Sample records for visual brain areas

  1. Visual brain plasticity induced by central and peripheral visual field loss.

    PubMed

    Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel

    2018-06-23

    Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

  2. Eye movement-invariant representations in the human visual system.

    PubMed

    Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L

    2017-01-01

    During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.

  3. Visual processing in the central bee brain.

    PubMed

    Paulk, Angelique C; Dacks, Andrew M; Phillips-Portillo, James; Fellous, Jean-Marc; Gronenberg, Wulfila

    2009-08-12

    Visual scenes comprise enormous amounts of information from which nervous systems extract behaviorally relevant cues. In most model systems, little is known about the transformation of visual information as it occurs along visual pathways. We examined how visual information is transformed physiologically as it is communicated from the eye to higher-order brain centers using bumblebees, which are known for their visual capabilities. We recorded intracellularly in vivo from 30 neurons in the central bumblebee brain (the lateral protocerebrum) and compared these neurons to 132 neurons from more distal areas along the visual pathway, namely the medulla and the lobula. In these three brain regions (medulla, lobula, and central brain), we examined correlations between the neurons' branching patterns and their responses primarily to color, but also to motion stimuli. Visual neurons projecting to the anterior central brain were generally color sensitive, while neurons projecting to the posterior central brain were predominantly motion sensitive. The temporal response properties differed significantly between these areas, with an increase in spike time precision across trials and a decrease in average reliable spiking as visual information processing progressed from the periphery to the central brain. These data suggest that neurons along the visual pathway to the central brain not only are segregated with regard to the physical features of the stimuli (e.g., color and motion), but also differ in the way they encode stimuli, possibly to allow for efficient parallel processing to occur.

  4. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  5. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Functional Specificity of the Visual Word Form Area: General Activation for Words and Symbols but Specific Network Activation for Words

    ERIC Educational Resources Information Center

    Reinke, Karen; Fernandes, Myra; Schwindt, Graeme; O'Craven, Kathleen; Grady, Cheryl L.

    2008-01-01

    The functional specificity of the brain region known as the Visual Word Form Area (VWFA) was examined using fMRI. We explored whether this area serves a general role in processing symbolic stimuli, rather than being selective for the processing of words. Brain activity was measured during a visual 1-back task to English words, meaningful symbols…

  7. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    NASA Astrophysics Data System (ADS)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  8. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  9. Multiscale neural connectivity during human sensory processing in the brain

    NASA Astrophysics Data System (ADS)

    Maksimenko, Vladimir A.; Runnova, Anastasia E.; Frolov, Nikita S.; Makarov, Vladimir V.; Nedaivozov, Vladimir; Koronovskii, Alexey A.; Pisarchik, Alexander; Hramov, Alexander E.

    2018-05-01

    Stimulus-related brain activity is considered using wavelet-based analysis of neural interactions between occipital and parietal brain areas in alpha (8-12 Hz) and beta (15-30 Hz) frequency bands. We show that human sensory processing related to the visual stimuli perception induces brain response resulted in different ways of parieto-occipital interactions in these bands. In the alpha frequency band the parieto-occipital neuronal network is characterized by homogeneous increase of the interaction between all interconnected areas both within occipital and parietal lobes and between them. In the beta frequency band the occipital lobe starts to play a leading role in the dynamics of the occipital-parietal network: The perception of visual stimuli excites the visual center in the occipital area and then, due to the increase of parieto-occipital interactions, such excitation is transferred to the parietal area, where the attentional center takes place. In the case when stimuli are characterized by a high degree of ambiguity, we find greater increase of the interaction between interconnected areas in the parietal lobe due to the increase of human attention. Based on revealed mechanisms, we describe the complex response of the parieto-occipital brain neuronal network during the perception and primary processing of the visual stimuli. The results can serve as an essential complement to the existing theory of neural aspects of visual stimuli processing.

  10. [Sensory loss and brain reorganization].

    PubMed

    Fortin, Madeleine; Voss, Patrice; Lassonde, Maryse; Lepore, Franco

    2007-11-01

    It is without a doubt that humans are first and foremost visual beings. Even though the other sensory modalities provide us with valuable information, it is vision that generally offers the most reliable and detailed information concerning our immediate surroundings. It is therefore not surprising that nearly a third of the human brain processes, in one way or another, visual information. But what happens when the visual information no longer reaches these brain regions responsible for processing it? Indeed numerous medical conditions such as congenital glaucoma, retinis pigmentosa and retinal detachment, to name a few, can disrupt the visual system and lead to blindness. So, do the brain areas responsible for processing visual stimuli simply shut down and become non-functional? Do they become dead weight and simply stop contributing to cognitive and sensory processes? Current data suggests that this is not the case. Quite the contrary, it would seem that congenitally blind individuals benefit from the recruitment of these areas by other sensory modalities to carry out non-visual tasks. In fact, our laboratory has been studying blindness and its consequences on both the brain and behaviour for many years now. We have shown that blind individuals demonstrate exceptional hearing abilities. This finding holds true for stimuli originating from both near and far space. It also holds true, under certain circumstances, for those who lost their sight later in life, beyond a period generally believed to limit the brain changes following the loss of sight. In the case of the early blind, we have shown their ability to localize sounds is strongly correlated with activity in the occipital cortex (the location of the visual processing), demonstrating that these areas are functionally engaged by the task. Therefore it would seem that the plastic nature of the human brain allows them to make new use of the cerebral areas normally dedicated to visual processing.

  11. Epicenters of dynamic connectivity in the adaptation of the ventral visual system.

    PubMed

    Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge

    2017-04-01

    Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-Hierarchical View of Face Perception

    PubMed Central

    Rossion, Bruno; Dricot, Laurence; Goebel, Rainer; Busigny, Thomas

    2011-01-01

    How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (two-tones Mooney figures and Arcimboldo's facelike paintings). Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (“Fusiform face area”) and superior temporal sulcus (pSTS), with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no “occipital face area”). This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex. PMID:21267432

  13. Multiple asynchronous stimulus- and task-dependent hierarchies (STDH) within the visual brain's parallel processing systems.

    PubMed

    Zeki, Semir

    2016-10-01

    Results from a variety of sources, some many years old, lead ineluctably to a re-appraisal of the twin strategies of hierarchical and parallel processing used by the brain to construct an image of the visual world. Contrary to common supposition, there are at least three 'feed-forward' anatomical hierarchies that reach the primary visual cortex (V1) and the specialized visual areas outside it, in parallel. These anatomical hierarchies do not conform to the temporal order with which visual signals reach the specialized visual areas through V1. Furthermore, neither the anatomical hierarchies nor the temporal order of activation through V1 predict the perceptual hierarchies. The latter shows that we see (and become aware of) different visual attributes at different times, with colour leading form (orientation) and directional visual motion, even though signals from fast-moving, high-contrast stimuli are among the earliest to reach the visual cortex (of area V5). Parallel processing, on the other hand, is much more ubiquitous than commonly supposed but is subject to a barely noticed but fundamental aspect of brain operations, namely that different parallel systems operate asynchronously with respect to each other and reach perceptual endpoints at different times. This re-assessment leads to the conclusion that the visual brain is constituted of multiple, parallel and asynchronously operating task- and stimulus-dependent hierarchies (STDH); which of these parallel anatomical hierarchies have temporal and perceptual precedence at any given moment is stimulus and task related, and dependent on the visual brain's ability to undertake multiple operations asynchronously. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. The Contribution of Increased Gamma Band Connectivity to Visual Non-Verbal Reasoning in Autistic Children: A MEG Study

    PubMed Central

    Takesaki, Natsumi; Kikuchi, Mitsuru; Yoshimura, Yuko; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Kaneda, Reizo; Nakatani, Hideo; Takahashi, Tetsuya; Mottron, Laurent; Minabe, Yoshio

    2016-01-01

    Some individuals with autism spectrum (AS) perform better on visual reasoning tasks than would be predicted by their general cognitive performance. In individuals with AS, mechanisms in the brain’s visual area that underlie visual processing play a more prominent role in visual reasoning tasks than they do in normal individuals. In addition, increased connectivity with the visual area is thought to be one of the neural bases of autistic visual cognitive abilities. However, the contribution of such brain connectivity to visual cognitive abilities is not well understood, particularly in children. In this study, we investigated how functional connectivity between the visual areas and higher-order regions, which is reflected by alpha, beta and gamma band oscillations, contributes to the performance of visual reasoning tasks in typically developing (TD) (n = 18) children and AS children (n = 18). Brain activity was measured using a custom child-sized magneto-encephalograph. Imaginary coherence analysis was used as a proxy to estimate the functional connectivity between the occipital and other areas of the brain. Stronger connectivity from the occipital area, as evidenced by higher imaginary coherence in the gamma band, was associated with higher performance in the AS children only. We observed no significant correlation between the alpha or beta bands imaginary coherence and performance in the both groups. Alpha and beta bands reflect top-down pathways, while gamma band oscillations reflect a bottom-up influence. Therefore, our results suggest that visual reasoning in AS children is at least partially based on an enhanced reliance on visual perception and increased bottom-up connectivity from the visual areas. PMID:27631982

  15. Individual differences in solving arithmetic word problems

    PubMed Central

    2013-01-01

    Background With the present functional magnetic resonance imaging (fMRI) study at 3 T, we investigated the neural correlates of visualization and verbalization during arithmetic word problem solving. In the domain of arithmetic, visualization might mean to visualize numbers and (intermediate) results while calculating, and verbalization might mean that numbers and (intermediate) results are verbally repeated during calculation. If the brain areas involved in number processing are domain-specific as assumed, that is, that the left angular gyrus (AG) shows an affinity to the verbal domain, and that the left and right intraparietal sulcus (IPS) shows an affinity to the visual domain, the activation of these areas should show a dependency on an individual’s cognitive style. Methods 36 healthy young adults participated in the fMRI study. The participants habitual use of visualization and verbalization during solving arithmetic word problems was assessed with a short self-report assessment. During the fMRI measurement, arithmetic word problems that had to be solved by the participants were presented in an event-related design. Results We found that visualizers showed greater brain activation in brain areas involved in visual processing, and that verbalizers showed greater brain activation within the left angular gyrus. Conclusions Our results indicate that cognitive styles or preferences play an important role in understanding brain activation. Our results confirm, that strong visualizers use mental imagery more strongly than weak visualizers during calculation. Moreover, our results suggest that the left AG shows a specific affinity to the verbal domain and subserves number processing in a modality-specific way. PMID:23883107

  16. Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity

    PubMed Central

    Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd

    2013-01-01

    Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929

  17. Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps

    PubMed Central

    Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco

    2012-01-01

    Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222

  18. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    PubMed

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. Gender similarities and differences in brain activation strategies: Voxel-based meta-analysis on fMRI studies.

    PubMed

    AlRyalat, Saif Aldeen

    2017-01-01

    Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.

  20. Audio-visual speech processing in age-related hearing loss: Stronger integration and increased frontal lobe recruitment.

    PubMed

    Rosemann, Stephanie; Thiel, Christiane M

    2018-07-15

    Hearing loss is associated with difficulties in understanding speech, especially under adverse listening conditions. In these situations, seeing the speaker improves speech intelligibility in hearing-impaired participants. On the neuronal level, previous research has shown cross-modal plastic reorganization in the auditory cortex following hearing loss leading to altered processing of auditory, visual and audio-visual information. However, how reduced auditory input effects audio-visual speech perception in hearing-impaired subjects is largely unknown. We here investigated the impact of mild to moderate age-related hearing loss on processing audio-visual speech using functional magnetic resonance imaging. Normal-hearing and hearing-impaired participants performed two audio-visual speech integration tasks: a sentence detection task inside the scanner and the McGurk illusion outside the scanner. Both tasks consisted of congruent and incongruent audio-visual conditions, as well as auditory-only and visual-only conditions. We found a significantly stronger McGurk illusion in the hearing-impaired participants, which indicates stronger audio-visual integration. Neurally, hearing loss was associated with an increased recruitment of frontal brain areas when processing incongruent audio-visual, auditory and also visual speech stimuli, which may reflect the increased effort to perform the task. Hearing loss modulated both the audio-visual integration strength measured with the McGurk illusion and brain activation in frontal areas in the sentence task, showing stronger integration and higher brain activation with increasing hearing loss. Incongruent compared to congruent audio-visual speech revealed an opposite brain activation pattern in left ventral postcentral gyrus in both groups, with higher activation in hearing-impaired participants in the incongruent condition. Our results indicate that already mild to moderate hearing loss impacts audio-visual speech processing accompanied by changes in brain activation particularly involving frontal areas. These changes are modulated by the extent of hearing loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    PubMed

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  2. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions

    PubMed Central

    Paneri, Sofia; Gregoriou, Georgia G.

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices. PMID:29033784

  3. Top-Down Control of Visual Attention by the Prefrontal Cortex. Functional Specialization and Long-Range Interactions.

    PubMed

    Paneri, Sofia; Gregoriou, Georgia G

    2017-01-01

    The ability to select information that is relevant to current behavioral goals is the hallmark of voluntary attention and an essential part of our cognition. Attention tasks are a prime example to study at the neuronal level, how task related information can be selectively processed in the brain while irrelevant information is filtered out. Whereas, numerous studies have focused on elucidating the mechanisms of visual attention at the single neuron and population level in the visual cortices, considerably less work has been devoted to deciphering the distinct contribution of higher-order brain areas, which are known to be critical for the employment of attention. Among these areas, the prefrontal cortex (PFC) has long been considered a source of top-down signals that bias selection in early visual areas in favor of the attended features. Here, we review recent experimental data that support the role of PFC in attention. We examine the existing evidence for functional specialization within PFC and we discuss how long-range interactions between PFC subregions and posterior visual areas may be implemented in the brain and contribute to the attentional modulation of different measures of neural activity in visual cortices.

  4. Brain signal complexity rises with repetition suppression in visual learning.

    PubMed

    Lafontaine, Marc Philippe; Lacourse, Karine; Lina, Jean-Marc; McIntosh, Anthony R; Gosselin, Frédéric; Théoret, Hugo; Lippé, Sarah

    2016-06-21

    Neuronal activity associated with visual processing of an unfamiliar face gradually diminishes when it is viewed repeatedly. This process, known as repetition suppression (RS), is involved in the acquisition of familiarity. Current models suggest that RS results from interactions between visual information processing areas located in the occipito-temporal cortex and higher order areas, such as the dorsolateral prefrontal cortex (DLPFC). Brain signal complexity, which reflects information dynamics of cortical networks, has been shown to increase as unfamiliar faces become familiar. However, the complementarity of RS and increases in brain signal complexity have yet to be demonstrated within the same measurements. We hypothesized that RS and brain signal complexity increase occur simultaneously during learning of unfamiliar faces. Further, we expected alteration of DLPFC function by transcranial direct current stimulation (tDCS) to modulate RS and brain signal complexity over the occipito-temporal cortex. Participants underwent three tDCS conditions in random order: right anodal/left cathodal, right cathodal/left anodal and sham. Following tDCS, participants learned unfamiliar faces, while an electroencephalogram (EEG) was recorded. Results revealed RS over occipito-temporal electrode sites during learning, reflected by a decrease in signal energy, a measure of amplitude. Simultaneously, as signal energy decreased, brain signal complexity, as estimated with multiscale entropy (MSE), increased. In addition, prefrontal tDCS modulated brain signal complexity over the right occipito-temporal cortex during the first presentation of faces. These results suggest that although RS may reflect a brain mechanism essential to learning, complementary processes reflected by increases in brain signal complexity, may be instrumental in the acquisition of novel visual information. Such processes likely involve long-range coordinated activity between prefrontal and lower order visual areas. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Hemispheric Asymmetry of Visual Scene Processing in the Human Brain: Evidence from Repetition Priming and Intrinsic Activity

    PubMed Central

    Kahn, Itamar; Wig, Gagan S.; Schacter, Daniel L.

    2012-01-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes. PMID:21968568

  6. Hemispheric asymmetry of visual scene processing in the human brain: evidence from repetition priming and intrinsic activity.

    PubMed

    Stevens, W Dale; Kahn, Itamar; Wig, Gagan S; Schacter, Daniel L

    2012-08-01

    Asymmetrical specialization of cognitive processes across the cerebral hemispheres is a hallmark of healthy brain development and an important evolutionary trait underlying higher cognition in humans. While previous research, including studies of priming, divided visual field presentation, and split-brain patients, demonstrates a general pattern of right/left asymmetry of form-specific versus form-abstract visual processing, little is known about brain organization underlying this dissociation. Here, using repetition priming of complex visual scenes and high-resolution functional magnetic resonance imaging (MRI), we demonstrate asymmetrical form specificity of visual processing between the right and left hemispheres within a region known to be critical for processing of visual spatial scenes (parahippocampal place area [PPA]). Next, we use resting-state functional connectivity MRI analyses to demonstrate that this functional asymmetry is associated with differential intrinsic activity correlations of the right versus left PPA with regions critically involved in perceptual versus conceptual processing, respectively. Our results demonstrate that the PPA comprises lateralized subregions across the cerebral hemispheres that are engaged in functionally dissociable yet complementary components of visual scene analysis. Furthermore, this functional asymmetry is associated with differential intrinsic functional connectivity of the PPA with distinct brain areas known to mediate dissociable cognitive processes.

  7. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review

    PubMed Central

    Nuzzi, Raffaele; Dallorto, Laura; Rolle, Teresa

    2018-01-01

    Background: Glaucoma is a leading cause of irreversible blindness worldwide. The increasing interest in the involvement of the cortical visual pathway in glaucomatous patients is due to the implications in recent therapies, such as neuroprotection and neuroregeneration. Objective: In this review, we outline the current understanding of brain structural, functional, and metabolic changes detected with the modern techniques of neuroimaging in glaucomatous subjects. Methods: We screened MEDLINE, EMBASE, CINAHL, CENTRAL, LILACS, Trip Database, and NICE for original contributions published until 31 October 2017. Studies with at least six patients affected by any type of glaucoma were considered. We included studies using the following neuroimaging techniques: functional Magnetic Resonance Imaging (fMRI), resting-state fMRI (rs-fMRI), magnetic resonance spectroscopy (MRS), voxel- based Morphometry (VBM), surface-based Morphometry (SBM), diffusion tensor MRI (DTI). Results: Over a total of 1,901 studies, 56 case series with a total of 2,381 patients were included. Evidence of neurodegenerative process in glaucomatous patients was found both within and beyond the visual system. Structural alterations in visual cortex (mainly reduced cortex thickness and volume) have been demonstrated with SBM and VBM; these changes were not limited to primary visual cortex but also involved association visual areas. Other brain regions, associated with visual function, demonstrated a certain grade of increased or decreased gray matter volume. Functional and metabolic abnormalities resulted within primary visual cortex in all studies with fMRI and MRS. Studies with rs-fMRI found disrupted connectivity between the primary and higher visual cortex and between visual cortex and associative visual areas in the task-free state of glaucomatous patients. Conclusions: This review contributes to the better understanding of brain abnormalities in glaucoma. It may stimulate further speculation about brain plasticity at a later age and therapeutic strategies, such as the prevention of cortical degeneration in patients with glaucoma. Structural, functional, and metabolic neuroimaging methods provided evidence of changes throughout the visual pathway in glaucomatous patients. Other brain areas, not directly involved in the processing of visual information, also showed alterations. PMID:29896087

  8. Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Holahan, John M; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E; Shaywitz, Bennett A; Constable, R Todd

    2014-09-01

    Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which might result in mixing distinct activation time-courses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words on the basis of their visual properties, whereas DYS readers recruit altered reading circuits and rely on laborious phonology-based "sounding out" strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  9. A massively asynchronous, parallel brain.

    PubMed

    Zeki, Semir

    2015-05-19

    Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously--with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain.

  10. Brain activity during driving with distraction: an immersive fMRI study

    PubMed Central

    Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757

  11. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  12. Is orbital volume associated with eyeball and visual cortex volume in humans?

    PubMed Central

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766

  13. Top-down alpha oscillatory network interactions during visuospatial attention orienting.

    PubMed

    Doesburg, Sam M; Bedo, Nicolas; Ward, Lawrence M

    2016-05-15

    Neuroimaging and lesion studies indicate that visual attention is controlled by a distributed network of brain areas. The covert control of visuospatial attention has also been associated with retinotopic modulation of alpha-band oscillations within early visual cortex, which are thought to underlie inhibition of ignored areas of visual space. The relation between distributed networks mediating attention control and more focal oscillatory mechanisms, however, remains unclear. The present study evaluated the hypothesis that alpha-band, directed, network interactions within the attention control network are systematically modulated by the locus of visuospatial attention. We localized brain areas involved in visuospatial attention orienting using magnetoencephalographic (MEG) imaging and investigated alpha-band Granger-causal interactions among activated regions using narrow-band transfer entropy. The deployment of attention to one side of visual space was indexed by lateralization of alpha power changes between about 400ms and 700ms post-cue onset. The changes in alpha power were associated, in the same time period, with lateralization of anterior-to-posterior information flow in the alpha-band from various brain areas involved in attention control, including the anterior cingulate cortex, left middle and inferior frontal gyri, left superior temporal gyrus, and right insula, and inferior parietal lobule, to early visual areas. We interpreted these results to indicate that distributed network interactions mediated by alpha oscillations exert top-down influences on early visual cortex to modulate inhibition of processing for ignored areas of visual space. Copyright © 2016. Published by Elsevier Inc.

  14. Visual perception and imagery: a new molecular hypothesis.

    PubMed

    Bókkon, I

    2009-05-01

    Here, we put forward a redox molecular hypothesis about the natural biophysical substrate of visual perception and visual imagery. This hypothesis is based on the redox and bioluminescent processes of neuronal cells in retinotopically organized cytochrome oxidase-rich visual areas. Our hypothesis is in line with the functional roles of reactive oxygen and nitrogen species in living cells that are not part of haphazard process, but rather a very strict mechanism used in signaling pathways. We point out that there is a direct relationship between neuronal activity and the biophoton emission process in the brain. Electrical and biochemical processes in the brain represent sensory information from the external world. During encoding or retrieval of information, electrical signals of neurons can be converted into synchronized biophoton signals by bioluminescent radical and non-radical processes. Therefore, information in the brain appears not only as an electrical (chemical) signal but also as a regulated biophoton (weak optical) signal inside neurons. During visual perception, the topological distribution of photon stimuli on the retina is represented by electrical neuronal activity in retinotopically organized visual areas. These retinotopic electrical signals in visual neurons can be converted into synchronized biophoton signals by radical and non-radical processes in retinotopically organized mitochondria-rich areas. As a result, regulated bioluminescent biophotons can create intrinsic pictures (depictive representation) in retinotopically organized cytochrome oxidase-rich visual areas during visual imagery and visual perception. The long-term visual memory is interpreted as epigenetic information regulated by free radicals and redox processes. This hypothesis does not claim to solve the secret of consciousness, but proposes that the evolution of higher levels of complexity made the intrinsic picture representation of the external visual world possible by regulated redox and bioluminescent reactions in the visual system during visual perception and visual imagery.

  15. Similar brain networks for detecting visuo-motor and visuo-proprioceptive synchrony.

    PubMed

    Balslev, Daniela; Nielsen, Finn A; Lund, Torben E; Law, Ian; Paulson, Olaf B

    2006-05-15

    The ability to recognize feedback from own movement as opposed to the movement of someone else is important for motor control and social interaction. The neural processes involved in feedback recognition are incompletely understood. Two competing hypotheses have been proposed: the stimulus is compared with either (a) the proprioceptive feedback or with (b) the motor command and if they match, then the external stimulus is identified as feedback. Hypothesis (a) predicts that the neural mechanisms or brain areas involved in distinguishing self from other during passive and active movement are similar, whereas hypothesis (b) predicts that they are different. In this fMRI study, healthy subjects saw visual cursor movement that was either synchronous or asynchronous with their active or passive finger movements. The aim was to identify the brain areas where the neural activity depended on whether the visual stimulus was feedback from own movement and to contrast the functional activation maps for active and passive movement. We found activity increases in the right temporoparietal cortex in the condition with asynchronous relative to synchronous visual feedback from both active and passive movements. However, no statistically significant difference was found between these sets of activated areas when the active and passive movement conditions were compared. With a posterior probability of 0.95, no brain voxel had a contrast effect above 0.11% of the whole-brain mean signal. These results do not support the hypothesis that recognition of visual feedback during active and passive movement relies on different brain areas.

  16. Using Proton Magnetic Resonance Imaging and Spectroscopy to Understand Brain "Activation"

    ERIC Educational Resources Information Center

    Baslow, Morris H.; Guilfoyle, David N.

    2007-01-01

    Upon stimulation, areas of the brain associated with specific cognitive processing tasks may undergo observable physiological changes, and measures of such changes have been used to create brain maps for visualization of stimulated areas in task-related brain "activation" studies. These perturbations usually continue throughout the period of the…

  17. Prolonged fasting impairs neural reactivity to visual stimulation.

    PubMed

    Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U

    2016-01-01

    Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.

  18. The Human Brain Uses Noise

    NASA Astrophysics Data System (ADS)

    Mori, Toshio; Kai, Shoichi

    2003-05-01

    We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a sub-threshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g. perception and cognition, may exploit SR.

  19. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates

    PubMed Central

    Laramée, Marie-Eve; Boire, Denis

    2015-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914

  20. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

    PubMed

    Laramée, Marie-Eve; Boire, Denis

    2014-01-01

    Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.

  1. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres

    PubMed Central

    Kavcic, Voyko; Triplett, Regina L.; Das, Anasuya; Martin, Tim; Huxlin, Krystel R.

    2015-01-01

    Partial cortical blindness is a visual deficit caused by unilateral damage to the primary visual cortex, a condition previously considered beyond hopes of rehabilitation. However, recent data demonstrate that patients may recover both simple and global motion discrimination following intensive training in their blind field. The present experiments characterized motion-induced neural activity of cortically blind (CB) subjects prior to the onset of visual rehabilitation. This was done to provide information about visual processing capabilities available to mediate training-induced visual improvements. Visual Evoked Potentials (VEPs) were recorded from two experimental groups consisting of 9 CB subjects and 9 age-matched, visually-intact controls. VEPs were collected following lateralized stimulus presentation to each of the 4 visual field quadrants. VEP waveforms were examined for both stimulus-onset (SO) and motion-onset (MO) related components in postero-lateral electrodes. While stimulus presentation to intact regions of the visual field elicited normal SO-P1, SO-N1, SO-P2 and MO-N2 amplitudes and latencies in contralateral brain regions of CB subjects, these components were not observed contralateral to stimulus presentation in blind quadrants of the visual field. In damaged brain hemispheres, SO-VEPs were only recorded following stimulus presentation to intact visual field quadrants, via inter-hemispheric transfer. MO-VEPs were only recorded from damaged left brain hemispheres, possibly reflecting a native left/right asymmetry in inter-hemispheric connections. The present findings suggest that damaged brain hemispheres contain areas capable of responding to visual stimulation. However, in the absence of training or rehabilitation, these areas only generate detectable VEPs in response to stimulation of the intact hemifield of vision. PMID:25575450

  2. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    PubMed

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses

    PubMed Central

    Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming

    2015-01-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860

  4. Effects of inhibitory theta burst TMS to different brain sites involved in visuospatial attention - a combined neuronavigated cTBS and behavioural study.

    PubMed

    Platz, Thomas; Schüttauf, Johannes; Aschenbach, Julia; Mengdehl, Christine; Lotze, Martin

    2016-01-01

    The study sought to alter visual spatial attention in young healthy subjects by a neuronavigated inhibitory rTMS protocol (cTBS-600) to right brain areas thought to be involved in visual attentional processes, i.e. the temporoparietal junction (TPJ) and the posterior middle frontal gyrus (pMFG), and to test the reversibility of effects by an additional consecutive cTBS to the homologue left brain cortical areas. Healthy subjects showed a leftward bias of the egocentric perspective for both visual-perceptive and visual-exploratory tasks specifically for items presented in the left hemifield. cTBS to the right TPJ, and less systematically to the right pMFG reduced this bias for visuo-spatial and exploratory visuo-motor behaviour. Further, a consecutive cTBS to the left TPJ changed the bias again towards the left for a visual-perceptive task. The evidence supports the notion of an involvement of the right TPJ (and pMFG) in spatial visual attention. The observations further indicate that inhibitory non-invasive brain stimulation (cTBS) to the left TPJ has a potential for reversing a rightward bias of spatial attention when the right TPJ is dysfunctional. Accordingly, the findings could have implications for therapeutic rTMS development for right brain damaged patients with visual neglect.

  5. Processing speed in recurrent visual networks correlates with general intelligence.

    PubMed

    Jolij, Jacob; Huisman, Danielle; Scholte, Steven; Hamel, Ronald; Kemner, Chantal; Lamme, Victor A F

    2007-01-08

    Studies on the neural basis of general fluid intelligence strongly suggest that a smarter brain processes information faster. Different brain areas, however, are interconnected by both feedforward and feedback projections. Whether both types of connections or only one of the two types are faster in smarter brains remains unclear. Here we show, by measuring visual evoked potentials during a texture discrimination task, that general fluid intelligence shows a strong correlation with processing speed in recurrent visual networks, while there is no correlation with speed of feedforward connections. The hypothesis that a smarter brain runs faster may need to be refined: a smarter brain's feedback connections run faster.

  6. A massively asynchronous, parallel brain

    PubMed Central

    Zeki, Semir

    2015-01-01

    Whether the visual brain uses a parallel or a serial, hierarchical, strategy to process visual signals, the end result appears to be that different attributes of the visual scene are perceived asynchronously—with colour leading form (orientation) by 40 ms and direction of motion by about 80 ms. Whatever the neural root of this asynchrony, it creates a problem that has not been properly addressed, namely how visual attributes that are perceived asynchronously over brief time windows after stimulus onset are bound together in the longer term to give us a unified experience of the visual world, in which all attributes are apparently seen in perfect registration. In this review, I suggest that there is no central neural clock in the (visual) brain that synchronizes the activity of different processing systems. More likely, activity in each of the parallel processing-perceptual systems of the visual brain is reset independently, making of the brain a massively asynchronous organ, just like the new generation of more efficient computers promise to be. Given the asynchronous operations of the brain, it is likely that the results of activities in the different processing-perceptual systems are not bound by physiological interactions between cells in the specialized visual areas, but post-perceptually, outside the visual brain. PMID:25823871

  7. Brain activation-based sexual orientation in female-to-male transsexuals.

    PubMed

    Kim, T-H; Kim, G-W; Kim, S-K; Jeong, G-W

    2016-01-01

    This study was performed to identify the sexual orientation in association with brain activation pattern in response to visual erotic stimuli in female-to-male (FtM) transsexuals by using functional magnetic resonance imaging (fMRI). Eleven FtM transsexuals who have had sex-reassignment surgery to alter their natal bodies with the gender-identity disorder were participated. Brain activation for sexual orientation was induced by visual stimuli with female and male erotic nude pictures compared with emotionally-neutral pictures. During viewing the erotic female pictures, the brain areas dominantly activated consist of the superior frontal gyrus, supplementary motor area, anterior/median cingulate gyri and hypothalamus, whereas during viewing male pictures, the brain areas with predominant activities were the middle frontal gyrus, precentral gyrus, middle temporal gyrus, fusiform gyrus, angular gyrus, precuneus, superior/middle occipital gyri, cerebellar cortex and vermis. These findings demonstrate that the brain activation patterns induced by viewing male or female erotic pictures show some correlation to the sexual orientation opposite to the genetic sex in FtM transsexuals. This study would be helpful to understand the neural mechanism associated with visual sexual arousal in patients with gender disorder.

  8. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  9. Brain Activation in Response to Visually Evoked Sexual Arousal in Male-to-Female Transsexuals: 3.0 Tesla Functional Magnetic Resonance Imaging

    PubMed Central

    Oh, Seok-Kyun; Kim, Gwang-Won; Yang, Jong-Chul; Kim, Seok-Kwun; Kang, Heoung-Keun

    2012-01-01

    Objective This study used functional magnetic resonance imaging (fMRI) to contrast the differential brain activation patterns in response to visual stimulation with both male and female erotic nude pictures in male-to-female (MTF) transsexuals who underwent a sex reassignment surgery. Materials and Methods A total of nine healthy MTF transsexuals after a sex reassignment surgery underwent fMRI on a 3.0 Tesla MR Scanner. The brain activation patterns were induced by visual stimulation with both male and female erotic nude pictures. Results The sex hormone levels of the postoperative MTF transsexuals were in the normal range of healthy heterosexual females. The brain areas, which were activated by viewing male nude pictures when compared with viewing female nude pictures, included predominantly the cerebellum, hippocampus, putamen, anterior cingulate gyrus, head of caudate nucleus, amygdala, midbrain, thalamus, insula, and body of caudate nucleus. On the other hand, brain activation induced by viewing female nude pictures was predominantly observed in the hypothalamus and the septal area. Conclusion Our findings suggest that distinct brain activation patterns associated with visual sexual arousal in postoperative MTF transsexuals reflect their sexual orientation to males. PMID:22563262

  10. A cross-validated cytoarchitectonic atlas of the human ventral visual stream.

    PubMed

    Rosenke, Mona; Weiner, Kevin S; Barnett, Michael A; Zilles, Karl; Amunts, Katrin; Goebel, Rainer; Grill-Spector, Kalanit

    2018-04-15

    The human ventral visual stream consists of several areas that are considered processing stages essential for perception and recognition. A fundamental microanatomical feature differentiating areas is cytoarchitecture, which refers to the distribution, size, and density of cells across cortical layers. Because cytoarchitectonic structure is measured in 20-micron-thick histological slices of postmortem tissue, it is difficult to assess (a) how anatomically consistent these areas are across brains and (b) how they relate to brain parcellations obtained with prevalent neuroimaging methods, acquired at the millimeter and centimeter scale. Therefore, the goal of this study was to (a) generate a cross-validated cytoarchitectonic atlas of the human ventral visual stream on a whole brain template that is commonly used in neuroimaging studies and (b) to compare this atlas to a recently published retinotopic parcellation of visual cortex (Wang et al., 2014). To achieve this goal, we generated an atlas of eight cytoarchitectonic areas: four areas in the occipital lobe (hOc1-hOc4v) and four in the fusiform gyrus (FG1-FG4), then we tested how the different alignment techniques affect the accuracy of the resulting atlas. Results show that both cortex-based alignment (CBA) and nonlinear volumetric alignment (NVA) generate an atlas with better cross-validation performance than affine volumetric alignment (AVA). Additionally, CBA outperformed NVA in 6/8 of the cytoarchitectonic areas. Finally, the comparison of the cytoarchitectonic atlas to a retinotopic atlas shows a clear correspondence between cytoarchitectonic and retinotopic areas in the ventral visual stream. The successful performance of CBA suggests a coupling between cytoarchitectonic areas and macroanatomical landmarks in the human ventral visual stream, and furthermore, that this coupling can be utilized for generating an accurate group atlas. In addition, the coupling between cytoarchitecture and retinotopy highlights the potential use of this atlas in understanding how anatomical features contribute to brain function. We make this cytoarchitectonic atlas freely available in both BrainVoyager and FreeSurfer formats (http://vpnl.stanford.edu/vcAtlas). The availability of this atlas will enable future studies to link cytoarchitectonic organization to other parcellations of the human ventral visual stream with potential to advance the understanding of this pathway in typical and atypical populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Noise-Induced Entrainment and Stochastic Resonance in Human Brain Waves

    NASA Astrophysics Data System (ADS)

    Mori, Toshio; Kai, Shoichi

    2002-05-01

    We present the first observation of stochastic resonance (SR) in the human brain's visual processing area. The novel experimental protocol is to stimulate the right eye with a subthreshold periodic optical signal and the left eye with a noisy one. The stimuli bypass sensory organs and are mixed in the visual cortex. With many noise sources present in the brain, higher brain functions, e.g., perception and cognition, may exploit SR.

  12. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    PubMed

    Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  13. Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film

    PubMed Central

    Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909

  14. Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia

    PubMed Central

    Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi

    2013-01-01

    Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297

  15. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    PubMed Central

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  16. Spatio-temporal distribution of brain activity associated with audio-visually congruent and incongruent speech and the McGurk Effect.

    PubMed

    Pratt, Hillel; Bleich, Naomi; Mittelman, Nomi

    2015-11-01

    Spatio-temporal distributions of cortical activity to audio-visual presentations of meaningless vowel-consonant-vowels and the effects of audio-visual congruence/incongruence, with emphasis on the McGurk effect, were studied. The McGurk effect occurs when a clearly audible syllable with one consonant, is presented simultaneously with a visual presentation of a face articulating a syllable with a different consonant and the resulting percept is a syllable with a consonant other than the auditorily presented one. Twenty subjects listened to pairs of audio-visually congruent or incongruent utterances and indicated whether pair members were the same or not. Source current densities of event-related potentials to the first utterance in the pair were estimated and effects of stimulus-response combinations, brain area, hemisphere, and clarity of visual articulation were assessed. Auditory cortex, superior parietal cortex, and middle temporal cortex were the most consistently involved areas across experimental conditions. Early (<200 msec) processing of the consonant was overall prominent in the left hemisphere, except right hemisphere prominence in superior parietal cortex and secondary visual cortex. Clarity of visual articulation impacted activity in secondary visual cortex and Wernicke's area. McGurk perception was associated with decreased activity in primary and secondary auditory cortices and Wernicke's area before 100 msec, increased activity around 100 msec which decreased again around 180 msec. Activity in Broca's area was unaffected by McGurk perception and was only increased to congruent audio-visual stimuli 30-70 msec following consonant onset. The results suggest left hemisphere prominence in the effects of stimulus and response conditions on eight brain areas involved in dynamically distributed parallel processing of audio-visual integration. Initially (30-70 msec) subcortical contributions to auditory cortex, superior parietal cortex, and middle temporal cortex occur. During 100-140 msec, peristriate visual influences and Wernicke's area join in the processing. Resolution of incongruent audio-visual inputs is then attempted, and if successful, McGurk perception occurs and cortical activity in left hemisphere further increases between 170 and 260 msec.

  17. Asymmetrical brain activity induced by voluntary spatial attention depends on the visual hemifield: a functional near-infrared spectroscopy study.

    PubMed

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-04-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a previous psychophysical study, namely, the attentional resources for the left and right visual hemifields are distinct. Increasing the attentional load asymmetrically increased the brain activity. Increase in attentional load produced a greater increase in brain activity in the case of the left visual hemifield than in the case of the right visual hemifield. This asymmetry was observed in all the examined brain areas, including the right and left occipital and parietal cortices. These results suggest the existence of asymmetrical inhibitory interactions between the hemispheres and the presence of an extensive inhibitory network. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

    PubMed

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly

    2017-01-01

    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Correlation between language function and the left arcuate fasciculus detected by diffusion tensor imaging tractography after brain tumor surgery.

    PubMed

    Hayashi, Yutaka; Kinoshita, Masashi; Nakada, Mitsutoshi; Hamada, Jun-ichiro

    2012-11-01

    Disturbance of the arcuate fasciculus in the dominant hemisphere is thought to be associated with language-processing disorders, including conduction aphasia. Although the arcuate fasciculus can be visualized in vivo with diffusion tensor imaging (DTI) tractography, its involvement in functional processes associated with language has not been shown dynamically using DTI tractography. In the present study, to clarify the participation of the arcuate fasciculus in language functions, postoperative changes in the arcuate fasciculus detected by DTI tractography were evaluated chronologically in relation to postoperative changes in language function after brain tumor surgery. Preoperative and postoperative arcuate fasciculus area and language function were examined in 7 right-handed patients with a brain tumor in the left hemisphere located in proximity to part of the arcuate fasciculus. The arcuate fasciculus was depicted, and its area was calculated using DTI tractography. Language functions were measured using the Western Aphasia Battery (WAB). After tumor resection, visualization of the arcuate fasciculus was increased in 5 of the 7 patients, and the total WAB score improved in 6 of the 7 patients. The relative ratio of postoperative visualized area of the arcuate fasciculus to preoperative visualized area of the arcuate fasciculus was increased in association with an improvement in postoperative language function (p = 0.0039). The role of the left arcuate fasciculus in language functions can be evaluated chronologically in vivo by DTI tractography after brain tumor surgery. Because increased postoperative visualization of the fasciculus was significantly associated with postoperative improvement in language functions, the arcuate fasciculus may play an important role in language function, as previously thought. In addition, postoperative changes in the arcuate fasciculus detected by DTI tractography could represent a predicting factor for postoperative language-dependent functional outcomes in patients with brain tumor.

  20. Neural Substrates of Visual Spatial Coding and Visual Feedback Control for Hand Movements in Allocentric and Target-Directed Tasks

    PubMed Central

    Thaler, Lore; Goodale, Melvyn A.

    2011-01-01

    Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements. PMID:21941474

  1. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum.

    PubMed

    Mizelle, J C; Oparah, Alexis; Wheaton, Lewis A

    2016-01-01

    The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.

  2. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    PubMed

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-01-01

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108

  4. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.

    PubMed

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude

    2016-06-10

    The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.

  5. Dipole source localization of event-related brain activity indicative of an early visual selective attention deficit in ADHD children.

    PubMed

    Jonkman, L M; Kenemans, J L; Kemner, C; Verbaten, M N; van Engeland, H

    2004-07-01

    This study was aimed at investigating whether attention-deficit hyperactivity disorder (ADHD) children suffer from specific early selective attention deficits in the visual modality with the aid of event-related brain potentials (ERPs). Furthermore, brain source localization was applied to identify brain areas underlying possible deficits in selective visual processing in ADHD children. A two-channel visual color selection task was administered to 18 ADHD and 18 control subjects in the age range of 7-13 years and ERP activity was derived from 30 electrodes. ADHD children exhibited lower perceptual sensitivity scores resulting in poorer target selection. The ERP data suggested an early selective-attention deficit as manifested in smaller frontal positive activity (frontal selection positivity; FSP) in ADHD children around 200 ms whereas later occipital and fronto-central negative activity (OSN and N2b; 200-400 ms latency) appeared to be unaffected. Source localization explained the FSP by posterior-medial equivalent dipoles in control subjects, which may reflect the contribution of numerous surrounding areas. ADHD children have problems with selective visual processing that might be caused by a specific early filtering deficit (absent FSP) occurring around 200 ms. The neural sources underlying these problems have to be further identified. Source localization also suggested abnormalities in the 200-400 ms time range, pertaining to the distribution of attention-modulated activity in lateral frontal areas.

  6. Visual Receptive Field Heterogeneity and Functional Connectivity of Adjacent Neurons in Primate Frontoparietal Association Cortices.

    PubMed

    Viswanathan, Pooja; Nieder, Andreas

    2017-09-13

    The basic organization principles of the primary visual cortex (V1) are commonly assumed to also hold in the association cortex such that neurons within a cortical column share functional connectivity patterns and represent the same region of the visual field. We mapped the visual receptive fields (RFs) of neurons recorded at the same electrode in the ventral intraparietal area (VIP) and the lateral prefrontal cortex (PFC) of rhesus monkeys. We report that the spatial characteristics of visual RFs between adjacent neurons differed considerably, with increasing heterogeneity from VIP to PFC. In addition to RF incongruences, we found differential functional connectivity between putative inhibitory interneurons and pyramidal cells in PFC and VIP. These findings suggest that local RF topography vanishes with hierarchical distance from visual cortical input and argue for increasingly modified functional microcircuits in noncanonical association cortices that contrast V1. SIGNIFICANCE STATEMENT Our visual field is thought to be represented faithfully by the early visual brain areas; all the information from a certain region of the visual field is conveyed to neurons situated close together within a functionally defined cortical column. We examined this principle in the association areas, PFC, and ventral intraparietal area of rhesus monkeys and found that adjacent neurons represent markedly different areas of the visual field. This is the first demonstration of such noncanonical organization of these brain areas. Copyright © 2017 the authors 0270-6474/17/378919-10$15.00/0.

  7. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  9. Linking pain and the body: neural correlates of visually induced analgesia.

    PubMed

    Longo, Matthew R; Iannetti, Gian Domenico; Mancini, Flavia; Driver, Jon; Haggard, Patrick

    2012-02-22

    The visual context of seeing the body can reduce the experience of acute pain, producing a multisensory analgesia. Here we investigated the neural correlates of this "visually induced analgesia" using fMRI. We induced acute pain with an infrared laser while human participants looked either at their stimulated right hand or at another object. Behavioral results confirmed the expected analgesic effect of seeing the body, while fMRI results revealed an associated reduction of laser-induced activity in ipsilateral primary somatosensory cortex (SI) and contralateral operculoinsular cortex during the visual context of seeing the body. We further identified two known cortical networks activated by sensory stimulation: (1) a set of brain areas consistently activated by painful stimuli (the so-called "pain matrix"), and (2) an extensive set of posterior brain areas activated by the visual perception of the body ("visual body network"). Connectivity analyses via psychophysiological interactions revealed that the visual context of seeing the body increased effective connectivity (i.e., functional coupling) between posterior parietal nodes of the visual body network and the purported pain matrix. Increased connectivity with these posterior parietal nodes was seen for several pain-related regions, including somatosensory area SII, anterior and posterior insula, and anterior cingulate cortex. These findings suggest that visually induced analgesia does not involve an overall reduction of the cortical response elicited by laser stimulation, but is consequent to the interplay between the brain's pain network and a posterior network for body perception, resulting in modulation of the experience of pain.

  10. Visual cortex activity predicts subjective experience after reading books with colored letters.

    PubMed

    Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; van Es, Daniel M; Knapen, Tomas; Rouw, Romke

    2016-07-29

    One of the most astonishing properties of synesthesia is that the evoked concurrent experiences are perceptual. Is it possible to acquire similar effects after learning cross-modal associations that resemble synesthetic mappings? In this study, we examine whether brain activation in early visual areas can be directly related to letter-color associations acquired by training. Non-synesthetes read specially prepared books with colored letters for several weeks and were scanned using functional magnetic resonance imaging. If the acquired letter-color associations were visual in nature, then brain activation in visual cortex while viewing the trained black letters (compared to untrained black letters) should predict the strength of the associations, the quality of the color experience, or the vividness of visual mental imagery. Results showed that training-related activation of area V4 was correlated with differences in reported subjective color experience. Trainees who were classified as having stronger 'associator' types of color experiences also had more negative activation for trained compared to untrained achromatic letters in area V4. In contrast, the strength of the acquired associations (measured as the Stroop effect) was not reliably reflected in visual cortex activity. The reported vividness of visual mental imagery was related to veridical color activation in early visual cortex, but not to the acquired color associations. We show for the first time that subjective experience related to a synesthesia-training paradigm was reflected in visual brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies.

    PubMed

    Schurz, Matthias; Aichhorn, Markus; Martin, Anna; Perner, Josef

    2013-01-01

    We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality. In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ). This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA). The precuneus is linked to mental-imagery which may aid in the construction of a different perspective. The EBA may be engaged due to imagined body-transformations when another's viewpoint is adopted.

  12. Common brain areas engaged in false belief reasoning and visual perspective taking: a meta-analysis of functional brain imaging studies

    PubMed Central

    Schurz, Matthias; Aichhorn, Markus; Martin, Anna; Perner, Josef

    2013-01-01

    We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation for visual-perspective taking to activation for false belief reasoning, which requires awareness of perspective to understand someone's mistaken belief about the world which contrasts with reality. In support of a previous account by Perner and Leekam (2008), our meta-analytic conjunction analysis found common activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction (TPJ). This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, our conjunction analysis found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area (EBA). The precuneus is linked to mental-imagery which may aid in the construction of a different perspective. The EBA may be engaged due to imagined body-transformations when another's viewpoint is adopted. PMID:24198773

  13. Unravelling the development of the visual cortex: implications for plasticity and repair

    PubMed Central

    Bourne, James A

    2010-01-01

    The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain. PMID:20722872

  14. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta

    PubMed Central

    Huetteroth, Wolf; el Jundi, Basil; el Jundi, Sirri; Schachtner, Joachim

    2009-01-01

    During metamorphosis, the transition from the larva to the adult, the insect brain undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1. PMID:20339481

  15. 3D-Reconstructions and Virtual 4D-Visualization to Study Metamorphic Brain Development in the Sphinx Moth Manduca Sexta.

    PubMed

    Huetteroth, Wolf; El Jundi, Basil; El Jundi, Sirri; Schachtner, Joachim

    2010-01-01

    DURING METAMORPHOSIS, THE TRANSITION FROM THE LARVA TO THE ADULT, THE INSECT BRAIN UNDERGOES CONSIDERABLE REMODELING: new neurons are integrated while larval neurons are remodeled or eliminated. One well acknowledged model to study metamorphic brain development is the sphinx moth Manduca sexta. To further understand mechanisms involved in the metamorphic transition of the brain we generated a 3D standard brain based on selected brain areas of adult females and 3D reconstructed the same areas during defined stages of pupal development. Selected brain areas include for example mushroom bodies, central complex, antennal- and optic lobes. With this approach we eventually want to quantify developmental changes in neuropilar architecture, but also quantify changes in the neuronal complement and monitor the development of selected neuronal populations. Furthermore, we used a modeling software (Cinema 4D) to create a virtual 4D brain, morphing through its developmental stages. Thus the didactical advantages of 3D visualization are expanded to better comprehend complex processes of neuropil formation and remodeling during development. To obtain datasets of the M. sexta brain areas, we stained whole brains with an antiserum against the synaptic vesicle protein synapsin. Such labeled brains were then scanned with a confocal laser scanning microscope and selected neuropils were reconstructed with the 3D software AMIRA 4.1.

