Coding visual features extracted from video sequences.
Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2014-05-01
Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.
Visual pattern image sequence coding
NASA Technical Reports Server (NTRS)
Silsbee, Peter; Bovik, Alan C.; Chen, Dapang
1990-01-01
The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.
Visual search asymmetries within color-coded and intensity-coded displays.
Yamani, Yusuke; McCarley, Jason S
2010-06-01
Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Visual Search Asymmetries within Color-Coded and Intensity-Coded Displays
ERIC Educational Resources Information Center
Yamani, Yusuke; McCarley, Jason S.
2010-01-01
Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information.…
Coding Local and Global Binary Visual Features Extracted From Video Sequences.
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the bag-of-visual word model. Several applications, including, for example, visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget while attaining a target level of efficiency. In this paper, we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can conveniently be adopted to support the analyze-then-compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs the visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the compress-then-analyze (CTA) paradigm. In this paper, we experimentally compare the ATC and the CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: 1) homography estimation and 2) content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with the CTA, especially in bandwidth limited scenarios.
Coding Local and Global Binary Visual Features Extracted From Video Sequences
NASA Astrophysics Data System (ADS)
Baroffio, Luca; Canclini, Antonio; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2015-11-01
Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.
Binary video codec for data reduction in wireless visual sensor networks
NASA Astrophysics Data System (ADS)
Khursheed, Khursheed; Ahmad, Naeem; Imran, Muhammad; O'Nils, Mattias
2013-02-01
Wireless Visual Sensor Networks (WVSN) is formed by deploying many Visual Sensor Nodes (VSNs) in the field. Typical applications of WVSN include environmental monitoring, health care, industrial process monitoring, stadium/airports monitoring for security reasons and many more. The energy budget in the outdoor applications of WVSN is limited to the batteries and the frequent replacement of batteries is usually not desirable. So the processing as well as the communication energy consumption of the VSN needs to be optimized in such a way that the network remains functional for longer duration. The images captured by VSN contain huge amount of data and require efficient computational resources for processing the images and wide communication bandwidth for the transmission of the results. Image processing algorithms must be designed and developed in such a way that they are computationally less complex and must provide high compression rate. For some applications of WVSN, the captured images can be segmented into bi-level images and hence bi-level image coding methods will efficiently reduce the information amount in these segmented images. But the compression rate of the bi-level image coding methods is limited by the underlined compression algorithm. Hence there is a need for designing other intelligent and efficient algorithms which are computationally less complex and provide better compression rate than that of bi-level image coding methods. Change coding is one such algorithm which is computationally less complex (require only exclusive OR operations) and provide better compression efficiency compared to image coding but it is effective for applications having slight changes between adjacent frames of the video. The detection and coding of the Region of Interest (ROIs) in the change frame efficiently reduce the information amount in the change frame. But, if the number of objects in the change frames is higher than a certain level then the compression efficiency of both the change coding and ROI coding becomes worse than that of image coding. This paper explores the compression efficiency of the Binary Video Codec (BVC) for the data reduction in WVSN. We proposed to implement all the three compression techniques i.e. image coding, change coding and ROI coding at the VSN and then select the smallest bit stream among the results of the three compression techniques. In this way the compression performance of the BVC will never become worse than that of image coding. We concluded that the compression efficiency of BVC is always better than that of change coding and is always better than or equal that of ROI coding and image coding.
Distributed Estimation, Coding, and Scheduling in Wireless Visual Sensor Networks
ERIC Educational Resources Information Center
Yu, Chao
2013-01-01
In this thesis, we consider estimation, coding, and sensor scheduling for energy efficient operation of wireless visual sensor networks (VSN), which consist of battery-powered wireless sensors with sensing (imaging), computation, and communication capabilities. The competing requirements for applications of these wireless sensor networks (WSN)…
Tang, Shiming; Zhang, Yimeng; Li, Zhihao; Li, Ming; Liu, Fang; Jiang, Hongfei; Lee, Tai Sing
2018-04-26
One general principle of sensory information processing is that the brain must optimize efficiency by reducing the number of neurons that process the same information. The sparseness of the sensory representations in a population of neurons reflects the efficiency of the neural code. Here, we employ large-scale two-photon calcium imaging to examine the responses of a large population of neurons within the superficial layers of area V1 with single-cell resolution, while simultaneously presenting a large set of natural visual stimuli, to provide the first direct measure of the population sparseness in awake primates. The results show that only 0.5% of neurons respond strongly to any given natural image - indicating a ten-fold increase in the inferred sparseness over previous measurements. These population activities are nevertheless necessary and sufficient to discriminate visual stimuli with high accuracy, suggesting that the neural code in the primary visual cortex is both super-sparse and highly efficient. © 2018, Tang et al.
Roberts, Daniel J; Woollams, Anna M; Kim, Esther; Beeson, Pelagie M; Rapcsak, Steven Z; Lambon Ralph, Matthew A
2013-11-01
Recent visual neuroscience investigations suggest that ventral occipito-temporal cortex is retinotopically organized, with high acuity foveal input projecting primarily to the posterior fusiform gyrus (pFG), making this region crucial for coding high spatial frequency information. Because high spatial frequencies are critical for fine-grained visual discrimination, we hypothesized that damage to the left pFG should have an adverse effect not only on efficient reading, as observed in pure alexia, but also on the processing of complex non-orthographic visual stimuli. Consistent with this hypothesis, we obtained evidence that a large case series (n = 20) of patients with lesions centered on left pFG: 1) Exhibited reduced sensitivity to high spatial frequencies; 2) demonstrated prolonged response latencies both in reading (pure alexia) and object naming; and 3) were especially sensitive to visual complexity and similarity when discriminating between novel visual patterns. These results suggest that the patients' dual reading and non-orthographic recognition impairments have a common underlying mechanism and reflect the loss of high spatial frequency visual information normally coded in the left pFG.
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.
1990-01-01
Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.
Influence of audio triggered emotional attention on video perception
NASA Astrophysics Data System (ADS)
Torres, Freddy; Kalva, Hari
2014-02-01
Perceptual video coding methods attempt to improve compression efficiency by discarding visual information not perceived by end users. Most of the current approaches for perceptual video coding only use visual features ignoring the auditory component. Many psychophysical studies have demonstrated that auditory stimuli affects our visual perception. In this paper we present our study of audio triggered emotional attention and it's applicability to perceptual video coding. Experiments with movie clips show that the reaction time to detect video compression artifacts was longer when video was presented with the audio information. The results reported are statistically significant with p=0.024.
Local coding based matching kernel method for image classification.
Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong
2014-01-01
This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method.
Four Year-Olds Use Norm-Based Coding for Face Identity
ERIC Educational Resources Information Center
Jeffery, Linda; Read, Ainsley; Rhodes, Gillian
2013-01-01
Norm-based coding, in which faces are coded as deviations from an average face, is an efficient way of coding visual patterns that share a common structure and must be distinguished by subtle variations that define individuals. Adults and school-aged children use norm-based coding for face identity but it is not yet known if pre-school aged…
Correlated activity supports efficient cortical processing
Hung, Chou P.; Cui, Ding; Chen, Yueh-peng; Lin, Chia-pei; Levine, Matthew R.
2015-01-01
Visual recognition is a computational challenge that is thought to occur via efficient coding. An important concept is sparseness, a measure of coding efficiency. The prevailing view is that sparseness supports efficiency by minimizing redundancy and correlations in spiking populations. Yet, we recently reported that “choristers”, neurons that behave more similarly (have correlated stimulus preferences and spontaneous coincident spiking), carry more generalizable object information than uncorrelated neurons (“soloists”) in macaque inferior temporal (IT) cortex. The rarity of choristers (as low as 6% of IT neurons) indicates that they were likely missed in previous studies. Here, we report that correlation strength is distinct from sparseness (choristers are not simply broadly tuned neurons), that choristers are located in non-granular output layers, and that correlated activity predicts human visual search efficiency. These counterintuitive results suggest that a redundant correlational structure supports efficient processing and behavior. PMID:25610392
Assessment of visual communication by information theory
NASA Astrophysics Data System (ADS)
Huck, Friedrich O.; Fales, Carl L.
1994-01-01
This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.
NASA Astrophysics Data System (ADS)
Liu, Deyang; An, Ping; Ma, Ran; Yang, Chao; Shen, Liquan; Li, Kai
2016-07-01
Three-dimensional (3-D) holoscopic imaging, also known as integral imaging, light field imaging, or plenoptic imaging, can provide natural and fatigue-free 3-D visualization. However, a large amount of data is required to represent the 3-D holoscopic content. Therefore, efficient coding schemes for this particular type of image are needed. A 3-D holoscopic image coding scheme with kernel-based minimum mean square error (MMSE) estimation is proposed. In the proposed scheme, the coding block is predicted by an MMSE estimator under statistical modeling. In order to obtain the signal statistical behavior, kernel density estimation (KDE) is utilized to estimate the probability density function of the statistical modeling. As bandwidth estimation (BE) is a key issue in the KDE problem, we also propose a BE method based on kernel trick. The experimental results demonstrate that the proposed scheme can achieve a better rate-distortion performance and a better visual rendering quality.
Beauty is in the efficient coding of the beholder.
Renoult, Julien P; Bovet, Jeanne; Raymond, Michel
2016-03-01
Sexual ornaments are often assumed to be indicators of mate quality. Yet it remains poorly known how certain ornaments are chosen before any coevolutionary race makes them indicative. Perceptual biases have been proposed to play this role, but known biases are mostly restricted to a specific taxon, which precludes evaluating their general importance in sexual selection. Here we identify a potentially universal perceptual bias in mate choice. We used an algorithm that models the sparseness of the activity of simple cells in the primary visual cortex (or V1) of humans when coding images of female faces. Sparseness was found positively correlated with attractiveness as rated by men and explained up to 17% of variance in attractiveness. Because V1 is adapted to process signals from natural scenes, in general, not faces specifically, our results indicate that attractiveness for female faces is influenced by a visual bias. Sparseness and more generally efficient neural coding are ubiquitous, occurring in various animals and sensory modalities, suggesting that the influence of efficient coding on mate choice can be widespread in animals.
On the assessment of visual communication by information theory
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.
1993-01-01
This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.
Image gathering and coding for digital restoration: Information efficiency and visual quality
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; John, Sarah; Mccormick, Judith A.; Narayanswamy, Ramkumar
1989-01-01
Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement.
Digital visual communications using a Perceptual Components Architecture
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1991-01-01
The next era of space exploration will generate extraordinary volumes of image data, and management of this image data is beyond current technical capabilities. We propose a strategy for coding visual information that exploits the known properties of early human vision. This Perceptual Components Architecture codes images and image sequences in terms of discrete samples from limited bands of color, spatial frequency, orientation, and temporal frequency. This spatiotemporal pyramid offers efficiency (low bit rate), variable resolution, device independence, error-tolerance, and extensibility.
Portelli, Geoffrey; Barrett, John M; Hilgen, Gerrit; Masquelier, Timothée; Maccione, Alessandro; Di Marco, Stefano; Berdondini, Luca; Kornprobst, Pierre; Sernagor, Evelyne
2016-01-01
How a population of retinal ganglion cells (RGCs) encodes the visual scene remains an open question. Going beyond individual RGC coding strategies, results in salamander suggest that the relative latencies of a RGC pair encode spatial information. Thus, a population code based on this concerted spiking could be a powerful mechanism to transmit visual information rapidly and efficiently. Here, we tested this hypothesis in mouse by recording simultaneous light-evoked responses from hundreds of RGCs, at pan-retinal level, using a new generation of large-scale, high-density multielectrode array consisting of 4096 electrodes. Interestingly, we did not find any RGCs exhibiting a clear latency tuning to the stimuli, suggesting that in mouse, individual RGC pairs may not provide sufficient information. We show that a significant amount of information is encoded synergistically in the concerted spiking of large RGC populations. Thus, the RGC population response described with relative activities, or ranks, provides more relevant information than classical independent spike count- or latency- based codes. In particular, we report for the first time that when considering the relative activities across the whole population, the wave of first stimulus-evoked spikes is an accurate indicator of stimulus content. We show that this coding strategy coexists with classical neural codes, and that it is more efficient and faster. Overall, these novel observations suggest that already at the level of the retina, concerted spiking provides a reliable and fast strategy to rapidly transmit new visual scenes.
Visual attention mitigates information loss in small- and large-scale neural codes
Sprague, Thomas C; Saproo, Sameer; Serences, John T
2015-01-01
Summary The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires processing sensory signals in a manner that protects information about relevant stimuli from degradation. Such selective processing – or selective attention – is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. PMID:25769502
Novel Integration of Frame Rate Up Conversion and HEVC Coding Based on Rate-Distortion Optimization.
Guo Lu; Xiaoyun Zhang; Li Chen; Zhiyong Gao
2018-02-01
Frame rate up conversion (FRUC) can improve the visual quality by interpolating new intermediate frames. However, high frame rate videos by FRUC are confronted with more bitrate consumption or annoying artifacts of interpolated frames. In this paper, a novel integration framework of FRUC and high efficiency video coding (HEVC) is proposed based on rate-distortion optimization, and the interpolated frames can be reconstructed at encoder side with low bitrate cost and high visual quality. First, joint motion estimation (JME) algorithm is proposed to obtain robust motion vectors, which are shared between FRUC and video coding. What's more, JME is embedded into the coding loop and employs the original motion search strategy in HEVC coding. Then, the frame interpolation is formulated as a rate-distortion optimization problem, where both the coding bitrate consumption and visual quality are taken into account. Due to the absence of original frames, the distortion model for interpolated frames is established according to the motion vector reliability and coding quantization error. Experimental results demonstrate that the proposed framework can achieve 21% ~ 42% reduction in BDBR, when compared with the traditional methods of FRUC cascaded with coding.
Investigating Navy Officer Retention Using Data Farming
2015-09-01
runs on Microsoft Access . Contractors from SAG Corporation translated the code into Visual Basic for Applications ( VBA ), bringing several benefits...18 b. Accessions ............................................................. 18 c. Promotions...Strategic Actions Group SEED Simulation Experiments & Efficient Design URL Unrestricted Line VBA Visual Basic for Applications VV&A Verification
Experimental design and analysis of JND test on coded image/video
NASA Astrophysics Data System (ADS)
Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay
2015-09-01
The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.
Visual attention mitigates information loss in small- and large-scale neural codes.
Sprague, Thomas C; Saproo, Sameer; Serences, John T
2015-04-01
The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. Copyright © 2015 Elsevier Ltd. All rights reserved.
FAST: framework for heterogeneous medical image computing and visualization.
Smistad, Erik; Bozorgi, Mohammadmehdi; Lindseth, Frank
2015-11-01
Computer systems are becoming increasingly heterogeneous in the sense that they consist of different processors, such as multi-core CPUs and graphic processing units. As the amount of medical image data increases, it is crucial to exploit the computational power of these processors. However, this is currently difficult due to several factors, such as driver errors, processor differences, and the need for low-level memory handling. This paper presents a novel FrAmework for heterogeneouS medical image compuTing and visualization (FAST). The framework aims to make it easier to simultaneously process and visualize medical images efficiently on heterogeneous systems. FAST uses common image processing programming paradigms and hides the details of memory handling from the user, while enabling the use of all processors and cores on a system. The framework is open-source, cross-platform and available online. Code examples and performance measurements are presented to show the simplicity and efficiency of FAST. The results are compared to the insight toolkit (ITK) and the visualization toolkit (VTK) and show that the presented framework is faster with up to 20 times speedup on several common medical imaging algorithms. FAST enables efficient medical image computing and visualization on heterogeneous systems. Code examples and performance evaluations have demonstrated that the toolkit is both easy to use and performs better than existing frameworks, such as ITK and VTK.
Visual saliency-based fast intracoding algorithm for high efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Xin; Shi, Guangming; Zhou, Wei; Duan, Zhemin
2017-01-01
Intraprediction has been significantly improved in high efficiency video coding over H.264/AVC with quad-tree-based coding unit (CU) structure from size 64×64 to 8×8 and more prediction modes. However, these techniques cause a dramatic increase in computational complexity. An intracoding algorithm is proposed that consists of perceptual fast CU size decision algorithm and fast intraprediction mode decision algorithm. First, based on the visual saliency detection, an adaptive and fast CU size decision method is proposed to alleviate intraencoding complexity. Furthermore, a fast intraprediction mode decision algorithm with step halving rough mode decision method and early modes pruning algorithm is presented to selectively check the potential modes and effectively reduce the complexity of computation. Experimental results show that our proposed fast method reduces the computational complexity of the current HM to about 57% in encoding time with only 0.37% increases in BD rate. Meanwhile, the proposed fast algorithm has reasonable peak signal-to-noise ratio losses and nearly the same subjective perceptual quality.
Cross-indexing of binary SIFT codes for large-scale image search.
Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi
2014-05-01
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.
Real-time echocardiogram transmission protocol based on regions and visualization modes.
Cavero, Eva; Alesanco, Álvaro; García, José
2014-09-01
This paper proposes an Echocardiogram Transmission Protocol (ETP) for real-time end-to-end transmission of echocardiograms over IP networks. The ETP has been designed taking into account the echocardiogram characteristics of each visualized region, encoding each region according to its data type, visualization characteristics and diagnostic importance in order to improve the coding and thus the transmission efficiency. Furthermore, each region is sent separately and different error protection techniques can be used for each region. This leads to an efficient use of resources and provides greater protection for those regions with more clinical information. Synchronization is implemented for regions that change over time. The echocardiogram composition is different for each device. The protocol is valid for all echocardiogram devices thanks to the incorporation of configuration information which includes the composition of the echocardiogram. The efficiency of the ETP has been proved in terms of the number of bits sent with the proposed protocol. The codec and transmission rates used for the regions of interest have been set according to previous recommendations. Although the saving in the codified bits depends on the video composition, a coding gain higher than 7% with respect to without using ETP has been achieved.
Weisberg, Jill; McCullough, Stephen; Emmorey, Karen
2018-01-01
Code-blends (simultaneous words and signs) are a unique characteristic of bimodal bilingual communication. Using fMRI, we investigated code-blend comprehension in hearing native ASL-English bilinguals who made a semantic decision (edible?) about signs, audiovisual words, and semantically equivalent code-blends. English and ASL recruited a similar fronto-temporal network with expected modality differences: stronger activation for English in auditory regions of bilateral superior temporal cortex, and stronger activation for ASL in bilateral occipitotemporal visual regions and left parietal cortex. Code-blend comprehension elicited activity in a combination of these regions, and no cognitive control regions were additionally recruited. Furthermore, code-blends elicited reduced activation relative to ASL presented alone in bilateral prefrontal and visual extrastriate cortices, and relative to English alone in auditory association cortex. Consistent with behavioral facilitation observed during semantic decisions, the findings suggest that redundant semantic content induces more efficient neural processing in language and sensory regions during bimodal language integration. PMID:26177161
Supranormal orientation selectivity of visual neurons in orientation-restricted animals.
Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi
2015-11-16
Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.
A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks
Costa, Daniel G.; Guedes, Luiz Affonso
2011-01-01
Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908
Supranormal orientation selectivity of visual neurons in orientation-restricted animals
Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi
2015-01-01
Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927
Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1993-01-01
Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.
Self-Taught Low-Rank Coding for Visual Learning.
Li, Sheng; Li, Kang; Fu, Yun
2018-03-01
The lack of labeled data presents a common challenge in many computer vision and machine learning tasks. Semisupervised learning and transfer learning methods have been developed to tackle this challenge by utilizing auxiliary samples from the same domain or from a different domain, respectively. Self-taught learning, which is a special type of transfer learning, has fewer restrictions on the choice of auxiliary data. It has shown promising performance in visual learning. However, existing self-taught learning methods usually ignore the structure information in data. In this paper, we focus on building a self-taught coding framework, which can effectively utilize the rich low-level pattern information abstracted from the auxiliary domain, in order to characterize the high-level structural information in the target domain. By leveraging a high quality dictionary learned across auxiliary and target domains, the proposed approach learns expressive codings for the samples in the target domain. Since many types of visual data have been proven to contain subspace structures, a low-rank constraint is introduced into the coding objective to better characterize the structure of the given target set. The proposed representation learning framework is called self-taught low-rank (S-Low) coding, which can be formulated as a nonconvex rank-minimization and dictionary learning problem. We devise an efficient majorization-minimization augmented Lagrange multiplier algorithm to solve it. Based on the proposed S-Low coding mechanism, both unsupervised and supervised visual learning algorithms are derived. Extensive experiments on five benchmark data sets demonstrate the effectiveness of our approach.
Cognitive/emotional models for human behavior representation in 3D avatar simulations
NASA Astrophysics Data System (ADS)
Peterson, James K.
2004-08-01
Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
DataPflex: a MATLAB-based tool for the manipulation and visualization of multidimensional datasets.
Hendriks, Bart S; Espelin, Christopher W
2010-02-01
DataPflex is a MATLAB-based application that facilitates the manipulation and visualization of multidimensional datasets. The strength of DataPflex lies in the intuitive graphical user interface for the efficient incorporation, manipulation and visualization of high-dimensional data that can be generated by multiplexed protein measurement platforms including, but not limited to Luminex or Meso-Scale Discovery. Such data can generally be represented in the form of multidimensional datasets [for example (time x stimulation x inhibitor x inhibitor concentration x cell type x measurement)]. For cases where measurements are made in a combinational fashion across multiple dimensions, there is a need for a tool to efficiently manipulate and reorganize such data for visualization. DataPflex accepts data consisting of up to five arbitrary dimensions in addition to a measurement dimension. Data are imported from a simple .xls format and can be exported to MATLAB or .xls. Data dimensions can be reordered, subdivided, merged, normalized and visualized in the form of collections of line graphs, bar graphs, surface plots, heatmaps, IC50's and other custom plots. Open source implementation in MATLAB enables easy extension for custom plotting routines and integration with more sophisticated analysis tools. DataPflex is distributed under the GPL license (http://www.gnu.org/licenses/) together with documentation, source code and sample data files at: http://code.google.com/p/datapflex. Supplementary data available at Bioinformatics online.
Information theoretical assessment of visual communication with wavelet coding
NASA Astrophysics Data System (ADS)
Rahman, Zia-ur
1995-06-01
A visual communication channel can be characterized by the efficiency with which it conveys information, and the quality of the images restored from the transmitted data. Efficient data representation requires the use of constraints of the visual communication channel. Our information theoretic analysis combines the design of the wavelet compression algorithm with the design of the visual communication channel. Shannon's communication theory, Wiener's restoration filter, and the critical design factors of image gathering and display are combined to provide metrics for measuring the efficiency of data transmission, and for quantitatively assessing the visual quality of the restored image. These metrics are: a) the mutual information (Eta) between the radiance the radiance field and the restored image, and b) the efficiency of the channel which can be roughly measured by as the ratio (Eta) /H, where H is the average number of bits being used to transmit the data. Huck, et al. (Journal of Visual Communication and Image Representation, Vol. 4, No. 2, 1993) have shown that channels desinged to maximize (Eta) , also maximize. Our assessment provides a framework for designing channels which provide the highest possible visual quality for a given amount of data under the critical design limitations of the image gathering and display devices. Results show that a trade-off exists between the maximum realizable information of the channel and its efficiency: an increase in one leads to a decrease in the other. The final selection of which of these quantities to maximize is, of course, application dependent.
A distributed code for color in natural scenes derived from center-surround filtered cone signals
Kellner, Christian J.; Wachtler, Thomas
2013-01-01
In the retina of trichromatic primates, chromatic information is encoded in an opponent fashion and transmitted to the lateral geniculate nucleus (LGN) and visual cortex via parallel pathways. Chromatic selectivities of neurons in the LGN form two separate clusters, corresponding to two classes of cone opponency. In the visual cortex, however, the chromatic selectivities are more distributed, which is in accordance with a population code for color. Previous studies of cone signals in natural scenes typically found opponent codes with chromatic selectivities corresponding to two directions in color space. Here we investigated how the non-linear spatio-chromatic filtering in the retina influences the encoding of color signals. Cone signals were derived from hyper-spectral images of natural scenes and preprocessed by center-surround filtering and rectification, resulting in parallel ON and OFF channels. Independent Component Analysis (ICA) on these signals yielded a highly sparse code with basis functions that showed spatio-chromatic selectivities. In contrast to previous analyses of linear transformations of cone signals, chromatic selectivities were not restricted to two main chromatic axes, but were more continuously distributed in color space, similar to the population code of color in the early visual cortex. Our results indicate that spatio-chromatic processing in the retina leads to a more distributed and more efficient code for natural scenes. PMID:24098289
Slow Feature Analysis on Retinal Waves Leads to V1 Complex Cells
Dähne, Sven; Wilbert, Niko; Wiskott, Laurenz
2014-01-01
The developing visual system of many mammalian species is partially structured and organized even before the onset of vision. Spontaneous neural activity, which spreads in waves across the retina, has been suggested to play a major role in these prenatal structuring processes. Recently, it has been shown that when employing an efficient coding strategy, such as sparse coding, these retinal activity patterns lead to basis functions that resemble optimal stimuli of simple cells in primary visual cortex (V1). Here we present the results of applying a coding strategy that optimizes for temporal slowness, namely Slow Feature Analysis (SFA), to a biologically plausible model of retinal waves. Previously, SFA has been successfully applied to model parts of the visual system, most notably in reproducing a rich set of complex-cell features by training SFA with quasi-natural image sequences. In the present work, we obtain SFA units that share a number of properties with cortical complex-cells by training on simulated retinal waves. The emergence of two distinct properties of the SFA units (phase invariance and orientation tuning) is thoroughly investigated via control experiments and mathematical analysis of the input-output functions found by SFA. The results support the idea that retinal waves share relevant temporal and spatial properties with natural visual input. Hence, retinal waves seem suitable training stimuli to learn invariances and thereby shape the developing early visual system such that it is best prepared for coding input from the natural world. PMID:24810948
Vector and Raster Data Storage Based on Morton Code
NASA Astrophysics Data System (ADS)
Zhou, G.; Pan, Q.; Yue, T.; Wang, Q.; Sha, H.; Huang, S.; Liu, X.
2018-05-01
Even though geomatique is so developed nowadays, the integration of spatial data in vector and raster formats is still a very tricky problem in geographic information system environment. And there is still not a proper way to solve the problem. This article proposes a method to interpret vector data and raster data. In this paper, we saved the image data and building vector data of Guilin University of Technology to Oracle database. Then we use ADO interface to connect database to Visual C++ and convert row and column numbers of raster data and X Y of vector data to Morton code in Visual C++ environment. This method stores vector and raster data to Oracle Database and uses Morton code instead of row and column and X Y to mark the position information of vector and raster data. Using Morton code to mark geographic information enables storage of data make full use of storage space, simultaneous analysis of vector and raster data more efficient and visualization of vector and raster more intuitive. This method is very helpful for some situations that need to analyse or display vector data and raster data at the same time.
Visual analysis of inter-process communication for large-scale parallel computing.
Muelder, Chris; Gygi, Francois; Ma, Kwan-Liu
2009-01-01
In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.
Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook
2017-01-01
Medical image collections contain a wealth of information which can assist radiologists and medical experts in diagnosis and disease detection for making well-informed decisions. However, this objective can only be realized if efficient access is provided to semantically relevant cases from the ever-growing medical image repositories. In this paper, we present an efficient method for representing medical images by incorporating visual saliency and deep features obtained from a fine-tuned convolutional neural network (CNN) pre-trained on natural images. Saliency detector is employed to automatically identify regions of interest like tumors, fractures, and calcified spots in images prior to feature extraction. Neuronal activation features termed as neural codes from different CNN layers are comprehensively studied to identify most appropriate features for representing radiographs. This study revealed that neural codes from the last fully connected layer of the fine-tuned CNN are found to be the most suitable for representing medical images. The neural codes extracted from the entire image and salient part of the image are fused to obtain the saliency-injected neural codes (SiNC) descriptor which is used for indexing and retrieval. Finally, locality sensitive hashing techniques are applied on the SiNC descriptor to acquire short binary codes for allowing efficient retrieval in large scale image collections. Comprehensive experimental evaluations on the radiology images dataset reveal that the proposed framework achieves high retrieval accuracy and efficiency for scalable image retrieval applications and compares favorably with existing approaches. PMID:28771497
Vinck, Martin; Bosman, Conrado A.
2016-01-01
During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is particularly information-rich and sparse. PMID:27199684
NASA Astrophysics Data System (ADS)
Exby, J.; Busby, R.; Dimitrov, D. A.; Bruhwiler, D.; Cary, J. R.
2003-10-01
We present our design and initial implementation of a web service model for running particle-in-cell (PIC) codes remotely from a web browser interface. PIC codes have grown significantly in complexity and now often require parallel execution on multiprocessor computers, which in turn requires sophisticated post-processing and data analysis. A significant amount of time and effort is required for a physicist to develop all the necessary skills, at the expense of actually doing research. Moreover, parameter studies with a computationally intensive code justify the systematic management of results with an efficient way to communicate them among a group of remotely located collaborators. Our initial implementation uses the OOPIC Pro code [1], Linux, Apache, MySQL, Python, and PHP. The Interactive Data Language is used for visualization. [1] D.L. Bruhwiler et al., Phys. Rev. ST-AB 4, 101302 (2001). * This work is supported by DOE grant # DE-FG02-03ER83857 and by Tech-X Corp. ** Also University of Colorado.
Top-Down Visual Saliency via Joint CRF and Dictionary Learning.
Yang, Jimei; Yang, Ming-Hsuan
2017-03-01
Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.
Audiovisual focus of attention and its application to Ultra High Definition video compression
NASA Astrophysics Data System (ADS)
Rerabek, Martin; Nemoto, Hiromi; Lee, Jong-Seok; Ebrahimi, Touradj
2014-02-01
Using Focus of Attention (FoA) as a perceptual process in image and video compression belongs to well-known approaches to increase coding efficiency. It has been shown that foveated coding, when compression quality varies across the image according to region of interest, is more efficient than the alternative coding, when all region are compressed in a similar way. However, widespread use of such foveated compression has been prevented due to two main conflicting causes, namely, the complexity and the efficiency of algorithms for FoA detection. One way around these is to use as much information as possible from the scene. Since most video sequences have an associated audio, and moreover, in many cases there is a correlation between the audio and the visual content, audiovisual FoA can improve efficiency of the detection algorithm while remaining of low complexity. This paper discusses a simple yet efficient audiovisual FoA algorithm based on correlation of dynamics between audio and video signal components. Results of audiovisual FoA detection algorithm are subsequently taken into account for foveated coding and compression. This approach is implemented into H.265/HEVC encoder producing a bitstream which is fully compliant to any H.265/HEVC decoder. The influence of audiovisual FoA in the perceived quality of high and ultra-high definition audiovisual sequences is explored and the amount of gain in compression efficiency is analyzed.
The Fine Art of Using a Laserdisc in the Art Classroom.
ERIC Educational Resources Information Center
Porter, Sharon
1998-01-01
Laserdiscs are an efficient and flexible medium for art presentations in schools. This article discusses laserdiscs, also called videodiscs; distinguishes between constant linear velocity (CLV) and constant angular velocity (CAV) which allows more flexible access; describes the use of bar coding for access; and lists selected visual art…
Space coding for sensorimotor transformations can emerge through unsupervised learning.
De Filippo De Grazia, Michele; Cutini, Simone; Lisi, Matteo; Zorzi, Marco
2012-08-01
The posterior parietal cortex (PPC) is fundamental for sensorimotor transformations because it combines multiple sensory inputs and posture signals into different spatial reference frames that drive motor programming. Here, we present a computational model mimicking the sensorimotor transformations occurring in the PPC. A recurrent neural network with one layer of hidden neurons (restricted Boltzmann machine) learned a stochastic generative model of the sensory data without supervision. After the unsupervised learning phase, the activity of the hidden neurons was used to compute a motor program (a population code on a bidimensional map) through a simple linear projection and delta rule learning. The average motor error, calculated as the difference between the expected and the computed output, was less than 3°. Importantly, analyses of the hidden neurons revealed gain-modulated visual receptive fields, thereby showing that space coding for sensorimotor transformations similar to that observed in the PPC can emerge through unsupervised learning. These results suggest that gain modulation is an efficient coding strategy to integrate visual and postural information toward the generation of motor commands.
