized brain state.
Wang, Xu-dong; Chen, Cheng; Zhang, Dinghong; Yao, Haishan
2014-01-07
Fast sensory processing is vital for the animal to efficiently respond to the changing environment. This is usually achieved when the animal is vigilant, as reflected by cortical desynchronization. However, the neural substrate for such fast processing remains unclear. Here, we report that neurons in rat primary visual cortex (V1) exhibited shorter response latency in the desynchronized state than in the synchronized state. In vivo whole-cell recording from the same V1 neurons undergoing the two states showed that both the resting and visually evoked conductances were higher in the desynchronized state. Such conductance increases of single V1 neurons shorten the response latency by elevating the membrane potential closer to the firing threshold and reducing the membrane time constant, but the effects only account for a small fraction of the observed latency advance. Simultaneous recordings in lateral geniculate nucleus (LGN) and V1 revealed that LGN neurons also exhibited latency advance, with a degree smaller than that of V1 neurons. Furthermore, latency advance in V1 increased across successive cortical layers. Thus, latency advance accumulates along various stages of the visual pathway, likely due to a global increase of membrane conductance in the desynchronized state. This cumulative effect may lead to a dramatic shortening of response latency for neurons in higher visual cortex and play a critical role in fast processing for vigilant animals.
Cortical Surround Interactions and Perceptual Salience via Natural Scene Statistics
Coen-Cagli, Ruben; Dayan, Peter; Schwartz, Odelia
2012-01-01
Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are incompletely understood. We introduce a model of natural images that includes grouping and segmentation of neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1 computes visual salience. PMID:22396635
Zhaoping, Li; Zhe, Li
2012-01-01
From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target. PMID:22719829
Zhaoping, Li; Zhe, Li
2012-01-01
From a computational theory of V1, we formulate an optimization problem to investigate neural properties in the primary visual cortex (V1) from human reaction times (RTs) in visual search. The theory is the V1 saliency hypothesis that the bottom-up saliency of any visual location is represented by the highest V1 response to it relative to the background responses. The neural properties probed are those associated with the less known V1 neurons tuned simultaneously or conjunctively in two feature dimensions. The visual search is to find a target bar unique in color (C), orientation (O), motion direction (M), or redundantly in combinations of these features (e.g., CO, MO, or CM) among uniform background bars. A feature singleton target is salient because its evoked V1 response largely escapes the iso-feature suppression on responses to the background bars. The responses of the conjunctively tuned cells are manifested in the shortening of the RT for a redundant feature target (e.g., a CO target) from that predicted by a race between the RTs for the two corresponding single feature targets (e.g., C and O targets). Our investigation enables the following testable predictions. Contextual suppression on the response of a CO-tuned or MO-tuned conjunctive cell is weaker when the contextual inputs differ from the direct inputs in both feature dimensions, rather than just one. Additionally, CO-tuned cells and MO-tuned cells are often more active than the single feature tuned cells in response to the redundant feature targets, and this occurs more frequently for the MO-tuned cells such that the MO-tuned cells are no less likely than either the M-tuned or O-tuned neurons to be the most responsive neuron to dictate saliency for an MO target.
Perceptual deficits of object identification: apperceptive agnosia.
Milner, A David; Cavina-Pratesi, Cristiana
2018-01-01
It is argued here that apperceptive object agnosia (generally now known as visual form agnosia) is in reality not a kind of agnosia, but rather a form of "imperception" (to use the term coined by Hughlings Jackson). We further argue that its proximate cause is a bilateral loss (or functional loss) of the visual form processing systems embodied in the human lateral occipital cortex (area LO). According to the dual-system model of cortical visual processing elaborated by Milner and Goodale (2006), area LO constitutes a crucial component of the ventral stream, and indeed is essential for providing the figural qualities inherent in our normal visual perception of the world. According to this account, the functional loss of area LO would leave only spared visual areas within the occipito-parietal dorsal stream - dedicated to the control of visually-guided actions - potentially able to provide some aspects of visual shape processing in patients with apperceptive agnosia. We review the relevant evidence from such individuals, concentrating particularly on the well-researched patient D.F. We conclude that studies of this kind can provide useful pointers to an understanding of the processing characteristics of parietal-lobe visual mechanisms and their interactions with occipitotemporal perceptual systems in the guidance of action. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhaoping, Li
2008-05-07
Human observers are typically unaware of the eye of origin of visual inputs. This study shows that an eye of origin or ocular singleton, e.g., an item in the left eye among background items in the right eye, can nevertheless attract attention automatically. Observers searched for a uniquely oriented bar, i.e., an orientation singleton, in a background of horizontal bars. Their reports of the tilt direction of the search target in a brief (200 ms) display were more accurate in a dichoptic congruent (DC) condition, when the target was also an ocular singleton, than in a monocular (M) condition, when all bars were presented to the same single eye, or a dichoptic incongruent (DI) condition, when an ocular singleton was a background bar. The better performance in DC did not depend on the ability of the observers to report the presence of an ocular singleton by making forced choices in the same stimuli (though without the orientation singleton). This suggests that the ocular singleton exogenously cued attention to its location, facilitating the identification of the tilt singleton in the DC condition. When the search display persisted without being masked, observers' reaction times (RTs) for reporting the location of the search target were shorter in the DC, and longer in the DI, than the M condition, regardless of whether the observers were aware that different conditions existed. In an analogous design, similar RT patterns were observed for the task of finding an orientation contrast texture border. These results suggest that in typical trials, attention was more quickly attracted to or initially distracted from the target in the DC or DI condition, respectively. Hence, an ocular singleton, though elusive to awareness, can effectively compete for attention with an orientation singleton (tilted 20 or 50 degrees from background bars in the current study). Similarly, it can also make a difficult visual search easier by diminishing the set size effect. Since monocular neurons with the eye of origin information are abundant in the primary visual cortex (V1) and scarce in other cortical areas, and since visual awareness is believed to be absent or weaker in V1 than in other cortical areas, our results provide a hallmark of the role of V1 in creating a bottom-up saliency map to guide attentional selection.
Investigating Occipito-Temporal Contributions to Reading with TMS
ERIC Educational Resources Information Center
Duncan, Keith J.; Pattamadilok, Chotiga; Devlin, Joseph T.
2010-01-01
The debate regarding the role of ventral occipito-temporal cortex (vOTC) in visual word recognition arises, in part, from difficulty delineating the functional contributions of vOTC as separate from other areas of the reading network. Here, we investigated the feasibility of using TMS to interfere with vOTC processing in order to explore its…
Noisy Spiking in Visual Area V2 of Amblyopic Monkeys.
Wang, Ye; Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Smith, Earl L; Chino, Yuzo M
2017-01-25
Interocular decorrelation of input signals in developing visual cortex can cause impaired binocular vision and amblyopia. Although increased intrinsic noise is thought to be responsible for a range of perceptual deficits in amblyopic humans, the neural basis for the elevated perceptual noise in amblyopic primates is not known. Here, we tested the idea that perceptual noise is linked to the neuronal spiking noise (variability) resulting from developmental alterations in cortical circuitry. To assess spiking noise, we analyzed the contrast-dependent dynamics of spike counts and spiking irregularity by calculating the square of the coefficient of variation in interspike intervals (CV 2 ) and the trial-to-trial fluctuations in spiking, or mean matched Fano factor (m-FF) in visual area V2 of monkeys reared with chronic monocular defocus. In amblyopic neurons, the contrast versus response functions and the spike count dynamics exhibited significant deviations from comparable data for normal monkeys. The CV 2 was pronounced in amblyopic neurons for high-contrast stimuli and the m-FF was abnormally high in amblyopic neurons for low-contrast gratings. The spike count, CV 2 , and m-FF of spontaneous activity were also elevated in amblyopic neurons. These contrast-dependent spiking irregularities were correlated with the level of binocular suppression in these V2 neurons and with the severity of perceptual loss for individual monkeys. Our results suggest that the developmental alterations in normalization mechanisms resulting from early binocular suppression can explain much of these contrast-dependent spiking abnormalities in V2 neurons and the perceptual performance of our amblyopic monkeys. Amblyopia is a common developmental vision disorder in humans. Despite the extensive animal studies on how amblyopia emerges, we know surprisingly little about the neural basis of amblyopia in humans and nonhuman primates. Although the vision of amblyopic humans is often described as being noisy by perceptual and modeling studies, the exact nature or origin of this elevated perceptual noise is not known. We show that elevated and noisy spontaneous activity and contrast-dependent noisy spiking (spiking irregularity and trial-to-trial fluctuations in spiking) in neurons of visual area V2 could limit the visual performance of amblyopic primates. Moreover, we discovered that the noisy spiking is linked to a high level of binocular suppression in visual cortex during development. Copyright © 2017 the authors 0270-6474/17/370922-14$15.00/0.
Color signals through dorsal and ventral visual pathways
Conway, Bevil R.
2014-01-01
Explanations for color phenomena are often sought in the retina, LGN and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as MT, not thought to play a major role in color perception. Here we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex), and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, while the S-cone signals in non-color-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception. PMID:24103417
Neural correlates of individual performance differences in resolving perceptual conflict.
Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian; Pfleiderer, Bettina
2012-01-01
Attentional mechanisms are a crucial prerequisite to organize behavior. Most situations may be characterized by a 'competition' between salient, but irrelevant stimuli and less salient, relevant stimuli. In such situations top-down and bottom-up mechanisms interact with each other. In the present fMRI study, we examined how interindividual differences in resolving situations of perceptual conflict are reflected in brain networks mediating attentional selection. Doing so, we employed a change detection task in which subjects had to detect luminance changes in the presence and absence of competing distractors. The results show that good performers presented increased activation in the orbitofrontal cortex (BA 11), anterior cingulate (BA 25), inferior parietal lobule (BA 40) and visual areas V2 and V3 but decreased activation in BA 39. This suggests that areas mediating top-down attentional control are stronger activated in this group. Increased activity in visual areas reflects distinct neuronal enhancement relating to selective attentional mechanisms in order to solve the perceptual conflict. Opposed to good performers, brain areas activated by poor performers comprised the left inferior parietal lobule (BA 39) and fronto-parietal and visual regions were continuously deactivated, suggesting that poor performers perceive stronger conflict than good performers. Moreover, the suppression of neural activation in visual areas might indicate a strategy of poor performers to inhibit the processing of the irrelevant non-target feature. These results indicate that high sensitivity in perceptual areas and increased attentional control led to less conflict in stimulus processing and consequently to higher performance in competitive attentional selection.
Yang, Jinfang; Wang, Qian; He, Fenfen; Ding, Yanxia; Sun, Qingyan; Hua, Tianmiao; Xi, Minmin
2016-01-01
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability.
Sun, Qingyan; Hua, Tianmiao; Xi, Minmin
2016-01-01
Previous studies have reported inconsistent effects of dietary restriction (DR) on cortical inhibition. To clarify this issue, we examined the response properties of neurons in the primary visual cortex (V1) of DR and control groups of cats using in vivo extracellular single-unit recording techniques, and assessed the synthesis of inhibitory neurotransmitter GABA in the V1 of cats from both groups using immunohistochemical and Western blot techniques. Our results showed that the response of V1 neurons to visual stimuli was significantly modified by DR, as indicated by an enhanced selectivity for stimulus orientations and motion directions, decreased visually-evoked response, lowered spontaneous activity and increased signal-to-noise ratio in DR cats relative to control cats. Further, it was shown that, accompanied with these changes of neuronal responsiveness, GABA immunoreactivity and the expression of a key GABA-synthesizing enzyme GAD67 in the V1 were significantly increased by DR. These results demonstrate that DR may retard brain aging by increasing the intracortical inhibition effect and improve the function of visual cortical neurons in visual information processing. This DR-induced elevation of cortical inhibition may favor the brain in modulating energy expenditure based on food availability. PMID:26863207
Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices.