  16. Assessing visual requirements for social context-dependent activation of the songbird song system

    PubMed Central

    Hara, Erina; Kubikova, Lubica; Hessler, Neal A.; Jarvis, Erich D.

    2008-01-01

    Social context has been shown to have a profound influence on brain activation in a wide range of vertebrate species. Best studied in songbirds, when males sing undirected song, the level of neural activity and expression of immediate early genes (IEGs) in several song nuclei is dramatically higher or lower than when they sing directed song to other birds, particularly females. This differential social context-dependent activation is independent of auditory input and is not simply dependent on the motor act of singing. These findings suggested that the critical sensory modality driving social context-dependent differences in the brain could be visual cues. Here, we tested this hypothesis by examining IEG activation in song nuclei in hemispheres to which visual input was normal or blocked. We found that covering one eye blocked visually induced IEG expression throughout both contralateral visual pathways of the brain, and reduced activation of the contralateral ventral tegmental area, a non-visual midbrain motivation-related area affected by social context. However, blocking visual input had no effect on the social context-dependent activation of the contralateral song nuclei during female-directed singing. Our findings suggest that individual sensory modalities are not direct driving forces for the social context differences in song nuclei during singing. Rather, these social context differences in brain activation appear to depend more on the general sense that another individual is present. PMID:18826930

  17. Functional Characterization and Differential Coactivation Patterns of Two Cytoarchitectonic Visual Areas on the Human Posterior Fusiform Gyrus

    PubMed Central

    Caspers, Julian; Zilles, Karl; Amunts, Katrin; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those “high-level” functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features. PMID:24038902

  18. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia).

    PubMed

    Azizi, Amir Hossein; Pusch, Roland; Koenen, Charlotte; Klatt, Sebastian; Bröcker, Franziska; Thiele, Samuel; Kellermann, Janosch; Güntürkün, Onur; Cheng, Sen

    2018-06-06

    Recognizing and categorizing visual stimuli are cognitive functions vital for survival, and an important feature of visual systems in primates as well as in birds. Visual stimuli are processed along the ventral visual pathway. At every stage in the hierarchy, neurons respond selectively to more complex features, transforming the population representation of the stimuli. It is therefore easier to read-out category information in higher visual areas. While explicit category representations have been observed in the primate brain, less is known on equivalent processes in the avian brain. Even though their brain anatomies are radically different, it has been hypothesized that visual object representations are comparable across mammals and birds. In the present study, we investigated category representations in the pigeon visual forebrain using recordings from single cells responding to photographs of real-world objects. Using a linear classifier, we found that the population activity in the visual associative area mesopallium ventrolaterale (MVL) distinguishes between animate and inanimate objects, although this distinction is not required by the task. By contrast, a population of cells in the entopallium, a region that is lower in the hierarchy of visual areas and that is related to the primate extrastriate cortex, lacked this information. A model that pools responses of simple cells, which function as edge detectors, can account for the animate vs. inanimate categorization in the MVL, but performance in the model is based on different features than in MVL. Therefore, processing in MVL cells is very likely more abstract than simple computations on the output of edge detectors. Copyright © 2018. Published by Elsevier B.V.

  19. Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.

    PubMed

    Zaldivar, Andrew; Krichmar, Jeffrey L

    2014-01-01

    The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.

  20. Retinotopic patterns of functional connectivity between V1 and large-scale brain networks during resting fixation

    PubMed Central

    Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Bowman, Anthony D.; Szaflarski, Jerzy P.; Visscher, Kristina M.

    2016-01-01

    Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks. PMID:27554527

  1. Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque

    PubMed Central

    Kaneko, Takaaki; Saleem, Kadharbatcha S.; Berman, Rebecca A.; Leopold, David A.

    2016-01-01

    Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This “reafferent” motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. PMID:27629710

  2. Distinct fMRI Responses to Self-Induced versus Stimulus Motion during Free Viewing in the Macaque.

    PubMed

    Russ, Brian E; Kaneko, Takaaki; Saleem, Kadharbatcha S; Berman, Rebecca A; Leopold, David A

    2016-09-14

    Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This "reafferent" motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion. Copyright © 2016 the authors 0270-6474/16/369580-10$15.00/0.

  3. A novel approach to segmentation and measurement of medical image using level set methods.

    PubMed

    Chen, Yao-Tien

    2017-06-01

    The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The evolution of the complex sensory and motor systems of the human brain.

    PubMed

    Kaas, Jon H

    2008-03-18

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20-25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size.

  5. Menopause-related brain activation patterns during visual sexual arousal in menopausal women: An fMRI pilot study using time-course analysis.

    PubMed

    Kim, Gwang-Won; Jeong, Gwang-Woo

    2017-02-20

    The aging process and menopausal transition are important factors in sexual dysfunction of menopausal women. No neuroimaging study has assessed the age- and menopause-related changes on brain activation areas associated with sexual arousal in menopausal women. The purpose of this study was to evaluate the time course of regional brain activity associated with sexual arousal evoked by visual stimulation in premenopausal and menopausal women, and further to assess the effect of menopause on the brain areas associated with sexual arousal in menopausal women using functional magnetic resonance imaging (fMRI). Thirty volunteers consisting of 15 premenopausal and 15 menopausal women underwent the fMRI. For the activation condition, volunteers viewed sexually arousing visual stimulation. The brain areas with significantly higher activation in premenopausal women compared with menopausal women included the thalamus, amygdala, and anterior cingulate cortex (ACC) using analysis of covariance adjusting for age (p<0.005). Blood-oxygen-level-dependent signal changes in the amygdala while viewing erotic video were positively correlated with estrogen levels in the two groups. Our findings suggest that reduced brain activity of the thalamus, amygdala, and ACC in menopausal women may be associated with menopause-related decrease in sexual arousal. These findings might help elucidate the neural mechanisms associated with sexual dysfunction in menopausal women. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Brain activation by visual erotic stimuli in healthy middle aged males.

    PubMed

    Kim, S W; Sohn, D W; Cho, Y-H; Yang, W S; Lee, K-U; Juh, R; Ahn, K-J; Chung, Y-A; Han, S-I; Lee, K H; Lee, C U; Chae, J-H

    2006-01-01

    The objective of the present study was to identify brain centers, whose activity changes are related to erotic visual stimuli in healthy, heterosexual, middle aged males. Ten heterosexual, right-handed males with normal sexual function were entered into the present study (mean age 52 years, range 46-55). All potential subjects were screened over 1 h interview, and were encouraged to fill out questionnaires including the Brief Male Sexual Function Inventory. All subjects with a history of sexual arousal disorder or erectile dysfunction were excluded. We performed functional brain magnetic resonance imaging (fMRI) in male volunteers when an alternatively combined erotic and nonerotic film was played for 14 min and 9 s. The major areas of activation associated with sexual arousal to visual stimuli were occipitotemporal area, anterior cingulate gyrus, insula, orbitofrontal cortex, caudate nucleus. However, hypothalamus and thalamus were not activated. We suggest that the nonactivation of hypothalamus and thalamus in middle aged males may be responsible for the lesser physiological arousal in response to the erotic visual stimuli.

  7. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    PubMed

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  8. Selectivity to Translational Egomotion in Human Brain Motion Areas

    PubMed Central

    Pitzalis, Sabrina; Sdoia, Stefano; Bultrini, Alessandro; Committeri, Giorgia; Di Russo, Francesco; Fattori, Patrizia; Galletti, Claudio; Galati, Gaspare

    2013-01-01

    The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment. PMID:23577096

  9. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    PubMed

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  10. Simulation of talking faces in the human brain improves auditory speech recognition

    PubMed Central

    von Kriegstein, Katharina; Dogan, Özgür; Grüter, Martina; Giraud, Anne-Lise; Kell, Christian A.; Grüter, Thomas; Kleinschmidt, Andreas; Kiebel, Stefan J.

    2008-01-01

    Human face-to-face communication is essentially audiovisual. Typically, people talk to us face-to-face, providing concurrent auditory and visual input. Understanding someone is easier when there is visual input, because visual cues like mouth and tongue movements provide complementary information about speech content. Here, we hypothesized that, even in the absence of visual input, the brain optimizes both auditory-only speech and speaker recognition by harvesting speaker-specific predictions and constraints from distinct visual face-processing areas. To test this hypothesis, we performed behavioral and neuroimaging experiments in two groups: subjects with a face recognition deficit (prosopagnosia) and matched controls. The results show that observing a specific person talking for 2 min improves subsequent auditory-only speech and speaker recognition for this person. In both prosopagnosics and controls, behavioral improvement in auditory-only speech recognition was based on an area typically involved in face-movement processing. Improvement in speaker recognition was only present in controls and was based on an area involved in face-identity processing. These findings challenge current unisensory models of speech processing, because they show that, in auditory-only speech, the brain exploits previously encoded audiovisual correlations to optimize communication. We suggest that this optimization is based on speaker-specific audiovisual internal models, which are used to simulate a talking face. PMID:18436648

  11. Brain representations for acquiring and recalling visual-motor adaptations

    PubMed Central

    Bédard, Patrick; Sanes, Jerome N.

    2014-01-01

    Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall has less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events. PMID:25019676

  12. Brain activation profiles during kinesthetic and visual imagery: An fMRI study.

    PubMed

    Kilintari, Marina; Narayana, Shalini; Babajani-Feremi, Abbas; Rezaie, Roozbeh; Papanicolaou, Andrew C

    2016-09-01

    The aim of this study was to identify brain regions involved in motor imagery and differentiate two alternative strategies in its implementation: imagining a motor act using kinesthetic or visual imagery. Fourteen adults were precisely instructed and trained on how to imagine themselves or others perform a movement sequence, with the aim of promoting kinesthetic and visual imagery, respectively, in the context of an fMRI experiment using block design. We found that neither modality of motor imagery elicits activation of the primary motor cortex and that each of the two modalities involves activation of the premotor area which is also activated during action execution and action observation conditions, as well as of the supplementary motor area. Interestingly, the visual and the posterior cingulate cortices show reduced BOLD signal during both imagery conditions. Our results indicate that the networks of regions activated in kinesthetic and visual imagery of motor sequences show a substantial, while not complete overlap, and that the two forms of motor imagery lead to a differential suppression of visual areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Functional selectivity for face processing in the temporal voice area of early deaf individuals

    PubMed Central

    van Ackeren, Markus J.; Rabini, Giuseppe; Zonca, Joshua; Foa, Valentina; Baruffaldi, Francesca; Rezk, Mohamed; Pavani, Francesco; Rossion, Bruno; Collignon, Olivier

    2017-01-01

    Brain systems supporting face and voice processing both contribute to the extraction of important information for social interaction (e.g., person identity). How does the brain reorganize when one of these channels is absent? Here, we explore this question by combining behavioral and multimodal neuroimaging measures (magneto-encephalography and functional imaging) in a group of early deaf humans. We show enhanced selective neural response for faces and for individual face coding in a specific region of the auditory cortex that is typically specialized for voice perception in hearing individuals. In this region, selectivity to face signals emerges early in the visual processing hierarchy, shortly after typical face-selective responses in the ventral visual pathway. Functional and effective connectivity analyses suggest reorganization in long-range connections from early visual areas to the face-selective temporal area in individuals with early and profound deafness. Altogether, these observations demonstrate that regions that typically specialize for voice processing in the hearing brain preferentially reorganize for face processing in born-deaf people. Our results support the idea that cross-modal plasticity in the case of early sensory deprivation relates to the original functional specialization of the reorganized brain regions. PMID:28652333

  14. Reference frames for spatial frequency in face representation differ in the temporal visual cortex and amygdala.

    PubMed

    Inagaki, Mikio; Fujita, Ichiro

    2011-07-13

    Social communication in nonhuman primates and humans is strongly affected by facial information from other individuals. Many cortical and subcortical brain areas are known to be involved in processing facial information. However, how the neural representation of faces differs across different brain areas remains unclear. Here, we demonstrate that the reference frame for spatial frequency (SF) tuning of face-responsive neurons differs in the temporal visual cortex and amygdala in monkeys. Consistent with psychophysical properties for face recognition, temporal cortex neurons were tuned to image-based SFs (cycles/image) and showed viewing distance-invariant representation of face patterns. On the other hand, many amygdala neurons were influenced by retina-based SFs (cycles/degree), a characteristic that is useful for social distance computation. The two brain areas also differed in the luminance contrast sensitivity of face-responsive neurons; amygdala neurons sharply reduced their responses to low luminance contrast images, while temporal cortex neurons maintained the level of their responses. From these results, we conclude that different types of visual processing in the temporal visual cortex and the amygdala contribute to the construction of the neural representations of faces.

  15. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

    PubMed Central

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-01-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  16. Visual Learning Alters the Spontaneous Activity of the Resting Human Brain: An fNIRS Study

    PubMed Central

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning. PMID:25243168

  17. Visual learning alters the spontaneous activity of the resting human brain: an fNIRS study.

    PubMed

    Niu, Haijing; Li, Hao; Sun, Li; Su, Yongming; Huang, Jing; Song, Yan

    2014-01-01

    Resting-state functional connectivity (RSFC) has been widely used to investigate spontaneous brain activity that exhibits correlated fluctuations. RSFC has been found to be changed along the developmental course and after learning. Here, we investigated whether and how visual learning modified the resting oxygenated hemoglobin (HbO) functional brain connectivity by using functional near-infrared spectroscopy (fNIRS). We demonstrate that after five days of training on an orientation discrimination task constrained to the right visual field, resting HbO functional connectivity and directed mutual interaction between high-level visual cortex and frontal/central areas involved in the top-down control were significantly modified. Moreover, these changes, which correlated with the degree of perceptual learning, were not limited to the trained left visual cortex. We conclude that the resting oxygenated hemoglobin functional connectivity could be used as a predictor of visual learning, supporting the involvement of high-level visual cortex and the involvement of frontal/central cortex during visual perceptual learning.

  18. Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG.

    PubMed

    Pavlidou, Anastasia; Schnitzler, Alfons; Lange, Joachim

    2014-05-01

    The neural correlates of action recognition have been widely studied in visual and sensorimotor areas of the human brain. However, the role of neuronal oscillations involved during the process of action recognition remains unclear. Here, we were interested in how the plausibility of an action modulates neuronal oscillations in visual and sensorimotor areas. Subjects viewed point-light displays (PLDs) of biomechanically plausible and implausible versions of the same actions. Using magnetoencephalography (MEG), we examined dynamic changes of oscillatory activity during these action recognition processes. While both actions elicited oscillatory activity in visual and sensorimotor areas in several frequency bands, a significant difference was confined to the beta-band (∼20 Hz). An increase of power for plausible actions was observed in left temporal, parieto-occipital and sensorimotor areas of the brain, in the beta-band in successive order between 1650 and 2650 msec. These distinct spatio-temporal beta-band profiles suggest that the action recognition process is modulated by the degree of biomechanical plausibility of the action, and that spectral power in the beta-band may provide a functional interaction between visual and sensorimotor areas in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex.

    PubMed

    Limanowski, Jakub; Blankenburg, Felix

    2016-03-02

    The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual information. These brain areas thus likely integrate visual and proprioceptive information into a flexible multisensory body representation. Copyright © 2016 the authors 0270-6474/16/362582-08$15.00/0.

  20. The origins of metamodality in visual object area LO: Bodily topographical biases and increased functional connectivity to S1

    PubMed Central

    Tal, Zohar; Geva, Ran; Amedi, Amir

    2016-01-01

    Recent evidence from blind participants suggests that visual areas are task-oriented and sensory modality input independent rather than sensory-specific to vision. Specifically, visual areas are thought to retain their functional selectivity when using non-visual inputs (touch or sound) even without having any visual experience. However, this theory is still controversial since it is not clear whether this also characterizes the sighted brain, and whether the reported results in the sighted reflect basic fundamental a-modal processes or are an epiphenomenon to a large extent. In the current study, we addressed these questions using a series of fMRI experiments aimed to explore visual cortex responses to passive touch on various body parts and the coupling between the parietal and visual cortices as manifested by functional connectivity. We show that passive touch robustly activated the object selective parts of the lateral–occipital (LO) cortex while deactivating almost all other occipital–retinotopic-areas. Furthermore, passive touch responses in the visual cortex were specific to hand and upper trunk stimulations. Psychophysiological interaction (PPI) analysis suggests that LO is functionally connected to the hand area in the primary somatosensory homunculus (S1), during hand and shoulder stimulations but not to any of the other body parts. We suggest that LO is a fundamental hub that serves as a node between visual-object selective areas and S1 hand representation, probably due to the critical evolutionary role of touch in object recognition and manipulation. These results might also point to a more general principle suggesting that recruitment or deactivation of the visual cortex by other sensory input depends on the ecological relevance of the information conveyed by this input to the task/computations carried out by each area or network. This is likely to rely on the unique and differential pattern of connectivity for each visual area with the rest of the brain. PMID:26673114

  1. Brain correlates of automatic visual change detection.

    PubMed

    Cléry, H; Andersson, F; Fonlupt, P; Gomot, M

    2013-07-15

    A number of studies support the presence of visual automatic detection of change, but little is known about the brain generators involved in such processing and about the modulation of brain activity according to the salience of the stimulus. The study presented here was designed to locate the brain activity elicited by unattended visual deviant and novel stimuli using fMRI. Seventeen adult participants were presented with a passive visual oddball sequence while performing a concurrent visual task. Variations in BOLD signal were observed in the modality-specific sensory cortex, but also in non-specific areas involved in preattentional processing of changing events. A degree-of-deviance effect was observed, since novel stimuli elicited more activity in the sensory occipital regions and at the medial frontal site than small changes. These findings could be compared to those obtained in the auditory modality and might suggest a "general" change detection process operating in several sensory modalities. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Primary and multisensory cortical activity is correlated with audiovisual percepts.

    PubMed

    Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P; Stufflebeam, Steven

    2010-04-01

    Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. Copyright 2009 Wiley-Liss, Inc.

  3. Primary and Multisensory Cortical Activity is Correlated with Audiovisual Percepts

    PubMed Central

    Benoit, Margo McKenna; Raij, Tommi; Lin, Fa-Hsuan; Jääskeläinen, Iiro P.; Stufflebeam, Steven

    2012-01-01

    Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. PMID:19780040

  4. The evolution of the complex sensory and motor systems of the human brain

    PubMed Central

    Kaas, Jon H.

    2008-01-01

    Inferences about how the complex sensory and motor systems of the human brain evolved are based on the results of comparative studies of brain organization across a range of mammalian species, and evidence from the endocasts of fossil skulls of key extinct species. The endocasts of the skulls of early mammals indicate that they had small brains with little neocortex. Evidence from comparative studies of cortical organization from small-brained mammals of the six major branches of mammalian evolution supports the conclusion that the small neocortex of early mammals was divided into roughly 20–25 cortical areas, including primary and secondary sensory fields. In early primates, vision was the dominant sense, and cortical areas associated with vision in temporal and occipital cortex underwent a significant expansion. Comparative studies indicate that early primates had 10 or more visual areas, and somatosensory areas with expanded representations of the forepaw. Posterior parietal cortex was also expanded, with a caudal half dominated by visual inputs, and a rostral half dominated by somatosensory inputs with outputs to an array of seven or more motor and visuomotor areas of the frontal lobe. Somatosensory areas and posterior parietal cortex became further differentiated in early anthropoid primates. As larger brains evolved in early apes and in our hominin ancestors, the number of cortical areas increased to reach an estimated 200 or so in present day humans, and hemispheric specializations emerged. The large human brain grew primarily by increasing neuron number rather than increasing average neuron size. PMID:18331903

  5. Figure-ground discrimination in the avian brain: the nucleus rotundus and its inhibitory complex.

    PubMed

    Acerbo, Martin J; Lazareva, Olga F; McInnerney, John; Leiker, Emily; Wasserman, Edward A; Poremba, Amy

    2012-10-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Figure-ground discrimination in the avian brain: The nucleus rotundus and its inhibitory complex

    PubMed Central

    Acerbo, Martin J.; Lazareva, Olga F.; McInnerney, John; Leiker, Emily; Wasserman, Edward A.; Poremba, Amy

    2012-01-01

    In primates, neurons sensitive to figure-ground status are located in striate cortex (area V1) and extrastriate cortex (area V2). Although much is known about the anatomical structure and connectivity of the avian visual pathway, the functional organization of the avian brain remains largely unexplored. To pinpoint the areas associated with figure-ground segregation in the avian brain, we used a radioactively labeled glucose analog to compare differences in glucose uptake after figure-ground, color, and shape discriminations. We also included a control group that received food on a variable-interval schedule, but was not required to learn a visual discrimination. Although the discrimination task depended on group assignment, the stimulus displays were identical for all three experimental groups, ensuring that all animals were exposed to the same visual input. Our analysis concentrated on the primary thalamic nucleus associated with visual processing, the nucleus rotundus (Rt), and two nuclei providing regulatory feedback, the pretectum (PT) and the nucleus subpretectalis/interstitio-pretecto-subpretectalis complex (SP/IPS). We found that figure-ground discrimination was associated with strong and nonlateralized activity of Rt and SP/IPS, whereas color discrimination produced strong and lateralized activation in Rt alone. Shape discrimination was associated with lower activity of Rt than in the control group. Taken together, our results suggest that figure-ground discrimination is associated with Rt and that SP/IPS may be a main source of inhibitory control. Thus, figure-ground segregation in the avian brain may occur earlier than in the primate brain. PMID:22917681

  7. fMRI evidence for areas that process surface gloss in the human visual cortex

    PubMed Central

    Sun, Hua-Chun; Ban, Hiroshi; Di Luca, Massimiliano; Welchman, Andrew E.

    2015-01-01

    Surface gloss is an important cue to the material properties of objects. Recent progress in the study of macaque’s brain has increased our understating of the areas involved in processing information about gloss, however the homologies with the human brain are not yet fully understood. Here we used human functional magnetic resonance imaging (fMRI) measurements to localize brain areas preferentially responding to glossy objects. We measured cortical activity for thirty-two rendered three-dimensional objects that had either Lambertian or specular surface properties. To control for differences in image structure, we overlaid a grid on the images and scrambled its cells. We found activations related to gloss in the posterior fusiform sulcus (pFs) and in area V3B/KO. Subsequent analysis with Granger causality mapping indicated that V3B/KO processes gloss information differently than pFs. Our results identify a small network of mid-level visual areas whose activity may be important in supporting the perception of surface gloss. PMID:25490434

  8. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives

    PubMed Central

    de Sousa, Alexandra A.; Proulx, Michael J.

    2014-01-01

    An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function. PMID:25009469

  9. Letters persistence after physical offset: visual word form area and left planum temporale. An fMRI study.

    PubMed

    Barban, Francesco; Zannino, Gian Daniele; Macaluso, Emiliano; Caltagirone, Carlo; Carlesimo, Giovanni A

    2013-06-01

    Iconic memory is a high-capacity low-duration visual memory store that allows the persistence of a visual stimulus after its offset. The categorical nature of this store has been extensively debated. This study provides functional magnetic resonance imaging evidence for brain regions underlying the persistence of postcategorical representations of visual stimuli. In a partial report paradigm, subjects matched a cued row of a 3 × 3 array of letters (postcategorical stimuli) or false fonts (precategorical stimuli) with a subsequent triplet of stimuli. The cued row was indicated by two visual flankers presented at the onset (physical stimulus readout) or after the offset of the array (iconic memory readout). The left planum temporale showed a greater modulation of the source of readout (iconic memory vs. physical stimulus) when letters were presented compared to false fonts. This is a multimodal brain region responsible for matching incoming acoustic and visual patterns with acoustic pattern templates. These findings suggest that letters persist after their physical offset in an abstract postcategorical representation. A targeted region of interest analysis revealed a similar pattern of activation in the Visual Word Form Area. These results suggest that multiple higher-order visual areas mediate iconic memory for postcategorical stimuli. Copyright © 2012 Wiley Periodicals, Inc.

  10. Time-course analysis of the neuroanatomical correlates of sexual arousal evoked by erotic video stimuli in healthy males.

    PubMed

    Sundaram, Thirunavukkarasu; Jeong, Gwang-Woo; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun

    2010-01-01

    To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal.

  11. Time-Course Analysis of the Neuroanatomical Correlates of Sexual Arousal Evoked by Erotic Video Stimuli in Healthy Males

    PubMed Central

    Sundaram, Thirunavukkarasu; Kim, Tae-Hoon; Kim, Gwang-Won; Baek, Han-Su; Kang, Heoung-Keun

    2010-01-01

    Objective To assess the dynamic activations of the key brain areas associated with the time-course of the sexual arousal evoked by visual sexual stimuli in healthy male subjects. Materials and Methods Fourteen right-handed heterosexual male volunteers participated in this study. Alternatively combined rest period and erotic video visual stimulation were used according to the standard block design. In order to illustrate and quantify the spatiotemporal activation patterns of the key brain regions, the activation period was divided into three different stages as the EARLY, MID and LATE stages. Results For the group result (p < 0.05), when comparing the MID stage with the EARLY stage, a significant increase of the brain activation was observed in the areas that included the inferior frontal gyrus, the supplementary motor area, the hippocampus, the head of the caudate nucleus, the midbrain, the superior occipital gyrus and the fusiform gyrus. At the same time, when comparing the EARLY stage with the MID stage, the putamen, the globus pallidus, the pons, the thalamus, the hypothalamus, the lingual gyrus and the cuneus yielded significantly increased activations. When comparing the LATE stage with the MID stage, all the above mentioned brain regions showed elevated activations except the hippocampus. Conclusion Our results illustrate the spatiotemporal activation patterns of the key brain regions across the three stages of visual sexual arousal. PMID:20461181

  12. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure.

    PubMed

    Pan, Alan; Kumar, Rajesh; Macey, Paul M; Fonarow, Gregg C; Harper, Ronald M; Woo, Mary A

    2013-02-01

    Heart failure (HF) patients exhibit depression and executive function impairments that contribute to HF mortality. Using specialized magnetic resonance imaging (MRI) analysis procedures, brain changes appear in areas regulating these functions (mammillary bodies, hippocampi, and frontal cortex). However, specialized MRI procedures are not part of standard clinical assessment for HF (which is usually a visual evaluation), and it is unclear whether visual MRI examination can detect changes in these structures. Using brain MRI, we visually examined the mammillary bodies and frontal cortex for global and hippocampi for global and regional tissue changes in 17 HF and 50 control subjects. Significantly global changes emerged in the right mammillary body (HF 1.18 ± 1.13 vs control 0.52 ± 0.74; P = .024), right hippocampus (HF 1.53 ± 0.94 vs control 0.80 ± 0.86; P = .005), and left frontal cortex (HF 1.76 ± 1.03 vs control 1.24 ± 0.77; P = .034). Comparison of the visual method with specialized MRI techniques corroborates right hippocampal and left frontal cortical, but not mammillary body, tissue changes. Visual examination of brain MRI can detect damage in HF in areas regulating depression and executive function, including the right hippocampus and left frontal cortex. Visual MRI assessment in HF may facilitate evaluation of injury to these structures and the assessment of the impact of potential treatments for this damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Multiple foci of spatial attention in multimodal working memory.

    PubMed

    Katus, Tobias; Eimer, Martin

    2016-11-15

    The maintenance of sensory information in working memory (WM) is mediated by the attentional activation of stimulus representations that are stored in perceptual brain regions. Using event-related potentials (ERPs), we measured tactile and visual contralateral delay activity (tCDA/CDA components) in a bimodal WM task to concurrently track the attention-based maintenance of information stored in anatomically segregated (somatosensory and visual) brain areas. Participants received tactile and visual sample stimuli on both sides, and in different blocks, memorized these samples on the same side or on opposite sides. After a retention delay, memory was unpredictably tested for touch or vision. In the same side blocks, tCDA and CDA components simultaneously emerged over the same hemisphere, contralateral to the memorized tactile/visual sample set. In opposite side blocks, these two components emerged over different hemispheres, but had the same sizes and onset latencies as in the same side condition. Our results reveal distinct foci of tactile and visual spatial attention that were concurrently maintained on task-relevant stimulus representations in WM. The independence of spatially-specific biasing mechanisms for tactile and visual WM content suggests that multimodal information is stored in distributed perceptual brain areas that are activated through modality-specific processes that can operate simultaneously and largely independently of each other. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. The role of temporo-parietal junction (TPJ) in global Gestalt perception.

    PubMed

    Huberle, Elisabeth; Karnath, Hans-Otto

    2012-07-01

    Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.

  15. Hierarchical organization of brain functional networks during visual tasks.

    PubMed

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  16. Zinc histochemistry reveals circuit refinement and distinguishes visual areas in the developing ferret cerebral cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2013-09-01

    A critical question in brain development is whether different brain circuits mature concurrently or with different timescales. To characterize the anatomical and functional development of different visual cortical areas, one must be able to distinguish these areas. Here, we show that zinc histochemistry, which reveals a subset of glutamatergic processes, can be used to reliably distinguish visual areas in juvenile and adult ferret cerebral cortex, and that the postnatal decline in levels of synaptic zinc follows a broadly similar developmental trajectory in multiple areas of ferret visual cortex. Zinc staining in all areas examined (17, 18, 19, 21, and Suprasylvian) is greater in the 5-week-old than in the adult. Furthermore, there is less laminar variation in zinc staining in the 5-week-old visual cortex than in the adult. Despite differences in staining intensity, areal boundaries can be discerned in the juvenile as in the adult. By 6 weeks of age, we observe a significant decline in visual cortical synaptic zinc; this decline was most pronounced in layer IV of areas 17 and 18, with much less change in higher-order extrastriate areas during the important period in visual cortical development following eye opening. By 10 weeks of age, the laminar pattern of zinc staining in all visual areas is essentially adultlike. The decline in synaptic zinc in the supra- and infragranular layers in all areas proceeds at the same rate, though the decline in layer IV does not. These results suggest that the timecourse of synaptic zinc decline is lamina specific, and further confirm and extend the notion that at least some aspects of cortical maturation follow a similar developmental timecourse in multiple areas. The postnatal decline in synaptic zinc we observe during the second postnatal month begins after eye opening, consistent with evidence that synaptic zinc is regulated by sensory experience.

  17. Successful tactile based visual sensory substitution use functions independently of visual pathway integrity

    PubMed Central

    Lee, Vincent K.; Nau, Amy C.; Laymon, Charles; Chan, Kevin C.; Rosario, Bedda L.; Fisher, Chris

    2014-01-01

    Purpose: Neuronal reorganization after blindness is of critical interest because it has implications for the rational prescription of artificial vision devices. The purpose of this study was to distinguish the microstructural differences between perinatally blind (PB), acquired blind (AB), and normally sighted controls (SCs) and relate these differences to performance on functional tasks using a sensory substitution device (BrainPort). Methods: We enrolled 52 subjects (PB n = 11; AB n = 35; SC n = 6). All subjects spent 15 h undergoing BrainPort device training. Outcomes of light perception, motion, direction, temporal resolution, grating, and acuity were tested at baseline and after training. Twenty-six of the subjects were scanned with a three Tesla MRI scanner for diffusion tensor imaging (DTI), and with a positron emission tomography (PET) scanner for mapping regional brain glucose consumption during sensory substitution function. Non-parametric models were used to analyze fractional anisotropy (FA; a DTI measure of microstructural integrity) of the brain via region-of-interest (ROI) analysis and tract-based spatial statistics (TBSS). Results: At baseline, all subjects performed all tasks at chance level. After training, light perception, time resolution, location and grating acuity tasks improved significantly for all subject groups. ROI and TBSS analyses of FA maps show areas of statistically significant differences (p ≤ 0.025) in the bilateral optic radiations and some visual association connections between all three groups. No relationship was found between FA and functional performance with the BrainPort. Discussion: All subjects showed performance improvements using the BrainPort irrespective of nature and duration of blindness. Definite brain areas with significant microstructural integrity changes exist among PB, AB, and NC, and these variations are most pronounced in the visual pathways. However, the use of sensory substitution devices is feasible irrespective of microstructural integrity of the primary visual pathways between the eye and the brain. Therefore, tongue based devices devices may be usable for a broad array of non-sighted patients. PMID:24860473

  18. Afferentation of the lateral nidopallium: A tracing study of a brain area involved in sexual imprinting in the zebra finch (Taeniopygia guttata).

    PubMed

    Sadananda, Monika; Bischof, Hans-Joachim

    2006-08-23

    The lateral forebrain of zebra finches that comprises parts of the lateral nidopallium and parts of the lateral mesopallium is supposed to be involved in the storage and processing of visual information acquired by an early learning process called sexual imprinting. This information is later used to select an appropriate sexual partner for courtship behavior. Being involved in such a complicated behavioral task, the lateral nidopallium should be an integrative area receiving input from many other regions of the brain. Our experiments indeed show that the lateral nidopallium receives input from a variety of telencephalic regions including the primary and secondary areas of both visual pathways, the globus pallidus, the caudolateral nidopallium functionally comparable to the prefrontal cortex, the caudomedial nidopallium involved in song perception and storage of song-related memories, and some parts of the arcopallium. There are also a number of thalamic, mesencephalic, and brainstem efferents including the catecholaminergic locus coeruleus and the unspecific activating reticular formation. The spatial distribution of afferents suggests a compartmentalization of the lateral nidopallium into several subdivisions. Based on its connections, the lateral nidopallium should be considered as an area of higher order processing of visual information coming from the tectofugal and the thalamofugal visual pathways. Other sensory modalities and also motivational factors from a variety of brain areas are also integrated here. These findings support the idea of an involvement of the lateral nidopallium in imprinting and the control of courtship behavior.

  19. Visual activity predicts auditory recovery from deafness after adult cochlear implantation.

    PubMed

    Strelnikov, Kuzma; Rouger, Julien; Demonet, Jean-François; Lagleyre, Sebastien; Fraysse, Bernard; Deguine, Olivier; Barone, Pascal

    2013-12-01

    Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.

  20. Massive cortical reorganization in sighted Braille readers.

    PubMed

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-03-15

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills.

  1. 78 FR 734 - Medical Imaging Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ..., LLC. The proposed indication (use) for this product is for magnetic resonance imaging in brain...) to detect and visualize areas with disruption of the blood brain barrier (specialized tissues that help protect the brain) and/or abnormal vascularity (abnormal blood circulation). FDA intends to make...

  2. A Survey of Parents of Children with Cortical or Cerebral Visual Impairment

    ERIC Educational Resources Information Center

    Jackel, Bernadette; Wilson, Michelle; Hartmann, Elizabeth

    2010-01-01

    Cortical or cerebral visual impairment (CVI) can result when the visual pathways and visual processing areas of the brain have been damaged. Children with CVI may have difficulty finding an object among other objects, viewing in the distance, orienting themselves in space, going from grass to pavement or other changes in surface, and copying…

  3. Artificial limb representation in amputees

    PubMed Central

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-01-01

    Abstract The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a ‘hook’ prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies. PMID:29534154

  4. Artificial limb representation in amputees.

    PubMed

    van den Heiligenberg, Fiona M Z; Orlov, Tanya; Macdonald, Scott N; Duff, Eugene P; Henderson Slater, David; Beckmann, Christian F; Johansen-Berg, Heidi; Culham, Jody C; Makin, Tamar R

    2018-05-01

    The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.

  5. Functional size of human visual area V1: a neural correlate of top-down attention.

    PubMed

    Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R

    2014-06-01

    Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Brain response to visual sexual stimuli in homosexual pedophiles

    PubMed Central

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    Objective The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. Method A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. Results In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Conclusions Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men. PMID:18197269

  7. Brain response to visual sexual stimuli in homosexual pedophiles.

    PubMed

    Schiffer, Boris; Krueger, Tillmann; Paul, Thomas; de Greiff, Armin; Forsting, Michael; Leygraf, Norbert; Schedlowski, Manfred; Gizewski, Elke

    2008-01-01

    The neurobiological mechanisms of deviant sexual preferences such as pedophilia are largely unknown. The objective of this study was to analyze whether brain activation patterns of homosexual pedophiles differed from those of a nonpedophile homosexual control group during visual sexual stimulation. A consecutive sample of 11 pedophile forensic inpatients exclusively attracted to boys and 12 age-matched homosexual control participants from a comparable socioeconomic stratum underwent functional magnetic resonance imaging during a visual sexual stimulation procedure that used sexually stimulating and emotionally neutral photographs. Sexual arousal was assessed according to a subjective rating scale. In contrast to sexually neutral pictures, in both groups sexually arousing pictures having both homosexual and pedophile content activated brain areas known to be involved in processing visual stimuli containing emotional content, including the occipitotemporal and prefrontal cortices. However, during presentation of the respective sexual stimuli, the thalamus, globus pallidus and striatum, which correspond to the key areas of the brain involved in sexual arousal and behaviour, showed significant activation in pedophiles, but not in control subjects. Central processing of visual sexual stimuli in homosexual pedophiles seems to be comparable to that in nonpedophile control subjects. However, compared with homosexual control subjects, activation patterns in pedophiles refer more strongly to subcortical regions, which have previously been discussed in the context of processing reward signals and also play an important role in addictive and stimulus-controlled behaviour. Thus future studies should further elucidate the specificity of these brain regions for the processing of sexual stimuli in pedophilia and should address the generally weaker activation pattern in homosexual men.

  8. Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.

    PubMed

    Ibbotson, M R

    2017-01-23

    The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps.

    PubMed

    Sood, Mariam R; Sereno, Martin I

    2016-08-01

    Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor-preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface-based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory-motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory-motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M-I. Hum Brain Mapp 37:2784-2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  10. Cerebral Visual Impairment in Children: A Longitudinal Case Study of Functional Outcomes beyond the Visual Acuities

    ERIC Educational Resources Information Center

    Lam, Fook Chang; Lovett, Fiona; Dutton, Gordon N.

    2010-01-01

    Damage to the areas of the brain that are responsible for higher visual processing can lead to severe cerebral visual impairment (CVI). The prognosis for higher cognitive visual functions in children with CVI is not well described. We therefore present our six-year follow-up of a boy with CVI and highlight intervention approaches that have proved…

  11. Intracranial spectral amplitude dynamics of perceptual suppression in fronto-insular, occipito-temporal, and primary visual cortex

    PubMed Central

    Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe

    2015-01-01

    If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199

  12. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.

    PubMed

    Hoppe, Christian; Splittstößer, Christoph; Fliessbach, Klaus; Trautner, Peter; Elger, Christian E; Weber, Bernd

    2014-11-01

    In daily life, responses are often facilitated by anticipatory imagery of expected targets which are announced by associated stimuli from different sensory modalities. Silent music reading represents an intriguing case of visuotonal modality transfer in working memory as it induces highly defined auditory imagery on the basis of presented visuospatial information (i.e. musical notes). Using functional MRI and a delayed sequence matching-to-sample paradigm, we compared brain activations during retention intervals (10s) of visual (VV) or tonal (TT) unimodal maintenance versus visuospatial-to-tonal modality transfer (VT) tasks. Visual or tonal sequences were comprised of six elements, white squares or tones, which were low, middle, or high regarding vertical screen position or pitch, respectively (presentation duration: 1.5s). For the cross-modal condition (VT, session 3), the visuospatial elements from condition VV (session 1) were re-defined as low, middle or high "notes" indicating low, middle or high tones from condition TT (session 2), respectively, and subjects had to match tonal sequences (probe) to previously presented note sequences. Tasks alternately had low or high cognitive load. To evaluate possible effects of music reading expertise, 15 singers and 15 non-musicians were included. Scanner task performance was excellent in both groups. Despite identity of applied visuospatial stimuli, visuotonal modality transfer versus visual maintenance (VT>VV) induced "inhibition" of visual brain areas and activation of primary and higher auditory brain areas which exceeded auditory activation elicited by tonal stimulation (VT>TT). This transfer-related visual-to-auditory activation shift occurred in both groups but was more pronounced in experts. Frontoparietal areas were activated by higher cognitive load but not by modality transfer. The auditory brain showed a potential to anticipate expected auditory target stimuli on the basis of non-auditory information and sensory brain activation rather mirrored expectation than stimulation. Silent music reading probably relies on these basic neurocognitive mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Optimization of immunolabeling and clearing techniques for indelibly-labeled memory traces.

    PubMed

    Pavlova, Ina P; Shipley, Shannon C; Lanio, Marcos; Hen, René; Denny, Christine A

    2018-04-16

    Recent genetic tools have allowed researchers to visualize and manipulate memory traces (i.e. engrams) in small brain regions. However, the ultimate goal is to visualize memory traces across the entire brain in order to better understand how memories are stored in neural networks and how multiple memories may coexist. Intact tissue clearing and imaging is a new and rapidly growing area of focus that could accomplish this task. Here, we utilized the leading protocols for whole-brain clearing and applied them to the ArcCreER T2 mice, a murine line that allows for the indelible labeling of memory traces. We found that CLARITY and PACT greatly distorted the tissue, and iDISCO quenched enhanced yellow fluorescent protein (EYFP) fluorescence and hindered immunolabeling. Alternative clearing solutions, such as tert-Butanol, circumvented these harmful effects, but still did not permit whole-brain immunolabeling. CUBIC and CUBIC with Reagent 1A produced improved antibody penetration and preserved EYFP fluorescence, but also did not allow for whole-brain memory trace visualization. Modification of CUBIC with Reagent-1A resulted in EYFP fluorescence preservation and immunolabeling of the immediate early gene (IEG) Arc in deep brain areas; however, optimized memory trace labeling still required tissue slicing into mm-thick tissue sections. In summary, our data show that CUBIC with Reagent-1A* is the ideal method for reproducible clearing and immunolabeling for the visualization of memory traces in mm-thick tissue sections from ArcCreER T2 mice. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  14. Brain activity associated with selective attention, divided attention and distraction.

    PubMed

    Salo, Emma; Salmela, Viljami; Salmi, Juha; Numminen, Jussi; Alho, Kimmo

    2017-06-01

    Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  16. [Are Visual Field Defects Reversible? - Visual Rehabilitation with Brains].

    PubMed

    Sabel, B A

    2017-02-01

    Visual field defects are considered irreversible because the retina and optic nerve do not regenerate. Nevertheless, there is some potential for recovery of the visual fields. This can be accomplished by the brain, which analyses and interprets visual information and is able to amplify residual signals through neuroplasticity. Neuroplasticity refers to the ability of the brain to change its own functional architecture by modulating synaptic efficacy. This is actually the neurobiological basis of normal learning. Plasticity is maintained throughout life and can be induced by repetitively stimulating (training) brain circuits. The question now arises as to how plasticity can be utilised to activate residual vision for the treatment of visual field loss. Just as in neurorehabilitation, visual field defects can be modulated by post-lesion plasticity to improve vision in glaucoma, diabetic retinopathy or optic neuropathy. Because almost all patients have some residual vision, the goal is to strengthen residual capacities by enhancing synaptic efficacy. New treatment paradigms have been tested in clinical studies, including vision restoration training and non-invasive alternating current stimulation. While vision training is a behavioural task to selectively stimulate "relative defects" with daily vision exercises for the duration of 6 months, treatment with alternating current stimulation (30 min. daily for 10 days) activates and synchronises the entire retina and brain. Though full restoration of vision is not possible, such treatments improve vision, both subjectively and objectively. This includes visual field enlargements, improved acuity and reaction time, improved orientation and vision related quality of life. About 70 % of the patients respond to the therapies and there are no serious adverse events. Physiological studies of the effect of alternating current stimulation using EEG and fMRI reveal massive local and global changes in the brain. These include local activation of the visual cortex and global reorganisation of neuronal brain networks. Because modulation of neuroplasticity can strengthen residual vision, the brain deserves a better reputation in ophthalmology for its role in visual rehabilitation. For patients, there is now more light at the end of the tunnel, because vision loss in some areas of the visual field defect is indeed reversible. Georg Thieme Verlag KG Stuttgart · New York.

  17. Neuroimaging of amblyopia and binocular vision: a review

    PubMed Central

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them. PMID:25147511

  18. Neuroimaging of amblyopia and binocular vision: a review.

    PubMed

    Joly, Olivier; Frankó, Edit

    2014-01-01

    Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.

  19. The Nature of Experience Determines Object Representations in the Visual System

    ERIC Educational Resources Information Center

    Wong, Yetta K.; Folstein, Jonathan R.; Gauthier, Isabel

    2012-01-01

    Visual perceptual learning (PL) and perceptual expertise (PE) traditionally lead to different training effects and recruit different brain areas, but reasons for these differences are largely unknown. Here, we tested how the learning history influences visual object representations. Two groups were trained with tasks typically used in PL or PE…

  20. A Multimodal Neural Network Recruited by Expertise with Musical Notation

    ERIC Educational Resources Information Center

    Wong, Yetta Kwailing; Gauthier, Isabel

    2010-01-01

    Prior neuroimaging work on visual perceptual expertise has focused on changes in the visual system, ignoring possible effects of acquiring expert visual skills in nonvisual areas. We investigated expertise for reading musical notation, a skill likely to be associated with multimodal abilities. We compared brain activity in music-reading experts…

  1. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.

    PubMed

    Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico

    2012-07-24

    The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.

  2. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability.

    PubMed

    van Dijk, Hanneke; Schoffelen, Jan-Mathijs; Oostenveld, Robert; Jensen, Ole

    2008-02-20

    Although the resting and baseline states of the human electroencephalogram and magnetoencephalogram (MEG) are dominated by oscillations in the alpha band (approximately 10 Hz), the functional role of these oscillations remains unclear. In this study we used MEG to investigate how spontaneous oscillations in humans presented before visual stimuli modulate visual perception. Subjects had to report if there was a subtle difference in gray levels between two superimposed presented discs. We then compared the prestimulus brain activity for correctly (hits) versus incorrectly (misses) identified stimuli. We found that visual discrimination ability decreased with an increase in prestimulus alpha power. Given that reaction times did not vary systematically with prestimulus alpha power changes in vigilance are not likely to explain the change in discrimination ability. Source reconstruction using spatial filters allowed us to identify the brain areas accounting for this effect. The dominant sources modulating visual perception were localized around the parieto-occipital sulcus. We suggest that the parieto-occipital alpha power reflects functional inhibition imposed by higher level areas, which serves to modulate the gain of the visual stream.

  3. A Dual-Route Perspective on Brain Activation in Response to Visual Words: Evidence for a Length by Lexicality Interaction in the Visual Word Form Area (VWFA)

    PubMed Central

    Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz

    2010-01-01

    Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., “Does xxx sound like an existing word?”) presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. PMID:19896538

  4. A dual-route perspective on brain activation in response to visual words: evidence for a length by lexicality interaction in the visual word form area (VWFA).

    PubMed

    Schurz, Matthias; Sturm, Denise; Richlan, Fabio; Kronbichler, Martin; Ladurner, Gunther; Wimmer, Heinz

    2010-02-01

    Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., "Does xxx sound like an existing word?") presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  5. Steady-state visually evoked potential correlates of human body perception.

    PubMed

    Giabbiconi, Claire-Marie; Jurilj, Verena; Gruber, Thomas; Vocks, Silja

    2016-11-01

    In cognitive neuroscience, interest in the neuronal basis underlying the processing of human bodies is steadily increasing. Based on functional magnetic resonance imaging studies, it is assumed that the processing of pictures of human bodies is anchored in a network of specialized brain areas comprising the extrastriate and the fusiform body area (EBA, FBA). An alternative to examine the dynamics within these networks is electroencephalography, more specifically so-called steady-state visually evoked potentials (SSVEPs). In SSVEP tasks, a visual stimulus is presented repetitively at a predefined flickering rate and typically elicits a continuous oscillatory brain response at this frequency. This brain response is characterized by an excellent signal-to-noise ratio-a major advantage for source reconstructions. The main goal of present study was to demonstrate the feasibility of this method to study human body perception. To that end, we presented pictures of bodies and contrasted the resulting SSVEPs to two control conditions, i.e., non-objects and pictures of everyday objects (chairs). We found specific SSVEPs amplitude differences between bodies and both control conditions. Source reconstructions localized the SSVEP generators to a network of temporal, occipital and parietal areas. Interestingly, only body perception resulted in activity differences in middle temporal and lateral occipitotemporal areas, most likely reflecting the EBA/FBA.

  6. Unsupervised spatiotemporal analysis of fMRI data using graph-based visualizations of self-organizing maps.

    PubMed

    Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P

    2013-09-01

    We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.

  7. Dorsal and ventral working memory-related brain areas support distinct processes in contextual cueing.

    PubMed

    Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan

    2013-02-15

    Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    PubMed

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Occipital cortical thickness in very low birth weight born adolescents predicts altered neural specialization of visual semantic category related neural networks.

    PubMed

    Klaver, Peter; Latal, Beatrice; Martin, Ernst

    2015-01-01

    Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences in neural specialization may be associated with aberrant cortical development of areas in the visual system that develop early in childhood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effect of integration masking on visual processing in perceptual categorization.