Predictive Coding: A Possible Explanation of Filling-In at the Blind Spot
Raman, Rajani; Sarkar, Sandip
2016-01-01
Filling-in at the blind spot is a perceptual phenomenon in which the visual system fills the informational void, which arises due to the absence of retinal input corresponding to the optic disc, with surrounding visual attributes. It is known that during filling-in, nonlinear neural responses are observed in the early visual area that correlates with the perception, but the knowledge of underlying neural mechanism for filling-in at the blind spot is far from complete. In this work, we attempted to present a fresh perspective on the computational mechanism of filling-in process in the framework of hierarchical predictive coding, which provides a functional explanation for a range of neural responses in the cortex. We simulated a three-level hierarchical network and observe its response while stimulating the network with different bar stimulus across the blind spot. We find that the predictive-estimator neurons that represent blind spot in primary visual cortex exhibit elevated non-linear response when the bar stimulated both sides of the blind spot. Using generative model, we also show that these responses represent the filling-in completion. All these results are consistent with the finding of psychophysical and physiological studies. In this study, we also demonstrate that the tolerance in filling-in qualitatively matches with the experimental findings related to non-aligned bars. We discuss this phenomenon in the predictive coding paradigm and show that all our results could be explained by taking into account the efficient coding of natural images along with feedback and feed-forward connections that allow priors and predictions to co-evolve to arrive at the best prediction. These results suggest that the filling-in process could be a manifestation of the general computational principle of hierarchical predictive coding of natural images. PMID:26959812
Welter, David E.; Doherty, John E.; Hunt, Randall J.; Muffels, Christopher T.; Tonkin, Matthew J.; Schreuder, Willem A.
2012-01-01
An object-oriented parameter estimation code was developed to incorporate benefits of object-oriented programming techniques for solving large parameter estimation modeling problems. The code is written in C++ and is a formulation and expansion of the algorithms included in PEST, a widely used parameter estimation code written in Fortran. The new code is called PEST++ and is designed to lower the barriers of entry for users and developers while providing efficient algorithms that can accommodate large, highly parameterized problems. This effort has focused on (1) implementing the most popular features of PEST in a fashion that is easy for novice or experienced modelers to use and (2) creating a software design that is easy to extend; that is, this effort provides a documented object-oriented framework designed from the ground up to be modular and extensible. In addition, all PEST++ source code and its associated libraries, as well as the general run manager source code, have been integrated in the Microsoft Visual Studio® 2010 integrated development environment. The PEST++ code is designed to provide a foundation for an open-source development environment capable of producing robust and efficient parameter estimation tools for the environmental modeling community into the future.
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1988-01-01
Two types of research issues are involved in image management systems with space station applications: image processing research and image perception research. The image processing issues are the traditional ones of digitizing, coding, compressing, storing, analyzing, and displaying, but with a new emphasis on the constraints imposed by the human perceiver. Two image coding algorithms have been developed that may increase the efficiency of image management systems (IMS). Image perception research involves a study of the theoretical and practical aspects of visual perception of electronically displayed images. Issues include how rapidly a user can search through a library of images, how to make this search more efficient, and how to present images in terms of resolution and split screens. Other issues include optimal interface to an IMS and how to code images in a way that is optimal for the human perceiver. A test-bed within which such issues can be addressed has been designed.
Surfing a spike wave down the ventral stream.
VanRullen, Rufin; Thorpe, Simon J
2002-10-01
Numerous theories of neural processing, often motivated by experimental observations, have explored the computational properties of neural codes based on the absolute or relative timing of spikes in spike trains. Spiking neuron models and theories however, as well as their experimental counterparts, have generally been limited to the simulation or observation of isolated neurons, isolated spike trains, or reduced neural populations. Such theories would therefore seem inappropriate to capture the properties of a neural code relying on temporal spike patterns distributed across large neuronal populations. Here we report a range of computer simulations and theoretical considerations that were designed to explore the possibilities of one such code and its relevance for visual processing. In a unified framework where the relation between stimulus saliency and spike relative timing plays the central role, we describe how the ventral stream of the visual system could process natural input scenes and extract meaningful information, both rapidly and reliably. The first wave of spikes generated in the retina in response to a visual stimulation carries information explicitly in its spatio-temporal structure: the most salient information is represented by the first spikes over the population. This spike wave, propagating through a hierarchy of visual areas, is regenerated at each processing stage, where its temporal structure can be modified by (i). the selectivity of the cortical neurons, (ii). lateral interactions and (iii). top-down attentional influences from higher order cortical areas. The resulting model could account for the remarkable efficiency and rapidity of processing observed in the primate visual system.
Region-of-interest determination and bit-rate conversion for H.264 video transcoding
NASA Astrophysics Data System (ADS)
Huang, Shu-Fen; Chen, Mei-Juan; Tai, Kuang-Han; Li, Mian-Shiuan
2013-12-01
This paper presents a video bit-rate transcoder for baseline profile in H.264/AVC standard to fit the available channel bandwidth for the client when transmitting video bit-streams via communication channels. To maintain visual quality for low bit-rate video efficiently, this study analyzes the decoded information in the transcoder and proposes a Bayesian theorem-based region-of-interest (ROI) determination algorithm. In addition, a curve fitting scheme is employed to find the models of video bit-rate conversion. The transcoded video will conform to the target bit-rate by re-quantization according to our proposed models. After integrating the ROI detection method and the bit-rate transcoding models, the ROI-based transcoder allocates more coding bits to ROI regions and reduces the complexity of the re-encoding procedure for non-ROI regions. Hence, it not only keeps the coding quality but improves the efficiency of the video transcoding for low target bit-rates and makes the real-time transcoding more practical. Experimental results show that the proposed framework gets significantly better visual quality.
Real-time visual simulation of APT system based on RTW and Vega
NASA Astrophysics Data System (ADS)
Xiong, Shuai; Fu, Chengyu; Tang, Tao
2012-10-01
The Matlab/Simulink simulation model of APT (acquisition, pointing and tracking) system is analyzed and established. Then the model's C code which can be used for real-time simulation is generated by RTW (Real-Time Workshop). Practical experiments show, the simulation result of running the C code is the same as running the Simulink model directly in the Matlab environment. MultiGen-Vega is a real-time 3D scene simulation software system. With it and OpenGL, the APT scene simulation platform is developed and used to render and display the virtual scenes of the APT system. To add some necessary graphics effects to the virtual scenes real-time, GLSL (OpenGL Shading Language) shaders are used based on programmable GPU. By calling the C code, the scene simulation platform can adjust the system parameters on-line and get APT system's real-time simulation data to drive the scenes. Practical application shows that this visual simulation platform has high efficiency, low charge and good simulation effect.
Color coding of control room displays: the psychocartography of visual layering effects.
Van Laar, Darren; Deshe, Ofer
2007-06-01
To evaluate which of three color coding methods (monochrome, maximally discriminable, and visual layering) used to code four types of control room display format (bars, tables, trend, mimic) was superior in two classes of task (search, compare). It has recently been shown that color coding of visual layers, as used in cartography, may be used to color code any type of information display, but this has yet to be fully evaluated. Twenty-four people took part in a 2 (task) x 3 (coding method) x 4 (format) wholly repeated measures design. The dependent variables assessed were target location reaction time, error rates, workload, and subjective feedback. Overall, the visual layers coding method produced significantly faster reaction times than did the maximally discriminable and the monochrome methods for both the search and compare tasks. No significant difference in errors was observed between conditions for either task type. Significantly less perceived workload was experienced with the visual layers coding method, which was also rated more highly than the other coding methods on a 14-item visual display quality questionnaire. The visual layers coding method is superior to other color coding methods for control room displays when the method supports the user's task. The visual layers color coding method has wide applicability to the design of all complex information displays utilizing color coding, from the most maplike (e.g., air traffic control) to the most abstract (e.g., abstracted ecological display).
Exclusively visual analysis of classroom group interactions
NASA Astrophysics Data System (ADS)
Tucker, Laura; Scherr, Rachel E.; Zickler, Todd; Mazur, Eric
2016-12-01
Large-scale audiovisual data that measure group learning are time consuming to collect and analyze. As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom video using an established coding scheme with and without its audio cues. We find that interrater reliability is as high when using visual data only—without audio—as when using both visual and audio data to code. Also, interrater reliability is high when comparing use of visual and audio data to visual-only data. We see a small bias to code interactions as group discussion when visual and audio data are used compared with video-only data. This work establishes that meaningful educational observation can be made through visual information alone. Further, it suggests that after initial work to create a coding scheme and validate it in each environment, computer-automated visual coding could drastically increase the breadth of qualitative studies and allow for meaningful educational analysis on a far greater scale.
3D Visualization of Machine Learning Algorithms with Astronomical Data
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2016-01-01
We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.
Efficient receptive field tiling in primate V1
Nauhaus, Ian; Nielsen, Kristina J.; Callaway, Edward M.
2017-01-01
The primary visual cortex (V1) encodes a diverse set of visual features, including orientation, ocular dominance (OD) and spatial frequency (SF), whose joint organization must be precisely structured to optimize coverage within the retinotopic map. Prior experiments have only identified efficient coverage based on orthogonal maps. Here, we used two-photon calcium imaging to reveal an alternative arrangement for OD and SF maps in macaque V1; their gradients run parallel but with unique spatial periods, whereby low SF regions coincide with monocular regions. Next, we mapped receptive fields and find surprisingly precise micro-retinotopy that yields a smaller point-image and requires more efficient inter-map geometry, thus underscoring the significance of map relationships. While smooth retinotopy is constraining, studies suggest that it improves both wiring economy and the V1 population code read downstream. Altogether, these data indicate that connectivity within V1 is finely tuned and precise at the level of individual neurons. PMID:27499086
Weighted bi-prediction for light field image coding
NASA Astrophysics Data System (ADS)
Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.
2017-09-01
Light field imaging based on a single-tier camera equipped with a microlens array - also known as integral, holoscopic, and plenoptic imaging - has currently risen up as a practical and prospective approach for future visual applications and services. However, successfully deploying actual light field imaging applications and services will require developing adequate coding solutions to efficiently handle the massive amount of data involved in these systems. In this context, self-similarity compensated prediction is a non-local spatial prediction scheme based on block matching that has been shown to achieve high efficiency for light field image coding based on the High Efficiency Video Coding (HEVC) standard. As previously shown by the authors, this is possible by simply averaging two predictor blocks that are jointly estimated from a causal search window in the current frame itself, referred to as self-similarity bi-prediction. However, theoretical analyses for motion compensated bi-prediction have suggested that it is still possible to achieve further rate-distortion performance improvements by adaptively estimating the weighting coefficients of the two predictor blocks. Therefore, this paper presents a comprehensive study of the rate-distortion performance for HEVC-based light field image coding when using different sets of weighting coefficients for self-similarity bi-prediction. Experimental results demonstrate that it is possible to extend the previous theoretical conclusions to light field image coding and show that the proposed adaptive weighting coefficient selection leads to up to 5 % of bit savings compared to the previous self-similarity bi-prediction scheme.
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2012-01-01
Surveillance applications usually require high levels of video quality, resulting in high power consumption. The existence of a well-behaved scheme to balance video quality and power consumption is crucial for the system's performance. In the present work, we adopt the game-theoretic approach of Kalai-Smorodinsky Bargaining Solution (KSBS) to deal with the problem of optimal resource allocation in a multi-node wireless visual sensor network (VSN). In our setting, the Direct Sequence Code Division Multiple Access (DS-CDMA) method is used for channel access, while a cross-layer optimization design, which employs a central processing server, accounts for the overall system efficacy through all network layers. The task assigned to the central server is the communication with the nodes and the joint determination of their transmission parameters. The KSBS is applied to non-convex utility spaces, efficiently distributing the source coding rate, channel coding rate and transmission powers among the nodes. In the underlying model, the transmission powers assume continuous values, whereas the source and channel coding rates can take only discrete values. Experimental results are reported and discussed to demonstrate the merits of KSBS over competing policies.
EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.
Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D
2012-01-01
Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.
Real-time distributed video coding for 1K-pixel visual sensor networks
NASA Astrophysics Data System (ADS)
Hanca, Jan; Deligiannis, Nikos; Munteanu, Adrian
2016-07-01
Many applications in visual sensor networks (VSNs) demand the low-cost wireless transmission of video data. In this context, distributed video coding (DVC) has proven its potential to achieve state-of-the-art compression performance while maintaining low computational complexity of the encoder. Despite their proven capabilities, current DVC solutions overlook hardware constraints, and this renders them unsuitable for practical implementations. This paper introduces a DVC architecture that offers highly efficient wireless communication in real-world VSNs. The design takes into account the severe computational and memory constraints imposed by practical implementations on low-resolution visual sensors. We study performance-complexity trade-offs for feedback-channel removal, propose learning-based techniques for rate allocation, and investigate various simplifications of side information generation yielding real-time decoding. The proposed system is evaluated against H.264/AVC intra, Motion-JPEG, and our previously designed DVC prototype for low-resolution visual sensors. Extensive experimental results on various data show significant improvements in multiple configurations. The proposed encoder achieves real-time performance on a 1k-pixel visual sensor mote. Real-time decoding is performed on a Raspberry Pi single-board computer or a low-end notebook PC. To the best of our knowledge, the proposed codec is the first practical DVC deployment on low-resolution VSNs.
A hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.
1989-01-01
Retinal ganglion cells represent the visual image with a spatial code, in which each cell conveys information about a small region in the image. In contrast, cells of the primary visual cortex use a hybrid space-frequency code in which each cell conveys information about a region that is local in space, spatial frequency, and orientation. A mathematical model for this transformation is described. The hexagonal orthogonal-oriented quadrature pyramid (HOP) transform, which operates on a hexagonal input lattice, uses basis functions that are orthogonal, self-similar, and localized in space, spatial frequency, orientation, and phase. The basis functions, which are generated from seven basic types through a recursive process, form an image code of the pyramid type. The seven basis functions, six bandpass and one low-pass, occupy a point and a hexagon of six nearest neighbors on a hexagonal lattice. The six bandpass basis functions consist of three with even symmetry, and three with odd symmetry. At the lowest level, the inputs are image samples. At each higher level, the input lattice is provided by the low-pass coefficients computed at the previous level. At each level, the output is subsampled in such a way as to yield a new hexagonal lattice with a spacing square root of 7 larger than the previous level, so that the number of coefficients is reduced by a factor of seven at each level. In the biological model, the input lattice is the retinal ganglion cell array. The resulting scheme provides a compact, efficient code of the image and generates receptive fields that resemble those of the primary visual cortex.
Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas
Liu, Daoming; Kenjeres, Sasa
2017-01-01
In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD) and computational reaction dynamics (CRD) approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency) of data results in the Keyhole Markup Language (KML) format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands). It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations. PMID:28257078
Neural representation of objects in space: a dual coding account.
Humphreys, G W
1998-01-01
I present evidence on the nature of object coding in the brain and discuss the implications of this coding for models of visual selective attention. Neuropsychological studies of task-based constraints on: (i) visual neglect; and (ii) reading and counting, reveal the existence of parallel forms of spatial representation for objects: within-object representations, where elements are coded as parts of objects, and between-object representations, where elements are coded as independent objects. Aside from these spatial codes for objects, however, the coding of visual space is limited. We are extremely poor at remembering small spatial displacements across eye movements, indicating (at best) impoverished coding of spatial position per se. Also, effects of element separation on spatial extinction can be eliminated by filling the space with an occluding object, indicating that spatial effects on visual selection are moderated by object coding. Overall, there are separate limits on visual processing reflecting: (i) the competition to code parts within objects; (ii) the small number of independent objects that can be coded in parallel; and (iii) task-based selection of whether within- or between-object codes determine behaviour. Between-object coding may be linked to the dorsal visual system while parallel coding of parts within objects takes place in the ventral system, although there may additionally be some dorsal involvement either when attention must be shifted within objects or when explicit spatial coding of parts is necessary for object identification. PMID:9770227
Video coding for 3D-HEVC based on saliency information
NASA Astrophysics Data System (ADS)
Yu, Fang; An, Ping; Yang, Chao; You, Zhixiang; Shen, Liquan
2016-11-01
As an extension of High Efficiency Video Coding ( HEVC), 3D-HEVC has been widely researched under the impetus of the new generation coding standard in recent years. Compared with H.264/AVC, its compression efficiency is doubled while keeping the same video quality. However, its higher encoding complexity and longer encoding time are not negligible. To reduce the computational complexity and guarantee the subjective quality of virtual views, this paper presents a novel video coding method for 3D-HEVC based on the saliency informat ion which is an important part of Human Visual System (HVS). First of all, the relationship between the current coding unit and its adjacent units is used to adjust the maximum depth of each largest coding unit (LCU) and determine the SKIP mode reasonably. Then, according to the saliency informat ion of each frame image, the texture and its corresponding depth map will be divided into three regions, that is, salient area, middle area and non-salient area. Afterwards, d ifferent quantization parameters will be assigned to different regions to conduct low complexity coding. Finally, the compressed video will generate new view point videos through the renderer tool. As shown in our experiments, the proposed method saves more bit rate than other approaches and achieves up to highest 38% encoding time reduction without subjective quality loss in compression or rendering.
Parallel coding of conjunctions in visual search.
Found, A
1998-10-01
Two experiments investigated whether the conjunctive nature of nontarget items influenced search for a conjunction target. Each experiment consisted of two conditions. In both conditions, the target item was a red bar tilted to the right, among white tilted bars and vertical red bars. As well as color and orientation, display items also differed in terms of size. Size was irrelevant to search in that the size of the target varied randomly from trial to trial. In one condition, the size of items correlated with the other attributes of display items (e.g., all red items were big and all white items were small). In the other condition, the size of items varied randomly (i.e., some red items were small and some were big, and some white items were big and some were small). Search was more efficient in the size-correlated condition, consistent with the parallel coding of conjunctions in visual search.
Sparse Coding and Counting for Robust Visual Tracking
Liu, Risheng; Wang, Jing; Shang, Xiaoke; Wang, Yiyang; Su, Zhixun; Cai, Yu
2016-01-01
In this paper, we propose a novel sparse coding and counting method under Bayesian framework for visual tracking. In contrast to existing methods, the proposed method employs the combination of L0 and L1 norm to regularize the linear coefficients of incrementally updated linear basis. The sparsity constraint enables the tracker to effectively handle difficult challenges, such as occlusion or image corruption. To achieve real-time processing, we propose a fast and efficient numerical algorithm for solving the proposed model. Although it is an NP-hard problem, the proposed accelerated proximal gradient (APG) approach is guaranteed to converge to a solution quickly. Besides, we provide a closed solution of combining L0 and L1 regularized representation to obtain better sparsity. Experimental results on challenging video sequences demonstrate that the proposed method achieves state-of-the-art results both in accuracy and speed. PMID:27992474
Pseudo-color coding method for high-dynamic single-polarization SAR images
NASA Astrophysics Data System (ADS)
Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi
2018-04-01
A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.
Bachman, Peter; Reichenberg, Abraham; Rice, Patrick; Woolsey, Mary; Chaves, Olga; Martinez, David; Maples, Natalie; Velligan, Dawn I; Glahn, David C
2010-05-01
Cognitive processing inefficiency, often measured using digit symbol coding tasks, is a putative vulnerability marker for schizophrenia and a reliable indicator of illness severity and functional outcome. Indeed, performance on the digit symbol coding task may be the most severe neuropsychological deficit patients with schizophrenia display at the group level. Yet, little is known about the contributions of simpler cognitive processes to coding performance in schizophrenia (e.g. decision making, visual scanning, relational memory, motor ability). We developed an experimental behavioral task, based on a computerized digit symbol coding task, which allows the manipulation of demands placed on visual scanning efficiency and relational memory while holding decisional and motor requirements constant. Although patients (n=85) were impaired on all aspects of the task when compared to demographically matched healthy comparison subjects (n=30), they showed a particularly striking failure to benefit from the presence of predictable target information. These findings are consistent with predicted impairments in cognitive processing speed due to schizophrenia patients' well-known memory impairment, suggesting that this mnemonic deficit may have consequences for critical aspects of information processing that are traditionally considered quite separate from the memory domain. Future investigation into the mechanisms underlying the wide-ranging consequences of mnemonic deficits in schizophrenia should provide additional insight. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Compressive Sampling based Image Coding for Resource-deficient Visual Communication.
Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen
2016-04-14
In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.
Short-term memory coding in children with intellectual disabilities.
Henry, Lucy
2008-05-01
To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and word length effects). Neither the intellectual disabilities nor MA groups showed evidence for memory coding strategies. However, children in these groups with MAs above 6 years showed significant visual similarity and word length effects, broadly consistent with an intermediate stage of dual visual and verbal coding. These results suggest that developmental progressions in memory coding strategies are independent of intellectual disabilities status and consistent with MA.
Analysis of visual quality improvements provided by known tools for HDR content
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Alshina, Elena; Lee, JongSeok; Park, Youngo; Choi, Kwang Pyo
2016-09-01
In this paper, the visual quality of different solutions for high dynamic range (HDR) compression using MPEG test contents is analyzed. We also simulate the method for an efficient HDR compression which is based on statistical property of the signal. The method is compliant with HEVC specification and also easily compatible with other alternative methods which might require HEVC specification changes. It was subjectively tested on commercial TVs and compared with alternative solutions for HDR coding. Subjective visual quality tests were performed using SUHD TVs model which is SAMSUNG JS9500 with maximum luminance up to 1000nit in test. The solution that is based on statistical property shows not only improvement of objective performance but improvement of visual quality compared to other HDR solutions, while it is compatible with HEVC specification.
Visual recognition and inference using dynamic overcomplete sparse learning.
Murray, Joseph F; Kreutz-Delgado, Kenneth
2007-09-01
We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.
Visual Tracking via Sparse and Local Linear Coding.
Wang, Guofeng; Qin, Xueying; Zhong, Fan; Liu, Yue; Li, Hongbo; Peng, Qunsheng; Yang, Ming-Hsuan
2015-11-01
The state search is an important component of any object tracking algorithm. Numerous algorithms have been proposed, but stochastic sampling methods (e.g., particle filters) are arguably one of the most effective approaches. However, the discretization of the state space complicates the search for the precise object location. In this paper, we propose a novel tracking algorithm that extends the state space of particle observations from discrete to continuous. The solution is determined accurately via iterative linear coding between two convex hulls. The algorithm is modeled by an optimal function, which can be efficiently solved by either convex sparse coding or locality constrained linear coding. The algorithm is also very flexible and can be combined with many generic object representations. Thus, we first use sparse representation to achieve an efficient searching mechanism of the algorithm and demonstrate its accuracy. Next, two other object representation models, i.e., least soft-threshold squares and adaptive structural local sparse appearance, are implemented with improved accuracy to demonstrate the flexibility of our algorithm. Qualitative and quantitative experimental results demonstrate that the proposed tracking algorithm performs favorably against the state-of-the-art methods in dynamic scenes.
Extensible Computational Chemistry Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-08-09
ECCE provides a sophisticated graphical user interface, scientific visualization tools, and the underlying data management framework enabling scientists to efficiently set up calculations and store, retrieve, and analyze the rapidly growing volumes of data produced by computational chemistry studies. ECCE was conceived as part of the Environmental Molecular Sciences Laboratory construction to solve the problem of researchers being able to effectively utilize complex computational chemistry codes and massively parallel high performance compute resources. Bringing the power of these codes and resources to the desktops of researcher and thus enabling world class research without users needing a detailed understanding of themore » inner workings of either the theoretical codes or the supercomputers needed to run them was a grand challenge problem in the original version of the EMSL. ECCE allows collaboration among researchers using a web-based data repository where the inputs and results for all calculations done within ECCE are organized. ECCE is a first of kind end-to-end problem solving environment for all phases of computational chemistry research: setting up calculations with sophisticated GUI and direct manipulation visualization tools, submitting and monitoring calculations on remote high performance supercomputers without having to be familiar with the details of using these compute resources, and performing results visualization and analysis including creating publication quality images. ECCE is a suite of tightly integrated applications that are employed as the user moves through the modeling process.« less
Evaluation of a visual layering methodology for colour coding control room displays.
Van Laar, Darren; Deshe, Ofer
2002-07-01
Eighteen people participated in an experiment in which they were asked to search for targets on control room like displays which had been produced using three different coding methods. The monochrome coding method displayed the information in black and white only, the maximally discriminable method contained colours chosen for their high perceptual discriminability, the visual layers method contained colours developed from psychological and cartographic principles which grouped information into a perceptual hierarchy. The visual layers method produced significantly faster search times than the other two coding methods which did not differ significantly from each other. Search time also differed significantly for presentation order and for the method x order interaction. There was no significant difference between the methods in the number of errors made. Participants clearly preferred the visual layers coding method. Proposals are made for the design of experiments to further test and develop the visual layers colour coding methodology.
[Trial of eye drops recognizer for visually disabled persons].
Okamoto, Norio; Suzuki, Katsuhiko; Mimura, Osamu
2009-01-01
The development of a device to enable the visually disabled to differentiate eye drops and their dose. The new instrument is composed of a voice generator and a two-dimensional bar-code reader (LS9208). We designed voice outputs for the visually disabled to state when (number of times) and where (right, left, or both) to administer eye drops. We then determined the minimum bar-code size that can be recognized. After attaching bar-codes of the appropriate size to the lateral or bottom surface of the eye drops container, the readability of the bar-codes was compared. The minimum discrimination bar-code size was 6 mm high x 8.5 mm long. Bar-codes on the bottom surface could be more easily recognized than bar-codes on the side. Our newly-developed device using bar-codes enables visually disabled persons to differentiate eye drops and their doses.
Color visualization for fluid flow prediction
NASA Technical Reports Server (NTRS)
Smith, R. E.; Speray, D. E.
1982-01-01
High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.
Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.
Li, Yeqing; Liu, Wei; Huang, Junzhou
2018-06-01
Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.
The Simple Video Coder: A free tool for efficiently coding social video data.
Barto, Daniel; Bird, Clark W; Hamilton, Derek A; Fink, Brandi C
2017-08-01
Videotaping of experimental sessions is a common practice across many disciplines of psychology, ranging from clinical therapy, to developmental science, to animal research. Audio-visual data are a rich source of information that can be easily recorded; however, analysis of the recordings presents a major obstacle to project completion. Coding behavior is time-consuming and often requires ad-hoc training of a student coder. In addition, existing software is either prohibitively expensive or cumbersome, which leaves researchers with inadequate tools to quickly process video data. We offer the Simple Video Coder-free, open-source software for behavior coding that is flexible in accommodating different experimental designs, is intuitive for students to use, and produces outcome measures of event timing, frequency, and duration. Finally, the software also offers extraction tools to splice video into coded segments suitable for training future human coders or for use as input for pattern classification algorithms.
Awareness Becomes Necessary Between Adaptive Pattern Coding of Open and Closed Curvatures
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Visual pattern processing becomes increasingly complex along the ventral pathway, from the low-level coding of local orientation in the primary visual cortex to the high-level coding of face identity in temporal visual areas. Previous research using pattern aftereffects as a psychophysical tool to measure activation of adaptive feature coding has suggested that awareness is relatively unimportant for the coding of orientation, but awareness is crucial for the coding of face identity. We investigated where along the ventral visual pathway awareness becomes crucial for pattern coding. Monoptic masking, which interferes with neural spiking activity in low-level processing while preserving awareness of the adaptor, eliminated open-curvature aftereffects but preserved closed-curvature aftereffects. In contrast, dichoptic masking, which spares spiking activity in low-level processing while wiping out awareness, preserved open-curvature aftereffects but eliminated closed-curvature aftereffects. This double dissociation suggests that adaptive coding of open and closed curvatures straddles the divide between weakly and strongly awareness-dependent pattern coding. PMID:21690314
Four types of ensemble coding in data visualizations.
Szafir, Danielle Albers; Haroz, Steve; Gleicher, Michael; Franconeri, Steven
2016-01-01
Ensemble coding supports rapid extraction of visual statistics about distributed visual information. Researchers typically study this ability with the goal of drawing conclusions about how such coding extracts information from natural scenes. Here we argue that a second domain can serve as another strong inspiration for understanding ensemble coding: graphs, maps, and other visual presentations of data. Data visualizations allow observers to leverage their ability to perform visual ensemble statistics on distributions of spatial or featural visual information to estimate actual statistics on data. We survey the types of visual statistical tasks that occur within data visualizations across everyday examples, such as scatterplots, and more specialized images, such as weather maps or depictions of patterns in text. We divide these tasks into four categories: identification of sets of values, summarization across those values, segmentation of collections, and estimation of structure. We point to unanswered questions for each category and give examples of such cross-pollination in the current literature. Increased collaboration between the data visualization and perceptual psychology research communities can inspire new solutions to challenges in visualization while simultaneously exposing unsolved problems in perception research.
Four year-olds use norm-based coding for face identity.
Jeffery, Linda; Read, Ainsley; Rhodes, Gillian
2013-05-01
Norm-based coding, in which faces are coded as deviations from an average face, is an efficient way of coding visual patterns that share a common structure and must be distinguished by subtle variations that define individuals. Adults and school-aged children use norm-based coding for face identity but it is not yet known if pre-school aged children also use norm-based coding. We reasoned that the transition to school could be critical in developing a norm-based system because school places new demands on children's face identification skills and substantially increases experience with faces. Consistent with this view, face identification performance improves steeply between ages 4 and 7. We used face identity aftereffects to test whether norm-based coding emerges between these ages. We found that 4 year-old children, like adults, showed larger face identity aftereffects for adaptors far from the average than for adaptors closer to the average, consistent with use of norm-based coding. We conclude that experience prior to age 4 is sufficient to develop a norm-based face-space and that failure to use norm-based coding cannot explain 4 year-old children's poor face identification skills. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokhov, Nikolai
MARS is a Monte Carlo code for inclusive and exclusive simulation of three-dimensional hadronic and electromagnetic cascades, muon, heavy-ion and low-energy neutron transport in accelerator, detector, spacecraft and shielding components in the energy range from a fraction of an electronvolt up to 100 TeV. Recent developments in the MARS15 physical models of hadron, heavy-ion and lepton interactions with nuclei and atoms include a new nuclear cross section library, a model for soft pion production, the cascade-exciton model, the quark gluon string models, deuteron-nucleus and neutrino-nucleus interaction models, detailed description of negative hadron and muon absorption and a unified treatment ofmore » muon, charged hadron and heavy-ion electromagnetic interactions with matter. New algorithms are implemented into the code and thoroughly benchmarked against experimental data. The code capabilities to simulate cascades and generate a variety of results in complex media have been also enhanced. Other changes in the current version concern the improved photo- and electro-production of hadrons and muons, improved algorithms for the 3-body decays, particle tracking in magnetic fields, synchrotron radiation by electrons and muons, significantly extended histograming capabilities and material description, and improved computational performance. In addition to direct energy deposition calculations, a new set of fluence-to-dose conversion factors for all particles including neutrino are built into the code. The code includes new modules for calculation of Displacement-per-Atom and nuclide inventory. The powerful ROOT geometry and visualization model implemented in MARS15 provides a large set of geometrical elements with a possibility of producing composite shapes and assemblies and their 3D visualization along with a possible import/export of geometry descriptions created by other codes (via the GDML format) and CAD systems (via the STEP format). The built-in MARS-MAD Beamline Builder (MMBLB) was redesigned for use with the ROOT geometry package that allows a very efficient and highly-accurate description, modeling and visualization of beam loss induced effects in arbitrary beamlines and accelerator lattices. The MARS15 code includes links to the MCNP-family codes for neutron and photon production and transport below 20 MeV, to the ANSYS code for thermal and stress analyses and to the STRUCT code for multi-turn particle tracking in large synchrotrons and collider rings.« less
Kindlmann, Gordon; Chiw, Charisee; Seltzer, Nicholas; Samuels, Lamont; Reppy, John
2016-01-01
Many algorithms for scientific visualization and image analysis are rooted in the world of continuous scalar, vector, and tensor fields, but are programmed in low-level languages and libraries that obscure their mathematical foundations. Diderot is a parallel domain-specific language that is designed to bridge this semantic gap by providing the programmer with a high-level, mathematical programming notation that allows direct expression of mathematical concepts in code. Furthermore, Diderot provides parallel performance that takes advantage of modern multicore processors and GPUs. The high-level notation allows a concise and natural expression of the algorithms and the parallelism allows efficient execution on real-world datasets.
Design of a tubular skylight system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, B.L.