Tremblay, Marie-Ève; Zettel, Martha L; Ison, James R; Allen, Paul D; Majewska, Ania K
2012-04-01
Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. Copyright © 2012 Wiley Periodicals, Inc.
Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices
Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.
2011-01-01
Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464
Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala.
Burgess, Christian R; Ramesh, Rohan N; Sugden, Arthur U; Levandowski, Kirsten M; Minnig, Margaret A; Fenselau, Henning; Lowell, Bradford B; Andermann, Mark L
2016-09-07
The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice. As in humans, neurons in mouse POR, but not V1, exhibited biases toward food-associated cues that were abolished by satiety. This emergent bias was mirrored by the innervation pattern of amygdalo-cortical feedback axons. Strikingly, these axons exhibited even stronger food cue biases and sensitivity to hunger state and trial history. These findings highlight a direct pathway by which the lateral amygdala may contribute to state-dependent cortical processing of motivationally relevant sensory cues. Published by Elsevier Inc.
Liu, Baolin; Meng, Xianyao; Wang, Zhongning; Wu, Guangning
2011-11-14
In the present study, we used event-related potentials (ERPs) to examine whether semantic integration occurs for ecologically unrelated audio-visual information. Videos with synchronous audio-visual information were used as stimuli, where the auditory stimuli were sine wave sounds with different sound levels, and the visual stimuli were simple geometric figures with different areas. In the experiment, participants were shown an initial display containing a single shape (drawn from a set of 6 shapes) with a fixed size (14cm(2)) simultaneously with a 3500Hz tone of a fixed intensity (80dB). Following a short delay, another shape/tone pair was presented and the relationship between the size of the shape and the intensity of the tone varied across trials: in the V+A- condition, a large shape was paired with a soft tone; in the V+A+ condition, a large shape was paired with a loud tone, and so forth. The ERPs results revealed that N400 effect was elicited under the VA- condition (V+A- and V-A+) as compared to the VA+ condition (V+A+ and V-A-). It was shown that semantic integration would occur when simultaneous, ecologically unrelated auditory and visual stimuli enter the human brain. We considered that this semantic integration was based on semantic constraint of audio-visual information, which might come from the long-term learned association stored in the human brain and short-term experience of incoming information. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi
2018-06-01
The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.
Cao, Yongqiang; Grossberg, Stephen
2012-02-01
A laminar cortical model of stereopsis and 3D surface perception is developed and simulated. The model shows how spiking neurons that interact in hierarchically organized laminar circuits of the visual cortex can generate analog properties of 3D visual percepts. The model describes how monocular and binocular oriented filtering interact with later stages of 3D boundary formation and surface filling-in in the LGN and cortical areas V1, V2, and V4. It proposes how interactions between layers 4, 3B, and 2/3 in V1 and V2 contribute to stereopsis, and how binocular and monocular information combine to form 3D boundary and surface representations. The model suggests how surface-to-boundary feedback from V2 thin stripes to pale stripes helps to explain how computationally complementary boundary and surface formation properties lead to a single consistent percept, eliminate redundant 3D boundaries, and trigger figure-ground perception. The model also shows how false binocular boundary matches may be eliminated by Gestalt grouping properties. In particular, the disparity filter, which helps to solve the correspondence problem by eliminating false matches, is realized using inhibitory interneurons as part of the perceptual grouping process by horizontal connections in layer 2/3 of cortical area V2. The 3D sLAMINART model simulates 3D surface percepts that are consciously seen in 18 psychophysical experiments. These percepts include contrast variations of dichoptic masking and the correspondence problem, the effect of interocular contrast differences on stereoacuity, Panum's limiting case, the Venetian blind illusion, stereopsis with polarity-reversed stereograms, da Vinci stereopsis, and perceptual closure. The model hereby illustrates a general method of unlumping rate-based models that use the membrane equations of neurophysiology into models that use spiking neurons, and which may be embodied in VLSI chips that use spiking neurons to minimize heat production. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hof, P. R.; Ungerleider, L. G.; Adams, M. M.; Webster, M. J.; Gattass, R.; Blumberg, D. M.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
Previous immunohistochemical studies combined with retrograde tracing in macaque monkeys have demonstrated that corticocortical projections can be differentiated by their content of neurofilament protein. The present study analyzed the distribution of nonphosphorylated neurofilament protein in callosally projecting neurons located at the V1/V2 border. All of the retrogradely labeled neurons were located in layer III at the V1/V2 border and at an immediately adjacent zone of area V2. A quantitative analysis showed that the vast majority (almost 95%) of these interhemispheric projection neurons contain neurofilament protein immunoreactivity. This observation differs from data obtained in other sets of callosal connections, including homotypical interhemispheric projections in the prefrontal, temporal, and parietal association cortices, that were found to contain uniformly low proportions of neurofilament protein-immunoreactive neurons. Comparably, highly variable proportions of neurofilament protein-containing neurons have been reported in intrahemispheric corticocortical pathways, including feedforward and feedback visual connections. These results indicate that neurofilament protein is a prominent neurochemical feature that identifies a particular population of interhemispheric projection neurons at the V1/V2 border and suggest that this biochemical attribute may be critical for the function of this subset of callosal neurons.
Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.
Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki
2017-01-01
Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Normal form from biological motion despite impaired ventral stream function.
Gilaie-Dotan, S; Bentin, S; Harel, M; Rees, G; Saygin, A P
2011-04-01
We explored the extent to which biological motion perception depends on ventral stream integration by studying LG, an unusual case of developmental visual agnosia. LG has significant ventral stream processing deficits but no discernable structural cortical abnormality. LG's intermediate visual areas and object-sensitive regions exhibit abnormal activation during visual object perception, in contrast to area V5/MT+ which responds normally to visual motion (Gilaie-Dotan, Perry, Bonneh, Malach, & Bentin, 2009). Here, in three studies we used point light displays, which require visual integration, in adaptive threshold experiments to examine LG's ability to detect form from biological and non-biological motion cues. LG's ability to detect and discriminate form from biological motion was similar to healthy controls. In contrast, he was significantly deficient in processing form from non-biological motion. Thus, LG can rely on biological motion cues to perceive human forms, but is considerably impaired in extracting form from non-biological motion. Finally, we found that while LG viewed biological motion, activity in a network of brain regions associated with processing biological motion was functionally correlated with his V5/MT+ activity, indicating that normal inputs from V5/MT+ might suffice to activate his action perception system. These results indicate that processing of biologically moving form can dissociate from other form processing in the ventral pathway. Furthermore, the present results indicate that integrative ventral stream processing is necessary for uncompromised processing of non-biological form from motion. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosier, A.M.; Vandesande, F.; Orban, G.A.
1991-03-08
The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites,more » while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.« less
NASA Astrophysics Data System (ADS)
Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya
2016-07-01
The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.
Lin, I-Chun; Xing, Dajun; Shapley, Robert
2014-01-01
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587
Lin, I-Chun; Xing, Dajun; Shapley, Robert
2012-12-01
One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.
Novel Models of Visual Topographic Map Alignment in the Superior Colliculus
El-Ghazawi, Tarek A.; Triplett, Jason W.
2016-01-01
The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them. PMID:28027309
Curvature-processing network in macaque visual cortex
Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.
2014-01-01
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328
Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1
Stevens, Beth
2017-01-01
Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. PMID:28951447
Böhm, Michael R. R.; Melkonyan, Harutyun; Thanos, Solon
2015-01-01
Four distinct proteins are regulated in the aging neuroretina and may be regulated in the cerebral cortex, too: peroxiredoxin, beta-synuclein, PARK[Parkinson disease(autosomal recessive, early onset)]7/DJ-1, and Stathmin. Thus, we performed a comparative analysis of these proteins in the the primary somatosensory cortex (S1) and primary visual cortex (V1) in rats, in order to detect putative common development-, maturation- and age-related changes. The expressions of peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin were compared in the newborn, juvenile, adult, and aged S1 and V1. Western blot (WB), quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) analyses were employed to determine whether the changes identified by proteomics were verifiable at the cellular and molecular levels. All of the proteins were detected in both of the investigated cortical areas. Changes in the expressions of the four proteins were found throughout the life-time of the rats. Peroxiredoxin expression remained unchanged over life-time. Beta-Synuclein expression was massively increased up to the adult stage of life in both the S1 and V1. PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1 exhibited a massive up-regulation in both the S1 and V1 at all ages. Stathmin expression was massively down regulated after the neonatal period in both the S1 and V1. The detected protein alterations were analogous to their retinal profiles. This study is the first to provide evidence that peroxiredoxin, beta-synuclein, PARK[Parkinson disease (autosomal recessive, early onset)]7/DJ-1, and Stathmin are associated with postnatal maturation and aging in both the S1 and V1 of rats. These changes may indicate their involvement in key functional pathways and may account for the onset or progression of age-related pathologies. PMID:25788877
Ibrahim, Leena A.; Mesik, Lukas; Ji, Xu-ying; Fang, Qi; Li, Hai-fu; Li, Ya-tang; Zingg, Brian; Zhang, Li I.; Tao, Huizhong Whit
2016-01-01
Summary Cross-modality interaction in sensory perception is advantageous for animals’ survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3 but not L4 excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast, and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron and L2/3 VIP-cell mediated inhibitory and disinhibitory circuits. PMID:26898778
Brain activation profiles during kinesthetic and visual imagery: An fMRI study.
Kilintari, Marina; Narayana, Shalini; Babajani-Feremi, Abbas; Rezaie, Roozbeh; Papanicolaou, Andrew C
2016-09-01
The aim of this study was to identify brain regions involved in motor imagery and differentiate two alternative strategies in its implementation: imagining a motor act using kinesthetic or visual imagery. Fourteen adults were precisely instructed and trained on how to imagine themselves or others perform a movement sequence, with the aim of promoting kinesthetic and visual imagery, respectively, in the context of an fMRI experiment using block design. We found that neither modality of motor imagery elicits activation of the primary motor cortex and that each of the two modalities involves activation of the premotor area which is also activated during action execution and action observation conditions, as well as of the supplementary motor area. Interestingly, the visual and the posterior cingulate cortices show reduced BOLD signal during both imagery conditions. Our results indicate that the networks of regions activated in kinesthetic and visual imagery of motor sequences show a substantial, while not complete overlap, and that the two forms of motor imagery lead to a differential suppression of visual areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Sczesny-Kaiser, Matthias; Beckhaus, Katharina; Dinse, Hubert R; Schwenkreis, Peter; Tegenthoff, Martin; Höffken, Oliver
2016-01-01
Studies on noninvasive motor cortex stimulation and motor learning demonstrated cortical excitability as a marker for a learning effect. Transcranial direct current stimulation (tDCS) is a non-invasive tool to modulate cortical excitability. It is as yet unknown how tDCS-induced excitability changes and perceptual learning in visual cortex correlate. Our study aimed to examine the influence of tDCS on visual perceptual learning in healthy humans. Additionally, we measured excitability in primary visual cortex (V1). We hypothesized that anodal tDCS would improve and cathodal tDCS would have minor or no effects on visual learning. Anodal, cathodal or sham tDCS were applied over V1 in a randomized, double-blinded design over four consecutive days (n = 30). During 20 min of tDCS, subjects had to learn a visual orientation-discrimination task (ODT). Excitability parameters were measured by analyzing paired-stimulation behavior of visual-evoked potentials (ps-VEP) and by measuring phosphene thresholds (PTs) before and after the stimulation period of 4 days. Compared with sham-tDCS, anodal tDCS led to an improvement of visual discrimination learning (p < 0.003). We found reduced PTs and increased ps-VEP ratios indicating increased cortical excitability after anodal tDCS (PT: p = 0.002, ps-VEP: p = 0.003). Correlation analysis within the anodal tDCS group revealed no significant correlation between PTs and learning effect. For cathodal tDCS, no significant effects on learning or on excitability could be seen. Our results showed that anodal tDCS over V1 resulted in improved visual perceptual learning and increased cortical excitability. tDCS is a promising tool to alter V1 excitability and, hence, perceptual visual learning.
Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.
Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F
2016-04-01
To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Visual imagery and functional connectivity in blindness: a single-case study
Boucard, Christine C.; Rauschecker, Josef P.; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark
2016-01-01
We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input. PMID:25690326
Visual imagery and functional connectivity in blindness: a single-case study.
Boucard, Christine C; Rauschecker, Josef P; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark
2016-05-01
We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.
Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.
Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David
2016-03-21
Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka
2015-01-01
Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.
Krug, Kristine; Cicmil, Nela; Parker, Andrew J.; Cumming, Bruce G.
2013-01-01
Summary Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. PMID:23871244
A Multi-Channel, Flex-Rigid ECoG Microelectrode Array for Visual Cortical Interfacing
Tolstosheeva, Elena; Gordillo-González, Víctor; Biefeld, Volker; Kempen, Ludger; Mandon, Sunita; Kreiter, Andreas K.; Lang, Walter
2015-01-01
High-density electrocortical (ECoG) microelectrode arrays are promising signal-acquisition platforms for brain-computer interfaces envisioned, e.g., as high-performance communication solutions for paralyzed persons. We propose a multi-channel microelectrode array capable of recording ECoG field potentials with high spatial resolution. The proposed array is of a 150 mm2 total recording area; it has 124 circular electrodes (100, 300 and 500 μm in diameter) situated on the edges of concentric hexagons (min. 0.8 mm interdistance) and a skull-facing reference electrode (2.5 mm2 surface area). The array is processed as a free-standing device to enable monolithic integration of a rigid interposer, designed for soldering of fine-pitch SMD-connectors on a minimal assembly area. Electrochemical characterization revealed distinct impedance spectral bands for the 100, 300 and 500 μm-type electrodes, and for the array's own reference. Epidural recordings from the primary visual cortex (V1) of an awake Rhesus macaque showed natural electrophysiological signals and clear responses to standard visual stimulation. The ECoG electrodes of larger surface area recorded signals with greater spectral power in the gamma band, while the skull-facing reference electrode provided higher average gamma power spectral density (γPSD) than the common average referencing technique. PMID:25569757
Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition
Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua
2015-01-01
Humans can easily understand other people’s actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model. PMID:26132270
Visual Sensitivities and Discriminations and Their Role in Aviation
1989-10-30
equivalent of a pathway in monkey brain that originates in large retinal ganglion cells, passes through the magnocellular layers of the lateral geniculate ...with Parkinson’s disease. In I Bodis - Wollner, M. Piccolino (Eds), Dopaminergic Mechanisms in Vision. Neurology & Neurobiology 43. New York: A.R. Liss... body , includes cortical area MT, and is involved in processing motion. 24 5, UNIVERSITYDepartinit of Psychology Tf U N I V E R S I T Y l "I 1 LTY () 1F
Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M; Harwerth, Ronald S; Smith, Earl L; Chino, Yuzo M
2011-09-14
Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision.
Zhang, Bin; Tao, Xiaofeng; Wensveen, Janice M.; Harwerth, Ronald S.; Smith, Earl L.
2011-01-01
Purpose. Providing brief daily periods of unrestricted vision during early monocular form deprivation reduces the depth of amblyopia. To gain insights into the neural basis of the beneficial effects of this treatment, the binocular and monocular response properties of neurons were quantitatively analyzed in visual area 2 (V2) of form-deprived macaque monkeys. Methods. Beginning at 3 weeks of age, infant monkeys were deprived of clear vision in one eye for 12 hours every day until 21 weeks of age. They received daily periods of unrestricted vision for 0, 1, 2, or 4 hours during the form-deprivation period. After behavioral testing to measure the depth of the resulting amblyopia, microelectrode-recording experiments were conducted in V2. Results. The ocular dominance imbalance away from the affected eye was reduced in the experimental monkeys and was generally proportional to the reduction in the depth of amblyopia in individual monkeys. There were no interocular differences in the spatial properties of V2 neurons in any subject group. However, the binocular disparity sensitivity of V2 neurons was significantly higher and binocular suppression was lower in monkeys that had unrestricted vision. Conclusions. The decrease in ocular dominance imbalance in V2 was the neuronal change most closely associated with the observed reduction in the depth of amblyopia. The results suggest that the degree to which extrastriate neurons can maintain functional connections with the deprived eye (i.e., reducing undersampling for the affected eye) is the most significant factor associated with the beneficial effects of brief periods of unrestricted vision. PMID:21849427
Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind
Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.
2016-01-01
Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted. PMID:27812129
Modeling a space-variant cortical representation for apparent motion.
Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash
2013-08-06
Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.
Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia.
Ivandic, Boris T; Ivandic, Tomislav
2012-03-01
The purpose of this study was to examine the effects of low-level laser therapy (LLLT) on visual acuity in adolescent and adult patients with amblyopia. Currently, amblyopia can be treated successfully only in children. In this single-blinded, placebo-controlled study, 178 patients (mean age 46.8 years) with amblyopia caused by ametropia (110 eyes) or strabismus (121 eyes) were included. For LLLT, the area of the macula was irradiated through the conjunctiva from 1 cm distance for 30 sec with laser light (780 nm, 292 Hz, 1:1 duty cycle; average power 7.5 mW; spot area 3 mm(2)). The treatment was repeated on average 3.5 times, resulting in a mean total dose of 0.77 J/cm(2). No occlusion was applied, and no additional medication was administered. Best corrected distant visual acuity was determined using Snellen projection optotypes. In 12 patients (12 eyes), the multifocal visual evoked potential (M-VEP) was recorded. A control group of 20 patients (20 eyes) received mock treatment. Visual acuity improved in ∼90% of the eyes treated with LLLT (p<0.001), increasing by three or more lines in 56.2% and 53.6% of the eyes with amblyopia caused by ametropia and strabismus, respectively. The treatment effect was maintained for at least 6 months. The mean M-VEP amplitude increased by 1207 nV (p<0.001) and mean latency was reduced by 7 msec (p=0.14). No changes were noted in the control group. LLLT led to a significant improvement in visual acuity in adolescent and adult patients with amblyopia caused by ametropia or strabismus.
Seymour, K J; Williams, M A; Rich, A N
2016-05-01
Many theories of visual object perception assume the visual system initially extracts borders between objects and their background and then "fills in" color to the resulting object surfaces. We investigated the transformation of chromatic signals across the human ventral visual stream, with particular interest in distinguishing representations of object surface color from representations of chromatic signals reflecting the retinal input. We used fMRI to measure brain activity while participants viewed figure-ground stimuli that differed either in the position or in the color contrast polarity of the foreground object (the figure). Multivariate pattern analysis revealed that classifiers were able to decode information about which color was presented at a particular retinal location from early visual areas, whereas regions further along the ventral stream exhibited biases for representing color as part of an object's surface, irrespective of its position on the retina. Additional analyses showed that although activity in V2 contained strong chromatic contrast information to support the early parsing of objects within a visual scene, activity in this area also signaled information about object surface color. These findings are consistent with the view that mechanisms underlying scene segmentation and the binding of color to object surfaces converge in V2. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
McTrusty, Alice D; Cameron, Lorraine A; Perperidis, Antonios; Brash, Harry M; Tatham, Andrew J; Agarwal, Pankaj K; Murray, Ian C; Fleck, Brian W; Minns, Robert A
2017-09-01
We compared patterns of visual field loss detected by standard automated perimetry (SAP) to saccadic vector optokinetic perimetry (SVOP) and examined patient perceptions of each test. A cross-sectional study was done of 58 healthy subjects and 103 with glaucoma who were tested using SAP and two versions of SVOP (v1 and v2). Visual fields from both devices were categorized by masked graders as: 0, normal; 1, paracentral defect; 2, nasal step; 3, arcuate defect; 4, altitudinal; 5, biarcuate; and 6, end-stage field loss. SVOP and SAP classifications were cross-tabulated. Subjects completed a questionnaire on their opinions of each test. We analyzed 142 (v1) and 111 (v2) SVOP and SAP test pairs. SVOP v2 had a sensitivity of 97.7% and specificity of 77.9% for identifying normal versus abnormal visual fields. SAP and SVOP v2 classifications showed complete agreement in 54% of glaucoma patients, with a further 23% disagreeing by one category. On repeat testing, 86% of SVOP v2 classifications agreed with the previous test, compared to 91% of SAP classifications; 71% of subjects preferred SVOP compared to 20% who preferred SAP. Eye-tracking perimetry can be used to obtain threshold visual field sensitivity values in patients with glaucoma and produce maps of visual field defects, with patterns exhibiting close agreement to SAP. Patients preferred eye-tracking perimetry compared to SAP. This first report of threshold eye tracking perimetry shows good agreement with conventional automated perimetry and provides a benchmark for future iterations.
Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1
2017-01-01
Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1. By recording simultaneously from a large number of single neurons in alert mice viewing moving gratings, we investigated the relationship between locomotion and the information contained within the neural population. We found that locomotion improved encoding of visual stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the mutual information between visual stimuli and single neuron responses over a fixed window of time. Second, stimulus discriminability was improved, even for fixed population firing rates, because of a decrease in noise correlations across the population. These two mechanisms contributed differently to improvements in discriminability across cortical layers, with changes in firing rates most important in the upper layers and changes in noise correlations most important in layer V. Together, these changes resulted in a threefold to fivefold reduction in the time needed to precisely encode grating direction and orientation. These results support the hypothesis that cortical state shifts during locomotion to accommodate an increased load on the visual system when mice are moving. SIGNIFICANCE STATEMENT This paper contains three novel findings about the representation of information in neurons within the primary visual cortex of the mouse. First, we show that locomotion reduces by at least a factor of 3 the time needed for information to accumulate in the visual cortex that allows the distinction of different visual stimuli. Second, we show that the effect of locomotion is to increase information in cells of all layers of the visual cortex. Third, we show that the means by which information is enhanced by locomotion differs between the upper layers, where the major effect is the increasing of firing rates, and in layer V, where the major effect is the reduction in noise correlations. PMID:28264980
Victor, Jonathan D; Mechler, Ferenc; Ohiorhenuan, Ifije; Schmid, Anita M; Purpura, Keith P
2009-12-01
A full understanding of the computations performed in primary visual cortex is an important yet elusive goal. Receptive field models consisting of cascades of linear filters and static nonlinearities may be adequate to account for responses to simple stimuli such as gratings and random checkerboards, but their predictions of responses to complex stimuli such as natural scenes are only approximately correct. It is unclear whether these discrepancies are limited to quantitative inaccuracies that reflect well-recognized mechanisms such as response normalization, gain controls, and cross-orientation suppression or, alternatively, imply additional qualitative features of the underlying computations. To address this question, we examined responses of V1 and V2 neurons in the monkey and area 17 neurons in the cat to two-dimensional Hermite functions (TDHs). TDHs are intermediate in complexity between traditional analytic stimuli and natural scenes and have mathematical properties that facilitate their use to test candidate models. By exploiting these properties, along with the laminar organization of V1, we identify qualitative aspects of neural computations beyond those anticipated from the above-cited model framework. Specifically, we find that V1 neurons receive signals from orientation-selective mechanisms that are highly nonlinear: they are sensitive to phase correlations, not just spatial frequency content. That is, the behavior of V1 neurons departs from that of linear-nonlinear cascades with standard modulatory mechanisms in a qualitative manner: even relatively simple stimuli evoke responses that imply complex spatial nonlinearities. The presence of these findings in the input layers suggests that these nonlinearities act in a feedback fashion.
Numerosity processing in early visual cortex.
Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo
2017-08-15
While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.
On the visualization of water-related big data: extracting insights from drought proxies' datasets
NASA Astrophysics Data System (ADS)
Diaz, Vitali; Corzo, Gerald; van Lanen, Henny A. J.; Solomatine, Dimitri
2017-04-01
Big data is a growing area of science where hydroinformatics can benefit largely. There have been a number of important developments in the area of data science aimed at analysis of large datasets. Such datasets related to water include measurements, simulations, reanalysis, scenario analyses and proxies. By convention, information contained in these databases is referred to a specific time and a space (i.e., longitude/latitude). This work is motivated by the need to extract insights from large water-related datasets, i.e., transforming large amounts of data into useful information that helps to better understand of water-related phenomena, particularly about drought. In this context, data visualization, part of data science, involves techniques to create and to communicate data by encoding it as visual graphical objects. They may help to better understand data and detect trends. Base on existing methods of data analysis and visualization, this work aims to develop tools for visualizing water-related large datasets. These tools were developed taking advantage of existing libraries for data visualization into a group of graphs which include both polar area diagrams (PADs) and radar charts (RDs). In both graphs, time steps are represented by the polar angles and the percentages of area in drought by the radios. For illustration, three large datasets of drought proxies are chosen to identify trends, prone areas and spatio-temporal variability of drought in a set of case studies. The datasets are (1) SPI-TS2p1 (1901-2002, 11.7 GB), (2) SPI-PRECL0p5 (1948-2016, 7.91 GB) and (3) SPEI-baseV2.3 (1901-2013, 15.3 GB). All of them are on a monthly basis and with a spatial resolution of 0.5 degrees. First two were retrieved from the repository of the International Research Institute for Climate and Society (IRI). They are included into the Analyses Standardized Precipitation Index (SPI) project (iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/). The third dataset was recovered from the Standardized Precipitation Evaporation Index (SPEI) Monitor (digital.csic.es/handle/10261/128892). PADs were found suitable to identify the spatio-temporal variability and prone areas of drought. Drought trends were visually detected by using both PADs and RDs. A similar approach can be followed to include other types of graphs to deal with the analysis of water-related big data. Key words: Big data, data visualization, drought, SPI, SPEI
Working memory and decision processes in visual area v4.
Hayden, Benjamin Y; Gallant, Jack L
2013-01-01
Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory, and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron's receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory, and decision processes that are needed to perform memory-guided decision-making.
NASA Astrophysics Data System (ADS)
Hara, Hidetake; Muraishi, Hiroshi; Matsuzawa, Hiroki; Inoue, Toshiyuki; Nakajima, Yasuo; Satoh, Hitoshi; Abe, Shinji
2015-07-01
We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize an acute-stage cerebral infarction by using dual-energy Computed tomography (DECT) to obtain virtual monochromatic images of this phantom. Virtual monochromatic images were created by using DECT voltages from 40 to 100 keV in steps of 10 keV and from 60 to 80 keV in steps of 1 keV, under three conditions of the tube voltage with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images at voltages between 65 and 75 keV were significantly higher than those obtained for all other created images. Therefore, the optimal conditions for visualizing acute ischemic stroke were achievable.
Using functional magnetic resonance imaging to explore the flashed face distortion effect.
Wen, Tanya; Kung, Chun-Chia
2014-10-27
The flashed face distortion (FFD) effect was coined by Tangen, Murphy, and Thompson (2011) in their second-place winner of the 2012 Best Illusion of the Year Contest. The FFD arises when people view various eye-aligned faces that are sequentially flashed in the visual periphery, and gradually the faces appear to be deformed and grotesque. In this functional magnetic resonance imaging (fMRI) study, participants were presented with four conditions: (a) one face pair changing only its illumination; (b) two and (c) three alternating face pairs; and (d) nonrepeated face pairs. Participants rated the magnitude of each illusion immediately after each block. Results showed that the receptive region of the early visual cortex (V1-V4), and category-selective areas such as the fusiform face area (FFA) and occipital face area (OFA), responded proportionally to the participants' rated FFD strength. A random-effects voxelwise analysis further revealed positively correlated areas (including the medial and superolateral frontal areas) and negatively correlated areas (including the precuneus, postcentral gyrus, right insula, and bilateral middle frontal gyri) with respect to participants' ratings. Time series correlations among these nine ROIs (four positive and five negative) indicated that most participants showed a clustering of the two separate ROI types. Exploratory factor analysis (EFA) also demonstrated the segregation of the positive and negative ROIs; additionally, two subsystems were identified within the negative ROIs. These results suggest that the FFD is mediated by at least two networks: one that is likely responsible for perception and another that is likely responsible for subjective feelings and engagement. © 2014 ARVO.
Likova, Lora T.
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or “sketchpad,” for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw. PMID:22593738
Likova, Lora T
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or "sketchpad," for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw.
Covert Shifts of Spatial Attention in the Macaque Monkey
Caspari, Natalie; Janssens, Thomas; Mantini, Dante; Vandenberghe, Rik
2015-01-01
In the awake state, shifts of spatial attention alternate with periods of sustained attention at a fixed location or object. Human fMRI experiments revealed the critical role of the superior parietal lobule (SPL) in shifting spatial attention, a finding not predicted by human lesion studies and monkey electrophysiology. To investigate whether a potential homolog of the human SPL shifting region exists in monkeys (Macaca mulatta), we adopted an event-related fMRI paradigm that closely resembled a human experiment (Molenberghs et al., 2007). In this paradigm, a pair of relevant and irrelevant shapes was continuously present on the horizontal meridian. Subjects had to covertly detect a dimming of the relevant shape while ignoring the irrelevant dimmings. The events of interest consisted of the replacement of one stimulus pair by the next. During shift but not stay events, the relevant shape of the new pair appeared at the contralateral position relative to the previous one. Spatial shifting events activated parietal areas V6/V6A and medial intraparietal area, caudo-dorsal visual areas, the most posterior portion of the superior temporal sulcus, and several smaller frontal areas. These areas were not activated during passive stimulation with the same sensory stimuli. During stay events, strong direction-sensitive attention signals were observed in a distributed set of contralateral visual, temporal, parietal, and lateral prefrontal areas, the vast majority overlapping with the sensory stimulus representation. We suggest medial intraparietal area and V6/V6A as functional counterparts of human SPL because they contained the most widespread shift signals in the absence of contralateral stay activity, resembling the functional characteristics of the human SPL shifting area. PMID:25995460
Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis
Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.
2016-01-01
Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207
Overbeek, Mathilde M; Sterkenburg, Paula S; Kef, Sabina; Schuengel, Carlo
2015-09-09
Visual or visual-and-intellectual disabilities of children make daily interactions more difficult for their parents and may impact the quality of the parent-child relationship. To support these parents, an existing intervention (Video-feedback Intervention to promote Positive Parenting; VIPP; Juffer F, Bakermans-Kranenburg MJ, van IJzendoorn MH, 2008. Promoting positive parenting; an attachment-based intervention. Mahwah, NJ: Lawrence Erlbaum Associates; 2008) was adapted for use with parents of children with a visual or visual-and-intellectual disability (VIPP-V). This attachment-based intervention was hypothesized to support parents' interpretation and understanding of the behavior of their child with a visual or visual-and-intellectual disability and respond to their child's signals in a sensitive way to improve parent-child interaction quality. A randomized controlled trial (RCT) will be conducted to assess the effectiveness of the adapted intervention VIPP-V (Video-feedback Intervention to promote Positive Parenting in parents of children with Visual or visual-and-intellectual disabilities). Parent-child dyads will be randomized into two groups: 50 dyads will receive VIPP-V in combination with care-as-usual and 50 dyads will receive care-as-usual. Families with a child (1-5 years of age) with a visual or visual-and-intellectual disability will be recruited for participation in the study. Primary outcome measures are parental sensitivity and the quality of parent-child interaction. Secondary outcome measures are parental self-efficacy, and parenting stress. To assess feasibility of implementation of the intervention the experiences of early intervention workers with regard to using VIPP-V are assessed. Moderator variables are the child's developmental age, working alliance between parent and VIPP-V intervention worker and empathy of the VIPP-V intervention worker. Data will be collected approximately one week before the intervention starts (T1), one week (T2) and three months (T3) after the intervention. Parent-child dyads in the care-as-usual-only condition will be assessed at the same time points. Both intention-to-treat and completer analyses will be performed. Descriptive findings in pilot cases suggest benefits from VIPP-V, and compatibility with existing services for parents of children with a visual or visual-and-intellectual disability. The current study will provide insight into the effectiveness of this intervention for parents of children with a visual or visual-and-intellectual disability, and, if the intervention is effective, prepare the field for broad-scale implementation. Nederlands Trial Register NTR4306 (registered 5 December 2013).
Larcombe, Stephanie J.; Kennard, Chris
2017-01-01
Abstract Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145–156, 2018. © 2017 Wiley Periodicals, Inc. PMID:28963815
Platje, Evelien; Sterkenburg, Paula; Overbeek, Mathile; Kef, Sabina; Schuengel, Carlo
2018-01-23
Video-feedback Intervention to promote positive parenting-visual (VIPP-V) or visual-and-intellectual disability is an attachment-based intervention aimed at enhancing sensitive parenting and promoting positive parent-child relationships. A randomized controlled trial was conducted to assess the efficacy of VIPP-V for parents of children aged 1-5 with visual or visual-and-intellectual disabilities. A total of 37 dyads received only care-as-usual (CAU) and 40 received VIPP-V besides CAU. The parents receiving VIPP-V did not show increased parental sensitivity or parent-child interaction quality, however, their parenting self-efficacy increased. Moreover, the increase in parental self-efficacy predicted the increase in parent-child interaction. In conclusion, VIPP-V does not appear to directly improve the quality of contact between parent and child, but does contribute to the self-efficacy of parents to support and to comfort their child. Moreover, as parents experience their parenting as more positive, this may eventually lead to higher sensitive responsiveness and more positive parent-child interactions.