    PubMed

    Hélie, Sébastien

    2017-08-01

    Learning to recognize and categorize objects is an essential cognitive skill allowing animals to function in the world. However, animals rarely have access to a canonical view of an object in an uncluttered environment. Hence, it is essential to study categorization under noisy, degraded conditions. In this article, we explore how the brain processes categorization stimuli in low signal-to-noise conditions using multivariate pattern analysis. We used an integration masking paradigm with mask opacity of 50%, 60%, and 70% inside a magnetic resonance imaging scanner. The results show that mask opacity affects blood-oxygen-level dependent (BOLD) signal in visual processing areas (V1, V2, V3, and V4) but does not affect the BOLD signal in brain areas traditionally associated with categorization (prefrontal cortex, striatum, hippocampus). This suggests that when a stimulus is difficult to extract from its background (e.g., low signal-to-noise ratio), the visual system extracts the stimulus and that activity in areas typically associated with categorization are not affected by the difficulty level of the visual conditions. We conclude with implications of this result for research on visual attention, categorization, and the integration of these fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta

    2007-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…

  12. Dynamic circuitry for updating spatial representations. II. Physiological evidence for interhemispheric transfer in area LIP of the split-brain macaque.

    PubMed

    Heiser, Laura M; Berman, Rebecca A; Saunders, Richard C; Colby, Carol L

    2005-11-01

    With each eye movement, a new image impinges on the retina, yet we do not notice any shift in visual perception. This perceptual stability indicates that the brain must be able to update visual representations to take our eye movements into account. Neurons in the lateral intraparietal area (LIP) update visual representations when the eyes move. The circuitry that supports these updated representations remains unknown, however. In this experiment, we asked whether the forebrain commissures are necessary for updating in area LIP when stimulus representations must be updated from one visual hemifield to the other. We addressed this question by recording from LIP neurons in split-brain monkeys during two conditions: stimulus traces were updated either across or within hemifields. Our expectation was that across-hemifield updating activity in LIP would be reduced or abolished after transection of the forebrain commissures. Our principal finding is that LIP neurons can update stimulus traces from one hemifield to the other even in the absence of the forebrain commissures. This finding provides the first evidence that representations in parietal cortex can be updated without the use of direct cortico-cortical links. The second main finding is that updating activity in LIP is modified in the split-brain monkey: across-hemifield signals are reduced in magnitude and delayed in onset compared with within-hemifield signals, which indicates that the pathways for across-hemifield updating are less effective in the absence of the forebrain commissures. Together these findings reveal a dynamic circuit that contributes to updating spatial representations.

  13. Temporal dynamics of the knowledge-mediated visual disambiguation process in humans: a magnetoencephalography study.

    PubMed

    Urakawa, Tomokazu; Ogata, Katsuya; Kimura, Takahiro; Kume, Yuko; Tobimatsu, Shozo

    2015-01-01

    Disambiguation of a noisy visual scene with prior knowledge is an indispensable task of the visual system. To adequately adapt to a dynamically changing visual environment full of noisy visual scenes, the implementation of knowledge-mediated disambiguation in the brain is imperative and essential for proceeding as fast as possible under the limited capacity of visual image processing. However, the temporal profile of the disambiguation process has not yet been fully elucidated in the brain. The present study attempted to determine how quickly knowledge-mediated disambiguation began to proceed along visual areas after the onset of a two-tone ambiguous image using magnetoencephalography with high temporal resolution. Using the predictive coding framework, we focused on activity reduction for the two-tone ambiguous image as an index of the implementation of disambiguation. Source analysis revealed that a significant activity reduction was observed in the lateral occipital area at approximately 120 ms after the onset of the ambiguous image, but not in preceding activity (about 115 ms) in the cuneus when participants perceptually disambiguated the ambiguous image with prior knowledge. These results suggested that knowledge-mediated disambiguation may be implemented as early as approximately 120 ms following an ambiguous visual scene, at least in the lateral occipital area, and provided an insight into the temporal profile of the disambiguation process of a noisy visual scene with prior knowledge. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Where Do Neurologists Look When Viewing Brain CT Images? An Eye-Tracking Study Involving Stroke Cases

    PubMed Central

    Matsumoto, Hideyuki; Terao, Yasuo; Yugeta, Akihiro; Fukuda, Hideki; Emoto, Masaki; Furubayashi, Toshiaki; Okano, Tomoko; Hanajima, Ritsuko; Ugawa, Yoshikazu

    2011-01-01

    The aim of this study was to investigate where neurologists look when they view brain computed tomography (CT) images and to evaluate how they deploy their visual attention by comparing their gaze distribution with saliency maps. Brain CT images showing cerebrovascular accidents were presented to 12 neurologists and 12 control subjects. The subjects' ocular fixation positions were recorded using an eye-tracking device (Eyelink 1000). Heat maps were created based on the eye-fixation patterns of each group and compared between the two groups. The heat maps revealed that the areas on which control subjects frequently fixated often coincided with areas identified as outstanding in saliency maps, while the areas on which neurologists frequently fixated often did not. Dwell time in regions of interest (ROI) was likewise compared between the two groups, revealing that, although dwell time on large lesions was not different between the two groups, dwell time in clinically important areas with low salience was longer in neurologists than in controls. Therefore it appears that neurologists intentionally scan clinically important areas when reading brain CT images showing cerebrovascular accidents. Both neurologists and control subjects used the “bottom-up salience” form of visual attention, although the neurologists more effectively used the “top-down instruction” form. PMID:22174928

  15. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    PubMed Central

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  16. Neural reactivity to visual food stimuli is reduced in some areas of the brain during evening hours compared to morning hours: an fMRI study in women.

    PubMed

    Masterson, Travis D; Kirwan, C Brock; Davidson, Lance E; LeCheminant, James D

    2016-03-01

    The extent that neural responsiveness to visual food stimuli is influenced by time of day is not well examined. Using a crossover design, 15 healthy women were scanned using fMRI while presented with low- and high-energy pictures of food, once in the morning (6:30-8:30 am) and once in the evening (5:00-7:00 pm). Diets were identical on both days of the fMRI scans and were verified using weighed food records. Visual analog scales were used to record subjective perception of hunger and preoccupation with food prior to each fMRI scan. Six areas of the brain showed lower activation in the evening to both high- and low-energy foods, including structures in reward pathways (P < 0.05). Nine brain regions showed significantly higher activation for high-energy foods compared to low-energy foods (P < 0.05). High-energy food stimuli tended to produce greater fMRI responses than low-energy food stimuli in specific areas of the brain, regardless of time of day. However, evening scans showed a lower response to both low- and high-energy food pictures in some areas of the brain. Subjectively, participants reported no difference in hunger by time of day (F = 1.84, P = 0.19), but reported they could eat more (F = 4.83, P = 0.04) and were more preoccupied with thoughts of food (F = 5.51, P = 0.03) in the evening compared to the morning. These data underscore the role that time of day may have on neural responses to food stimuli. These results may also have clinical implications for fMRI measurement in order to prevent a time of day bias.

  17. How task demands shape brain responses to visual food cues.

    PubMed

    Pohl, Tanja Maria; Tempelmann, Claus; Noesselt, Toemme

    2017-06-01

    Several previous imaging studies have aimed at identifying the neural basis of visual food cue processing in humans. However, there is little consistency of the functional magnetic resonance imaging (fMRI) results across studies. Here, we tested the hypothesis that this variability across studies might - at least in part - be caused by the different tasks employed. In particular, we assessed directly the influence of task set on brain responses to food stimuli with fMRI using two tasks (colour vs. edibility judgement, between-subjects design). When participants judged colour, the left insula, the left inferior parietal lobule, occipital areas, the left orbitofrontal cortex and other frontal areas expressed enhanced fMRI responses to food relative to non-food pictures. However, when judging edibility, enhanced fMRI responses to food pictures were observed in the superior and middle frontal gyrus and in medial frontal areas including the pregenual anterior cingulate cortex and ventromedial prefrontal cortex. This pattern of results indicates that task sets can significantly alter the neural underpinnings of food cue processing. We propose that judging low-level visual stimulus characteristics - such as colour - triggers stimulus-related representations in the visual and even in gustatory cortex (insula), whereas discriminating abstract stimulus categories activates higher order representations in both the anterior cingulate and prefrontal cortex. Hum Brain Mapp 38:2897-2912, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates.

    PubMed

    Clark, Kelsey; Squire, Ryan Fox; Merrikhi, Yaser; Noudoost, Behrad

    2015-09-01

    Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain. Copyright © 2015. Published by Elsevier Ltd.

  19. Colour processing in complex environments: insights from the visual system of bees

    PubMed Central

    Dyer, Adrian G.; Paulk, Angelique C.; Reser, David H.

    2011-01-01

    Colour vision enables animals to detect and discriminate differences in chromatic cues independent of brightness. How the bee visual system manages this task is of interest for understanding information processing in miniaturized systems, as well as the relationship between bee pollinators and flowering plants. Bees can quickly discriminate dissimilar colours, but can also slowly learn to discriminate very similar colours, raising the question as to how the visual system can support this, or whether it is simply a learning and memory operation. We discuss the detailed neuroanatomical layout of the brain, identify probable brain areas for colour processing, and suggest that there may be multiple systems in the bee brain that mediate either coarse or fine colour discrimination ability in a manner dependent upon individual experience. These multiple colour pathways have been identified along both functional and anatomical lines in the bee brain, providing us with some insights into how the brain may operate to support complex colour discrimination behaviours. PMID:21147796

  20. Image and emotion: from outcomes to brain behavior.

    PubMed

    Nanda, Upali; Zhu, Xi; Jansen, Ben H

    2012-01-01

    A systematic review of neuroscience articles on the emotional states of fear, anxiety, and pain to understand how emotional response is linked to the visual characteristics of an image at the level of brain behavior. A number of outcome studies link exposure to visual images (with nature content) to improvements in stress, anxiety, and pain perception. However, an understanding of the underlying perceptual mechanisms has been lacking. In this article, neuroscience studies that use visual images to induce fear, anxiety, or pain are reviewed to gain an understanding of how the brain processes visual images in this context and to explore whether this processing can be linked to specific visual characteristics. The amygdala was identified as one of the key regions of the brain involved in the processing of fear, anxiety, and pain (induced by visual images). Other key areas included the thalamus, insula, and hippocampus. Characteristics of visual images such as the emotional dimension (valence/arousal), subject matter (familiarity, ambiguity, novelty, realism, and facial expressions), and form (sharp and curved contours) were identified as key factors influencing emotional processing. The broad structural properties of an image and overall content were found to have a more pivotal role in the emotional response than the specific details of an image. Insights on specific visual properties were translated to recommendations for what should be incorporated-and avoided-in healthcare environments.

  1. Interactive 3D visualization of structural changes in the brain of a person with corticobasal syndrome

    PubMed Central

    Hänel, Claudia; Pieperhoff, Peter; Hentschel, Bernd; Amunts, Katrin; Kuhlen, Torsten

    2014-01-01

    The visualization of the progression of brain tissue loss in neurodegenerative diseases like corticobasal syndrome (CBS) can provide not only information about the localization and distribution of the volume loss, but also helps to understand the course and the causes of this neurodegenerative disorder. The visualization of such medical imaging data is often based on 2D sections, because they show both internal and external structures in one image. Spatial information, however, is lost. 3D visualization of imaging data is capable to solve this problem, but it faces the difficulty that more internally located structures may be occluded by structures near the surface. Here, we present an application with two designs for the 3D visualization of the human brain to address these challenges. In the first design, brain anatomy is displayed semi-transparently; it is supplemented by an anatomical section and cortical areas for spatial orientation, and the volumetric data of volume loss. The second design is guided by the principle of importance-driven volume rendering: A direct line-of-sight to the relevant structures in the deeper parts of the brain is provided by cutting out a frustum-like piece of brain tissue. The application was developed to run in both, standard desktop environments and in immersive virtual reality environments with stereoscopic viewing for improving the depth perception. We conclude, that the presented application facilitates the perception of the extent of brain degeneration with respect to its localization and affected regions. PMID:24847243

  2. Massive cortical reorganization in sighted Braille readers

    PubMed Central

    Siuda-Krzywicka, Katarzyna; Bola, Łukasz; Paplińska, Małgorzata; Sumera, Ewa; Jednoróg, Katarzyna; Marchewka, Artur; Śliwińska, Magdalena W; Amedi, Amir; Szwed, Marcin

    2016-01-01

    The brain is capable of large-scale reorganization in blindness or after massive injury. Such reorganization crosses the division into separate sensory cortices (visual, somatosensory...). As its result, the visual cortex of the blind becomes active during tactile Braille reading. Although the possibility of such reorganization in the normal, adult brain has been raised, definitive evidence has been lacking. Here, we demonstrate such extensive reorganization in normal, sighted adults who learned Braille while their brain activity was investigated with fMRI and transcranial magnetic stimulation (TMS). Subjects showed enhanced activity for tactile reading in the visual cortex, including the visual word form area (VWFA) that was modulated by their Braille reading speed and strengthened resting-state connectivity between visual and somatosensory cortices. Moreover, TMS disruption of VWFA activity decreased their tactile reading accuracy. Our results indicate that large-scale reorganization is a viable mechanism recruited when learning complex skills. DOI: http://dx.doi.org/10.7554/eLife.10762.001 PMID:26976813

  3. Visual attention modulates brain activation to angry voices.

    PubMed

    Mothes-Lasch, Martin; Mentzel, Hans-Joachim; Miltner, Wolfgang H R; Straube, Thomas

    2011-06-29

    In accordance with influential models proposing prioritized processing of threat, previous studies have shown automatic brain responses to angry prosody in the amygdala and the auditory cortex under auditory distraction conditions. However, it is unknown whether the automatic processing of angry prosody is also observed during cross-modal distraction. The current fMRI study investigated brain responses to angry versus neutral prosodic stimuli during visual distraction. During scanning, participants were exposed to angry or neutral prosodic stimuli while visual symbols were displayed simultaneously. By means of task requirements, participants either attended to the voices or to the visual stimuli. While the auditory task revealed pronounced activation in the auditory cortex and amygdala to angry versus neutral prosody, this effect was absent during the visual task. Thus, our results show a limitation of the automaticity of the activation of the amygdala and auditory cortex to angry prosody. The activation of these areas to threat-related voices depends on modality-specific attention.

  4. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... of [beta]-amyloid (beta-amyloid) aggregates in the brain to help rule out Alzheimer's disease. On... children (2 years of age and older) to detect and visualize areas with disrupted blood brain barrier (BBB... bloodstream into the brain. FDA intends to make background material available to the public no later than 2...

  5. Navigation ability dependent neural activation in the human brain: an fMRI study.

    PubMed

    Ohnishi, Takashi; Matsuda, Hiroshi; Hirakata, Makiko; Ugawa, Yoshikazu

    2006-08-01

    Visual-spatial navigation in familiar and unfamiliar environments is an essential requirement of daily life. Animal studies indicated the importance of the hippocampus for navigation. Neuroimaging studies demonstrated gender difference or strategies dependent difference of neural substrates for navigation. Using functional magnetic resonance imaging, we measured brain activity related to navigation in four groups of normal volunteers: good navigators (males and females) and poor navigators (males and females). In a whole group analysis, task related activity was noted in the hippocampus, parahippocampal gyrus, posterior cingulate cortex, precuneus, parietal association areas, and the visual association areas. In group comparisons, good navigators showed a stronger activation in the medial temporal area and precuneus than poor navigators. There was neither sex effect nor interaction effect between sex and navigation ability. The activity in the left medial temporal areas was positively correlated with task performance, whereas activity in the right parietal area was negatively correlated with task performance. Furthermore, the activity in the bilateral medial temporal areas was positively correlated with scores reflecting preferred navigation strategies, whereas activity in the bilateral superior parietal lobules was negatively correlated with them. Our data suggest that different brain activities related to navigation should reflect navigation skill and strategies.

  6. Are neural correlates of visual consciousness retinotopic?

    PubMed

    ffytche, Dominic H; Pins, Delphine

    2003-11-14

    Some visual neurons code what we see, their defining characteristic being a response profile which mirrors conscious percepts rather than veridical sensory attributes. One issue yet to be resolved is whether, within a given cortical area, conscious visual perception relates to diffuse activity across the entire population of such cells or focal activity within the sub-population mapping the location of the perceived stimulus. Here we investigate the issue in the human brain with fMRI, using a threshold stimulation technique to dissociate perceptual from non-perceptual activity. Our results point to a retinotopic organisation of perceptual activity in early visual areas, with independent perceptual activations for different regions of visual space.

  7. Tuning the developing brain to social signals of emotions

    PubMed Central

    Leppänen, Jukka M.; Nelson, Charles A.

    2010-01-01

    PREFACE Humans in diverse cultures develop a similar capacity to recognize the emotional signals of different facial expressions. This capacity is mediated by a brain network that involves emotion-related brain circuits and higher-level visual representation areas. Recent studies suggest that the key components of this network begin to emerge early in life. The studies also suggest that initial biases in emotion-related brain circuits and the early coupling of these circuits and cortical perceptual areas provides a foundation for a rapid acquisition of representations of those facial features that denote specific emotions. PMID:19050711

  8. Network and external perturbation induce burst synchronisation in cat cerebral cortex

    NASA Astrophysics Data System (ADS)

    Lameu, Ewandson L.; Borges, Fernando S.; Borges, Rafael R.; Batista, Antonio M.; Baptista, Murilo S.; Viana, Ricardo L.

    2016-05-01

    The brain of mammals are divided into different cortical areas that are anatomically connected forming larger networks which perform cognitive tasks. The cat cerebral cortex is composed of 65 areas organised into the visual, auditory, somatosensory-motor and frontolimbic cognitive regions. We have built a network of networks, in which networks are connected among themselves according to the connections observed in the cat cortical areas aiming to study how inputs drive the synchronous behaviour in this cat brain-like network. We show that without external perturbations it is possible to observe high level of bursting synchronisation between neurons within almost all areas, except for the auditory area. Bursting synchronisation appears between neurons in the auditory region when an external perturbation is applied in another cognitive area. This is a clear evidence that burst synchronisation and collective behaviour in the brain might be a process mediated by other brain areas under stimulation.

  9. A computational study of whole-brain connectivity in resting state and task fMRI

    PubMed Central

    Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria

    2014-01-01

    Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491

  10. Differentiation of Glioblastoma from Brain Metastasis: Qualitative and Quantitative Analysis Using Arterial Spin Labeling MR Imaging.

    PubMed

    Sunwoo, Leonard; Yun, Tae Jin; You, Sung-Hye; Yoo, Roh-Eul; Kang, Koung Mi; Choi, Seung Hong; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sun-Won; Jung, Cheolkyu; Park, Chul-Kee

    2016-01-01

    To evaluate the diagnostic performance of cerebral blood flow (CBF) by using arterial spin labeling (ASL) perfusion magnetic resonance (MR) imaging to differentiate glioblastoma (GBM) from brain metastasis. The institutional review board of our hospital approved this retrospective study. The study population consisted of 128 consecutive patients who underwent surgical resection and were diagnosed as either GBM (n = 89) or brain metastasis (n = 39). All participants underwent preoperative MR imaging including ASL. For qualitative analysis, the tumors were visually graded into five categories based on ASL-CBF maps by two blinded reviewers. For quantitative analysis, the reviewers drew regions of interest (ROIs) on ASL-CBF maps upon the most hyperperfused portion within the tumor and upon peritumoral T2 hyperintensity area. Signal intensities of intratumoral and peritumoral ROIs for each subject were normalized by dividing the values by those of contralateral normal gray matter (nCBFintratumoral and nCBFperitumoral, respectively). Visual grading scales and quantitative parameters between GBM and brain metastasis were compared. In addition, the area under the receiver-operating characteristic curve was used to evaluate the diagnostic performance of ASL-driven CBF to differentiate GBM from brain metastasis. For qualitative analysis, GBM group showed significantly higher grade compared to metastasis group (p = 0.001). For quantitative analysis, both nCBFintratumoral and nCBFperitumoral in GBM were significantly higher than those in metastasis (both p < 0.001). The areas under the curve were 0.677, 0.714, and 0.835 for visual grading, nCBFintratumoral, and nCBFperitumoral, respectively (all p < 0.001). ASL perfusion MR imaging can aid in the differentiation of GBM from brain metastasis.

  11. Harmful Algal Bloom Toxins: c-Fos Protein Expression in the Brain of Killifish, Fundulus heteroclitus

    DTIC Science & Technology

    2006-04-21

    regions of the killifish brain ere selected based on consistent c-Fos expression observed n pilot experiments: the anterior telencephalon (area ventralis...elencephali pars ventralis (Vv) and dorsalis (Vd)), the poste- ior telencephalon (diencephalic ventricle (DiV) and anterior arvocellular preoptic...neurons. trong, punctuate nuclear staining was visualized in neurons of he telencephalon (area ventralis telencephali), mesencephalon optic tectum

  12. Diagnosing Developmental Dyscalculia on the Basis of Reliable Single Case FMRI Methods: Promises and Limitations

    PubMed Central

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten Jr, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used. PMID:24349547

  13. Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations.

    PubMed

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used.

  14. Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales.

    PubMed

    Fumagalli, Giorgio G; Basilico, Paola; Arighi, Andrea; Bocchetta, Martina; Dick, Katrina M; Cash, David M; Harding, Sophie; Mercurio, Matteo; Fenoglio, Chiara; Pietroboni, Anna M; Ghezzi, Laura; van Swieten, John; Borroni, Barbara; de Mendonça, Alexandre; Masellis, Mario; Tartaglia, Maria C; Rowe, James B; Graff, Caroline; Tagliavini, Fabrizio; Frisoni, Giovanni B; Laforce, Robert; Finger, Elizabeth; Sorbi, Sandro; Scarpini, Elio; Rohrer, Jonathan D; Galimberti, Daniela

    2018-05-24

    In patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72) genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy before the appearance of symptoms. Magnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior cortical areas). Intra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72. Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers. These simple-to-use and reproducible scales may be useful tools in the clinical setting for the discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy prior to onset in those with MAPT mutations.

  15. Information spreading by a combination of MEG source estimation and multivariate pattern classification.

    PubMed

    Sato, Masashi; Yamashita, Okito; Sato, Masa-Aki; Miyawaki, Yoichi

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of "information spreading" may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined.

  16. Information spreading by a combination of MEG source estimation and multivariate pattern classification

    PubMed Central

    Sato, Masashi; Yamashita, Okito; Sato, Masa-aki

    2018-01-01

    To understand information representation in human brain activity, it is important to investigate its fine spatial patterns at high temporal resolution. One possible approach is to use source estimation of magnetoencephalography (MEG) signals. Previous studies have mainly quantified accuracy of this technique according to positional deviations and dispersion of estimated sources, but it remains unclear how accurately MEG source estimation restores information content represented by spatial patterns of brain activity. In this study, using simulated MEG signals representing artificial experimental conditions, we performed MEG source estimation and multivariate pattern analysis to examine whether MEG source estimation can restore information content represented by patterns of cortical current in source brain areas. Classification analysis revealed that the corresponding artificial experimental conditions were predicted accurately from patterns of cortical current estimated in the source brain areas. However, accurate predictions were also possible from brain areas whose original sources were not defined. Searchlight decoding further revealed that this unexpected prediction was possible across wide brain areas beyond the original source locations, indicating that information contained in the original sources can spread through MEG source estimation. This phenomenon of “information spreading” may easily lead to false-positive interpretations when MEG source estimation and classification analysis are combined to identify brain areas that represent target information. Real MEG data analyses also showed that presented stimuli were able to be predicted in the higher visual cortex at the same latency as in the primary visual cortex, also suggesting that information spreading took place. These results indicate that careful inspection is necessary to avoid false-positive interpretations when MEG source estimation and multivariate pattern analysis are combined. PMID:29912968

  17. Toward a brain-based theory of beauty.

    PubMed

    Ishizu, Tomohiro; Zeki, Semir

    2011-01-01

    We wanted to learn whether activity in the same area(s) of the brain correlate with the experience of beauty derived from different sources. 21 subjects took part in a brain-scanning experiment using functional magnetic resonance imaging. Prior to the experiment, they viewed pictures of paintings and listened to musical excerpts, both of which they rated on a scale of 1-9, with 9 being the most beautiful. This allowed us to select three sets of stimuli--beautiful, indifferent and ugly--which subjects viewed and heard in the scanner, and rated at the end of each presentation. The results of a conjunction analysis of brain activity showed that, of the several areas that were active with each type of stimulus, only one cortical area, located in the medial orbito-frontal cortex (mOFC), was active during the experience of musical and visual beauty, with the activity produced by the experience of beauty derived from either source overlapping almost completely within it. The strength of activation in this part of the mOFC was proportional to the strength of the declared intensity of the experience of beauty. We conclude that, as far as activity in the brain is concerned, there is a faculty of beauty that is not dependent on the modality through which it is conveyed but which can be activated by at least two sources--musical and visual--and probably by other sources as well. This has led us to formulate a brain-based theory of beauty.

  18. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  19. Image Statistics and the Representation of Material Properties in the Visual Cortex

    PubMed Central

    Baumgartner, Elisabeth; Gegenfurtner, Karl R.

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images. PMID:27582714

  20. Image Statistics and the Representation of Material Properties in the Visual Cortex.

    PubMed

    Baumgartner, Elisabeth; Gegenfurtner, Karl R

    2016-01-01

    We explored perceived material properties (roughness, texturedness, and hardness) with a novel approach that compares perception, image statistics and brain activation, as measured with fMRI. We initially asked participants to rate 84 material images with respect to the above mentioned properties, and then scanned 15 of the participants with fMRI while they viewed the material images. The images were analyzed with a set of image statistics capturing their spatial frequency and texture properties. Linear classifiers were then applied to the image statistics as well as the voxel patterns of visually responsive voxels and early visual areas to discriminate between images with high and low perceptual ratings. Roughness and texturedness could be classified above chance level based on image statistics. Roughness and texturedness could also be classified based on the brain activation patterns in visual cortex, whereas hardness could not. Importantly, the agreement in classification based on image statistics and brain activation was also above chance level. Our results show that information about visual material properties is to a large degree contained in low-level image statistics, and that these image statistics are also partially reflected in brain activity patterns induced by the perception of material images.

  1. Effects of emotional valence and three-dimensionality of visual stimuli on brain activation: an fMRI study.

    PubMed

    Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro

    2013-01-01

    Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.

  2. Perceived object stability depends on multisensory estimates of gravity.

    PubMed

    Barnett-Cowan, Michael; Fleming, Roland W; Singh, Manish; Bülthoff, Heinrich H

    2011-04-27

    How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.

  3. Reading in the dark: neural correlates and cross-modal plasticity for learning to read entire words without visual experience.

    PubMed

    Sigalov, Nadine; Maidenbaum, Shachar; Amedi, Amir

    2016-03-01

    Cognitive neuroscience has long attempted to determine the ways in which cortical selectivity develops, and the impact of nature vs. nurture on it. Congenital blindness (CB) offers a unique opportunity to test this question as the brains of blind individuals develop without visual experience. Here we approach this question through the reading network. Several areas in the visual cortex have been implicated as part of the reading network, and one of the main ones among them is the VWFA, which is selective to the form of letters and words. But what happens in the CB brain? On the one hand, it has been shown that cross-modal plasticity leads to the recruitment of occipital areas, including the VWFA, for linguistic tasks. On the other hand, we have recently demonstrated VWFA activity for letters in contrast to other visual categories when the information is provided via other senses such as touch or audition. Which of these tasks is more dominant? By which mechanism does the CB brain process reading? Using fMRI and visual-to-auditory sensory substitution which transfers the topographical features of the letters we compare reading with semantic and scrambled conditions in a group of CB. We found activation in early auditory and visual cortices during the early processing phase (letter), while the later phase (word) showed VWFA and bilateral dorsal-intraparietal activations for words. This further supports the notion that many visual regions in general, even early visual areas, also maintain a predilection for task processing even when the modality is variable and in spite of putative lifelong linguistic cross-modal plasticity. Furthermore, we find that the VWFA is recruited preferentially for letter and word form, while it was not recruited, and even exhibited deactivation, for an immediately subsequent semantic task suggesting that despite only short sensory substitution experience orthographic task processing can dominate semantic processing in the VWFA. On a wider scope, this implies that at least in some cases cross-modal plasticity which enables the recruitment of areas for new tasks may be dominated by sensory independent task specific activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Automatic delineation and 3D visualization of the human ventricular system using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Hatfield, Fraser N.; Dehmeshki, Jamshid

    1998-09-01

    Neurosurgery is an extremely specialized area of medical practice, requiring many years of training. It has been suggested that virtual reality models of the complex structures within the brain may aid in the training of neurosurgeons as well as playing an important role in the preparation for surgery. This paper focuses on the application of a probabilistic neural network to the automatic segmentation of the ventricles from magnetic resonance images of the brain, and their three dimensional visualization.

  5. Causal evidence for frontal involvement in memory target maintenance by posterior brain areas during distracter interference of visual working memory

    PubMed Central

    Feredoes, Eva; Heinen, Klaartje; Weiskopf, Nikolaus; Ruff, Christian; Driver, Jon

    2011-01-01

    Dorsolateral prefrontal cortex (DLPFC) is recruited during visual working memory (WM) when relevant information must be maintained in the presence of distracting information. The mechanism by which DLPFC might ensure successful maintenance of the contents of WM is, however, unclear; it might enhance neural maintenance of memory targets or suppress processing of distracters. To adjudicate between these possibilities, we applied time-locked transcranial magnetic stimulation (TMS) during functional MRI, an approach that permits causal assessment of a stimulated brain region's influence on connected brain regions, and evaluated how this influence may change under different task conditions. Participants performed a visual WM task requiring retention of visual stimuli (faces or houses) across a delay during which visual distracters could be present or absent. When distracters were present, they were always from the opposite stimulus category, so that targets and distracters were represented in distinct posterior cortical areas. We then measured whether DLPFC-TMS, administered in the delay at the time point when distracters could appear, would modulate posterior regions representing memory targets or distracters. We found that DLPFC-TMS influenced posterior areas only when distracters were present and, critically, that this influence consisted of increased activity in regions representing the current memory targets. DLPFC-TMS did not affect regions representing current distracters. These results provide a new line of causal evidence for a top-down DLPFC-based control mechanism that promotes successful maintenance of relevant information in WM in the presence of distraction. PMID:21987824

  6. Premotor cortex is sensitive to auditory-visual congruence for biological motion.

    PubMed

    Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F

    2012-03-01

    The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.

  7. Neural pathways for visual speech perception

    PubMed Central

    Bernstein, Lynne E.; Liebenthal, Einat

    2014-01-01

    This paper examines the questions, what levels of speech can be perceived visually, and how is visual speech represented by the brain? Review of the literature leads to the conclusions that every level of psycholinguistic speech structure (i.e., phonetic features, phonemes, syllables, words, and prosody) can be perceived visually, although individuals differ in their abilities to do so; and that there are visual modality-specific representations of speech qua speech in higher-level vision brain areas. That is, the visual system represents the modal patterns of visual speech. The suggestion that the auditory speech pathway receives and represents visual speech is examined in light of neuroimaging evidence on the auditory speech pathways. We outline the generally agreed-upon organization of the visual ventral and dorsal pathways and examine several types of visual processing that might be related to speech through those pathways, specifically, face and body, orthography, and sign language processing. In this context, we examine the visual speech processing literature, which reveals widespread diverse patterns of activity in posterior temporal cortices in response to visual speech stimuli. We outline a model of the visual and auditory speech pathways and make several suggestions: (1) The visual perception of speech relies on visual pathway representations of speech qua speech. (2) A proposed site of these representations, the temporal visual speech area (TVSA) has been demonstrated in posterior temporal cortex, ventral and posterior to multisensory posterior superior temporal sulcus (pSTS). (3) Given that visual speech has dynamic and configural features, its representations in feedforward visual pathways are expected to integrate these features, possibly in TVSA. PMID:25520611

  8. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    PubMed Central

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  9. Temporal and spatial localization of prediction-error signals in the visual brain.

    PubMed

    Johnston, Patrick; Robinson, Jonathan; Kokkinakis, Athanasios; Ridgeway, Samuel; Simpson, Michael; Johnson, Sam; Kaufman, Jordy; Young, Andrew W

    2017-04-01

    It has been suggested that the brain pre-empts changes in the environment through generating predictions, although real-time electrophysiological evidence of prediction violations in the domain of visual perception remain elusive. In a series of experiments we showed participants sequences of images that followed a predictable implied sequence or whose final image violated the implied sequence. Through careful design we were able to use the same final image transitions across predictable and unpredictable conditions, ensuring that any differences in neural responses were due only to preceding context and not to the images themselves. EEG and MEG recordings showed that early (N170) and mid-latency (N300) visual evoked potentials were robustly modulated by images that violated the implied sequence across a range of types of image change (expression deformations, rigid-rotations and visual field location). This modulation occurred irrespective of stimulus object category. Although the stimuli were static images, MEG source reconstruction of the early latency signal (N/M170) localized expectancy violation signals to brain areas associated with motion perception. Our findings suggest that the N/M170 can index mismatches between predicted and actual visual inputs in a system that predicts trajectories based on ongoing context. More generally we suggest that the N/M170 may reflect a "family" of brain signals generated across widespread regions of the visual brain indexing the resolution of top-down influences and incoming sensory data. This has important implications for understanding the N/M170 and investigating how the brain represents context to generate perceptual predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma.

    PubMed

    Murphy, Matthew C; Conner, Ian P; Teng, Cindy Y; Lawrence, Jesse D; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S; Chan, Kevin C

    2016-08-11

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.

  11. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma

    PubMed Central

    Murphy, Matthew C.; Conner, Ian P.; Teng, Cindy Y.; Lawrence, Jesse D.; Safiullah, Zaid; Wang, Bo; Bilonick, Richard A.; Kim, Seong-Gi; Wollstein, Gadi; Schuman, Joel S.; Chan, Kevin C.

    2016-01-01

    Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease. PMID:27510406

  12. Immediate early gene expression following exposure to acoustic and visual components of courtship in zebra finches.

    PubMed

    Avey, Marc T; Phillmore, Leslie S; MacDougall-Shackleton, Scott A

    2005-12-07

    Sensory driven immediate early gene expression (IEG) has been a key tool to explore auditory perceptual areas in the avian brain. Most work on IEG expression in songbirds such as zebra finches has focused on playback of acoustic stimuli and its effect on auditory processing areas such as caudal medial mesopallium (CMM) caudal medial nidopallium (NCM). However, in a natural setting, the courtship displays of songbirds (including zebra finches) include visual as well as acoustic components. To determine whether the visual stimulus of a courting male modifies song-induced expression of the IEG ZENK in the auditory forebrain we exposed male and female zebra finches to acoustic (song) and visual (dancing) components of courtship. Birds were played digital movies with either combined audio and video, audio only, video only, or neither audio nor video (control). We found significantly increased levels of Zenk response in the auditory region CMM in the two treatment groups exposed to acoustic stimuli compared to the control group. The video only group had an intermediate response, suggesting potential effect of visual input on activity in these auditory brain regions. Finally, we unexpectedly found a lateralization of Zenk response that was independent of sex, brain region, or treatment condition, such that Zenk immunoreactivity was consistently higher in the left hemisphere than in the right and the majority of individual birds were left-hemisphere dominant.

  13. Neural codes of seeing architectural styles

    PubMed Central

    Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.

    2017-01-01

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people’s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture. PMID:28071765

  14. Neural codes of seeing architectural styles.

    PubMed

    Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B

    2017-01-10

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.

  15. Functional neuroanatomy of visual masking deficits in schizophrenia.

    PubMed

    Green, Michael F; Lee, Junghee; Cohen, Mark S; Engel, Steven A; Korb, Alexander S; Nuechterlein, Keith H; Wynn, Jonathan K; Glahn, David C

    2009-12-01

    Visual masking procedures assess the earliest stages of visual processing. Patients with schizophrenia reliably show deficits on visual masking, and these procedures have been used to explore vulnerability to schizophrenia, probe underlying neural circuits, and help explain functional outcome. To identify and compare regional brain activity associated with one form of visual masking (ie, backward masking) in schizophrenic patients and healthy controls. Subjects received functional magnetic resonance imaging scans. While in the scanner, subjects performed a backward masking task and were given 3 functional localizer activation scans to identify early visual processing regions of interest (ROIs). University of California, Los Angeles, and the Department of Veterans Affairs Greater Los Angeles Healthcare System. Nineteen patients with schizophrenia and 19 healthy control subjects. Main Outcome Measure The magnitude of the functional magnetic resonance imaging signal during backward masking. Two ROIs (lateral occipital complex [LO] and the human motion selective cortex [hMT+]) showed sensitivity to the effects of masking, meaning that signal in these areas increased as the target became more visible. Patients had lower activation than controls in LO across all levels of visibility but did not differ in other visual processing ROIs. Using whole-brain analyses, we also identified areas outside the ROIs that were sensitive to masking effects (including bilateral inferior parietal lobe and thalamus), but groups did not differ in signal magnitude in these areas. The study results support a key role in LO for visual masking, consistent with previous studies in healthy controls. The current results indicate that patients fail to activate LO to the same extent as controls during visual processing regardless of stimulus visibility, suggesting a neural basis for the visual masking deficit, and possibly other visual integration deficits, in schizophrenia.

  16. How (and why) the visual control of action differs from visual perception

    PubMed Central

    Goodale, Melvyn A.

    2014-01-01

    Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions. PMID:24789899

  17. Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.

    PubMed

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi

    2016-09-26

    Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.

  18. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback

    PubMed Central

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.

    2015-01-01

    Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377

  19. Dysbindin modulates brain function during visual processing in children.

    PubMed

    Mechelli, A; Viding, E; Kumar, A; Pettersson-Yeo, W; Fusar-Poli, P; Tognin, S; O'Donovan, M C; McGuire, P

    2010-01-01

    Schizophrenia is a neurodevelopmental disorder, and risk genes are thought to act through disruption of brain development. Several genetic studies have identified dystrobrevin binding protein 1 (DTNBP1, also known as dysbindin) as a potential susceptibility gene for schizophrenia, but its impact on brain function is poorly understood. It has been proposed that DTNBP1 may be associated with differences in visual processing. To test this, we examined the impact on visual processing in 61 healthy children aged 10-12 years of a genetic variant in DTNBP1 (rs2619538) that was common to all schizophrenia associated haplotypes in an earlier UK-Irish study. We tested the hypothesis that carriers of the risk allele would show altered occipital cortical function relative to noncarriers. Functional Magnetic Resonance Imaging (fMRI) was used to measure brain responses during a visual matching task. The data were analysed using statistical parametric mapping and statistical inferences were made at p<0.05 (corrected for multiple comparisons). Relative to noncarriers, carriers of the risk allele had greater activation in the lingual, fusiform gyrus and inferior occipital gyri. In these regions DTNBP1 genotype accounted for 19%, 20% and 14% of the inter-individual variance, respectively. Our results suggest that that genetic variation in DTNBP1 is associated with differences in the function of brain areas that mediate visual processing, and that these effects are evident in young children. These findings are consistent with the notion that the DTNBP1 gene influences brain development and can thereby modulate vulnerability to schizophrenia.

  20. Brain activity and connectivity changes in response to glucose ingestion.

    PubMed

    van Opstal, A M; Hafkemeijer, A; van den Berg-Huysmans, A A; Hoeksma, M; Blonk, C; Pijl, H; Rombouts, S A R B; van der Grond, J

    2018-05-27

    The regulatory role of the brain in directing eating behavior becomes increasingly recognized. Although many areas in the brain have been found to respond to food cues, very little data is available after actual caloric intake. The aim of this study was to determine normal whole brain functional responses to ingestion of glucose after an overnight fast. Twenty-five normal weight, adult males underwent functional MRI on two separate visits. In a single-blind randomized study setup, participants received either glucose solution (50 g/300 ml of water) or plain water. We studied changes in Blood Oxygen Level Dependent (BOLD) signal, voxel-based connectivity by Eigenvector Centrality Mapping, and functional network connectivity. Ingestion of glucose led to increased centrality in the thalamus and to decreases in BOLD signal in various brain areas. Decreases in connectivity in the sensory-motor and dorsal visual stream networks were found. Ingestion of water resulted in increased centrality across the brain, and increases in connectivity in the medial and lateral visual cortex network. Increased BOLD intensity was found in the intracalcarine and cingulate cortex. Our data show that ingestion of glucose leads to decreased activity and connectivity in brain areas and networks linked to energy seeking and satiation. In contrast, drinking plain water leads to increased connectivity probably associated with continued food seeking and unfulfilled reward. Trail registration: This study combines data of two studies registered at clinicaltrails.gov under numbers NCT03202342 and NCT03247114.

  1. Implications of CI therapy for visual deficit training

    PubMed Central

    Taub, Edward; Mark, Victor W.; Uswatte, Gitendra

    2014-01-01

    We address here the question of whether the techniques of Constraint Induced (CI) therapy, a family of treatments that has been employed in the rehabilitation of movement and language after brain damage might apply to the rehabilitation of such visual deficits as unilateral spatial neglect and visual field deficits. CI therapy has been used successfully for the upper and lower extremities after chronic stroke, cerebral palsy (CP), multiple sclerosis (MS), other central nervous system (CNS) degenerative conditions, resection of motor areas of the brain, focal hand dystonia, and aphasia. Treatments making use of similar methods have proven efficacious for amblyopia. The CI therapy approach consists of four major components: intensive training, training by shaping, a “transfer package” to facilitate the transfer of gains from the treatment setting to everyday activities, and strong discouragement of compensatory strategies. CI therapy is said to be effective because it overcomes learned nonuse, a learned inhibition of movement that follows injury to the CNS. In addition, CI therapy produces substantial increases in the gray matter of motor areas on both sides of the brain. We propose here that these mechanisms are examples of more general processes: learned nonuse being considered parallel to sensory nonuse following damage to sensory areas of the brain, with both having in common diminished neural connections (DNCs) in the nervous system as an underlying mechanism. CI therapy would achieve its therapeutic effect by strengthening the DNCs. Use-dependent cortical reorganization is considered to be an example of the more general neuroplastic mechanism of brain structure repurposing. If the mechanisms involved in these broader categories are involved in each of the deficits being considered, then it may be the principles underlying efficacious treatment in each case may be similar. The lessons learned during CI therapy research might then prove useful for the treatment of visual deficits. PMID:25346665

  2. Infant Visual Attention and Object Recognition

    PubMed Central

    Reynolds, Greg D.

    2015-01-01

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. PMID:25596333

  3. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women

    PubMed Central

    de Jong, Peter J.; Georgiadis, Janniko R.

    2014-01-01

    Lifetime experiences shape people’s attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile–vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-‘hot’ vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-‘hot’) associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli. PMID:23051899

  4. Predation risk modifies behaviour by shaping the response of identified brain neurons.

    PubMed

    Magani, Fiorella; Luppi, Tomas; Nuñez, Jesus; Tomsic, Daniel

    2016-04-15

    Interpopulation comparisons in species that show behavioural variations associated with particular ecological disparities offer good opportunities for assessing how environmental factors may foster specific functional adaptations in the brain. Yet, studies on the neural substrate that can account for interpopulation behavioural adaptations are scarce. Predation is one of the strongest driving forces for behavioural evolvability and, consequently, for shaping structural and functional brain adaptations. We analysed the escape response of crabs ITALIC! Neohelice granulatafrom two isolated populations exposed to different risks of avian predation. Individuals from the high-risk area proved to be more reactive to visual danger stimuli (VDS) than those from an area where predators are rare. Control experiments indicate that the response difference was specific for impending visual threats. Subsequently, we analysed the response to VDS of a group of giant brain neurons that are thought to play a main role in the visually guided escape response of the crab. Neurons from animals of the population with the stronger escape response were more responsive to VDS than neurons from animals of the less reactive population. Our results suggest a robust linkage between the pressure imposed by the predation risk, the response of identified neurons and the behavioural outcome. © 2016. Published by The Company of Biologists Ltd.

  5. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women.

    PubMed

    Borg, Charmaine; de Jong, Peter J; Georgiadis, Janniko R

    2014-02-01

    Lifetime experiences shape people's attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile-vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-'hot' vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-'hot') associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli.

  6. Aging reduces neural specialization in ventral visual cortex

    PubMed Central

    Park, Denise C.; Polk, Thad A.; Park, Rob; Minear, Meredith; Savage, Anna; Smith, Mason R.

    2004-01-01

    The present study investigated whether neural structures become less functionally differentiated and specialized with age. We studied ventral visual cortex, an area of the brain that responds selectively to visual categories (faces, places, and words) in young adults, and that shows little atrophy with age. Functional MRI was used to estimate neural activity in this cortical area, while young and old adults viewed faces, houses, pseudowords, and chairs. The results demonstrated significantly less neural specialization for these stimulus categories in older adults across a range of analyses. PMID:15322270

  7. The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training

    PubMed Central

    Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele

    2016-01-01

    This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776

  8. Is It Me or My Hormones? Neuroendocrine Activation Profiles to Visual Food Stimuli Across the Menstrual Cycle.

    PubMed

    Arnoni-Bauer, Yardena; Bick, Atira; Raz, Noa; Imbar, Tal; Amos, Shoshana; Agmon, Orly; Marko, Limor; Levin, Netta; Weiss, Ram

    2017-09-01

    Homeostatic energy balance is controlled via the hypothalamus, whereas regions controlling reward and cognitive decision-making are critical for hedonic eating. Eating varies across the menstrual cycle peaking at the midluteal phase. To test responses of females with regular cycles during midfollicular and midluteal phase and of users of monophasic oral contraception pills (OCPs) to visual food cues. Participants performed a functional magnetic resonance imaging while exposed to visual food cues in four time points: fasting and fed conditions in midfollicular and midluteal phases. Twenty females with regular cycles and 12 on monophasic OCP, aged 18 to 35 years. Activity in homeostatic (hypothalamus), reward (amygdala, putamen and insula), frontal (anterior cingulate cortex, dorsolateral prefrontal cortex), and visual regions (calcarine and lateral occipital cortex). Tertiary hospital. In females with regular cycles, brain regions associated with homeostasis but also the reward system, executive frontal areas, and afferent visual areas were activated to a greater degree during the luteal compared with the follicular phase. Within the visual areas, a dual effect of hormonal and prandial state was seen. In females on monophasic OCPs, characterized by a permanently elevated progesterone concentration, activity reminiscent of the luteal phase was found. Androgen, cortisol, testosterone, and insulin levels were significantly correlated with reward and visual region activation. Hormonal mechanisms affect the responses of women's homeostatic, emotional, and attentional brain regions to food cues. The relation of these findings to eating behavior throughout the cycle needs further investigation. Copyright © 2017 Endocrine Society

  9. The Development of a Two-Dimensional Multielectrode Array for Visual Perception Research in the Mammalian Brain.

    DTIC Science & Technology

    1980-12-01

    primary and secondary visual cortex or in the secondary visual cortex itself. When the secondary visual cortex is electrically stimulated , the subject...effect enhances their excitability, which reduces the additional stimulation ( electrical or chemical) required to elicit an action potential. These...and the peripheral area with rods. The rods have a very low light intensity threshold and provide stimulation to optic nerve fibers for low light

  10. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Decentralized Multisensory Information Integration in Neural Systems.

    PubMed

    Zhang, Wen-Hao; Chen, Aihua; Rasch, Malte J; Wu, Si

    2016-01-13

    How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. Copyright © 2016 Zhang et al.

  12. Decentralized Multisensory Information Integration in Neural Systems

    PubMed Central

    Zhang, Wen-hao; Chen, Aihua

    2016-01-01

    How multiple sensory cues are integrated in neural circuitry remains a challenge. The common hypothesis is that information integration might be accomplished in a dedicated multisensory integration area receiving feedforward inputs from the modalities. However, recent experimental evidence suggests that it is not a single multisensory brain area, but rather many multisensory brain areas that are simultaneously involved in the integration of information. Why many mutually connected areas should be needed for information integration is puzzling. Here, we investigated theoretically how information integration could be achieved in a distributed fashion within a network of interconnected multisensory areas. Using biologically realistic neural network models, we developed a decentralized information integration system that comprises multiple interconnected integration areas. Studying an example of combining visual and vestibular cues to infer heading direction, we show that such a decentralized system is in good agreement with anatomical evidence and experimental observations. In particular, we show that this decentralized system can integrate information optimally. The decentralized system predicts that optimally integrated information should emerge locally from the dynamics of the communication between brain areas and sheds new light on the interpretation of the connectivity between multisensory brain areas. SIGNIFICANCE STATEMENT To extract information reliably from ambiguous environments, the brain integrates multiple sensory cues, which provide different aspects of information about the same entity of interest. Here, we propose a decentralized architecture for multisensory integration. In such a system, no processor is in the center of the network topology and information integration is achieved in a distributed manner through reciprocally connected local processors. Through studying the inference of heading direction with visual and vestibular cues, we show that the decentralized system can integrate information optimally, with the reciprocal connections between processers determining the extent of cue integration. Our model reproduces known multisensory integration behaviors observed in experiments and sheds new light on our understanding of how information is integrated in the brain. PMID:26758843

  13. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    PubMed Central

    Lee, Sue-Hyun; Baker, Chris I.

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997

  14. Splenium of Corpus Callosum: Patterns of Interhemispheric Interaction in Children and Adults

    PubMed Central

    Knyazeva, Maria G.