1996-10-01
Since its introduction to the US market in 1991, tubular skylight provides a solution to the problem of lighting up dark corners in a house. Over the years, design of similar products has emphasized on quantity alone and attention to a range of other equally important issues: efficient collecting system, selection of higher specular reflectance material, seals, distribution and quality of light, was not noted. In this paper, the fundamental design concept of an efficient tubular skylight and the possibility of collimating diffuse light is reviewed. The importance of specular reflectance of the tube material on the performance of tubularmore » skylight is demonstrated. Visual appearance (quality) of transmitted light down the tube is related in part to the yellowness index of various materials. Discussion of adequacy of current building and energy code requirements on tubular skylights is briefly touched on and energy simulation results based on a numerical code are presented.« less
BSIFT: toward data-independent codebook for large scale image search.
Zhou, Wengang; Li, Houqiang; Hong, Richang; Lu, Yijuan; Tian, Qi
2015-03-01
Bag-of-Words (BoWs) model based on Scale Invariant Feature Transform (SIFT) has been widely used in large-scale image retrieval applications. Feature quantization by vector quantization plays a crucial role in BoW model, which generates visual words from the high- dimensional SIFT features, so as to adapt to the inverted file structure for the scalable retrieval. Traditional feature quantization approaches suffer several issues, such as necessity of visual codebook training, limited reliability, and update inefficiency. To avoid the above problems, in this paper, a novel feature quantization scheme is proposed to efficiently quantize each SIFT descriptor to a descriptive and discriminative bit-vector, which is called binary SIFT (BSIFT). Our quantizer is independent of image collections. In addition, by taking the first 32 bits out from BSIFT as code word, the generated BSIFT naturally lends itself to adapt to the classic inverted file structure for image indexing. Moreover, the quantization error is reduced by feature filtering, code word expansion, and query sensitive mask shielding. Without any explicit codebook for quantization, our approach can be readily applied in image search in some resource-limited scenarios. We evaluate the proposed algorithm for large scale image search on two public image data sets. Experimental results demonstrate the index efficiency and retrieval accuracy of our approach.
Low-complex energy-aware image communication in visual sensor networks
NASA Astrophysics Data System (ADS)
Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran
2013-10-01
A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Feng; Zhang, Xin; Xie, Jun
2015-03-10
This study presents a new steady-state visual evoked potential (SSVEP) paradigm for brain computer interface (BCI) systems. The goal of this study is to increase the number of targets using fewer stimulation high frequencies, with diminishing subject’s fatigue and reducing the risk of photosensitive epileptic seizures. The new paradigm is High-Frequency Combination Coding-Based High-Frequency Steady-State Visual Evoked Potential (HFCC-SSVEP).Firstly, we studied SSVEP high frequency(beyond 25 Hz)response of SSVEP, whose paradigm is presented on the LED. The SNR (Signal to Noise Ratio) of high frequency(beyond 40 Hz) response is very low, which is been unable to be distinguished through the traditional analysis method;more » Secondly we investigated the HFCC-SSVEP response (beyond 25 Hz) for 3 frequencies (25Hz, 33.33Hz, and 40Hz), HFCC-SSVEP produces n{sup n} with n high stimulation frequencies through Frequence Combination Code. Further, Animproved Hilbert-huang transform (IHHT)-based variable frequency EEG feature extraction method and a local spectrum extreme target identification algorithmare adopted to extract time-frequency feature of the proposed HFCC-SSVEP response.Linear predictions and fixed sifting (iterating) 10 time is used to overcome the shortage of end effect and stopping criterion,generalized zero-crossing (GZC) is used to compute the instantaneous frequency of the proposed SSVEP respondent signals, the improved HHT-based feature extraction method for the proposed SSVEP paradigm in this study increases recognition efficiency, so as to improve ITR and to increase the stability of the BCI system. what is more, SSVEPs evoked by high-frequency stimuli (beyond 25Hz) minimally diminish subject’s fatigue and prevent safety hazards linked to photo-induced epileptic seizures, So as to ensure the system efficiency and undamaging.This study tests three subjects in order to verify the feasibility of the proposed method.« less
Deep generative learning of location-invariant visual word recognition.
Di Bono, Maria Grazia; Zorzi, Marco
2013-01-01
It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective-is largely based on letter-level information.
Rhodes, Gillian; Nishimura, Mayu; de Heering, Adelaide; Jeffery, Linda; Maurer, Daphne
2017-05-01
Faces are adaptively coded relative to visual norms that are updated by experience, and this adaptive coding is linked to face recognition ability. Here we investigated whether adaptive coding of faces is disrupted in individuals (adolescents and adults) who experience face recognition difficulties following visual deprivation from congenital cataracts in infancy. We measured adaptive coding using face identity aftereffects, where smaller aftereffects indicate less adaptive updating of face-coding mechanisms by experience. We also examined whether the aftereffects increase with adaptor identity strength, consistent with norm-based coding of identity, as in typical populations, or whether they show a different pattern indicating some more fundamental disruption of face-coding mechanisms. Cataract-reversal patients showed significantly smaller face identity aftereffects than did controls (Experiments 1 and 2). However, their aftereffects increased significantly with adaptor strength, consistent with norm-based coding (Experiment 2). Thus we found reduced adaptability but no fundamental disruption of norm-based face-coding mechanisms in cataract-reversal patients. Our results suggest that early visual experience is important for the normal development of adaptive face-coding mechanisms. © 2016 John Wiley & Sons Ltd.
Video transmission on ATM networks. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung
1993-01-01
The broadband integrated services digital network (B-ISDN) is expected to provide high-speed and flexible multimedia applications. Multimedia includes data, graphics, image, voice, and video. Asynchronous transfer mode (ATM) is the adopted transport techniques for B-ISDN and has the potential for providing a more efficient and integrated environment for multimedia. It is believed that most broadband applications will make heavy use of visual information. The prospect of wide spread use of image and video communication has led to interest in coding algorithms for reducing bandwidth requirements and improving image quality. The major results of a study on the bridging of network transmission performance and video coding are: Using two representative video sequences, several video source models are developed. The fitness of these models are validated through the use of statistical tests and network queuing performance. A dual leaky bucket algorithm is proposed as an effective network policing function. The concept of the dual leaky bucket algorithm can be applied to a prioritized coding approach to achieve transmission efficiency. A mapping of the performance/control parameters at the network level into equivalent parameters at the video coding level is developed. Based on that, a complete set of principles for the design of video codecs for network transmission is proposed.
Designing Small Propellers for Optimum Efficiency and Low Noise Footprint
2015-06-26
each one. The GUI contains input boxes for all of the necessary data in order to run QMIL, QPROP, NAFNoise, and to produce Visual Basic ( VBA ) code... VBA macros that will automatically place reference planes for each airfoil section and insert the splined airfoils to their respective reference...Figure 24. Solid propeller exa mple. Figure 25. Hub and spoke propeller design. Figure 26. Alumninum hub design. accessed on May 12, 2015. DC, August
Phonological, visual, and semantic coding strategies and children's short-term picture memory span.
Henry, Lucy A; Messer, David; Luger-Klein, Scarlett; Crane, Laura
2012-01-01
Three experiments addressed controversies in the previous literature on the development of phonological and other forms of short-term memory coding in children, using assessments of picture memory span that ruled out potentially confounding effects of verbal input and output. Picture materials were varied in terms of phonological similarity, visual similarity, semantic similarity, and word length. Older children (6/8-year-olds), but not younger children (4/5-year-olds), demonstrated robust and consistent phonological similarity and word length effects, indicating that they were using phonological coding strategies. This confirmed findings initially reported by Conrad (1971), but subsequently questioned by other authors. However, in contrast to some previous research, little evidence was found for a distinct visual coding stage at 4 years, casting doubt on assumptions that this is a developmental stage that consistently precedes phonological coding. There was some evidence for a dual visual and phonological coding stage prior to exclusive use of phonological coding at around 5-6 years. Evidence for semantic similarity effects was limited, suggesting that semantic coding is not a key method by which young children recall lists of pictures.
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
NASA Technical Reports Server (NTRS)
Novik, Dmitry A.; Tilton, James C.
1993-01-01
The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.
NASA Astrophysics Data System (ADS)
Navon, I. M.; Yu, Jian
A FORTRAN computer program is presented and documented applying the Turkel-Zwas explicit large time-step scheme to a hemispheric barotropic model with constraint restoration of integral invariants of the shallow-water equations. We then proceed to detail the algorithms embodied in the code EXSHALL in this paper, particularly algorithms related to the efficiency and stability of T-Z scheme and the quadratic constraint restoration method which is based on a variational approach. In particular we provide details about the high-latitude filtering, Shapiro filtering, and Robert filtering algorithms used in the code. We explain in detail the various subroutines in the EXSHALL code with emphasis on algorithms implemented in the code and present the flowcharts of some major subroutines. Finally, we provide a visual example illustrating a 4-day run using real initial data, along with a sample printout and graphic isoline contours of the height field and velocity fields.
Embedded wavelet packet transform technique for texture compression
NASA Astrophysics Data System (ADS)
Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay
1995-09-01
A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.
Welter, David E.; White, Jeremy T.; Hunt, Randall J.; Doherty, John E.
2015-09-18
The PEST++ Version 3 software suite can be compiled for Microsoft Windows®4 and Linux®5 operating systems; the source code is available in a Microsoft Visual Studio®6 2013 solution; Linux Makefiles are also provided. PEST++ Version 3 continues to build a foundation for an open-source framework capable of producing robust and efficient parameter estimation tools for large environmental models.
VLSI design of lossless frame recompression using multi-orientation prediction
NASA Astrophysics Data System (ADS)
Lee, Yu-Hsuan; You, Yi-Lun; Chen, Yi-Guo
2016-01-01
Pursuing an experience of high-end visual quality drives human to demand a higher display resolution and a higher frame rate. Hence, a lot of powerful coding tools are aggregated together in emerging video coding standards to improve coding efficiency. This also makes video coding standards suffer from two design challenges: heavy computation and tremendous memory bandwidth. The first issue can be properly solved by a careful hardware architecture design with advanced semiconductor processes. Nevertheless, the second one becomes a critical design bottleneck for a modern video coding system. In this article, a lossless frame recompression using multi-orientation prediction technique is proposed to overcome this bottleneck. This work is realised into a silicon chip with the technology of TSMC 0.18 µm CMOS process. Its encoding capability can reach full-HD (1920 × 1080)@48 fps. The chip power consumption is 17.31 mW@100 MHz. Core area and chip area are 0.83 × 0.83 mm2 and 1.20 × 1.20 mm2, respectively. Experiment results demonstrate that this work exhibits an outstanding performance on lossless compression ratio with a competitive hardware performance.
Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.
Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting
2018-02-12
Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.
A measure of short-term visual memory based on the WISC-R coding subtest.
Collaer, M L; Evans, J R
1982-07-01
Adapted the Coding subtest of the WISC-R to provide a measure of visual memory. Three hundred and five children, aged 8 through 12, were administered the Coding test using standard directions. A few seconds after completion the key was taken away, and each was given a paper with only the digits and asked to write the appropriate matching symbol below each. This was termed "Coding Recall." To provide validity data, a subgroup of 50 Ss also was administered the Attention Span for Letters subtest from the Detroit Tests of Learning Aptitude (as a test of visual memory for sequences of letters) and a Bender Gestalt recall test (as a measure of visual memory for geometric forms). Coding Recall means and standard deviations are reported separately by sex and age level. Implications for clinicans are discussed. Reservations about clinical use of the data are given in view of the possible lack of representativeness of the sample used and the limited reliability and validity of Coding Recall.
ERIC Educational Resources Information Center
Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.
2013-01-01
Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…
Coding the presence of visual objects in a recurrent neural network of visual cortex.
Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard
2007-01-01
Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.
Ensemble coding remains accurate under object and spatial visual working memory load.
Epstein, Michael L; Emmanouil, Tatiana A
2017-10-01
A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.
Joint Machine Learning and Game Theory for Rate Control in High Efficiency Video Coding.
Gao, Wei; Kwong, Sam; Jia, Yuheng
2017-08-25
In this paper, a joint machine learning and game theory modeling (MLGT) framework is proposed for inter frame coding tree unit (CTU) level bit allocation and rate control (RC) optimization in High Efficiency Video Coding (HEVC). First, a support vector machine (SVM) based multi-classification scheme is proposed to improve the prediction accuracy of CTU-level Rate-Distortion (R-D) model. The legacy "chicken-and-egg" dilemma in video coding is proposed to be overcome by the learning-based R-D model. Second, a mixed R-D model based cooperative bargaining game theory is proposed for bit allocation optimization, where the convexity of the mixed R-D model based utility function is proved, and Nash bargaining solution (NBS) is achieved by the proposed iterative solution search method. The minimum utility is adjusted by the reference coding distortion and frame-level Quantization parameter (QP) change. Lastly, intra frame QP and inter frame adaptive bit ratios are adjusted to make inter frames have more bit resources to maintain smooth quality and bit consumption in the bargaining game optimization. Experimental results demonstrate that the proposed MLGT based RC method can achieve much better R-D performances, quality smoothness, bit rate accuracy, buffer control results and subjective visual quality than the other state-of-the-art one-pass RC methods, and the achieved R-D performances are very close to the performance limits from the FixedQP method.
CTViz: A tool for the visualization of transport in nanocomposites.
Beach, Benjamin; Brown, Joshua; Tarlton, Taylor; Derosa, Pedro A
2016-05-01
A visualization tool (CTViz) for charge transport processes in 3-D hybrid materials (nanocomposites) was developed, inspired by the need for a graphical application to assist in code debugging and data presentation of an existing in-house code. As the simulation code grew, troubleshooting problems grew increasingly difficult without an effective way to visualize 3-D samples and charge transport in those samples. CTViz is able to produce publication and presentation quality visuals of the simulation box, as well as static and animated visuals of the paths of individual carriers through the sample. CTViz was designed to provide a high degree of flexibility in the visualization of the data. A feature that characterizes this tool is the use of shade and transparency levels to highlight important details in the morphology or in the transport paths by hiding or dimming elements of little relevance to the current view. This is fundamental for the visualization of 3-D systems with complex structures. The code presented here provides these required capabilities, but has gone beyond the original design and could be used as is or easily adapted for the visualization of other particulate transport where transport occurs on discrete paths. Copyright © 2016 Elsevier Inc. All rights reserved.
Processing of Visual--Action Codes by Deaf and Hearing Children: Coding Orientation or "M"-Capacity?
ERIC Educational Resources Information Center
Todman, John; Cowdy, Natascha
1993-01-01
Results from a study in which 25 deaf children and 25 hearing children completed a vocabulary test and a compound stimulus visual information task support the hypothesis that performance on cognitive tasks is dependent on compatibility of task demands with a coding orientation. (SLD)
Short-Term Memory Coding in Children with Intellectual Disabilities
ERIC Educational Resources Information Center
Henry, Lucy
2008-01-01
To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and…
chimeraviz: a tool for visualizing chimeric RNA.
Lågstad, Stian; Zhao, Sen; Hoff, Andreas M; Johannessen, Bjarne; Lingjærde, Ole Christian; Skotheim, Rolf I
2017-09-15
Advances in high-throughput RNA sequencing have enabled more efficient detection of fusion transcripts, but the technology and associated software used for fusion detection from sequencing data often yield a high false discovery rate. Good prioritization of the results is important, and this can be helped by a visualization framework that automatically integrates RNA data with known genomic features. Here we present chimeraviz , a Bioconductor package that automates the creation of chimeric RNA visualizations. The package supports input from nine different fusion-finder tools: deFuse, EricScript, InFusion, JAFFA, FusionCatcher, FusionMap, PRADA, SOAPfuse and STAR-FUSION. chimeraviz is an R package available via Bioconductor ( https://bioconductor.org/packages/release/bioc/html/chimeraviz.html ) under Artistic-2.0. Source code and support is available at GitHub ( https://github.com/stianlagstad/chimeraviz ). rolf.i.skotheim@rr-research.no. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Behavior and neural basis of near-optimal visual search
Ma, Wei Ji; Navalpakkam, Vidhya; Beck, Jeffrey M; van den Berg, Ronald; Pouget, Alexandre
2013-01-01
The ability to search efficiently for a target in a cluttered environment is one of the most remarkable functions of the nervous system. This task is difficult under natural circumstances, as the reliability of sensory information can vary greatly across space and time and is typically a priori unknown to the observer. In contrast, visual-search experiments commonly use stimuli of equal and known reliability. In a target detection task, we randomly assigned high or low reliability to each item on a trial-by-trial basis. An optimal observer would weight the observations by their trial-to-trial reliability and combine them using a specific nonlinear integration rule. We found that humans were near-optimal, regardless of whether distractors were homogeneous or heterogeneous and whether reliability was manipulated through contrast or shape. We present a neural-network implementation of near-optimal visual search based on probabilistic population coding. The network matched human performance. PMID:21552276
Using Embedded Visual Coding to Support Contextualization of Historical Texts
ERIC Educational Resources Information Center
Baron, Christine
2016-01-01
This mixed-method study examines the think-aloud protocols of 48 randomly assigned undergraduate students to understand what effect embedding a visual coding system, based on reliable visual cues for establishing historical time period, would have on novice history students' ability to contextualize historic documents. Results indicate that using…
ERIC Educational Resources Information Center
Burton, John K.; Wildman, Terry M.
The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…
Verbal-spatial and visuospatial coding of power-space interactions.
Dai, Qiang; Zhu, Lei
2018-05-10
A power-space interaction, which denotes the phenomenon that people responded faster to powerful words when they are placed higher in a visual field and faster to powerless words when they are placed lower in a visual field, has been repeatedly found. The dominant explanation of this power-space interaction is that it results from a tight correspondence between the representation of power and visual space (i.e., a visuospatial coding account). In the present study, we demonstrated that the interaction between power and space could be also based on a verbal-spatial coding in absence of any vertical spatial information. Additionally, the verbal-spatial coding was dominant in driving the power-space interaction when verbal space was contrasted with the visual space. Copyright © 2018 Elsevier Inc. All rights reserved.
Neural dynamics of image representation in the primary visual cortex
Yan, Xiaogang; Khambhati, Ankit; Liu, Lei; Lee, Tai Sing
2013-01-01
Horizontal connections in the primary visual cortex have been hypothesized to play a number of computational roles: association field for contour completion, surface interpolation, surround suppression, and saliency computation. Here, we argue that horizontal connections might also serve a critical role of computing the appropriate codes for image representation. That the early visual cortex or V1 explicitly represents the image we perceive has been a common assumption on computational theories of efficient coding (Olshausen and Field 1996), yet such a framework for understanding the circuitry in V1 has not been seriously entertained in the neurophysiological community. In fact, a number of recent fMRI and neurophysiological studies cast doubt on the neural validity of such an isomorphic representation (Cornelissen et al. 2006, von der Heydt et al. 2003). In this study, we investigated, neurophysiologically, how V1 neurons respond to uniform color surfaces and show that spiking activities of neurons can be decomposed into three components: a bottom-up feedforward input, an articulation of color tuning and a contextual modulation signal that is inversely proportional to the distance away from the bounding contrast border. We demonstrate through computational simulations that the behaviors of a model for image representation are consistent with many aspects of our neural observations. We conclude that the hypothesis of isomorphic representation of images in V1 remains viable and this hypothesis suggests an additional new interpretation of the functional roles of horizontal connections in the primary visual cortex. PMID:22944076
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Tsapatsoulis, Nicolas; Loizou, Christos; Pattichis, Constantinos
2007-01-01
Efficient medical video transmission over 3G wireless is of great importance for fast diagnosis and on site medical staff training purposes. In this paper we present a region of interest based ultrasound video compression study which shows that significant reduction of the required, for transmission, bit rate can be achieved without altering the design of existing video codecs. Simple preprocessing of the original videos to define visually and clinically important areas is the only requirement.
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-10-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.
Woolgar, Alexandra; Williams, Mark A; Rich, Anina N
2015-04-01
Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Konishi, Tsuyoshi; Tanida, Jun; Ichioka, Yoshiki
1995-06-01
A novel technique, the visual-area coding technique (VACT), for the optical implementation of fuzzy logic with the capability of visualization of the results is presented. This technique is based on the microfont method and is considered to be an instance of digitized analog optical computing. Huge amounts of data can be processed in fuzzy logic with the VACT. In addition, real-time visualization of the processed result can be accomplished.
Message Into Medium: An Extension of the Dual Coding Hypothesis.
ERIC Educational Resources Information Center
Simpson, Timothy J.
This paper examines the dual coding hypothesis, a model of the coding of visual and textual information, from the perspective of a mass media professional, such as a teacher, interested in accurately presenting both visual and textual material to a mass audience (i.e., students). It offers an extension to the theory, based upon the various skill…
Spatial Coding of Individuals with Visual Impairments
ERIC Educational Resources Information Center
Papadopoulos, Konstantinos; Koustriava, Eleni; Kartasidou, Lefkothea
2012-01-01
The aim of this study is to examine the ability of children and adolescents with visual impairments to code and represent near space. Moreover, it examines the impact of the strategies they use and individual differences in their performance. A total of 30 individuals with visual impairments up to the age of 18 were given eight different object…
FPV: fast protein visualization using Java 3D.
Can, Tolga; Wang, Yujun; Wang, Yuan-Fang; Su, Jianwen
2003-05-22
Many tools have been developed to visualize protein structures. Tools that have been based on Java 3D((TM)) are compatible among different systems and they can be run remotely through web browsers. However, using Java 3D for visualization has some performance issues with it. The primary concerns about molecular visualization tools based on Java 3D are in their being slow in terms of interaction speed and in their inability to load large molecules. This behavior is especially apparent when the number of atoms to be displayed is huge, or when several proteins are to be displayed simultaneously for comparison. In this paper we present techniques for organizing a Java 3D scene graph to tackle these problems. We have developed a protein visualization system based on Java 3D and these techniques. We demonstrate the effectiveness of the proposed method by comparing the visualization component of our system with two other Java 3D based molecular visualization tools. In particular, for van der Waals display mode, with the efficient organization of the scene graph, we could achieve up to eight times improvement in rendering speed and could load molecules three times as large as the previous systems could. EPV is freely available with source code at the following URL: http://www.cs.ucsb.edu/~tcan/fpv/
Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph
2014-01-01
A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509
Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen
2014-01-01
This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829
Performance comparison of AV1, HEVC, and JVET video codecs on 360 (spherical) video
NASA Astrophysics Data System (ADS)
Topiwala, Pankaj; Dai, Wei; Krishnan, Madhu; Abbas, Adeel; Doshi, Sandeep; Newman, David
2017-09-01
This paper compares the coding efficiency performance on 360 videos, of three software codecs: (a) AV1 video codec from the Alliance for Open Media (AOM); (b) the HEVC Reference Software HM; and (c) the JVET JEM Reference SW. Note that 360 video is especially challenging content, in that one codes full res globally, but typically looks locally (in a viewport), which magnifies errors. These are tested in two different projection formats ERP and RSP, to check consistency. Performance is tabulated for 1-pass encoding on two fronts: (1) objective performance based on end-to-end (E2E) metrics such as SPSNR-NN, and WS-PSNR, currently developed in the JVET committee; and (2) informal subjective assessment of static viewports. Constant quality encoding is performed with all the three codecs for an unbiased comparison of the core coding tools. Our general conclusion is that under constant quality coding, AV1 underperforms HEVC, which underperforms JVET. We also test with rate control, where AV1 currently underperforms the open source X265 HEVC codec. Objective and visual evidence is provided.
Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY
2018-01-01
A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853
Embedded DCT and wavelet methods for fine granular scalable video: analysis and comparison
NASA Astrophysics Data System (ADS)
van der Schaar-Mitrea, Mihaela; Chen, Yingwei; Radha, Hayder
2000-04-01
Video transmission over bandwidth-varying networks is becoming increasingly important due to emerging applications such as streaming of video over the Internet. The fundamental obstacle in designing such systems resides in the varying characteristics of the Internet (i.e. bandwidth variations and packet-loss patterns). In MPEG-4, a new SNR scalability scheme, called Fine-Granular-Scalability (FGS), is currently under standardization, which is able to adapt in real-time (i.e. at transmission time) to Internet bandwidth variations. The FGS framework consists of a non-scalable motion-predicted base-layer and an intra-coded fine-granular scalable enhancement layer. For example, the base layer can be coded using a DCT-based MPEG-4 compliant, highly efficient video compression scheme. Subsequently, the difference between the original and decoded base-layer is computed, and the resulting FGS-residual signal is intra-frame coded with an embedded scalable coder. In order to achieve high coding efficiency when compressing the FGS enhancement layer, it is crucial to analyze the nature and characteristics of residual signals common to the SNR scalability framework (including FGS). In this paper, we present a thorough analysis of SNR residual signals by evaluating its statistical properties, compaction efficiency and frequency characteristics. The signal analysis revealed that the energy compaction of the DCT and wavelet transforms is limited and the frequency characteristic of SNR residual signals decay rather slowly. Moreover, the blockiness artifacts of the low bit-rate coded base-layer result in artificial high frequencies in the residual signal. Subsequently, a variety of wavelet and embedded DCT coding techniques applicable to the FGS framework are evaluated and their results are interpreted based on the identified signal properties. As expected from the theoretical signal analysis, the rate-distortion performances of the embedded wavelet and DCT-based coders are very similar. However, improved results can be obtained for the wavelet coder by deblocking the base- layer prior to the FGS residual computation. Based on the theoretical analysis and our measurements, we can conclude that for an optimal complexity versus coding-efficiency trade- off, only limited wavelet decomposition (e.g. 2 stages) needs to be performed for the FGS-residual signal. Also, it was observed that the good rate-distortion performance of a coding technique for a certain image type (e.g. natural still-images) does not necessarily translate into similarly good performance for signals with different visual characteristics and statistical properties.
Stochastic many-body problems in ecology, evolution, neuroscience, and systems biology
NASA Astrophysics Data System (ADS)
Butler, Thomas C.
Using the tools of many-body theory, I analyze problems in four different areas of biology dominated by strong fluctuations: The evolutionary history of the genetic code, spatiotemporal pattern formation in ecology, spatiotemporal pattern formation in neuroscience and the robustness of a model circadian rhythm circuit in systems biology. In the first two research chapters, I demonstrate that the genetic code is extremely optimal (in the sense that it manages the effects of point mutations or mistranslations efficiently), more than an order of magnitude beyond what was previously thought. I further show that the structure of the genetic code implies that early proteins were probably only loosely defined. Both the nature of early proteins and the extreme optimality of the genetic code are interpreted in light of recent theory [1] as evidence that the evolution of the genetic code was driven by evolutionary dynamics that were dominated by horizontal gene transfer. I then explore the optimality of a proposed precursor to the genetic code. The results show that the precursor code has only limited optimality, which is interpreted as evidence that the precursor emerged prior to translation, or else never existed. In the next part of the dissertation, I introduce a many-body formalism for reaction-diffusion systems described at the mesoscopic scale with master equations. I first apply this formalism to spatially-extended predator-prey ecosystems, resulting in the prediction that many-body correlations and fluctuations drive population cycles in time, called quasicycles. Most of these results were previously known, but were derived using the system size expansion [2, 3]. I next apply the analytical techniques developed in the study of quasi-cycles to a simple model of Turing patterns in a predator-prey ecosystem. This analysis shows that fluctuations drive the formation of a new kind of spatiotemporal pattern formation that I name "quasi-patterns." These quasi-patterns exist over a much larger range of physically accessible parameters than the patterns predicted in mean field theory and therefore account for the apparent observations in ecology of patterns in regimes where Turing patterns do not occur. I further show that quasi-patterns have statistical properties that allow them to be distinguished empirically from mean field Turing patterns. I next analyze a model of visual cortex in the brain that has striking similarities to the activator-inhibitor model of ecosystem quasi-pattern formation. Through analysis of the resulting phase diagram, I show that the architecture of the neural network in the visual cortex is configured to make the visual cortex robust to unwanted internally generated spatial structure that interferes with normal visual function. I also predict that some geometric visual hallucinations are quasi-patterns and that the visual cortex supports a new phase of spatially scale invariant behavior present far from criticality. In the final chapter, I explore the effects of fluctuations on cycles in systems biology, specifically the pervasive phenomenon of circadian rhythms. By exploring the behavior of a generic stochastic model of circadian rhythms, I show that the circadian rhythm circuit exploits leaky mRNA production to safeguard the cycle from failure. I also show that this safeguard mechanism is highly robust to changes in the rate of leaky mRNA production. Finally, I explore the failure of the deterministic model in two different contexts, one where the deterministic model predicts cycles where they do not exist, and another context in which cycles are not predicted by the deterministic model.
Acquired Codes of Meaning in Data Visualization and Infographics: Beyond Perceptual Primitives.
Byrne, Lydia; Angus, Daniel; Wiles, Janet
2016-01-01
While information visualization frameworks and heuristics have traditionally been reluctant to include acquired codes of meaning, designers are making use of them in a wide variety of ways. Acquired codes leverage a user's experience to understand the meaning of a visualization. They range from figurative visualizations which rely on the reader's recognition of shapes, to conventional arrangements of graphic elements which represent particular subjects. In this study, we used content analysis to codify acquired meaning in visualization. We applied the content analysis to a set of infographics and data visualizations which are exemplars of innovative and effective design. 88% of the infographics and 71% of data visualizations in the sample contain at least one use of figurative visualization. Conventions on the arrangement of graphics are also widespread in the sample. In particular, a comparison of representations of time and other quantitative data showed that conventions can be specific to a subject. These results suggest that there is a need for information visualization research to expand its scope beyond perceptual channels, to include social and culturally constructed meaning. Our paper demonstrates a viable method for identifying figurative techniques and graphic conventions and integrating them into heuristics for visualization design.
Sports Stars: Analyzing the Performance of Astronomers at Visualization-based Discovery
NASA Astrophysics Data System (ADS)
Fluke, C. J.; Parrington, L.; Hegarty, S.; MacMahon, C.; Morgan, S.; Hassan, A. H.; Kilborn, V. A.
2017-05-01
In this data-rich era of astronomy, there is a growing reliance on automated techniques to discover new knowledge. The role of the astronomer may change from being a discoverer to being a confirmer. But what do astronomers actually look at when they distinguish between “sources” and “noise?” What are the differences between novice and expert astronomers when it comes to visual-based discovery? Can we identify elite talent or coach astronomers to maximize their potential for discovery? By looking to the field of sports performance analysis, we consider an established, domain-wide approach, where the expertise of the viewer (i.e., a member of the coaching team) plays a crucial role in identifying and determining the subtle features of gameplay that provide a winning advantage. As an initial case study, we investigate whether the SportsCode performance analysis software can be used to understand and document how an experienced Hi astronomer makes discoveries in spectral data cubes. We find that the process of timeline-based coding can be applied to spectral cube data by mapping spectral channels to frames within a movie. SportsCode provides a range of easy to use methods for annotation, including feature-based codes and labels, text annotations associated with codes, and image-based drawing. The outputs, including instance movies that are uniquely associated with coded events, provide the basis for a training program or team-based analysis that could be used in unison with discipline specific analysis software. In this coordinated approach to visualization and analysis, SportsCode can act as a visual notebook, recording the insight and decisions in partnership with established analysis methods. Alternatively, in situ annotation and coding of features would be a valuable addition to existing and future visualization and analysis packages.
Preserving information in neural transmission.
Sincich, Lawrence C; Horton, Jonathan C; Sharpee, Tatyana O
2009-05-13
Along most neural pathways, the spike trains transmitted from one neuron to the next are altered. In the process, neurons can either achieve a more efficient stimulus representation, or extract some biologically important stimulus parameter, or succeed at both. We recorded the inputs from single retinal ganglion cells and the outputs from connected lateral geniculate neurons in the macaque to examine how visual signals are relayed from retina to cortex. We found that geniculate neurons re-encoded multiple temporal stimulus features to yield output spikes that carried more information about stimuli than was available in each input spike. The coding transformation of some relay neurons occurred with no decrement in information rate, despite output spike rates that averaged half the input spike rates. This preservation of transmitted information was achieved by the short-term summation of inputs that geniculate neurons require to spike. A reduced model of the retinal and geniculate visual responses, based on two stimulus features and their associated nonlinearities, could account for >85% of the total information available in the spike trains and the preserved information transmission. These results apply to neurons operating on a single time-varying input, suggesting that synaptic temporal integration can alter the temporal receptive field properties to create a more efficient representation of visual signals in the thalamus than the retina.
Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo
1998-01-01
It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250
Enhanced attention amplifies face adaptation.