Differential responses in dorsal visual cortex to motion and disparity depth cues
Arnoldussen, David M.; Goossens, Jeroen; van den Berg, Albert V.
2013-01-01
We investigated how interactions between monocular motion parallax and binocular cues to depth vary in human motion areas for wide-field visual motion stimuli (110 × 100°). We used fMRI with an extensive 2 × 3 × 2 factorial blocked design in which we combined two types of self-motion (translational motion and translational + rotational motion), with three categories of motion inflicted by the degree of noise (self-motion, distorted self-motion, and multiple object-motion), and two different view modes of the flow patterns (stereo and synoptic viewing). Interactions between disparity and motion category revealed distinct contributions to self- and object-motion processing in 3D. For cortical areas V6 and CSv, but not the anterior part of MT+ with bilateral visual responsiveness (MT+/b), we found a disparity-dependent effect of rotational flow and noise: When self-motion perception was degraded by adding rotational flow and moderate levels of noise, the BOLD responses were reduced compared with translational self-motion alone, but this reduction was cancelled by adding stereo information which also rescued the subject's self-motion percept. At high noise levels, when the self-motion percept gave way to a swarm of moving objects, the BOLD signal strongly increased compared to self-motion in areas MT+/b and V6, but only for stereo in the latter. BOLD response did not increase for either view mode in CSv. These different response patterns indicate different contributions of areas V6, MT+/b, and CSv to the processing of self-motion perception and the processing of multiple independent motions. PMID:24339808
Stronger Neural Modulation by Visual Motion Intensity in Autism Spectrum Disorders
Peiker, Ina; Schneider, Till R.; Milne, Elizabeth; Schöttle, Daniel; Vogeley, Kai; Münchau, Alexander; Schunke, Odette; Siegel, Markus; Engel, Andreas K.; David, Nicole
2015-01-01
Theories of autism spectrum disorders (ASD) have focused on altered perceptual integration of sensory features as a possible core deficit. Yet, there is little understanding of the neuronal processing of elementary sensory features in ASD. For typically developed individuals, we previously established a direct link between frequency-specific neural activity and the intensity of a specific sensory feature: Gamma-band activity in the visual cortex increased approximately linearly with the strength of visual motion. Using magnetoencephalography (MEG), we investigated whether in individuals with ASD neural activity reflect the coherence, and thus intensity, of visual motion in a similar fashion. Thirteen adult participants with ASD and 14 control participants performed a motion direction discrimination task with increasing levels of motion coherence. A polynomial regression analysis revealed that gamma-band power increased significantly stronger with motion coherence in ASD compared to controls, suggesting excessive visual activation with increasing stimulus intensity originating from motion-responsive visual areas V3, V6 and hMT/V5. Enhanced neural responses with increasing stimulus intensity suggest an enhanced response gain in ASD. Response gain is controlled by excitatory-inhibitory interactions, which also drive high-frequency oscillations in the gamma-band. Thus, our data suggest that a disturbed excitatory-inhibitory balance underlies enhanced neural responses to coherent motion in ASD. PMID:26147342
Jarvis, S N; Tamhne, R C; Thompson, L; Francis, P M; Anderson, J; Colver, A F
1991-01-01
Although a good case for preschool screening for vision defects can be made there is very little evidence that existing programmes are effective in practice. A comparative trial of three different methods of preschool vision screening is described. Some 7000 children initially aged 5 months (younger cohorts) and 30 months (older cohorts) in three matched areas entered the trial during 1987. During 18 months of follow up new visual and ocular defects among these children were ascertained through ophthalmology outpatients and from optician records. Screening at 35 months by an orthoptist based in the community is superior to conventional health visitor surveillance at 30 months and to an agreed programme of primary care screening for squint at 30-36 months as judged by screening sensitivity (100% v 50% v 50%) and the incidence of treated target conditions (17 v 3 v 5 per 1000 person years). A notable feature in the area served by the orthoptist is that 13 children received treatment for straight eyed visual acuity loss from among 1000 children whereas there were no such cases among 2500 in the comparison areas. In the younger cohorts (that is, screening at age 5-9 months) all three programmes showed equally poor results, only one of the eight treated target conditions arising from all 3500 younger children being screen detected. PMID:2025002
End-Stopping Predicts Curvature Tuning along the Ventral Stream
Hartmann, Till S.; Livingstone, Margaret S.
2017-01-01
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. SIGNIFICANCE STATEMENT The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or “domains”) acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias whereas place- and rectilinear-preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called end-stopping. PMID:28100746
End-Stopping Predicts Curvature Tuning along the Ventral Stream.
Ponce, Carlos R; Hartmann, Till S; Livingstone, Margaret S
2017-01-18
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or "domains") acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias whereas place- and rectilinear-preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called end-stopping. Copyright © 2017 the authors 0270-6474/17/370648-12$15.00/0.
Perceptual learning increases the strength of the earliest signals in visual cortex.
Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A
2010-11-10
Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.
1981-08-01
previouuly mentioned, bedrock in the area consists of red shale and sandstone of Triassic age . -2 SI 1.3 Pertinent Data a. Drainage Area 40 square miles b...COyP rFEONII NowTO \\ ASCU ~T - .LA1LP1?, F NAINLPOGA FISPCINO NNFDDM ~coeiEI laic- it leF~IN Ipo l ii m8I,_ -QA I EV APPENDIX 1 CHECK LIST VISUAL...a r.f ,i 13 14 TS C910C. 41,0-1 S70~ m f"", S C~ tec,( (Caed 3 /e-a2~V ’U0 16 r67 (k~otc ,yrude iVLAOti & L1Away k I 3 eř A.A 17 19 Or(CL age
Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach
2016-01-01
Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255
Ishibashi, Masahiro; Uchiumi, Chigusa; Jung, Minyoung; Aizawa, Naoki; Makita, Kiyoshi; Nakamura, Yugo; Saito, Daisuke N
2016-01-01
In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards ( p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex ( p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed.
Sunglasses with thick temples and frame constrict temporal visual field.
Denion, Eric; Dugué, Audrey Emmanuelle; Augy, Sylvain; Coffin-Pichonnet, Sophie; Mouriaux, Frédéric
2013-12-01
Our aim was to compare the impact of two types of sunglasses on visual field and glare: one ("thick sunglasses") with a thick plastic frame and wide temples and one ("thin sunglasses") with a thin metal frame and thin temples. Using the Goldmann perimeter, visual field surface areas (cm²) were calculated as projections on a 30-cm virtual cupola. A V4 test object was used, from seen to unseen, in 15 healthy volunteers in the primary position of gaze ("base visual field"), then allowing eye motion ("eye motion visual field") without glasses, then with "thin sunglasses," followed by "thick sunglasses." Visual field surface area differences greater than the 14% reproducibility error of the method and having a p < 0.05 were considered significant. A glare test was done using a surgical lighting system pointed at the eye(s) at different incidence angles. No significant "base visual field" or "eye motion visual field" surface area variations were noted when comparing tests done without glasses and with the "thin sunglasses." In contrast, a 22% "eye motion visual field" surface area decrease (p < 0.001) was noted when comparing tests done without glasses and with "thick sunglasses." This decrease was most severe in the temporal quadrant (-33%; p < 0.001). All subjects reported less lateral glare with the "thick sunglasses" than with the "thin sunglasses" (p < 0.001). The better protection from lateral glare offered by "thick sunglasses" is offset by the much poorer ability to use lateral space exploration; this results in a loss of most, if not all, of the additional visual field gained through eye motion.
Figure-ground processing during fixational saccades in V1: indication for higher-order stability.
Gilad, Ariel; Pesoa, Yair; Ayzenshtat, Inbal; Slovin, Hamutal
2014-02-26
In a typical visual scene we continuously perceive a "figure" that is segregated from the surrounding "background" despite ongoing microsaccades and small saccades that are performed when attempting fixation (fixational saccades [FSs]). Previously reported neuronal correlates of figure-ground (FG) segregation in the primary visual cortex (V1) showed enhanced activity in the "figure" along with suppressed activity in the noisy "background." However, it is unknown how this FG modulation in V1 is affected by FSs. To investigate this question, we trained two monkeys to detect a contour embedded in a noisy background while simultaneously imaging V1 using voltage-sensitive dyes. During stimulus presentation, the monkeys typically performed 1-3 FSs, which displaced the contour over the retina. Using eye position and a 2D analytical model to map the stimulus onto V1, we were able to compute FG modulation before and after each FS. On the spatial cortical scale, we found that, after each FS, FG modulation follows the stimulus retinal displacement and "hops" within the V1 retinotopic map, suggesting visual instability. On the temporal scale, FG modulation is initiated in the new retinotopic position before it disappeared from the old retinotopic position. Moreover, the FG modulation developed faster after an FS, compared with after stimulus onset, which may contribute to visual stability of FG segregation, along the timeline of stimulus presentation. Therefore, despite spatial discontinuity of FG modulation in V1, the higher-order stability of FG modulation along time may enable our stable and continuous perception.
Spatial interactions reveal inhibitory cortical networks in human amblyopia.
Wong, Erwin H; Levi, Dennis M; McGraw, Paul V
2005-10-01
Humans with amblyopia have a well-documented loss of sensitivity for first-order, or luminance defined, visual information. Recent studies show that they also display a specific loss of sensitivity for second-order, or contrast defined, visual information; a type of image structure encoded by neurons found predominantly in visual area A18/V2. In the present study, we investigate whether amblyopia disrupts the normal architecture of spatial interactions in V2 by determining the contrast detection threshold of a second-order target in the presence of second-order flanking stimuli. Adjacent flanks facilitated second-order detectability in normal observers. However, in marked contrast, they suppressed detection in each eye of the majority of amblyopic observers. Furthermore, strabismic observers with no loss of visual acuity show a similar pattern of detection suppression. We speculate that amblyopia results in predominantly inhibitory cortical interactions between second-order neurons.
Fehérvári, Tamás Dávid; Sawai, Hajime; Yagi, Tetsuya
2015-01-01
In the mammalian primary visual cortex (V1), lateral spreading of excitatory potentials is believed to be involved in spatial integrative functions, but the underlying cortical mechanism is not well understood. Visually-evoked population-level responses have been shown to propagate beyond the V1 initial activation site in mouse, similar to higher mammals. Visually-evoked responses are, however, affected by neuronal circuits prior to V1 (retina, LGN), making the separate analysis of V1 difficult. Intracortical stimulation eliminates these initial processing steps. We used in vivo RH1691 voltage-sensitive dye (VSD) imaging and intracortical microstimulation in adult C57BL/6 mice to elucidate the spatiotemporal properties of population-level signal spreading in V1 cortical circuits. The evoked response was qualitatively similar to that measured in single-cell electrophysiological experiments in rodents: a fast transient fluorescence peak followed by a fast and a slow decrease or hyperpolarization, similar to EPSP and fast and slow IPSPs in single cells. The early cortical response expanded at speeds commensurate with long horizontal projections (at 5% of the peak maximum, 0.08–0.15 m/s) however, the bulk of the VSD signal propagated slowly (at half-peak maximum, 0.05–0.08 m/s) suggesting an important role of regenerative multisynaptic transmission through short horizontal connections in V1 spatial integrative functions. We also found a tendency for a widespread and fast cortical response suppression in V1, which was eliminated by GABAA-antagonists gabazine and bicuculline methiodide. Our results help understand the neuronal circuitry involved in lateral spreading in V1. PMID:26230520
Pizzo, Riccardo; Gurgone, Antonia; Castroflorio, Enrico; Amendola, Elena; Gross, Cornelius; Sassoè-Pognetto, Marco; Giustetto, Maurizio
2016-01-01
Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5 -/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5 -/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5 -/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development.