    2013-01-01

    The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain. PMID:23577273

  15. Late development of cue integration is linked to sensory fusion in cortex.

    PubMed

    Dekker, Tessa M; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I; Welchman, Andrew E; Nardini, Marko

    2015-11-02

    Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3-5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7-9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6-12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3-5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Late Development of Cue Integration Is Linked to Sensory Fusion in Cortex

    PubMed Central

    Dekker, Tessa M.; Ban, Hiroshi; van der Velde, Bauke; Sereno, Martin I.; Welchman, Andrew E.; Nardini, Marko

    2015-01-01

    Summary Adults optimize perceptual judgements by integrating different types of sensory information [1, 2]. This engages specialized neural circuits that fuse signals from the same [3, 4, 5] or different [6] modalities. Whereas young children can use sensory cues independently, adult-like precision gains from cue combination only emerge around ages 10 to 11 years [7, 8, 9]. Why does it take so long to make best use of sensory information? Existing data cannot distinguish whether this (1) reflects surprisingly late changes in sensory processing (sensory integration mechanisms in the brain are still developing) or (2) depends on post-perceptual changes (integration in sensory cortex is adult-like, but higher-level decision processes do not access the information) [10]. We tested visual depth cue integration in the developing brain to distinguish these possibilities. We presented children aged 6–12 years with displays depicting depth from binocular disparity and relative motion and made measurements using psychophysics, retinotopic mapping, and pattern classification fMRI. Older children (>10.5 years) showed clear evidence for sensory fusion in V3B, a visual area thought to integrate depth cues in the adult brain [3, 4, 5]. By contrast, in younger children (<10.5 years), there was no evidence for sensory fusion in any visual area. This significant age difference was paired with a shift in perceptual performance around ages 10 to 11 years and could not be explained by motion artifacts, visual attention, or signal quality differences. Thus, whereas many basic visual processes mature early in childhood [11, 12], the brain circuits that fuse cues take a very long time to develop. PMID:26480841

  17. Visual Cortical Representation of Whole Words and Hemifield-split Word Parts.

    PubMed

    Strother, Lars; Coros, Alexandra M; Vilis, Tutis

    2016-02-01

    Reading requires the neural integration of visual word form information that is split between our retinal hemifields. We examined multiple visual cortical areas involved in this process by measuring fMRI responses while observers viewed words that changed or repeated in one or both hemifields. We were specifically interested in identifying brain areas that exhibit decreased fMRI responses as a result of repeated versus changing visual word form information in each visual hemifield. Our method yielded highly significant effects of word repetition in a previously reported visual word form area (VWFA) in occipitotemporal cortex, which represents hemifield-split words as whole units. We also identified a more posterior occipital word form area (OWFA), which represents word form information in the right and left hemifields independently and is thus both functionally and anatomically distinct from the VWFA. Both the VWFA and the OWFA were left-lateralized in our study and strikingly symmetric in anatomical location relative to known face-selective visual cortical areas in the right hemisphere. Our findings are consistent with the observation that category-selective visual areas come in pairs and support the view that neural mechanisms in left visual cortex--especially those that evolved to support the visual processing of faces--are developmentally malleable and become incorporated into a left-lateralized visual word form network that supports rapid word recognition and reading.

  18. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation.

    PubMed

    Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli

    2016-01-01

    Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications.

  19. An Intracranial Electroencephalography (iEEG) Brain Function Mapping Tool with an Application to Epilepsy Surgery Evaluation

    PubMed Central

    Wang, Yinghua; Yan, Jiaqing; Wen, Jianbin; Yu, Tao; Li, Xiaoli

    2016-01-01

    Objects: Before epilepsy surgeries, intracranial electroencephalography (iEEG) is often employed in function mapping and epileptogenic foci localization. Although the implanted electrodes provide crucial information for epileptogenic zone resection, a convenient clinical tool for electrode position registration and Brain Function Mapping (BFM) visualization is still lacking. In this study, we developed a BFM Tool, which facilitates electrode position registration and BFM visualization, with an application to epilepsy surgeries. Methods: The BFM Tool mainly utilizes electrode location registration and function mapping based on pre-defined brain models from other software. In addition, the electrode node and mapping properties, such as the node size/color, edge color/thickness, mapping method, can be adjusted easily using the setting panel. Moreover, users may manually import/export location and connectivity data to generate figures for further application. The role of this software is demonstrated by a clinical study of language area localization. Results: The BFM Tool helps clinical doctors and researchers visualize implanted electrodes and brain functions in an easy, quick and flexible manner. Conclusions: Our tool provides convenient electrode registration, easy brain function visualization, and has good performance. It is clinical-oriented and is easy to deploy and use. The BFM tool is suitable for epilepsy and other clinical iEEG applications. PMID:27199729

  20. Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?

    PubMed Central

    Tsotsos, John K.

    2017-01-01

    Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide. PMID:28848458

  1. Complexity Level Analysis Revisited: What Can 30 Years of Hindsight Tell Us about How the Brain Might Represent Visual Information?

    PubMed

    Tsotsos, John K

    2017-01-01

    Much has been written about how the biological brain might represent and process visual information, and how this might inspire and inform machine vision systems. Indeed, tremendous progress has been made, and especially during the last decade in the latter area. However, a key question seems too often, if not mostly, be ignored. This question is simply: do proposed solutions scale with the reality of the brain's resources? This scaling question applies equally to brain and to machine solutions. A number of papers have examined the inherent computational difficulty of visual information processing using theoretical and empirical methods. The main goal of this activity had three components: to understand the deep nature of the computational problem of visual information processing; to discover how well the computational difficulty of vision matches to the fixed resources of biological seeing systems; and, to abstract from the matching exercise the key principles that lead to the observed characteristics of biological visual performance. This set of components was termed complexity level analysis in Tsotsos (1987) and was proposed as an important complement to Marr's three levels of analysis. This paper revisits that work with the advantage that decades of hindsight can provide.

  2. Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps

    PubMed Central

    2016-01-01

    Abstract Cortical mapping techniques using fMRI have been instrumental in identifying the boundaries of topological (neighbor‐preserving) maps in early sensory areas. The presence of topological maps beyond early sensory areas raises the possibility that they might play a significant role in other cognitive systems, and that topological mapping might help to delineate areas involved in higher cognitive processes. In this study, we combine surface‐based visual, auditory, and somatomotor mapping methods with a naturalistic reading comprehension task in the same group of subjects to provide a qualitative and quantitative assessment of the cortical overlap between sensory‐motor maps in all major sensory modalities, and reading processing regions. Our results suggest that cortical activation during naturalistic reading comprehension overlaps more extensively with topological sensory‐motor maps than has been heretofore appreciated. Reading activation in regions adjacent to occipital lobe and inferior parietal lobe almost completely overlaps visual maps, whereas a significant portion of frontal activation for reading in dorsolateral and ventral prefrontal cortex overlaps both visual and auditory maps. Even classical language regions in superior temporal cortex are partially overlapped by topological visual and auditory maps. By contrast, the main overlap with somatomotor maps is restricted to a small region on the anterior bank of the central sulcus near the border between the face and hand representations of M‐I. Hum Brain Mapp 37:2784–2810, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27061771

  3. Self-regulation of inter-hemispheric visual cortex balance through real-time fMRI neurofeedback training.

    PubMed

    Robineau, F; Rieger, S W; Mermoud, C; Pichon, S; Koush, Y; Van De Ville, D; Vuilleumier, P; Scharnowski, F

    2014-10-15

    Recent advances in neurofeedback based on real-time functional magnetic resonance imaging (fMRI) allow for learning to control spatially localized brain activity in the range of millimeters across the entire brain. Real-time fMRI neurofeedback studies have demonstrated the feasibility of self-regulating activation in specific areas that are involved in a variety of functions, such as perception, motor control, language, and emotional processing. In most of these previous studies, participants trained to control activity within one region of interest (ROI). In the present study, we extended the neurofeedback approach by now training healthy participants to control the interhemispheric balance between their left and right visual cortices. This was accomplished by providing feedback based on the difference in activity between a target visual ROI and the corresponding homologue region in the opposite hemisphere. Eight out of 14 participants learned to control the differential feedback signal over the course of 3 neurofeedback training sessions spread over 3 days, i.e., they produced consistent increases in the visual target ROI relative to the opposite visual cortex. Those who learned to control the differential feedback signal were subsequently also able to exert that control in the absence of neurofeedback. Such learning to voluntarily control the balance between cortical areas of the two hemispheres might offer promising rehabilitation approaches for neurological or psychiatric conditions associated with pathological asymmetries in brain activity patterns, such as hemispatial neglect, dyslexia, or mood disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Visually cued motor synchronization: modulation of fMRI activation patterns by baseline condition.

    PubMed

    Cerasa, Antonio; Hagberg, Gisela E; Bianciardi, Marta; Sabatini, Umberto

    2005-01-03

    A well-known issue in functional neuroimaging studies, regarding motor synchronization, is to design suitable control tasks able to discriminate between the brain structures involved in primary time-keeper functions and those related to other processes such as attentional effort. The aim of this work was to investigate how the predictability of stimulus onsets in the baseline condition modulates the activity in brain structures related to processes involved in time-keeper functions during the performance of a visually cued motor synchronization task (VM). The rational behind this choice derives from the notion that using different stimulus predictability can vary the subject's attention and the consequently neural activity. For this purpose, baseline levels of BOLD activity were obtained from 12 subjects during a conventional-baseline condition: maintained fixation of the visual rhythmic stimuli presented in the VM task, and a random-baseline condition: maintained fixation of visual stimuli occurring randomly. fMRI analysis demonstrated that while brain areas with a documented role in basic time processing are detected independent of the baseline condition (right cerebellum, bilateral putamen, left thalamus, left superior temporal gyrus, left sensorimotor cortex, left dorsal premotor cortex and supplementary motor area), the ventral premotor cortex, caudate nucleus, insula and inferior frontal gyrus exhibited a baseline-dependent activation. We conclude that maintained fixation of unpredictable visual stimuli can be employed in order to reduce or eliminate neural activity related to attentional components present in the synchronization task.

  5. Cue-induced brain activity in pathological gamblers.

    PubMed

    Crockford, David N; Goodyear, Bradley; Edwards, Jodi; Quickfall, Jeremy; el-Guebaly, Nady

    2005-11-15

    Previous studies using functional magnetic resonance imaging (fMRI) have identified differential brain activity in healthy subjects performing gambling tasks and in pathological gambling (PG) subjects when exposed to motivational and emotional predecessors for gambling as well as during gambling or response inhibition tasks. The goal of the present study was to determine if PG subjects exhibit differential brain activity when exposed to visual gambling cues. Ten male DSM-IV-TR PG subjects and 10 matched healthy control subjects underwent fMRI during visual presentations of gambling-related video alternating with video of nature scenes. Pathological gambling subjects and control subjects exhibited overlap in areas of brain activity in response to the visual gambling cues; however, compared with control subjects, PG subjects exhibited significantly greater activity in the right dorsolateral prefrontal cortex (DLPFC), including the inferior and medial frontal gyri, the right parahippocampal gyrus, and left occipital cortex, including the fusiform gyrus. Pathological gambling subjects also reported a significant increase in mean craving for gambling after the study. Post hoc analyses revealed a dissociation in visual processing stream (dorsal vs. ventral) activation by subject group and cue type. These findings may represent a component of cue-induced craving for gambling or conditioned behavior that could underlie pathological gambling.

  6. Visualizing Simulated Electrical Fields from Electroencephalography and Transcranial Electric Brain Stimulation: A Comparative Evaluation

    PubMed Central

    Eichelbaum, Sebastian; Dannhauer, Moritz; Hlawitschka, Mario; Brooks, Dana; Knösche, Thomas R.; Scheuermann, Gerik

    2014-01-01

    Electrical activity of neuronal populations is a crucial aspect of brain activity. This activity is not measured directly but recorded as electrical potential changes using head surface electrodes (electroencephalogram - EEG). Head surface electrodes can also be deployed to inject electrical currents in order to modulate brain activity (transcranial electric stimulation techniques) for therapeutic and neuroscientific purposes. In electroencephalography and noninvasive electric brain stimulation, electrical fields mediate between electrical signal sources and regions of interest (ROI). These fields can be very complicated in structure, and are influenced in a complex way by the conductivity profile of the human head. Visualization techniques play a central role to grasp the nature of those fields because such techniques allow for an effective conveyance of complex data and enable quick qualitative and quantitative assessments. The examination of volume conduction effects of particular head model parameterizations (e.g., skull thickness and layering), of brain anomalies (e.g., holes in the skull, tumors), location and extent of active brain areas (e.g., high concentrations of current densities) and around current injecting electrodes can be investigated using visualization. Here, we evaluate a number of widely used visualization techniques, based on either the potential distribution or on the current-flow. In particular, we focus on the extractability of quantitative and qualitative information from the obtained images, their effective integration of anatomical context information, and their interaction. We present illustrative examples from clinically and neuroscientifically relevant cases and discuss the pros and cons of the various visualization techniques. PMID:24821532

  7. fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.

    PubMed

    Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F

    2016-10-01

    The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. High-intensity erotic visual stimuli de-activate the primary visual cortex in women.

    PubMed

    Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-06-01

    The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.

  9. On the role of visual experience in mathematical development: Evidence from blind mathematicians.

    PubMed

    Amalric, Marie; Denghien, Isabelle; Dehaene, Stanislas

    2018-04-01

    Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of genetics, experience and education in the development of this math-responsive network, however, remain unresolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional mathematicians who were blind from birth (n=1) or became blind during childhood (n=2). Subjects were scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements. Blind mathematicians activated the classical network of math-related areas during mathematical reflection, similar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced mathematical reasoning can develop in the absence of visual experience. Additional activations were found in occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery or a more radical repurposing of visual cortex may occur in blind mathematicians. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Mental Rotation Meets the Motion Aftereffect: The Role of hV5/MT+ in Visual Mental Imagery

    ERIC Educational Resources Information Center

    Seurinck, Ruth; de Lange, Floris P.; Achten, Erik; Vingerhoets, Guy

    2011-01-01

    A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects…

  11. A multi-pathway hypothesis for human visual fear signaling

    PubMed Central

    Silverstein, David N.; Ingvar, Martin

    2015-01-01

    A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513

  12. Near death experiences: a multidisciplinary hypothesis

    PubMed Central

    Bókkon, István; Mallick, Birendra N.; Tuszynski, Jack A.

    2013-01-01

    Recently, we proposed a novel biophysical concept regarding on the appearance of brilliant lights during near death experiences (NDEs) (Bókkon and Salari, 2012). Specifically, perceiving brilliant light in NDEs has been proposed to arise due to the reperfusion that produces unregulated overproduction of free radicals and energetically excited molecules that can generate a transient enhancement of bioluminescent biophotons in different areas of the brain, including retinotopic visual areas. If this excess of bioluminescent photon emission exceeds a threshold in retinotopic visual areas, this can appear as (phosphene) lights because the brain interprets these intrinsic retinotopic bioluminescent photons as if they originated from the external physical world. Here, we review relevant literature that reported experimental studies (Imaizumi et al., 1984; Suzuki et al., 1985) that essentially support our previously published conception, i.e., that seeing lights in NDEs may be due to the transient enhancement of bioluminescent biophotons. Next, we briefly describe our biophysical visual representation model that may explain brilliant lights experienced during NDEs (by phosphenes as biophotons) and REM sleep associated dream-like intrinsic visual imageries through biophotons in NDEs. Finally, we link our biophysical visual representation notion to self-consciousness that may involve extremely low-energy quantum entanglements. This article is intended to introduce novel concepts for discussion and does not pretend to give the ultimate explanation for the currently unanswerable questions about matter, life and soul; their creation and their interrelationship. PMID:24062655

  13. Near death experiences: a multidisciplinary hypothesis.

    PubMed

    Bókkon, István; Mallick, Birendra N; Tuszynski, Jack A

    2013-01-01

    Recently, we proposed a novel biophysical concept regarding on the appearance of brilliant lights during near death experiences (NDEs) (Bókkon and Salari, 2012). Specifically, perceiving brilliant light in NDEs has been proposed to arise due to the reperfusion that produces unregulated overproduction of free radicals and energetically excited molecules that can generate a transient enhancement of bioluminescent biophotons in different areas of the brain, including retinotopic visual areas. If this excess of bioluminescent photon emission exceeds a threshold in retinotopic visual areas, this can appear as (phosphene) lights because the brain interprets these intrinsic retinotopic bioluminescent photons as if they originated from the external physical world. Here, we review relevant literature that reported experimental studies (Imaizumi et al., 1984; Suzuki et al., 1985) that essentially support our previously published conception, i.e., that seeing lights in NDEs may be due to the transient enhancement of bioluminescent biophotons. Next, we briefly describe our biophysical visual representation model that may explain brilliant lights experienced during NDEs (by phosphenes as biophotons) and REM sleep associated dream-like intrinsic visual imageries through biophotons in NDEs. Finally, we link our biophysical visual representation notion to self-consciousness that may involve extremely low-energy quantum entanglements. This article is intended to introduce novel concepts for discussion and does not pretend to give the ultimate explanation for the currently unanswerable questions about matter, life and soul; their creation and their interrelationship.

  14. Visual cortex extrastriate body-selective area activation in congenitally blind people "seeing" by using sounds.

    PubMed

    Striem-Amit, Ella; Amedi, Amir

    2014-03-17

    Vision is by far the most prevalent sense for experiencing others' body shapes, postures, actions, and intentions, and its congenital absence may dramatically hamper body-shape representation in the brain. We investigated whether the absence of visual experience and limited exposure to others' body shapes could still lead to body-shape selectivity. We taught congenitally fully-blind adults to perceive full-body shapes conveyed through a sensory-substitution algorithm topographically translating images into soundscapes [1]. Despite the limited experience of the congenitally blind with external body shapes (via touch of close-by bodies and for ~10 hr via soundscapes), once the blind could retrieve body shapes via soundscapes, they robustly activated the visual cortex, specifically the extrastriate body area (EBA; [2]). Furthermore, body selectivity versus textures, objects, and faces in both the blind and sighted control groups was not found in the temporal (auditory) or parietal (somatosensory) cortex but only in the visual EBA. Finally, resting-state data showed that the blind EBA is functionally connected to the temporal cortex temporal-parietal junction/superior temporal sulcus Theory-of-Mind areas [3]. Thus, the EBA preference is present without visual experience and with little exposure to external body-shape information, supporting the view that the brain has a sensory-independent, task-selective supramodal organization rather than a sensory-specific organization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.

    PubMed

    Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas

    2016-10-17

    Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Position Information Encoded by Population Activity in Hierarchical Visual Areas

    PubMed Central

    Majima, Kei; Horikawa, Tomoyasu

    2017-01-01

    Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634

  17. Abacus in the brain: a longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion.

    PubMed

    Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu

    2012-01-01

    The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.

  18. Real-time decoding of the direction of covert visuospatial attention

    NASA Astrophysics Data System (ADS)

    Andersson, Patrik; Ramsey, Nick F.; Raemaekers, Mathijs; Viergever, Max A.; Pluim, Josien P. W.

    2012-08-01

    Brain-computer interfaces (BCIs) make it possible to translate a person’s intentions into actions without depending on the muscular system. Brain activity is measured and classified into commands, thereby creating a direct link between the mind and the environment, enabling, e.g., cursor control or navigation of a wheelchair or robot. Most BCI research is conducted with scalp EEG but recent developments move toward intracranial electrodes for paralyzed people. The vast majority of BCI studies focus on the motor system as the appropriate target for recording and decoding movement intentions. However, properties of the visual system may make the visual system an attractive and intuitive alternative. We report on a study investigating feasibility of decoding covert visuospatial attention in real time, exploiting the full potential of a 7 T MRI scanner to obtain the necessary signal quality, capitalizing on earlier fMRI studies indicating that covert visuospatial attention changes activity in the visual areas that respond to stimuli presented in the attended area of the visual field. Healthy volunteers were instructed to shift their attention from the center of the screen to one of four static targets in the periphery, without moving their eyes from the center. During the first part of the fMRI-run, the relevant brain regions were located using incremental statistical analysis. During the second part, the activity in these regions was extracted and classified, and the subject was given visual feedback of the result. Performance was assessed as the number of trials where the real-time classifier correctly identified the direction of attention. On average, 80% of trials were correctly classified (chance level <25%) based on a single image volume, indicating very high decoding performance. While we restricted the experiment to five attention target regions (four peripheral and one central), the number of directions can be higher provided the brain activity patterns can be distinguished. In summary, the visual system promises to be an effective target for BCI control.

  19. Effects of Chronic Active Cannabis Use on Visuomotor Integration, in Relation to Brain Activation and Cortisol Levels

    PubMed Central

    King, G.R.; Ernst, T.; Deng, W.; Stenger, A.; Gonzales, R.M.K; Nakama, H.; Chang, L.

    2012-01-01

    Cannabis is the most abused illegal substance in the United States. Alterations in brain function and motor behavior have been reported in chronic cannabis users, but the results have been variable. The current study aimed to determine whether chronic active cannabis use in humans may alter psychomotor function, brain activation, and hypothalamic-pituitary-axis (HPA) function in men and women. 30 cannabis users (16 men and 14 women, 18 to 45 years old) and 30 non-drug user controls (16 men and 14 women, 19 to 44 years old) were evaluated with neuropsychological tests designed to assess motor behavior and functional MRI (fMRI), using a 3 Tesla scanner, during a visually paced finger-sequencing task, cued by a flashing checkerboard (at 2 or 4 Hz). Salivary cortisol was measured to assess HPA function. Male, but not female, cannabis users had significantly slower performance on psychomotor speed tests. As a group, cannabis users had greater activation in BA 6 than controls, while controls had greater activation in the visual area BA 17 than cannabis users. Cannabis users also had higher salivary cortisol levels than controls (p = 0.002). Chronic active cannabis use is associated with slower and less efficient psychomotor function, especially in the male users, as indicated by a shift from regions involved with automated visually guided responses to more executive or attentional control areas. These brain activities may be attenuated by the higher cortisol levels in the cannabis users which in turn may lead to less efficient visual-motor function. PMID:22159107

  20. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    PubMed Central

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444

  1. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    PubMed

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.

  2. Orthographic Coding: Brain Activation for Letters, Symbols, and Digits.

    PubMed

    Carreiras, Manuel; Quiñones, Ileana; Hernández-Cabrera, Juan Andrés; Duñabeitia, Jon Andoni

    2015-12-01

    The present experiment investigates the input coding mechanisms of 3 common printed characters: letters, numbers, and symbols. Despite research in this area, it is yet unclear whether the identity of these 3 elements is processed through the same or different brain pathways. In addition, some computational models propose that the position-in-string coding of these elements responds to general flexible mechanisms of the visual system that are not character-specific, whereas others suggest that the position coding of letters responds to specific processes that are different from those that guide the position-in-string assignment of other types of visual objects. Here, in an fMRI study, we manipulated character position and character identity through the transposition or substitution of 2 internal elements within strings of 4 elements. Participants were presented with 2 consecutive visual strings and asked to decide whether they were the same or different. The results showed: 1) that some brain areas responded more to letters than to numbers and vice versa, suggesting that processing may follow different brain pathways; 2) that the left parietal cortex is involved in letter identity, and critically in letter position coding, specifically contributing to the early stages of the reading process; and that 3) a stimulus-specific mechanism for letter position coding is operating during orthographic processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  4. Alfred Walter Campbell and the visual functions of the occipital cortex.

    PubMed

    Macmillan, Malcolm

    2014-07-01

    In his pioneering cytoarchitectonic studies of the human brain, Alfred Walter Campbell identified two structurally different areas in the occipital lobes and assigned two different kinds of visual functions to them. The first area, the visuosensory, was essentially on the mesial surface of the calcarine fissure. It was the terminus of nervous impulses generated in the retina and was where simple visual sensations arose. The second area, the visuopsychic, which surrounded or invested the first, was where sensations were interpreted and elaborated into visual perceptions. I argue that Campbell's distinction between the two areas was the starting point for the eventual differentiation of areas V1-V5. After a brief outline of Campbell's early life and education in Australia and of his Scottish medical education and early work as a pathologist at the Lancashire County Lunatic Asylum at Rainhill near Liverpool, I summarise his work on the human brain. In describing the structures he identified in the occipital lobes, I analyse the similarities and differences between them and the related structures identified by Joseph Shaw Bolton. I conclude by proposing some reasons for how that work came to be overshadowed by the later studies of Brodmann and for the more general lack of recognition given Campbell and his work. Those reasons include the effect of the controversies precipitated by Campbell's alliance with Charles Sherrington over the functions of the sensory and motor cortices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Touch to see: neuropsychological evidence of a sensory mirror system for touch.

    PubMed

    Bolognini, Nadia; Olgiati, Elena; Xaiz, Annalisa; Posteraro, Lucio; Ferraro, Francesco; Maravita, Angelo

    2012-09-01

    The observation of touch can be grounded in the activation of brain areas underpinning direct tactile experience, namely the somatosensory cortices. What is the behavioral impact of such a mirror sensory activity on visual perception? To address this issue, we investigated the causal interplay between observed and felt touch in right brain-damaged patients, as a function of their underlying damaged visual and/or tactile modalities. Patients and healthy controls underwent a detection task, comprising visual stimuli depicting touches or without a tactile component. Touch and No-touch stimuli were presented in egocentric or allocentric perspectives. Seeing touches, regardless of the viewing perspective, differently affects visual perception depending on which sensory modality is damaged: In patients with a selective visual deficit, but without any tactile defect, the sight of touch improves the visual impairment; this effect is associated with a lesion to the supramarginal gyrus. In patients with a tactile deficit, but intact visual perception, the sight of touch disrupts visual processing, inducing a visual extinction-like phenomenon. This disruptive effect is associated with the damage of the postcentral gyrus. Hence, a damage to the somatosensory system can lead to a dysfunctional visual processing, and an intact somatosensory processing can aid visual perception.

  6. Infant visual attention and object recognition.

    PubMed

    Reynolds, Greg D

    2015-05-15

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Brain activation associated with practiced left hand mirror writing.

    PubMed

    Kushnir, T; Arzouan, Y; Karni, A; Manor, D

    2013-04-01

    Mirror writing occurs in healthy children, in various pathologies and occasionally in healthy adults. There are only scant experimental data on the underlying brain processes. Eight, right-handed, healthy young adults were scanned (BOLD-fMRI) before and after practicing left-hand mirror-writing (lh-MW) over seven sessions. They wrote dictated words, using either the right hand with regularly oriented writing or lh-MW. An MRI compatible stylus-point recording system was used and online visual feedback was provided. Practice resulted in increased speed and readability of lh-MW but the number of movement segments was unchanged. Post-training signal increases occurred in visual, right lateral and medial premotor areas, and in right anterior and posterior peri-sylvian areas corresponding to language areas. These results suggest that lh-MW may constitute a latent ability that can be reinstated by a relatively brief practice experience. Concurrently, right hemisphere language processing areas may emerge, reflecting perhaps a reduction in trans-hemispheric suppression. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.

    PubMed

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A

    2014-10-01

    Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  9. Neural mechanisms of limb position estimation in the primate brain.

    PubMed

    Shi, Ying; Buneo, Christopher A

    2011-01-01

    Understanding the neural mechanisms of limb position estimation is important both for comprehending the neural control of goal directed arm movements and for developing neuroprosthetic systems designed to replace lost limb function. Here we examined the role of area 5 of the posterior parietal cortex in estimating limb position based on visual and somatic (proprioceptive, efference copy) signals. Single unit recordings were obtained as monkeys reached to visual targets presented in a semi-immersive virtual reality environment. On half of the trials animals were required to maintain their limb position at these targets while receiving both visual and non-visual feedback of their arm position, while on the other trials visual feedback was withheld. When examined individually, many area 5 neurons were tuned to the position of the limb in the workspace but very few neurons modulated their firing rates based on the presence/absence of visual feedback. At the population level however decoding of limb position was somewhat more accurate when visual feedback was provided. These findings support a role for area 5 in limb position estimation but also suggest that visual signals regarding limb position are only weakly represented in this area, and only at the population level.

  10. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach

    PubMed Central

    2016-01-01

    Abstract. In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards (p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex (p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed. PMID:28239255

  11. Kinesthetic Imagery Provides Additive Benefits to Internal Visual Imagery on Slalom Task Performance.

    PubMed

    Callow, Nichola; Jiang, Dan; Roberts, Ross; Edwards, Martin G

    2017-02-01

    Recent brain imaging research demonstrates that the use of internal visual imagery (IVI) or kinesthetic imagery (KIN) activates common and distinct brain areas. In this paper, we argue that combining the imagery modalities (IVI and KIN) will lead to a greater cognitive representation (with more brain areas activated), and this will cause a greater slalom-based motor performance compared with using IVI alone. To examine this assertion, we randomly allocated 56 participants to one of the three groups: IVI, IVI and KIN, or a math control group. Participants performed a slalom-based driving task in a driving simulator, with average lap time used as a measure of performance. Results revealed that the IVI and KIN group achieved significantly quicker lap times than the IVI and the control groups. The discussion includes a theoretical advancement on why the combination of imagery modalities might facilitate performance, with links made to the cognitive neuroscience literature and applied practice.

  12. Differences in Brain Hemodynamics in Response to Achromatic and Chromatic Cards of the Rorschach: A fMRI Study.

    PubMed

    Ishibashi, Masahiro; Uchiumi, Chigusa; Jung, Minyoung; Aizawa, Naoki; Makita, Kiyoshi; Nakamura, Yugo; Saito, Daisuke N

    2016-01-01

    In order to investigate the effects of color stimuli of the Rorschach inkblot method (RIM), the cerebral activity of 40 participants with no history of neurological or psychiatric illness was scanned while they engaged in the Rorschach task. A scanned image of the ten RIM inkblots was projected onto a screen in the MRI scanner. Cerebral activation in response to five achromatic color cards and five chromatic cards were compared. As a result, a significant increase in brain activity was observed in bilateral visual areas V2 and V3, parietooccipital junctions, pulvinars, right superior temporal gyrus, and left premotor cortex for achromatic color cards ( p < .001). For the cards with chromatic color, significant increase in brain activity was observed in left visual area V4 and left orbitofrontal cortex ( p < .001). Furthermore, a conjoint analysis revealed various regions were activated in responding to the RIM. The neuropsychological underpinnings of the response process, as described by Acklin and Wu-Holt (1996), were largely confirmed.

  13. Dual-labeling method for electron microscopy to characterize synaptic connectivity using genetically encoded fluorescent reporters in Drosophila

    PubMed Central

    Tanaka, Nobuaki K.; Dye, Louis; Stopfer, Mark

    2010-01-01

    Light and electron microscopy (LM and EM) both offer important advantages for characterizing neuronal circuitry in intact brains: LM can reveal the general patterns neurons trace between brain areas, and EM can confirm synaptic connections between identified neurons within a small area. In a few species, genetic labeling with fluorescent proteins has been used with LM to visualize many kinds of neurons and to analyze their morphologies and projection patterns. However, combining these large-scale patterns with the fine detail available in EM analysis has been a technical challenge. To analyze the synaptic connectivity of neurons expressing fluorescent markers with EM, we developed a dual-labeling method for use with pre-embedded brains. In Drosophila expressing genetic labels and also injected with markers we visualized synaptic connections among two populations of neurons in the AL, one of which has been shown to mediate a specific function, odor evoked neural oscillation. PMID:21074556

  14. fMRI of parents of children with Asperger Syndrome: a pilot study.

    PubMed

    Baron-Cohen, Simon; Ring, Howard; Chitnis, Xavier; Wheelwright, Sally; Gregory, Lloyd; Williams, Steve; Brammer, Mick; Bullmore, Ed

    2006-06-01

    People with autism or Asperger Syndrome (AS) show altered patterns of brain activity during visual search and emotion recognition tasks. Autism and AS are genetic conditions and parents may show the 'broader autism phenotype.' (1) To test if parents of children with AS show atypical brain activity during a visual search and an empathy task; (2) to test for sex differences during these tasks at the neural level; (3) to test if parents of children with autism are hyper-masculinized, as might be predicted by the 'extreme male brain' theory. We used fMRI during a visual search task (the Embedded Figures Test (EFT)) and an emotion recognition test (the 'Reading the Mind in the Eyes' (or Eyes) test). Twelve parents of children with AS, vs. 12 sex-matched controls. Factorial analysis was used to map main effects of sex, group (parents vs. controls), and sexxgroup interaction on brain function. An ordinal ANOVA also tested for regions of brain activity where females>males>fathers=mothers, to test for parental hyper-masculinization. RESULTS ON EFT TASK: Female controls showed more activity in extrastriate cortex than male controls, and both mothers and fathers showed even less activity in this area than sex-matched controls. There were no differences in group activation between mothers and fathers of children with AS. The ordinal ANOVA identified two specific regions in visual cortex (right and left, respectively) that showed the pattern Females>Males>Fathers=Mothers, both in BA 19. RESULTS ON EYES TASK: Male controls showed more activity in the left inferior frontal gyrus than female controls, and both mothers and fathers showed even more activity in this area compared to sex-matched controls. Female controls showed greater bilateral inferior frontal activation than males. This was not seen when comparing mothers to males, or mothers to fathers. The ordinal ANOVA identified two specific regions that showed the pattern Females>Males>Mothers=Fathers: left medial temporal gyrus (BA 21) and left dorsolateral prefrontal cortex (BA 44). Parents of children with AS show atypical brain function during both visual search and emotion recognition, in the direction of hyper-masculinization of the brain. Because of the small sample size, and lack of age-matching between parents and controls, such results constitute a pilot study that needs replicating with larger samples.

  15. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee

    PubMed Central

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R.

    2017-01-01

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. PMID:28978727

  16. A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee.

    PubMed

    Li, Li; MaBouDi, HaDi; Egertová, Michaela; Elphick, Maurice R; Chittka, Lars; Perry, Clint J

    2017-10-11

    Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee ( Bombus terrestris ) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory. © 2017 The Authors.

  17. 'What' and 'where' in the human brain.

    PubMed

    Ungerleider, L G; Haxby, J V

    1994-04-01

    Multiple visual areas in the cortex of nonhuman primates are organized into two hierarchically organized and functionally specialized processing pathways, a 'ventral stream' for object vision and a 'dorsal stream' for spatial vision. Recent findings from positron emission tomography activation studies have localized these pathways within the human brain, yielding insights into cortical hierarchies, specialization of function, and attentional mechanisms.

  18. Neural correlates of individual performance differences in resolving perceptual conflict.

    PubMed

    Labrenz, Franziska; Themann, Maria; Wascher, Edmund; Beste, Christian; Pfleiderer, Bettina

    2012-01-01

    Attentional mechanisms are a crucial prerequisite to organize behavior. Most situations may be characterized by a 'competition' between salient, but irrelevant stimuli and less salient, relevant stimuli. In such situations top-down and bottom-up mechanisms interact with each other. In the present fMRI study, we examined how interindividual differences in resolving situations of perceptual conflict are reflected in brain networks mediating attentional selection. Doing so, we employed a change detection task in which subjects had to detect luminance changes in the presence and absence of competing distractors. The results show that good performers presented increased activation in the orbitofrontal cortex (BA 11), anterior cingulate (BA 25), inferior parietal lobule (BA 40) and visual areas V2 and V3 but decreased activation in BA 39. This suggests that areas mediating top-down attentional control are stronger activated in this group. Increased activity in visual areas reflects distinct neuronal enhancement relating to selective attentional mechanisms in order to solve the perceptual conflict. Opposed to good performers, brain areas activated by poor performers comprised the left inferior parietal lobule (BA 39) and fronto-parietal and visual regions were continuously deactivated, suggesting that poor performers perceive stronger conflict than good performers. Moreover, the suppression of neural activation in visual areas might indicate a strategy of poor performers to inhibit the processing of the irrelevant non-target feature. These results indicate that high sensitivity in perceptual areas and increased attentional control led to less conflict in stimulus processing and consequently to higher performance in competitive attentional selection.

  19. Large-scale functional brain network changes in taxi drivers: evidence from resting-state fMRI.

    PubMed

    Wang, Lubin; Liu, Qiang; Shen, Hui; Li, Hong; Hu, Dewen

    2015-03-01

    Driving a car in the environment is a complex behavior that involves cognitive processing of visual information to generate the proper motor outputs and action controls. Previous neuroimaging studies have used virtual simulation to identify the brain areas that are associated with various driving-related tasks. Few studies, however, have focused on the specific patterns of functional organization in the driver's brain. The aim of this study was to assess differences in the resting-state networks (RSNs) of the brains of drivers and nondrivers. Forty healthy subjects (20 licensed taxi drivers, 20 nondrivers) underwent an 8-min resting-state functional MRI acquisition. Using independent component analysis, three sensory (primary and extrastriate visual, sensorimotor) RSNs and four cognitive (anterior and posterior default mode, left and right frontoparietal) RSNs were retrieved from the data. We then examined the group differences in the intrinsic brain activity of each RSN and in the functional network connectivity (FNC) between the RSNs. We found that the drivers had reduced intrinsic brain activity in the visual RSNs and reduced FNC between the sensory RSNs compared with the nondrivers. The major finding of this study, however, was that the FNC between the cognitive and sensory RSNs became more positively or less negatively correlated in the drivers relative to that in the nondrivers. Notably, the strength of the FNC between the left frontoparietal and primary visual RSNs was positively correlated with the number of taxi-driving years. Our findings may provide new insight into how the brain supports driving behavior. © 2014 Wiley Periodicals, Inc.

  20. White matter changes linked to visual recovery after nerve decompression

    PubMed Central

    Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

    2015-01-01

    The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

  1. Arts, Brain and Cognition.

    PubMed

    Demarin, Vida; Bedeković, Marina Roje; Puretić, Marijana Bosnar; Pašić, Marija Bošnjak

    2016-12-01

    Art is a product of human creativity; it is a superior skill that can be learned by study, practice and observation. Modern neuroscience and neuroimaging enable study of the processes during artistic performance. Creative people have less marked hemispheric dominance. It was found that the right hemisphere is specialized for metaphoric thinking, playfulness, solution finding and synthesizing, it is the center of visualization, imagination and conceptualization, but the left hemisphere is still needed for artistic work to achieve balance. A specific functional organization of brain areas was found during visual art activities. Marked hemispheric dominance and area specialization is also very prominent for music perception. Brain is capable of making new connections, activating new pathways and unmasking secondary roads, it is "plastic". Music is a strong stimulus for neuroplasticity. fMRI studies have shown reorganization of motor and auditory cortex in professional musicians. Other studies showed the changes in neurotransmitter and hormone serum levels in correlation to music. The most prominent connection between music and enhancement of performance or changing of neuropsychological activity was shown by studies involving Mozart's music from which the theory of "The Mozart Effect" was derived. Results of numerous studies showed that listening to music can improve cognition, motor skills and recovery after brain injury. In the field of visual art, brain lesion can lead to the visuospatial neglect, loss of details and significant impairment of artistic work while the lesions affecting the left hemisphere reveal new artistic dimensions, disinhibit the right hemisphere, work is more spontaneous and emotional with the gain of artistic quality. All kinds of arts (music, painting, dancing...) stimulate the brain. They should be part of treatment processes. Work of many artists is an excellent example for the interweaving the neurology and arts.

  2. Reduced posterior parietal cortex activation after training on a visual search task.

    PubMed

    Bueichekú, Elisenda; Miró-Padilla, Anna; Palomar-García, María-Ángeles; Ventura-Campos, Noelia; Parcet, María-Antonia; Barrós-Loscertales, Alfonso; Ávila, César

    2016-07-15

    Gaining experience on a cognitive task improves behavioral performance and is thought to enhance brain efficiency. Despite the body of literature already published on the effects of training on brain activation, less research has been carried out on visual search attention processes under well controlled conditions. Thirty-six healthy adults divided into trained and control groups completed a pre-post letter-based visual search task fMRI study in one day. Twelve letters were used as targets and ten as distractors. The trained group completed a training session (840 trials) with half the targets between scans. The effects of training were studied at the behavioral and brain levels by controlling for repetition effects using both between-subjects (trained vs. control groups) and within-subject (trained vs. untrained targets) controls. The trained participants reduced their response speed by 31% as a result of training, maintaining their accuracy scores, whereas the control group hardly changed. Neural results revealed that brain changes associated with visual search training were circumscribed to reduced activation in the posterior parietal cortex (PPC) when controlling for group, and they included inferior occipital areas when controlling for targets. The observed behavioral and brain changes are discussed in relation to automatic behavior development. The observed training-related decreases could be associated with increased neural efficiency in specific key regions for task performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Learning to Perceive Structure from Motion and Neural Plasticity in Patients with Alzheimer's Disease

    ERIC Educational Resources Information Center

    Kim, Nam-Gyoon; Park, Jong-Hee

    2010-01-01

    Recent research has demonstrated that Alzheimer's disease (AD) affects the visual sensory pathways, producing a variety of visual deficits, including the capacity to perceive structure-from-motion (SFM). Because the sensory areas of the adult brain are known to retain a large degree of plasticity, the present study was conducted to explore whether…

  4. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    ERIC Educational Resources Information Center

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  5. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    PubMed Central

    Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-01-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116

  6. Music and words in the visual cortex: The impact of musical expertise.

    PubMed

    Mongelli, Valeria; Dehaene, Stanislas; Vinckier, Fabien; Peretz, Isabelle; Bartolomeo, Paolo; Cohen, Laurent

    2017-01-01

    How does the human visual system accommodate expertise for two simultaneously acquired symbolic systems? We used fMRI to compare activations induced in the visual cortex by musical notation, written words and other classes of objects, in professional musicians and in musically naïve controls. First, irrespective of expertise, selective activations for music were posterior and lateral to activations for words in the left occipitotemporal cortex. This indicates that symbols characterized by different visual features engage distinct cortical areas. Second, musical expertise increased the volume of activations for music and led to an anterolateral displacement of word-related activations. In musicians, there was also a dramatic increase of the brain-scale networks connected to the music-selective visual areas. Those findings reveal that acquiring a double visual expertise involves an expansion of category-selective areas, the development of novel long-distance functional connectivity, and possibly some competition between categories for the colonization of cortical space. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Transcranial focused ultrasound stimulation of human primary visual cortex

    NASA Astrophysics Data System (ADS)

    Lee, Wonhye; Kim, Hyun-Chul; Jung, Yujin; Chung, Yong An; Song, In-Uk; Lee, Jong-Hwan; Yoo, Seung-Schik

    2016-09-01

    Transcranial focused ultrasound (FUS) is making progress as a new non-invasive mode of regional brain stimulation. Current evidence of FUS-mediated neurostimulation for humans has been limited to the observation of subjective sensory manifestations and electrophysiological responses, thus warranting the identification of stimulated brain regions. Here, we report FUS sonication of the primary visual cortex (V1) in humans, resulting in elicited activation not only from the sonicated brain area, but also from the network of regions involved in visual and higher-order cognitive processes (as revealed by simultaneous acquisition of blood-oxygenation-level-dependent functional magnetic resonance imaging). Accompanying phosphene perception was also reported. The electroencephalo graphic (EEG) responses showed distinct peaks associated with the stimulation. None of the participants showed any adverse effects from the sonication based on neuroimaging and neurological examinations. Retrospective numerical simulation of the acoustic profile showed the presence of individual variability in terms of the location and intensity of the acoustic focus. With exquisite spatial selectivity and capability for depth penetration, FUS may confer a unique utility in providing non-invasive stimulation of region-specific brain circuits for neuroscientific and therapeutic applications.

  8. Effects of rivastigmine on visual attention in subjects with amnestic mild cognitive impairment: A serial functional MRI activation pilot-study.

    PubMed

    Bokde, Arun L W; Cavedo, Enrica; Lopez-Bayo, Patricia; Lista, Simone; Meindl, Thomas; Born, Christine; Galluzzi, Samantha; Faltraco, Frank; Dubois, Bruno; Teipel, Stefan J; Reiser, Maximilian; Möller, Hans-Jürgen; Hampel, Harald

    2016-03-30

    A pilot study to investigate the effects of rivastigmine on the brain activation pattern due to visual attention tasks in a group of amnestic Mild Cognitive Impaired patients (aMCI). The design was an initial three-month double blind period with a rivastigmine and placebo arms, followed by a nine-month open-label period. All patients underwent serial functional magnetic resonance imaging (fMRI) at baseline, and after three and six months of follow-up. Primary endpoint was the effect of rivastigmine on functional brain changes during visual attention (face and location matching) tasks. There were five in the rivastigmine arm and two in the placebo arm. The face matching task showed higher activation of visual areas after three months of treatment but no differences compared to baseline at six months. The location matching task showed a higher activation along the dorsal visual pathway at both three and six months follow ups. Treatment with rivastigmine demonstrates a significant effect on brain activation of the dorsal visual pathway during a location matching task in patients with aMCI. Our data support the potential use of task fMRI to map specific treatment effects of cholinergic drugs during prodromal stages of Alzheimer's disease (AD). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.

    PubMed

    Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko

    2017-08-15

    During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Identifying non-toxic doses of manganese for manganese-enhanced magnetic resonance imaging to map brain areas activated by operant behavior in trained rats.

    PubMed

    Gálosi, Rita; Szalay, Csaba; Aradi, Mihály; Perlaki, Gábor; Pál, József; Steier, Roy; Lénárd, László; Karádi, Zoltán

    2017-04-01

    Manganese-enhanced magnetic resonance imaging (MEMRI) offers unique advantages such as studying brain activation in freely moving rats, but its usefulness has not been previously evaluated during operant behavior training. Manganese in a form of MnCl 2 , at a dose of 20mg/kg, was intraperitoneally infused. The administration was repeated and separated by 24h to reach the dose of 40mg/kg or 60mg/kg, respectively. Hepatotoxicity of the MnCl 2 was evaluated by determining serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, albumin and protein levels. Neurological examination was also carried out. The animals were tested in visual cue discriminated operant task. Imaging was performed using a 3T clinical MR scanner. T1 values were determined before and after MnCl 2 administrations. Manganese-enhanced images of each animal were subtracted from their baseline images to calculate decrease in the T1 value (ΔT1) voxel by voxel. The subtracted T1 maps of trained animals performing visual cue discriminated operant task, and those of naive rats were compared. The dose of 60mg/kg MnCl 2 showed hepatotoxic effect, but even these animals did not exhibit neurological symptoms. The dose of 20 and 40mg/kg MnCl 2 increased the number of omissions and did not affect the accuracy of performing the visual cue discriminated operant task. Using the accumulated dose of 40mg/kg, voxels with a significant enhanced ΔT1 value were detected in the following brain areas of the visual cue discriminated operant behavior performed animals compared to those in the controls: the visual, somatosensory, motor and premotor cortices, the insula, cingulate, ectorhinal, entorhinal, perirhinal and piriform cortices, hippocampus, amygdala with amygdalohippocampal areas, dorsal striatum, nucleus accumbens core, substantia nigra, and retrorubral field. In conclusion, the MEMRI proved to be a reliable method to accomplish brain activity mapping in correlation with the operant behavior of freely moving rodents. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The endocranial cast of an early miocene edentate, Hapalops indifferens Ameghino (Mammalia, Edentata, Tardigrada, Megatheriidae). Comparative study with brains of recent sloths.

    PubMed

    Dozo, M T

    1987-01-01

    A natural endocranial cast which represents a complete brain of a specimen of Hapalops indifferens is described. Comparing this cast to brains of actual Tardigrada, it shows a telencephalic morphology and a pattern of neocortical sulci that resemble more the brain of Bradypus rather than that of Choloepus. The neocortical sulci homologate the lateral or corono-lateral, suprasylvian and pseudosylvian sulci. Taking into account the studies of cortical maps in Bradypus and the notable similitude of the pattern of neocortical sulci between Bradypus and H. indifferens, the possible representation of the primary sensitive and motor somatic areas, secondary sensitive somatic area, visual and auditory areas are inferred. As in Bradypus, the primary sensitive and motor somatotopic organizations would be overlapped and would not be mirror images; they would show a predominance of the area of the forelimb. The relative brain size of H. indifferens is similar or higher than that of sloths of the genus Bradypus. The close resemblance between Bradypus and Hapalops, with respect to its brain morphology and relative brain size. is congruent with the current hypothesis of the phylogenetic relations between fossil and recent Tardigrada.

  12. Brain activation for reading and listening comprehension: An fMRI study of modality effects and individual differences in language comprehension

    PubMed Central

    Buchweitz, Augusto; Mason, Robert A.; Tomitch, Lêda M. B.; Just, Marcel Adam

    2010-01-01

    The study compared the brain activation patterns associated with the comprehension of written and spoken Portuguese sentences. An fMRI study measured brain activity while participants read and listened to sentences about general world knowledge. Participants had to decide if the sentences were true or false. To mirror the transient nature of spoken sentences, visual input was presented in rapid serial visual presentation format. The results showed a common core of amodal left inferior frontal and middle temporal gyri activation, as well as modality specific brain activation associated with listening and reading comprehension. Reading comprehension was associated with more left-lateralized activation and with left inferior occipital cortex (including fusiform gyrus) activation. Listening comprehension was associated with extensive bilateral temporal cortex activation and more overall activation of the whole cortex. Results also showed individual differences in brain activation for reading comprehension. Readers with lower working memory capacity showed more activation of right-hemisphere areas (spillover of activation) and more activation in the prefrontal cortex, potentially associated with more demand placed on executive control processes. Readers with higher working memory capacity showed more activation in a frontal-posterior network of areas (left angular and precentral gyri, and right inferior frontal gyrus). The activation of this network may be associated with phonological rehearsal of linguistic information when reading text presented in rapid serial visual format. The study demonstrates the modality fingerprints for language comprehension and indicates how low- and high working memory capacity readers deal with reading text presented in serial format. PMID:21526132

  13. New insights into differences in brain organization between Neanderthals and anatomically modern humans

    PubMed Central

    Pearce, Eiluned; Stringer, Chris; Dunbar, R. I. M.