Rhodes, Gillian; Jeffery, Linda; Evangelista, Emma; Ewing, Louise; Peters, Marianne; Taylor, Libby
2011-08-15
Perceptual adaptation not only produces striking perceptual aftereffects, but also enhances coding efficiency and discrimination by calibrating coding mechanisms to prevailing inputs. Attention to simple stimuli increases adaptation, potentially enhancing its functional benefits. Here we show that attention also increases adaptation to faces. In Experiment 1, face identity aftereffects increased when attention to adapting faces was increased using a change detection task. In Experiment 2, figural (distortion) face aftereffects increased when attention was increased using a snap game (detecting immediate repeats) during adaptation. Both were large effects. Contributions of low-level adaptation were reduced using free viewing (both experiments) and a size change between adapt and test faces (Experiment 2). We suggest that attention may enhance adaptation throughout the entire cortical visual pathway, with functional benefits well beyond the immediate advantages of selective processing of potentially important stimuli. These results highlight the potential to facilitate adaptive updating of face-coding mechanisms by strategic deployment of attentional resources. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Visualization Toolkit (VTK): Rewriting the rendering code for modern graphics cards
NASA Astrophysics Data System (ADS)
Hanwell, Marcus D.; Martin, Kenneth M.; Chaudhary, Aashish; Avila, Lisa S.
2015-09-01
The Visualization Toolkit (VTK) is an open source, permissively licensed, cross-platform toolkit for scientific data processing, visualization, and data analysis. It is over two decades old, originally developed for a very different graphics card architecture. Modern graphics cards feature fully programmable, highly parallelized architectures with large core counts. VTK's rendering code was rewritten to take advantage of modern graphics cards, maintaining most of the toolkit's programming interfaces. This offers the opportunity to compare the performance of old and new rendering code on the same systems/cards. Significant improvements in rendering speeds and memory footprints mean that scientific data can be visualized in greater detail than ever before. The widespread use of VTK means that these improvements will reap significant benefits.
Visual Dysfunction Following Blast-Related Traumatic Brain Injury from the Battlefield
2010-10-27
sequelae follow- ing a TBI [12, 13]. The occurrence of TBI-related ocular and visual disorders is varied, depending on the diagnostic criteria...measure, ocular/visual disor- der, was indicated by the ICD-9-CM diagnostic codes for ‘disorders of the eye and adnexa’ (360.0– 379.9) obtained from...II. Number and percentage of US service members in each ocular/visual disorder diagnostic category by TBI status. ICD-9-CM code and categorya TBI (n
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-01-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118
ERIC Educational Resources Information Center
Rosenblum, L. Penny; Amato, Sheila
2004-01-01
This study examined the preparation in and use of the Nemeth braille code by 135 teachers of students with visual impairments. Almost all the teachers had taken at least one course in the Nemeth code as part of their university preparation. In their current jobs, they prepared a variety of materials, primarily basic operations, word problems,…
NASA Astrophysics Data System (ADS)
Moylan, Andrew; Scott, Susan M.; Searle, Anthony C.
2006-02-01
The software tool GRworkbench is an ongoing project in visual, numerical General Relativity at The Australian National University. Recently, GRworkbench has been significantly extended to facilitate numerical experimentation in analytically-defined space-times. The numerical differential geometric engine has been rewritten using functional programming techniques, enabling objects which are normally defined as functions in the formalism of differential geometry and General Relativity to be directly represented as function variables in the C++ code of GRworkbench. The new functional differential geometric engine allows for more accurate and efficient visualisation of objects in space-times and makes new, efficient computational techniques available. Motivated by the desire to investigate a recent scientific claim using GRworkbench, new tools for numerical experimentation have been implemented, allowing for the simulation of complex physical situations.
A novel shape-based coding-decoding technique for an industrial visual inspection system.
Mukherjee, Anirban; Chaudhuri, Subhasis; Dutta, Pranab K; Sen, Siddhartha; Patra, Amit
2004-01-01
This paper describes a unique single camera-based dimension storage method for image-based measurement. The system has been designed and implemented in one of the integrated steel plants of India. The purpose of the system is to encode the frontal cross-sectional area of an ingot. The encoded data will be stored in a database to facilitate the future manufacturing diagnostic process. The compression efficiency and reconstruction error of the lossy encoding technique have been reported and found to be quite encouraging.
Effective real-time vehicle tracking using discriminative sparse coding on local patches
NASA Astrophysics Data System (ADS)
Chen, XiangJun; Ye, Feiyue; Ruan, Yaduan; Chen, Qimei
2016-01-01
A visual tracking framework that provides an object detector and tracker, which focuses on effective and efficient visual tracking in surveillance of real-world intelligent transport system applications, is proposed. The framework casts the tracking task as problems of object detection, feature representation, and classification, which is different from appearance model-matching approaches. Through a feature representation of discriminative sparse coding on local patches called DSCLP, which trains a dictionary on local clustered patches sampled from both positive and negative datasets, the discriminative power and robustness has been improved remarkably, which makes our method more robust to a complex realistic setting with all kinds of degraded image quality. Moreover, by catching objects through one-time background subtraction, along with offline dictionary training, computation time is dramatically reduced, which enables our framework to achieve real-time tracking performance even in a high-definition sequence with heavy traffic. Experiment results show that our work outperforms some state-of-the-art methods in terms of speed, accuracy, and robustness and exhibits increased robustness in a complex real-world scenario with degraded image quality caused by vehicle occlusion, image blur of rain or fog, and change in viewpoint or scale.
Motion-related resource allocation in dynamic wireless visual sensor network environments.
Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E
2014-01-01
This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.
Vasserman, Genadiy; Schneidman, Elad; Segev, Ronen
2013-01-01
The visual system continually adjusts its sensitivity to the statistical properties of the environment through an adaptation process that starts in the retina. Colour perception and processing is commonly thought to occur mainly in high visual areas, and indeed most evidence for chromatic colour contrast adaptation comes from cortical studies. We show that colour contrast adaptation starts in the retina where ganglion cells adjust their responses to the spectral properties of the environment. We demonstrate that the ganglion cells match their responses to red-blue stimulus combinations according to the relative contrast of each of the input channels by rotating their functional response properties in colour space. Using measurements of the chromatic statistics of natural environments, we show that the retina balances inputs from the two (red and blue) stimulated colour channels, as would be expected from theoretical optimal behaviour. Our results suggest that colour is encoded in the retina based on the efficient processing of spectral information that matches spectral combinations in natural scenes on the colour processing level. PMID:24205373
Singh, Mandeep S; Broadgate, Suzanne; Mathur, Ranjana; Holt, Richard; Halford, Stephanie; MacLaren, Robert E
2016-05-09
Hypotrichosis with juvenile macular dystrophy (HJMD) is an autosomal recessive disorder that causes childhood visual impairment. HJMD is caused by mutations in CDH3 which encodes cadherin-3, a protein expressed in retinal pigment epithelium (RPE) cells that may have a key role in intercellular adhesion. We present a case of HJMD and analyse its phenotypic and molecular characteristics to assess the potential for retinal gene therapy as a means of preventing severe visual loss in this condition. Longitudinal in vivo imaging of the retina showed the relative anatomical preservation of the macula, which suggested the presence of a therapeutic window for gene augmentation therapy to preserve visual acuity. The coding sequence of CDH3 fits within the packaging limit of recombinant adeno-associated virus vectors that have been shown to be safe in clinical trials and can efficiently target RPE cells. This report expands the number of reported cases of HJMD and highlights the phenotypic characteristics to consider when selecting candidates for retinal gene therapy.
Self-rated imagery and encoding strategies in visual memory.
Berger, G H; Gaunitz, S C
1979-02-01
The value of self-rated vividness of imagery in predicting performance was investigated, taking into account the mnemonic strategies utilized among subjects performing a visual-memory task. Subjects classified as 'good' or 'poor' imagers, according to their scores in the Vividness of Visual Imagery Questionnaire (VVIQ; Marks, 1972), were to detect as rapidly as possible differences between pairs of similar pictures presented consecutively. No coding instructions were given and the mnemonic strategies used were analysed by studying subjective reports and objective performance measurements. The results indicated that the subjects utilized two main strategies--a detail or an image strategy. The detail strategy was the more efficient. In accordance with a previous study (Berger & Gaunitz, 1977), it was found that the VVIQ did not discriminate between performance by 'good' and 'poor' imagers. However, among subjects who used the image strategy, 'good' imagers performed more rapidly than 'poor' imagers. Self-rated imagery may then have some value in predicting performance among individuals shown to have utilized an image strategy.
Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel
2012-05-01
Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In particular, report of poor letter/digit-string processing but preserved symbol-string processing was viewed as evidence of poor visual-to-phonology code mapping, in line with the phonological theory of developmental dyslexia. We assessed here the visual-to-phonological-code mapping disorder hypothesis. In Experiment 1, letter-string, digit-string and colour-string processing was assessed to disentangle a phonological versus visual familiarity account of the letter/digit versus symbol dissociation. Against a visual-to-phonological-code mapping disorder but in support of a familiarity account, results showed poor letter/digit-string processing but preserved colour-string processing in dyslexic children. In Experiment 2, two tasks of letter-string report were used, one of which was performed simultaneously to a high-taxing phonological task. Results show that dyslexic children are similarly impaired in letter-string report whether a concurrent phonological task is simultaneously performed or not. Taken together, these results provide strong evidence against a phonological account of poor letter-string processing in developmental dyslexia. Copyright © 2012 John Wiley & Sons, Ltd.
Dynamic frame resizing with convolutional neural network for efficient video compression
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Park, Youngo; Choi, Kwang Pyo; Lee, JongSeok; Jeon, Sunyoung; Park, JeongHoon
2017-09-01
In the past, video codecs such as vc-1 and H.263 used a technique to encode reduced-resolution video and restore original resolution from the decoder for improvement of coding efficiency. The techniques of vc-1 and H.263 Annex Q are called dynamic frame resizing and reduced-resolution update mode, respectively. However, these techniques have not been widely used due to limited performance improvements that operate well only under specific conditions. In this paper, video frame resizing (reduced/restore) technique based on machine learning is proposed for improvement of coding efficiency. The proposed method features video of low resolution made by convolutional neural network (CNN) in encoder and reconstruction of original resolution using CNN in decoder. The proposed method shows improved subjective performance over all the high resolution videos which are dominantly consumed recently. In order to assess subjective quality of the proposed method, Video Multi-method Assessment Fusion (VMAF) which showed high reliability among many subjective measurement tools was used as subjective metric. Moreover, to assess general performance, diverse bitrates are tested. Experimental results showed that BD-rate based on VMAF was improved by about 51% compare to conventional HEVC. Especially, VMAF values were significantly improved in low bitrate. Also, when the method is subjectively tested, it had better subjective visual quality in similar bit rate.
Television News Without Pictures?
ERIC Educational Resources Information Center
Graber, Doris A.
1987-01-01
Describes "gestalt" coding procedures that concentrate on the meanings conveyed by audio-visual messages rather than on coding individual pictorial elements shown in a news story. Discusses the totality of meaning that results from the interaction of verbal and visual story elements, external settings, and the decoding proclivities of…
Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.
2016-01-01
A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865
Understanding the Implications of Neural Population Activity on Behavior
NASA Astrophysics Data System (ADS)
Briguglio, John
Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests a variety of hypotheses that will be useful in helping to understand the relationship between neural activity and behavior as recorded neural populations continue to grow.
Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao
2018-05-17
To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lightweight computational steering of very large scale molecular dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beazley, D.M.; Lomdahl, P.S.
1996-09-01
We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show howmore » this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages.« less
NGL Viewer: Web-based molecular graphics for large complexes.
Rose, Alexander S; Bradley, Anthony R; Valasatava, Yana; Duarte, Jose M; Prlic, Andreas; Rose, Peter W
2018-05-29
The interactive visualization of very large macromolecular complexes on the web is becoming a challenging problem as experimental techniques advance at an unprecedented rate and deliver structures of increasing size. We have tackled this problem by developing highly memory-efficient and scalable extensions for the NGL WebGL-based molecular viewer and by using MMTF, a binary and compressed Macromolecular Transmission Format. These enable NGL to download and render molecular complexes with millions of atoms interactively on desktop computers and smartphones alike, making it a tool of choice for web-based molecular visualization in research and education. The source code is freely available under the MIT license at github.com/arose/ngl and distributed on NPM (npmjs.com/package/ngl). MMTF-JavaScript encoders and decoders are available at github.com/rcsb/mmtf-javascript. asr.moin@gmail.com.
Beyond Visual Communication Technology.
ERIC Educational Resources Information Center
Bell, Thomas P.
1993-01-01
Discusses various aspects of visual communication--light, semiotics, codes, photography, typography, and visual literacy--within the context of the communications technology area of technology education. (SK)
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
Scalable nanohelices for predictive studies and enhanced 3D visualization.
Meagher, Kwyn A; Doblack, Benjamin N; Ramirez, Mercedes; Davila, Lilian P
2014-11-12
Spring-like materials are ubiquitous in nature and of interest in nanotechnology for energy harvesting, hydrogen storage, and biological sensing applications. For predictive simulations, it has become increasingly important to be able to model the structure of nanohelices accurately. To study the effect of local structure on the properties of these complex geometries one must develop realistic models. To date, software packages are rather limited in creating atomistic helical models. This work focuses on producing atomistic models of silica glass (SiO₂) nanoribbons and nanosprings for molecular dynamics (MD) simulations. Using an MD model of "bulk" silica glass, two computational procedures to precisely create the shape of nanoribbons and nanosprings are presented. The first method employs the AWK programming language and open-source software to effectively carve various shapes of silica nanoribbons from the initial bulk model, using desired dimensions and parametric equations to define a helix. With this method, accurate atomistic silica nanoribbons can be generated for a range of pitch values and dimensions. The second method involves a more robust code which allows flexibility in modeling nanohelical structures. This approach utilizes a C++ code particularly written to implement pre-screening methods as well as the mathematical equations for a helix, resulting in greater precision and efficiency when creating nanospring models. Using these codes, well-defined and scalable nanoribbons and nanosprings suited for atomistic simulations can be effectively created. An added value in both open-source codes is that they can be adapted to reproduce different helical structures, independent of material. In addition, a MATLAB graphical user interface (GUI) is used to enhance learning through visualization and interaction for a general user with the atomistic helical structures. One application of these methods is the recent study of nanohelices via MD simulations for mechanical energy harvesting purposes.
Exclusively Visual Analysis of Classroom Group Interactions
ERIC Educational Resources Information Center
Tucker, Laura; Scherr, Rachel E.; Zickler, Todd; Mazur, Eric
2016-01-01
Large-scale audiovisual data that measure group learning are time consuming to collect and analyze. As an initial step towards scaling qualitative classroom observation, we qualitatively coded classroom video using an established coding scheme with and without its audio cues. We find that interrater reliability is as high when using visual data…
NASA Astrophysics Data System (ADS)
Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin
2017-01-01
High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.
Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles
Treue, Stefan
2018-01-01
Abstract Single neurons in the primate lateral prefrontal cortex (LPFC) encode information about the allocation of visual attention and the features of visual stimuli. However, how this compares to the performance of neuronal ensembles at encoding the same information is poorly understood. Here, we recorded the responses of neuronal ensembles in the LPFC of two macaque monkeys while they performed a task that required attending to one of two moving random dot patterns positioned in different hemifields and ignoring the other pattern. We found single units selective for the location of the attended stimulus as well as for its motion direction. To determine the coding of both variables in the population of recorded units, we used a linear classifier and progressively built neuronal ensembles by iteratively adding units according to their individual performance (best single units), or by iteratively adding units based on their contribution to the ensemble performance (best ensemble). For both methods, ensembles of relatively small sizes (n < 60) yielded substantially higher decoding performance relative to individual single units. However, the decoder reached similar performance using fewer neurons with the best ensemble building method compared with the best single units method. Our results indicate that neuronal ensembles within the LPFC encode more information about the attended spatial and nonspatial features of visual stimuli than individual neurons. They further suggest that efficient coding of attention can be achieved by relatively small neuronal ensembles characterized by a certain relationship between signal and noise correlation structures. PMID:29568798
NASA Technical Reports Server (NTRS)
Phillips, Rachel; Madhavan, Poornima
2010-01-01
The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.
Spriggs, M J; Sumner, R L; McMillan, R L; Moran, R J; Kirk, I J; Muthukumaraswamy, S D
2018-04-30
The Roving Mismatch Negativity (MMN), and Visual LTP paradigms are widely used as independent measures of sensory plasticity. However, the paradigms are built upon fundamentally different (and seemingly opposing) models of perceptual learning; namely, Predictive Coding (MMN) and Hebbian plasticity (LTP). The aim of the current study was to compare the generative mechanisms of the MMN and visual LTP, therefore assessing whether Predictive Coding and Hebbian mechanisms co-occur in the brain. Forty participants were presented with both paradigms during EEG recording. Consistent with Predictive Coding and Hebbian predictions, Dynamic Causal Modelling revealed that the generation of the MMN modulates forward and backward connections in the underlying network, while visual LTP only modulates forward connections. These results suggest that both Predictive Coding and Hebbian mechanisms are utilized by the brain under different task demands. This therefore indicates that both tasks provide unique insight into plasticity mechanisms, which has important implications for future studies of aberrant plasticity in clinical populations. Copyright © 2018 Elsevier Inc. All rights reserved.
The TeraShake Computational Platform for Large-Scale Earthquake Simulations
NASA Astrophysics Data System (ADS)
Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas
Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.
LSSGalPy: Interactive Visualization of the Large-scale Environment Around Galaxies
NASA Astrophysics Data System (ADS)
Argudo-Fernández, M.; Duarte Puertas, S.; Ruiz, J. E.; Sabater, J.; Verley, S.; Bergond, G.
2017-05-01
New tools are needed to handle the growth of data in astrophysics delivered by recent and upcoming surveys. We aim to build open-source, light, flexible, and interactive software designed to visualize extensive three-dimensional (3D) tabular data. Entirely written in the Python language, we have developed interactive tools to browse and visualize the positions of galaxies in the universe and their positions with respect to its large-scale structures (LSS). Motivated by a previous study, we created two codes using Mollweide projection and wedge diagram visualizations, where survey galaxies can be overplotted on the LSS of the universe. These are interactive representations where the visualizations can be controlled by widgets. We have released these open-source codes that have been designed to be easily re-used and customized by the scientific community to fulfill their needs. The codes are adaptable to other kinds of 3D tabular data and are robust enough to handle several millions of objects. .
Color-coded visualization of magnetic resonance imaging multiparametric maps
NASA Astrophysics Data System (ADS)
Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit
2017-01-01
Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.
GRASP/Ada 95: Reverse Engineering Tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1996-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped an algorithmic level graphical representation for Ada software, the Control Structure Diagram (CSD), and a new visualization for a fine-grained complexity metric called the Complexity Profile Graph (CPG). By synchronizing the CSD and the CPG, the CSD view of control structure, nesting, and source code is directly linked to the corresponding visualization of statement level complexity in the CPG. GRASP has been integrated with GNAT, the GNU Ada 95 Translator to provide a comprehensive graphical user interface and development environment for Ada 95. The user may view, edit, print, and compile source code as a CSD with no discernible addition to storage or computational overhead. The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis has been on the automatic generation of the CSD from Ada 95 source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. The current update has focused on the design and implementation of a new Motif compliant user interface, and a new CSD generator consisting of a tagger and renderer. The Complexity Profile Graph (CPG) is based on a set of functions that describes the context, content, and the scaling for complexity on a statement by statement basis. When combined graphicafly, the result is a composite profile of complexity for the program unit. Ongoing research includes the development and refinement of the associated functions, and the development of the CPG generator prototype. The current Version 5.0 prototype provides the capability for the user to generate CSDs and CPGs from Ada 95 source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application. This report provides an overview of the GRASP/Ada project with an emphasis on the current update.
SmartR: an open-source platform for interactive visual analytics for translational research data
Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard
2017-01-01
Abstract Summary: In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR, a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. Availability and Implementation: The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR. Contact: reinhard.schneider@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334291
SmartR: an open-source platform for interactive visual analytics for translational research data.
Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard
2017-07-15
In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR , a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR . reinhard.schneider@uni.lu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Constantinidou, Fofi; Evripidou, Christiana
2012-01-01
This study investigated the effects of stimulus presentation modality on working memory performance in children with reading disabilities (RD) and in typically developing children (TDC), all native speakers of Greek. It was hypothesized that the visual presentation of common objects would result in improved learning and recall performance as compared to the auditory presentation of stimuli. Twenty children, ages 10-12, diagnosed with RD were matched to 20 TDC age peers. The experimental tasks implemented a multitrial verbal learning paradigm incorporating three modalities: auditory, visual, and auditory plus visual. Significant group differences were noted on language, verbal and nonverbal memory, and measures of executive abilities. A mixed-model MANOVA indicated that children with RD had a slower learning curve and recalled fewer words than TDC across experimental modalities. Both groups of participants benefited from the visual presentation of objects; however, children with RD showed the greatest gains during this condition. In conclusion, working memory for common verbal items is impaired in children with RD; however, performance can be facilitated, and learning efficiency maximized, when information is presented visually. The results provide further evidence for the pictorial superiority hypothesis and the theory that pictorial presentation of verbal stimuli is adequate for dual coding.
NASA Astrophysics Data System (ADS)
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
NASA Astrophysics Data System (ADS)
Jiménez-Martínez, J.; Molinero-Huguet, J.; Candela, L.
2009-04-01
Water requirements for different crop types according to soil type and climate conditions play not only an important role in agricultural efficiency production, though also for water resources management and control of pollutants in drainage water. The key issue to attain these objectives is the irrigation efficiency. Application of computer codes for irrigation simulation constitutes a fast and inexpensive approach to study optimal agricultural management practices. To simulate daily water balance in the soil, vadose zone and aquifer the VisualBALAN V. 2.0 code was applied to an experimental area under irrigation characterized by its aridity. The test was carried out in three experimental plots for annual row crops (lettuce and melon), perennial vegetables (artichoke), and fruit trees (citrus) under common agricultural practices in open air for October 1999-September 2008. Drip irrigation was applied to crops production due to the scarcity of water resources and the need for water conservation. Water level change was monitored in the top unconfined aquifer for each experimental plot. Results of water balance modelling show a good agreement between observed and estimated water level values. For the study period, mean drainage obtained values were 343 mm, 261 mm and 205 mm for lettuce and melon, artichoke and citrus respectively. Assessment of water use efficiency was based on the IE indicator proposed by the ASCE Task Committee. For the modelled period, water use efficiency was estimated as 73, 71 and 78 % of the applied dose (irrigation + precipitation) for lettuce and melon, artichoke and citrus, respectively.
Visual feature discrimination versus compression ratio for polygonal shape descriptors
NASA Astrophysics Data System (ADS)
Heuer, Joerg; Sanahuja, Francesc; Kaup, Andre
2000-10-01
In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.
Visual saliency in MPEG-4 AVC video stream
NASA Astrophysics Data System (ADS)
Ammar, M.; Mitrea, M.; Hasnaoui, M.; Le Callet, P.
2015-03-01
Visual saliency maps already proved their efficiency in a large variety of image/video communication application fields, covering from selective compression and channel coding to watermarking. Such saliency maps are generally based on different visual characteristics (like color, intensity, orientation, motion,…) computed from the pixel representation of the visual content. This paper resumes and extends our previous work devoted to the definition of a saliency map solely extracted from the MPEG-4 AVC stream syntax elements. The MPEG-4 AVC saliency map thus defined is a fusion of static and dynamic map. The static saliency map is in its turn a combination of intensity, color and orientation features maps. Despite the particular way in which all these elementary maps are computed, the fusion techniques allowing their combination plays a critical role in the final result and makes the object of the proposed study. A total of 48 fusion formulas (6 for combining static features and, for each of them, 8 to combine static to dynamic features) are investigated. The performances of the obtained maps are evaluated on a public database organized at IRCCyN, by computing two objective metrics: the Kullback-Leibler divergence and the area under curve.
Video quality assessment method motivated by human visual perception
NASA Astrophysics Data System (ADS)
He, Meiling; Jiang, Gangyi; Yu, Mei; Song, Yang; Peng, Zongju; Shao, Feng
2016-11-01
Research on video quality assessment (VQA) plays a crucial role in improving the efficiency of video coding and the performance of video processing. It is well acknowledged that the motion energy model generates motion energy responses in a middle temporal area by simulating the receptive field of neurons in V1 for the motion perception of the human visual system. Motivated by the biological evidence for the visual motion perception, a VQA method is proposed in this paper, which comprises the motion perception quality index and the spatial index. To be more specific, the motion energy model is applied to evaluate the temporal distortion severity of each frequency component generated from the difference of Gaussian filter bank, which produces the motion perception quality index, and the gradient similarity measure is used to evaluate the spatial distortion of the video sequence to get the spatial quality index. The experimental results of the LIVE, CSIQ, and IVP video databases demonstrate that the random forests regression technique trained by the generated quality indices is highly correspondent to human visual perception and has many significant improvements than comparable well-performing methods. The proposed method has higher consistency with subjective perception and higher generalization capability.
Ince, Robin A A; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J; Rousselet, Guillaume A; Schyns, Philippe G
2016-08-22
A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. © The Author 2016. Published by Oxford University Press.
Seeing the mean: ensemble coding for sets of faces.
Haberman, Jason; Whitney, David
2009-06-01
We frequently encounter groups of similar objects in our visual environment: a bed of flowers, a basket of oranges, a crowd of people. How does the visual system process such redundancy? Research shows that rather than code every element in a texture, the visual system favors a summary statistical representation of all the elements. The authors demonstrate that although it may facilitate texture perception, ensemble coding also occurs for faces-a level of processing well beyond that of textures. Observers viewed sets of faces varying in emotionality (e.g., happy to sad) and assessed the mean emotion of each set. Although observers retained little information about the individual set members, they had a remarkably precise representation of the mean emotion. Observers continued to discriminate the mean emotion accurately even when they viewed sets of 16 faces for 500 ms or less. Modeling revealed that perceiving the average facial expression in groups of faces was not due to noisy representation or noisy discrimination. These findings support the hypothesis that ensemble coding occurs extremely fast at multiple levels of visual analysis. (c) 2009 APA, all rights reserved.
Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J
2013-04-01
Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this aftereffect increased with adaptor extremity, as predicted by norm-based, opponent coding of body identity. A size change between adapt and test bodies minimized the effects of low-level, retinotopic adaptation. These results demonstrate that body identity, like face identity, is opponent coded in higher-level vision. More generally, they show that a norm-based multidimensional framework, which is well established for face perception, may provide a powerful framework for understanding body perception.
Willmore, Ben D.B.; Bulstrode, Harry; Tolhurst, David J.
2012-01-01
Neuronal populations in the primary visual cortex (V1) of mammals exhibit contrast normalization. Neurons that respond strongly to simple visual stimuli – such as sinusoidal gratings – respond less well to the same stimuli when they are presented as part of a more complex stimulus which also excites other, neighboring neurons. This phenomenon is generally attributed to generalized patterns of inhibitory connections between nearby V1 neurons. The Bienenstock, Cooper and Munro (BCM) rule is a neural network learning rule that, when trained on natural images, produces model neurons which, individually, have many tuning properties in common with real V1 neurons. However, when viewed as a population, a BCM network is very different from V1 – each member of the BCM population tends to respond to the same dominant features of visual input, producing an incomplete, highly redundant code for visual information. Here, we demonstrate that, by adding contrast normalization into the BCM rule, we arrive at a neurally-plausible Hebbian learning rule that can learn an efficient sparse, overcomplete representation that is a better model for stimulus selectivity in V1. This suggests that one role of contrast normalization in V1 is to guide the neonatal development of receptive fields, so that neurons respond to different features of visual input. PMID:22230381
EPA Remote Sensing Information Gateway
NASA Astrophysics Data System (ADS)
Paulsen, H. K.; Szykman, J. J.; Plessel, T.; Freeman, M.; Dimmick, F.
2009-12-01
The Remote Sensing Information Gateway was developed by the U.S. Environmental Protection Agency (EPA) to assist researchers in easily obtaining and combining a variety of environmental datasets related to air quality research. Current datasets available include, but are not limited to surface PM2.5 and O3 data, satellite derived aerosol optical depth , and 3-dimensional output from U.S. EPA's Models 3/Community Multi-scale Air Quality (CMAQ) modeling system. The presentation will include a demonstration that illustrates several scenarios of how researchers use the tool to help them visualize and obtain data for their work; with a particular focus on episode analysis related to biomass burning impacts on air quality. The presentation will provide an overview on how RSIG works and how the code has been—and can be—adapted for other projects. One example is the Virtual Estuary, which focuses on automating the retrieval and pre-processing of a variety of data needed for estuarine research. RSIG’s source codes are freely available to researchers with permission from the EPA principal investigator, Dr. Jim Szykman. RSIG is available to the community and can be accessed online at http://www.epa.gov/rsig. Once the JAVA policy file is configured on your computer you can run the RSIG applet on your computer and connect to the RSIG server to visualize and retrieve available data sets. The applet allows the user to specify the temporal/spatial areas of interest, and the types of data to retrieve. The applet then communicates with RSIG subsetter codes located on the data owners’ remote servers; the subsetter codes assemble and transfer via ordinary Internet protocols only the specified data to the researcher’s computer. This is much faster than the usual method of transferring large files via FTP and greatly reduces network traffic. The RSIG applet then visualizes the transferred data on a latitude-longitude map, automatically locating the data in the correct geographic position. Images, animations, and aggregated data can be saved or exported in a variety of data formats: Binary External Data Representation (XDR) format (simple, efficient), NetCDF-COARDS format, NetCDF-IOAPI format (regridding the data to a CMAQ grid), HDF (unsubsetted satellite files), ASCII tab-delimited spreadsheet, MCMC (used for input into HB model), PNG images, MPG movies, KMZ movies (for display in Google Earth and similar applications), GeoTIFF RGB format and 32-bit float format. RSIG’s source codes are freely available to researchers with permission from the EPA. Contacts for obtaining RSIG code are available at the RSIG website.
Optimal power allocation and joint source-channel coding for wireless DS-CDMA visual sensor networks
NASA Astrophysics Data System (ADS)
Pandremmenou, Katerina; Kondi, Lisimachos P.; Parsopoulos, Konstantinos E.
2011-01-01
In this paper, we propose a scheme for the optimal allocation of power, source coding rate, and channel coding rate for each of the nodes of a wireless Direct Sequence Code Division Multiple Access (DS-CDMA) visual sensor network. The optimization is quality-driven, i.e. the received quality of the video that is transmitted by the nodes is optimized. The scheme takes into account the fact that the sensor nodes may be imaging scenes with varying levels of motion. Nodes that image low-motion scenes will require a lower source coding rate, so they will be able to allocate a greater portion of the total available bit rate to channel coding. Stronger channel coding will mean that such nodes will be able to transmit at lower power. This will both increase battery life and reduce interference to other nodes. Two optimization criteria are considered. One that minimizes the average video distortion of the nodes and one that minimizes the maximum distortion among the nodes. The transmission powers are allowed to take continuous values, whereas the source and channel coding rates can assume only discrete values. Thus, the resulting optimization problem lies in the field of mixed-integer optimization tasks and is solved using Particle Swarm Optimization. Our experimental results show the importance of considering the characteristics of the video sequences when determining the transmission power, source coding rate and channel coding rate for the nodes of the visual sensor network.
Bandwidth efficient coding for satellite communications
NASA Technical Reports Server (NTRS)
Lin, Shu; Costello, Daniel J., Jr.; Miller, Warner H.; Morakis, James C.; Poland, William B., Jr.
1992-01-01
An error control coding scheme was devised to achieve large coding gain and high reliability by using coded modulation with reduced decoding complexity. To achieve a 3 to 5 dB coding gain and moderate reliability, the decoding complexity is quite modest. In fact, to achieve a 3 dB coding gain, the decoding complexity is quite simple, no matter whether trellis coded modulation or block coded modulation is used. However, to achieve coding gains exceeding 5 dB, the decoding complexity increases drastically, and the implementation of the decoder becomes very expensive and unpractical. The use is proposed of coded modulation in conjunction with concatenated (or cascaded) coding. A good short bandwidth efficient modulation code is used as the inner code and relatively powerful Reed-Solomon code is used as the outer code. With properly chosen inner and outer codes, a concatenated coded modulation scheme not only can achieve large coding gains and high reliability with good bandwidth efficiency but also can be practically implemented. This combination of coded modulation and concatenated coding really offers a way of achieving the best of three worlds, reliability and coding gain, bandwidth efficiency, and decoding complexity.