Probing the functional impact of sub-retinal prosthesis
Roux, Sébastien; Matonti, Frédéric; Dupont, Florent; Hoffart, Louis; Takerkart, Sylvain; Picaud, Serge; Pham, Pascale; Chavane, Frédéric
2016-01-01
Retinal prostheses are promising tools for recovering visual functions in blind patients but, unfortunately, with still poor gains in visual acuity. Improving their resolution is thus a key challenge that warrants understanding its origin through appropriate animal models. Here, we provide a systematic comparison between visual and prosthetic activations of the rat primary visual cortex (V1). We established a precise V1 mapping as a functional benchmark to demonstrate that sub-retinal implants activate V1 at the appropriate position, scalable to a wide range of visual luminance, but with an aspect-ratio and an extent much larger than expected. Such distorted activation profile can be accounted for by the existence of two sources of diffusion, passive diffusion and activation of ganglion cells’ axons en passant. Reverse-engineered electrical pulses based on impedance spectroscopy is the only solution we tested that decreases the extent and aspect-ratio, providing a promising solution for clinical applications. DOI: http://dx.doi.org/10.7554/eLife.12687.001 PMID:27549126
Shooner, Christopher; Kelly, Jenna G.; García-Marín, Virginia; Movshon, J. Anthony; Kiorpes, Lynne
2017-01-01
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys (Macaca nemestrina) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys (Macaca nemestrina) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. PMID:28743725
Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne
2017-08-23
In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is altered. The excitatory influence of the two eyes is imbalanced to a degree that can be predicted from the severity of amblyopia, whereas suppression from both eyes is prevalent in all animals. This altered balance of excitation and suppression reflects mechanisms that may contribute to the interocular perceptual suppression that disrupts vision in amblyopes. Copyright © 2017 the authors 0270-6474/17/378216-11$15.00/0.
Multimap formation in visual cortex
Jain, Rishabh; Millin, Rachel; Mel, Bartlett W.
2015-01-01
An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps—hereafter a “multimap”—is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated “learning eligibility regions” (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with “salt-and-pepper” structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space. PMID:26641946
Multisensory connections of monkey auditory cerebral cortex
Smiley, John F.; Falchier, Arnaud
2009-01-01
Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628
The role of human ventral visual cortex in motion perception
Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene
2013-01-01
Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030
Infant Perception of Audio-Visual Speech Synchrony
ERIC Educational Resources Information Center
Lewkowicz, David J.
2010-01-01
Three experiments investigated perception of audio-visual (A-V) speech synchrony in 4- to 10-month-old infants. Experiments 1 and 2 used a convergent-operations approach by habituating infants to an audiovisually synchronous syllable (Experiment 1) and then testing for detection of increasing degrees of A-V asynchrony (366, 500, and 666 ms) or by…
Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition
Aoki, Chiye; Hawken, Michael J.
2012-01-01
Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABAA receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701–713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width. PMID:22786955
Cholinergic suppression of visual responses in primate V1 is mediated by GABAergic inhibition.
Disney, Anita A; Aoki, Chiye; Hawken, Michael J
2012-10-01
Acetylcholine (ACh) has been implicated in selective attention. To understand the local circuit action of ACh, we iontophoresed cholinergic agonists into the primate primary visual cortex (V1) while presenting optimal visual stimuli. Consistent with our previous anatomical studies showing that GABAergic neurons in V1 express ACh receptors to a greater extent than do excitatory neurons, we observed suppressed visual responses in 36% of recorded neurons outside V1's primary thalamorecipient layer (4c). This suppression is blocked by the GABA(A) receptor antagonist gabazine. Within layer 4c, ACh release produces a response gain enhancement (Disney AA, Aoki C, Hawken MJ. Neuron 56: 701-713, 2007); elsewhere, ACh suppresses response gain by strengthening inhibition. Our finding contrasts with the observation that the dominant mechanism of suppression in the neocortex of rats is reduced glutamate release. We propose that in primates, distinct cholinergic receptor subtypes are recruited on specific cell types and in specific lamina to yield opposing modulatory effects that together increase neurons' responsiveness to optimal stimuli without changing tuning width.
Global motion perception is associated with motor function in 2-year-old children.
Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E
2017-09-29
The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.
The Maryland Large-Scale Integrated Neurocognitive Architecture
2008-03-01
Visual input enters the network through the lateral geniculate nucleus (LGN) and is passed forward through visual brain regions (V1, V2, and V4...University of Maryland Sponsored by Defense Advanced Research Projects Agency DARPA Order No. V029 APPROVED FOR PUBLIC RELEASE...interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S
Bentley, William J.; Li, Jingfeng M.; Snyder, Abraham Z.; Raichle, Marcus E.; Snyder, Lawrence H.
2016-01-01
The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these “task-negative” BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. PMID:25385710
Contextual modulation and stimulus selectivity in extrastriate cortex.
Krause, Matthew R; Pack, Christopher C
2014-11-01
Contextual modulation is observed throughout the visual system, using techniques ranging from single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within the retina and primary visual cortex has been extensively described in the literature. Here, we describe how similar computations can also elaborate feature selectivity in the extrastriate areas of both the dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of normalization models to test specific roles for contextual modulation in visual cortex function. We suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli. Specifically, we discuss contextual modulation's role in processing optic flow in areas MT and MST and for representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we describe how this theory relates to other hypothesized roles for contextual modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Robust selectivity to two-object images in human visual cortex
Agam, Yigal; Liu, Hesheng; Papanastassiou, Alexander; Buia, Calin; Golby, Alexandra J.; Madsen, Joseph R.; Kreiman, Gabriel
2010-01-01
SUMMARY We can recognize objects in a fraction of a second in spite of the presence of other objects [1–3]. The responses in macaque areas V4 and inferior temporal cortex [4–15] to a neuron’s preferred stimuli are typically suppressed by the addition of a second object within the receptive field (see however [16, 17]). How can this suppression be reconciled with rapid visual recognition in complex scenes? One option is that certain “special categories” are unaffected by other objects [18] but this leaves the problem unsolved for other categories. Another possibility is that serial attentional shifts help ameliorate the problem of distractor objects [19–21]. Yet, psychophysical studies [1–3], scalp recordings [1] and neurophysiological recordings [14, 16, 22–24], suggest that the initial sweep of visual processing contains a significant amount of information. We recorded intracranial field potentials in human visual cortex during presentation of flashes of two-object images. Visual selectivity from temporal cortex during the initial ~200 ms was largely robust to the presence of other objects. We could train linear decoders on the responses to isolated objects and decode information in two-object images. These observations are compatible with parallel, hierarchical and feed-forward theories of rapid visual recognition [25] and may provide a neural substrate to begin to unravel rapid recognition in natural scenes. PMID:20417105
Vélez-Fort, Mateo; Rousseau, Charly V; Niedworok, Christian J; Wickersham, Ian R; Rancz, Ede A; Brown, Alexander P Y; Strom, Molly; Margrie, Troy W
2014-09-17
Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway. We show that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons. In contrast, CT-projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas. This segregation in function and connectivity indicates that L6 microcircuits route specific contextual and stimulus-related information within and outside the cortical network. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Connection from cortical area V2 to V3 A in macaque monkey.
Anderson, John C; Martin, Kevan A C
2005-08-01
The V2 projection to V3 A was labeled by pressure microinjecting biotinylated dextran amine (BDA) and Phaseolus vulgaris lectin (PHA-L) into V2 just posterior to the lunate sulcus. Dense terminal labeling in clusters was found in layer 4, with a weaker terminal projection in layer 3. About 3.5--4.1% of the synapses in the densest bouton clusters in layer 4 were made by labeled boutons. All were asymmetric (Gray's type 1) synapses, made by spiny, excitatory neurons. The most frequently encountered synaptic targets were spines (76% in layer 4, 98% in layer 2/3). The remainder of the synaptic targets were dendritic shafts, of which just less than half (44%) had the characteristic ultrastructure of smooth (inhibitory) cells. Multisynaptic boutons were rare (mean synapses per bouton for layer 4 1.2, for layer 2/3 1.1). The mean size of the postsynaptic densities found on spines (0.11 microm(2)) was not significantly different from that for dendrites (0.09 microm(2)). In terms of their type, laminar location, number, and targets, the synapses that formed the V2 projection to V3 A are typical of a major, excitatory, feedforward projection of macaque visual cortex. (c) 2005 Wiley-Liss, Inc.
Spatiotopic updating of visual feature information.
Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R
2017-10-01
Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.
High-resolution eye tracking using V1 neuron activity
McFarland, James M.; Bondy, Adrian G.; Cumming, Bruce G.; Butts, Daniel A.
2014-01-01
Studies of high-acuity visual cortical processing have been limited by the inability to track eye position with sufficient accuracy to precisely reconstruct the visual stimulus on the retina. As a result, studies on primary visual cortex (V1) have been performed almost entirely on neurons outside the high-resolution central portion of the visual field (the fovea). Here we describe a procedure for inferring eye position using multi-electrode array recordings from V1 coupled with nonlinear stimulus processing models. We show that this method can be used to infer eye position with one arc-minute accuracy – significantly better than conventional techniques. This allows for analysis of foveal stimulus processing, and provides a means to correct for eye-movement induced biases present even outside the fovea. This method could thus reveal critical insights into the role of eye movements in cortical coding, as well as their contribution to measures of cortical variability. PMID:25197783
Edge Detection Based On the Characteristic of Primary Visual Cortex Cells
NASA Astrophysics Data System (ADS)
Zhu, M. M.; Xu, Y. L.; Ma, H. Q.
2018-01-01
Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness
Audiovisual Rehabilitation in Hemianopia: A Model-Based Theoretical Investigation
Magosso, Elisa; Cuppini, Cristiano; Bertini, Caterina
2017-01-01
Hemianopic patients exhibit visual detection improvement in the blind field when audiovisual stimuli are given in spatiotemporally coincidence. Beyond this “online” multisensory improvement, there is evidence of long-lasting, “offline” effects induced by audiovisual training: patients show improved visual detection and orientation after they were trained to detect and saccade toward visual targets given in spatiotemporal proximity with auditory stimuli. These effects are ascribed to the Superior Colliculus (SC), which is spared in these patients and plays a pivotal role in audiovisual integration and oculomotor behavior. Recently, we developed a neural network model of audiovisual cortico-collicular loops, including interconnected areas representing the retina, striate and extrastriate visual cortices, auditory cortex, and SC. The network simulated unilateral V1 lesion with possible spared tissue and reproduced “online” effects. Here, we extend the previous network to shed light on circuits, plastic mechanisms, and synaptic reorganization that can mediate the training effects and functionally implement visual rehabilitation. The network is enriched by the oculomotor SC-brainstem route, and Hebbian mechanisms of synaptic plasticity, and is used to test different training paradigms (audiovisual/visual stimulation in eye-movements/fixed-eyes condition) on simulated patients. Results predict different training effects and associate them to synaptic changes in specific circuits. Thanks to the SC multisensory enhancement, the audiovisual training is able to effectively strengthen the retina-SC route, which in turn can foster reinforcement of the SC-brainstem route (this occurs only in eye-movements condition) and reinforcement of the SC-extrastriate route (this occurs in presence of survived V1 tissue, regardless of eye condition). The retina-SC-brainstem circuit may mediate compensatory effects: the model assumes that reinforcement of this circuit can translate visual stimuli into short-latency saccades, possibly moving the stimuli into visual detection regions. The retina-SC-extrastriate circuit is related to restitutive effects: visual stimuli can directly elicit visual detection with no need for eye movements. Model predictions and assumptions are critically discussed in view of existing behavioral and neurophysiological data, forecasting that other oculomotor compensatory mechanisms, beyond short-latency saccades, are likely involved, and stimulating future experimental and theoretical investigations. PMID:29326578
Audiovisual Rehabilitation in Hemianopia: A Model-Based Theoretical Investigation.