    2013-01-01

    Previous research has identified morphological differences between the brains of Neanderthals and anatomically modern humans (AMHs). However, studies using endocasts or the cranium itself are limited to investigating external surface features and the overall size and shape of the brain. A complementary approach uses comparative primate data to estimate the size of internal brain areas. Previous attempts to do this have generally assumed that identical total brain volumes imply identical internal organization. Here, we argue that, in the case of Neanderthals and AMHs, differences in the size of the body and visual system imply differences in organization between the same-sized brains of these two taxa. We show that Neanderthals had significantly larger visual systems than contemporary AMHs (indexed by orbital volume) and that when this, along with their greater body mass, is taken into account, Neanderthals have significantly smaller adjusted endocranial capacities than contemporary AMHs. We discuss possible implications of differing brain organization in terms of social cognition, and consider these in the context of differing abilities to cope with fluctuating resources and cultural maintenance. PMID:23486442

  14. Emotions promote social interaction by synchronizing brain activity across individuals

    PubMed Central

    Nummenmaa, Lauri; Glerean, Enrico; Viinikainen, Mikko; Jääskeläinen, Iiro P.; Hari, Riitta; Sams, Mikko

    2012-01-01

    Sharing others’ emotional states may facilitate understanding their intentions and actions. Here we show that networks of brain areas “tick together” in participants who are viewing similar emotional events in a movie. Participants’ brain activity was measured with functional MRI while they watched movies depicting unpleasant, neutral, and pleasant emotions. After scanning, participants watched the movies again and continuously rated their experience of pleasantness–unpleasantness (i.e., valence) and of arousal–calmness. Pearson’s correlation coefficient was used to derive multisubject voxelwise similarity measures [intersubject correlations (ISCs)] of functional MRI data. Valence and arousal time series were used to predict the moment-to-moment ISCs computed using a 17-s moving average. During movie viewing, participants' brain activity was synchronized in lower- and higher-order sensory areas and in corticolimbic emotion circuits. Negative valence was associated with increased ISC in the emotion-processing network (thalamus, ventral striatum, insula) and in the default-mode network (precuneus, temporoparietal junction, medial prefrontal cortex, posterior superior temporal sulcus). High arousal was associated with increased ISC in the somatosensory cortices and visual and dorsal attention networks comprising the visual cortex, bilateral intraparietal sulci, and frontal eye fields. Seed-voxel–based correlation analysis confirmed that these sets of regions constitute dissociable, functional networks. We propose that negative valence synchronizes individuals’ brain areas supporting emotional sensations and understanding of another’s actions, whereas high arousal directs individuals’ attention to similar features of the environment. By enhancing the synchrony of brain activity across individuals, emotions may promote social interaction and facilitate interpersonal understanding. PMID:22623534

  15. Brain SPECT scans in students with specific learning disability: Preliminary results.

    PubMed

    Karande, S; Deshmukh, N; Rangarajan, V; Agrawal, A; Sholapurwala, R

    2018-06-08

    Brain single-photon emission computed tomography (SPECT) assesses brain function through measurement of regional cerebral blood flow. This study was conducted to assess whether students with newly diagnosed specific learning disability (SpLD) show any abnormalities in cerebral cortex perfusion. Cross-sectional single-arm pilot study in two tertiary care hospitals. Nine students with SpLD were enrolled. Brain SPECT scan was done twice in each student. For the first or "baseline" scan, the student was first made to sit with eyes open in a quiet, dimly lit room for a period of 30-40 min and then injected intravenously with 20 mCi of 99mTc-ECD. An hour later, "baseline scan" was conducted. After a minimum gap of 4 days, a second or "test scan" was conducted, wherein the student performed an age-appropriate curriculum-based test for a period of 30-40 min to activate the areas in central nervous system related to learning before being injected with 20 mCi of 99mTc-ECD. Cerebral cortex perfusion at rest and after activation in each student was compared qualitatively by visual analysis and quantitatively using NeuroGam TM software. Visual analysis showed reduction in regional blood flow in temporoparietal areas in both "baseline" and "test" scans. However, when normalization was attempted and comparison done by Talairach analysis using NeuroGam software, no statistically significant change in regional perfusion in temporoparietal areas was appreciated. Brain SPECT scan may serve as a robust tool to identify changes in regional brain perfusion in students with SpLD.

  16. From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?

    PubMed

    González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R

    2006-01-01

    Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.

  17. The optic pathway: the development of an eLearning animation.

    PubMed

    Cooper, Claire; Erolin, Caroline

    2018-04-01

    The optic pathway is responsible for sending visual information from the eyes to the brain via electrical impulses. It is essential that a sound understanding of this pathway is established in order to determine an accurate diagnosis concerning visual field defects. Although easy for trained neurologists to understand, it is an area which medical students repeatedly struggle to visualise. It is proposed that audio-visual teaching resources can improve students understanding of complex areas of importance. This article describes the development and evaluation of a short animation created for use in the undergraduate neurology curriculum at the University of Dundee School of Medicine.

  18. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    PubMed

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Neuroimaging Evidence of a Bilateral Representation for Visually Presented Numbers.

    PubMed

    Grotheer, Mareike; Herrmann, Karl-Heinz; Kovács, Gyula

    2016-01-06

    The clustered architecture of the brain for different visual stimulus categories is one of the most fascinating topics in the cognitive neurosciences. Interestingly, recent research suggests the existence of additional regions for newly acquired stimuli such as letters (letter form area; LFA; Thesen et al., 2012) and numbers (visual number form area; NFA; Shum et al., 2013). However, neuroimaging methods thus far have failed to visualize the NFA in healthy participants, likely due to fMRI signal dropout caused by the air/bone interface of the petrous bone (Shum et al., 2013). In the current study, we combined a 64-channel head coil with high spatial resolution, localized shimming, and liberal smoothing, thereby decreasing the signal dropout and increasing the temporal signal-to-noise ratio in the neighborhood of the NFA. We presented subjects with numbers, letters, false numbers, false letters, objects and their Fourier randomized versions. A group analysis showed significant activations in the inferior temporal gyrus at the previously proposed location of the NFA. Crucially, we found the NFA to be present in both hemispheres. Further, we could identify the NFA on the single-subject level in most of our participants. A detailed analysis of the response profile of the NFA in two separate experiments confirmed the whole-brain results since responses to numbers were significantly higher than to any other presented stimulus in both hemispheres. Our results show for the first time the existence and stimulus selectivity of the NFA in the healthy human brain. This fMRI study shows for the first time a cluster of neurons selective for visually presented numbers in healthy human adults. This visual number form area (NFA) was found in both hemispheres. Crucially, numbers have gained importance for humans too recently for neuronal specialization to be established by evolution. Therefore, investigations of this region will greatly advance our understanding of learning and plasticity in the brain. In addition, these results will aid our knowledge regarding related neurological illnesses (e.g., dyscalculia). To overcome the fMRI signal dropout in the neighborhood of the NFA, we combined high spatial resolution with liberal smoothing. We believe that this approach will be useful to the broad neuroimaging community. Copyright © 2016 the authors 0270-6474/16/360088-10$15.00/0.

  20. Neural connectivity of the lateral geniculate body in the human brain: diffusion tensor imaging study.

    PubMed

    Kwon, Hyeok Gyu; Jang, Sung Ho

    2014-08-22

    A few studies have reported on the neural connectivity of some neural structures of the visual system in the human brain. However, little is known about the neural connectivity of the lateral geniculate body (LGB). In the current study, using diffusion tensor tractography (DTT), we attempted to investigate the neural connectivity of the LGB in normal subjects. A total of 52 healthy subjects were recruited for this study. A seed region of interest was placed on the LGB using the FMRIB Software Library which is a probabilistic tractography method based on a multi-fiber model. Connectivity was defined as the incidence of connection between the LGB and target brain areas at the threshold of 5, 25, and 50 streamlines. In addition, connectivity represented the percentage of connection in all hemispheres of 52 subjects. We found the following characteristics of connectivity of the LGB at the threshold of 5 streamline: (1) high connectivity to the corpus callosum (91.3%) and the contralateral temporal cortex (56.7%) via the corpus callosum, (2) high connectivity to the ipsilateral cerebral cortex: the temporal lobe (100%), primary visual cortex (95.2%), and visual association cortex (77.9%). The LGB appeared to have high connectivity to the corpus callosum and both temporal cortexes as well as the ipsilateral occipital cortex. We believe that the results of this study would be helpful in investigation of the neural network associated with the visual system and brain plasticity of the visual system after brain injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Ventral and Dorsal Pathways Relate Differently to Visual Awareness of Body Postures under Continuous Flash Suppression

    PubMed Central

    Goebel, Rainer

    2018-01-01

    Abstract Visual perception includes ventral and dorsal stream processes. However, it is still unclear whether the former is predominantly related to conscious and the latter to nonconscious visual perception as argued in the literature. In this study upright and inverted body postures were rendered either visible or invisible under continuous flash suppression (CFS), while brain activity of human participants was measured with functional MRI (fMRI). Activity in the ventral body-sensitive areas was higher during visible conditions. In comparison, activity in the posterior part of the bilateral intraparietal sulcus (IPS) showed a significant interaction of stimulus orientation and visibility. Our results provide evidence that dorsal stream areas are less associated with visual awareness. PMID:29445766

  2. The brain's dress code: How The Dress allows to decode the neuronal pathway of an optical illusion.

    PubMed

    Schlaffke, Lara; Golisch, Anne; Haag, Lauren M; Lenz, Melanie; Heba, Stefanie; Lissek, Silke; Schmidt-Wilcke, Tobias; Eysel, Ulf T; Tegenthoff, Martin

    2015-12-01

    Optical illusions have broadened our understanding of the brain's role in visual perception. A modern day optical illusion emerged from a posted photo of a striped dress, which some perceived as white and gold and others as blue and black. Here we show, using functional magnetic resonance imaging (fMRI), that those who perceive The Dress as white/gold have higher activation in response to the image of The Dress in brain regions critically involved in higher cognition (frontal and parietal brain areas). These results are consistent with theories of top-down modulation and present a neural signature associated with the differences in perceiving The Dress as white/gold or blue/black. Furthermore the results support recent psychophysiological data on this phenomenon and provide a fundamental building block to study interindividual differences in visual processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Visual imagery and functional connectivity in blindness: a single-case study

    PubMed Central

    Boucard, Christine C.; Rauschecker, Josef P.; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-01-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input. PMID:25690326

  4. Visual imagery and functional connectivity in blindness: a single-case study.

    PubMed

    Boucard, Christine C; Rauschecker, Josef P; Neufang, Susanne; Berthele, Achim; Doll, Anselm; Manoliu, Andrej; Riedl, Valentin; Sorg, Christian; Wohlschläger, Afra; Mühlau, Mark

    2016-05-01

    We present a case report on visual brain plasticity after total blindness acquired in adulthood. SH lost her sight when she was 27. Despite having been totally blind for 43 years, she reported to strongly rely on her vivid visual imagery. Three-Tesla magnetic resonance imaging (MRI) of SH and age-matched controls was performed. The MRI sequence included anatomical MRI, resting-state functional MRI, and task-related functional MRI where SH was instructed to imagine colours, faces, and motion. Compared to controls, voxel-based analysis revealed white matter loss along SH's visual pathway as well as grey matter atrophy in the calcarine sulci. Yet we demonstrated activation in visual areas, including V1, using functional MRI. Of the four identified visual resting-state networks, none showed alterations in spatial extent; hence, SH's preserved visual imagery seems to be mediated by intrinsic brain networks of normal extent. Time courses of two of these networks showed increased correlation with that of the inferior posterior default mode network, which may reflect adaptive changes supporting SH's strong internal visual representations. Overall, our findings demonstrate that conscious visual experience is possible even after years of absence of extrinsic input.

  5. Intersubject synchronization of cortical activity during natural vision.

    PubMed

    Hasson, Uri; Nir, Yuval; Levy, Ifat; Fuhrmann, Galit; Malach, Rafael

    2004-03-12

    To what extent do all brains work alike during natural conditions? We explored this question by letting five subjects freely view half an hour of a popular movie while undergoing functional brain imaging. Applying an unbiased analysis in which spatiotemporal activity patterns in one brain were used to "model" activity in another brain, we found a striking level of voxel-by-voxel synchronization between individuals, not only in primary and secondary visual and auditory areas but also in association cortices. The results reveal a surprising tendency of individual brains to "tick collectively" during natural vision. The intersubject synchronization consisted of a widespread cortical activation pattern correlated with emotionally arousing scenes and regionally selective components. The characteristics of these activations were revealed with the use of an open-ended "reverse-correlation" approach, which inverts the conventional analysis by letting the brain signals themselves "pick up" the optimal stimuli for each specialized cortical area.

  6. [Neural correlates of priming in vision: evidence from neuropsychology and neuroimaging].

    PubMed

    Kristjánsson, Arni

    2005-04-01

    When we look around us, we are overall more likely to notice objects that we have recently looked at; an effect known as priming. For example, when the color or shape of a visual search target is repeated, observers find the target faster than otherwise. Here I summarize recent research undertaken to uncover the temporary changes in brain activity that accompany these priming effects. In light of the fact that priming seems to have a large effect on how attention is allocated, we investigated priming effects in a visual search task on patients suffering from the neurological disorder "hemispatial neglect" in which patients typically fail to notice display items in one of their visual hemifields. Priming of target color was relatively normal for these patients, while priming of target location seemed to require awareness of the briefly presented visual search target. An experiment with functional magnetic resonance imaging of normal observers revealed that both color and location priming had a strong modulatory influence on attentional mechanisms of the frontal and parietal cortex. Color priming was also correlated with changes in activity in visual cortex as well as color processing areas in the temporal lobe. Location priming was correlated with changes in activity near the temporo- parietal junction and lateral inferior frontal cortex, areas that have been connected with attentional capture; which ties well with our finding of deficits of location priming for the neglect patients who indeed have lesions in the temporo-parietal junction. Overall, the results confirm the tight coupling of visual attention and priming in vision, and also that the visual areas of the brain show some modulation of activity as priming develops.

  7. Anatomical Substrates of Visual and Auditory Miniature Second-language Learning

    PubMed Central

    Newman-Norlund, Roger D.; Frey, Scott H.; Petitto, Laura-Ann; Grafton, Scott T.

    2007-01-01

    Longitudinal changes in brain activity during second language (L2) acquisition of a miniature finite-state grammar, named Wernickese, were identified with functional magnetic resonance imaging (fMRI). Participants learned either a visual sign language form or an auditory-verbal form to equivalent proficiency levels. Brain activity during sentence comprehension while hearing/viewing stimuli was assessed at low, medium, and high levels of proficiency in three separate fMRI sessions. Activation in the left inferior frontal gyrus (Broca’s area) correlated positively with improving L2 proficiency, whereas activity in the right-hemisphere (RH) homologue was negatively correlated for both auditory and visual forms of the language. Activity in sequence learning areas including the premotor cortex and putamen also correlated with L2 proficiency. Modality-specific differences in the blood oxygenation level-dependent signal accompanying L2 acquisition were localized to the planum temporale (PT). Participants learning the auditory form exhibited decreasing reliance on bilateral PT sites across sessions. In the visual form, bilateral PT sites increased in activity between Session 1 and Session 2, then decreased in left PT activity from Session 2 to Session 3. Comparison of L2 laterality (as compared to L1 laterality) in auditory and visual groups failed to demonstrate greater RH lateralization for the visual versus auditory L2. These data establish a common role for Broca’s area in language acquisition irrespective of the perceptual form of the language and suggest that L2s are processed similar to first languages even when learned after the ‘‘critical period.’’ The right frontal cortex was not preferentially recruited by visual language after accounting for phonetic/structural complexity and performance. PMID:17129186

  8. Frequency-Dependent Modulation of Regional Synchrony in the Human Brain by Eyes Open and Eyes Closed Resting-States.

    PubMed

    Song, Xiaopeng; Zhou, Shuqin; Zhang, Yi; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong

    2015-01-01

    The eyes-open (EO) and eyes-closed (EC) states have differential effects on BOLD-fMRI signal dynamics, affecting both the BOLD oscillation frequency of a single voxel and the regional homogeneity (ReHo) of several neighboring voxels. To explore how the two resting-states modulate the local synchrony through different frequency bands, we decomposed the time series of each voxel into several components that fell into distinct frequency bands. The ReHo in each of the bands was calculated and compared between the EO and EC conditions. The cross-voxel correlations between the mean frequency and the overall ReHo of each voxel's original BOLD series in different brain areas were also calculated and compared between the two states. Compared with the EC state, ReHo decreased with EO in a wide frequency band of 0.01-0.25 Hz in the bilateral thalamus, sensorimotor network, and superior temporal gyrus, while ReHo increased significantly in the band of 0-0.01 Hz in the primary visual cortex, and in a higher frequency band of 0.02-0.1 Hz in the higher order visual areas. The cross-voxel correlations between the frequency and overall ReHo were negative in all the brain areas but varied from region to region. These correlations were stronger with EO in the visual network and the default mode network. Our results suggested that different frequency bands of ReHo showed different sensitivity to the modulation of EO-EC states. The better spatial consistency between the frequency and overall ReHo maps indicated that the brain might adopt a stricter frequency-dependent configuration with EO than with EC.

  9. Neural representation of anxiety and personality during exposure to anxiety-provoking and neutral scenes from scary movies.

    PubMed

    Straube, Thomas; Preissler, Sandra; Lipka, Judith; Hewig, Johannes; Mentzel, Hans-Joachim; Miltner, Wolfgang H R

    2010-01-01

    Some people search for intense sensations such as being scared by frightening movies while others do not. The brain mechanisms underlying such inter-individual differences are not clear. Testing theoretical models, we investigated neural correlates of anxiety and the personality trait sensation seeking in 40 subjects who watched threatening and neutral scenes from scary movies during functional magnetic resonance imaging. Threat versus neutral scenes induced increased activation in anterior cingulate cortex, insula, thalamus, and visual areas. Movie-induced anxiety correlated positively with activation in dorsomedial prefrontal cortex, indicating a role for this area in the subjective experience of being scared. Sensation seeking-scores correlated positively with brain activation to threat versus neutral scenes in visual areas and in thalamus and anterior insula, i.e. regions involved in the induction and representation of arousal states. For the insula and thalamus, these outcomes were partly due to an inverse relation between sensation seeking scores and brain activation during neutral film clips. These results support models predicting cerebral hypoactivation in high sensation seekers during neutral stimulation, which may be compensated by more intense sensations such as watching scary movies. 2009 Wiley-Liss, Inc.

  10. Generic decoding of seen and imagined objects using hierarchical visual features.

    PubMed

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-05-22

    Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category is represented by a set of features rendered invariant through hierarchical processing. We show that visual features, including those derived from a deep convolutional neural network, can be predicted from fMRI patterns, and that greater accuracy is achieved for low-/high-level features with lower-/higher-level visual areas, respectively. Predicted features are used to identify seen/imagined object categories (extending beyond decoder training) from a set of computed features for numerous object images. Furthermore, decoding of imagined objects reveals progressive recruitment of higher-to-lower visual representations. Our results demonstrate a homology between human and machine vision and its utility for brain-based information retrieval.

  11. Universal brain systems for recognizing word shapes and handwriting gestures during reading

    PubMed Central

    Nakamura, Kimihiro; Kuo, Wen-Jui; Pegado, Felipe; Cohen, Laurent; Tzeng, Ovid J. L.; Dehaene, Stanislas

    2012-01-01

    Do the neural circuits for reading vary across culture? Reading of visually complex writing systems such as Chinese has been proposed to rely on areas outside the classical left-hemisphere network for alphabetic reading. Here, however, we show that, once potential confounds in cross-cultural comparisons are controlled for by presenting handwritten stimuli to both Chinese and French readers, the underlying network for visual word recognition may be more universal than previously suspected. Using functional magnetic resonance imaging in a semantic task with words written in cursive font, we demonstrate that two universal circuits, a shape recognition system (reading by eye) and a gesture recognition system (reading by hand), are similarly activated and show identical patterns of activation and repetition priming in the two language groups. These activations cover most of the brain regions previously associated with culture-specific tuning. Our results point to an extended reading network that invariably comprises the occipitotemporal visual word-form system, which is sensitive to well-formed static letter strings, and a distinct left premotor region, Exner’s area, which is sensitive to the forward or backward direction with which cursive letters are dynamically presented. These findings suggest that cultural effects in reading merely modulate a fixed set of invariant macroscopic brain circuits, depending on surface features of orthographies. PMID:23184998

  12. [Transient charles bonnet syndrome after excision of a right occipital meningioma: a case report].

    PubMed

    Arai, Takao; Hasegawa, Yuzuru; Tanaka, Toshihide; Kato, Naoki; Watanabe, Mitsuyoshi; Nakamura, Aya; Murayama, Yuichi

    2014-05-01

    Charles Bonnet syndrome is a condition characterized by visual hallucinations. These simple or complex visual hallucinations are more common in elderly individuals with impaired peripheral vision. The current report describes a case of transient Charles Bonnet syndrome appearing after the removal of a meningioma. The patient was a 61-year-old man who already had impaired visual acuity due to diabetic retinopathy. Brain MRI revealed a cystic tumor severely compressing the right occipital lobe. Starting on day 2 postoperatively, the patient was troubled by recurring visual hallucinations involving people, flowers, pictures, and familiar settings(the train and a coffee shop). These continued for 3.5 months. This period roughly coincided with the time for the occipital lobe to recover from the compression caused by the tumor, a fact that was confirmed by several MRI scans. ¹²³I-IMP SPECT performed 1 month after the surgical operation showed an area of hypoperfusion in the right parieto-occipital lobe. Based on the patient's clinical course and MRI findings, the mechanism of onset of visual hallucinations in this patient was put forward. The release of pressure in the brain by tumor removal and subsequent recovery changed the blood flow to the brain. This triggered visual hallucinations in the patient, who was already predisposed to developing Charles Bonnet syndrome because of diabetic retinopathy. This case is interesting since it indicates that central neurological factors, as well as visual deficits, may induce the appearance of visual hallucinations in Charles Bonnet syndrome.

  13. Visual navigation in adolescents with early periventricular lesions: knowing where, but not getting there.

    PubMed

    Pavlova, Marina; Sokolov, Alexander; Krägeloh-Mann, Ingeborg

    2007-02-01

    Visual navigation in familiar and unfamiliar surroundings is an essential ingredient of adaptive daily life behavior. Recent brain imaging work helps to recognize that establishing connectivity between brain regions is of importance for successful navigation. Here, we ask whether the ability to navigate is impaired in adolescents who were born premature and suffer congenital bilateral periventricular brain damage that might affect the pathways interconnecting subcortical structures with cortex. Performance on a set of visual labyrinth tasks was significantly worse in patients with periventricular leukomalacia (PVL) as compared with premature-born controls without lesions and term-born adolescents. The ability for visual navigation inversely relates to the severity of motor disability, leg-dominated bilateral spastic cerebral palsy. This agrees with the view that navigation ability substantially improves with practice and might be compromised in individuals with restrictions in active spatial exploration. Visual navigation is negatively linked to the volumetric extent of lesions over the right parietal and frontal periventricular regions. Whereas impairments of visual processing of point-light biological motion are associated in patients with PVL with bilateral parietal periventricular lesions, navigation ability is specifically linked to the frontal lesions in the right hemisphere. We suggest that more anterior periventricular lesions impair the interrelations between the right hippocampus and cortical areas leading to disintegration of neural networks engaged in visual navigation. For the first time, we show that the severity of right frontal periventricular damage and leg-dominated motor disorders can serve as independent predictors of the visual navigation disability.

  14. Expression pattern of cadherins in the naked mole rat (Heterocephalus glaber) suggests innate cortical diversification of the cerebrum.

    PubMed

    Matsunaga, Eiji; Nambu, Sanae; Iriki, Atsushi; Okanoya, Kazuo

    2011-06-15

    The cerebral cortex is an indispensable region for higher cognitive function that is remarkably diverse among mammalian species. Although previous research has shown that the cortical area map in the mammalian cerebral cortex is formed by innate and activity-dependent mechanisms, it remains unknown how these mechanisms contribute to the evolution and diversification of the functional cortical areas in various species. The naked mole rat (Heterocephalus glaber) is a subterranean, eusocial rodent. Physiological and anatomical studies have revealed that the visual system is regressed and the somatosensory system is enlarged. To examine whether species differences in cortical area development are caused by intrinsic factors or environmental factors, we performed comparative gene expression analysis of neonatal naked mole rat and mouse brains. The expression domain of cadherin-6, a somatosensory marker, was expanded caudally and shifted dorsally in the cortex, whereas the expression domain of cadherin-8, a visual marker, was reduced caudally in the neonatal naked mole rat cortex. The expression domain of cadherin-8 was also reduced in other visual areas, such as the lateral geniculate nucleus and superior colliculus. Immunohistochemical analysis of thalamocortical fibers further suggested that somatosensory input did not affect cortical gene expression in the neonatal naked mole rat brain. These results suggest that the development of the somatosensory system and the regression of the visual system in the naked mole rat cortex are due to intrinsic genetic mechanisms as well as sensory input-dependent mechanisms. Intrinsic genetic mechanisms thus appear to contribute to species diversity in cortical area formation. Copyright © 2011 Wiley-Liss, Inc.

  15. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  16. Structural connectivity patterns associated with the putative visual word form area and children's reading ability.

    PubMed

    Fan, Qiuyun; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E

    2014-10-24

    With the advent of neuroimaging techniques, especially functional MRI (fMRI), studies have mapped brain regions that are associated with good and poor reading, most centrally a region within the left occipito-temporal/fusiform region (L-OT/F) often referred to as the visual word form area (VWFA). Despite an abundance of fMRI studies of the putative VWFA, research about its structural connectivity has just started. Provided that the putative VWFA may be connected to distributed regions in the brain, it remains unclear how this network is engaged in constituting a well-tuned reading circuitry in the brain. Here we used diffusion MRI to study the structural connectivity patterns of the putative VWFA and surrounding areas within the L-OT/F in children with typically developing (TD) reading ability and with word recognition deficits (WRD; sometimes referred to as dyslexia). We found that L-OT/F connectivity varied along a posterior-anterior gradient, with specific structural connectivity patterns related to reading ability in the ROIs centered upon the putative VWFA. Findings suggest that the architecture of the putative VWFA connectivity is fundamentally different between TD and WRD, with TD showing greater connectivity to linguistic regions than WRD, and WRD showing greater connectivity to visual and parahippocampal regions than TD. Findings thus reveal clear structural abnormalities underlying the functional abnormalities in the putative VWFA in WRD. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Role of visual and non-visual cues in constructing a rotation-invariant representation of heading in parietal cortex

    PubMed Central

    Sunkara, Adhira

    2015-01-01

    As we navigate through the world, eye and head movements add rotational velocity patterns to the retinal image. When such rotations accompany observer translation, the rotational velocity patterns must be discounted to accurately perceive heading. The conventional view holds that this computation requires efference copies of self-generated eye/head movements. Here we demonstrate that the brain implements an alternative solution in which retinal velocity patterns are themselves used to dissociate translations from rotations. These results reveal a novel role for visual cues in achieving a rotation-invariant representation of heading in the macaque ventral intraparietal area. Specifically, we show that the visual system utilizes both local motion parallax cues and global perspective distortions to estimate heading in the presence of rotations. These findings further suggest that the brain is capable of performing complex computations to infer eye movements and discount their sensory consequences based solely on visual cues. DOI: http://dx.doi.org/10.7554/eLife.04693.001 PMID:25693417

  18. Analysis of retinal and cortical components of Retinex algorithms

    NASA Astrophysics Data System (ADS)

    Yeonan-Kim, Jihyun; Bertalmío, Marcelo

    2017-05-01

    Following Land and McCann's first proposal of the Retinex theory, numerous Retinex algorithms that differ considerably both algorithmically and functionally have been developed. We clarify the relationships among various Retinex families by associating their spatial processing structures to the neural organizations in the retina and the primary visual cortex in the brain. Some of the Retinex algorithms have a retina-like processing structure (Land's designator idea and NASA Retinex), and some show a close connection with the cortical structures in the primary visual area of the brain (two-dimensional L&M Retinex). A third group of Retinexes (the variational Retinex) manifests an explicit algorithmic relation to Wilson-Cowan's physiological model. We intend to overview these three groups of Retinexes with the frame of reference in the biological visual mechanisms.

  19. Metabolic alterations in patients with Parkinson disease and visual hallucinations.

    PubMed

    Boecker, Henning; Ceballos-Baumann, Andres O; Volk, Dominik; Conrad, Bastian; Forstl, Hans; Haussermann, Peter

    2007-07-01

    Visual hallucinations (VHs) occur frequently in advanced stages of Parkinson disease (PD). Which brain regions are affected in PD with VH is not well understood. To characterize the pattern of affected brain regions in PD with VH and to determine whether functional changes in PD with VH occur preferentially in visual association areas, as is suggested by the complex clinical symptomatology. Positron emission tomography measurements using fluorodeoxyglucose F 18. Between-group statistical analysis, accounting for the variance related to disease stage. University hospital. Patients Eight patients with PD and VH and 11 patients with PD without VH were analyzed. The presence of VH during the month before positron emission tomography was rated using the Neuropsychiatric Inventory subscale for VH (PD and VH, 4.63; PD without VH, 0.00; P < .002). Parkinson disease with VH, compared with PD without VH, was characterized by reduction in the regional cerebral metabolic rate for glucose consumption (P < .05, corrected for false discovery rate) in occipitotemporoparietal regions, sparing the occipital pole. No significant increase in regional glucose metabolism was detected in patients with PD and VH. The pattern of resting-state metabolic changes in regions of the dorsal and ventral visual streams, but not in primary visual cortex, in patients with PD and VH, is compatible with the functional roles of visual association areas in higher-order visual processing. These findings may help to further elucidate the functional mechanisms underlying VH in PD.

  20. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    PubMed

    van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter

    2010-08-10

    In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.

  1. Visual areas become less engaged in associative recall following memory stabilization.

    PubMed

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Oostenveld, Robert; Fernández, Guillén; Jensen, Ole

    2008-04-15

    Numerous studies have focused on changes in the activity in the hippocampus and higher association areas with consolidation and memory stabilization. Even though perceptual areas are engaged in memory recall, little is known about how memory stabilization is reflected in those areas. Using magnetoencephalography (MEG) we investigated changes in visual areas with memory stabilization. Subjects were trained on associating a face to one of eight locations. The first set of associations ('stabilized') was learned in three sessions distributed over a week. The second set ('labile') was learned in one session just prior to the MEG measurement. In the recall session only the face was presented and subjects had to indicate the correct location using a joystick. The MEG data revealed robust gamma activity during recall, which started in early visual cortex and propagated to higher visual and parietal brain areas. The occipital gamma power was higher for the labile than the stabilized condition (time=0.65-0.9 s). Also the event-related field strength was higher during recall of labile than stabilized associations (time=0.59-1.5 s). We propose that recall of the spatial associations prior to memory stabilization involves a top-down process relying on reconstructing learned representations in visual areas. This process is reflected in gamma band activity consistent with the notion that neuronal synchronization in the gamma band is required for visual representations. More direct synaptic connections are formed with memory stabilization, thus decreasing the dependence on visual areas.

  2. A low-cost and versatile system for projecting wide-field visual stimuli within fMRI scanners

    PubMed Central

    Greco, V.; Frijia, F.; Mikellidou, K.; Montanaro, D.; Farini, A.; D’Uva, M.; Poggi, P.; Pucci, M.; Sordini, A.; Morrone, M. C.; Burr, D. C.

    2016-01-01

    We have constructed and tested a custom-made magnetic-imaging-compatible visual projection system designed to project on a very wide visual field (~80°). A standard projector was modified with a coupling lens, projecting images into the termination of an image fiber. The other termination of the fiber was placed in the 3-T scanner room with a projection lens, which projected the images relayed by the fiber onto a screen over the head coil, viewed by a participant wearing magnifying goggles. To validate the system, wide-field stimuli were presented in order to identify retinotopic visual areas. The results showed that this low-cost and versatile optical system may be a valuable tool to map visual areas in the brain that process peripheral receptive fields. PMID:26092392

  3. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex

    PubMed Central

    Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide

    2017-01-01

    Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730

  4. Age-Related Differences in Cortical and Subcortical Activities during Observation and Motor Imagery of Dynamic Postural Tasks: An fMRI Study.

    PubMed

    Mouthon, A; Ruffieux, J; Mouthon, M; Hoogewoud, H-M; Annoni, J-M; Taube, W

    2018-01-01

    Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations.

  5. Age-Related Differences in Cortical and Subcortical Activities during Observation and Motor Imagery of Dynamic Postural Tasks: An fMRI Study

    PubMed Central

    Ruffieux, J.; Mouthon, M.; Hoogewoud, H.-M.; Taube, W.

    2018-01-01

    Age-related changes in brain activation other than in the primary motor cortex are not well known with respect to dynamic balance control. Therefore, the current study aimed to explore age-related differences in the control of static and dynamic postural tasks using fMRI during mental simulation of balance tasks. For this purpose, 16 elderly (72 ± 5 years) and 16 young adults (27 ± 5 years) were asked to mentally simulate a static and a dynamic balance task by motor imagery (MI), action observation (AO), or the combination of AO and MI (AO + MI). Age-related differences were detected in the form of larger brain activations in elderly compared to young participants, especially in the challenging dynamic task when applying AO + MI. Interestingly, when MI (no visual input) was contrasted to AO (visual input), elderly participants revealed deactivation of subcortical areas. The finding that the elderly demonstrated overactivation in mostly cortical areas in challenging postural conditions with visual input (AO + MI and AO) but deactivation in subcortical areas during MI (no vision) may indicate that elderly individuals allocate more cortical resources to the internal representation of dynamic postural tasks. Furthermore, it might be assumed that they depend more strongly on visual input to activate subcortical internal representations. PMID:29675037

  6. Functional brain mapping of actual car-driving using [18F]FDG-PET.

    PubMed

    Jeong, Myeonggi; Tashiro, Manabu; Singh, Laxsmi N; Yamaguchi, Keiichiro; Horikawa, Etsuo; Miyake, Masayasu; Watanuki, Shouichi; Iwata, Ren; Fukuda, Hiroshi; Takahashi, Yasuo; Itoh, Masatoshi

    2006-11-01

    This study aims at identifying the brain activation during actual car-driving on the road, and at comparing the results to those of previous studies on simulated car-driving. Thirty normal volunteers, aged 20 to 56 years, were divided into three subgroups, active driving, passive driving and control groups, for examination by positron emission tomography (PET) and [18F]2-deoxy-2-fluoro-D-glucose (FDG). The active driving subjects (n = 10) drove for 30 minutes on quiet normal roads with a few traffic signals. The passive driving subjects (n = 10) participated as passengers on the front seat. The control subjects (n = 10) remained seated in a lit room with their eyes open. Voxel-based t-statistics were applied using SPM2 to search brain activation among the subgroups mentioned above. Significant brain activation was detected during active driving in the primary and secondary visual cortices, primary sensorimotor areas, premotor area, parietal association area, cingulate gyrus, the parahippocampal gyrus as well as in thalamus and cerebellum. The passive driving manifested a similar-looking activation pattern, lacking activations in the premotor area, cingulate and parahippocampal gyri and thalamus. Direct comparison of the active and passive driving conditions revealed activation in the cerebellum. The result of actual driving looked similar to that of simulated driving, suggesting that visual perception and visuomotor coordination were the main brain functions while driving. In terms of attention and autonomic arousal, however, it seems there was a significant difference between simulated and actual driving possibly due to risk of accidents. Autonomic and emotional aspects of driving should be studied using an actual driving study-design.

  7. A number-form area in the blind

    PubMed Central

    Abboud, Sami; Maidenbaum, Shachar; Dehaene, Stanislas; Amedi, Amir

    2015-01-01

    Distinct preference for visual number symbols was recently discovered in the human right inferior temporal gyrus (rITG). It remains unclear how this preference emerges, what is the contribution of shape biases to its formation and whether visual processing underlies it. Here we use congenital blindness as a model for brain development without visual experience. During fMRI, we present blind subjects with shapes encoded using a novel visual-to-music sensory-substitution device (The EyeMusic). Greater activation is observed in the rITG when subjects process symbols as numbers compared with control tasks on the same symbols. Using resting-state fMRI in the blind and sighted, we further show that the areas with preference for numerals and letters exhibit distinct patterns of functional connectivity with quantity and language-processing areas, respectively. Our findings suggest that specificity in the ventral ‘visual’ stream can emerge independently of sensory modality and visual experience, under the influence of distinct connectivity patterns. PMID:25613599

  8. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence.

    PubMed Central

    Hillyard, S A; Vogel, E K; Luck, S J

    1998-01-01

    Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs). PMID:9770220

  9. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search.

    PubMed

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-03-01

    Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI.

  10. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences

    PubMed Central

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns. PMID:26147887

  11. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    PubMed

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  12. Decoding complex flow-field patterns in visual working memory.

    PubMed

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson's disease.

    PubMed

    Costa, Alberto; Carlesimo, Giovanni Augusto; Caltagirone, Carlo; Mazzone, Paolo; Pierantozzi, Mariangela; Stefani, Alessandro; Peppe, Antonella

    2010-01-01

    The present paper was aimed at investigating the effect of low-frequency electrical stimulation (25 Hz) of the peduncolopontine (PPN) area on working memory (WM) functioning in patients with Parkinson's disease (PD). Five PD patients who underwent simultaneous PPN area- and subthalamic nucleus-deep brain stimulation (DBS) implantation participated in the study. PD patients were evaluated in the morning at least 12 h after antiparkinsonian therapy withdrawal in two conditions: i) after continuous PPN area stimulation (Off Therapy/On PPN: "On" condition); ii) at least 120 min after PPN area had been switched "Off" (Off Ther/Off PPN: "Off" condition). The experimental WM task consisted of an n-back paradigm with verbal and visual-object stimuli. PD patients showed a consistent response time decrease on both the verbal and the visual-object tasks passing from the "Off" to the "On" condition (p < 0.05). However, the accuracy score did not significantly differ between the two experimental conditions. The present findings, although preliminary, suggest that PPN area stimulation facilitates the speed processing of information in the content of WM, possibly through the modulation of the attentional resources.

  14. Structural and Functional Correlates of Visual Field Asymmetry in the Human Brain by Diffusion Kurtosis MRI and Functional MRI

    PubMed Central

    O’Connell, Caitlin; Ho, Leon C.; Murphy, Matthew C.; Conner, Ian P.; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C.

    2016-01-01

    Human visual performance has been observed to exhibit superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine if the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI (DKI), respectively in 15 healthy individuals at 3 Tesla. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In DKI, the brain regions mapping to the lower visual field exhibited higher mean kurtosis but not fractional anisotropy or mean diffusivity when compared to the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing. PMID:27631541

  15. The effect of early visual deprivation on the neural bases of multisensory processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2015-06-01

    Developmental vision is deemed to be necessary for the maturation of multisensory cortical circuits. Thus far, this has only been investigated in animal studies, which have shown that congenital visual deprivation markedly reduces the capability of neurons to integrate cross-modal inputs. The present study investigated the effect of transient congenital visual deprivation on the neural mechanisms of multisensory processing in humans. We used functional magnetic resonance imaging to compare responses of visual and auditory cortical areas to visual, auditory and audio-visual stimulation in cataract-reversal patients and normally sighted controls. The results showed that cataract-reversal patients, unlike normally sighted controls, did not exhibit multisensory integration in auditory areas. Furthermore, cataract-reversal patients, but not normally sighted controls, exhibited lower visual cortical processing within visual cortex during audio-visual stimulation than during visual stimulation. These results indicate that congenital visual deprivation affects the capability of cortical areas to integrate cross-modal inputs in humans, possibly because visual processing is suppressed during cross-modal stimulation. Arguably, the lack of vision in the first months after birth may result in a reorganization of visual cortex, including the suppression of noisy visual input from the deprived retina in order to reduce interference during auditory processing. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry

    PubMed Central

    Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2011-01-01

    35% of HIV-infected patients have cognitive impairment, but the profile of HIV-induced brain damage is still not well understood. Here we used tensor-based morphometry (TBM) to visualize brain deficits and clinical/anatomical correlations in HIV/AIDS. To perform TBM, we developed a new MRI-based analysis technique that uses fluid image warping, and a new α-entropy-based information-theoretic measure of image correspondence, called the Jensen–Rényi divergence (JRD). Methods 3D T1-weighted brain MRIs of 26 AIDS patients (CDC stage C and/or 3 without HIV-associated dementia; 47.2 ± 9.8 years; 25M/1F; CD4+ T-cell count: 299.5 ± 175.7/µl; log10 plasma viral load: 2.57 ± 1.28 RNA copies/ml) and 14 HIV-seronegative controls (37.6 ± 12.2 years; 8M/6F) were fluidly registered by applying forces throughout each deforming image to maximize the JRD between it and a target image (from a control subject). The 3D fluid registration was regularized using the linearized Cauchy–Navier operator. Fine-scale volumetric differences between diagnostic groups were mapped. Regions were identified where brain atrophy correlated with clinical measures. Results Severe atrophy (~15–20% deficit) was detected bilaterally in the primary and association sensorimotor areas. Atrophy of these regions, particularly in the white matter, correlated with cognitive impairment (P=0.033) and CD4+ T-lymphocyte depletion (P=0.005). Conclusion TBM facilitates 3D visualization of AIDS neuropathology in living patients scanned with MRI. Severe atrophy in frontoparietal and striatal areas may underlie early cognitive dysfunction in AIDS patients, and may signal the imminent onset of AIDS dementia complex. PMID:17035049

  17. Vision restoration after brain and retina damage: the "residual vision activation theory".

    PubMed

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive stimulation which, depending on the method, may take days (noninvasive brain stimulation) or months (behavioral training). By becoming again engaged in everyday vision, (re)activation of areas of residual vision outlasts the stimulation period, thus contributing to lasting vision restoration and improvements in quality of life. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Enhancing Motor Network Activity Using Real-Time Functional MRI Neurofeedback of Left Premotor Cortex

    PubMed Central

    Marins, Theo F.; Rodrigues, Erika C.; Engel, Annerose; Hoefle, Sebastian; Basílio, Rodrigo; Lent, Roberto; Moll, Jorge; Tovar-Moll, Fernanda

    2015-01-01

    Neurofeedback by functional magnetic resonance imaging (fMRI) is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC), important for motor recovery after brain injury. We investigated (i) whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI) task while receiving continuous fMRI-neurofeedback, and (ii) whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB) received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL) group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and MI, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke. PMID:26733832

  19. Image understanding systems based on the unifying representation of perceptual and conceptual information and the solution of mid-level and high-level vision problems

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2001-10-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, that is an interpretation of visual information in terms of such knowledge models. A computer vision system based on such principles requires unifying representation of perceptual and conceptual information. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/networks models is found. That means a very important shift of paradigm in our knowledge about brain from neural networks to the cortical software. Starting from the primary visual areas, brain analyzes an image as a graph-type spatial structure. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. The spatial combination of different neighbor features cannot be described as a statistical/integral characteristic of the analyzed region, but uniquely characterizes such region itself. Spatial logic and topology naturally present in such structures. Mid-level vision processes like clustering, perceptual grouping, multilevel hierarchical compression, separation of figure from ground, etc. are special kinds of graph/network transformations. They convert low-level image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena like shape from shading, occlusion, etc. are results of such analysis. Such approach gives opportunity not only to explain frequently unexplainable results of the cognitive science, but also to create intelligent computer vision systems that simulate perceptional processes in both what and where visual pathways. Such systems can open new horizons for robotic and computer vision industries.

  20. Cognitive and psychological science insights to improve climate change data visualization

    NASA Astrophysics Data System (ADS)

    Harold, Jordan; Lorenzoni, Irene; Shipley, Thomas F.; Coventry, Kenny R.

    2016-12-01

    Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics.

  1. The barista on the bus: cellular and synaptic mechanisms for visual recognition memory.

    PubMed

    Barth, Alison L; Wheeler, Mark E

    2008-04-24

    Our ability to recognize that something is familiar, often referred to as visual recognition memory, has been correlated with a reduction in neural activity in the perirhinal cortex. In this issue of Neuron, Griffiths et al. now provide evidence that this form of memory requires AMPA receptor endocytosis and long-term depression of excitatory synapses in this brain area.

  2. Wide field-of-view, multi-region two-photon imaging of neuronal activity in the mammalian brain

    PubMed Central

    Stirman, Jeffrey N.; Smith, Ikuko T.; Kudenov, Michael W.; Smith, Spencer L.

    2016-01-01

    Two-photon calcium imaging provides an optical readout of neuronal activity in populations of neurons with subcellular resolution. However, conventional two-photon imaging systems are limited in their field of view to ~1 mm2, precluding the visualization of multiple cortical areas simultaneously. Here, we demonstrate a two-photon microscope with an expanded field of view (>9.5 mm2) for rapidly reconfigurable simultaneous scanning of widely separated populations of neurons. We custom designed and assembled an optimized scan engine, objective, and two independently positionable, temporally multiplexed excitation pathways. We used this new microscope to measure activity correlations between two cortical visual areas in mice during visual processing. PMID:27347754

  3. Preserved Haptic Shape Processing after Bilateral LOC Lesions.

    PubMed

    Snow, Jacqueline C; Goodale, Melvyn A; Culham, Jody C

    2015-10-07

    The visual and haptic perceptual systems are understood to share a common neural representation of object shape. A region thought to be critical for recognizing visual and haptic shape information is the lateral occipital complex (LOC). We investigated whether LOC is essential for haptic shape recognition in humans by studying behavioral responses and brain activation for haptically explored objects in a patient (M.C.) with bilateral lesions of the occipitotemporal cortex, including LOC. Despite severe deficits in recognizing objects using vision, M.C. was able to accurately recognize objects via touch. M.C.'s psychophysical response profile to haptically explored shapes was also indistinguishable from controls. Using fMRI, M.C. showed no object-selective visual or haptic responses in LOC, but her pattern of haptic activation in other brain regions was remarkably similar to healthy controls. Although LOC is routinely active during visual and haptic shape recognition tasks, it is not essential for haptic recognition of object shape. The lateral occipital complex (LOC) is a brain region regarded to be critical for recognizing object shape, both in vision and in touch. However, causal evidence linking LOC with haptic shape processing is lacking. We studied recognition performance, psychophysical sensitivity, and brain response to touched objects, in a patient (M.C.) with extensive lesions involving LOC bilaterally. Despite being severely impaired in visual shape recognition, M.C. was able to identify objects via touch and she showed normal sensitivity to a haptic shape illusion. M.C.'s brain response to touched objects in areas of undamaged cortex was also very similar to that observed in neurologically healthy controls. These results demonstrate that LOC is not necessary for recognizing objects via touch. Copyright © 2015 the authors 0270-6474/15/3513745-16$15.00/0.

  4. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain

    PubMed Central

    Liang, Winnie S.; Dunckley, Travis; Beach, Thomas G.; Grover, Andrew; Mastroeni, Diego; Walker, Douglas G.; Caselli, Richard J.; Kukull, Walter A.; McKeel, Daniel; Morris, John C.; Hulette, Christine; Schmechel, Donald; Alexander, Gene E.; Reiman, Eric M.; Rogers, Joseph; Stephan, Dietrich A.

    2008-01-01

    In this article, we have characterized and compared gene expression profiles from laser capture microdissected neurons in six functionally and anatomically distinct regions from clinically and histopathologically normal aged human brains. These regions, which are also known to be differentially vulnerable to the histopathological and metabolic features of Alzheimer’s disease (AD), include the entorhinal cortex and hippocampus (limbic and paralimbic areas vulnerable to early neurofibrillary tangle pathology in AD), posterior cingulate cortex (a paralimbic area vulnerable to early metabolic abnormalities in AD), temporal and prefrontal cortex (unimodal and heteromodal sensory association areas vulnerable to early neuritic plaque pathology in AD), and primary visual cortex (a primary sensory area relatively spared in early AD). These neuronal profiles will provide valuable reference information for future studies of the brain, in normal aging, AD and other neurological and psychiatric disorders. PMID:17077275

  5. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex

    PubMed Central

    van Kerkoerle, Timo; Self, Matthew W.; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R.

    2014-01-01

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition. PMID:25205811

  6. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.

    PubMed

    van Kerkoerle, Timo; Self, Matthew W; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Poort, Jasper; van der Togt, Chris; Roelfsema, Pieter R

    2014-10-07

    Cognitive functions rely on the coordinated activity of neurons in many brain regions, but the interactions between cortical areas are not yet well understood. Here we investigated whether low-frequency (α) and high-frequency (γ) oscillations characterize different directions of information flow in monkey visual cortex. We recorded from all layers of the primary visual cortex (V1) and found that γ-waves are initiated in input layer 4 and propagate to the deep and superficial layers of cortex, whereas α-waves propagate in the opposite direction. Simultaneous recordings from V1 and downstream area V4 confirmed that γ- and α-waves propagate in the feedforward and feedback direction, respectively. Microstimulation in V1 elicited γ-oscillations in V4, whereas microstimulation in V4 elicited α-oscillations in V1, thus providing causal evidence for the opposite propagation of these rhythms. Furthermore, blocking NMDA receptors, thought to be involved in feedback processing, suppressed α while boosting γ. These results provide new insights into the relation between brain rhythms and cognition.