Role of temporal processing stages by inferior temporal neurons in facial recognition.
Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji
2011-01-01
In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition.
Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition
Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji
2011-01-01
In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition. PMID:21734904
Comparative performance evaluation of transform coding in image pre-processing
NASA Astrophysics Data System (ADS)
Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha
2017-07-01
We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.
NASA Astrophysics Data System (ADS)
Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.
2015-03-01
Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.
Visual loss after spine surgery: a population-based study.
Patil, Chirag G; Lad, Eleonora M; Lad, Shivanand P; Ho, Chris; Boakye, Maxwell
2008-06-01
Retrospective cohort study using National inpatient sample administrative data. To determine national estimates of visual impairment and ischemic optic neuropathy after spine surgery. Loss of vision after spine surgery is rare but has devastating complications that has gained increasing recognition in the recent literature. National population-based studies of visual complications after spine surgery are lacking. All patients from 1993 to 2002 who underwent spine surgery (Clinical Classifications software procedure code: 3, 158) and who had ischemic optic neuropathy (ION) (ICD9-CM code 377.41), central retinal artery occlusion (CRAO) (ICD9-CM code 362.31) or non-ION, non-CRAO perioperative visual impairment (ICD9-CM codes: 369, 368.4, 368.8-9368.11-13) were included. Univariate and multivariate analysis were performed to identify potential risk factors. The overall incidence of visual disturbance after spine surgery was 0.094%. Spine surgery for scoliosis correction and posterior lumbar fusion had the highest rates of postoperative visual loss of 0.28% and 0.14% respectively. Pediatric patients (<18 years) were 5.8 times and elderly patients (>84 years) were 3.2 times more likely than, patients 18 to 44 years of age to develop non-ION, non-CRAO visual loss after spine surgery. Patients with peripheral vascular disease (OR = 2.0), hypertension (OR = 1.3), and those who received blood transfusion (OR = 2.2) were more likely to develop non-ION, non-CRAO vision loss after spine surgery. Ischemic optic neuropathy was present in 0.006% of patients. Hypotension (OR = 10.1), peripheral vascular disease (OR = 6.3) and anemia (OR = 5.9) were the strongest risk factors identified for the development of ION. We used multivariate analysis to identify significant risk factors for visual loss after spine surgery. National population-based estimate of visual impairment after spine surgery confirms that ophthalmic complications after spine surgery are rare. Since visual loss may be reversible in the early stages, awareness, evaluation and prompt management of this rare but potentially devastating complication is critical.
NASA Astrophysics Data System (ADS)
Dimopoulos, Kostas; Koulaidis, Vasilis; Sklaveniti, Spyridoula
2003-04-01
This paper aims at presenting the application of a grid for the analysis of the pedagogic functions of visual images included in school science textbooks and daily press articles about science and technology. The analysis is made using the dimensions of content specialisation (classification) and social-pedagogic relationships (framing) promoted by the images as well as the elaboration and abstraction of the corresponding visual code (formality), thus combining pedagogical and socio-semiotic perspectives. The grid is applied to the analysis of 2819 visual images collected from school science textbooks and another 1630 visual images additionally collected from the press. The results show that the science textbooks in comparison to the press material: a) use ten times more images, b) use more images so as to familiarise their readers with the specialised techno-scientific content and codes, and c) tend to create a sense of higher empowerment for their readers by using the visual mode. Furthermore, as the educational level of the school science textbooks (i.e., from primary to lower secondary level) rises, the content specialisation projected by the visual images and the elaboration and abstraction of the corresponding visual code also increases. The above results have implications for the terms and conditions for the effective exploitation of visual material as the educational level rises as well as for the effective incorporation of visual images from press material into science classes.
Geoinformatics in the public service: building a cyberinfrastructure across the geological surveys
Allison, M. Lee; Gundersen, Linda C.; Richard, Stephen M.; Keller, G. Randy; Baru, Chaitanya
2011-01-01
Advanced information technology infrastructure is increasingly being employed in the Earth sciences to provide researchers with efficient access to massive central databases and to integrate diversely formatted information from a variety of sources. These geoinformatics initiatives enable manipulation, modeling and visualization of data in a consistent way, and are helping to develop integrated Earth models at various scales, and from the near surface to the deep interior. This book uses a series of case studies to demonstrate computer and database use across the geosciences. Chapters are thematically grouped into sections that cover data collection and management; modeling and community computational codes; visualization and data representation; knowledge management and data integration; and web services and scientific workflows. Geoinformatics is a fascinating and accessible introduction to this emerging field for readers across the solid Earth sciences and an invaluable reference for researchers interested in initiating new cyberinfrastructure projects of their own.
Reading color barcodes using visual snakes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaub, Hanspeter
2004-05-01
Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method,more » the numeric bar codes reveal if the target is right-side-up or up-side-down.« less
Tyralis, Hristos; Karakatsanis, Georgios; Tzouka, Katerina; Mamassis, Nikos
2017-08-01
We present data and code for visualizing the electrical energy data and weather-, climate-related and socioeconomic variables in the time domain in Greece. The electrical energy data include hourly demand, weekly-ahead forecasted values of the demand provided by the Greek Independent Power Transmission Operator and pricing values in Greece. We also present the daily temperature in Athens and the Gross Domestic Product of Greece. The code combines the data to a single report, which includes all visualizations with combinations of all variables in multiple time scales. The data and code were used in Tyralis et al. (2017) [1].
How Object-Specific Are Object Files? Evidence for Integration by Location
ERIC Educational Resources Information Center
van Dam, Wessel O.; Hommel, Bernhard
2010-01-01
Given the distributed representation of visual features in the human brain, binding mechanisms are necessary to integrate visual information about the same perceptual event. It has been assumed that feature codes are bound into object files--pointers to the neural codes of the features of a given event. The present study investigated the…
ERIC Educational Resources Information Center
Clinton, Virginia; Morsanyi, Kinga; Alibali, Martha W.; Nathan, Mitchell J.
2016-01-01
Learning from visual representations is enhanced when learners appropriately integrate corresponding visual and verbal information. This study examined the effects of two methods of promoting integration, color coding and labeling, on learning about probabilistic reasoning from a table and text. Undergraduate students (N = 98) were randomly…
Cell-assembly coding in several memory processes.
Sakurai, Y
1998-01-01
The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.
Vision and the representation of the surroundings in spatial memory
Tatler, Benjamin W.; Land, Michael F.
2011-01-01
One of the paradoxes of vision is that the world as it appears to us and the image on the retina at any moment are not much like each other. The visual world seems to be extensive and continuous across time. However, the manner in which we sample the visual environment is neither extensive nor continuous. How does the brain reconcile these differences? Here, we consider existing evidence from both static and dynamic viewing paradigms together with the logical requirements of any representational scheme that would be able to support active behaviour. While static scene viewing paradigms favour extensive, but perhaps abstracted, memory representations, dynamic settings suggest sparser and task-selective representation. We suggest that in dynamic settings where movement within extended environments is required to complete a task, the combination of visual input, egocentric and allocentric representations work together to allow efficient behaviour. The egocentric model serves as a coding scheme in which actions can be planned, but also offers a potential means of providing the perceptual stability that we experience. PMID:21242146
Meaning and Identities: A Visual Performative Pedagogy for Socio-Cultural Learning
ERIC Educational Resources Information Center
Grushka, Kathryn
2009-01-01
In this article I present personalised socio-cultural inquiry in visual art education as a critical and expressive material praxis. The model of "Visual Performative Pedagogy and Communicative Proficiency for the Visual Art Classroom" is presented as a legitimate means of manipulating visual codes, communicating meaning and mediating…
Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.
Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.
2013-01-01
Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290
Exploring Modality Compatibility in the Response-Effect Compatibility Paradigm.
Földes, Noémi; Philipp, Andrea M; Badets, Arnaud; Koch, Iring
2017-01-01
According to ideomotor theory , action planning is based on anticipatory perceptual representations of action-effects. This aspect of action control has been investigated in studies using the response-effect compatibility (REC) paradigm, in which responses have been shown to be facilitated if ensuing perceptual effects share codes with the response based on dimensional overlap (i.e., REC). Additionally, according to the notion of ideomotor compatibility, certain response-effect (R-E) mappings will be stronger than others because some response features resemble the anticipated sensory response effects more strongly than others (e.g., since vocal responses usually produce auditory effects, an auditory stimulus should be anticipated in a stronger manner following vocal responses rather than following manual responses). Yet, systematic research on this matter is lacking. In the present study, two REC experiments aimed to explore the influence of R-E modality mappings. In Experiment 1, vocal number word responses produced visual effects on the screen (digits vs. number words; i.e., visual-symbolic vs. visual-verbal effect codes). The REC effect was only marginally larger for visual-verbal than for visual-symbolic effects. Using verbal effect codes in Experiment 2, we found that the REC effect was larger with auditory-verbal R-E mapping than with visual-verbal R-E mapping. Overall, the findings support the hypothesis of a role of R-E modality mappings in REC effects, suggesting both further evidence for ideomotor accounts as well as code-specific and modality-specific contributions to effect anticipation.
Kuo, Bo-Cheng; Lin, Szu-Hung; Yeh, Yei-Yu
2018-06-01
Visual short-term memory (VSTM) allows individuals to briefly maintain information over time for guiding behaviours. Because the contents of VSTM can be neutral or emotional, top-down influence in VSTM may vary with the affective codes of maintained representations. Here we investigated the neural mechanisms underlying the functional interplay of top-down attention with affective codes in VSTM using functional magnetic resonance imaging. Participants were instructed to remember both threatening and neutral objects in a cued VSTM task. Retrospective cues (retro-cues) were presented to direct attention to the hemifield of a threatening object (i.e., cue-to-threat) or a neutral object (i.e., cue-to-neutral) during VSTM maintenance. We showed stronger activity in the ventral occipitotemporal cortex and amygdala for attending threatening relative to neutral representations. Using multivoxel pattern analysis, we found better classification performance for cue-to-threat versus cue-to-neutral objects in early visual areas and in the amygdala. Importantly, retro-cues modulated the strength of functional connectivity between the frontoparietal and early visual areas. Activity in the frontoparietal areas became strongly correlated with the activity in V3a-V4 coding the threatening representations instructed to be relevant for the task. Together, these findings provide the first demonstration of top-down modulation of activation patterns in early visual areas and functional connectivity between the frontoparietal network and early visual areas for regulating threatening representations during VSTM maintenance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frambati, S.; Frignani, M.
2012-07-01
We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design formore » radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)« less
Perceiving groups: The people perception of diversity and hierarchy.
Phillips, L Taylor; Slepian, Michael L; Hughes, Brent L
2018-05-01
The visual perception of individuals has received considerable attention (visual person perception), but little social psychological work has examined the processes underlying the visual perception of groups of people (visual people perception). Ensemble-coding is a visual mechanism that automatically extracts summary statistics (e.g., average size) of lower-level sets of stimuli (e.g., geometric figures), and also extends to the visual perception of groups of faces. Here, we consider whether ensemble-coding supports people perception, allowing individuals to form rapid, accurate impressions about groups of people. Across nine studies, we demonstrate that people visually extract high-level properties (e.g., diversity, hierarchy) that are unique to social groups, as opposed to individual persons. Observers rapidly and accurately perceived group diversity and hierarchy, or variance across race, gender, and dominance (Studies 1-3). Further, results persist when observers are given very short display times, backward pattern masks, color- and contrast-controlled stimuli, and absolute versus relative response options (Studies 4a-7b), suggesting robust effects supported specifically by ensemble-coding mechanisms. Together, we show that humans can rapidly and accurately perceive not only individual persons, but also emergent social information unique to groups of people. These people perception findings demonstrate the importance of visual processes for enabling people to perceive social groups and behave effectively in group-based social interactions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Data compression for satellite images
NASA Technical Reports Server (NTRS)
Chen, P. H.; Wintz, P. A.
1976-01-01
An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.
High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin
2016-01-01
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
Network analysis for the visualization and analysis of qualitative data.
Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D
2018-03-01
We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Critical evaluation of reverse engineering tool Imagix 4D!
Yadav, Rashmi; Patel, Ravindra; Kothari, Abhay
2016-01-01
The comprehension of legacy codes is difficult to understand. Various commercial reengineering tools are available that have unique working styles, and are equipped with their inherent capabilities and shortcomings. The focus of the available tools is in visualizing static behavior not the dynamic one. Therefore, it is difficult for people who work in software product maintenance, code understanding reengineering/reverse engineering. Consequently, the need for a comprehensive reengineering/reverse engineering tool arises. We found the usage of Imagix 4D to be good as it generates the maximum pictorial representations in the form of flow charts, flow graphs, class diagrams, metrics and, to a partial extent, dynamic visualizations. We evaluated Imagix 4D with the help of a case study involving a few samples of source code. The behavior of the tool was analyzed on multiple small codes and a large code gcc C parser. Large code evaluation was performed to uncover dead code, unstructured code, and the effect of not including required files at preprocessing level. The utility of Imagix 4D to prepare decision density and complexity metrics for a large code was found to be useful in getting to know how much reengineering is required. At the outset, Imagix 4D offered limitations in dynamic visualizations, flow chart separation (large code) and parsing loops. The outcome of evaluation will eventually help in upgrading Imagix 4D and posed a need of full featured tools in the area of software reengineering/reverse engineering. It will also help the research community, especially those who are interested in the realm of software reengineering tool building.
The implementation of thermal image visualization by HDL based on pseudo-color
NASA Astrophysics Data System (ADS)
Zhu, Yong; Zhang, JiangLing
2004-11-01
The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.
A parallel program for numerical simulation of discrete fracture network and groundwater flow
NASA Astrophysics Data System (ADS)
Huang, Ting-Wei; Liou, Tai-Sheng; Kalatehjari, Roohollah
2017-04-01
The ability of modeling fluid flow in Discrete Fracture Network (DFN) is critical to various applications such as exploration of reserves in geothermal and petroleum reservoirs, geological sequestration of carbon dioxide and final disposal of spent nuclear fuels. Although several commerical or acdametic DFN flow simulators are already available (e.g., FracMan and DFNWORKS), challenges in terms of computational efficiency and three-dimensional visualization still remain, which therefore motivates this study for developing a new DFN and flow simulator. A new DFN and flow simulator, DFNbox, was written in C++ under a cross-platform software development framework provided by Qt. DFNBox integrates the following capabilities into a user-friendly drop-down menu interface: DFN simulation and clipping, 3D mesh generation, fracture data analysis, connectivity analysis, flow path analysis and steady-state grounwater flow simulation. All three-dimensional visualization graphics were developed using the free OpenGL API. Similar to other DFN simulators, fractures are conceptualized as random point process in space, with stochastic characteristics represented by orientation, size, transmissivity and aperture. Fracture meshing was implemented by Delaunay triangulation for visualization but not flow simulation purposes. Boundary element method was used for flow simulations such that only unknown head or flux along exterior and interection bounaries are needed for solving the flow field in the DFN. Parallel compuation concept was taken into account in developing DFNbox for calculations that such concept is possible. For example, the time-consuming seqential code for fracture clipping calculations has been completely replaced by a highly efficient parallel one. This can greatly enhance compuational efficiency especially on multi-thread platforms. Furthermore, DFNbox have been successfully tested in Windows and Linux systems with equally-well performance.
Pettey, Warren B P; Toth, Damon J A; Redd, Andrew; Carter, Marjorie E; Samore, Matthew H; Gundlapalli, Adi V
2016-06-01
Network projections of data can provide an efficient format for data exploration of co-incidence in large clinical datasets. We present and explore the utility of a network projection approach to finding patterns in health care data that could be exploited to prevent homelessness among U.S. Veterans. We divided Veteran ICD-9-CM (ICD9) data into two time periods (0-59 and 60-364days prior to the first evidence of homelessness) and then used Pajek social network analysis software to visualize these data as three different networks. A multi-relational network simultaneously displayed the magnitude of ties between the most frequent ICD9 pairings. A new association network visualized ICD9 pairings that greatly increased or decreased. A signed, subtraction network visualized the presence, absence, and magnitude difference between ICD9 associations by time period. A cohort of 9468 U.S. Veterans was identified as having administrative evidence of homelessness and visits in both time periods. They were seen in 222,599 outpatient visits that generated 484,339 ICD9 codes (average of 11.4 (range 1-23) visits and 2.2 (range 1-60) ICD9 codes per visit). Using the three network projection methods, we were able to show distinct differences in the pattern of co-morbidities in the two time periods. In the more distant time period preceding homelessness, the network was dominated by routine health maintenance visits and physical ailment diagnoses. In the 59days immediately prior to the homelessness identification, alcohol related diagnoses along with economic circumstances such as unemployment, legal circumstances, along with housing instability were noted. Network visualizations of large clinical datasets traditionally treated as tabular and difficult to manipulate reveal rich, previously hidden connections between data variables related to homelessness. A key feature is the ability to visualize changes in variables with temporality and in proximity to the event of interest. These visualizations lend support to cognitive tasks such as exploration of large clinical datasets as a prelude to hypothesis generation. Published by Elsevier Inc.
Antúnez, Lucía; Giménez, Ana; Maiche, Alejandro; Ares, Gastón
2015-01-01
To study the influence of 2 interpretational aids of front-of-package (FOP) nutrition labels (color code and text descriptors) on attentional capture and consumers' understanding of nutritional information. A full factorial design was used to assess the influence of color code and text descriptors using visual search and eye tracking. Ten trained assessors participated in the visual search study and 54 consumers completed the eye-tracking study. In the visual search study, assessors were asked to indicate whether there was a label high in fat within sets of mayonnaise labels with different FOP labels. In the eye-tracking study, assessors answered a set of questions about the nutritional content of labels. The researchers used logistic regression to evaluate the influence of interpretational aids of FOP nutrition labels on the percentage of correct answers. Analyses of variance were used to evaluate the influence of the studied variables on attentional measures and participants' response times. Response times were significantly higher for monochromatic FOP labels compared with color-coded ones (3,225 vs 964 ms; P < .001), which suggests that color codes increase attentional capture. The highest number and duration of fixations and visits were recorded on labels that did not include color codes or text descriptors (P < .05). The lowest percentage of incorrect answers was observed when the nutrient level was indicated using color code and text descriptors (P < .05). The combination of color codes and text descriptors seems to be the most effective alternative to increase attentional capture and understanding of nutritional information. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lawrence, Charles; Putt, Charles W.
1997-01-01
The Visual Computing Environment (VCE) is a NASA Lewis Research Center project to develop a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis. The objectives of VCE are to (1) develop a visual computing environment for controlling the execution of individual simulation codes that are running in parallel and are distributed on heterogeneous host machines in a networked environment, (2) develop numerical coupling algorithms for interchanging boundary conditions between codes with arbitrary grid matching and different levels of dimensionality, (3) provide a graphical interface for simulation setup and control, and (4) provide tools for online visualization and plotting. VCE was designed to provide a distributed, object-oriented environment. Mechanisms are provided for creating and manipulating objects, such as grids, boundary conditions, and solution data. This environment includes parallel virtual machine (PVM) for distributed processing. Users can interactively select and couple any set of codes that have been modified to run in a parallel distributed fashion on a cluster of heterogeneous workstations. A scripting facility allows users to dictate the sequence of events that make up the particular simulation.
Visual communication with retinex coding.
Huck, F O; Fales, C L; Davis, R E; Alter-Gartenberg, R
2000-04-10
Visual communication with retinex coding seeks to suppress the spatial variation of the irradiance (e.g., shadows) across natural scenes and preserve only the spatial detail and the reflectance (or the lightness) of the surface itself. The separation of reflectance from irradiance begins with nonlinear retinex coding that sharply and clearly enhances edges and preserves their contrast, and it ends with a Wiener filter that restores images from this edge and contrast information. An approximate small-signal model of image gathering with retinex coding is found to consist of the familiar difference-of-Gaussian bandpass filter and a locally adaptive automatic-gain control. A linear representation of this model is used to develop expressions within the small-signal constraint for the information rate and the theoretical minimum data rate of the retinex-coded signal and for the maximum-realizable fidelity of the images restored from this signal. Extensive computations and simulations demonstrate that predictions based on these figures of merit correlate closely with perceptual and measured performance. Hence these predictions can serve as a general guide for the design of visual communication channels that produce images with a visual quality that consistently approaches the best possible sharpness, clarity, and reflectance constancy, even for nonuniform irradiances. The suppression of shadows in the restored image is found to be constrained inherently more by the sharpness of their penumbra than by their depth.
Visual Communication with Retinex Coding
NASA Astrophysics Data System (ADS)
Huck, Friedrich O.; Fales, Carl L.; Davis, Richard E.; Alter-Gartenberg, Rachel
2000-04-01
Visual communication with retinex coding seeks to suppress the spatial variation of the irradiance (e.g., shadows) across natural scenes and preserve only the spatial detail and the reflectance (or the lightness) of the surface itself. The separation of reflectance from irradiance begins with nonlinear retinex coding that sharply and clearly enhances edges and preserves their contrast, and it ends with a Wiener filter that restores images from this edge and contrast information. An approximate small-signal model of image gathering with retinex coding is found to consist of the familiar difference-of-Gaussian bandpass filter and a locally adaptive automatic-gain control. A linear representation of this model is used to develop expressions within the small-signal constraint for the information rate and the theoretical minimum data rate of the retinex-coded signal and for the maximum-realizable fidelity of the images restored from this signal. Extensive computations and simulations demonstrate that predictions based on these figures of merit correlate closely with perceptual and measured performance. Hence these predictions can serve as a general guide for the design of visual communication channels that produce images with a visual quality that consistently approaches the best possible sharpness, clarity, and reflectance constancy, even for nonuniform irradiances. The suppression of shadows in the restored image is found to be constrained inherently more by the sharpness of their penumbra than by their depth.
Trident: scalable compute archives: workflows, visualization, and analysis
NASA Astrophysics Data System (ADS)
Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Kotulla, Ralf; Henschel, Robert; Harbeck, Daniel
2016-08-01
The Astronomy scientific community has embraced Big Data processing challenges, e.g. associated with time-domain astronomy, and come up with a variety of novel and efficient data processing solutions. However, data processing is only a small part of the Big Data challenge. Efficient knowledge discovery and scientific advancement in the Big Data era requires new and equally efficient tools: modern user interfaces for searching, identifying and viewing data online without direct access to the data; tracking of data provenance; searching, plotting and analyzing metadata; interactive visual analysis, especially of (time-dependent) image data; and the ability to execute pipelines on supercomputing and cloud resources with minimal user overhead or expertise even to novice computing users. The Trident project at Indiana University offers a comprehensive web and cloud-based microservice software suite that enables the straight forward deployment of highly customized Scalable Compute Archive (SCA) systems; including extensive visualization and analysis capabilities, with minimal amount of additional coding. Trident seamlessly scales up or down in terms of data volumes and computational needs, and allows feature sets within a web user interface to be quickly adapted to meet individual project requirements. Domain experts only have to provide code or business logic about handling/visualizing their domain's data products and about executing their pipelines and application work flows. Trident's microservices architecture is made up of light-weight services connected by a REST API and/or a message bus; a web interface elements are built using NodeJS, AngularJS, and HighCharts JavaScript libraries among others while backend services are written in NodeJS, PHP/Zend, and Python. The software suite currently consists of (1) a simple work flow execution framework to integrate, deploy, and execute pipelines and applications (2) a progress service to monitor work flows and sub-work flows (3) ImageX, an interactive image visualization service (3) an authentication and authorization service (4) a data service that handles archival, staging and serving of data products, and (5) a notification service that serves statistical collation and reporting needs of various projects. Several other additional components are under development. Trident is an umbrella project, that evolved from the One Degree Imager, Portal, Pipeline, and Archive (ODI-PPA) project which we had initially refactored toward (1) a powerful analysis/visualization portal for Globular Cluster System (GCS) survey data collected by IU researchers, 2) a data search and download portal for the IU Electron Microscopy Center's data (EMC-SCA), 3) a prototype archive for the Ludwig Maximilian University's Wide Field Imager. The new Trident software has been used to deploy (1) a metadata quality control and analytics portal (RADY-SCA) for DICOM formatted medical imaging data produced by the IU Radiology Center, 2) Several prototype work flows for different domains, 3) a snapshot tool within IU's Karst Desktop environment, 4) a limited component-set to serve GIS data within the IU GIS web portal. Trident SCA systems leverage supercomputing and storage resources at Indiana University but can be configured to make use of any cloud/grid resource, from local workstations/servers to (inter)national supercomputing facilities such as XSEDE.
Spread Spectrum Visual Sensor Network Resource Management Using an End-to-End Cross-Layer Design
2011-02-01
Coding In this work, we use rate compatible punctured convolutional (RCPC) codes for channel coding [11]. Using RCPC codes al- lows us to utilize Viterbi’s...11] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE Trans. Commun., vol. 36, no. 4, pp. 389...source coding rate , a channel coding rate , and a power level to all nodes in the
FastDart : a fast, accurate and friendly version of DART code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Taboada, H.
2000-11-08
A new enhanced, visual version of DART code is presented. DART is a mechanistic model based code, developed for the performance calculation and assessment of aluminum dispersion fuel. Major issues of this new version are the development of a new, time saving calculation routine, able to be run on PC, a friendly visual input interface and a plotting facility. This version, available for silicide and U-Mo fuels,adds to the classical accuracy of DART models for fuel performance prediction, a faster execution and visual interfaces. It is part of a collaboration agreement between ANL and CNEA in the area of Lowmore » Enriched Uranium Advanced Fuels, held by the Implementation Arrangement for Technical Exchange and Cooperation in the Area of Peaceful Uses of Nuclear Energy.« less
Na, Dokyun; Lee, Doheon
2010-10-15
RBSDesigner predicts the translation efficiency of existing mRNA sequences and designs synthetic ribosome binding sites (RBSs) for a given coding sequence (CDS) to yield a desired level of protein expression. The program implements the mathematical model for translation initiation described in Na et al. (Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with a desired expression level in prokaryotes. BMC Syst. Biol., 4, 71). The program additionally incorporates the effect on translation efficiency of the spacer length between a Shine-Dalgarno (SD) sequence and an AUG codon, which is crucial for the incorporation of fMet-tRNA into the ribosome. RBSDesigner provides a graphical user interface (GUI) for the convenient design of synthetic RBSs. RBSDesigner is written in Python and Microsoft Visual Basic 6.0 and is publicly available as precompiled stand-alone software on the web (http://rbs.kaist.ac.kr). dhlee@kaist.ac.kr
Wireless Visual Sensor Network Resource Allocation using Cross-Layer Optimization
2009-01-01
Rate Compatible Punctured Convolutional (RCPC) codes for channel...vol. 44, pp. 2943–2959, November 1998. [22] J. Hagenauer, “ Rate - compatible punctured convolutional codes (RCPC codes ) and their applications,” IEEE... coding rate for H.264/AVC video compression is determined. At the data link layer, the Rate - Compatible Puctured Convolutional (RCPC) channel coding
Representations of temporal information in short-term memory: Are they modality-specific?
Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M
2016-10-01
Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.
A conflict-based model of color categorical perception: evidence from a priming study.
Hu, Zhonghua; Hanley, J Richard; Zhang, Ruiling; Liu, Qiang; Roberson, Debi
2014-10-01
Categorical perception (CP) of color manifests as faster or more accurate discrimination of two shades of color that straddle a category boundary (e.g., one blue and one green) than of two shades from within the same category (e.g., two different shades of green), even when the differences between the pairs of colors are equated according to some objective metric. The results of two experiments provide new evidence for a conflict-based account of this effect, in which CP is caused by competition between visual and verbal/categorical codes on within-category trials. According to this view, conflict arises because the verbal code indicates that the two colors are the same, whereas the visual code indicates that they are different. In Experiment 1, two shades from the same color category were discriminated significantly faster when the previous trial also comprised a pair of within-category colors than when the previous trial comprised a pair from two different color categories. Under the former circumstances, the CP effect disappeared. According to the conflict-based model, response conflict between visual and categorical codes during discrimination of within-category pairs produced an adjustment of cognitive control that reduced the weight given to the categorical code relative to the visual code on the subsequent trial. Consequently, responses on within-category trials were facilitated, and CP effects were reduced. The effectiveness of this conflict-based account was evaluated in comparison with an alternative view that CP reflects temporary warping of perceptual space at the boundaries between color categories.
A Need for a Theory of Visual Literacy.
ERIC Educational Resources Information Center
Hortin, John A.
1982-01-01
Examines sources available for developing a theory of visual literacy and attempts to clarify the meaning of the term. Suggests that visual thinking, a concept supported by recent research on mental imagery, visualization, and dual coding, ought to be the emphasis for future theory development. (FL)
Analyzing and Visualizing Cosmological Simulations with ParaView
NASA Astrophysics Data System (ADS)
Woodring, Jonathan; Heitmann, Katrin; Ahrens, James; Fasel, Patricia; Hsu, Chung-Hsing; Habib, Salman; Pope, Adrian
2011-07-01
The advent of large cosmological sky surveys—ushering in the era of precision cosmology—has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to a trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper, we introduce new analysis features implemented within ParaView, a fully parallel, open-source visualization toolkit, to analyze large N-body simulations. A major aspect of ParaView is that it can live and operate on the same machines and utilize the same parallel power as the simulation codes themselves. In addition, data movement is in a serious bottleneck now and will become even more of an issue in the future; an interactive visualization and analysis tool that can handle data in situ is fast becoming essential. The new features in ParaView include particle readers and a very efficient halo finder that identifies friends-of-friends halos and determines common halo properties, including spherical overdensity properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to programming languages like Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions.
Lingley, Alexander J; Bowdridge, Joshua C; Farivar, Reza; Duffy, Kevin R
2018-04-30
A single histological marker applied to a slice of tissue often reveals myriad cytoarchitectonic characteristics that can obscure differences between neuron populations targeted for study. Isolation and measurement of a single feature from the tissue is possible through a variety of approaches, however, visualizing the data numerically or through graphs alone can preclude being able to identify important features and effects that are not obvious from direct observation of the tissue. We demonstrate an efficient, effective, and robust approach to quantify and visualize cytoarchitectural features in histologically prepared brain sections. We demonstrate that this approach is able to reveal small differences between populations of neurons that might otherwise have gone undiscovered. We used stereological methods to record the cross-sectional soma area and in situ position of neurons within sections of the cat, monkey, and human visual system. The two-dimensional coordinate of every measured cell was used to produce a scatter plot that recapitulated the natural spatial distribution of cells, and each point in the plot was color-coded according to its respective soma area. The final graphic display was a multi-dimensional map of neuron soma size that revealed subtle differences across neuron aggregations, permitted delineation of regional boundaries, and identified small differences between populations of neurons modified by a period of sensory deprivation. This approach to collecting and displaying cytoarchitectonic data is simple, efficient, and provides a means of investigating small differences between neuron populations. Copyright © 2018. Published by Elsevier B.V.
Predicting SPE Fluxes: Coupled Simulations and Analysis Tools
NASA Astrophysics Data System (ADS)
Gorby, M.; Schwadron, N.; Linker, J.; Caplan, R. M.; Wijaya, J.; Downs, C.; Lionello, R.
2017-12-01
Presented here is a nuts-and-bolts look at the coupled framework of Predictive Science Inc's Magnetohydrodynamics Around a Sphere (MAS) code and the Energetic Particle Radiation Environment Module (EPREM). MAS simulated coronal mass ejection output from a variety of events can be selected as the MHD input to EPREM and a variety of parameters can be set to run against: bakground seed particle spectra, mean free path, perpendicular diffusion efficiency, etc.. A standard set of visualizations are produced as well as a library of analysis tools for deeper inquiries. All steps will be covered end-to-end as well as the framework's user interface and availability.
ERIC Educational Resources Information Center
Sack, Jacqueline J.
2013-01-01
This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…
Statistical regularities in art: Relations with visual coding and perception.
Graham, Daniel J; Redies, Christoph
2010-07-21
Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.