Magosso, Elisa; Cuppini, Cristiano; Bertini, Caterina
2017-01-01
Hemianopic patients exhibit visual detection improvement in the blind field when audiovisual stimuli are given in spatiotemporally coincidence. Beyond this "online" multisensory improvement, there is evidence of long-lasting, "offline" effects induced by audiovisual training: patients show improved visual detection and orientation after they were trained to detect and saccade toward visual targets given in spatiotemporal proximity with auditory stimuli. These effects are ascribed to the Superior Colliculus (SC), which is spared in these patients and plays a pivotal role in audiovisual integration and oculomotor behavior. Recently, we developed a neural network model of audiovisual cortico-collicular loops, including interconnected areas representing the retina, striate and extrastriate visual cortices, auditory cortex, and SC. The network simulated unilateral V1 lesion with possible spared tissue and reproduced "online" effects. Here, we extend the previous network to shed light on circuits, plastic mechanisms, and synaptic reorganization that can mediate the training effects and functionally implement visual rehabilitation. The network is enriched by the oculomotor SC-brainstem route, and Hebbian mechanisms of synaptic plasticity, and is used to test different training paradigms (audiovisual/visual stimulation in eye-movements/fixed-eyes condition) on simulated patients. Results predict different training effects and associate them to synaptic changes in specific circuits. Thanks to the SC multisensory enhancement, the audiovisual training is able to effectively strengthen the retina-SC route, which in turn can foster reinforcement of the SC-brainstem route (this occurs only in eye-movements condition) and reinforcement of the SC-extrastriate route (this occurs in presence of survived V1 tissue, regardless of eye condition). The retina-SC-brainstem circuit may mediate compensatory effects: the model assumes that reinforcement of this circuit can translate visual stimuli into short-latency saccades, possibly moving the stimuli into visual detection regions. The retina-SC-extrastriate circuit is related to restitutive effects: visual stimuli can directly elicit visual detection with no need for eye movements. Model predictions and assumptions are critically discussed in view of existing behavioral and neurophysiological data, forecasting that other oculomotor compensatory mechanisms, beyond short-latency saccades, are likely involved, and stimulating future experimental and theoretical investigations.
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
Tan, Andrew Y Y; Brown, Brandon D; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J
2011-08-24
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: (1) How does orientation selectivity in mouse V1 neurons compare with that in previously described species? (2) What is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity-based on membrane potential, synaptic excitation, and synaptic inhibition-to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats.
Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex
Tan (陈勇毅), Andrew Y. Y.; Brown, Brandon D.; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J.
2011-01-01
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: 1) how does orientation selectivity in mouse V1 neurons compare with that in previously described species? 2) what is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity - based on membrane potential, synaptic excitation, and synaptic inhibition - to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats. PMID:21865476
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Thermo Tech Technologies Inc., T.V.G. Technologies Ltd., and Visual Frontier, Inc.; Order of Suspension of Trading January 31, 2012. It appears to... is a lack of current and accurate information concerning the securities of T.V.G. Technologies Ltd...
Krug, Kristine; Cicmil, Nela; Parker, Andrew J; Cumming, Bruce G
2013-08-05
Judgments about the perceptual appearance of visual objects require the combination of multiple parameters, like location, direction, color, speed, and depth. Our understanding of perceptual judgments has been greatly informed by studies of ambiguous figures, which take on different appearances depending upon the brain state of the observer. Here we probe the neural mechanisms hypothesized as responsible for judging the apparent direction of rotation of ambiguous structure from motion (SFM) stimuli. Resolving the rotation direction of SFM cylinders requires the conjoint decoding of direction of motion and binocular depth signals [1, 2]. Within cortical visual area V5/MT of two macaque monkeys, we applied electrical stimulation at sites with consistent multiunit tuning to combinations of binocular depth and direction of motion, while the monkey made perceptual decisions about the rotation of SFM stimuli. For both ambiguous and unambiguous SFM figures, rotation judgments shifted as if we had added a specific conjunction of disparity and motion signals to the stimulus elements. This is the first causal demonstration that the activity of neurons in V5/MT contributes directly to the perception of SFM stimuli and by implication to decoding the specific conjunction of disparity and motion, the two different visual cues whose combination drives the perceptual judgment. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Einstein, Michael C; Polack, Pierre-Olivier; Tran, Duy T; Golshani, Peyman
2017-05-17
Low-frequency membrane potential ( V m ) oscillations were once thought to only occur in sleeping and anesthetized states. Recently, low-frequency V m oscillations have been described in inactive awake animals, but it is unclear whether they shape sensory processing in neurons and whether they occur during active awake behavioral states. To answer these questions, we performed two-photon guided whole-cell V m recordings from primary visual cortex layer 2/3 excitatory and inhibitory neurons in awake mice during passive visual stimulation and performance of visual and auditory discrimination tasks. We recorded stereotyped 3-5 Hz V m oscillations where the V m baseline hyperpolarized as the V m underwent high amplitude rhythmic fluctuations lasting 1-2 s in duration. When 3-5 Hz V m oscillations coincided with visual cues, excitatory neuron responses to preferred cues were significantly reduced. Despite this disruption to sensory processing, visual cues were critical for evoking 3-5 Hz V m oscillations when animals performed discrimination tasks and passively viewed drifting grating stimuli. Using pupillometry and animal locomotive speed as indicators of arousal, we found that 3-5 Hz oscillations were not restricted to unaroused states and that they occurred equally in aroused and unaroused states. Therefore, low-frequency V m oscillations play a role in shaping sensory processing in visual cortical neurons, even during active wakefulness and decision making. SIGNIFICANCE STATEMENT A neuron's membrane potential ( V m ) strongly shapes how information is processed in sensory cortices of awake animals. Yet, very little is known about how low-frequency V m oscillations influence sensory processing and whether they occur in aroused awake animals. By performing two-photon guided whole-cell recordings from layer 2/3 excitatory and inhibitory neurons in the visual cortex of awake behaving animals, we found visually evoked stereotyped 3-5 Hz V m oscillations that disrupt excitatory responsiveness to visual stimuli. Moreover, these oscillations occurred when animals were in high and low arousal states as measured by animal speed and pupillometry. These findings show, for the first time, that low-frequency V m oscillations can significantly modulate sensory signal processing, even in awake active animals. Copyright © 2017 the authors 0270-6474/17/375084-15$15.00/0.
fMRI response during visual motion stimulation in patients with late whiplash syndrome.
Freitag, P; Greenlee, M W; Wachter, K; Ettlin, T M; Radue, E W
2001-01-01
After whiplash trauma, up to one fourth of patients develop chronic symptoms including head and neck pain and cognitive disturbances. Resting perfusion single-photon-emission computed tomography (SPECT) found decreased temporoparietooccipital tracer uptake among these long-term symptomatic patients with late whiplash syndrome. As MT/MST (V5/V5a) are located in that area, this study addressed the question whether these patients show impairments in visual motion perception. We examined five symptomatic patients with late whiplash syndrome, five asymptomatic patients after whiplash trauma, and a control group of seven volunteers without the history of trauma. Tests for visual motion perception and functional magnetic resonance imaging (fMRI) measurements during visual motion stimulation were performed. Symptomatic patients showed a significant reduction in their ability to perceive coherent visual motion compared with controls, whereas the asymptomatic patients did not show this effect. fMRI activation was similar during random dot motion in all three groups, but was significantly decreased during coherent dot motion in the symptomatic patients compared with the other two groups. Reduced psychophysical motion performance and reduced fMRI responses in symptomatic patients with late whiplash syndrome both point to a functional impairment in cortical areas sensitive to coherent motion. Larger studies are needed to confirm these clinical and functional imaging results to provide a possible additional diagnostic criterion for the evaluation of patients with late whiplash syndrome.
Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT
Schurz, Matthias; Perner, Josef
2017-01-01
In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of “theory of mind (ToM)” but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of “theory of mind” is supposed to be if visual perspective taking is not one of them. PMID:28367446
Systematic Comparison of Brain Imaging Meta-Analyses of ToM with vPT.
Arora, Aditi; Schurz, Matthias; Perner, Josef
2017-01-01
In visual perspective taking (vPT) one has to concern oneself with what other people see and how they see it. Since seeing is a mental state, developmental studies have discussed vPT within the domain of "theory of mind (ToM)" but imaging studies have not treated it as such. Based on earlier results from several meta-analyses, we tested for the overlap of visual perspective taking studies with 6 different kinds of ToM studies: false belief, trait judgments, strategic games, social animations, mind in the eyes, and rational actions. Joint activation was observed between the vPT task and some kinds of ToM tasks in regions involving the left temporoparietal junction (TPJ), anterior precuneus, left middle occipital gyrus/extrastriate body area (EBA), and the left inferior frontal and precentral gyrus. Importantly, no overlap activation was found for the vPT tasks with the joint core of all six kinds of ToM tasks. This raises the important question of what the common denominator of all tasks that fall under the label of "theory of mind" is supposed to be if visual perspective taking is not one of them.
Figure-ground organization and the emergence of proto-objects in the visual cortex.
von der Heydt, Rüdiger
2015-01-01
A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a 'figure' relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations ('proto-objects'). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex.
Figure–ground organization and the emergence of proto-objects in the visual cortex
von der Heydt, Rüdiger
2015-01-01
A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a ‘figure’ relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations (‘proto-objects’). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex. PMID:26579062
Beyond the FFA: The Role of the Ventral Anterior Temporal Lobes in Face Processing
Collins, Jessica A.; Olson, Ingrid R.
2014-01-01
Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge. PMID:24937188
The impact of recreational MDMA 'ecstasy' use on global form processing.