  7. Localization of the mRNA for the dopamine D sub 2 receptor in the rat brain by in situ hybridization histochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mengod, G.; Martinez-Mir, M.I.; Vilaro, M.T.

    1989-11-01

    {sup 32}P-labeled oligonucleotides derived from the coding region of rat dopamine D{sub 2} receptor cDNA were used as probes to localize cells in the rat brain that contain the mRNA coding for this receptor by using in situ hybridization histochemistry. The highest level of hybridization was found in the intermediate lobe of the pituitary gland. High mRNA content was observed in the anterior lobe of the pituitary gland, the nuclei caudate-putamen and accumbens, and the olfactory tubercle. Lower levels were seen in the substantia nigra pars compacta and the ventral tegmental area, as well as in the lateral mammillary body.more » In these areas the distribution was comparable to that of the dopamine D{sub 2} receptor binding sites as visualized by autoradiography using ({sup 3}H)SDZ 205-502 as a ligand. However, in some areas such as the olfactory bulb, neocortex, hippocampus, superior colliculus, and cerebellum, D{sub 2} receptors have been visualized but no significant hybridization signal could be detected. The mRNA coding for these receptors in these areas could be contained in cells outside those brain regions, be different from the one recognized by our probes, or be present at levels below the detection limits of our procedure. The possibility of visualizing and quantifying the mRNA coding for dopamine D{sub 2} receptor at the microscopic level will yield more information about the in vivo regulation of the synthesis of these receptor and their alteration following selective lesions or drug treatments.« less

  8. Novel frontiers in ultra-structural and molecular MRI of the brain.

    PubMed

    Duyn, Jeff H; Koretsky, Alan P

    2011-08-01

    Recent developments in the MRI of the brain continue to expand its use in basic and clinical neuroscience. This review highlights some areas of recent progress. Higher magnetic field strengths and improved signal detectors have allowed improved visualization of the various properties of the brain, facilitating the anatomical definition of function-specific areas and their connections. For example, by sensitizing the MRI signal to the magnetic susceptibility of tissue, it is starting to become possible to reveal the laminar structure of the cortex and identify millimeter-scale fiber bundles. Using exogenous contrast agents, and innovative ways to manipulate contrast, it is becoming possible to highlight specific fiber tracts and cell populations. These techniques are bringing us closer to understanding the evolutionary blueprint of the brain, improving the detection and characterization of disease, and help to guide treatment. Recent MRI techniques are leading to more detailed and more specific contrast in the study of the brain.

  9. Avian visual behavior and the organization of the telencephalon.

    PubMed

    Shimizu, Toru; Patton, Tadd B; Husband, Scott A

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. 2010 S. Karger AG, Basel.

  10. Avian Visual Behavior and the Organization of the Telencephalon

    PubMed Central

    Shimizu, Toru; Patton, Tadd B.; Husband, Scott A.

    2010-01-01

    Birds have excellent visual abilities that are comparable or superior to those of primates, but how the bird brain solves complex visual problems is poorly understood. More specifically, we lack knowledge about how such superb abilities are used in nature and how the brain, especially the telencephalon, is organized to process visual information. Here we review the results of several studies that examine the organization of the avian telencephalon and the relevance of visual abilities to avian social and reproductive behavior. Video playback and photographic stimuli show that birds can detect and evaluate subtle differences in local facial features of potential mates in a fashion similar to that of primates. These techniques have also revealed that birds do not attend well to global configural changes in the face, suggesting a fundamental difference between birds and primates in face perception. The telencephalon plays a major role in the visual and visuo-cognitive abilities of birds and primates, and anatomical data suggest that these animals may share similar organizational characteristics in the visual telencephalon. As is true in the primate cerebral cortex, different visual features are processed separately in the avian telencephalon where separate channels are organized in the anterior-posterior axis roughly parallel to the major laminae. Furthermore, the efferent projections from the primary visual telencephalon form an extensive column-like continuum involving the dorsolateral pallium and the lateral basal ganglia. Such a column-like organization may exist not only for vision, but for other sensory modalities and even for a continuum that links sensory and limbic areas of the avian brain. Behavioral and neural studies must be integrated in order to understand how birds have developed their amazing visual systems through 150 million years of evolution. PMID:20733296

  11. Response inhibition in pedophilia: an FMRI pilot study.

    PubMed

    Habermeyer, Benedikt; Esposito, Fabrizio; Händel, Nadja; Lemoine, Patrick; Kuhl, Hans Christian; Klarhöfer, Markus; Mager, Ralph; Mokros, Andreas; Dittmann, Volker; Seifritz, Erich; Graf, Marc

    2013-01-01

    The failure to inhibit pleasurable but inappropriate urges is associated with frontal lobe pathology and has been suggested as a possible cause of pedophilic behavior. However, imaging and neuropsychological findings about frontal pathology in pedophilia are heterogeneous. In our study we therefore address inhibition behaviorally and by means of functional imaging, aiming to assess how inhibition in pedophilia is related to a differential recruitment of frontal brain areas. Eleven pedophilic subjects and 7 nonpedophilic controls underwent fMRI while performing a go/no-go task composed of neutral letters. Pedophilic subjects showed a slower reaction time and less accurate visual target discrimination. fMRI voxel-level ANOVA revealed as a main effect of the go/no-go task an activation of prefrontal and parietal brain regions in the no-go condition, while the left anterior cingulate, precuneus and gyrus angularis became more activated in the go condition. In addition, a group × task interaction was found in the left precuneus and gyrus angularis. This interaction was based on an attenuated deactivation of these brain regions in the pedophilic group during performance of the no-go condition. The positive correlation between blood oxygen level-dependent imaging signal and reaction time in these brain areas indicates that attenuated deactivation is related to the behavioral findings. Slower reaction time and less accurate visual target discrimination in pedophilia was accompanied by attenuated deactivation of brain areas belonging to the default mode network. Our findings thus support the notion that behavioral differences might also derive from self-related processes and not necessarily from frontal lobe pathology. © 2013 S. Karger AG, Basel.

  12. Inter-area correlations in the ventral visual pathway reflect feature integration

    PubMed Central

    Freeman, Jeremy; Donner, Tobias H.; Heeger, David J.

    2011-01-01

    During object perception, the brain integrates simple features into representations of complex objects. A perceptual phenomenon known as visual crowding selectively interferes with this process. Here, we use crowding to characterize a neural correlate of feature integration. Cortical activity was measured with functional magnetic resonance imaging, simultaneously in multiple areas of the ventral visual pathway (V1–V4 and the visual word form area, VWFA, which responds preferentially to familiar letters), while human subjects viewed crowded and uncrowded letters. Temporal correlations between cortical areas were lower for crowded letters than for uncrowded letters, especially between V1 and VWFA. These differences in correlation were retinotopically specific, and persisted when attention was diverted from the letters. But correlation differences were not evident when we substituted the letters with grating patches that were not crowded under our stimulus conditions. We conclude that inter-area correlations reflect feature integration and are disrupted by crowding. We propose that crowding may perturb the transformations between neural representations along the ventral pathway that underlie the integration of features into objects. PMID:21521832

  13. Shared neural processes support semantic control and action understanding

    PubMed Central

    Davey, James; Rueschemeyer, Shirley-Ann; Costigan, Alison; Murphy, Nik; Krieger-Redwood, Katya; Hallam, Glyn; Jefferies, Elizabeth

    2015-01-01

    Executive–semantic control and action understanding appear to recruit overlapping brain regions but existing evidence from neuroimaging meta-analyses and neuropsychology lacks spatial precision; we therefore manipulated difficulty and feature type (visual vs. action) in a single fMRI study. Harder judgements recruited an executive–semantic network encompassing medial and inferior frontal regions (including LIFG) and posterior temporal cortex (including pMTG). These regions partially overlapped with brain areas involved in action but not visual judgements. In LIFG, the peak responses to action and difficulty were spatially identical across participants, while these responses were overlapping yet spatially distinct in posterior temporal cortex. We propose that the co-activation of LIFG and pMTG allows the flexible retrieval of semantic information, appropriate to the current context; this might be necessary both for semantic control and understanding actions. Feature selection in difficult trials also recruited ventral occipital–temporal areas, not implicated in action understanding. PMID:25658631

  14. The neural correlates of visual self-recognition.

    PubMed

    Devue, Christel; Brédart, Serge

    2011-03-01

    This paper presents a review of studies that were aimed at determining which brain regions are recruited during visual self-recognition, with a particular focus on self-face recognition. A complex bilateral network, involving frontal, parietal and occipital areas, appears to be associated with self-face recognition, with a particularly high implication of the right hemisphere. Results indicate that it remains difficult to determine which specific cognitive operation is reflected by each recruited brain area, in part due to the variability of used control stimuli and experimental tasks. A synthesis of the interpretations provided by previous studies is presented. The relevance of using self-recognition as an indicator of self-awareness is discussed. We argue that a major aim of future research in the field should be to identify more clearly the cognitive operations induced by the perception of the self-face, and search for dissociations between neural correlates and cognitive components. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Detecting Glaucoma With a Portable Brain-Computer Interface for Objective Assessment of Visual Function Loss.

    PubMed

    Nakanishi, Masaki; Wang, Yu-Te; Jung, Tzyy-Ping; Zao, John K; Chien, Yu-Yi; Diniz-Filho, Alberto; Daga, Fabio B; Lin, Yuan-Pin; Wang, Yijun; Medeiros, Felipe A

    2017-06-01

    The current assessment of visual field loss in diseases such as glaucoma is affected by the subjectivity of patient responses and the lack of portability of standard perimeters. To describe the development and initial validation of a portable brain-computer interface (BCI) for objectively assessing visual function loss. This case-control study involved 62 eyes of 33 patients with glaucoma and 30 eyes of 17 healthy participants. Glaucoma was diagnosed based on a masked grading of optic disc stereophotographs. All participants underwent testing with a BCI device and standard automated perimetry (SAP) within 3 months. The BCI device integrates wearable, wireless, dry electroencephalogram and electrooculogram systems and a cellphone-based head-mounted display to enable the detection of multifocal steady state visual-evoked potentials associated with visual field stimulation. The performances of global and sectoral multifocal steady state visual-evoked potentials metrics to discriminate glaucomatous from healthy eyes were compared with global and sectoral SAP parameters. The repeatability of the BCI device measurements was assessed by collecting results of repeated testing in 20 eyes of 10 participants with glaucoma for 3 sessions of measurements separated by weekly intervals. Receiver operating characteristic curves summarizing diagnostic accuracy. Intraclass correlation coefficients and coefficients of variation for assessing repeatability. Among the 33 participants with glaucoma, 19 (58%) were white, 12 (36%) were black, and 2 (6%) were Asian, while among the 17 participants with healthy eyes, 9 (53%) were white, 8 (47%) were black, and none were Asian. The receiver operating characteristic curve area for the global BCI multifocal steady state visual-evoked potentials parameter was 0.92 (95% CI, 0.86-0.96), which was larger than for SAP mean deviation (area under the curve, 0.81; 95% CI, 0.72-0.90), SAP mean sensitivity (area under the curve, 0.80; 95% CI, 0.69-0.88; P = .03), and SAP pattern standard deviation (area under the curve, 0.77; 95% CI, 0.66-0.87; P = .01). No statistically significant differences were seen for the sectoral measurements between the BCI and SAP. Intraclass coefficients for global and sectoral parameters ranged from 0.74 to 0.92, and mean coefficients of variation ranged from 3.03% to 7.45%. The BCI device may be useful for assessing the electrical brain responses associated with visual field stimulation. The device discriminated eyes with glaucomatous neuropathy from healthy eyes in a clinically based setting. Further studies should investigate the feasibility of the BCI device for home-based testing as well as for detecting visual function loss over time.

  16. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI.

    PubMed

    Plow, Ela B; Cattaneo, Zaira; Carlson, Thomas A; Alvarez, George A; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction.

  17. Neural Responses to Visual Food Cues According to Weight Status: A Systematic Review of Functional Magnetic Resonance Imaging Studies

    PubMed Central

    Pursey, Kirrilly M.; Stanwell, Peter; Callister, Robert J.; Brain, Katherine; Collins, Clare E.; Burrows, Tracy L.

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies. PMID:25988110

  18. Neural responses to visual food cues according to weight status: a systematic review of functional magnetic resonance imaging studies.

    PubMed

    Pursey, Kirrilly M; Stanwell, Peter; Callister, Robert J; Brain, Katherine; Collins, Clare E; Burrows, Tracy L

    2014-01-01

    Emerging evidence from recent neuroimaging studies suggests that specific food-related behaviors contribute to the development of obesity. The aim of this review was to report the neural responses to visual food cues, as assessed by functional magnetic resonance imaging (fMRI), in humans of differing weight status. Published studies to 2014 were retrieved and included if they used visual food cues, studied humans >18 years old, reported weight status, and included fMRI outcomes. Sixty studies were identified that investigated the neural responses of healthy weight participants (n = 26), healthy weight compared to obese participants (n = 17), and weight-loss interventions (n = 12). High-calorie food images were used in the majority of studies (n = 36), however, image selection justification was only provided in 19 studies. Obese individuals had increased activation of reward-related brain areas including the insula and orbitofrontal cortex in response to visual food cues compared to healthy weight individuals, and this was particularly evident in response to energy dense cues. Additionally, obese individuals were more responsive to food images when satiated. Meta-analysis of changes in neural activation post-weight loss revealed small areas of convergence across studies in brain areas related to emotion, memory, and learning, including the cingulate gyrus, lentiform nucleus, and precuneus. Differential activation patterns to visual food cues were observed between obese, healthy weight, and weight-loss populations. Future studies require standardization of nutrition variables and fMRI outcomes to enable more direct comparisons between studies.

  19. Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention.

    PubMed

    Vorobyev, Victor A; Alho, Kimmo; Medvedev, Svyatoslav V; Pakhomov, Sergey V; Roudas, Marina S; Rutkovskaya, Julia M; Tervaniemi, Mari; Van Zuijen, Titia L; Näätänen, Risto

    2004-07-01

    Positron emission tomography (PET) was used to investigate the neural basis of selective processing of linguistic material during concurrent presentation of multiple stimulus streams ("cocktail-party effect"). Fifteen healthy right-handed adult males were to attend to one of three simultaneously presented messages: one presented visually, one to the left ear, and one to the right ear. During the control condition, subjects attended to visually presented consonant letter strings and ignored auditory messages. This paper reports the modality-nonspecific language processing and visual word-form processing, whereas the auditory attention effects have been reported elsewhere [Cogn. Brain Res. 17 (2003) 201]. The left-hemisphere areas activated by both the selective processing of text and speech were as follows: the inferior prefrontal (Brodmann's area, BA 45, 47), anterior temporal (BA 38), posterior insular (BA 13), inferior (BA 20) and middle temporal (BA 21), occipital (BA 18/30) cortices, the caudate nucleus, and the amygdala. In addition, bilateral activations were observed in the medial occipito-temporal cortex and the cerebellum. Decreases of activation during both text and speech processing were found in the parietal (BA 7, 40), frontal (BA 6, 8, 44) and occipito-temporal (BA 37) regions of the right hemisphere. Furthermore, the present data suggest that the left occipito-temporal cortex (BA 18, 20, 37, 21) can be subdivided into three functionally distinct regions in the posterior-anterior direction on the basis of their activation during attentive processing of sublexical orthography, visual word form, and supramodal higher-level aspects of language.

  20. Neural Correlates of Memories of Childhood Sexual Abuse in Women With and Without Posttraumatic Stress Disorder

    PubMed Central

    Bremner, J. Douglas; Narayan, Meena; Staib, Lawrence H.; Southwick, Steven M.; McGlashan, Thomas; Charney, Dennis S.

    2011-01-01

    Objective Childhood sexual abuse is very common in our society, but little is known about the long-term effects of abuse on brain function. The purpose of this study was to measure neural correlates of memories of childhood abuse in sexually abused women with and without the diagnosis of posttraumatic stress disorder (PTSD). Method Twenty-two women with a history of childhood sexual abuse underwent injection of [15O]H2O, followed by positron emission tomography imaging of the brain while they listened to neutral and traumatic (personalized childhood sexual abuse events) scripts. Brain blood flow during exposure to traumatic and neutral scripts was compared for sexually abused women with and without PTSD. Results Memories of childhood sexual abuse were associated with greater increases in blood flow in portions of anterior prefrontal cortex (superior and middle frontal gyri—areas 6 and 9), posterior cingulate (area 31), and motor cortex in sexually abused women with PTSD than in sexually abused women without PTSD. Abuse memories were associated with alterations in blood flow in medial prefrontal cortex, with decreased blood flow in subcallosal gyrus (area 25), and a failure of activation in anterior cingulate (area 32). There was also decreased blood flow in right hippocampus, fusiform/inferior temporal gyrus, supramarginal gyrus, and visual association cortex in women with PTSD relative to women without PTSD. Conclusions These findings implicate dysfunction of medial prefrontal cortex (subcallosal gyrus and anterior cingulate), hippocampus, and visual association cortex in pathological memories of childhood abuse in women with PTSD. Increased activation in posterior cingulate and motor cortex was seen in women with PTSD. Dysfunction in these brain areas may underlie PTSD symptoms provoked by traumatic reminders in subjects with PTSD. PMID:10553744

  1. Changes in connectivity of the posterior default network node during visual processing in mild cognitive impairment: staged decline between normal aging and Alzheimer's disease.

    PubMed

    Krajcovicova, Lenka; Barton, Marek; Elfmarkova-Nemcova, Nela; Mikl, Michal; Marecek, Radek; Rektorova, Irena

    2017-12-01

    Visual processing difficulties are often present in Alzheimer's disease (AD), even in its pre-dementia phase (i.e. in mild cognitive impairment, MCI). The default mode network (DMN) modulates the brain connectivity depending on the specific cognitive demand, including visual processes. The aim of the present study was to analyze specific changes in connectivity of the posterior DMN node (i.e. the posterior cingulate cortex and precuneus, PCC/P) associated with visual processing in 17 MCI patients and 15 AD patients as compared to 18 healthy controls (HC) using functional magnetic resonance imaging. We used psychophysiological interaction (PPI) analysis to detect specific alterations in PCC connectivity associated with visual processing while controlling for brain atrophy. In the HC group, we observed physiological changes in PCC connectivity in ventral visual stream areas and with PCC/P during the visual task, reflecting the successful involvement of these regions in visual processing. In the MCI group, the PCC connectivity changes were disturbed and remained significant only with the anterior precuneus. In between-group comparison, we observed significant PPI effects in the right superior temporal gyrus in both MCI and AD as compared to HC. This change in connectivity may reflect ineffective "compensatory" mechanism present in the early pre-dementia stages of AD or abnormal modulation of brain connectivity due to the disease pathology. With the disease progression, these changes become more evident but less efficient in terms of compensation. This approach can separate the MCI from HC with 77% sensitivity and 89% specificity.

  2. Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy.

    PubMed

    Pitzalis, Sabrina; Strappini, Francesca; Bultrini, Alessandro; Di Russo, Francesco

    2018-03-13

    Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas. © 2018 Wiley Periodicals, Inc.

  3. A circuit for saccadic suppression in the primate brain

    PubMed Central

    Cavanaugh, James; McAlonan, Kerry; Wurtz, Robert H.

    2017-01-01

    Saccades should cause us to see a blur as the eyes sweep across a visual scene. Specific brain mechanisms prevent this by producing suppression during saccades. Neuronal correlates of such suppression were first established in the visual superficial layers of the superior colliculus (SC) and subsequently have been observed in cortical visual areas, including the middle temporal visual area (MT). In this study, we investigated suppression in a recently identified circuit linking visual SC (SCs) to MT through the inferior pulvinar (PI). We examined responses to visual stimuli presented just before saccades to reveal a neuronal correlate of suppression driven by a copy of the saccade command, referred to as a corollary discharge. We found that visual responses were similarly suppressed in SCs, PI, and MT. Within each region, suppression of visual responses occurred with saccades into both visual hemifields, but only in the contralateral hemifield did this suppression consistently begin before the saccade (~100 ms). The consistency of the signal along the circuit led us to hypothesize that the suppression in MT was influenced by input from the SC. We tested this hypothesis in one monkey by inactivating neurons within the SC and found evidence that suppression in MT depends on corollary discharge signals from motor SC (SCi). Combining these results with recent findings in rodents, we propose a complete circuit originating with corollary discharge signals in SCi that produces suppression in visual SCs, PI, and ultimately, MT cortex. NEW & NOTEWORTHY A fundamental puzzle in visual neuroscience is that we frequently make rapid eye movements (saccades) but seldom perceive the visual blur accompanying each movement. We investigated neuronal correlates of this saccadic suppression by recording from and perturbing a recently identified circuit from brainstem to cortex. We found suppression at each stage, with evidence that it was driven by an internally generated signal. We conclude that this circuit contributes to neuronal suppression of visual signals during eye movements. PMID:28003409

  4. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study.

    PubMed

    Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi

    2016-12-07

    Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (P<0.001, uncorrected). In contrast, decreased activations of the hippocampus, thalamus, inferior frontal cortex (ventrolateral prefrontal cortex), and cerebellum were maintained during the sedation and early-recovery sessions (P<0.001, uncorrected) and were recovered in the late-recovery session of ∼40 min. Temporal changes in the signals from these areas varied in a manner comparable to that described by the random-effect model analysis (P<0.05, corrected). In conclusion, conscious sedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.

  5. Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain

    PubMed Central

    2016-01-01

    Abstract What characteristics of neural activity distinguish the awake and anesthetized brain? Drugs such as isoflurane abolish behavioral responsiveness in all animals, implying evolutionarily conserved mechanisms. However, it is unclear whether this conservation is reflected at the level of neural activity. Studies in humans have shown that anesthesia is characterized by spatially distinct spectral and coherence signatures that have also been implicated in the global impairment of cortical communication. We questioned whether anesthesia has similar effects on global and local neural processing in one of the smallest brains, that of the fruit fly (Drosophila melanogaster). Using a recently developed multielectrode technique, we recorded local field potentials from different areas of the fly brain simultaneously, while manipulating the concentration of isoflurane. Flickering visual stimuli (‘frequency tags’) allowed us to track evoked responses in the frequency domain and measure the effects of isoflurane throughout the brain. We found that isoflurane reduced power and coherence at the tagging frequency (13 or 17 Hz) in central brain regions. Unexpectedly, isoflurane increased power and coherence at twice the tag frequency (26 or 34 Hz) in the optic lobes of the fly, but only for specific stimulus configurations. By modeling the periodic responses, we show that the increase in power in peripheral areas can be attributed to local neuroanatomy. We further show that the effects on coherence can be explained by impacted signal-to-noise ratios. Together, our results show that general anesthesia has distinct local and global effects on neuronal processing in the fruit fly brain. PMID:27517084

  6. Local Versus Global Effects of Isoflurane Anesthesia on Visual Processing in the Fly Brain.

    PubMed

    Cohen, Dror; Zalucki, Oressia H; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2016-01-01

    What characteristics of neural activity distinguish the awake and anesthetized brain? Drugs such as isoflurane abolish behavioral responsiveness in all animals, implying evolutionarily conserved mechanisms. However, it is unclear whether this conservation is reflected at the level of neural activity. Studies in humans have shown that anesthesia is characterized by spatially distinct spectral and coherence signatures that have also been implicated in the global impairment of cortical communication. We questioned whether anesthesia has similar effects on global and local neural processing in one of the smallest brains, that of the fruit fly (Drosophila melanogaster). Using a recently developed multielectrode technique, we recorded local field potentials from different areas of the fly brain simultaneously, while manipulating the concentration of isoflurane. Flickering visual stimuli ('frequency tags') allowed us to track evoked responses in the frequency domain and measure the effects of isoflurane throughout the brain. We found that isoflurane reduced power and coherence at the tagging frequency (13 or 17 Hz) in central brain regions. Unexpectedly, isoflurane increased power and coherence at twice the tag frequency (26 or 34 Hz) in the optic lobes of the fly, but only for specific stimulus configurations. By modeling the periodic responses, we show that the increase in power in peripheral areas can be attributed to local neuroanatomy. We further show that the effects on coherence can be explained by impacted signal-to-noise ratios. Together, our results show that general anesthesia has distinct local and global effects on neuronal processing in the fruit fly brain.

  7. Functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški

    2014-09-01

    Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.

  8. The role of prestimulus activity in visual extinction☆

    PubMed Central

    Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl

    2013-01-01

    Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. PMID:23680398

  9. The role of prestimulus activity in visual extinction.

    PubMed

    Urner, Maren; Sarri, Margarita; Grahn, Jessica; Manly, Tom; Rees, Geraint; Friston, Karl

    2013-07-01

    Patients with visual extinction following right-hemisphere damage sometimes see and sometimes miss stimuli in the left visual field, particularly when stimuli are presented simultaneously to both visual fields. Awareness of left visual field stimuli is associated with increased activity in bilateral parietal and frontal cortex. However, it is unknown why patients see or miss these stimuli. Previous neuroimaging studies in healthy adults show that prestimulus activity biases perceptual decisions, and biases in visual perception can be attributed to fluctuations in prestimulus activity in task relevant brain regions. Here, we used functional MRI to investigate whether prestimulus activity affected perception in the context of visual extinction following stroke. We measured prestimulus activity in stimulus-responsive cortical areas during an extinction paradigm in a patient with unilateral right parietal damage and visual extinction. This allowed us to compare prestimulus activity on physically identical bilateral trials that either did or did not lead to visual extinction. We found significantly increased activity prior to stimulus presentation in two areas that were also activated by visual stimulation: the left calcarine sulcus and right occipital inferior cortex. Using dynamic causal modelling (DCM) we found that both these differences in prestimulus activity and stimulus evoked responses could be explained by enhanced effective connectivity within and between visual areas, prior to stimulus presentation. Thus, we provide evidence for the idea that differences in ongoing neural activity in visually responsive areas prior to stimulus onset affect awareness in visual extinction, and that these differences are mediated by fluctuations in extrinsic and intrinsic connectivity. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Individual differences in visual motion perception and neurotransmitter concentrations in the human brain.

    PubMed

    Takeuchi, Tatsuto; Yoshimoto, Sanae; Shimada, Yasuhiro; Kochiyama, Takanori; Kondo, Hirohito M

    2017-02-19

    Recent studies have shown that interindividual variability can be a rich source of information regarding the mechanism of human visual perception. In this study, we examined the mechanisms underlying interindividual variability in the perception of visual motion, one of the fundamental components of visual scene analysis, by measuring neurotransmitter concentrations using magnetic resonance spectroscopy. First, by psychophysically examining two types of motion phenomena-motion assimilation and contrast-we found that, following the presentation of the same stimulus, some participants perceived motion assimilation, while others perceived motion contrast. Furthermore, we found that the concentration of the excitatory neurotransmitter glutamate-glutamine (Glx) in the dorsolateral prefrontal cortex (Brodmann area 46) was positively correlated with the participant's tendency to motion assimilation over motion contrast; however, this effect was not observed in the visual areas. The concentration of the inhibitory neurotransmitter γ-aminobutyric acid had only a weak effect compared with that of Glx. We conclude that excitatory process in the suprasensory area is important for an individual's tendency to determine antagonistically perceived visual motion phenomena.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Author(s).

  11. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    PubMed

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  12. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    PubMed Central

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R.; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  13. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    PubMed

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  14. Visual extinction in relation to visuospatial neglect after right-hemispheric stroke: quantitative assessment and statistical lesion-symptom mapping.

    PubMed

    Vossel, S; Eschenbeck, P; Weiss, P H; Weidner, R; Saliger, J; Karbe, H; Fink, G R

    2011-08-01

    Visual neglect and extinction are two common neurological syndromes in patients with right-hemispheric brain damage. Whether and how these two syndromes are associated or share common neural substrates is still a matter of debate. To address these issues, the authors investigated 56 patients with right-hemispheric stroke with a novel diagnostic test to detect extinction and neglect. In this computerised task, subjects had to respond to target stimuli in uni- and bilateral stimulation conditions with detection probabilities being assessed. A cluster-analytical approach identified 18 patients with neglect and 13 patients with extinction. Statistical lesion-symptom mapping analyses with measures for extinction and neglect were performed. Extinction and neglect co-occurred in a subset of patients but were also observed independently from each other, thereby constituting a double dissociation. Lesions within the right inferior parietal cortex were significantly associated with the severity of visual extinction. Visuospatial neglect was related to damage of fronto-parietal brain regions, with parieto-occipital areas affecting line bisection and dorsal fronto-parietal areas affecting cancellation task performance, respectively. Quantifying lesion-induced symptoms with this novel paradigm shows that extinction and neglect are dissociable syndromes in patients with right-hemispheric stroke. Furthermore, extinction and neglect can be related to differential neural substrates, with extinction being related to focal brain damage within the right inferior parietal cortex.

  15. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks

    PubMed Central

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention. PMID:25745395

  16. Brain activity during divided and selective attention to auditory and visual sentence comprehension tasks.

    PubMed

    Moisala, Mona; Salmela, Viljami; Salo, Emma; Carlson, Synnöve; Vuontela, Virve; Salonen, Oili; Alho, Kimmo

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we measured brain activity of human participants while they performed a sentence congruence judgment task in either the visual or auditory modality separately, or in both modalities simultaneously. Significant performance decrements were observed when attention was divided between the two modalities compared with when one modality was selectively attended. Compared with selective attention (i.e., single tasking), divided attention (i.e., dual-tasking) did not recruit additional cortical regions, but resulted in increased activity in medial and lateral frontal regions which were also activated by the component tasks when performed separately. Areas involved in semantic language processing were revealed predominantly in the left lateral prefrontal cortex by contrasting incongruent with congruent sentences. These areas also showed significant activity increases during divided attention in relation to selective attention. In the sensory cortices, no crossmodal inhibition was observed during divided attention when compared with selective attention to one modality. Our results suggest that the observed performance decrements during dual-tasking are due to interference of the two tasks because they utilize the same part of the cortex. Moreover, semantic dual-tasking did not appear to recruit additional brain areas in comparison with single tasking, and no crossmodal inhibition was observed during intermodal divided attention.

  17. Search for Patterns of Functional Specificity in the Brain: A Nonparametric Hierarchical Bayesian Model for Group fMRI Data

    PubMed Central

    Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2012-01-01

    Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803

  18. The Use of Melodic and Rhythmic Mnemonics to Improve Memory and Recall in Elementary Students in the Content Areas

    ERIC Educational Resources Information Center

    Hayes, Orla C.

    2009-01-01

    Mnemonic strategies that use imagery and visual cues to facilitate memory recall are commonly used in the classroom. A familiar tune, song or jingle, used as a mnemonic device is another popular memory aid. Studies of the brain and memory reveal that exposure to music not only alters but increases brain function in students. The purpose of this…

  19. Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI.

    PubMed

    Kottlow, Mara; Jann, Kay; Dierks, Thomas; Koenig, Thomas

    2012-08-01

    Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Deep brain stimulation does not change neurovascular coupling in non-motor visual cortex: an autonomic and visual evoked blood flow velocity response study.

    PubMed

    Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard

    2010-11-01

    In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  2. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  3. Computational and fMRI Studies of Visualization

    DTIC Science & Technology

    2009-03-31

    spatial thinking in high level cognition, such as in problem-solving and reasoning. In conjunction with the experimental work, the project developed a...computational modeling system (4CAPS) as well as the development of 4CAPS models for particular tasks. The cognitive level of 4CAPS accounts for...neuroarchitecture to interpret and predict the brain activation in a network of cortical areas that underpin the performance of a visual thinking task. The

  4. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search

    PubMed Central

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-01-01

    Background Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. Aims The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Materials and methods Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. Results The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. Conclusion We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI. PMID:24683515

  5. View-Independent Working Memory Representations of Artificial Shapes in Prefrontal and Posterior Regions of the Human Brain.

    PubMed

    Christophel, Thomas B; Allefeld, Carsten; Endisch, Christian; Haynes, John-Dylan

    2018-06-01

    Traditional views of visual working memory postulate that memorized contents are stored in dorsolateral prefrontal cortex using an adaptive and flexible code. In contrast, recent studies proposed that contents are maintained by posterior brain areas using codes akin to perceptual representations. An important question is whether this reflects a difference in the level of abstraction between posterior and prefrontal representations. Here, we investigated whether neural representations of visual working memory contents are view-independent, as indicated by rotation-invariance. Using functional magnetic resonance imaging and multivariate pattern analyses, we show that when subjects memorize complex shapes, both posterior and frontal brain regions maintain the memorized contents using a rotation-invariant code. Importantly, we found the representations in frontal cortex to be localized to the frontal eye fields rather than dorsolateral prefrontal cortices. Thus, our results give evidence for the view-independent storage of complex shapes in distributed representations across posterior and frontal brain regions.

  6. Top-down signal transmission and global hyperconnectivity in auditory-visual synesthesia: Evidence from a functional EEG resting-state study.

    PubMed

    Brauchli, Christian; Elmer, Stefan; Rogenmoser, Lars; Burkhard, Anja; Jäncke, Lutz

    2018-01-01

    Auditory-visual (AV) synesthesia is a rare phenomenon in which an auditory stimulus induces a "concurrent" color sensation. Current neurophysiological models of synesthesia mainly hypothesize "hyperconnected" and "hyperactivated" brains, but differ in the directionality of signal transmission. The two-stage model proposes bottom-up signal transmission from inducer- to concurrent- to higher-order brain areas, whereas the disinhibited feedback model postulates top-down signal transmission from inducer- to higher-order- to concurrent brain areas. To test the different models of synesthesia, we estimated local current density, directed and undirected connectivity patterns in the intracranial space during 2 min of resting-state (RS) EEG in 11 AV synesthetes and 11 nonsynesthetes. AV synesthetes demonstrated increased parietal theta, alpha, and lower beta current density compared to nonsynesthetes. Furthermore, AV synesthetes were characterized by increased top-down signal transmission from the superior parietal lobe to the left color processing area V4 in the upper beta frequency band. Analyses of undirected connectivity revealed a global, synesthesia-specific hyperconnectivity in the alpha frequency band. The involvement of the superior parietal lobe even during rest is a strong indicator for its key role in AV synesthesia. By demonstrating top-down signal transmission in AV synesthetes, we provide direct support for the disinhibited feedback model of synesthesia. Finally, we suggest that synesthesia is a consequence of global hyperconnectivity. Hum Brain Mapp 39:522-531, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. The Wundt-Jastrow illusion in the study of spatial hemi-inattention.

    PubMed

    Massironi, M; Antonucci, G; Pizzamiglio, L; Vitale, M V; Zoccolotti, P

    1988-01-01

    A new test to detect unilateral neglect was devised using a modified version of the Wundt-Jastrow area illusion. The test was given to three groups of subjects: left brain damaged (LBD), right brain damaged (RBD) patients and controls. Of RBD patients, 40.4% but no LBD patient or control, showed responses inconsistent with the visual illusion when the determinant features of the illusion pointed to the left visual field. These unexpected responses were highly related to a clinical evaluation of the severity of the hemi-inattention disorder. The sensitivity of this test and of other standard measures of hemi-neglect were compared. The possibility of identifying qualitatively different forms of hemi-neglect was also discussed.

  8. Multiple routes to mental animation: language and functional relations drive motion processing for static images.

    PubMed

    Coventry, Kenny R; Christophel, Thomas B; Fehr, Thorsten; Valdés-Conroy, Berenice; Herrmann, Manfred

    2013-08-01

    When looking at static visual images, people often exhibit mental animation, anticipating visual events that have not yet happened. But what determines when mental animation occurs? Measuring mental animation using localized brain function (visual motion processing in the middle temporal and middle superior temporal areas, MT+), we demonstrated that animating static pictures of objects is dependent both on the functionally relevant spatial arrangement that objects have with one another (e.g., a bottle above a glass vs. a glass above a bottle) and on the linguistic judgment to be made about those objects (e.g., "Is the bottle above the glass?" vs. "Is the bottle bigger than the glass?"). Furthermore, we showed that mental animation is driven by functional relations and language separately in the right hemisphere of the brain but conjointly in the left hemisphere. Mental animation is not a unitary construct; the predictions humans make about the visual world are driven flexibly, with hemispheric asymmetry in the routes to MT+ activation.

  9. Usability of stereoscopic view in teleoperation

    NASA Astrophysics Data System (ADS)

    Boonsuk, Wutthigrai

    2015-03-01

    Recently, there are tremendous growths in the area of 3D stereoscopic visualization. The 3D stereoscopic visualization technology has been used in a growing number of consumer products such as the 3D televisions and the 3D glasses for gaming systems. This technology refers to the idea that human brain develops depth of perception by retrieving information from the two eyes. Our brain combines the left and right images on the retinas and extracts depth information. Therefore, viewing two video images taken at slightly distance apart as shown in Figure 1 can create illusion of depth [8]. Proponents of this technology argue that the stereo view of 3D visualization increases user immersion and performance as more information is gained through the 3D vision as compare to the 2D view. However, it is still uncertain if additional information gained from the 3D stereoscopic visualization can actually improve user performance in real world situations such as in the case of teleoperation.

  10. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    PubMed Central

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  11. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    PubMed

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Functional connectivity of visual cortex in the blind follows retinotopic organization principles.

    PubMed

    Striem-Amit, Ella; Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S; Villringer, Arno; Amedi, Amir

    2015-06-01

    Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  13. Brain networks for visual creativity: a functional connectivity study of planning a visual artwork.

    PubMed

    De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David

    2016-12-19

    Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition.

  14. Brain networks for visual creativity: a functional connectivity study of planning a visual artwork

    PubMed Central

    De Pisapia, Nicola; Bacci, Francesca; Parrott, Danielle; Melcher, David

    2016-01-01

    Throughout recorded history, and across cultures, humans have made visual art. In recent years, the neural bases of creativity, including artistic creativity, have become a topic of interest. In this study we investigated the neural bases of the visual creative process with both professional artists and a group of control participants. We tested the idea that creativity (planning an artwork) would influence the functional connectivity between regions involved in the default mode network (DMN), implicated in divergent thinking and generating novel ideas, and the executive control network (EN), implicated in evaluating and selecting ideas. We measured functional connectivity with functional Magnetic Resonance Imaging (fMRI) during three different conditions: rest, visual imagery of the alphabet and planning an artwork to be executed immediately after the scanning session. Consistent with our hypothesis, we found stronger connectivity between areas of the DMN and EN during the creative task, and this difference was enhanced in professional artists. These findings suggest that creativity involves an expert balance of two brain networks typically viewed as being in opposition. PMID:27991592

  15. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    PubMed

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  16. Increase in MST activity correlates with visual motion learning: A functional MRI study of perceptual learning.

    PubMed

    Larcombe, Stephanie J; Kennard, Chris; Bridge, Holly

    2018-01-01

    Repeated practice of a specific task can improve visual performance, but the neural mechanisms underlying this improvement in performance are not yet well understood. Here we trained healthy participants on a visual motion task daily for 5 days in one visual hemifield. Before and after training, we used functional magnetic resonance imaging (fMRI) to measure the change in neural activity. We also imaged a control group of participants on two occasions who did not receive any task training. While in the MRI scanner, all participants completed the motion task in the trained and untrained visual hemifields separately. Following training, participants improved their ability to discriminate motion direction in the trained hemifield and, to a lesser extent, in the untrained hemifield. The amount of task learning correlated positively with the change in activity in the medial superior temporal (MST) area. MST is the anterior portion of the human motion complex (hMT+). MST changes were localized to the hemisphere contralateral to the region of the visual field, where perceptual training was delivered. Visual areas V2 and V3a showed an increase in activity between the first and second scan in the training group, but this was not correlated with performance. The contralateral anterior hippocampus and bilateral dorsolateral prefrontal cortex (DLPFC) and frontal pole showed changes in neural activity that also correlated with the amount of task learning. These findings emphasize the importance of MST in perceptual learning of a visual motion task. Hum Brain Mapp 39:145-156, 2018. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  17. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Disentangling brain activity related to the processing of emotional visual information and emotional arousal.

    PubMed

    Kuniecki, Michał; Wołoszyn, Kinga; Domagalik, Aleksandra; Pilarczyk, Joanna

    2018-05-01

    Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.

  19. Adding words to the brain's visual dictionary: novel word learning selectively sharpens orthographic representations in the VWFA.

    PubMed

    Glezer, Laurie S; Kim, Judy; Rule, Josh; Jiang, Xiong; Riesenhuber, Maximilian

    2015-03-25

    The nature of orthographic representations in the human brain is still subject of much debate. Recent reports have claimed that the visual word form area (VWFA) in left occipitotemporal cortex contains an orthographic lexicon based on neuronal representations highly selective for individual written real words (RWs). This theory predicts that learning novel words should selectively increase neural specificity for these words in the VWFA. We trained subjects to recognize novel pseudowords (PWs) and used fMRI rapid adaptation to compare neural selectivity with RWs, untrained PWs (UTPWs), and trained PWs (TPWs). Before training, PWs elicited broadly tuned responses, whereas responses to RWs indicated tight tuning. After training, TPW responses resembled those of RWs, whereas UTPWs continued to show broad tuning. This change in selectivity was specific to the VWFA. Therefore, word learning appears to selectively increase neuronal specificity for the new words in the VWFA, thereby adding these words to the brain's visual dictionary. Copyright © 2015 the authors 0270-6474/15/354965-08$15.00/0.

  20. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder

    PubMed Central

    Kucyi, Aaron; Hove, Michael J.; Biederman, Joseph; Van Dijk, Koene R.A.; Valera, Eve M.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of the cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. PMID:26109476

  1. Attention Increases Spike Count Correlations between Visual Cortical Areas.

    PubMed

    Ruff, Douglas A; Cohen, Marlene R

    2016-07-13

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. Copyright © 2016 the authors 0270-6474/16/367523-12$15.00/0.

  2. Attention Increases Spike Count Correlations between Visual Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    Visual attention, which improves perception of attended locations or objects, has long been known to affect many aspects of the responses of neuronal populations in visual cortex. There are two nonmutually exclusive hypotheses concerning the neuronal mechanisms that underlie these perceptual improvements. The first hypothesis, that attention improves the information encoded by a population of neurons in a particular cortical area, has considerable physiological support. The second hypothesis is that attention improves perception by selectively communicating relevant visual information. This idea has been tested primarily by measuring interactions between neurons on very short timescales, which are mathematically nearly independent of neuronal interactions on longer timescales. We tested the hypothesis that attention changes the way visual information is communicated between cortical areas on longer timescales by recording simultaneously from neurons in primary visual cortex (V1) and the middle temporal area (MT) in rhesus monkeys. We used two independent and complementary approaches. Our correlative experiment showed that attention increases the trial-to-trial response variability that is shared between the two areas. In our causal experiment, we electrically microstimulated V1 and found that attention increased the effect of stimulation on MT responses. Together, our results suggest that attention affects both the way visual stimuli are encoded within a cortical area and the extent to which visual information is communicated between areas on behaviorally relevant timescales. SIGNIFICANCE STATEMENT Visual attention dramatically improves the perception of attended stimuli. Attention has long been thought to act by selecting relevant visual information for further processing. It has been hypothesized that this selection is accomplished by increasing communication between neurons that encode attended information in different cortical areas. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. PMID:27413161

  3. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    NASA Astrophysics Data System (ADS)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  4. Fourier power, subjective distance, and object categories all provide plausible models of BOLD responses in scene-selective visual areas

    PubMed Central

    Lescroart, Mark D.; Stansbury, Dustin E.; Gallant, Jack L.

    2015-01-01

    Perception of natural visual scenes activates several functional areas in the human brain, including the Parahippocampal Place Area (PPA), Retrosplenial Complex (RSC), and the Occipital Place Area (OPA). It is currently unclear what specific scene-related features are represented in these areas. Previous studies have suggested that PPA, RSC, and/or OPA might represent at least three qualitatively different classes of features: (1) 2D features related to Fourier power; (2) 3D spatial features such as the distance to objects in a scene; or (3) abstract features such as the categories of objects in a scene. To determine which of these hypotheses best describes the visual representation in scene-selective areas, we applied voxel-wise modeling (VM) to BOLD fMRI responses elicited by a set of 1386 images of natural scenes. VM provides an efficient method for testing competing hypotheses by comparing predictions of brain activity based on encoding models that instantiate each hypothesis. Here we evaluated three different encoding models that instantiate each of the three hypotheses listed above. We used linear regression to fit each encoding model to the fMRI data recorded from each voxel, and we evaluated each fit model by estimating the amount of variance it predicted in a withheld portion of the data set. We found that voxel-wise models based on Fourier power or the subjective distance to objects in each scene predicted much of the variance predicted by a model based on object categories. Furthermore, the response variance explained by these three models is largely shared, and the individual models explain little unique variance in responses. Based on an evaluation of previous studies and the data we present here, we conclude that there is currently no good basis to favor any one of the three alternative hypotheses about visual representation in scene-selective areas. We offer suggestions for further studies that may help resolve this issue. PMID:26594164

  5. Anatomical and functional assemblies of brain BOLD oscillations

    PubMed Central

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  6. Resting state neural networks for visual Chinese word processing in Chinese adults and children.

    PubMed

    Li, Ling; Liu, Jiangang; Chen, Feiyan; Feng, Lu; Li, Hong; Tian, Jie; Lee, Kang

    2013-07-01

    This study examined the resting state neural networks for visual Chinese word processing in Chinese children and adults. Both the functional connectivity (FC) and amplitude of low frequency fluctuation (ALFF) approaches were used to analyze the fMRI data collected when Chinese participants were not engaged in any specific explicit tasks. We correlated time series extracted from the visual word form area (VWFA) with those in other regions in the brain. We also performed ALFF analysis in the resting state FC networks. The FC results revealed that, regarding the functionally connected brain regions, there exist similar intrinsically organized resting state networks for visual Chinese word processing in adults and children, suggesting that such networks may already be functional after 3-4 years of informal exposure to reading plus 3-4 years formal schooling. The ALFF results revealed that children appear to recruit more neural resources than adults in generally reading-irrelevant brain regions. Differences between child and adult ALFF results suggest that children's intrinsic word processing network during the resting state, though similar in functional connectivity, is still undergoing development. Further exposure to visual words and experience with reading are needed for children to develop a mature intrinsic network for word processing. The developmental course of the intrinsically organized word processing network may parallel that of the explicit word processing network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Differential processing of binocular and monocular gloss cues in human visual cortex

    PubMed Central

    Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W.

    2016-01-01

    The visual impression of an object's surface reflectance (“gloss”) relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. PMID:26912596

  8. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    PubMed

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Implications on visual apperception: energy, duration, structure and synchronization.

    PubMed

    Bókkon, I; Vimal, Ram Lakhan Pandey

    2010-07-01

    Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation. In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or 'interactive hierarchical structuralism.' For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.

  10. Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.

    PubMed

    Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde

    2016-09-01

    Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. The contribution of LM to the neuroscience of movement vision

    PubMed Central

    Zihl, Josef; Heywood, Charles A.

    2015-01-01

    The significance of early and sporadic reports in the 19th century of impairments of motion vision following brain damage was largely unrecognized. In the absence of satisfactory post-mortem evidence, impairments were interpreted as the consequence of a more general disturbance resulting from brain damage, the location and extent of which was unknown. Moreover, evidence that movement constituted a special visual perception and may be selectively spared was similarly dismissed. Such skepticism derived from a reluctance to acknowledge that the neural substrates of visual perception may not be confined to primary visual cortex. This view did not persist. First, it was realized that visual movement perception does not depend simply on the analysis of spatial displacements and temporal intervals, but represents a specific visual movement sensation. Second persuasive evidence for functional specialization in extrastriate cortex, and notably the discovery of cortical area V5/MT, suggested a separate region specialized for motion processing. Shortly thereafter the remarkable case of patient LM was published, providing compelling evidence for a selective and specific loss of movement vision. The case is reviewed here, along with an assessment of its contribution to visual neuroscience. PMID:25741251

  12. How the blind "see" Braille: lessons from functional magnetic resonance imaging.

    PubMed

    Sadato, Norihiro

    2005-12-01

    What does the visual cortex of the blind do during Braille reading? This process involves converting simple tactile information into meaningful patterns that have lexical and semantic properties. The perceptual processing of Braille might be mediated by the somatosensory system, whereas visual letter identity is accomplished within the visual system in sighted people. Recent advances in functional neuroimaging techniques, such as functional magnetic resonance imaging, have enabled exploration of the neural substrates of Braille reading. The primary visual cortex of early-onset blind subjects is functionally relevant to Braille reading, suggesting that the brain shows remarkable plasticity that potentially permits the additional processing of tactile information in the visual cortical areas.

  13. Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.

    PubMed

    Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J

    2017-02-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.