Parkinson, Rachel H; Little, Jacelyn M; Gray, John R
2017-04-20
Neonicotinoids are known to affect insect navigation and vision, however the mechanisms of these effects are not fully understood. A visual motion sensitive neuron in the locust, the Descending Contralateral Movement Detector (DCMD), integrates visual information and is involved in eliciting escape behaviours. The DCMD receives coded input from the compound eyes and monosynaptically excites motorneurons involved in flight and jumping. We show that imidacloprid (IMD) impairs neural responses to visual stimuli at sublethal concentrations, and these effects are sustained two and twenty-four hours after treatment. Most significantly, IMD disrupted bursting, a coding property important for motion detection. Specifically, IMD reduced the DCMD peak firing rate within bursts at ecologically relevant doses of 10 ng/g (ng IMD per g locust body weight). Effects on DCMD firing translate to deficits in collision avoidance behaviours: exposure to 10 ng/g IMD attenuates escape manoeuvers while 100 ng/g IMD prevents the ability to fly and walk. We show that, at ecologically-relevant doses, IMD causes significant and lasting impairment of an important pathway involved with visual sensory coding and escape behaviours. These results show, for the first time, that a neonicotinoid pesticide directly impairs an important, taxonomically conserved, motion-sensitive visual network.
Semantic and phonological coding in poor and normal readers.
Vellutino, F R; Scanlon, D M; Spearing, D
1995-02-01
Three studies were conducted evaluating semantic and phonological coding deficits as alternative explanations of reading disability. In the first study, poor and normal readers in second and sixth grade were compared on various tests evaluating semantic development as well as on tests evaluating rapid naming and pseudoword decoding as independent measures of phonological coding ability. In a second study, the same subjects were given verbal memory and visual-verbal learning tasks using high and low meaning words as verbal stimuli and Chinese ideographs as visual stimuli. On the semantic tasks, poor readers performed below the level of the normal readers only at the sixth grade level, but, on the rapid naming and pseudoword learning tasks, they performed below the normal readers at the second as well as at the sixth grade level. On both the verbal memory and visual-verbal learning tasks, performance in poor readers approximated that of normal readers when the word stimuli were high in meaning but not when they were low in meaning. These patterns were essentially replicated in a third study that used some of the same semantic and phonological measures used in the first experiment, and verbal memory and visual-verbal learning tasks that employed word lists and visual stimuli (novel alphabetic characters) that more closely approximated those used in learning to read. It was concluded that semantic coding deficits are an unlikely cause of reading difficulties in most poor readers at the beginning stages of reading skills acquisition, but accrue as a consequence of prolonged reading difficulties in older readers. It was also concluded that phonological coding deficits are a probable cause of reading difficulties in most poor readers.
Schneider, Thomas D
2010-10-01
The relationship between information and energy is key to understanding biological systems. We can display the information in DNA sequences specifically bound by proteins by using sequence logos, and we can measure the corresponding binding energy. These can be compared by noting that one of the forms of the second law of thermodynamics defines the minimum energy dissipation required to gain one bit of information. Under the isothermal conditions that molecular machines function this is [Formula in text] joules per bit (kB is Boltzmann's constant and T is the absolute temperature). Then an efficiency of binding can be computed by dividing the information in a logo by the free energy of binding after it has been converted to bits. The isothermal efficiencies of not only genetic control systems, but also visual pigments are near 70%. From information and coding theory, the theoretical efficiency limit for bistate molecular machines is ln 2=0.6931. Evolutionary convergence to maximum efficiency is limited by the constraint that molecular states must be distinct from each other. The result indicates that natural molecular machines operate close to their information processing maximum (the channel capacity), and implies that nanotechnology can attain this goal.
Schneider, Thomas D.
2010-01-01
The relationship between information and energy is key to understanding biological systems. We can display the information in DNA sequences specifically bound by proteins by using sequence logos, and we can measure the corresponding binding energy. These can be compared by noting that one of the forms of the second law of thermodynamics defines the minimum energy dissipation required to gain one bit of information. Under the isothermal conditions that molecular machines function this is joules per bit ( is Boltzmann's constant and T is the absolute temperature). Then an efficiency of binding can be computed by dividing the information in a logo by the free energy of binding after it has been converted to bits. The isothermal efficiencies of not only genetic control systems, but also visual pigments are near 70%. From information and coding theory, the theoretical efficiency limit for bistate molecular machines is ln 2 = 0.6931. Evolutionary convergence to maximum efficiency is limited by the constraint that molecular states must be distinct from each other. The result indicates that natural molecular machines operate close to their information processing maximum (the channel capacity), and implies that nanotechnology can attain this goal. PMID:20562221
Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-01
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777
Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian
2017-01-05
The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.
Simulator platform for fast reactor operation and safety technology demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, R. B.; Park, Y. S.; Grandy, C.
2012-07-30
A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe responsemore » to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.« less
47 CFR 11.61 - Tests of EAS procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... EAS header codes, Attention Signal, Test Script and EOM code. (i) Tests in odd numbered months shall... substitute for a monthly test, activation must include transmission of the EAS header codes, Attention Signal, emergency message and EOM code and comply with the visual message requirements in § 11.51. To substitute for...
Short-term retention of pictures and words: evidence for dual coding systems.
Pellegrino, J W; Siegel, A W; Dhawan, M
1975-03-01
The recall of picture and word triads was examined in three experiments that manipulated the type of distraction in a Brown-Peterson short-term retention task. In all three experiments recall of pictures was superior to words under auditory distraction conditions. Visual distraction produced high performance levels with both types of stimuli, whereas combined auditory and visual distraction significantly reduced picture recall without further affecting word recall. The results were interpreted in terms of the dual coding hypothesis and indicated that pictures are encoded into separate visual and acoustic processing systems while words are primarily acoustically encoded.
Experimental Validation of an Ion Beam Optics Code with a Visualized Ion Thruster
NASA Astrophysics Data System (ADS)
Nakayama, Yoshinori; Nakano, Masakatsu
For validation of an ion beam optics code, the behavior of ion beam optics was experimentally observed and evaluated with a two-dimensional visualized ion thruster (VIT). Since the observed beam focus positions, sheath positions and measured ion beam currents were in good agreement with the numerical results, it was confirmed that the numerical model of this code was appropriated. In addition, it was also confirmed that the beam focus position was moved on center axis of grid hole according to the applied grid potentials, which differs from conventional understanding/assumption. The VIT operations may be useful not only for the validation of ion beam optics codes but also for the fundamental and intuitive understanding of the Child Law Sheath theory.
Goltstein, Pieter M; Montijn, Jorrit S; Pennartz, Cyriel M A
2015-01-01
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.
Goltstein, Pieter M.; Montijn, Jorrit S.; Pennartz, Cyriel M. A.
2015-01-01
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity. PMID:25706867
Mbagwu, Michael; French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J
2016-05-04
Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org.
French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J
2016-01-01
Background Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Objective Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. Methods We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Results Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Conclusions Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org. PMID:27146002
Progressive low-bitrate digital color/monochrome image coding by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Meadows, Steven
1997-10-01
Color image coding at low bit rates is an area of research that is just being addressed in recent literature since the problems of storage and transmission of color images are becoming more prominent in many applications. Current trends in image coding exploit the advantage of subband/wavelet decompositions in reducing the complexity in optimal scalar/vector quantizer (SQ/VQ) design. Compression ratios (CRs) of the order of 10:1 to 20:1 with high visual quality have been achieved by using vector quantization of subband decomposed color images in perceptually weighted color spaces. We report the performance of a recently developed adaptive vector quantizer, namely, AFLC-VQ for effective reduction in bit rates while maintaining high visual quality of reconstructed color as well as monochrome images. For 24 bit color images, excellent visual quality is maintained upto a bit rate reduction to approximately 0.48 bpp (for each color plane or monochrome 0.16 bpp, CR 50:1) by using the RGB color space. Further tuning of the AFLC-VQ, and addition of an entropy coder module after the VQ stage results in extremely low bit rates (CR 80:1) for good quality, reconstructed images. Our recent study also reveals that for similar visual quality, RGB color space requires less bits/pixel than either the YIQ, or HIS color space for storing the same information when entropy coding is applied. AFLC-VQ outperforms other standard VQ and adaptive SQ techniques in retaining visual fidelity at similar bit rate reduction.
A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes
NASA Technical Reports Server (NTRS)
Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.
1999-01-01
The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.
Holographic aids for internal combustion engine flow studies
NASA Technical Reports Server (NTRS)
Regan, C.
1984-01-01
Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.
Efficient computation paths for the systematic analysis of sensitivities
NASA Astrophysics Data System (ADS)
Greppi, Paolo; Arato, Elisabetta
2013-01-01
A systematic sensitivity analysis requires computing the model on all points of a multi-dimensional grid covering the domain of interest, defined by the ranges of variability of the inputs. The issues to efficiently perform such analyses on algebraic models are handling solution failures within and close to the feasible region and minimizing the total iteration count. Scanning the domain in the obvious order is sub-optimal in terms of total iterations and is likely to cause many solution failures. The problem of choosing a better order can be translated geometrically into finding Hamiltonian paths on certain grid graphs. This work proposes two paths, one based on a mixed-radix Gray code and the other, a quasi-spiral path, produced by a novel heuristic algorithm. Some simple, easy-to-visualize examples are presented, followed by performance results for the quasi-spiral algorithm and the practical application of the different paths in a process simulation tool.
Efficient Polar Coding of Quantum Information
NASA Astrophysics Data System (ADS)
Renes, Joseph M.; Dupuis, Frédéric; Renner, Renato
2012-08-01
Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here, we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme that asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Our codes generally require preshared entanglement between sender and receiver, but for channels with a sufficiently low noise level we demonstrate that the rate of preshared entanglement required is zero.
The role of visual imagery in the retention of information from sentences.
Drose, G S; Allen, G L
1994-01-01
We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.
Visual communication - Information and fidelity. [of images
NASA Technical Reports Server (NTRS)
Huck, Freidrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur; Reichenbach, Stephen E.
1993-01-01
This assessment of visual communication deals with image gathering, coding, and restoration as a whole rather than as separate and independent tasks. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image. Past applications of these criteria to the assessment of image coding and restoration have been limited to the link that connects the output of the image-gathering device to the input of the image-display device. By contrast, the approach presented in this paper explicitly includes the critical limiting factors that constrain image gathering and display. This extension leads to an end-to-end assessment theory of visual communication that combines optical design with digital processing.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1988-01-01
During the period December 1, 1987 through May 31, 1988, progress was made in the following areas: construction of Multi-Dimensional Bandwidth Efficient Trellis Codes with MPSK modulation; performance analysis of Bandwidth Efficient Trellis Coded Modulation schemes; and performance analysis of Bandwidth Efficient Trellis Codes on Fading Channels.
Visualising Earth's Mantle based on Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Bozdag, E.; Pugmire, D.; Lefebvre, M. P.; Hill, J.; Komatitsch, D.; Peter, D. B.; Podhorszki, N.; Tromp, J.
2017-12-01
Recent advances in 3D wave propagation solvers and high-performance computing have enabled regional and global full-waveform inversions. Interpretation of tomographic models is often done on visually. Robust and efficient visualization tools are necessary to thoroughly investigate large model files, particularly at the global scale. In collaboration with Oak Ridge National Laboratory (ORNL), we have developed effective visualization tools and used for visualization of our first-generation global model, GLAD-M15 (Bozdag et al. 2016). VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/) is used for initial exploration of the models and for extraction of seismological features. The broad capability of VisIt, and its demonstrated scalability proved valuable for experimenting with different visualization techniques, and in the creation of timely results. Utilizing VisIt's plugin-architecture, a data reader plugin was developed, which reads the ADIOS (https://www.olcf.ornl.gov/center-projects/adios/) format of our model files. Blender (https://www.blender.org) is used for the setup of lighting, materials, camera paths and rendering of geometry. Python scripting was used to control the orchestration of different geometries, as well as camera animation for 3D movies. While we continue producing 3D contour plots and movies for various seismic parameters to better visualize plume- and slab-like features as well as anisotropy throughout the mantle, our aim is to make visualization an integral part of our global adjoint tomography workflow to routinely produce various 2D cross-sections to facilitate examination of our models after each iteration. This will ultimately form the basis for use of pattern recognition techniques in our investigations. Simulations for global adjoint tomography are performed on ORNL's Titan system and visualization is done in parallel on ORNL's post-processing cluster Rhea.
Młynarski, Wiktor
2014-01-01
To date a number of studies have shown that receptive field shapes of early sensory neurons can be reproduced by optimizing coding efficiency of natural stimulus ensembles. A still unresolved question is whether the efficient coding hypothesis explains formation of neurons which explicitly represent environmental features of different functional importance. This paper proposes that the spatial selectivity of higher auditory neurons emerges as a direct consequence of learning efficient codes for natural binaural sounds. Firstly, it is demonstrated that a linear efficient coding transform—Independent Component Analysis (ICA) trained on spectrograms of naturalistic simulated binaural sounds extracts spatial information present in the signal. A simple hierarchical ICA extension allowing for decoding of sound position is proposed. Furthermore, it is shown that units revealing spatial selectivity can be learned from a binaural recording of a natural auditory scene. In both cases a relatively small subpopulation of learned spectrogram features suffices to perform accurate sound localization. Representation of the auditory space is therefore learned in a purely unsupervised way by maximizing the coding efficiency and without any task-specific constraints. This results imply that efficient coding is a useful strategy for learning structures which allow for making behaviorally vital inferences about the environment. PMID:24639644
A reduced complexity highly power/bandwidth efficient coded FQPSK system with iterative decoding
NASA Technical Reports Server (NTRS)
Simon, M. K.; Divsalar, D.
2001-01-01
Based on a representation of FQPSK as a trellis-coded modulation, this paper investigates the potential improvement in power efficiency obtained from the application of simple outer codes to form a concatenated coding arrangement with iterative decoding.
Learning Rotation-Invariant Local Binary Descriptor.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a rotation-invariant local binary descriptor (RI-LBD) learning method for visual recognition. Compared with hand-crafted local binary descriptors, such as local binary pattern and its variants, which require strong prior knowledge, local binary feature learning methods are more efficient and data-adaptive. Unlike existing learning-based local binary descriptors, such as compact binary face descriptor and simultaneous local binary feature learning and encoding, which are susceptible to rotations, our RI-LBD first categorizes each local patch into a rotational binary pattern (RBP), and then jointly learns the orientation for each pattern and the projection matrix to obtain RI-LBDs. As all the rotation variants of a patch belong to the same RBP, they are rotated into the same orientation and projected into the same binary descriptor. Then, we construct a codebook by a clustering method on the learned binary codes, and obtain a histogram feature for each image as the final representation. In order to exploit higher order statistical information, we extend our RI-LBD to the triple rotation-invariant co-occurrence local binary descriptor (TRICo-LBD) learning method, which learns a triple co-occurrence binary code for each local patch. Extensive experimental results on four different visual recognition tasks, including image patch matching, texture classification, face recognition, and scene classification, show that our RI-LBD and TRICo-LBD outperform most existing local descriptors.
Kim, Kyung Lock; Park, Kyeng Min; Murray, James; Kim, Kimoon; Ryu, Sung Ho
2018-05-23
Combinatorial post-translational modifications (PTMs), which can serve as dynamic "molecular barcodes", have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
2018-01-01
Combinatorial post-translational modifications (PTMs), which can serve as dynamic “molecular barcodes”, have been proposed to regulate distinct protein functions. However, studies of combinatorial PTMs on single protein molecules have been hindered by a lack of suitable analytical methods. Here, we describe erasable single-molecule blotting (eSiMBlot) for combinatorial PTM profiling. This assay is performed in a highly multiplexed manner and leverages the benefits of covalent protein immobilization, cyclic probing with different antibodies, and single molecule fluorescence imaging. Especially, facile and efficient covalent immobilization on a surface using Cu-free click chemistry permits multiple rounds (>10) of antibody erasing/reprobing without loss of antigenicity. Moreover, cumulative detection of coregistered multiple data sets for immobilized single-epitope molecules, such as HA peptide, can be used to increase the antibody detection rate. Finally, eSiMBlot enables direct visualization and quantitative profiling of combinatorial PTM codes at the single-molecule level, as we demonstrate by revealing the novel phospho-codes of ligand-induced epidermal growth factor receptor. Thus, eSiMBlot provides an unprecedentedly simple, rapid, and versatile platform for analyzing the vast number of combinatorial PTMs in biological pathways.
Influence of auditory and audiovisual stimuli on the right-left prevalence effect.
Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim
2014-01-01
When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.
Least reliable bits coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Budinger, James; Wagner, Paul
1992-01-01
LRBC, a bandwidth efficient multilevel/multistage block-coded modulation technique, is analyzed. LRBC uses simple multilevel component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Soft-decision multistage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Analytical expressions and tight performance bounds are used to show that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of BPSK. The relative simplicity of Galois field algebra vs the Viterbi algorithm and the availability of high-speed commercial VLSI for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Cooperative MIMO communication at wireless sensor network: an error correcting code approach.
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error p(b). It is observed that C-MIMO performs more efficiently when the targeted p(b) is smaller. Also the lower encoding rate for LDPC code offers better error characteristics.
Cooperative MIMO Communication at Wireless Sensor Network: An Error Correcting Code Approach
Islam, Mohammad Rakibul; Han, Young Shin
2011-01-01
Cooperative communication in wireless sensor network (WSN) explores the energy efficient wireless communication schemes between multiple sensors and data gathering node (DGN) by exploiting multiple input multiple output (MIMO) and multiple input single output (MISO) configurations. In this paper, an energy efficient cooperative MIMO (C-MIMO) technique is proposed where low density parity check (LDPC) code is used as an error correcting code. The rate of LDPC code is varied by varying the length of message and parity bits. Simulation results show that the cooperative communication scheme outperforms SISO scheme in the presence of LDPC code. LDPC codes with different code rates are compared using bit error rate (BER) analysis. BER is also analyzed under different Nakagami fading scenario. Energy efficiencies are compared for different targeted probability of bit error pb. It is observed that C-MIMO performs more efficiently when the targeted pb is smaller. Also the lower encoding rate for LDPC code offers better error characteristics. PMID:22163732
Functional Contour-following via Haptic Perception and Reinforcement Learning.
Hellman, Randall B; Tekin, Cem; van der Schaar, Mihaela; Santos, Veronica J
2018-01-01
Many tasks involve the fine manipulation of objects despite limited visual feedback. In such scenarios, tactile and proprioceptive feedback can be leveraged for task completion. We present an approach for real-time haptic perception and decision-making for a haptics-driven, functional contour-following task: the closure of a ziplock bag. This task is challenging for robots because the bag is deformable, transparent, and visually occluded by artificial fingertip sensors that are also compliant. A deep neural net classifier was trained to estimate the state of a zipper within a robot's pinch grasp. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards by balancing exploration versus exploitation of the state-action space. The C-MAB learner outperformed a benchmark Q-learner by more efficiently exploring the state-action space while learning a hard-to-code task. The learned C-MAB policy was tested with novel ziplock bag scenarios and contours (wire, rope). Importantly, this work contributes to the development of reinforcement learning approaches that account for limited resources such as hardware life and researcher time. As robots are used to perform complex, physically interactive tasks in unstructured or unmodeled environments, it becomes important to develop methods that enable efficient and effective learning with physical testbeds.
Thaler, Lore; Goodale, Melvyn A.
2011-01-01
Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements. PMID:21941474
Remembering Plurals: Unit of Coding and Form of Coding during Serial Recall.
ERIC Educational Resources Information Center
Van Der Molen, Hugo; Morton, John
1979-01-01
Adult females recalled lists of six words, including some plural nouns, presented visually in sequence. A frequent error was to detach the plural from its root. This supports a morpheme-based as opposed to a unitary word code. Evidence for a primarily phonological coding of the plural morpheme was obtained. (Author/RD)
ALPHACAL: A new user-friendly tool for the calibration of alpha-particle sources.
Timón, A Fernández; Vargas, M Jurado; Gallardo, P Álvarez; Sánchez-Oro, J; Peralta, L
2018-05-01
In this work, we present and describe the program ALPHACAL, specifically developed for the calibration of alpha-particle sources. It is therefore more user-friendly and less time-consuming than multipurpose codes developed for a wide range of applications. The program is based on the recently developed code AlfaMC, which simulates specifically the transport of alpha particles. Both cylindrical and point sources mounted on the surface of polished backings can be simulated, as is the convention in experimental measurements of alpha-particle sources. In addition to the efficiency calculation and determination of the backscattering coefficient, some additional tools are available to the user, like the visualization of energy spectrum, use of energy cut-off or low-energy tail corrections. ALPHACAL has been implemented in C++ language using QT library, so it is available for Windows, MacOs and Linux platforms. It is free and can be provided under request to the authors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zheng, Lei; Nikolaev, Anton; Wardill, Trevor J; O'Kane, Cahir J; de Polavieja, Gonzalo G; Juusola, Mikko
2009-01-01
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1-R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).
Wardill, Trevor J.; O'Kane, Cahir J.; de Polavieja, Gonzalo G.; Juusola, Mikko
2009-01-01
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II). PMID:19180196
System and method for creating expert systems
NASA Technical Reports Server (NTRS)
Hughes, Peter M. (Inventor); Luczak, Edward C. (Inventor)
1998-01-01
A system and method provides for the creation of a highly graphical expert system without the need for programming in code. An expert system is created by initially building a data interface, defining appropriate Mission, User-Defined, Inferred, and externally-generated GenSAA (EGG) data variables whose data values will be updated and input into the expert system. Next, rules of the expert system are created by building appropriate conditions of the rules which must be satisfied and then by building appropriate actions of rules which are to be executed upon corresponding conditions being satisfied. Finally, an appropriate user interface is built which can be highly graphical in nature and which can include appropriate message display and/or modification of display characteristics of a graphical display object, to visually alert a user of the expert system of varying data values, upon conditions of a created rule being satisfied. The data interface building, rule building, and user interface building are done in an efficient manner and can be created without the need for programming in code.
Orthographic Coding: Brain Activation for Letters, Symbols, and Digits.
Carreiras, Manuel; Quiñones, Ileana; Hernández-Cabrera, Juan Andrés; Duñabeitia, Jon Andoni
2015-12-01
The present experiment investigates the input coding mechanisms of 3 common printed characters: letters, numbers, and symbols. Despite research in this area, it is yet unclear whether the identity of these 3 elements is processed through the same or different brain pathways. In addition, some computational models propose that the position-in-string coding of these elements responds to general flexible mechanisms of the visual system that are not character-specific, whereas others suggest that the position coding of letters responds to specific processes that are different from those that guide the position-in-string assignment of other types of visual objects. Here, in an fMRI study, we manipulated character position and character identity through the transposition or substitution of 2 internal elements within strings of 4 elements. Participants were presented with 2 consecutive visual strings and asked to decide whether they were the same or different. The results showed: 1) that some brain areas responded more to letters than to numbers and vice versa, suggesting that processing may follow different brain pathways; 2) that the left parietal cortex is involved in letter identity, and critically in letter position coding, specifically contributing to the early stages of the reading process; and that 3) a stimulus-specific mechanism for letter position coding is operating during orthographic processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
It takes two-coincidence coding within the dual olfactory pathway of the honeybee.
Brill, Martin F; Meyer, Anneke; Rössler, Wolfgang
2015-01-01
To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).
NASA Technical Reports Server (NTRS)
Eckstein, Miguel P.; Abbey, Craig K.; Pham, Binh T.; Shimozaki, Steven S.
2004-01-01
Human performance in visual detection, discrimination, identification, and search tasks typically improves with practice. Psychophysical studies suggest that perceptual learning is mediated by an enhancement in the coding of the signal, and physiological studies suggest that it might be related to the plasticity in the weighting or selection of sensory units coding task relevant information (learning through attention optimization). We propose an experimental paradigm (optimal perceptual learning paradigm) to systematically study the dynamics of perceptual learning in humans by allowing comparisons to that of an optimal Bayesian algorithm and a number of suboptimal learning models. We measured improvement in human localization (eight-alternative forced-choice with feedback) performance of a target randomly sampled from four elongated Gaussian targets with different orientations and polarities and kept as a target for a block of four trials. The results suggest that the human perceptual learning can occur within a lapse of four trials (<1 min) but that human learning is slower and incomplete with respect to the optimal algorithm (23.3% reduction in human efficiency from the 1st-to-4th learning trials). The greatest improvement in human performance, occurring from the 1st-to-2nd learning trial, was also present in the optimal observer, and, thus reflects a property inherent to the visual task and not a property particular to the human perceptual learning mechanism. One notable source of human inefficiency is that, unlike the ideal observer, human learning relies more heavily on previous decisions than on the provided feedback, resulting in no human learning on trials following a previous incorrect localization decision. Finally, the proposed theory and paradigm provide a flexible framework for future studies to evaluate the optimality of human learning of other visual cues and/or sensory modalities.
Letter position coding across modalities: the case of Braille readers.
Perea, Manuel; García-Chamorro, Cristina; Martín-Suesta, Miguel; Gómez, Pablo
2012-01-01
The question of how the brain encodes letter position in written words has attracted increasing attention in recent years. A number of models have recently been proposed to accommodate the fact that transposed-letter stimuli like jugde or caniso are perceptually very close to their base words. Here we examined how letter position coding is attained in the tactile modality via Braille reading. The idea is that Braille word recognition may provide more serial processing than the visual modality, and this may produce differences in the input coding schemes employed to encode letters in written words. To that end, we conducted a lexical decision experiment with adult Braille readers in which the pseudowords were created by transposing/replacing two letters. We found a word-frequency effect for words. In addition, unlike parallel experiments in the visual modality, we failed to find any clear signs of transposed-letter confusability effects. This dissociation highlights the differences between modalities. The present data argue against models of letter position coding that assume that transposed-letter effects (in the visual modality) occur at a relatively late, abstract locus.
Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.
Li, Yun; Sjostrom, Marten; Olsson, Roger; Jennehag, Ulf
2016-01-01
One of the light field capturing techniques is the focused plenoptic capturing. By placing a microlens array in front of the photosensor, the focused plenoptic cameras capture both spatial and angular information of a scene in each microlens image and across microlens images. The capturing results in a significant amount of redundant information, and the captured image is usually of a large resolution. A coding scheme that removes the redundancy before coding can be of advantage for efficient compression, transmission, and rendering. In this paper, we propose a lossy coding scheme to efficiently represent plenoptic images. The format contains a sparse image set and its associated disparities. The reconstruction is performed by disparity-based interpolation and inpainting, and the reconstructed image is later employed as a prediction reference for the coding of the full plenoptic image. As an outcome of the representation, the proposed scheme inherits a scalable structure with three layers. The results show that plenoptic images are compressed efficiently with over 60 percent bit rate reduction compared with High Efficiency Video Coding intra coding, and with over 20 percent compared with an High Efficiency Video Coding block copying mode.
Overcoming Codes and Standards Barriers to Innovations in Building Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Pamala C.; Gilbride, Theresa L.
2015-02-15
In this journal article, the authors discuss approaches to overcoming building code barriers to energy-efficiency innovations in home construction. Building codes have been a highly motivational force for increasing the energy efficiency of new homes in the United States in recent years. But as quickly as the codes seem to be changing, new products are coming to the market at an even more rapid pace, sometimes offering approaches and construction techniques unthought of when the current code was first proposed, which might have been several years before its adoption by various jurisdictions. Due to this delay, the codes themselves canmore » become barriers to innovations that might otherwise be helping to further increase the efficiency, comfort, health or durability of new homes. . The U.S. Department of Energy’s Building America, a program dedicated to improving the energy efficiency of America’s housing stock through research and education, is working with the U.S. housing industry through its research teams to help builders identify and remove code barriers to innovation in the home construction industry. The article addresses several approaches that builders use to achieve approval for innovative building techniques when code barriers appear to exist.« less
Novel approach to multispectral image compression on the Internet
NASA Astrophysics Data System (ADS)
Zhu, Yanqiu; Jin, Jesse S.
2000-10-01
Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.
Directional virtual backbone based data aggregation scheme for Wireless Visual Sensor Networks.
Zhang, Jing; Liu, Shi-Jian; Tsai, Pei-Wei; Zou, Fu-Min; Ji, Xiao-Rong
2018-01-01
Data gathering is a fundamental task in Wireless Visual Sensor Networks (WVSNs). Features of directional antennas and the visual data make WVSNs more complex than the conventional Wireless Sensor Network (WSN). The virtual backbone is a technique, which is capable of constructing clusters. The version associating with the aggregation operation is also referred to as the virtual backbone tree. In most of the existing literature, the main focus is on the efficiency brought by the construction of clusters that the existing methods neglect local-balance problems in general. To fill up this gap, Directional Virtual Backbone based Data Aggregation Scheme (DVBDAS) for the WVSNs is proposed in this paper. In addition, a measurement called the energy consumption density is proposed for evaluating the adequacy of results in the cluster-based construction problems. Moreover, the directional virtual backbone construction scheme is proposed by considering the local-balanced factor. Furthermore, the associated network coding mechanism is utilized to construct DVBDAS. Finally, both the theoretical analysis of the proposed DVBDAS and the simulations are given for evaluating the performance. The experimental results prove that the proposed DVBDAS achieves higher performance in terms of both the energy preservation and the network lifetime extension than the existing methods.
An Efficient Variable Length Coding Scheme for an IID Source
NASA Technical Reports Server (NTRS)
Cheung, K. -M.
1995-01-01
A scheme is examined for using two alternating Huffman codes to encode a discrete independent and identically distributed source with a dominant symbol. This combined strategy, or alternating runlength Huffman (ARH) coding, was found to be more efficient than ordinary coding in certain circumstances.
Stimulus information contaminates summation tests of independent neural representations of features
NASA Technical Reports Server (NTRS)
Shimozaki, Steven S.; Eckstein, Miguel P.; Abbey, Craig K.
2002-01-01
Many models of visual processing assume that visual information is analyzed into separable and independent neural codes, or features. A common psychophysical test of independent features is known as a summation study, which measures performance in a detection, discrimination, or visual search task as the number of proposed features increases. Improvement in human performance with increasing number of available features is typically attributed to the summation, or combination, of information across independent neural coding of the features. In many instances, however, increasing the number of available features also increases the stimulus information in the task, as assessed by an optimal observer that does not include the independent neural codes. In a visual search task with spatial frequency and orientation as the component features, a particular set of stimuli were chosen so that all searches had equivalent stimulus information, regardless of the number of features. In this case, human performance did not improve with increasing number of features, implying that the improvement observed with additional features may be due to stimulus information and not the combination across independent features.
Coding For Compression Of Low-Entropy Data
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu
1994-01-01
Improved method of encoding digital data provides for efficient lossless compression of partially or even mostly redundant data from low-information-content source. Method of coding implemented in relatively simple, high-speed arithmetic and logic circuits. Also increases coding efficiency beyond that of established Huffman coding method in that average number of bits per code symbol can be less than 1, which is the lower bound for Huffman code.
Parallelization of sequential Gaussian, indicator and direct simulation algorithms
NASA Astrophysics Data System (ADS)
Nunes, Ruben; Almeida, José A.
2010-08-01
Improving the performance and robustness of algorithms on new high-performance parallel computing architectures is a key issue in efficiently performing 2D and 3D studies with large amount of data. In geostatistics, sequential simulation algorithms are good candidates for parallelization. When compared with other computational applications in geosciences (such as fluid flow simulators), sequential simulation software is not extremely computationally intensive, but parallelization can make it more efficient and creates alternatives for its integration in inverse modelling approaches. This paper describes the implementation and benchmarking of a parallel version of the three classic sequential simulation algorithms: direct sequential simulation (DSS), sequential indicator simulation (SIS) and sequential Gaussian simulation (SGS). For this purpose, the source used was GSLIB, but the entire code was extensively modified to take into account the parallelization approach and was also rewritten in the C programming language. The paper also explains in detail the parallelization strategy and the main modifications. Regarding the integration of secondary information, the DSS algorithm is able to perform simple kriging with local means, kriging with an external drift and collocated cokriging with both local and global correlations. SIS includes a local correction of probabilities. Finally, a brief comparison is presented of simulation results using one, two and four processors. All performance tests were carried out on 2D soil data samples. The source code is completely open source and easy to read. It should be noted that the code is only fully compatible with Microsoft Visual C and should be adapted for other systems/compilers.
Schindler, Andreas; Bartels, Andreas
2017-05-01
Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Color-coded duplex sonography for diagnosis of testicular torsion.
Zoeller, G; Ringert, R H
1991-11-01
By color-coded duplex sonography moving structures are visualized as red or blue colors within a normal gray-scale B-mode ultrasound image. Thus, blood flow even within small vessels can be visualized clearly. Color-coded duplex sonographic examination was performed in 11 patients who presented with scrotal pain. This method proved to be reliable to differentiate between testicular torsion and testicular inflammation. By clearly demonstrating a lack of intratesticular blood flow in testicular torsion, while avoiding flow in scrotal skin vessels being misinterpreted as intratesticular blood flow, this method significantly decreases the number of patients in whom surgical evaluation is necessary to exclude testicular torsion.