White, Claire; Edwards, Mark; Brown, John; Bell, Jason
2014-11-01
The ability to integrate local orientation information into a global form percept was investigated in long-term ecstasy users. Evidence suggests that ecstasy disrupts the serotonin system, with the visual areas of the brain being particularly susceptible. Previous research has found altered orientation processing in the primary visual area (V1) of users, thought to be due to disrupted serotonin-mediated lateral inhibition. The current study aimed to investigate whether orientation deficits extend to higher visual areas involved in global form processing. Forty-five participants completed a psychophysical (Glass pattern) study allowing an investigation into the mechanisms underlying global form processing and sensitivity to changes in the offset of the stimuli (jitter). A subgroup of polydrug-ecstasy users (n=6) with high ecstasy use had significantly higher thresholds for the detection of Glass patterns than controls (n=21, p=0.039) after Bonferroni correction. There was also a significant interaction between jitter level and drug-group, with polydrug-ecstasy users showing reduced sensitivity to alterations in jitter level (p=0.003). These results extend previous research, suggesting disrupted global form processing and reduced sensitivity to orientation jitter with ecstasy use. Further research is needed to investigate this finding in a larger sample of heavy ecstasy users and to differentiate the effects of other drugs. © The Author(s) 2014.
Orientation selectivity in the visual cortex of the nine-banded armadillo
Scholl, Benjamin; Rylee, Johnathan; Luci, Jeffrey J.; Priebe, Nicholas J.
2017-01-01
Orientation selectivity in primary visual cortex (V1) has been proposed to reflect a canonical computation performed by the neocortical circuitry. Although orientation selectivity has been reported in all mammals examined to date, the degree of selectivity and the functional organization of selectivity vary across mammalian clades. The differences in degree of orientation selectivity are large, from reports in marsupials that only a small subset of neurons are selective to studies in carnivores, in which it is rare to find a neuron lacking selectivity. Furthermore, the functional organization in cortex varies in that the primate and carnivore V1 is characterized by an organization in which nearby neurons share orientation preference while other mammals such as rodents and lagomorphs either lack or have only extremely weak clustering. To gain insight into the evolutionary emergence of orientation selectivity, we examined the nine-banded armadillo, a species within the early placental clade Xenarthra. Here we use a combination of neuroimaging, histological, and electrophysiological methods to identify the retinofugal pathways, locate V1, and for the first time examine the functional properties of V1 neurons in the armadillo (Dasypus novemcinctus) V1. Individual neurons were strongly sensitive to the orientation and often the direction of drifting gratings. We uncovered a wide range of orientation preferences but found a bias for horizontal gratings. The presence of strong orientation selectivity in armadillos suggests that the circuitry responsible for this computation is common to all placental mammals. NEW & NOTEWORTHY The current study shows that armadillo primary visual cortex (V1) neurons share the signature properties of V1 neurons of primates, carnivorans, and rodents. Furthermore, these neurons exhibit a degree of selectivity for stimulus orientation and motion direction similar to that found in primate V1. Our findings in armadillo visual cortex suggest that the functional properties of V1 neurons emerged early in the mammalian lineage, near the time of the divergence of marsupials. PMID:28053246
Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly
2018-01-01
Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA
2015-01-01
Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184
Perceptual Learning Improves Contrast Sensitivity of V1 Neurons in Cats
Hua, Tianmiao; Bao, Pinglei; Huang, Chang-Bing; Wang, Zhenhua; Xu, Jinwang
2010-01-01
Summary Background Perceptual learning has been documented in adult humans over a wide range of tasks. Although the often observed specificity of learning is generally interpreted as evidence for training-induced plasticity in early cortical areas, physiological evidence for training-induced changes in early visual cortical areas is modest, despite reports of learning-induced changes of cortical activities in fMRI studies. To reveal the physiological bases of perceptual learning, we combined psychophysical measurements with extracellular single-unit recording under anesthetized preparations, and examined the effects of training in grating orientation identification on both perceptual and neuronal contrast sensitivity functions of cats. Results We have found that training significantly improved perceptual contrast sensitivity of the cats to gratings with the spatial frequencies near the ‘trained’ spatial frequency, with stronger effects in the trained eye. Consistent with behavioral assessments, the mean contrast sensitivity of neurons recorded from V1 of the trained cats was significantly higher than that of neurons recorded from the untrained cats. Furthermore, in the trained cats, the contrast sensitivity of V1 neurons responding preferentially to stimuli presented via the trained eyes was significantly greater than that of neurons responding preferentially to stimuli presented via the ‘untrained’ eyes. The effect was confined to the trained spatial frequencies. In both trained and untrained cats, the neuronal contrast sensitivity functions derived from the contrast sensitivity of the individual neurons were highly correlated with behaviorally determined perceptual contrast sensitivity functions. Conclusions We suggest that training-induced neuronal contrast-gain in area V1 underlies behaviorally determined perceptual contrast sensitivity improvements. PMID:20451388
Cell structure and function in the visual cortex of the cat
Kelly, J. P.; Van Essen, D. C.
1974-01-01
1. The organization of the visual cortex was studied with a technique that allows one to determine the physiology and morphology of individual cells. Micro-electrodes filled with the fluorescent dye Procion yellow were used to record intracellularly from cells in area 17 of the cat. The visual receptive field of each neurone was classified as simple, complex, or hypercomplex, and the cell was then stained by the iontophoretic injection of dye. 2. Fifty neurones were successfully examined in this way, and their structural features were compared to the varieties of cell types seen in Golgi preparations of area 17. The majority of simple units were stellate cells, whereas the majority of complex and hypercomplex units were pyramidal cells. Several neurones belonged to less common morphological types, such as double bouquet cells. Simple cells were concentrated in layer IV, hypercomplex cells in layer II + III, and complex cells in layers II + III, V and VI. 3. Electrically inexcitable cells that had high resting potentials but no impulse activity were stained and identified as glial cells. Glial cells responded to visual stimuli with slow graded depolarizations, and many of them showed a preference for a stimulus orientation similar to the optimal orientation for adjacent neurones. 4. The results show that there is a clear, but not absolute correlation between the major structural and functional classes of cells in the visual cortex. This approach, linking the physiological properties of a single cell to a given morphological type, will help in furthering our understanding of the cerebral cortex. ImagesPlate 4Plate 1Plate 2Plate 3 PMID:4136579
Schuch, Klaus; Logothetis, Nikos K.; Maass, Wolfgang
2011-01-01
A major goal of computational neuroscience is the creation of computer models for cortical areas whose response to sensory stimuli resembles that of cortical areas in vivo in important aspects. It is seldom considered whether the simulated spiking activity is realistic (in a statistical sense) in response to natural stimuli. Because certain statistical properties of spike responses were suggested to facilitate computations in the cortex, acquiring a realistic firing regimen in cortical network models might be a prerequisite for analyzing their computational functions. We present a characterization and comparison of the statistical response properties of the primary visual cortex (V1) in vivo and in silico in response to natural stimuli. We recorded from multiple electrodes in area V1 of 4 macaque monkeys and developed a large state-of-the-art network model for a 5 × 5-mm patch of V1 composed of 35,000 neurons and 3.9 million synapses that integrates previously published anatomical and physiological details. By quantitative comparison of the model response to the “statistical fingerprint” of responses in vivo, we find that our model for a patch of V1 responds to the same movie in a way which matches the statistical structure of the recorded data surprisingly well. The deviation between the firing regimen of the model and the in vivo data are on the same level as deviations among monkeys and sessions. This suggests that, despite strong simplifications and abstractions of cortical network models, they are nevertheless capable of generating realistic spiking activity. To reach a realistic firing state, it was not only necessary to include both N-methyl-d-aspartate and GABAB synaptic conductances in our model, but also to markedly increase the strength of excitatory synapses onto inhibitory neurons (>2-fold) in comparison to literature values, hinting at the importance to carefully adjust the effect of inhibition for achieving realistic dynamics in current network models. PMID:21106898
Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel
2012-01-01
Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.
Ringach, Dario L.; Hawken, Michael J.; Shapley, Robert M.
2011-01-01
One of the functions of the cerebral cortex is to increase the selectivity for stimulus features. Finding more about the mechanisms of increased cortical selectivity is important for understanding how the cortex works. Up to now, studies in multiple cortical areas have reported that suppressive mechanisms are involved in feature selectivity. However, the magnitude of the contribution of suppression to tuning selectivity is not yet determined. We use orientation selectivity in macaque primary visual cortex, V1, as an archetypal example of cortical feature selectivity and develop a method to estimate the magnitude of the contribution of suppression to orientation selectivity. The results show that untuned suppression, one form of cortical suppression, decreases the orthogonal-to-preferred response ratio (O/P ratio) of V1 cells from an average of 0.38 to 0.26. Untuned suppression has an especially large effect on orientation selectivity for highly selective cells (O/P < 0.2). Therefore, untuned suppression is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:22049440
Residual attention guidance in blindsight monkeys watching complex natural scenes.
Yoshida, Masatoshi; Itti, Laurent; Berg, David J; Ikeda, Takuro; Kato, Rikako; Takaura, Kana; White, Brian J; Munoz, Douglas P; Isa, Tadashi
2012-08-07
Patients with damage to primary visual cortex (V1) demonstrate residual performance on laboratory visual tasks despite denial of conscious seeing (blindsight) [1]. After a period of recovery, which suggests a role for plasticity [2], visual sensitivity higher than chance is observed in humans and monkeys for simple luminance-defined stimuli, grating stimuli, moving gratings, and other stimuli [3-7]. Some residual cognitive processes including bottom-up attention and spatial memory have also been demonstrated [8-10]. To date, little is known about blindsight with natural stimuli and spontaneous visual behavior. In particular, is orienting attention toward salient stimuli during free viewing still possible? We used a computational saliency map model to analyze spontaneous eye movements of monkeys with blindsight from unilateral ablation of V1. Despite general deficits in gaze allocation, monkeys were significantly attracted to salient stimuli. The contribution of orientation features to salience was nearly abolished, whereas contributions of motion, intensity, and color features were preserved. Control experiments employing laboratory stimuli confirmed the free-viewing finding that lesioned monkeys retained color sensitivity. Our results show that attention guidance over complex natural scenes is preserved in the absence of V1, thereby directly challenging theories and models that crucially depend on V1 to compute the low-level visual features that guide attention. Copyright © 2012 Elsevier Ltd. All rights reserved.
Maekawa, Toshihiko; Miyanaga, Yuka; Takahashi, Kenji; Takamiya, Naomi; Ogata, Katsuya; Tobimatsu, Shozo
2017-01-01
Individuals with autism spectrum disorder (ASD) show superior performance in processing fine detail, but often exhibit impaired gestalt face perception. The ventral visual stream from the primary visual cortex (V1) to the fusiform gyrus (V4) plays an important role in form (including faces) and color perception. The aim of this study was to investigate how the ventral stream is functionally altered in ASD. Visual evoked potentials were recorded in high-functioning ASD adults (n = 14) and typically developing (TD) adults (n = 14). We used three types of visual stimuli as follows: isoluminant chromatic (red/green, RG) gratings, high-contrast achromatic (black/white, BW) gratings with high spatial frequency (HSF, 5.3 cycles/degree), and face (neutral, happy, and angry faces) stimuli. Compared with TD controls, ASD adults exhibited longer N1 latency for RG, shorter N1 latency for BW, and shorter P1 latency, but prolonged N170 latency, for face stimuli. Moreover, a greater difference in latency between P1 and N170, or between N1 for BW and N170 (i.e., the prolongation of cortico-cortical conduction time between V1 and V4) was observed in ASD adults. These findings indicate that ASD adults have enhanced fine-form (local HSF) processing, but impaired color processing at V1. In addition, they exhibit impaired gestalt face processing due to deficits in integration of multiple local HSF facial information at V4. Thus, altered ventral stream function may contribute to abnormal social processing in ASD. PMID:28146575