  14. Brain Activity toward Gaming-Related Cues in Internet Gaming Disorder during an Addiction Stroop Task.

    PubMed

    Zhang, Yifen; Lin, Xiao; Zhou, Hongli; Xu, Jiaojing; Du, Xiaoxia; Dong, Guangheng

    2016-01-01

    Attentional bias for drug-related stimuli is a key characteristic for drug addiction. Characterizing the relationship between attentional bias and brain reactivity to Internet gaming-related stimuli may help in identifying the neural substrates that critical to Internet gaming disorder (IGD). 19 IGD and 21 healthy control (HC) subjects were scanned with functional magnetic resonance imaging while they were performing an addiction Stroop task. Compared with HC group, IGD subjects showed higher activations when facing Internet gaming-related stimuli in regions including the inferior parietal lobule, the middle occipital gyrus and the dorsolateral prefrontal cortex. These brain areas were thought to be involved in selective attention, visual processing, working memory and cognitive control. The results demonstrated that compared with HC group, IGD subjects show impairment in both visual and cognitive control ability while dealing with gaming-related words. This finding might be helpful in understanding the underlying neural basis of IGD.

  15. Visual hallucinations of autobiographic memory and asomatognosia: a case of epilepsy due to brain cysticercosis.

    PubMed

    Orjuela-Rojas, Juan Manuel; Ramírez-Bermúdez, Jesús; Martínez-Juárez, Iris E; Kerik, Nora Estela; Diaz Meneses, Iván; Pérez-Gay, Fernanda Juárez

    2015-01-01

    The current study describes the case of a woman with symptomatic epilepsy due to brain cysticercosis acquired during childhood. During her adolescence, she developed seizures characterized by metamorphopsia, hallucinations of autobiographic memory and, finally, asomatognosia. Magnetic brain imaging showed a calcified lesion in the right occipitotemporal cortex, and positron emission tomography imaging confirmed the presence of interictal hypometabolism in two regions: the right parietal cortex and the right lateral and posterior temporal cortex. We discuss the link between these brain areas and the symptoms described under the concepts of epileptogenic lesion, epileptogenic zone, functional deficit zone, and symptomatogenic zone.

  16. Neural Dynamics Underlying Target Detection in the Human Brain

    PubMed Central

    Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.

    2014-01-01

    Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944

  17. Ophthalmic artery obstruction and cerebral infarction following periocular injection of autologous fat.

    PubMed

    Lee, Chang Mok; Hong, In Hwan; Park, Sung Pyo

    2011-10-01

    We report a case of ophthalmic artery obstruction combined with brain infarction following periocular autologous fat injection. The patient, a 44-year-old woman, visited our hospital for decreased visual acuity in her left eye and dysarthria one hour after receiving an autologous fat injection in the periocular area. Her best corrected visual acuity for the concerned eye was no light perception. Also, a relative afferent pupillary defect was detected in this eye. The left fundus exhibited widespread retinal whitening with visible emboli in several retinal arterioles. Diffusion-weighted magnetic resonance imaging of the brain showed a hyperintense lesion at the left insular cortex. Therefore, we diagnosed ophthalmic artery obstruction and left middle cerebral artery infarction due to fat emboli. The patient was managed with immediate ocular massage, carbon dioxide, and oxygen therapy. Following treatment, dysarthria improved considerably but there was no improvement in visual acuity.

  18. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions

    PubMed Central

    Morgan, Helen M.; Jackson, Margaret C.; van Koningsbruggen, Martijn G.; Shapiro, Kimron L.; Linden, David E.J.

    2013-01-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. PMID:22483548

  19. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    PubMed

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  1. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention.

    PubMed

    Mayer, Jutta S; Roebroeck, Alard; Maurer, Konrad; Linden, David E J

    2010-01-01

    The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task. 2009 Wiley-Liss, Inc.

  2. Relationship between Parental Feeding Practices and Neural Responses to Food Cues in Adolescents

    PubMed Central

    Chambers, Alison; Blissett, Jacqueline; Chechlacz, Magdalena; Barrett, Timothy; Higgs, Suzanne; Nouwen, Arie

    2016-01-01

    Social context, specifically within the family, influences adolescent eating behaviours and thus their health. Little is known about the specific mechanisms underlying the effects of parental feeding practices on eating. We explored relationships between parental feeding practices and adolescent eating habits and brain activity in response to viewing food images. Fifty- seven adolescents (15 with type 2 diabetes mellitus, 21 obese and 21 healthy weight controls) underwent fMRI scanning whilst viewing images of food or matched control images. Participants completed the Kids Child Feeding Questionnaire, the Childrens’ Dutch Eating Behaviour Questionnaire (DEBQ) and took part in an observed meal. Parents completed the Comprehensive Feeding Practices Questionniare and the DEBQ. We were particularly interested in brain activity in response to food cues that was modulated by different feeding and eating styles. Healthy-weight participants increased activation (compared to the other groups) to food in proportion to the level of parental restriction in visual areas of the brain such as right lateral occipital cortex (LOC), right temporal occipital cortex, left occipital fusiform gyrus, left lateral and superior LOC. Adolescents with type 2 diabetes mellitus had higher activation (compared to the other groups) with increased parental restrictive feeding in areas relating to emotional control, attention and decision-making, such as posterior cingulate, precuneus, frontal operculum and right middle frontal gyrus. Participants with type 2 diabetes mellitus also showed higher activation (compared to the other groups) in the left anterior intraparietal sulcus and angular gyrus when they also reported higher self restraint. Parental restriction did not modulate food responses in obese participants, but there was increased activity in visual (visual cortex, left LOC, left occipital fusiform gyrus) and reward related brain areas (thalamus and parietal operculum) in response to parental teaching and modelling of behaviour. Parental restrictive feeding and parental teaching and modelling affected neural responses to food cues in different ways, depending on motivations and diagnoses, illustrating a social influence on neural responses to food cues. PMID:27479051

  3. Relationship between Parental Feeding Practices and Neural Responses to Food Cues in Adolescents.

    PubMed

    Allen, Harriet A; Chambers, Alison; Blissett, Jacqueline; Chechlacz, Magdalena; Barrett, Timothy; Higgs, Suzanne; Nouwen, Arie

    2016-01-01

    Social context, specifically within the family, influences adolescent eating behaviours and thus their health. Little is known about the specific mechanisms underlying the effects of parental feeding practices on eating. We explored relationships between parental feeding practices and adolescent eating habits and brain activity in response to viewing food images. Fifty- seven adolescents (15 with type 2 diabetes mellitus, 21 obese and 21 healthy weight controls) underwent fMRI scanning whilst viewing images of food or matched control images. Participants completed the Kids Child Feeding Questionnaire, the Childrens' Dutch Eating Behaviour Questionnaire (DEBQ) and took part in an observed meal. Parents completed the Comprehensive Feeding Practices Questionniare and the DEBQ. We were particularly interested in brain activity in response to food cues that was modulated by different feeding and eating styles. Healthy-weight participants increased activation (compared to the other groups) to food in proportion to the level of parental restriction in visual areas of the brain such as right lateral occipital cortex (LOC), right temporal occipital cortex, left occipital fusiform gyrus, left lateral and superior LOC. Adolescents with type 2 diabetes mellitus had higher activation (compared to the other groups) with increased parental restrictive feeding in areas relating to emotional control, attention and decision-making, such as posterior cingulate, precuneus, frontal operculum and right middle frontal gyrus. Participants with type 2 diabetes mellitus also showed higher activation (compared to the other groups) in the left anterior intraparietal sulcus and angular gyrus when they also reported higher self restraint. Parental restriction did not modulate food responses in obese participants, but there was increased activity in visual (visual cortex, left LOC, left occipital fusiform gyrus) and reward related brain areas (thalamus and parietal operculum) in response to parental teaching and modelling of behaviour. Parental restrictive feeding and parental teaching and modelling affected neural responses to food cues in different ways, depending on motivations and diagnoses, illustrating a social influence on neural responses to food cues.

  4. Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses.

    PubMed

    Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T

    2014-06-10

    Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.

  5. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence.

    PubMed

    Widhalm, Georg

    2014-01-01

    Precise histopathological diagnosis of brain tumors is essential for the correct patient management. Furthermore, complete resection of brain tumors is associated with an improved patient prognosis. However, histopathological undergrading and incomplete tumor removal are not uncommon, especially due to insufficient intra-operative visualization of brain tumor tissue. The fluorescent dye 5-aminolevulinic acid (5-ALA) is currently applied for fluorescence-guided resections of high-grade gliomas. The value of 5-ALA-induced protoporphyrin (PpIX) fluorescence for intra-operative visualization of other tumors than high-grade gliomas remains unclear. Within the frame of this thesis, we found a significantly higher rate of complete resections of our high-grade gliomas as compared to control cases by using the newly established 5-ALA fluorescence technology at our department. Additionally, we showed that MRI spectroscopy-based chemical shift imaging (CSI) is capable to identify intratumoral high-grade glioma areas (= anaplastic foci) during navigation guided resections to avoid histopathological undergrading. However, the accuracy of navigation systems with integrated pre-operative imaging data such as CSI declines during resections due to intra-operative brainshift. In two further studies, we found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift. Finally, we showed that the application of 5-ALA is also of relevance in needle biopsies for intra-operative identification of representative brain tumor tissue. These data indicate that 5-ALA is not only of major importance for resection of high-grade gliomas, but also for intra-operative visualization of anaplastic foci as well as representative brain tumor tissue in needle biopsies unaffected by brainshift. Consequently, this new technique might become a novel standard in brain tumor surgery that optimizes the patient management and improves the patient prognosis by maximizing the extent of tumor resection and enabling a precise histopathological tumor diagnosis.

  6. Relation of visual creative imagery manipulation to resting-state brain oscillations.

    PubMed

    Cai, Yuxuan; Zhang, Delong; Liang, Bishan; Wang, Zengjian; Li, Junchao; Gao, Zhenni; Gao, Mengxia; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2018-02-01

    Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01-0.08 Hz) and the left caudate nucleus (0.2-0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01-0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.

  7. Neural basis of hierarchical visual form processing of Japanese Kanji characters.

    PubMed

    Higuchi, Hiroki; Moriguchi, Yoshiya; Murakami, Hiroki; Katsunuma, Ruri; Mishima, Kazuo; Uno, Akira

    2015-12-01

    We investigated the neural processing of reading Japanese Kanji characters, which involves unique hierarchical visual processing, including the recognition of visual components specific to Kanji, such as "radicals." We performed functional MRI to measure brain activity in response to hierarchical visual stimuli containing (1) real Kanji characters (complete structure with semantic information), (2) pseudo Kanji characters (subcomponents without complete character structure), (3) artificial characters (character fragments), and (4) checkerboard (simple photic stimuli). As we expected, the peaks of the activation in response to different stimulus types were aligned within the left occipitotemporal visual region along the posterior-anterior axis in order of the structural complexity of the stimuli, from fragments (3) to complete characters (1). Moreover, only the real Kanji characters produced functional connectivity between the left inferotemporal area and the language area (left inferior frontal triangularis), while pseudo Kanji characters induced connectivity between the left inferotemporal area and the bilateral cerebellum and left putamen. Visual processing of Japanese Kanji takes place in the left occipitotemporal cortex, with a clear hierarchy within the region such that the neural activation differentiates the elements in Kanji characters' fragments, subcomponents, and semantics, with different patterns of connectivity to remote regions among the elements.

  8. Dysfunctional visual word form processing in progressive alexia.

    PubMed

    Wilson, Stephen M; Rising, Kindle; Stib, Matthew T; Rapcsak, Steven Z; Beeson, Pélagie M

    2013-04-01

    Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the 'visual word form area'. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy.

  9. Standardized Uptake Value Ratio-Independent Evaluation of Brain Amyloidosis.

    PubMed

    Chincarini, Andrea; Sensi, Francesco; Rei, Luca; Bossert, Irene; Morbelli, Silvia; Guerra, Ugo Paolo; Frisoni, Giovanni; Padovani, Alessandro; Nobili, Flavio

    2016-10-18

    The assessment of in vivo18F images targeting amyloid deposition is currently carried on by visual rating with an optional quantification based on standardized uptake value ratio (SUVr) measurements. We target the difficulties of image reading and possible shortcomings of the SUVr methods by validating a new semi-quantitative approach named ELBA. ELBA involves a minimal image preprocessing and does not rely on small, specific regions of interest (ROIs). It evaluates the whole brain and delivers a geometrical/intensity score to be used for ranking and dichotomic assessment. The method was applied to adniimages 18F-florbetapir images from the ADNI database. Five expert readers provided visual assessment in blind and open sessions. The longitudinal trend and the comparison to SUVr measurements were also evaluated. ELBA performed with area under the roc curve (AUC) = 0.997 versus the visual assessment. The score was significantly correlated to the SUVr values (r = 0.86, p < 10-4). The longitudinal analysis estimated a test/retest error of ≃2.3%. Cohort and longitudinal analysis suggests that the ELBA method accurately ranks the brain amyloid burden. The expert readers confirmed its relevance in aiding the visual assessment in a significant number (85) of difficult cases. Despite the good performance, poor and uneven image quality constitutes the major limitation.

  10. Modulation of brain activity by multiple lexical and word form variables in visual word recognition: A parametric fMRI study.

    PubMed

    Hauk, Olaf; Davis, Matthew H; Pulvermüller, Friedemann

    2008-09-01

    Psycholinguistic research has documented a range of variables that influence visual word recognition performance. Many of these variables are highly intercorrelated. Most previous studies have used factorial designs, which do not exploit the full range of values available for continuous variables, and are prone to skewed stimulus selection as well as to effects of the baseline (e.g. when contrasting words with pseudowords). In our study, we used a parametric approach to study the effects of several psycholinguistic variables on brain activation. We focussed on the variable word frequency, which has been used in numerous previous behavioural, electrophysiological and neuroimaging studies, in order to investigate the neuronal network underlying visual word processing. Furthermore, we investigated the variable orthographic typicality as well as a combined variable for word length and orthographic neighbourhood size (N), for which neuroimaging results are still either scarce or inconsistent. Data were analysed using multiple linear regression analysis of event-related fMRI data acquired from 21 subjects in a silent reading paradigm. The frequency variable correlated negatively with activation in left fusiform gyrus, bilateral inferior frontal gyri and bilateral insulae, indicating that word frequency can affect multiple aspects of word processing. N correlated positively with brain activity in left and right middle temporal gyri as well as right inferior frontal gyrus. Thus, our analysis revealed multiple distinct brain areas involved in visual word processing within one data set.

  11. Brain white matter microstructure is associated with susceptibility to motion-induced nausea.

    PubMed

    Napadow, V; Sheehan, J; Kim, J; Dassatti, A; Thurler, A H; Surjanhata, B; Vangel, M; Makris, N; Schaechter, J D; Kuo, B

    2013-05-01

    Nausea is associated with significant morbidity, and there is a wide range in the propensity of individuals to experience nausea. The neural basis of the heterogeneity in nausea susceptibility is poorly understood. Our previous functional magnetic resonance imaging (fMRI) study in healthy adults showed that a visual motion stimulus caused activation in the right MT+/V5 area, and that increased sensation of nausea due to this stimulus was associated with increased activation in the right anterior insula. For the current study, we hypothesized that individual differences in visual motion-induced nausea are due to microstructural differences in the inferior fronto-occipital fasciculus (IFOF), the white matter tract connecting the right visual motion processing area (MT+/V5) and right anterior insula. To test this hypothesis, we acquired diffusion tensor imaging data from 30 healthy adults who were subsequently dichotomized into high and low nausea susceptibility groups based on the Motion Sickness Susceptibility Scale. We quantified diffusion along the IFOF for each subject based on axial diffusivity (AD); radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), and evaluated between-group differences in these diffusion metrics. Subjects with high susceptibility to nausea rated significantly (P < 0.001) higher nausea intensity to visual motion stimuli and had significantly (P < 0.05) lower AD and MD along the right IFOF compared to subjects with low susceptibility to nausea. This result suggests that differences in white matter microstructure within tracts connecting visual motion and nausea-processing brain areas may contribute to nausea susceptibility or may have resulted from an increased history of nausea episodes. © 2013 Blackwell Publishing Ltd.

  12. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI

    PubMed Central

    Plow, Ela B.; Cattaneo, Zaira; Carlson, Thomas A.; Alvarez, George A.; Pascual-Leone, Alvaro; Battelli, Lorella

    2014-01-01

    A balance of mutual tonic inhibition between bi-hemispheric posterior parietal cortices is believed to play an important role in bilateral visual attention. However, experimental support for this notion has been mainly drawn from clinical models of unilateral damage. We have previously shown that low-frequency repetitive TMS (rTMS) over the intraparietal sulcus (IPS) generates a contralateral attentional deficit in bilateral visual tracking. Here, we used functional magnetic resonance imaging (fMRI) to study whether rTMS temporarily disrupts the inter-hemispheric balance between bilateral IPS in visual attention. Following application of 1 Hz rTMS over the left IPS, subjects performed a bilateral visual tracking task while their brain activity was recorded using fMRI. Behaviorally, tracking accuracy was reduced immediately following rTMS. Areas ventro-lateral to left IPS, including inferior parietal lobule (IPL), lateral IPS (LIPS), and middle occipital gyrus (MoG), showed decreased activity following rTMS, while dorsomedial areas, such as Superior Parietal Lobule (SPL), Superior occipital gyrus (SoG), and lingual gyrus, as well as middle temporal areas (MT+), showed higher activity. The brain activity of the homologues of these regions in the un-stimulated, right hemisphere was reversed. Interestingly, the evolution of network-wide activation related to attentional behavior following rTMS showed that activation of most occipital synergists adaptively compensated for contralateral and ipsilateral decrement after rTMS, while activation of parietal synergists, and SoG remained competing. This pattern of ipsilateral and contralateral activations empirically supports the hypothesized loss of inter-hemispheric balance that underlies clinical manifestation of visual attentional extinction. PMID:24860462

  13. Neural substrates of interpreting actions and emotions from body postures.

    PubMed

    Kana, Rajesh K; Travers, Brittany G

    2012-04-01

    Accurately reading the body language of others may be vital for navigating the social world, and this ability may be influenced by factors, such as our gender, personality characteristics and neurocognitive processes. This fMRI study examined the brain activation of 26 healthy individuals (14 women and 12 men) while they judged the action performed or the emotion felt by stick figure characters appearing in different postures. In both tasks, participants activated areas associated with visual representation of the body, motion processing and emotion recognition. Behaviorally, participants demonstrated greater ease in judging the physical actions of the characters compared to judging their emotional states, and participants showed more activation in areas associated with emotion processing in the emotion detection task, whereas they showed more activation in visual, spatial and action-related areas in the physical action task. Gender differences emerged in brain responses, such that men showed greater activation than women in the left dorsal premotor cortex in both tasks. Finally, participants higher in self-reported empathy demonstrated greater activation in areas associated with self-referential processing and emotion interpretation. These results suggest that empathy levels and sex of the participant may affect neural responses to emotional body language.

  14. Neural substrates of interpreting actions and emotions from body postures

    PubMed Central

    Travers, Brittany G.

    2012-01-01

    Accurately reading the body language of others may be vital for navigating the social world, and this ability may be influenced by factors, such as our gender, personality characteristics and neurocognitive processes. This fMRI study examined the brain activation of 26 healthy individuals (14 women and 12 men) while they judged the action performed or the emotion felt by stick figure characters appearing in different postures. In both tasks, participants activated areas associated with visual representation of the body, motion processing and emotion recognition. Behaviorally, participants demonstrated greater ease in judging the physical actions of the characters compared to judging their emotional states, and participants showed more activation in areas associated with emotion processing in the emotion detection task, whereas they showed more activation in visual, spatial and action-related areas in the physical action task. Gender differences emerged in brain responses, such that men showed greater activation than women in the left dorsal premotor cortex in both tasks. Finally, participants higher in self-reported empathy demonstrated greater activation in areas associated with self-referential processing and emotion interpretation. These results suggest that empathy levels and sex of the participant may affect neural responses to emotional body language. PMID:21504992

  15. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex

    PubMed Central

    Khalil, Reem; Levitt, Jonathan B.

    2014-01-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from four to ten weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1, and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at four weeks postnatal, the retinotopic arrangement of feedback appears essentially adultlike; however, Suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also find significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18 which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. PMID:24665018

  16. Developmental remodeling of corticocortical feedback circuits in ferret visual cortex.

    PubMed

    Khalil, Reem; Levitt, Jonathan B

    2014-10-01

    Visual cortical areas in the mammalian brain are linked through a system of interareal feedforward and feedback connections, which presumably underlie different visual functions. We characterized the refinement of feedback projections to primary visual cortex (V1) from multiple sources in juvenile ferrets ranging in age from 4-10 weeks postnatal. We studied whether the refinement of different aspects of feedback circuitry from multiple visual cortical areas proceeds at a similar rate in all areas. We injected the neuronal tracer cholera toxin B (CTb) into V1 and mapped the areal and laminar distribution of retrogradely labeled cells in extrastriate cortex. Around the time of eye opening at 4 weeks postnatal, the retinotopic arrangement of feedback appears essentially adult-like; however, suprasylvian cortex supplies the greatest proportion of feedback, whereas area 18 supplies the greatest proportion in the adult. The density of feedback cells and the ratio of supragranular/infragranular feedback contribution declined in this period at a similar rate in all cortical areas. We also found significant feedback to V1 from layer IV of all extrastriate areas. The regularity of cell spacing, the proportion of feedback arising from layer IV, and the tangential extent of feedback in each area all remained essentially unchanged during this period, except for the infragranular feedback source in area 18, which expanded. Thus, while much of the basic pattern of cortical feedback to V1 is present before eye opening, there is major synchronous reorganization after eye opening, suggesting a crucial role for visual experience in this remodeling process. © 2014 Wiley Periodicals, Inc.

  17. Bioinorganic Activity of Technetium Radiopharmaceuticals.

    ERIC Educational Resources Information Center

    Pinkerton, Thomas C.; And Others

    1985-01-01

    Technetium radiopharmaceuticals are diagnostic imaging agents used in the field of nuclear medicine to visualize tissues, anatomical structures, and metabolic disorders. Bioavailability of technetium complexes, thyroid imaging, brain imaging, kidney imaging, imaging liver function, bone imaging, and heart imaging are the major areas discussed. (JN)

  18. Assessment of cerebrocortical areas associated with sexual arousal in depressive women using functional MR imaging.

    PubMed

    Yang, Jong-Chul; Park, Kwangsung; Eun, Sung-Jong; Lee, Moo-Suk; Yoon, Jin-Sang; Shin, Il-Seon; Kim, Yong-Ku; Chung, Tae-Woong; Kang, Heoung-Keun; Jeong, Gwang-Woo

    2008-03-01

    Mental illness is closely related with sexual dysfunction. A number of investigators have reported that depressive women have difficulties in sexual arousal. The purpose of this study was to compare the cerebrocortical regions associated with sexual arousal between the healthy and depressive women using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) technique. Together with nine healthy women (mean age: 40.3), seven depressive women (mean age: 41.7 years, mean Beck Depression Inventory: 35.6, mean Hamilton Rating Scale Depression-17: 34.9) underwent fMRI examinations using a 1.5T MR scanner (Signa Horizon; GE Medical Systems, Milwaukee, WI, USA). The fMRI data were obtained from seven oblique planes using gradient-echo EPI. Sexual stimulation paradigm began with a 1-minute rest and then 4-minute stimulation using an erotic video film. The brain activation maps and their resulting quantification were analyzed by the statistical parametric mapping (SPM99) program. The number of pixels activated by each task was used as brain activity, where the significance of the differences was evaluated by using independent t-test. We measured brain activation areas using BOLD-based fMRI with visual sexual stimulation in healthy volunteers and depressive patients. Healthy women were significantly (P < 0.05) activated in the regions of middle occipital gyrus, middle temporal gyrus, inferior frontal gyrus, insula, hypothalamus, septal area, anterior cingulate gyrus, parahippocampal gyrus, thalamus, and amygdala by erotic visual stimulation. In comparison with the healthy women, the depressive women gave lower activity, especially in the brain regions of hypothalamus (55.5:3.0), septal area (49.6:8.6), anterior cingulate gyrus (23.5:11.0), and parahippocampal gyrus (18.2:5.8). This preliminary study performed by fMRI gives valuable information on differentiation of the activated cerebral regions associated with visually evoked sexual arousal between healthy and depressive women. In addition, these findings might be useful to understand neural mechanisms for female sexual dysfunction in depressive women.

  19. Neural Signatures of Stimulus Features in Visual Working Memory—A Spatiotemporal Approach

    PubMed Central

    Jackson, Margaret C.; Klein, Christoph; Mohr, Harald; Shapiro, Kimron L.; Linden, David E. J.

    2010-01-01

    We examined the neural signatures of stimulus features in visual working memory (WM) by integrating functional magnetic resonance imaging (fMRI) and event-related potential data recorded during mental manipulation of colors, rotation angles, and color–angle conjunctions. The N200, negative slow wave, and P3b were modulated by the information content of WM, and an fMRI-constrained source model revealed a progression in neural activity from posterior visual areas to higher order areas in the ventral and dorsal processing streams. Color processing was associated with activity in inferior frontal gyrus during encoding and retrieval, whereas angle processing involved right parietal regions during the delay interval. WM for color–angle conjunctions did not involve any additional neural processes. The finding that different patterns of brain activity underlie WM for color and spatial information is consistent with ideas that the ventral/dorsal “what/where” segregation of perceptual processing influences WM organization. The absence of characteristic signatures of conjunction-related brain activity, which was generally intermediate between the 2 single conditions, suggests that conjunction judgments are based on the coordinated activity of these 2 streams. PMID:19429863

  20. Reorganization of neural systems mediating peripheral visual selective attention in the deaf: An optical imaging study.

    PubMed

    Seymour, Jenessa L; Low, Kathy A; Maclin, Edward L; Chiarelli, Antonio M; Mathewson, Kyle E; Fabiani, Monica; Gratton, Gabriele; Dye, Matthew W G

    2017-01-01

    Theories of brain plasticity propose that, in the absence of input from the preferred sensory modality, some specialized brain areas may be recruited when processing information from other modalities, which may result in improved performance. The Useful Field of View task has previously been used to demonstrate that early deafness positively impacts peripheral visual attention. The current study sought to determine the neural changes associated with those deafness-related enhancements in visual performance. Based on previous findings, we hypothesized that recruitment of posterior portions of Brodmann area 22, a brain region most commonly associated with auditory processing, would be correlated with peripheral selective attention as measured using the Useful Field of View task. We report data from severe to profoundly deaf adults and normal-hearing controls who performed the Useful Field of View task while cortical activity was recorded using the event-related optical signal. Behavioral performance, obtained in a separate session, showed that deaf subjects had lower thresholds (i.e., better performance) on the Useful Field of View task. The event-related optical data indicated greater activity for the deaf adults than for the normal-hearing controls during the task in the posterior portion of Brodmann area 22 in the right hemisphere. Furthermore, the behavioral thresholds correlated significantly with this neural activity. This work provides further support for the hypothesis that cross-modal plasticity in deaf individuals appears in higher-order auditory cortices, whereas no similar evidence was obtained for primary auditory areas. It is also the only neuroimaging study to date that has linked deaf-related changes in the right temporal lobe to visual task performance outside of the imaging environment. The event-related optical signal is a valuable technique for studying cross-modal plasticity in deaf humans. The non-invasive and relatively quiet characteristics of this technique have great potential utility in research with clinical populations such as deaf children and adults who have received cochlear or auditory brainstem implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Stimulus Dependence of Correlated Variability across Cortical Areas

    PubMed Central

    Cohen, Marlene R.

    2016-01-01

    The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was predicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. PMID:27413163

  2. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2013-01-01

    In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for "reading" texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the "bottleneck" for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition.

  3. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?

    PubMed Central

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2013-01-01

    In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for “reading” texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the “bottleneck” for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition. PMID:23966968

  4. Visual Agnosia and Posterior Cerebral Artery Infarcts: An Anatomical-Clinical Study

    PubMed Central

    Martinaud, Olivier; Pouliquen, Dorothée; Gérardin, Emmanuel; Loubeyre, Maud; Hirsbein, David; Hannequin, Didier; Cohen, Laurent

    2012-01-01

    Background To evaluate systematically the cognitive deficits following posterior cerebral artery (PCA) strokes, especially agnosic visual disorders, and to study anatomical-clinical correlations. Methods and Findings We investigated 31 patients at the chronic stage (mean duration of 29.1 months post infarct) with standardized cognitive tests. New experimental tests were used to assess visual impairments for words, faces, houses, and objects. Forty-one healthy subjects participated as controls. Brain lesions were normalized, combined, and related to occipitotemporal areas responsive to specific visual categories, including words (VWFA), faces (FFA and OFA), houses (PPA) and common objects (LOC). Lesions were located in the left hemisphere in 15 patients, in the right in 13, and bilaterally in 3. Visual field defects were found in 23 patients. Twenty patients had a visual disorder in at least one of the experimental tests (9 with faces, 10 with houses, 7 with phones, 3 with words). Six patients had a deficit just for a single category of stimulus. The regions of maximum overlap of brain lesions associated with a deficit for a given category of stimuli were contiguous to the peaks of the corresponding functional areas as identified in normal subjects. However, the strength of anatomical-clinical correlations was greater for words than for faces or houses, probably due to the stronger lateralization of the VWFA, as compared to the FFA or the PPA. Conclusions Agnosic visual disorders following PCA infarcts are more frequent than previously reported. Dedicated batteries of tests, such as those developed here, are required to identify such deficits, which may escape clinical notice. The spatial relationships of lesions and of regions activated in normal subjects predict the nature of the deficits, although individual variability and bilaterally represented systems may blur those correlations. PMID:22276198

  5. Visual agnosia and posterior cerebral artery infarcts: an anatomical-clinical study.

    PubMed

    Martinaud, Olivier; Pouliquen, Dorothée; Gérardin, Emmanuel; Loubeyre, Maud; Hirsbein, David; Hannequin, Didier; Cohen, Laurent

    2012-01-01

    To evaluate systematically the cognitive deficits following posterior cerebral artery (PCA) strokes, especially agnosic visual disorders, and to study anatomical-clinical correlations. We investigated 31 patients at the chronic stage (mean duration of 29.1 months post infarct) with standardized cognitive tests. New experimental tests were used to assess visual impairments for words, faces, houses, and objects. Forty-one healthy subjects participated as controls. Brain lesions were normalized, combined, and related to occipitotemporal areas responsive to specific visual categories, including words (VWFA), faces (FFA and OFA), houses (PPA) and common objects (LOC). Lesions were located in the left hemisphere in 15 patients, in the right in 13, and bilaterally in 3. Visual field defects were found in 23 patients. Twenty patients had a visual disorder in at least one of the experimental tests (9 with faces, 10 with houses, 7 with phones, 3 with words). Six patients had a deficit just for a single category of stimulus. The regions of maximum overlap of brain lesions associated with a deficit for a given category of stimuli were contiguous to the peaks of the corresponding functional areas as identified in normal subjects. However, the strength of anatomical-clinical correlations was greater for words than for faces or houses, probably due to the stronger lateralization of the VWFA, as compared to the FFA or the PPA. Agnosic visual disorders following PCA infarcts are more frequent than previously reported. Dedicated batteries of tests, such as those developed here, are required to identify such deficits, which may escape clinical notice. The spatial relationships of lesions and of regions activated in normal subjects predict the nature of the deficits, although individual variability and bilaterally represented systems may blur those correlations.

  6. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area.

    PubMed

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3-5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment.

  7. Learning Peri-saccadic Remapping of Receptive Field from Experience in Lateral Intraparietal Area

    PubMed Central

    Wang, Xiao; Wu, Yan; Zhang, Mingsha; Wu, Si

    2017-01-01

    Our eyes move constantly at a frequency of 3–5 times per second. These movements, called saccades, induce the sweeping of visual images on the retina, yet we perceive the world as stable. It has been suggested that the brain achieves this visual stability via predictive remapping of neuronal receptive field (RF). A recent experimental study disclosed details of this remapping process in the lateral intraparietal area (LIP), that is, about the time of the saccade, the neuronal RF expands along the saccadic trajectory temporally, covering the current RF (CRF), the future RF (FRF), and the region the eye will sweep through during the saccade. A cortical wave (CW) model was also proposed, which attributes the RF remapping as a consequence of neural activity propagating in the cortex, triggered jointly by a visual stimulus and the corollary discharge (CD) signal responsible for the saccade. In this study, we investigate how this CW model is learned naturally from visual experiences at the development of the brain. We build a two-layer network, with one layer consisting of LIP neurons and the other superior colliculus (SC) neurons. Initially, neuronal connections are random and non-selective. A saccade will cause a static visual image to sweep through the retina passively, creating the effect of the visual stimulus moving in the opposite direction of the saccade. According to the spiking-time-dependent-plasticity rule, the connection path in the opposite direction of the saccade between LIP neurons and the connection path from SC to LIP are enhanced. Over many such visual experiences, the CW model is developed, which generates the peri-saccadic RF remapping in LIP as observed in the experiment. PMID:29249953

  8. Functional cortical and subcortical abnormalities in pedophilia: a combined study using a choice reaction time task and fMRI.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Dombert, Beate; Santtila, Pekka; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2011-06-01

    Pedophiles show sexual interest in prepubescent children but not in adults. Research into the neurofunctional mechanisms of paraphilias has gathered momentum over the last years. To elucidate the underlying neural processing of sexual interest among pedophiles and to highlight the differences in comparison with nonparaphilic sexual interest in adults. Nine pedophilic patients and 11 nonpedophilic control subjects underwent functional magnetic resonance imaging (fMRI) while viewing pictures of nude (prepubescents, pubescents, and adults) and neutral content, as well as performing a concomitant choice reaction time task (CRTT). Brain blood oxygen level-dependent (BOLD) signals and response latencies in the CRTT during exposure to each picture category. Analysis of behavioral data showed group differences in reaction times regarding prepubescent and adult but not pubescent stimuli. During stimulation with pictures displaying nude prepubescents, pedophiles showed increased BOLD response in brain areas known to be involved in processing of visual sexual stimuli. Comparison of pedophilic patients with the control group discovered differences in BOLD responses with respect to prepubescent and adult but not to pubescent stimuli. Differential effects in particular occurred in the cingulate gyrus and insular region. The brain response of pedophiles to visual sexual stimulation by images of nude prepubescents is comparable with previously described neural patterns of sexual processing in nonpedophilic human males evoked by visual stimuli depicting nude adults. Nevertheless, group differences found in the cingulate gyrus and the insular region suggest an important role of these brain areas in pedophilic sexual interest. Furthermore, combining attention-based methods like CRTT with fMRI may be a viable option for future diagnostic procedures regarding pedophilia. © 2011 International Society for Sexual Medicine.

  9. Disturbance of visual search by stimulating to posterior parietal cortex in the brain using transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Iramina, Keiji; Ge, Sheng; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo

    2009-04-01

    In this study, we applied a transcranial magnetic stimulation (TMS) to investigate the temporal aspect for the functional processing of visual attention. Although it has been known that right posterior parietal cortex (PPC) in the brain has a role in certain visual search tasks, there is little knowledge about the temporal aspect of this area. Three visual search tasks that have different difficulties of task execution individually were carried out. These three visual search tasks are the "easy feature task," the "hard feature task," and the "conjunction task." To investigate the temporal aspect of the PPC involved in the visual search, we applied various stimulus onset asynchronies (SOAs) and measured the reaction time of the visual search. The magnetic stimulation was applied on the right PPC or the left PPC by the figure-eight coil. The results show that the reaction times of the hard feature task are longer than those of the easy feature task. When SOA=150 ms, compared with no-TMS condition, there was a significant increase in target-present reaction time when TMS pulses were applied. We considered that the right PPC was involved in the visual search at about SOA=150 ms after visual stimulus presentation. The magnetic stimulation to the right PPC disturbed the processing of the visual search. However, the magnetic stimulation to the left PPC gives no effect on the processing of the visual search.

  10. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing.

    PubMed

    Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R

    2018-04-01

    A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.

  11. Strabismus and the Oculomotor System: Insights from Macaque Models

    PubMed Central

    Das, Vallabh E.

    2017-01-01

    Disrupting binocular vision in infancy leads to strabismus and oftentimes to a variety of associated visual sensory deficits and oculomotor abnormalities. Investigation of this disorder has been aided by the development of various animal models, each of which has advantages and disadvantages. In comparison to studies of binocular visual responses in cortical structures, investigations of neural oculomotor structures that mediate the misalignment and abnormalities of eye movements have been more recent, and these studies have shown that different brain areas are intimately involved in driving several aspects of the strabismic condition, including horizontal misalignment, dissociated deviations, A and V patterns of strabismus, disconjugate eye movements, nystagmus, and fixation switch. The responses of cells in visual and oculomotor areas that potentially drive the sensory deficits and also eye alignment and eye movement abnormalities follow a general theme of disrupted calibration, lower sensitivity, and poorer specificity compared with the normally developed visual oculomotor system. PMID:28532347

  12. The neuropsychological and neuroradiological correlates of slowly progressive visual agnosia.

    PubMed

    Giovagnoli, Anna Rita; Aresi, Anna; Reati, Fabiola; Riva, Alice; Gobbo, Clara; Bizzi, Alberto

    2009-04-01

    The case of a 64-year-old woman affected by slowly progressive visual agnosia is reported aiming to describe specific cognitive-brain relationships. Longitudinal clinical and neuropsychological assessment, combined with magnetic resonance imaging (MRI), spectroscopy, and positron emission tomography (PET) were used. Sequential neuropsychological evaluations performed during a period of 9 years since disease onset showed the appearance of apperceptive and associative visual agnosia, alexia without agraphia, agraphia, finger agnosia, and prosopoagnosia, but excluded dementia. MRI showed moderate diffuse cortical atrophy, with predominant atrophy in the left posterior cortical areas (temporal, parietal, and lateral occipital cortical gyri). 18FDG-PET showed marked bilateral posterior cortical hypometabolism; proton magnetic resonance spectroscopic imaging disclosed severe focal N-acetyl-aspartate depletion in the left temporoparietal and lateral occipital cortical areas. In conclusion, selective metabolic alterations and neuronal loss in the left temporoparietooccipital cortex may determine progressive visual agnosia in the absence of dementia.

  13. Categorization for Faces and Tools—Two Classes of Objects Shaped by Different Experience—Differs in Processing Timing, Brain Areas Involved, and Repetition Effects

    PubMed Central

    Kozunov, Vladimir; Nikolaeva, Anastasia; Stroganova, Tatiana A.

    2018-01-01

    The brain mechanisms that integrate the separate features of sensory input into a meaningful percept depend upon the prior experience of interaction with the object and differ between categories of objects. Recent studies using representational similarity analysis (RSA) have characterized either the spatial patterns of brain activity for different categories of objects or described how category structure in neuronal representations emerges in time, but never simultaneously. Here we applied a novel, region-based, multivariate pattern classification approach in combination with RSA to magnetoencephalography data to extract activity associated with qualitatively distinct processing stages of visual perception. We asked participants to name what they see whilst viewing bitonal visual stimuli of two categories predominantly shaped by either value-dependent or sensorimotor experience, namely faces and tools, and meaningless images. We aimed to disambiguate the spatiotemporal patterns of brain activity between the meaningful categories and determine which differences in their processing were attributable to either perceptual categorization per se, or later-stage mentalizing-related processes. We have extracted three stages of cortical activity corresponding to low-level processing, category-specific feature binding, and supra-categorical processing. All face-specific spatiotemporal patterns were associated with bilateral activation of ventral occipito-temporal areas during the feature binding stage at 140–170 ms. The tool-specific activity was found both within the categorization stage and in a later period not thought to be associated with binding processes. The tool-specific binding-related activity was detected within a 210–220 ms window and was located to the intraparietal sulcus of the left hemisphere. Brain activity common for both meaningful categories started at 250 ms and included widely distributed assemblies within parietal, temporal, and prefrontal regions. Furthermore, we hypothesized and tested whether activity within face and tool-specific binding-related patterns would demonstrate oppositely acting effects following procedural perceptual learning. We found that activity in the ventral, face-specific network increased following the stimuli repetition. In contrast, tool processing in the dorsal network adapted by reducing its activity over the repetition period. Altogether, we have demonstrated that activity associated with visual processing of faces and tools during the categorization stage differ in processing timing, brain areas involved, and in their dynamics underlying stimuli learning. PMID:29379426

  14. Categorization for Faces and Tools-Two Classes of Objects Shaped by Different Experience-Differs in Processing Timing, Brain Areas Involved, and Repetition Effects.

    PubMed

    Kozunov, Vladimir; Nikolaeva, Anastasia; Stroganova, Tatiana A

    2017-01-01

    The brain mechanisms that integrate the separate features of sensory input into a meaningful percept depend upon the prior experience of interaction with the object and differ between categories of objects. Recent studies using representational similarity analysis (RSA) have characterized either the spatial patterns of brain activity for different categories of objects or described how category structure in neuronal representations emerges in time, but never simultaneously. Here we applied a novel, region-based, multivariate pattern classification approach in combination with RSA to magnetoencephalography data to extract activity associated with qualitatively distinct processing stages of visual perception. We asked participants to name what they see whilst viewing bitonal visual stimuli of two categories predominantly shaped by either value-dependent or sensorimotor experience, namely faces and tools, and meaningless images. We aimed to disambiguate the spatiotemporal patterns of brain activity between the meaningful categories and determine which differences in their processing were attributable to either perceptual categorization per se , or later-stage mentalizing-related processes. We have extracted three stages of cortical activity corresponding to low-level processing, category-specific feature binding, and supra-categorical processing. All face-specific spatiotemporal patterns were associated with bilateral activation of ventral occipito-temporal areas during the feature binding stage at 140-170 ms. The tool-specific activity was found both within the categorization stage and in a later period not thought to be associated with binding processes. The tool-specific binding-related activity was detected within a 210-220 ms window and was located to the intraparietal sulcus of the left hemisphere. Brain activity common for both meaningful categories started at 250 ms and included widely distributed assemblies within parietal, temporal, and prefrontal regions. Furthermore, we hypothesized and tested whether activity within face and tool-specific binding-related patterns would demonstrate oppositely acting effects following procedural perceptual learning. We found that activity in the ventral, face-specific network increased following the stimuli repetition. In contrast, tool processing in the dorsal network adapted by reducing its activity over the repetition period. Altogether, we have demonstrated that activity associated with visual processing of faces and tools during the categorization stage differ in processing timing, brain areas involved, and in their dynamics underlying stimuli learning.

  15. The Puzzle of Visual Development: Behavior and Neural Limits.

    PubMed

    Kiorpes, Lynne

    2016-11-09

    The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.

  16. The selectivity of responses to red-green colour and achromatic contrast in the human visual cortex: an fMRI adaptation study.

    PubMed

    Mullen, Kathy T; Chang, Dorita H F; Hess, Robert F

    2015-12-01

    There is controversy as to how responses to colour in the human brain are organized within the visual pathways. A key issue is whether there are modular pathways that respond selectively to colour or whether there are common neural substrates for both colour and achromatic (Ach) contrast. We used functional magnetic resonance imaging (fMRI) adaptation to investigate the responses of early and extrastriate visual areas to colour and Ach contrast. High-contrast red-green (RG) and Ach sinewave rings (0.5 cycles/degree, 2 Hz) were used as both adapting stimuli and test stimuli in a block design. We found robust adaptation to RG or Ach contrast in all visual areas. Cross-adaptation between RG and Ach contrast occurred in all areas indicating the presence of integrated, colour and Ach responses. Notably, we revealed contrasting trends for the two test stimuli. For the RG test, unselective processing (robust adaptation to both RG and Ach contrast) was most evident in the early visual areas (V1 and V2), but selective responses, revealed as greater adaptation between the same stimuli than cross-adaptation between different stimuli, emerged in the ventral cortex, in V4 and VO in particular. For the Ach test, unselective responses were again most evident in early visual areas but Ach selectivity emerged in the dorsal cortex (V3a and hMT+). Our findings support a strong presence of integrated mechanisms for colour and Ach contrast across the visual hierarchy, with a progression towards selective processing in extrastriate visual areas. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Emerging Object Representations in the Visual System Predict Reaction Times for Categorization

    PubMed Central

    Ritchie, J. Brendan; Tovar, David A.; Carlson, Thomas A.

    2015-01-01

    Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition. PMID:26107634

  18. Human area MT+ shows load-dependent activation during working memory maintenance with continuously morphing stimulation.

    PubMed

    Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred

    2014-07-11

    Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.

  19. Combined contributions of feedforward and feedback inputs to bottom-up attention

    PubMed Central

    Khorsand, Peyman; Moore, Tirin; Soltani, Alireza

    2015-01-01

    In order to deal with a large amount of information carried by visual inputs entering the brain at any given point in time, the brain swiftly uses the same inputs to enhance processing in one part of visual field at the expense of the others. These processes, collectively called bottom-up attentional selection, are assumed to solely rely on feedforward processing of the external inputs, as it is implied by the nomenclature. Nevertheless, evidence from recent experimental and modeling studies points to the role of feedback in bottom-up attention. Here, we review behavioral and neural evidence that feedback inputs are important for the formation of signals that could guide attentional selection based on exogenous inputs. Moreover, we review results from a modeling study elucidating mechanisms underlying the emergence of these signals in successive layers of neural populations and how they depend on feedback from higher visual areas. We use these results to interpret and discuss more recent findings that can further unravel feedforward and feedback neural mechanisms underlying bottom-up attention. We argue that while it is descriptively useful to separate feedforward and feedback processes underlying bottom-up attention, these processes cannot be mechanistically separated into two successive stages as they occur at almost the same time and affect neural activity within the same brain areas using similar neural mechanisms. Therefore, understanding the interaction and integration of feedforward and feedback inputs is crucial for better understanding of bottom-up attention. PMID:25784883

  20. Direction of Magnetoencephalography Sources Associated with Feedback and Feedforward Contributions in a Visual Object Recognition Task

    PubMed Central

    Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe

    2014-01-01

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356

  1. Eye-gaze independent EEG-based brain-computer interfaces for communication.

    PubMed

    Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario.

  2. Eye-gaze independent EEG-based brain-computer interfaces for communication

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.

  3. Skill dependent audiovisual integration in the fusiform induces repetition suppression.

    PubMed

    McNorgan, Chris; Booth, James R

    2015-02-01

    Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Skill Dependent Audiovisual Integration in the Fusiform Induces Repetition Suppression

    PubMed Central

    McNorgan, Chris; Booth, James R.

    2015-01-01

    Learning to read entails mapping existing phonological representations to novel orthographic representations and is thus an ideal context for investigating experience driven audiovisual integration. Because two dominant brain-based theories of reading development hinge on the sensitivity of the visual-object processing stream to phonological information, we were interested in how reading skill relates to audiovisual integration in this area. Thirty-two children between 8 and 13 years of age spanning a range of reading skill participated in a functional magnetic resonance imaging experiment. Participants completed a rhyme judgment task to word pairs presented unimodally (auditory- or visual-only) and cross-modally (auditory followed by visual). Skill-dependent sub-additive audiovisual modulation was found in left fusiform gyrus, extending into the putative visual word form area, and was correlated with behavioral orthographic priming. These results suggest learning to read promotes facilitatory audiovisual integration in the ventral visual-object processing stream and may optimize this region for orthographic processing. PMID:25585276

  5. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.

    PubMed

    van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R

    2018-05-04

    Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Gender differences in cerebral metabolism for color processing in mice: A PET/MRI Study.

    PubMed

    Njemanze, Philip C; Kranz, Mathias; Amend, Mario; Hauser, Jens; Wehrl, Hans; Brust, Peter

    2017-01-01

    Color processing is a central component of mammalian vision. Gender-related differences of color processing revealed by non-invasive functional transcranial Doppler ultrasound suggested right hemisphere pattern for blue/yellow chromatic opponency by men, and a left hemisphere pattern by women. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) with statistical parametric mapping (SPM) during light stimulation with blue and yellow filters compared to darkness condition. PET revealed a reverse pattern relative to dark condition compared to previous human studies: Male mice presented with left visual cortex dominance for blue through the right eye, while female mice presented with right visual cortex dominance for blue through the left eye. We applied statistical parametric mapping (SPM) to examine gender differences in activated architectonic areas within the orbital and medial prefrontal cortex and related cortical and sub-cortical areas that lead to the striatum, medial thalamus and other brain areas. The metabolic connectivity of the orbital and medial prefrontal cortex evoked by blue stimulation spread through a wide range of brain structures implicated in viscerosensory and visceromotor systems in the left intra-hemispheric regions in male, but in the right-to-left inter-hemispheric regions in female mice. Color functional ocular dominance plasticity was noted in the right eye in male mice but in the left eye in female mice. This study of color processing in an animal model could be applied in the study of the role of gender differences in brain disease.