High-Productivity Computing in Computational Physics Education
NASA Astrophysics Data System (ADS)
Tel-Zur, Guy
2011-03-01
We describe the development of a new course in Computational Physics at the Ben-Gurion University. This elective course for 3rd year undergraduates and MSc. students is being taught during one semester. Computational Physics is by now well accepted as the Third Pillar of Science. This paper's claim is that modern Computational Physics education should deal also with High-Productivity Computing. The traditional approach of teaching Computational Physics emphasizes ``Correctness'' and then ``Accuracy'' and we add also ``Performance.'' Along with topics in Mathematical Methods and case studies in Physics the course deals a significant amount of time with ``Mini-Courses'' in topics such as: High-Throughput Computing - Condor, Parallel Programming - MPI and OpenMP, How to build a Beowulf, Visualization and Grid and Cloud Computing. The course does not intend to teach neither new physics nor new mathematics but it is focused on an integrated approach for solving problems starting from the physics problem, the corresponding mathematical solution, the numerical scheme, writing an efficient computer code and finally analysis and visualization.
An interactive environment for the analysis of large Earth observation and model data sets
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.
1994-01-01
Envision is an interactive environment that provides researchers in the earth sciences convenient ways to manage, browse, and visualize large observed or model data sets. Its main features are support for the netCDF and HDF file formats, an easy to use X/Motif user interface, a client-server configuration, and portability to many UNIX workstations. The Envision package also provides new ways to view and change metadata in a set of data files. It permits a scientist to conveniently and efficiently manage large data sets consisting of many data files. It also provides links to popular visualization tools so that data can be quickly browsed. Envision is a public domain package, freely available to the scientific community. Envision software (binaries and source code) and documentation can be obtained from either of these servers: ftp://vista.atmos.uiuc.edu/pub/envision/ and ftp://csrp.tamu.edu/pub/envision/. Detailed descriptions of Envision capabilities and operations can be found in the User's Guide and Reference Manuals distributed with Envision software.
Unsupervised Deep Hashing With Pseudo Labels for Scalable Image Retrieval.
Zhang, Haofeng; Liu, Li; Long, Yang; Shao, Ling
2018-04-01
In order to achieve efficient similarity searching, hash functions are designed to encode images into low-dimensional binary codes with the constraint that similar features will have a short distance in the projected Hamming space. Recently, deep learning-based methods have become more popular, and outperform traditional non-deep methods. However, without label information, most state-of-the-art unsupervised deep hashing (DH) algorithms suffer from severe performance degradation for unsupervised scenarios. One of the main reasons is that the ad-hoc encoding process cannot properly capture the visual feature distribution. In this paper, we propose a novel unsupervised framework that has two main contributions: 1) we convert the unsupervised DH model into supervised by discovering pseudo labels; 2) the framework unifies likelihood maximization, mutual information maximization, and quantization error minimization so that the pseudo labels can maximumly preserve the distribution of visual features. Extensive experiments on three popular data sets demonstrate the advantages of the proposed method, which leads to significant performance improvement over the state-of-the-art unsupervised hashing algorithms.
Visual Computing Environment Workshop
NASA Technical Reports Server (NTRS)
Lawrence, Charles (Compiler)
1998-01-01
The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.
Auditory presentation and synchronization in Adobe Flash and HTML5/JavaScript Web experiments.
Reimers, Stian; Stewart, Neil
2016-09-01
Substantial recent research has examined the accuracy of presentation durations and response time measurements for visually presented stimuli in Web-based experiments, with a general conclusion that accuracy is acceptable for most kinds of experiments. However, many areas of behavioral research use auditory stimuli instead of, or in addition to, visual stimuli. Much less is known about auditory accuracy using standard Web-based testing procedures. We used a millisecond-accurate Black Box Toolkit to measure the actual durations of auditory stimuli and the synchronization of auditory and visual presentation onsets. We examined the distribution of timings for 100 presentations of auditory and visual stimuli across two computers with difference specs, three commonly used browsers, and code written in either Adobe Flash or JavaScript. We also examined different coding options for attempting to synchronize the auditory and visual onsets. Overall, we found that auditory durations were very consistent, but that the lags between visual and auditory onsets varied substantially across browsers and computer systems.
DCT based interpolation filter for motion compensation in HEVC
NASA Astrophysics Data System (ADS)
Alshin, Alexander; Alshina, Elena; Park, Jeong Hoon; Han, Woo-Jin
2012-10-01
High Efficiency Video Coding (HEVC) draft standard has a challenging goal to improve coding efficiency twice compare to H.264/AVC. Many aspects of the traditional hybrid coding framework were improved during new standard development. Motion compensated prediction, in particular the interpolation filter, is one area that was improved significantly over H.264/AVC. This paper presents the details of the interpolation filter design of the draft HEVC standard. The coding efficiency improvements over H.264/AVC interpolation filter is studied and experimental results are presented, which show a 4.0% average bitrate reduction for Luma component and 11.3% average bitrate reduction for Chroma component. The coding efficiency gains are significant for some video sequences and can reach up 21.7%.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1989-01-01
The performance of bandwidth efficient trellis codes on channels with phase jitter, or those disturbed by jamming and impulse noise is analyzed. An heuristic algorithm for construction of bandwidth efficient trellis codes with any constraint length up to about 30, any signal constellation, and any code rate was developed. Construction of good distance profile trellis codes for sequential decoding and comparison of random coding bounds of trellis coded modulation schemes are also discussed.
Pellicano, Antonello; Koch, Iring; Binkofski, Ferdinand
2017-09-01
An increasing number of studies have shown a close link between perception and action, which is supposed to be responsible for the automatic activation of actions compatible with objects' properties, such as the orientation of their graspable parts. It has been observed that left and right hand responses to objects (e.g., cups) are faster and more accurate if the handle orientation corresponds to the response location than when it does not. Two alternative explanations have been proposed for this handle-to-hand correspondence effect : location coding and affordance activation. The aim of the present study was to provide disambiguating evidence on the origin of this effect by employing object sets for which the visually salient portion was separated from, and opposite to the graspable 1, and vice versa. Seven experiments were conducted employing both single objects and object pairs as visual stimuli to enhance the contextual information about objects' graspability and usability. Notwithstanding these manipulations intended to favor affordance activation, results fully supported the location-coding account displaying significant Simon-like effects that involved the orientation of the visually salient portion of the object stimulus and the location of the response. Crucially, we provided evidence of Simon-like effects based on higher-level cognitive, iconic representations of action directions rather than based on lower-level spatial coding of the pure position of protruding portions of the visual stimuli. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
You prime what you code: The fAIM model of priming of pop-out
Meeter, Martijn
2017-01-01
Our visual brain makes use of recent experience to interact with the visual world, and efficiently select relevant information. This is exemplified by speeded search when target- and distractor features repeat across trials versus when they switch, a phenomenon referred to as intertrial priming. Here, we present fAIM, a computational model that demonstrates how priming can be explained by a simple feature-weighting mechanism integrated into an established model of bottom-up vision. In fAIM, such modulations in feature gains are widespread and not just restricted to one or a few features. Consequentially, priming effects result from the overall tuning of visual features to the task at hand. Such tuning allows the model to reproduce priming for different types of stimuli, including for typical stimulus dimensions such as ‘color’ and for less obvious dimensions such as ‘spikiness’ of shapes. Moreover, the model explains some puzzling findings from the literature: it shows how priming can be found for target-distractor stimulus relations rather than for their absolute stimulus values per se, without an explicit representation of relations. Similarly, it simulates effects that have been taken to reflect a modulation of priming by an observers’ goals—without any representation of goals in the model. We conclude that priming is best considered as a consequence of a general adaptation of the brain to visual input, and not as a peculiarity of visual search. PMID:29166386
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research. PMID:29599739
Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.
Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta
2018-01-01
The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.
Perea, Manuel; Jiménez, María; Martín-Suesta, Miguel; Gómez, Pablo
2015-04-01
This article explores how letter position coding is attained during braille reading and its implications for models of word recognition. When text is presented visually, the reading process easily adjusts to the jumbling of some letters (jugde-judge), with a small cost in reading speed. Two explanations have been proposed: One relies on a general mechanism of perceptual uncertainty at the visual level, and the other focuses on the activation of an abstract level of representation (i.e., bigrams) that is shared by all orthographic codes. Thus, these explanations make differential predictions about reading in a tactile modality. In the present study, congenitally blind readers read sentences presented on a braille display that tracked the finger position. The sentences either were intact or involved letter transpositions. A parallel experiment was conducted in the visual modality. Results revealed a substantially greater reading cost for the sentences with transposed-letter words in braille readers. In contrast with the findings with sighted readers, in which there is a cost of transpositions in the external (initial and final) letters, the reading cost in braille readers occurs serially, with a large cost for initial letter transpositions. Thus, these data suggest that the letter-position-related effects in visual word recognition are due to the characteristics of the visual stream.
Modeling Efficient Serial Visual Search
2012-08-01
parafovea size) to explore the parameter space associated with serial search efficiency. Visual search as a paradigm has been studied meticulously for...continues (Over, Hooge , Vlaskamp, & Erkelens, 2007). Over et al. (2007) found that participants initially attended to general properties of the search environ...the efficiency of human serial visual search. There were three parameters that were manipulated in the modeling of the visual search process in this
ERIC Educational Resources Information Center
Arend, Anna M.; Zimmer, Hubert D.
2012-01-01
In this training study, we aimed to selectively train participants' filtering mechanisms to enhance visual working memory (WM) efficiency. The highly restricted nature of visual WM capacity renders efficient filtering mechanisms crucial for its successful functioning. Filtering efficiency in visual WM can be measured via the lateralized change…
Jaitly, Navdeep; Mayampurath, Anoop; Littlefield, Kyle; Adkins, Joshua N; Anderson, Gordon A; Smith, Richard D
2009-01-01
Background Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS)-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. Results With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC) elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to identify and quantify peptides in the biological sample. Conclusion Decon2LS is an efficient software package for discovering and visualizing features in proteomics studies that require automated interpretation of mass spectra. Besides being easy to use, fast, and reliable, Decon2LS is also open-source, which allows developers in the proteomics and bioinformatics communities to reuse and refine the algorithms to meet individual needs. Decon2LS source code, installer, and tutorials may be downloaded free of charge at . PMID:19292916
Jaitly, Navdeep; Mayampurath, Anoop; Littlefield, Kyle; Adkins, Joshua N; Anderson, Gordon A; Smith, Richard D
2009-03-17
Data generated from liquid chromatography coupled to high-resolution mass spectrometry (LC-MS)-based studies of a biological sample can contain large amounts of biologically significant information in the form of proteins, peptides, and metabolites. Interpreting this data involves inferring the masses and abundances of biomolecules injected into the instrument. Because of the inherent complexity of mass spectral patterns produced by these biomolecules, the analysis is significantly enhanced by using visualization capabilities to inspect and confirm results. In this paper we describe Decon2LS, an open-source software package for automated processing and visualization of high-resolution MS data. Drawing extensively on algorithms developed over the last ten years for ICR2LS, Decon2LS packages the algorithms as a rich set of modular, reusable processing classes for performing diverse functions such as reading raw data, routine peak finding, theoretical isotope distribution modelling, and deisotoping. Because the source code is openly available, these functionalities can now be used to build derivative applications in relatively fast manner. In addition, Decon2LS provides an extensive set of visualization tools, such as high performance chart controls. With a variety of options that include peak processing, deisotoping, isotope composition, etc, Decon2LS supports processing of multiple raw data formats. Deisotoping can be performed on an individual scan, an individual dataset, or on multiple datasets using batch processing. Other processing options include creating a two dimensional view of mass and liquid chromatography (LC) elution time features, generating spectrum files for tandem MS data, creating total intensity chromatograms, and visualizing theoretical peptide profiles. Application of Decon2LS to deisotope different datasets obtained across different instruments yielded a high number of features that can be used to identify and quantify peptides in the biological sample. Decon2LS is an efficient software package for discovering and visualizing features in proteomics studies that require automated interpretation of mass spectra. Besides being easy to use, fast, and reliable, Decon2LS is also open-source, which allows developers in the proteomics and bioinformatics communities to reuse and refine the algorithms to meet individual needs.Decon2LS source code, installer, and tutorials may be downloaded free of charge at http://http:/ncrr.pnl.gov/software/.
CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method.
Saegusa, Jun
2008-01-01
The representative point method for the efficiency calibration of volume samples has been previously proposed. For smoothly implementing the method, a calculation code named CREPT-MCNP has been developed. The code estimates the position of a representative point which is intrinsic to each shape of volume sample. The self-absorption correction factors are also given to make correction on the efficiencies measured at the representative point with a standard point source. Features of the CREPT-MCNP code are presented.
Least Reliable Bits Coding (LRBC) for high data rate satellite communications
NASA Technical Reports Server (NTRS)
Vanderaar, Mark; Wagner, Paul; Budinger, James
1992-01-01
An analysis and discussion of a bandwidth efficient multi-level/multi-stage block coded modulation technique called Least Reliable Bits Coding (LRBC) is presented. LRBC uses simple multi-level component codes that provide increased error protection on increasingly unreliable modulated bits in order to maintain an overall high code rate that increases spectral efficiency. Further, soft-decision multi-stage decoding is used to make decisions on unprotected bits through corrections made on more protected bits. Using analytical expressions and tight performance bounds it is shown that LRBC can achieve increased spectral efficiency and maintain equivalent or better power efficiency compared to that of Binary Phase Shift Keying (BPSK). Bit error rates (BER) vs. channel bit energy with Additive White Gaussian Noise (AWGN) are given for a set of LRB Reed-Solomon (RS) encoded 8PSK modulation formats with an ensemble rate of 8/9. All formats exhibit a spectral efficiency of 2.67 = (log2(8))(8/9) information bps/Hz. Bit by bit coded and uncoded error probabilities with soft-decision information are determined. These are traded with with code rate to determine parameters that achieve good performance. The relative simplicity of Galois field algebra vs. the Viterbi algorithm and the availability of high speed commercial Very Large Scale Integration (VLSI) for block codes indicates that LRBC using block codes is a desirable method for high data rate implementations.
Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.
Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C
2014-02-01
It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.
Concatenated Coding Using Trellis-Coded Modulation
NASA Technical Reports Server (NTRS)
Thompson, Michael W.
1997-01-01
In the late seventies and early eighties a technique known as Trellis Coded Modulation (TCM) was developed for providing spectrally efficient error correction coding. Instead of adding redundant information in the form of parity bits, redundancy is added at the modulation stage thereby increasing bandwidth efficiency. A digital communications system can be designed to use bandwidth-efficient multilevel/phase modulation such as Amplitude Shift Keying (ASK), Phase Shift Keying (PSK), Differential Phase Shift Keying (DPSK) or Quadrature Amplitude Modulation (QAM). Performance gain can be achieved by increasing the number of signals over the corresponding uncoded system to compensate for the redundancy introduced by the code. A considerable amount of research and development has been devoted toward developing good TCM codes for severely bandlimited applications. More recently, the use of TCM for satellite and deep space communications applications has received increased attention. This report describes the general approach of using a concatenated coding scheme that features TCM and RS coding. Results have indicated that substantial (6-10 dB) performance gains can be achieved with this approach with comparatively little bandwidth expansion. Since all of the bandwidth expansion is due to the RS code we see that TCM based concatenated coding results in roughly 10-50% bandwidth expansion compared to 70-150% expansion for similar concatenated scheme which use convolution code. We stress that combined coding and modulation optimization is important for achieving performance gains while maintaining spectral efficiency.
Bandwidth efficient CCSDS coding standard proposals
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Perez, Lance C.; Wang, Fu-Quan
1992-01-01
The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations.
Practical low-cost visual communication using binary images for deaf sign language.
Manoranjan, M D; Robinson, J A
2000-03-01
Deaf sign language transmitted by video requires a temporal resolution of 8 to 10 frames/s for effective communication. Conventional videoconferencing applications, when operated over low bandwidth telephone lines, provide very low temporal resolution of pictures, of the order of less than a frame per second, resulting in jerky movement of objects. This paper presents a practical solution for sign language communication, offering adequate temporal resolution of images using moving binary sketches or cartoons, implemented on standard personal computer hardware with low-cost cameras and communicating over telephone lines. To extract cartoon points an efficient feature extraction algorithm adaptive to the global statistics of the image is proposed. To improve the subjective quality of the binary images, irreversible preprocessing techniques, such as isolated point removal and predictive filtering, are used. A simple, efficient and fast recursive temporal prefiltering scheme, using histograms of successive frames, reduces the additive and multiplicative noise from low-cost cameras. An efficient three-dimensional (3-D) compression scheme codes the binary sketches. Subjective tests performed on the system confirm that it can be used for sign language communication over telephone lines.
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sandia Engineering Analysis Code Access System v. 2.0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjaardema, Gregory D.
The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.
NASA Technical Reports Server (NTRS)
Desautel, Richard
1993-01-01
The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).
Optimized atom position and coefficient coding for matching pursuit-based image compression.
Shoa, Alireza; Shirani, Shahram
2009-12-01
In this paper, we propose a new encoding algorithm for matching pursuit image coding. We show that coding performance is improved when correlations between atom positions and atom coefficients are both used in encoding. We find the optimum tradeoff between efficient atom position coding and efficient atom coefficient coding and optimize the encoder parameters. Our proposed algorithm outperforms the existing coding algorithms designed for matching pursuit image coding. Additionally, we show that our algorithm results in better rate distortion performance than JPEG 2000 at low bit rates.
NASA Astrophysics Data System (ADS)
Sikder, Somali; Ghosh, Shila
2018-02-01
This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.
Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian
2016-06-01
CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. © 2016. Published by The Company of Biologists Ltd.
Visual Dysfunction Following Blast-Related Traumatic Brain Injury from the Battlefield
2011-01-01
and visual disorders is varied, depending on the diagnostic criteria, condition and patient popu- lation, but has primarily been studied in civilian... diagnostic codes for ‘disorders of the eye and adnexa’ (360.0– 379.9) obtained from electronic outpatient medical records (Standard Ambulatory Data Record) and...disorder diagnostic category by TBI status. ICD-9-CM code and categorya TBI (n¼ 837) Other injury (n¼1417) 360 Disorders of the globe 0 1 ɘ.1% 361
Hazards of Colour Coding in Visual Approach Slope Indicators,
1981-12-01
the glideslope. The central spot (the ’ meatball ’) is displaced above or below the datum lights when the pilot views from above or below the...undershoot is increasing or decreasing, the step changes in intensity may also be evident as a form of flash coding. Colour coding of the ’ meatball " in
ERIC Educational Resources Information Center
Guillen-Diaz, Carmen
1990-01-01
A classroom approach that brings oral and written language learning closer together is outlined. The strategy focuses on proper pronunciation using minimal pairs and uses exercises designed for listening and visualization, production, discrimination, re-use and reinforcement, and computer-assisted instruction. (MSE)
Computer-Based Learning of Spelling Skills in Children with and without Dyslexia
ERIC Educational Resources Information Center
Kast, Monika; Baschera, Gian-Marco; Gross, Markus; Jancke, Lutz; Meyer, Martin
2011-01-01
Our spelling training software recodes words into multisensory representations comprising visual and auditory codes. These codes represent information about letters and syllables of a word. An enhanced version, developed for this study, contains an additional phonological code and an improved word selection controller relying on a phoneme-based…
Effects of Action Relations on the Configural Coding between Objects
ERIC Educational Resources Information Center
Riddoch, M. J.; Pippard, B.; Booth, L.; Rickell, J.; Summers, J.; Brownson, A.; Humphreys, G. W.
2011-01-01
Configural coding is known to take place between the parts of individual objects but has never been shown between separate objects. We provide novel evidence here for configural coding between separate objects through a study of the effects of action relations between objects on extinction. Patients showing visual extinction were presented with…
A Test of Two Alternative Cognitive Processing Models: Learning Styles and Dual Coding
ERIC Educational Resources Information Center
Cuevas, Joshua; Dawson, Bryan L.
2018-01-01
This study tested two cognitive models, learning styles and dual coding, which make contradictory predictions about how learners process and retain visual and auditory information. Learning styles-based instructional practices are common in educational environments despite a questionable research base, while the use of dual coding is less…
Letter Position Coding Across Modalities: The Case of Braille Readers
Perea, Manuel; García-Chamorro, Cristina; Martín-Suesta, Miguel; Gómez, Pablo
2012-01-01
Background The question of how the brain encodes letter position in written words has attracted increasing attention in recent years. A number of models have recently been proposed to accommodate the fact that transposed-letter stimuli like jugde or caniso are perceptually very close to their base words. Methodology Here we examined how letter position coding is attained in the tactile modality via Braille reading. The idea is that Braille word recognition may provide more serial processing than the visual modality, and this may produce differences in the input coding schemes employed to encode letters in written words. To that end, we conducted a lexical decision experiment with adult Braille readers in which the pseudowords were created by transposing/replacing two letters. Principal Findings We found a word-frequency effect for words. In addition, unlike parallel experiments in the visual modality, we failed to find any clear signs of transposed-letter confusability effects. This dissociation highlights the differences between modalities. Conclusions The present data argue against models of letter position coding that assume that transposed-letter effects (in the visual modality) occur at a relatively late, abstract locus. PMID:23071522
Probabilistic Amplitude Shaping With Hard Decision Decoding and Staircase Codes
NASA Astrophysics Data System (ADS)
Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi; Steiner, Fabian
2018-05-01
We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by B\\"ocherer \\emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.
Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool
NASA Astrophysics Data System (ADS)
Torlapati, Jagadish; Prabhakar Clement, T.
2013-01-01
We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.
2017-01-01
Selective visual attention enables organisms to enhance the representation of behaviorally relevant stimuli by altering the encoding properties of single receptive fields (RFs). Yet we know little about how the attentional modulations of single RFs contribute to the encoding of an entire visual scene. Addressing this issue requires (1) measuring a group of RFs that tile a continuous portion of visual space, (2) constructing a population-level measurement of spatial representations based on these RFs, and (3) linking how different types of RF attentional modulations change the population-level representation. To accomplish these aims, we used fMRI to characterize the responses of thousands of voxels in retinotopically organized human cortex. First, we found that the response modulations of voxel RFs (vRFs) depend on the spatial relationship between the RF center and the visual location of the attended target. Second, we used two analyses to assess the spatial encoding quality of a population of voxels. We found that attention increased fine spatial discriminability and representational fidelity near the attended target. Third, we linked these findings by manipulating the observed vRF attentional modulations and recomputing our measures of the fidelity of population codes. Surprisingly, we discovered that attentional enhancements of population-level representations largely depend on position shifts of vRFs, rather than changes in size or gain. Our data suggest that position shifts of single RFs are a principal mechanism by which attention enhances population-level representations in visual cortex. SIGNIFICANCE STATEMENT Although changes in the gain and size of RFs have dominated our view of how attention modulates visual information codes, such hypotheses have largely relied on the extrapolation of single-cell responses to population responses. Here we use fMRI to relate changes in single voxel receptive fields (vRFs) to changes in population-level representations. We find that vRF position shifts contribute more to population-level enhancements of visual information than changes in vRF size or gain. This finding suggests that position shifts are a principal mechanism by which spatial attention enhances population codes for relevant visual information. This poses challenges for labeled line theories of information processing, suggesting that downstream regions likely rely on distributed inputs rather than single neuron-to-neuron mappings. PMID:28242794
Adaptation and perceptual norms
NASA Astrophysics Data System (ADS)
Webster, Michael A.; Yasuda, Maiko; Haber, Sara; Leonard, Deanne; Ballardini, Nicole
2007-02-01
We used adaptation to examine the relationship between perceptual norms--the stimuli observers describe as psychologically neutral, and response norms--the stimulus levels that leave visual sensitivity in a neutral or balanced state. Adapting to stimuli on opposite sides of a neutral point (e.g. redder or greener than white) biases appearance in opposite ways. Thus the adapting stimulus can be titrated to find the unique adapting level that does not bias appearance. We compared these response norms to subjectively defined neutral points both within the same observer (at different retinal eccentricities) and between observers. These comparisons were made for visual judgments of color, image focus, and human faces, stimuli that are very different and may depend on very different levels of processing, yet which share the property that for each there is a well defined and perceptually salient norm. In each case the adaptation aftereffects were consistent with an underlying sensitivity basis for the perceptual norm. Specifically, response norms were similar to and thus covaried with the perceptual norm, and under common adaptation differences between subjectively defined norms were reduced. These results are consistent with models of norm-based codes and suggest that these codes underlie an important link between visual coding and visual experience.
Space shuttle main engine numerical modeling code modifications and analysis
NASA Technical Reports Server (NTRS)
Ziebarth, John P.
1988-01-01
The user of computational fluid dynamics (CFD) codes must be concerned with the accuracy and efficiency of the codes if they are to be used for timely design and analysis of complicated three-dimensional fluid flow configurations. A brief discussion of how accuracy and efficiency effect the CFD solution process is given. A more detailed discussion of how efficiency can be enhanced by using a few Cray Research Inc. utilities to address vectorization is presented and these utilities are applied to a three-dimensional Navier-Stokes CFD code (INS3D).
Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators
NASA Astrophysics Data System (ADS)
Niu, Murphy Yuezhen; Chuang, Isaac L.; Shapiro, Jeffrey H.
2018-03-01
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for χ(2 )-interaction based quantum computation in multimode Fock bases: the χ(2 ) parity-check code, the χ(2 ) embedded error-correcting code, and the χ(2 ) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via χ(2 ) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The χ(2 ) binomial code is of special interest because, with m ≤N identified from channel monitoring, it can correct m -photon-loss errors, or m -photon-gain errors, or (m -1 )th -order dephasing errors using logical qudits that are encoded in O (N ) photons. In comparison, other bosonic QEC codes require O (N2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the χ(2 ) parity-check code and the χ(2 ) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our χ(2 ) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
Semantic and visual memory codes in learning disabled readers.
Swanson, H L
1984-02-01
Two experiments investigated whether learning disabled readers' impaired recall is due to multiple coding deficiencies. In Experiment 1, learning disabled and skilled readers viewed nonsense pictures without names or with either relevant or irrelevant names with respect to the distinctive characteristics of the picture. Both types of names improved recall of nondisabled readers, while learning disabled readers exhibited better recall for unnamed pictures. No significant difference in recall was found between name training (relevant, irrelevant) conditions within reading groups. In Experiment 2, both reading groups participated in recall training for complex visual forms labeled with unrelated words, hierarchically related words, or without labels. A subsequent reproduction transfer task showed a facilitation in performance in skilled readers due to labeling, with learning disabled readers exhibiting better reproduction for unnamed pictures. Measures of output organization (clustering) indicated that recall is related to the development of superordinate categories. The results suggest that learning disabled children's reading difficulties are due to an inability to activate a semantic representation that interconnects visual and verbal codes.
Working memory: a developmental study of phonological recoding.
Palmer, S
2000-05-01
A cross-sectional study using children aged 3 to 7 years and a cross-sequential study using children aged between 5 and 8 years showed that the development of phonological recoding in working memory was more complex than the simple dichotomous picture portrayed in the current literature. It appears that initially children use no strategy in recall, which is proposed to represent the level of automatic activation of representations in long-term memory and the storage capacity of the central executive. This is followed by a period in which a visual strategy prevails, followed by a period of dual visual-verbal coding before the adult-like strategy of verbal coding finally emerges. The results are discussed in terms of three working memory models (Baddeley, 1990; Engle, 1996; Logie, 1996) where strategy use is seen as the development of attentional processes and phonological recoding as the development of inhibitory mechanisms in the central executive to suppress the habitual response set of visual coding.
Nishimura, Akio; Yokosawa, Kazuhiko
2012-01-01
Tlauka and McKenna ( 2000 ) reported a reversal of the traditional stimulus-response compatibility (SRC) effect (faster responding to a stimulus presented on the same side than to one on the opposite side) when the stimulus appearing on one side of a display is a member of a superordinate unit that is largely on the opposite side. We investigated the effects of a visual cue that explicitly shows a superordinate unit, and of assignment of multiple stimuli within each superordinate unit to one response, on the SRC effect based on superordinate unit position. Three experiments revealed that stimulus-response assignment is critical, while the visual cue plays a minor role, in eliciting the SRC effect based on the superordinate unit position. Findings suggest bidirectional interaction between perception and action and simultaneous spatial stimulus coding according to multiple frames of reference, with contribution of each coding to the SRC effect flexibly varying with task situations.
Sensor system for heart sound biomonitor
NASA Astrophysics Data System (ADS)
Maple, Jarrad L.; Hall, Leonard T.; Agzarian, John; Abbott, Derek
1999-09-01
Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually, rather than through a conventional stethoscope. A system whereby a digital stethoscope interfaces directly to a PC will be directly along with signal processing algorithms, adopted. The sensor is based on a noise cancellation microphone, with a 450 Hz bandwidth and is sampled at 2250 samples/sec with 12-bit resolution. Further to this, we discuss for comparison a piezo-based sensor with a 1 kHz bandwidth. A major problem is that the recording of the heart sound into these devices is subject to unwanted background noise which can override the heart sound and results in a poor visual representation. This noise originates from various sources such as skin contact with the stethoscope diaphragm, lung sounds, and other surrounding sounds such as speech. Furthermore we demonstrate a solution using 'wavelet denoising'. The wavelet transform is used because of the similarity between the shape of wavelets and the time-domain shape of a heartbeat sound. Thus coding of the waveform into the wavelet domain is achieved with relatively few wavelet coefficients, in contrast to the many Fourier components that would result from conventional decomposition. We show that the background noise can be dramatically reduced by a thresholding operation in the wavelet domain. The principle is that the background noise codes into many small broadband wavelet coefficients that can be removed without significant degradation of the signal of interest.
The research on multi-projection correction based on color coding grid array
NASA Astrophysics Data System (ADS)
Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu
2017-10-01
There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.
NASA Astrophysics Data System (ADS)
Bagheri, Zahra; Davoudifar, Pantea; Rastegarzadeh, Gohar; Shayan, Milad
2017-03-01
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.
Decaf: Decoupled Dataflows for In Situ High-Performance Workflows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreher, M.; Peterka, T.
Decaf is a dataflow system for the parallel communication of coupled tasks in an HPC workflow. The dataflow can perform arbitrary data transformations ranging from simply forwarding data to complex data redistribution. Decaf does this by allowing the user to allocate resources and execute custom code in the dataflow. All communication through the dataflow is efficient parallel message passing over MPI. The runtime for calling tasks is entirely message-driven; Decaf executes a task when all messages for the task have been received. Such a messagedriven runtime allows cyclic task dependencies in the workflow graph, for example, to enact computational steeringmore » based on the result of downstream tasks. Decaf includes a simple Python API for describing the workflow graph. This allows Decaf to stand alone as a complete workflow system, but Decaf can also be used as the dataflow layer by one or more other workflow systems to form a heterogeneous task-based computing environment. In one experiment, we couple a molecular dynamics code with a visualization tool using the FlowVR and Damaris workflow systems and Decaf for the dataflow. In another experiment, we test the coupling of a cosmology code with Voronoi tessellation and density estimation codes using MPI for the simulation, the DIY programming model for the two analysis codes, and Decaf for the dataflow. Such workflows consisting of heterogeneous software infrastructures exist because components are developed separately with different programming models and runtimes, and this is the first time that such heterogeneous coupling of diverse components was demonstrated in situ on HPC systems.« less
Toward a New Theory for Selecting Instructional Visuals.
ERIC Educational Resources Information Center
Croft, Richard S.; Burton, John K.
This paper provides a rationale for the selection of illustrations and visual aids for the classroom. The theories that describe the processing of visuals are dual coding theory and cue summation theory. Concept attainment theory offers a basis for selecting which cues are relevant for any learning task which includes a component of identification…
Visual Information Literacy: Reading a Documentary Photograph
ERIC Educational Resources Information Center
Abilock, Debbie
2008-01-01
Like a printed text, an architectural blueprint, a mathematical equation, or a musical score, a visual image is its own language. Visual literacy has three components: (1) learning; (2) thinking; and (3) communicating. A "literate" person is able to decipher the basic code and syntax, interpret the signs and symbols, correctly apply terms from an…
A Visual Analysis of the 1980 Houston Republican Presidential Primary Debate.