  7. The Impact of Reading Intervention on Brain Responses Underlying Language in Children With Autism.

    PubMed

    Murdaugh, Donna L; Deshpande, Hrishikesh D; Kana, Rajesh K

    2016-01-01

    Deficits in language comprehension have been widely reported in children with autism spectrum disorders (ASD), with behavioral and neuroimaging studies finding increased reliance on visuospatial processing to aid in language comprehension. However, no study to date, has taken advantage of this strength in visuospatial processing to improve language comprehension difficulties in ASD. This study used a translational neuroimaging approach to test the role of a visual imagery-based reading intervention in improving the brain circuitry underlying language processing in children with ASD. Functional magnetic resonance imaging (MRI), in a longitudinal study design, was used to investigate intervention-related change in sentence comprehension, brain activation, and functional connectivity in three groups of participants (age 8-13 years): an experimental group of ASD children (ASD-EXP), a wait-list control group of ASD children (ASD-WLC), and a group of typically developing control children. After intervention, the ASD-EXP group showed significant increase in activity in visual and language areas and right-hemisphere language area homologues, putamen, and thalamus, suggestive of compensatory routes to increase proficiency in reading comprehension. Additionally, ASD children who had the most improvement in reading comprehension after intervention showed greater functional connectivity between left-hemisphere language areas, the middle temporal gyrus and inferior frontal gyrus while reading high imagery sentences. Thus, the findings of this study, which support the principles of dual coding theory [Paivio 2007], suggest the potential of a strength-based reading intervention in changing brain responses and facilitating better reading comprehension in ASD children. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  8. [Brain mapping in verbal and spatial thinking].

    PubMed

    Ivanitskiĭ, A M; Portnova, G V; Martynova, O V; Maĭorova, L A; Fedina, O N; Petrushevskiĭ, A G

    2013-01-01

    The goal of this study was to describe the topography of the active cortical areas and subcortical structuresin verbal and spatial thinking. The method of functional magnetic resonance imaging (fMRI) was used. 18 right-handed subjects participated in the study. Four types of tasks were presented: two experimental tasks--verbal (anagram) and spatial (search for a piece to complement a square), and two types of control tasks (written words and a spatial task, where all the pieces are identical). In solving verbal tasks the greater volume of activation was observed in the left hemisphere involving Broca's area, while the right middle frontal gyrus was activated in solving the spatial tasks. For occipital region an activation of the visual field 18 was more explicitin solving spatial problems, while the solution of anagrams caused an activation of the field 19 associated with higher levels of visual processing. The cerebellum was active bilaterally in both tasks with predominance in the second. The obtained fMRI data indicate that the verbal and spatial types of thinking are provided by an activation of narrow specific sets of brain structures, while the previous electrophysiological studies indicate the distributed nature of the brain processes in thinking. Combining these two approaches, it can be concluded that cognitive functions are supported by the systemic brain processes with a distinct location of the particular salient structures.

  9. Differential processing of binocular and monocular gloss cues in human visual cortex.

    PubMed

    Sun, Hua-Chun; Di Luca, Massimiliano; Ban, Hiroshi; Muryy, Alexander; Fleming, Roland W; Welchman, Andrew E

    2016-06-01

    The visual impression of an object's surface reflectance ("gloss") relies on a range of visual cues, both monocular and binocular. Whereas previous imaging work has identified processing within ventral visual areas as important for monocular cues, little is known about cortical areas involved in processing binocular cues. Here, we used human functional MRI (fMRI) to test for brain areas selectively involved in the processing of binocular cues. We manipulated stereoscopic information to create four conditions that differed in their disparity structure and in the impression of surface gloss that they evoked. We performed multivoxel pattern analysis to find areas whose fMRI responses allow classes of stimuli to be distinguished based on their depth structure vs. material appearance. We show that higher dorsal areas play a role in processing binocular gloss information, in addition to known ventral areas involved in material processing, with ventral area lateral occipital responding to both object shape and surface material properties. Moreover, we tested for similarities between the representation of gloss from binocular cues and monocular cues. Specifically, we tested for transfer in the decoding performance of an algorithm trained on glossy vs. matte objects defined by either binocular or by monocular cues. We found transfer effects from monocular to binocular cues in dorsal visual area V3B/kinetic occipital (KO), suggesting a shared representation of the two cues in this area. These results indicate the involvement of mid- to high-level visual circuitry in the estimation of surface material properties, with V3B/KO potentially playing a role in integrating monocular and binocular cues. Copyright © 2016 the American Physiological Society.

  10. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning.

    PubMed

    Chen, Nihong; Bi, Taiyong; Zhou, Tiangang; Li, Sheng; Liu, Zili; Fang, Fang

    2015-07-15

    Much has been debated about whether the neural plasticity mediating perceptual learning takes place at the sensory or decision-making stage in the brain. To investigate this, we trained human subjects in a visual motion direction discrimination task. Behavioral performance and BOLD signals were measured before, immediately after, and two weeks after training. Parallel to subjects' long-lasting behavioral improvement, the neural selectivity in V3A and the effective connectivity from V3A to IPS (intraparietal sulcus, a motion decision-making area) exhibited a persistent increase for the trained direction. Moreover, the improvement was well explained by a linear combination of the selectivity and connectivity increases. These findings suggest that the long-term neural mechanisms of motion perceptual learning are implemented by sharpening cortical tuning to trained stimuli at the sensory processing stage, as well as by optimizing the connections between sensory and decision-making areas in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Neuroanatomical substrates of action perception and understanding: an anatomic likelihood estimation meta-analysis of lesion-symptom mapping studies in brain injured patients

    PubMed Central

    Urgesi, Cosimo; Candidi, Matteo; Avenanti, Alessio

    2014-01-01

    Several neurophysiologic and neuroimaging studies suggested that motor and perceptual systems are tightly linked along a continuum rather than providing segregated mechanisms supporting different functions. Using correlational approaches, these studies demonstrated that action observation activates not only visual but also motor brain regions. On the other hand, brain stimulation and brain lesion evidence allows tackling the critical question of whether our action representations are necessary to perceive and understand others’ actions. In particular, recent neuropsychological studies have shown that patients with temporal, parietal, and frontal lesions exhibit a number of possible deficits in the visual perception and the understanding of others’ actions. The specific anatomical substrates of such neuropsychological deficits however, are still a matter of debate. Here we review the existing literature on this issue and perform an anatomic likelihood estimation meta-analysis of studies using lesion-symptom mapping methods on the causal relation between brain lesions and non-linguistic action perception and understanding deficits. The meta-analysis encompassed data from 361 patients tested in 11 studies and identified regions in the inferior frontal cortex, the inferior parietal cortex and the middle/superior temporal cortex, whose damage is consistently associated with poor performance in action perception and understanding tasks across studies. Interestingly, these areas correspond to the three nodes of the action observation network that are strongly activated in response to visual action perception in neuroimaging research and that have been targeted in previous brain stimulation studies. Thus, brain lesion mapping research provides converging causal evidence that premotor, parietal and temporal regions play a crucial role in action recognition and understanding. PMID:24910603

  12. Effects of age and sex on developmental neural networks of visual-spatial attention allocation.

    PubMed

    Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna

    2010-06-01

    Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex differences in the functional maturation of these brain regions. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Reduction in spontaneous firing of mouse excitatory layer 4 cortical neurons following visual classical conditioning

    NASA Astrophysics Data System (ADS)

    Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.

    2017-08-01

    The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.

  14. Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder.

    PubMed

    Kucyi, Aaron; Hove, Michael J; Biederman, Joseph; Van Dijk, Koene R A; Valera, Eve M

    2015-09-01

    Attention-deficit/hyperactivity disorder (ADHD) is increasingly understood as a disorder of spontaneous brain-network interactions. The default mode network (DMN), implicated in ADHD-linked behaviors including mind-wandering and attentional fluctuations, has been shown to exhibit abnormal spontaneous functional connectivity (FC) within-network and with other networks (salience, dorsal attention and frontoparietal) in ADHD. Although the cerebellum has been implicated in the pathophysiology of ADHD, it remains unknown whether cerebellar areas of the DMN (CerDMN) exhibit altered FC with cortical networks in ADHD. Here, 23 adults with ADHD and 23 age-, IQ-, and sex-matched controls underwent resting state fMRI. The mean time series of CerDMN areas was extracted, and FC with the whole brain was calculated. Whole-brain between-group differences in FC were assessed. Additionally, relationships between inattention and individual differences in FC were assessed for between-group interactions. In ADHD, CerDMN areas showed positive FC (in contrast to average FC in the negative direction in controls) with widespread regions of salience, dorsal attention and sensorimotor networks. ADHD individuals also exhibited higher FC (more positive correlation) of CerDMN areas with frontoparietal and visual network regions. Within the control group, but not in ADHD, participants with higher inattention had higher FC between CerDMN and regions in the visual and dorsal attention networks. This work provides novel evidence of impaired CerDMN coupling with cortical networks in ADHD and highlights a role of cerebro-cerebellar interactions in cognitive function. These data provide support for the potential targeting of CerDMN areas for therapeutic interventions in ADHD. © 2015 Wiley Periodicals, Inc.

  15. V4 activity predicts the strength of visual short-term memory representations.

    PubMed

    Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F

    2009-06-10

    Recent studies have shown the existence of a form of visual memory that lies intermediate of iconic memory and visual short-term memory (VSTM), in terms of both capacity (up to 15 items) and the duration of the memory trace (up to 4 s). Because new visual objects readily overwrite this intermediate visual store, we believe that it reflects a weak form of VSTM with high capacity that exists alongside a strong but capacity-limited form of VSTM. In the present study, we isolated brain activity related to weak and strong VSTM representations using functional magnetic resonance imaging. We found that activity in visual cortical area V4 predicted the strength of VSTM representations; activity was low when there was no VSTM, medium when there was a weak VSTM representation regardless of whether this weak representation was available for report or not, and high when there was a strong VSTM representation. Altogether, this study suggests that the high capacity yet weak VSTM store is represented in visual parts of the brain. Allegedly, only some of these VSTM traces are amplified by parietal and frontal regions and as a consequence reside in traditional or strong VSTM. The additional weak VSTM representations remain available for conscious access and report when attention is redirected to them yet are overwritten as soon as new visual stimuli hit the eyes.

  16. Projectors, associators, visual imagery, and the time course of visual processing in grapheme-color synesthesia.

    PubMed

    Amsel, Ben D; Kutas, Marta; Coulson, Seana

    2017-10-01

    In grapheme-color synesthesia, seeing particular letters or numbers evokes the experience of specific colors. We investigate the brain's real-time processing of words in this population by recording event-related brain potentials (ERPs) from 15 grapheme-color synesthetes and 15 controls as they judged the validity of word pairs ('yellow banana' vs. 'blue banana') presented under high and low visual contrast. Low contrast words elicited delayed P1/N170 visual ERP components in both groups, relative to high contrast. When color concepts were conveyed to synesthetes by individually tailored achromatic grapheme strings ('55555 banana'), visual contrast effects were like those in color words: P1/N170 components were delayed but unchanged in amplitude. When controls saw equivalent colored grapheme strings, visual contrast modulated P1/N170 amplitude but not latency. Color induction in synesthetes thus differs from color perception in controls. Independent from experimental effects, all orthographic stimuli elicited larger N170 and P2 in synesthetes than controls. While P2 (150-250ms) enhancement was similar in all synesthetes, N170 (130-210ms) amplitude varied with individual differences in synesthesia and visual imagery. Results suggest immediate cross-activation in visual areas processing color and shape is most pronounced in so-called projector synesthetes whose concurrent colors are experienced as originating in external space.

  17. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  18. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  19. Large-scale automated histology in the pursuit of connectomes.

    PubMed

    Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert

    2011-11-09

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.

  20. Large-Scale Automated Histology in the Pursuit of Connectomes

    PubMed Central

    Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert

    2011-01-01

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665

  1. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  2. Knowledge is power: how conceptual knowledge transforms visual cognition.

    PubMed

    Collins, Jessica A; Olson, Ingrid R

    2014-08-01

    In this review, we synthesize the existing literature demonstrating the dynamic interplay between conceptual knowledge and visual perceptual processing. We consider two theoretical frameworks that demonstrate interactions between processes and brain areas traditionally considered perceptual or conceptual. Specifically, we discuss categorical perception, in which visual objects are represented according to category membership, and highlight studies showing that category knowledge can penetrate early stages of visual analysis. We next discuss the embodied account of conceptual knowledge, which holds that concepts are instantiated in the same neural regions required for specific types of perception and action, and discuss the limitations of this framework. We additionally consider studies showing that gaining abstract semantic knowledge about objects and faces leads to behavioral and electrophysiological changes that are indicative of more efficient stimulus processing. Finally, we consider the role that perceiver goals and motivation may play in shaping the interaction between conceptual and perceptual processing. We hope to demonstrate how pervasive such interactions between motivation, conceptual knowledge, and perceptual processing are in our understanding of the visual environment, and to demonstrate the need for future research aimed at understanding how such interactions arise in the brain.

  3. Knowledge is Power: How Conceptual Knowledge Transforms Visual Cognition

    PubMed Central

    Collins, Jessica A.; Olson, Ingrid R.

    2014-01-01

    In this review we synthesize the existing literature demonstrating the dynamic interplay between conceptual knowledge and visual perceptual processing. We consider two theoretical frameworks demonstrating interactions between processes and brain areas traditionally considered perceptual or conceptual. Specifically, we discuss categorical perception, in which visual objects are represented according to category membership, and highlight studies showing that category knowledge can penetrate early stages of visual analysis. We next discuss the embodied account of conceptual knowledge, which holds that concepts are instantiated in the same neural regions required for specific types of perception and action, and discuss the limitations of this framework. We additionally consider studies showing that gaining abstract semantic knowledge about objects and faces leads to behavioral and electrophysiological changes that are indicative of more efficient stimulus processing. Finally, we consider the role that perceiver goals and motivation may play in shaping the interaction between conceptual and perceptual processing. We hope to demonstrate how pervasive such interactions between motivation, conceptual knowledge, and perceptual processing are to our understanding of the visual environment, and demonstrate the need for future research aimed at understanding how such interactions arise in the brain. PMID:24402731

  4. How cortical neurons help us see: visual recognition in the human brain

    PubMed Central

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161

  5. The contribution of single case studies to the neuroscience of vision.

    PubMed

    Zihl, Josef; Heywood, Charles A

    2016-03-01

    Visual neuroscience is concerned with the neurobiological foundations of visual perception, that is, the morphological, physiological, and functional organization of the visual brain and its co-operative partners. One important approach for understanding the functional organization of the visual brain is the study of visual perception from the pathological perspective. The study of patients with focal injury to the visual brain allows conclusions about the representation of visual perceptual functions in the framework of association and dissociation of functions. Selective disorders have been reported for more "elementary" visual capabilities, for example, color and movement vision, but also for visuo-cognitive capacities, such as visual agnosia or the visual field of attention. Because these visual disorders occur rather seldom as selective and specific dysfunctions, single cases have always played, and still play, a significant role in gaining insights into the functional organization of the visual brain. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  6. Patterns of Brain Activation when Mothers View Their Own Child and Dog: An fMRI Study

    PubMed Central

    Gollub, Randy L.; Niemi, Steven M.; Evins, Anne Eden

    2014-01-01

    Neural substrates underlying the human-pet relationship are largely unknown. We examined fMRI brain activation patterns as mothers viewed images of their own child and dog and an unfamiliar child and dog. There was a common network of brain regions involved in emotion, reward, affiliation, visual processing and social cognition when mothers viewed images of both their child and dog. Viewing images of their child resulted in brain activity in the midbrain (ventral tegmental area/substantia nigra involved in reward/affiliation), while a more posterior cortical brain activation pattern involving fusiform gyrus (visual processing of faces and social cognition) characterized a mother's response to her dog. Mothers also rated images of their child and dog as eliciting similar levels of excitement (arousal) and pleasantness (valence), although the difference in the own vs. unfamiliar child comparison was larger than the own vs. unfamiliar dog comparison for arousal. Valence ratings of their dog were also positively correlated with ratings of the attachment to their dog. Although there are similarities in the perceived emotional experience and brain function associated with the mother-child and mother-dog bond, there are also key differences that may reflect variance in the evolutionary course and function of these relationships. PMID:25279788

  7. Patterns of brain activation when mothers view their own child and dog: an fMRI study.

    PubMed

    Stoeckel, Luke E; Palley, Lori S; Gollub, Randy L; Niemi, Steven M; Evins, Anne Eden

    2014-01-01

    Neural substrates underlying the human-pet relationship are largely unknown. We examined fMRI brain activation patterns as mothers viewed images of their own child and dog and an unfamiliar child and dog. There was a common network of brain regions involved in emotion, reward, affiliation, visual processing and social cognition when mothers viewed images of both their child and dog. Viewing images of their child resulted in brain activity in the midbrain (ventral tegmental area/substantia nigra involved in reward/affiliation), while a more posterior cortical brain activation pattern involving fusiform gyrus (visual processing of faces and social cognition) characterized a mother's response to her dog. Mothers also rated images of their child and dog as eliciting similar levels of excitement (arousal) and pleasantness (valence), although the difference in the own vs. unfamiliar child comparison was larger than the own vs. unfamiliar dog comparison for arousal. Valence ratings of their dog were also positively correlated with ratings of the attachment to their dog. Although there are similarities in the perceived emotional experience and brain function associated with the mother-child and mother-dog bond, there are also key differences that may reflect variance in the evolutionary course and function of these relationships.

  8. Lack of sex effect on brain activity during a visuomotor response task: functional MR imaging study.

    PubMed

    Mikhelashvili-Browner, Nina; Yousem, David M; Wu, Colin; Kraut, Michael A; Vaughan, Christina L; Oguz, Kader Karli; Calhoun, Vince D

    2003-03-01

    As more individuals are enrolled in clinical functional MR imaging (fMRI) studies, an understanding of how sex may influence fMRI-measured brain activation is critical. We used fixed- and random-effects models to study the influence of sex on fMRI patterns of brain activation during a simple visuomotor reaction time task in the group of 26 age-matched men and women. We evaluated the right visual, left visual, left primary motor, left supplementary motor, and left anterior cingulate areas. Volumes of activations did not significantly differ between the groups in any defined regions. Analysis of variance failed to show any significant correlations between sex and volumes of brain activation in any location studied. Mean percentage signal-intensity changes for all locations were similar between men and women. A two-way t test of brain activation in men and women, performed as a part of random-effects modeling, showed no significant difference at any site. Our results suggest that sex seems to have little influence on fMRI brain activation when we compared performance on the simple reaction-time task. The need to control for sex effects is not critical in the analysis of this task with fMRI.

  9. Visual function at 11 years of age in preterm-born children with and without fetal brain sparing.

    PubMed

    Kok, Joke H; Prick, Liesbeth; Merckel, Elly; Everhard, Yolande; Verkerk, Gijs J Q; Scherjon, Sicco A

    2007-06-01

    We have demonstrated earlier an accelerated maturation of the visual evoked potential in the first year of life in preterm infants with antenatal brain sparing. We have now assessed visual functioning at 11 years of age in the same cohort and compared the groups with and without brain sparing. One hundred sixteen survivors included in a study on the outcome of preterm infants born at <33 weeks' gestation with and without fetal brain sparing and admitted to the NICU were followed extensively. Ninety-eight infants (85%) were again assessed at 11 years of age. Data were available for fetal Doppler measurements indicating brain sparing, neonatal cerebral ultrasound scanning, and developmental outcome in the first 5 years. Mean birth weight was 1303 g; mean gestational age was 29.8 weeks. The infants were divided into 2 groups with and without brain sparing. Visual functioning was estimated by measuring visual acuity, visual fields, eye position, and binocular function and by visual motor tests. Six percent of the children were found to have a visual acuity of <0.8, 12% had strabismus, and 14% to 46% showed abnormal results on the visual motor tests. No statistical differences were found between the 2 groups. However, children with severe cerebral ultrasound diagnoses in the neonatal period were found to have significantly more abnormalities on visual functioning and lower scores on visual motor tests than children without these morbidities. Children with fetal brain sparing do not demonstrate a different development of their visual functioning at late school age. However, an abnormal cerebral ultrasound in the neonatal period is associated with impaired visual function in later life.

  10. Impaired integration of object knowledge and visual input in a case of ventral simultanagnosia with bilateral damage to area V4.

    PubMed

    Leek, E Charles; d'Avossa, Giovanni; Tainturier, Marie-Josèphe; Roberts, Daniel J; Yuen, Sung Lai; Hu, Mo; Rafal, Robert

    2012-01-01

    This study examines how brain damage can affect the cognitive processes that support the integration of sensory input and prior knowledge during shape perception. It is based on the first detailed study of acquired ventral simultanagnosia, which was found in a patient (M.T.) with posterior occipitotemporal lesions encompassing V4 bilaterally. Despite showing normal object recognition for single items in both accuracy and response times (RTs), and intact low-level vision assessed across an extensive battery of tests, M.T. was impaired in object identification with overlapping figures displays. Task performance was modulated by familiarity: Unlike controls, M.T. was faster with overlapping displays of abstract shapes than with overlapping displays of common objects. His performance with overlapping common object displays was also influenced by both the semantic relatedness and visual similarity of the display items. These findings challenge claims that visual perception is driven solely by feedforward mechanisms and show how brain damage can selectively impair high-level perceptual processes supporting the integration of stored knowledge and visual sensory input.

  11. Human Pluripotent Stem-Cell-Derived Cortical Neurons Integrate Functionally into the Lesioned Adult Murine Visual Cortex in an Area-Specific Way.

    PubMed

    Espuny-Camacho, Ira; Michelsen, Kimmo A; Linaro, Daniele; Bilheu, Angéline; Acosta-Verdugo, Sandra; Herpoel, Adèle; Giugliano, Michele; Gaillard, Afsaneh; Vanderhaeghen, Pierre

    2018-05-29

    The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. An independent brain-computer interface using covert non-spatial visual selective attention

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K.; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 ± 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  13. An independent brain-computer interface using covert non-spatial visual selective attention.

    PubMed

    Zhang, Dan; Maye, Alexander; Gao, Xiaorong; Hong, Bo; Engel, Andreas K; Gao, Shangkai

    2010-02-01

    In this paper, a novel independent brain-computer interface (BCI) system based on covert non-spatial visual selective attention of two superimposed illusory surfaces is described. Perception of two superimposed surfaces was induced by two sets of dots with different colors rotating in opposite directions. The surfaces flickered at different frequencies and elicited distinguishable steady-state visual evoked potentials (SSVEPs) over parietal and occipital areas of the brain. By selectively attending to one of the two surfaces, the SSVEP amplitude at the corresponding frequency was enhanced. An online BCI system utilizing the attentional modulation of SSVEP was implemented and a 3-day online training program with healthy subjects was carried out. The study was conducted with Chinese subjects at Tsinghua University, and German subjects at University Medical Center Hamburg-Eppendorf (UKE) using identical stimulation software and equivalent technical setup. A general improvement of control accuracy with training was observed in 8 out of 18 subjects. An averaged online classification accuracy of 72.6 +/- 16.1% was achieved on the last training day. The system renders SSVEP-based BCI paradigms possible for paralyzed patients with substantial head or ocular motor impairments by employing covert attention shifts instead of changing gaze direction.

  14. Decoding visual object categories in early somatosensory cortex.

    PubMed

    Smith, Fraser W; Goodale, Melvyn A

    2015-04-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. © The Author 2013. Published by Oxford University Press.

  15. Decoding Visual Object Categories in Early Somatosensory Cortex

    PubMed Central

    Smith, Fraser W.; Goodale, Melvyn A.

    2015-01-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. PMID:24122136

  16. Crossmodal association of auditory and visual material properties in infants.

    PubMed

    Ujiie, Yuta; Yamashita, Wakayo; Fujisaki, Waka; Kanazawa, So; Yamaguchi, Masami K

    2018-06-18

    The human perceptual system enables us to extract visual properties of an object's material from auditory information. In monkeys, the neural basis underlying such multisensory association develops through experience of exposure to a material; material information could be processed in the posterior inferior temporal cortex, progressively from the high-order visual areas. In humans, however, the development of this neural representation remains poorly understood. Here, we demonstrated for the first time the presence of a mapping of the auditory material property with visual material ("Metal" and "Wood") in the right temporal region in preverbal 4- to 8-month-old infants, using near-infrared spectroscopy (NIRS). Furthermore, we found that infants acquired the audio-visual mapping for a property of the "Metal" material later than for the "Wood" material, since infants form the visual property of "Metal" material after approximately 6 months of age. These findings indicate that multisensory processing of material information induces the activation of brain areas related to sound symbolism. Our findings also indicate that the material's familiarity might facilitate the development of multisensory processing during the first year of life.

  17. Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions.

    PubMed

    Gilson, Matthieu; Deco, Gustavo; Friston, Karl J; Hagmann, Patric; Mantini, Dante; Betti, Viviana; Romani, Gian Luca; Corbetta, Maurizio

    2017-10-09

    Our behavior entails a flexible and context-sensitive interplay between brain areas to integrate information according to goal-directed requirements. However, the neural mechanisms governing the entrainment of functionally specialized brain areas remain poorly understood. In particular, the question arises whether observed changes in the regional activity for different cognitive conditions are explained by modifications of the inputs to the brain or its connectivity? We observe that transitions of fMRI activity between areas convey information about the tasks performed by 19 subjects, watching a movie versus a black screen (rest). We use a model-based framework that explains this spatiotemporal functional connectivity pattern by the local variability for 66 cortical regions and the network effective connectivity between them. We find that, among the estimated model parameters, movie viewing affects to a larger extent the local activity, which we interpret as extrinsic changes related to the increased stimulus load. However, detailed changes in the effective connectivity preserve a balance in the propagating activity and select specific pathways such that high-level brain regions integrate visual and auditory information, in particular boosting the communication between the two brain hemispheres. These findings speak to a dynamic coordination underlying the functional integration in the brain. Copyright © 2017. Published by Elsevier Inc.

  18. Eyes-closed hybrid brain-computer interface employing frontal brain activation.

    PubMed

    Shin, Jaeyoung; Müller, Klaus-Robert; Hwang, Han-Jeong

    2018-01-01

    Brain-computer interfaces (BCIs) have been studied extensively in order to establish a non-muscular communication channel mainly for patients with impaired motor functions. However, many limitations remain for BCIs in clinical use. In this study, we propose a hybrid BCI that is based on only frontal brain areas and can be operated in an eyes-closed state for end users with impaired motor and declining visual functions. In our experiment, electroencephalography (EEG) and near-infrared spectroscopy (NIRS) were simultaneously measured while 12 participants performed mental arithmetic (MA) and remained relaxed (baseline state: BL). To evaluate the feasibility of the hybrid BCI, we classified MA- from BL-related brain activation. We then compared classification accuracies using two unimodal BCIs (EEG and NIRS) and the hybrid BCI in an offline mode. The classification accuracy of the hybrid BCI (83.9 ± 10.3%) was shown to be significantly higher than those of unimodal EEG-based (77.3 ± 15.9%) and NIRS-based BCI (75.9 ± 6.3%). The analytical results confirmed performance improvement with the hybrid BCI, particularly for only frontal brain areas. Our study shows that an eyes-closed hybrid BCI approach based on frontal areas could be applied to neurodegenerative patients who lost their motor functions, including oculomotor functions.

  19. Patterns of Individual Variation in Visual Pathway Structure and Function in the Sighted and Blind

    PubMed Central

    Datta, Ritobrato; Benson, Noah C.; Prasad, Sashank; Jacobson, Samuel G.; Cideciyan, Artur V.; Bridge, Holly; Watkins, Kate E.; Butt, Omar H.; Dain, Aleksandra S.; Brandes, Lauren; Gennatas, Efstathios D.

    2016-01-01

    Many structural and functional brain alterations accompany blindness, with substantial individual variation in these effects. In normally sighted people, there is correlated individual variation in some visual pathway structures. Here we examined if the changes in brain anatomy produced by blindness alter the patterns of anatomical variation found in the sighted. We derived eight measures of central visual pathway anatomy from a structural image of the brain from 59 sighted and 53 blind people. These measures showed highly significant differences in mean size between the sighted and blind cohorts. When we examined the measurements across individuals within each group we found three clusters of correlated variation, with V1 surface area and pericalcarine volume linked, and independent of the thickness of V1 cortex. These two clusters were in turn relatively independent of the volumes of the optic chiasm and lateral geniculate nucleus. This same pattern of variation in visual pathway anatomy was found in the sighted and the blind. Anatomical changes within these clusters were graded by the timing of onset of blindness, with those subjects with a post-natal onset of blindness having alterations in brain anatomy that were intermediate to those seen in the sighted and congenitally blind. Many of the blind and sighted subjects also contributed functional MRI measures of cross-modal responses within visual cortex, and a diffusion tensor imaging measure of fractional anisotropy within the optic radiations and the splenium of the corpus callosum. We again found group differences between the blind and sighted in these measures. The previously identified clusters of anatomical variation were also found to be differentially related to these additional measures: across subjects, V1 cortical thickness was related to cross-modal activation, and the volume of the optic chiasm and lateral geniculate was related to fractional anisotropy in the visual pathway. Our findings show that several of the structural and functional effects of blindness may be reduced to a smaller set of dimensions. It also seems that the changes in the brain that accompany blindness are on a continuum with normal variation found in the sighted. PMID:27812129

  20. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    PubMed

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical faculties to the retina, while the thalamus is the link that couples the retina to the rest of the brain through activity by gamma oscillations. This novel theory lays groundwork for further research by providing a theoretical understanding that expands upon the functions of the retina, photoreceptors, and retinal plexus to include parallel processing needed to form the internal visual space that we perceive as the external world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome.

    PubMed

    Walton, Mark M G; Pallus, Adam; Fleuriet, Jérome; Mustari, Michael J; Tarczy-Hornoch, Kristina

    2017-07-01

    Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements. Copyright © 2017 the American Physiological Society.

  2. A sLORETA study for gaze-independent BCI speller.

    PubMed

    Xingwei An; Jinwen Wei; Shuang Liu; Dong Ming

    2017-07-01

    EEG-based BCI (brain-computer-interface) speller, especially gaze-independent BCI speller, has become a hot topic in recent years. It provides direct spelling device by non-muscular method for people with severe motor impairments and with limited gaze movement. Brain needs to conduct both stimuli-driven and stimuli-related attention in fast presented BCI paradigms for such BCI speller applications. Few researchers studied the mechanism of brain response to such fast presented BCI applications. In this study, we compared the distribution of brain activation in visual, auditory, and audio-visual combined stimuli paradigms using sLORETA (standardized low-resolution brain electromagnetic tomography). Between groups comparisons showed the importance of visual and auditory stimuli in audio-visual combined paradigm. They both contribute to the activation of brain regions, with visual stimuli being the predominate stimuli. Visual stimuli related brain region was mainly located at parietal and occipital lobe, whereas response in frontal-temporal lobes might be caused by auditory stimuli. These regions played an important role in audio-visual bimodal paradigms. These new findings are important for future study of ERP speller as well as the mechanism of fast presented stimuli.

  3. Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence.

    PubMed

    Dagnino-Subiabre, A; Terreros, G; Carmona-Fontaine, C; Zepeda, R; Orellana, J A; Díaz-Véliz, G; Mora, S; Aboitiz, F

    2005-01-01

    Chronic stress affects brain areas involved in learning and emotional responses. These alterations have been related with the development of cognitive deficits in major depression. The aim of this study was to determine the effect of chronic immobilization stress on the auditory and visual mesencephalic regions in the rat brain. We analyzed in Golgi preparations whether stress impairs the neuronal morphology of the inferior (auditory processing) and superior colliculi (visual processing). Afterward, we examined the effect of stress on acoustic and visual conditioning using an avoidance conditioning test. We found that stress induced dendritic atrophy in inferior colliculus neurons and did not affect neuronal morphology in the superior colliculus. Furthermore, stressed rats showed a stronger impairment in acoustic conditioning than in visual conditioning. Fifteen days post-stress the inferior colliculus neurons completely restored their dendritic structure, showing a high level of neural plasticity that is correlated with an improvement in acoustic learning. These results suggest that chronic stress has more deleterious effects in the subcortical auditory system than in the visual system and may affect the aversive system and fear-like behaviors. Our study opens a new approach to understand the pathophysiology of stress and stress-related disorders such as major depression.

  4. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence

    PubMed Central

    d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-01-01

    Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559

  5. Influence of anodal transcranial direct current stimulation (tDCS) over the right angular gyrus on brain activity during rest.

    PubMed

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site.

  6. Influence of Anodal Transcranial Direct Current Stimulation (tDCS) over the Right Angular Gyrus on Brain Activity during Rest

    PubMed Central

    Clemens, Benjamin; Jung, Stefanie; Mingoia, Gianluca; Weyer, David; Domahs, Frank; Willmes, Klaus

    2014-01-01

    Although numerous studies examined resting-state networks (RSN) in the human brain, so far little is known about how activity within RSN might be modulated by non-invasive brain stimulation applied over parietal cortex. Investigating changes in RSN in response to parietal cortex stimulation might tell us more about how non-invasive techniques such as transcranial direct current stimulation (tDCS) modulate intrinsic brain activity, and further elaborate our understanding of how the resting brain responds to external stimulation. Here we examined how activity within the canonical RSN changed in response to anodal tDCS applied over the right angular gyrus (AG). We hypothesized that changes in resting-state activity can be induced by a single tDCS session and detected with functional magnetic resonance imaging (fMRI). Significant differences between two fMRI sessions (pre-tDCS and post-tDCS) were found in several RSN, including the cerebellar, medial visual, sensorimotor, right frontoparietal, and executive control RSN as well as the default mode and the task positive network. The present results revealed decreased and increased RSN activity following tDCS. Decreased RSN activity following tDCS was found in bilateral primary and secondary visual areas, and in the right putamen. Increased RSN activity following tDCS was widely distributed across the brain, covering thalamic, frontal, parietal and occipital regions. From these exploratory results we conclude that a single session of anodal tDCS over the right AG is sufficient to induce large-scale changes in resting-state activity. These changes were localized in sensory and cognitive areas, covering regions close to and distant from the stimulation site. PMID:24760013

  7. Effective Connectivity from Early Visual Cortex to Posterior Occipitotemporal Face Areas Supports Face Selectivity and Predicts Developmental Prosopagnosia

    PubMed Central

    Garrido, Lucia; Driver, Jon; Dolan, Raymond J.; Duchaine, Bradley C.; Furl, Nicholas

    2016-01-01

    Face processing is mediated by interactions between functional areas in the occipital and temporal lobe, and the fusiform face area (FFA) and anterior temporal lobe play key roles in the recognition of facial identity. Individuals with developmental prosopagnosia (DP), a lifelong face recognition impairment, have been shown to have structural and functional neuronal alterations in these areas. The present study investigated how face selectivity is generated in participants with normal face processing, and how functional abnormalities associated with DP, arise as a function of network connectivity. Using functional magnetic resonance imaging and dynamic causal modeling, we examined effective connectivity in normal participants by assessing network models that include early visual cortex (EVC) and face-selective areas and then investigated the integrity of this connectivity in participants with DP. Results showed that a feedforward architecture from EVC to the occipital face area, EVC to FFA, and EVC to posterior superior temporal sulcus (pSTS) best explained how face selectivity arises in both controls and participants with DP. In this architecture, the DP group showed reduced connection strengths on feedforward connections carrying face information from EVC to FFA and EVC to pSTS. These altered network dynamics in DP contribute to the diminished face selectivity in the posterior occipitotemporal areas affected in DP. These findings suggest a novel view on the relevance of feedforward projection from EVC to posterior occipitotemporal face areas in generating cortical face selectivity and differences in face recognition ability. SIGNIFICANCE STATEMENT Areas of the human brain showing enhanced activation to faces compared to other objects or places have been extensively studied. However, the factors leading to this face selectively have remained mostly unknown. We show that effective connectivity from early visual cortex to posterior occipitotemporal face areas gives rise to face selectivity. Furthermore, people with developmental prosopagnosia, a lifelong face recognition impairment, have reduced face selectivity in the posterior occipitotemporal face areas and left anterior temporal lobe. We show that this reduced face selectivity can be predicted by effective connectivity from early visual cortex to posterior occipitotemporal face areas. This study presents the first network-based account of how face selectivity arises in the human brain. PMID:27030766

  8. The Effects of Fatigue on Position Determination and Cognitive Workload Using a Visual and 3-Dimensional Auditory Display

    DTIC Science & Technology

    2004-06-01

    in first third of the night. REM sleep is associated with an extremely active brain that is frequently dreaming with bursts of rapid eye movement...these areas. 3. Human Sleep and Fatigue Sleep is nature’s process of resting the body although brain activity continues throughout the rest...midday roughly between 1500 and 1700 (LeClair, 2001). Disruption of one’s circadian rhythm to accommodate adjustments in unconventional working hours

  9. Predicting Visual Consciousness Electrophysiologically from Intermittent Binocular Rivalry

    PubMed Central

    O’Shea, Robert P.; Kornmeier, Jürgen; Roeber, Urte

    2013-01-01

    Purpose We sought brain activity that predicts visual consciousness. Methods We used electroencephalography (EEG) to measure brain activity to a 1000-ms display of sine-wave gratings, oriented vertically in one eye and horizontally in the other. This display yields binocular rivalry: irregular alternations in visual consciousness between the images viewed by the eyes. We replaced both gratings with 200 ms of darkness, the gap, before showing a second display of the same rival gratings for another 1000 ms. We followed this by a 1000-ms mask then a 2000-ms inter-trial interval (ITI). Eleven participants pressed keys after the second display in numerous trials to say whether the orientation of the visible grating changed from before to after the gap or not. Each participant also responded to numerous non-rivalry trials in which the gratings had identical orientations for the two eyes and for which the orientation of both either changed physically after the gap or did not. Results We found that greater activity from lateral occipital-parietal-temporal areas about 180 ms after initial onset of rival stimuli predicted a change in visual consciousness more than 1000 ms later, on re-presentation of the rival stimuli. We also found that less activity from parietal, central, and frontal electrodes about 400 ms after initial onset of rival stimuli predicted a change in visual consciousness about 800 ms later, on re-presentation of the rival stimuli. There was no such predictive activity when the change in visual consciousness occurred because the stimuli changed physically. Conclusion We found early EEG activity that predicted later visual consciousness. Predictive activity 180 ms after onset of the first display may reflect adaption of the neurons mediating visual consciousness in our displays. Predictive activity 400 ms after onset of the first display may reflect a less-reliable brain state mediating visual consciousness. PMID:24124536

  10. The iconic memory skills of brain injury survivors and non-brain injured controls after visual scanning training.

    PubMed

    McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T

    1994-01-01

    Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.

  11. Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics

    PubMed Central

    Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun

    2013-01-01

    When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304

  12. People can understand descriptions of motion without activating visual motion brain regions

    PubMed Central

    Dravida, Swethasri; Saxe, Rebecca; Bedny, Marina

    2013-01-01

    What is the relationship between our perceptual and linguistic neural representations of the same event? We approached this question by asking whether visual perception of motion and understanding linguistic depictions of motion rely on the same neural architecture. The same group of participants took part in two language tasks and one visual task. In task 1, participants made semantic similarity judgments with high motion (e.g., “to bounce”) and low motion (e.g., “to look”) words. In task 2, participants made plausibility judgments for passages describing movement (“A centaur hurled a spear … ”) or cognitive events (“A gentleman loved cheese …”). Task 3 was a visual motion localizer in which participants viewed animations of point-light walkers, randomly moving dots, and stationary dots changing in luminance. Based on the visual motion localizer we identified classic visual motion areas of the temporal (MT/MST and STS) and parietal cortex (inferior and superior parietal lobules). We find that these visual cortical areas are largely distinct from neural responses to linguistic depictions of motion. Motion words did not activate any part of the visual motion system. Motion passages produced a small response in the right superior parietal lobule, but none of the temporal motion regions. These results suggest that (1) as compared to words, rich language stimuli such as passages are more likely to evoke mental imagery and more likely to affect perceptual circuits and (2) effects of language on the visual system are more likely in secondary perceptual areas as compared to early sensory areas. We conclude that language and visual perception constitute distinct but interacting systems. PMID:24009592

  13. Neural biomarkers for assessing different types of imagery in pictorial health warning labels for cigarette packaging: a cross-sectional study

    PubMed Central

    Newman-Norlund, Roger D; Thrasher, James F; Fridriksson, Johann; Brixius, William; Froeliger, Brett; Hammond, David; Cummings, Michael K

    2014-01-01

    Objective Countries around the world have increasingly adopted pictorial health warning labels (HWLs) for tobacco packages to warn consumers about smoking-related risks. Research on how pictorial HWLs work has primarily analysed self-reported responses to HWLs; studies at the neural level comparing the brain's response to different types of HWLs may provide an important complement to prior studies, especially if self-reported responses are systematically biased. In this study we characterise the brain's response to three types of pictorial HWLs for which prior self-report studies indicated different levels of efficacy. Methods Current smokers rated pictorial HWLs and then observed the same HWLs during functional MRI (fMRI) scanning. Fifty 18–50-year-old current adult smokers who were free from neurological disorders were recruited from the general population and participated in the study. Demographics, smoking-related behaviours and self-reported ratings of pictorial HWL stimuli were obtained prior to scanning. Brain responses to HWLs were assessed using fMRI, focusing on a priori regions of interest. Results Pictorial HWL stimuli elicited activation in a broad network of brain areas associated with visual processing and emotion. Participants who rated the stimuli as more emotionally arousing also showed greater neural responses at these sites. Conclusions Self-reported ratings of pictorial HWLs are correlated with neural responses in brain areas associated with visual and emotional processing. Study results cross-validate self-reported ratings of pictorial HWLs and provide insights into how pictorial HWLs are processed. PMID:25552613

  14. The role of lateral occipitotemporal junction and area MT/V5 in the visual analysis of upper-limb postures.

    PubMed

    Peigneux, P; Salmon, E; van der Linden, M; Garraux, G; Aerts, J; Delfiore, G; Degueldre, C; Luxen, A; Orban, G; Franck, G

    2000-06-01

    Humans, like numerous other species, strongly rely on the observation of gestures of other individuals in their everyday life. It is hypothesized that the visual processing of human gestures is sustained by a specific functional architecture, even at an early prelexical cognitive stage, different from that required for the processing of other visual entities. In the present PET study, the neural basis of visual gesture analysis was investigated with functional neuroimaging of brain activity during naming and orientation tasks performed on pictures of either static gestures (upper-limb postures) or tridimensional objects. To prevent automatic object-related cerebral activation during the visual processing of postures, only intransitive postures were selected, i. e., symbolic or meaningless postures which do not imply the handling of objects. Conversely, only intransitive objects which cannot be handled were selected to prevent gesture-related activation during their visual processing. Results clearly demonstrate a significant functional segregation between the processing of static intransitive postures and the processing of intransitive tridimensional objects. Visual processing of objects elicited mainly occipital and fusiform gyrus activity, while visual processing of postures strongly activated the lateral occipitotemporal junction, encroaching upon area MT/V5, involved in motion analysis. These findings suggest that the lateral occipitotemporal junction, working in association with area MT/V5, plays a prominent role in the high-level perceptual analysis of gesture, namely the construction of its visual representation, available for subsequent recognition or imitation. Copyright 2000 Academic Press.

  15. Visual processing of words in a patient with visual form agnosia: a behavioural and fMRI study.

    PubMed

    Cavina-Pratesi, Cristiana; Large, Mary-Ellen; Milner, A David

    2015-03-01

    Patient D.F. has a profound and enduring visual form agnosia due to a carbon monoxide poisoning episode suffered in 1988. Her inability to distinguish simple geometric shapes or single alphanumeric characters can be attributed to a bilateral loss of cortical area LO, a loss that has been well established through structural and functional fMRI. Yet despite this severe perceptual deficit, D.F. is able to "guess" remarkably well the identity of whole words. This paradoxical finding, which we were able to replicate more than 20 years following her initial testing, raises the question as to whether D.F. has retained specialized brain circuitry for word recognition that is able to function to some degree without the benefit of inputs from area LO. We used fMRI to investigate this, and found regions in the left fusiform gyrus, left inferior frontal gyrus, and left middle temporal cortex that responded selectively to words. A group of healthy control subjects showed similar activations. The left fusiform activations appear to coincide with the area commonly named the visual word form area (VWFA) in studies of healthy individuals, and appear to be quite separate from the fusiform face area (FFA). We hypothesize that there is a route to this area that lies outside area LO, and which remains relatively unscathed in D.F. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: relations to visual and somatosensory regions.

    PubMed

    Scheperjans, Filip; Palomero-Gallagher, Nicola; Grefkes, Christian; Schleicher, Axel; Zilles, Karl

    2005-11-01

    Regional distributions of ligand binding sites of 12 different neurotransmitter receptors (glutamatergic: AMPA, kainate, NMDA; GABAergic: GABA(A), GABA(B); cholinergic: muscarinic M2, nicotinic; adrenergic: alpha1, alpha2; serotonergic: 5-HT1A, 5-HT2; dopaminergic: D1) were studied in human postmortem brains by means of quantitative receptor autoradiography. Binding site densities were measured in the superior parietal lobule (SPL) (areas 5L, 5M, 5Ci, and different locations within Brodmann's area (BA) 7), somatosensory (BA 2), and visual cortical areas (BA 17, and different locations within BAs 18 and 19). Similarities of receptor distribution between cortical areas were analyzed by cluster analysis, uni- and multivariate statistics of mean receptor densities (averaged over all cortical layers), and profiles representing the laminar distribution patterns of receptors. A considerable heterogeneity of regional receptor densities and laminar patterns between the sites was found in the SPL and the visual cortex. The most prominent regional differences were found for M2 receptors. In the SPL, rostrocaudally oriented changes of receptor densities were more pronounced than those in mediolateral direction. The receptor distribution in the rostral SPL was more similar to that of the somatosensory cortex, whereas caudal SPL resembled the receptor patterns of the dorsolateral extrastriate visual areas. These results suggest a segregation of the different SPL areas based on receptor distribution features typical for somatosensory or visual areas, which fits to the dual functional role of this cortical region, i.e., the involvement of the human SPL in visuomotor and somatosensory motor transformations.

  17. The neural basis of body form and body action agnosia.

    PubMed

    Moro, Valentina; Urgesi, Cosimo; Pernigo, Simone; Lanteri, Paola; Pazzaglia, Mariella; Aglioti, Salvatore Maria

    2008-10-23

    Visual analysis of faces and nonfacial body stimuli brings about neural activity in different cortical areas. Moreover, processing body form and body action relies on distinct neural substrates. Although brain lesion studies show specific face processing deficits, neuropsychological evidence for defective recognition of nonfacial body parts is lacking. By combining psychophysics studies with lesion-mapping techniques, we found that lesions of ventromedial, occipitotemporal areas induce face and body recognition deficits while lesions involving extrastriate body area seem causatively associated with impaired recognition of body but not of face and object stimuli. We also found that body form and body action recognition deficits can be double dissociated and are causatively associated with lesions to extrastriate body area and ventral premotor cortex, respectively. Our study reports two category-specific visual deficits, called body form and body action agnosia, and highlights their neural underpinnings.

  18. Mapping social behavior-induced brain activation at cellular resolution in the mouse

    PubMed Central

    Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel

    2014-01-01

    Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063

  19. Ocular findings in MELAS syndrome – a case report.

    PubMed

    Modrzejewska, Monika; Chrzanowska, Martyna; Modrzejewska, Anna; Romanowska, Hanna; Ostrowska, Iwona; Giżewska, Maria

    We present a case of a child with MELAS syndrome (mitochondrial encephalo-myopathy with lactic acidosis and stroke-like episodes), discussing clinical manifestation, ocular findings and diagnostic challenges. Predominant ocular symptom was a transient complete visual loss, while the predominant ocular sign was a visual field defect. The diagnosia was based on clinical manifestation, laboratory tests, brain scans and genetic testing which confirmed the pathognomonic mutation in the MTTL1 gene encoding the mitochondrial tRNA for leucine 3243> G. Ocular examination demonstrated decreased visual acuity (with bilateral best corrected visual acuity of .1). Periodical, transient visual loss and visual field defects were clinically predominant. Specialist investigations were carried out, which demonstrated homonymous hemianopia (kinetic perimetry), bilateral partial optic nerve atrophy (RetCam). Funduscopy and electrophysiology mfERG study did not confirm features of retinitis pigmentosa. The brain scans revealed numerous small cortical ischemic lesions within the frontal, parietal and temporal lobes, post-stroke focal areas within the occipital lobes and diffuse calcifications of the basal ganglia. During several years of follow-up, visual field defects showed progressive concentric narrowing. The patient received a long-term treatment with arginine, coenzyme Q and vitamin D, both oral and intravenous, but no beneficial effect for the improvement of ophthalmic condition was observed. As it is the case in severe MELAS syndrome, the course of disease was fatal and the patientdied at the age of 14.

  20. How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling

    PubMed Central

    Veale, Richard; Hafed, Ziad M.

    2017-01-01

    Inherent in visual scene analysis is a bottleneck associated with the need to sequentially sample locations with foveating eye movements. The concept of a ‘saliency map’ topographically encoding stimulus conspicuity over the visual scene has proven to be an efficient predictor of eye movements. Our work reviews insights into the neurobiological implementation of visual salience computation. We start by summarizing the role that different visual brain areas play in salience computation, whether at the level of feature analysis for bottom-up salience or at the level of goal-directed priority maps for output behaviour. We then delve into how a subcortical structure, the superior colliculus (SC), participates in salience computation. The SC represents a visual saliency map via a centre-surround inhibition mechanism in the superficial layers, which feeds into priority selection mechanisms in the deeper layers, thereby affecting saccadic and microsaccadic eye movements. Lateral interactions in the local SC circuit are particularly important for controlling active populations of neurons. This, in turn, might help explain long-range effects, such as those of peripheral cues on tiny microsaccades. Finally, we show how a combination of in vitro neurophysiology and large-scale computational modelling is able to clarify how salience computation is implemented in the local circuit of the SC. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044023

Top