ERIC Educational Resources Information Center
Hellweg, Susan A.; Phillips, Steven L.
In partial replication of an analysis of the 1976 presidential campaign debates, two researchers analyzed the debate between Republican presidential candidates Ronald Reagan and George Bush (Houston, April 23, 1980) for its visual features, (amount and type of camera shots). The visual categories by which camera shots were coded included…
The Use of Final-Letter Braille Contractions: A Case Study
ERIC Educational Resources Information Center
Tallon, Emily M.; Herzberg, Tina S.
2013-01-01
Louis Braille developed a six-dot braille code in the early 1800s, thus creating an effective way for persons who are visually impaired to communicate through reading and writing (Holbrook, D'Andrea, & Sanford, 2011). Students with visual impairments require braille instruction from teachers of students with visual impairments, who are responsible…
Comprehending News Videotexts: The Influence of the Visual Content
ERIC Educational Resources Information Center
Cross, Jeremy
2011-01-01
Informed by dual coding theory, this study explores the role of the visual content in L2 listeners' comprehension of news videotexts. L1 research into the visual characteristics and comprehension of news videotexts is outlined, subsequently informing the quantitative analysis of audiovisual correspondence in the news videotexts used. In each of…
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
Enhancing Scalability and Efficiency of the TOUGH2_MP for LinuxClusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Wu, Yu-Shu
2006-04-17
TOUGH2{_}MP, the parallel version TOUGH2 code, has been enhanced by implementing more efficient communication schemes. This enhancement is achieved through reducing the amount of small-size messages and the volume of large messages. The message exchange speed is further improved by using non-blocking communications for both linear and nonlinear iterations. In addition, we have modified the AZTEC parallel linear-equation solver to nonblocking communication. Through the improvement of code structuring and bug fixing, the new version code is now more stable, while demonstrating similar or even better nonlinear iteration converging speed than the original TOUGH2 code. As a result, the new versionmore » of TOUGH2{_}MP is improved significantly in its efficiency. In this paper, the scalability and efficiency of the parallel code are demonstrated by solving two large-scale problems. The testing results indicate that speedup of the code may depend on both problem size and complexity. In general, the code has excellent scalability in memory requirement as well as computing time.« less
Nakamichi, Yu; Kalatsky, Valery A; Watanabe, Hideyuki; Sato, Takayuki; Rajagopalan, Uma Maheswari; Tanifuji, Manabu
2018-04-01
Orientation tuning is a canonical neuronal response property of six-layer visual cortex that is encoded in pinwheel structures with center orientation singularities. Optical imaging of intrinsic signals enables us to map these surface two-dimensional (2D) structures, whereas lack of appropriate techniques has not allowed us to visualize depth structures of orientation coding. In the present study, we performed functional optical coherence tomography (fOCT), a technique capable of acquiring a 3D map of the intrinsic signals, to study the topology of orientation coding inside the cat visual cortex. With this technique, for the first time, we visualized columnar assemblies in orientation coding that had been predicted from electrophysiological recordings. In addition, we found that the columnar structures were largely distorted around pinwheel centers: center singularities were not rigid straight lines running perpendicularly to the cortical surface but formed twisted string-like structures inside the cortex that turned and extended horizontally through the cortex. Looping singularities were observed with their respective termini accessing the same cortical surface via clockwise and counterclockwise orientation pinwheels. These results suggest that a 3D topology of orientation coding cannot be fully anticipated from 2D surface measurements. Moreover, the findings demonstrate the utility of fOCT as an in vivo mesoscale imaging method for mapping functional response properties of cortex in the depth axis. NEW & NOTEWORTHY We used functional optical coherence tomography (fOCT) to visualize three-dimensional structure of the orientation columns with millimeter range and micrometer spatial resolution. We validated vertically elongated columnar structure in iso-orientation domains. The columnar structure was distorted around pinwheel centers. An orientation singularity formed a string with tortuous trajectories inside the cortex and connected clockwise and counterclockwise pinwheel centers in the surface orientation map. The results were confirmed by comparisons with conventional optical imaging and electrophysiological recordings.
Toward unsupervised outbreak detection through visual perception of new patterns
Lévy, Pierre P; Valleron, Alain-Jacques
2009-01-01
Background Statistical algorithms are routinely used to detect outbreaks of well-defined syndromes, such as influenza-like illness. These methods cannot be applied to the detection of emerging diseases for which no preexisting information is available. This paper presents a method aimed at facilitating the detection of outbreaks, when there is no a priori knowledge of the clinical presentation of cases. Methods The method uses a visual representation of the symptoms and diseases coded during a patient consultation according to the International Classification of Primary Care 2nd version (ICPC-2). The surveillance data are transformed into color-coded cells, ranging from white to red, reflecting the increasing frequency of observed signs. They are placed in a graphic reference frame mimicking body anatomy. Simple visual observation of color-change patterns over time, concerning a single code or a combination of codes, enables detection in the setting of interest. Results The method is demonstrated through retrospective analyses of two data sets: description of the patients referred to the hospital by their general practitioners (GPs) participating in the French Sentinel Network and description of patients directly consulting at a hospital emergency department (HED). Informative image color-change alert patterns emerged in both cases: the health consequences of the August 2003 heat wave were visualized with GPs' data (but passed unnoticed with conventional surveillance systems), and the flu epidemics, which are routinely detected by standard statistical techniques, were recognized visually with HED data. Conclusion Using human visual pattern-recognition capacities to detect the onset of unexpected health events implies a convenient image representation of epidemiological surveillance and well-trained "epidemiology watchers". Once these two conditions are met, one could imagine that the epidemiology watchers could signal epidemiological alerts, based on "image walls" presenting the local, regional and/or national surveillance patterns, with specialized field epidemiologists assigned to validate the signals detected. PMID:19515246
Al-Dmour, Hayat; Al-Ani, Ahmed
2016-04-01
The present work has the goal of developing a secure medical imaging information system based on a combined steganography and cryptography technique. It attempts to securely embed patient's confidential information into his/her medical images. The proposed information security scheme conceals coded Electronic Patient Records (EPRs) into medical images in order to protect the EPRs' confidentiality without affecting the image quality and particularly the Region of Interest (ROI), which is essential for diagnosis. The secret EPR data is converted into ciphertext using private symmetric encryption method. Since the Human Visual System (HVS) is less sensitive to alterations in sharp regions compared to uniform regions, a simple edge detection method has been introduced to identify and embed in edge pixels, which will lead to an improved stego image quality. In order to increase the embedding capacity, the algorithm embeds variable number of bits (up to 3) in edge pixels based on the strength of edges. Moreover, to increase the efficiency, two message coding mechanisms have been utilized to enhance the ±1 steganography. The first one, which is based on Hamming code, is simple and fast, while the other which is known as the Syndrome Trellis Code (STC), is more sophisticated as it attempts to find a stego image that is close to the cover image through minimizing the embedding impact. The proposed steganography algorithm embeds the secret data bits into the Region of Non Interest (RONI), where due to its importance; the ROI is preserved from modifications. The experimental results demonstrate that the proposed method can embed large amount of secret data without leaving a noticeable distortion in the output image. The effectiveness of the proposed algorithm is also proven using one of the efficient steganalysis techniques. The proposed medical imaging information system proved to be capable of concealing EPR data and producing imperceptible stego images with minimal embedding distortions compared to other existing methods. In order to refrain from introducing any modifications to the ROI, the proposed system only utilizes the Region of Non Interest (RONI) in embedding the EPR data. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Natural image sequences constrain dynamic receptive fields and imply a sparse code.
Häusler, Chris; Susemihl, Alex; Nawrot, Martin P
2013-11-06
In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Explaining neural signals in human visual cortex with an associative learning model.
Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias
2012-08-01
"Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Lin, S.
1985-01-01
A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.
Energy and Environment Guide to Action - Chapter 4.3: Building Codes for Energy Efficiency
Provides guidance and recommendations for establishing, implementing, and evaluating state building codes for energy efficiency, which improve energy efficiency in new construction and major renovations. State success stories are included for reference.
Programming (Tips) for Physicists & Engineers
Ozcan, Erkcan
2018-02-19
Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.
Programming (Tips) for Physicists & Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Erkcan
2010-07-13
Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.
An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins.
Yusufi, Faraaz Noor Khan; Park, Wonjun; Lee, May May; Lee, Dong-Yup
2009-01-01
Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.
Temporal Processing in the Olfactory System: Can We See a Smell?
Gire, David H.; Restrepo, Diego; Sejnowski, Terrence J.; Greer, Charles; De Carlos, Juan A.; Lopez-Mascaraque, Laura
2013-01-01
Sensory processing circuits in the visual and olfactory systems receive input from complex, rapidly changing environments. Although patterns of light and plumes of odor create different distributions of activity in the retina and olfactory bulb, both structures use what appears on the surface similar temporal coding strategies to convey information to higher areas in the brain. We compare temporal coding in the early stages of the olfactory and visual systems, highlighting recent progress in understanding the role of time in olfactory coding during active sensing by behaving animals. We also examine studies that address the divergent circuit mechanisms that generate temporal codes in the two systems, and find that they provide physiological information directly related to functional questions raised by neuroanatomical studies of Ramon y Cajal over a century ago. Consideration of differences in neural activity in sensory systems contributes to generating new approaches to understand signal processing. PMID:23664611
Hoffman, Robert M
2016-03-01
Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.
Watermarking spot colors in packaging
NASA Astrophysics Data System (ADS)
Reed, Alastair; Filler, TomáÅ.¡; Falkenstern, Kristyn; Bai, Yang
2015-03-01
In January 2014, Digimarc announced Digimarc® Barcode for the packaging industry to improve the check-out efficiency and customer experience for retailers. Digimarc Barcode is a machine readable code that carries the same information as a traditional Universal Product Code (UPC) and is introduced by adding a robust digital watermark to the package design. It is imperceptible to the human eye but can be read by a modern barcode scanner at the Point of Sale (POS) station. Compared to a traditional linear barcode, Digimarc Barcode covers the whole package with minimal impact on the graphic design. This significantly improves the Items per Minute (IPM) metric, which retailers use to track the checkout efficiency since it closely relates to their profitability. Increasing IPM by a few percent could lead to potential savings of millions of dollars for retailers, giving them a strong incentive to add the Digimarc Barcode to their packages. Testing performed by Digimarc showed increases in IPM of at least 33% using the Digimarc Barcode, compared to using a traditional barcode. A method of watermarking print ready image data used in the commercial packaging industry is described. A significant proportion of packages are printed using spot colors, therefore spot colors needs to be supported by an embedder for Digimarc Barcode. Digimarc Barcode supports the PANTONE spot color system, which is commonly used in the packaging industry. The Digimarc Barcode embedder allows a user to insert the UPC code in an image while minimizing perceptibility to the Human Visual System (HVS). The Digimarc Barcode is inserted in the printing ink domain, using an Adobe Photoshop plug-in as the last step before printing. Since Photoshop is an industry standard widely used by pre-press shops in the packaging industry, a Digimarc Barcode can be easily inserted and proofed.
Information efficiency in visual communication
NASA Astrophysics Data System (ADS)
Alter-Gartenberg, Rachel; Rahman, Zia-ur
1993-08-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Information efficiency in visual communication
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1993-01-01
This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.
Anekthanakul, Krittima; Hongsthong, Apiradee; Senachak, Jittisak; Ruengjitchatchawalya, Marasri
2018-04-20
Bioactive peptides, including biological sources-derived peptides with different biological activities, are protein fragments that influence the functions or conditions of organisms, in particular humans and animals. Conventional methods of identifying bioactive peptides are time-consuming and costly. To quicken the processes, several bioinformatics tools are recently used to facilitate screening of the potential peptides prior their activity assessment in vitro and/or in vivo. In this study, we developed an efficient computational method, SpirPep, which offers many advantages over the currently available tools. The SpirPep web application tool is a one-stop analysis and visualization facility to assist bioactive peptide discovery. The tool is equipped with 15 customized enzymes and 1-3 miscleavage options, which allows in silico digestion of protein sequences encoded by protein-coding genes from single, multiple, or genome-wide scaling, and then directly classifies the peptides by bioactivity using an in-house database that contains bioactive peptides collected from 13 public databases. With this tool, the resulting peptides are categorized by each selected enzyme, and shown in a tabular format where the peptide sequences can be tracked back to their original proteins. The developed tool and webpages are coded in PHP and HTML with CSS/JavaScript. Moreover, the tool allows protein-peptide alignment visualization by Generic Genome Browser (GBrowse) to display the region and details of the proteins and peptides within each parameter, while considering digestion design for the desirable bioactivity. SpirPep is efficient; it takes less than 20 min to digest 3000 proteins (751,860 amino acids) with 15 enzymes and three miscleavages for each enzyme, and only a few seconds for single enzyme digestion. Obviously, the tool identified more bioactive peptides than that of the benchmarked tool; an example of validated pentapeptide (FLPIL) from LC-MS/MS was demonstrated. The web and database server are available at http://spirpepapp.sbi.kmutt.ac.th . SpirPep, a web-based bioactive peptide discovery application, is an in silico-based tool with an overview of the results. The platform is a one-stop analysis and visualization facility; and offers advantages over the currently available tools. This tool may be useful for further bioactivity analysis and the quantitative discovery of desirable peptides.
SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Dolly, S; Cai, B
Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less
Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1992-01-01
Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.
Mendoza-Halliday, Diego; Martinez-Trujillo, Julio C.
2017-01-01
The primate lateral prefrontal cortex (LPFC) encodes visual stimulus features while they are perceived and while they are maintained in working memory. However, it remains unclear whether perceived and memorized features are encoded by the same or different neurons and population activity patterns. Here we record LPFC neuronal activity while monkeys perceive the motion direction of a stimulus that remains visually available, or memorize the direction if the stimulus disappears. We find neurons with a wide variety of combinations of coding strength for perceived and memorized directions: some neurons encode both to similar degrees while others preferentially or exclusively encode either one. Reading out the combined activity of all neurons, a machine-learning algorithm reliably decode the motion direction and determine whether it is perceived or memorized. Our results indicate that a functionally diverse population of LPFC neurons provides a substrate for discriminating between perceptual and mnemonic representations of visual features. PMID:28569756
NASA Astrophysics Data System (ADS)
Tsang, Sik-Ho; Chan, Yui-Lam; Siu, Wan-Chi
2017-01-01
Weighted prediction (WP) is an efficient video coding tool that was introduced since the establishment of the H.264/AVC video coding standard, for compensating the temporal illumination change in motion estimation and compensation. WP parameters, including a multiplicative weight and an additive offset for each reference frame, are required to be estimated and transmitted to the decoder by slice header. These parameters cause extra bits in the coded video bitstream. High efficiency video coding (HEVC) provides WP parameter prediction to reduce the overhead. Therefore, WP parameter prediction is crucial to research works or applications, which are related to WP. Prior art has been suggested to further improve the WP parameter prediction by implicit prediction of image characteristics and derivation of parameters. By exploiting both temporal and interlayer redundancies, we propose three WP parameter prediction algorithms, enhanced implicit WP parameter, enhanced direct WP parameter derivation, and interlayer WP parameter, to further improve the coding efficiency of HEVC. Results show that our proposed algorithms can achieve up to 5.83% and 5.23% bitrate reduction compared to the conventional scalable HEVC in the base layer for SNR scalability and 2× spatial scalability, respectively.
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Singh, Udaybir; Kumar, Anil; Bhattacharya, Ranajoy; Singh, T. P.; Sinha, A. K.
2013-02-01
The design of 120 GHz, 1 MW gyrotron for plasma fusion application is presented in this paper. The mode selection is carried out considering the aim of minimum mode competition, minimum cavity wall heating, etc. On the basis of the selected operating mode, the interaction cavity design and beam-wave interaction computation are carried out by using the PIC code. The design of triode type Magnetron Injection Gun (MIG) is also presented. Trajectory code EGUN, synthesis code MIGSYN and data analysis code MIGANS are used in the MIG designing. Further, the design of MIG is also validated by using the another trajectory code TRAK. The design results of beam dumping system (collector) and RF window are also presented. Depressed collector is designed to enhance the overall tube efficiency. The design study confirms >1 MW output power with tube efficiency around 50% (with collector efficiency).
gadfly: A pandas-based Framework for Analyzing GADGET Simulation Data
NASA Astrophysics Data System (ADS)
Hummel, Jacob A.
2016-11-01
We present the first public release (v0.1) of the open-source gadget Dataframe Library: gadfly. The aim of this package is to leverage the capabilities of the broader python scientific computing ecosystem by providing tools for analyzing simulation data from the astrophysical simulation codes gadget and gizmo using pandas, a thoroughly documented, open-source library providing high-performance, easy-to-use data structures that is quickly becoming the standard for data analysis in python. Gadfly is a framework for analyzing particle-based simulation data stored in the HDF5 format using pandas DataFrames. The package enables efficient memory management, includes utilities for unit handling, coordinate transformations, and parallel batch processing, and provides highly optimized routines for visualizing smoothed-particle hydrodynamics data sets.
Scalable and portable visualization of large atomistic datasets
NASA Astrophysics Data System (ADS)
Sharma, Ashish; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2004-10-01
A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms. Program summaryTitle of program: Atomsviewer Catalogue identifier: ADUM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary Number of processors used: 1 Has the code been vectorized or parallelized: No Distribution format: tar gzip file Nature of physical problem: Scientific visualization of atomic systems Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data minimization, and levels-of-detail for minimal rendering Restrictions on the complexity of the problem: None Typical running time: The program is interactive in its execution Unusual features of the program: None References: The conceptual foundation and subsequent implementation of the algorithms are found in [A. Sharma, A. Nakano, R.K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W. Zhao, X.L. Liu, T.J. Campbell, A. Haas, Presence—Teleoperators and Virtual Environments 12 (1) (2003)].
Multislice CT perfusion imaging of the lung in detection of pulmonary embolism
NASA Astrophysics Data System (ADS)
Hong, Helen; Lee, Jeongjin
2006-03-01
We propose a new subtraction technique for accurately imaging lung perfusion and efficiently detecting pulmonary embolism in chest MDCT angiography. Our method is composed of five stages. First, optimal segmentation technique is performed for extracting same volume of the lungs, major airway and vascular structures from pre- and post-contrast images with different lung density. Second, initial registration based on apex, hilar point and center of inertia (COI) of each unilateral lung is proposed to correct the gross translational mismatch. Third, initial alignment is refined by iterative surface registration. For fast and robust convergence of the distance measure to the optimal value, a 3D distance map is generated by the narrow-band distance propagation. Fourth, 3D nonlinear filter is applied to the lung parenchyma to compensate for residual spiral artifacts and artifacts caused by heart motion. Fifth, enhanced vessels are visualized by subtracting registered pre-contrast images from post-contrast images. To facilitate visualization of parenchyma enhancement, color-coded mapping and image fusion is used. Our method has been successfully applied to ten patients of pre- and post-contrast images in chest MDCT angiography. Experimental results show that the performance of our method is very promising compared with conventional methods with the aspects of its visual inspection, accuracy and processing time.
Secure web-based invocation of large-scale plasma simulation codes
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Busby, R.; Exby, J.; Bruhwiler, D. L.; Cary, J. R.
2004-12-01
We present our design and initial implementation of a web-based system for running, both in parallel and serial, Particle-In-Cell (PIC) codes for plasma simulations with automatic post processing and generation of visual diagnostics.
Nurminen, Lauri; Angelucci, Alessandra
2014-01-01
The responses of neurons in primary visual cortex (V1) to stimulation of their receptive field (RF) are modulated by stimuli in the RF surround. This modulation is suppressive when the stimuli in the RF and surround are of similar orientation, but less suppressive or facilitatory when they are cross-oriented. Similarly, in human vision surround stimuli selectively suppress the perceived contrast of a central stimulus. Although the properties of surround modulation have been thoroughly characterized in many species, cortical areas and sensory modalities, its role in perception remains unknown. Here we argue that surround modulation in V1 consists of multiple components having different spatio-temporal and tuning properties, generated by different neural circuits and serving different visual functions. One component arises from LGN afferents, is fast, untuned for orientation, and spatially restricted to the surround region nearest to the RF (the near-surround); its function is to normalize V1 cell responses to local contrast. Intra-V1 horizontal connections contribute a slower, narrowly orientation-tuned component to near-surround modulation, whose function is to increase the coding efficiency of natural images in manner that leads to the extraction of object boundaries. The third component is generated by topdown feedback connections to V1, is fast, broadly orientation-tuned, and extends into the far-surround; its function is to enhance the salience of behaviorally relevant visual features. Far- and near-surround modulation, thus, act as parallel mechanisms: the former quickly detects and guides saccades/attention to salient visual scene locations, the latter segments object boundaries in the scene. PMID:25204770
pong: fast analysis and visualization of latent clusters in population genetic data.
Behr, Aaron A; Liu, Katherine Z; Liu-Fang, Gracie; Nakka, Priyanka; Ramachandran, Sohini
2016-09-15
A series of methods in population genetics use multilocus genotype data to assign individuals membership in latent clusters. These methods belong to a broad class of mixed-membership models, such as latent Dirichlet allocation used to analyze text corpora. Inference from mixed-membership models can produce different output matrices when repeatedly applied to the same inputs, and the number of latent clusters is a parameter that is often varied in the analysis pipeline. For these reasons, quantifying, visualizing, and annotating the output from mixed-membership models are bottlenecks for investigators across multiple disciplines from ecology to text data mining. We introduce pong, a network-graphical approach for analyzing and visualizing membership in latent clusters with a native interactive D3.js visualization. pong leverages efficient algorithms for solving the Assignment Problem to dramatically reduce runtime while increasing accuracy compared with other methods that process output from mixed-membership models. We apply pong to 225 705 unlinked genome-wide single-nucleotide variants from 2426 unrelated individuals in the 1000 Genomes Project, and identify previously overlooked aspects of global human population structure. We show that pong outpaces current solutions by more than an order of magnitude in runtime while providing a customizable and interactive visualization of population structure that is more accurate than those produced by current tools. pong is freely available and can be installed using the Python package management system pip. pong's source code is available at https://github.com/abehr/pong aaron_behr@alumni.brown.edu or sramachandran@brown.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Feature hashing for fast image retrieval
NASA Astrophysics Data System (ADS)
Yan, Lingyu; Fu, Jiarun; Zhang, Hongxin; Yuan, Lu; Xu, Hui
2018-03-01
Currently, researches on content based image retrieval mainly focus on robust feature extraction. However, due to the exponential growth of online images, it is necessary to consider searching among large scale images, which is very timeconsuming and unscalable. Hence, we need to pay much attention to the efficiency of image retrieval. In this paper, we propose a feature hashing method for image retrieval which not only generates compact fingerprint for image representation, but also prevents huge semantic loss during the process of hashing. To generate the fingerprint, an objective function of semantic loss is constructed and minimized, which combine the influence of both the neighborhood structure of feature data and mapping error. Since the machine learning based hashing effectively preserves neighborhood structure of data, it yields visual words with strong discriminability. Furthermore, the generated binary codes leads image representation building to be of low-complexity, making it efficient and scalable to large scale databases. Experimental results show good performance of our approach.
ERIC Educational Resources Information Center
Valdois, Sylviane; Lassus-Sangosse, Delphine; Lobier, Muriel
2012-01-01
Poor parallel letter-string processing in developmental dyslexia was taken as evidence of poor visual attention (VA) span, that is, a limitation of visual attentional resources that affects multi-character processing. However, the use of letter stimuli in oral report tasks was challenged on its capacity to highlight a VA span disorder. In…
Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.
Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen
2016-07-27
Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.
DiCarlo, James J.; Zecchina, Riccardo; Zoccolan, Davide
2013-01-01
The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex. PMID:23950700
Rosen, Lisa M.; Liu, Tao; Merchant, Roland C.
2016-01-01
BACKGROUND Blood and body fluid exposures are frequently evaluated in emergency departments (EDs). However, efficient and effective methods for estimating their incidence are not yet established. OBJECTIVE Evaluate the efficiency and accuracy of estimating statewide ED visits for blood or body fluid exposures using International Classification of Diseases, Ninth Revision (ICD-9), code searches. DESIGN Secondary analysis of a database of ED visits for blood or body fluid exposure. SETTING EDs of 11 civilian hospitals throughout Rhode Island from January 1, 1995, through June 30, 2001. PATIENTS Patients presenting to the ED for possible blood or body fluid exposure were included, as determined by prespecified ICD-9 codes. METHODS Positive predictive values (PPVs) were estimated to determine the ability of 10 ICD-9 codes to distinguish ED visits for blood or body fluid exposure from ED visits that were not for blood or body fluid exposure. Recursive partitioning was used to identify an optimal subset of ICD-9 codes for this purpose. Random-effects logistic regression modeling was used to examine variations in ICD-9 coding practices and styles across hospitals. Cluster analysis was used to assess whether the choice of ICD-9 codes was similar across hospitals. RESULTS The PPV for the original 10 ICD-9 codes was 74.4% (95% confidence interval [CI], 73.2%–75.7%), whereas the recursive partitioning analysis identified a subset of 5 ICD-9 codes with a PPV of 89.9% (95% CI, 88.9%–90.8%) and a misclassification rate of 10.1%. The ability, efficiency, and use of the ICD-9 codes to distinguish types of ED visits varied across hospitals. CONCLUSIONS Although an accurate subset of ICD-9 codes could be identified, variations across hospitals related to hospital coding style, efficiency, and accuracy greatly affected estimates of the number of ED visits for blood or body fluid exposure. PMID:22561713
Research on pre-processing of QR Code
NASA Astrophysics Data System (ADS)
Sun, Haixing; Xia, Haojie; Dong, Ning
2013-10-01
QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.
Qi, Shuhong; Li, Hui; Lu, Lisen; Qi, Zhongyang; Liu, Lei; Chen, Lu; Shen, Guanxin; Fu, Ling; Luo, Qingming; Zhang, Zhihong
2016-01-01
The combined-immunotherapy of adoptive cell therapy (ACT) and cyclophosphamide (CTX) is one of the most efficient treatments for melanoma patients. However, no synergistic effects of CTX and ACT on the spatio-temporal dynamics of immunocytes in vivo have been described. Here, we visualized key cell events in immunotherapy-elicited immunoreactions in a multicolor-coded tumor microenvironment, and then established an optimal strategy of metronomic combined-immunotherapy to enhance anti-tumor efficacy. Intravital imaging data indicated that regulatory T cells formed an 'immunosuppressive ring' around a solid tumor. The CTX-ACT combined-treatment elicited synergistic immunoreactions in tumor areas, which included relieving the immune suppression, triggering the transient activation of endogenous tumor-infiltrating immunocytes, increasing the accumulation of adoptive cytotoxic T lymphocytes, and accelerating the infiltration of dendritic cells. These insights into the spatio-temporal dynamics of immunocytes are beneficial for optimizing immunotherapy and provide new approaches for elucidating the mechanisms underlying the involvement of immunocytes in cancer immunotherapy. DOI: http://dx.doi.org/10.7554/eLife.14756.001 PMID:27855783
Zhao, Jing; Kwok, Rosa K. W.; Liu, Menglian; Liu, Hanlong; Huang, Chen
2017-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency. PMID:28119663
Zhao, Jing; Kwok, Rosa K W; Liu, Menglian; Liu, Hanlong; Huang, Chen
2016-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency.
NASA Astrophysics Data System (ADS)
Sanchez, Gustavo; Marcon, César; Agostini, Luciano Volcan
2018-01-01
The 3D-high efficiency video coding has introduced tools to obtain higher efficiency in 3-D video coding, and most of them are related to the depth maps coding. Among these tools, the depth modeling mode-1 (DMM-1) focuses on better encoding edges regions of depth maps. The large memory required for storing all wedgelet patterns is one of the bottlenecks in the DMM-1 hardware design of both encoder and decoder since many patterns must be stored. Three algorithms to reduce the DMM-1 memory requirements and a hardware design targeting the most efficient among these algorithms are presented. Experimental results demonstrate that the proposed solutions surpass related works reducing up to 78.8% of the wedgelet memory, without degrading the encoding efficiency. Synthesis results demonstrate that the proposed algorithm reduces almost 75% of the power dissipation when compared to the standard approach.
Redundant Coding in Visual Search Displays: Effects of Shape and Colour.
1997-02-01
results for refining color selection algorithms and for color coding in situations where the gamut of available colors is limited. In a secondary set of analyses, we note large performance differences as a function of target shape.
specification How to install the software How to use the software Download the source code (using .gz). Standard Exchange Format (SHEF) is a documented set of rules for coding of data in a form for both visual and information to describe the data. Current SHEF specification How to install the software How to use the
Nine-year-old children use norm-based coding to visually represent facial expression.
Burton, Nichola; Jeffery, Linda; Skinner, Andrew L; Benton, Christopher P; Rhodes, Gillian
2013-10-01
Children are less skilled than adults at making judgments about facial expression. This could be because they have not yet developed adult-like mechanisms for visually representing faces. Adults are thought to represent faces in a multidimensional face-space, and have been shown to code the expression of a face relative to the norm or average face in face-space. Norm-based coding is economical and adaptive, and may be what makes adults more sensitive to facial expression than children. This study investigated the coding system that children use to represent facial expression. An adaptation aftereffect paradigm was used to test 24 adults and 18 children (9 years 2 months to 9 years 11 months old). Participants adapted to weak and strong antiexpressions. They then judged the expression of an average expression. Adaptation created aftereffects that made the test face look like the expression opposite that of the adaptor. Consistent with the predictions of norm-based but not exemplar-based coding, aftereffects were larger for strong than weak adaptors for both age groups. Results indicate that, like adults, children's coding of facial expressions is norm-based. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Interactive three-dimensional visualization and creation of geometries for Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Theis, C.; Buchegger, K. H.; Brugger, M.; Forkel-Wirth, D.; Roesler, S.; Vincke, H.
2006-06-01
The implementation of three-dimensional geometries for the simulation of radiation transport problems is a very time-consuming task. Each particle transport code supplies its own scripting language and syntax for creating the geometries. All of them are based on the Constructive Solid Geometry scheme requiring textual description. This makes the creation a tedious and error-prone task, which is especially hard to master for novice users. The Monte Carlo code FLUKA comes with built-in support for creating two-dimensional cross-sections through the geometry and FLUKACAD, a custom-built converter to the commercial Computer Aided Design package AutoCAD, exists for 3D visualization. For other codes, like MCNPX, a couple of different tools are available, but they are often specifically tailored to the particle transport code and its approach used for implementing geometries. Complex constructive solid modeling usually requires very fast and expensive special purpose hardware, which is not widely available. In this paper SimpleGeo is presented, which is an implementation of a generic versatile interactive geometry modeler using off-the-shelf hardware. It is running on Windows, with a Linux version currently under preparation. This paper describes its functionality, which allows for rapid interactive visualization as well as generation of three-dimensional geometries, and also discusses critical issues regarding common CAD systems.
Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M
2017-11-08
When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.
IcyTree: rapid browser-based visualization for phylogenetic trees and networks
2017-01-01
Abstract Summary: IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. Availability and Implementation: IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree. Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. Contact: tgvaughan@gmail.com PMID:28407035
IcyTree: rapid browser-based visualization for phylogenetic trees and networks.
Vaughan, Timothy G
2017-08-01
IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree . Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. tgvaughan@gmail.com. © The Author(s) 2017. Published by Oxford University Press.
Digital Earth system based river basin data integration
NASA Astrophysics Data System (ADS)
Zhang, Xin; Li, Wanqing; Lin, Chao
2014-12-01
Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.
Bio-inspired approach to multistage image processing
NASA Astrophysics Data System (ADS)
Timchenko, Leonid I.; Pavlov, Sergii V.; Kokryatskaya, Natalia I.; Poplavska, Anna A.; Kobylyanska, Iryna M.; Burdenyuk, Iryna I.; Wójcik, Waldemar; Uvaysova, Svetlana; Orazbekov, Zhassulan; Kashaganova, Gulzhan
2017-08-01
Multistage integration of visual information in the brain allows people to respond quickly to most significant stimuli while preserving the ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing, described in this paper, comprises main types of cortical multistage convergence. One of these types occurs within each visual pathway and the other between the pathways. This approach maps input images into a flexible hierarchy which reflects the complexity of the image data. The procedures of temporal image decomposition and hierarchy formation are described in mathematical terms. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image which encapsulates, in a computer manner, structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a very quick response from the system. The result is represented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match.
Classification of breast tissue in mammograms using efficient coding.
Costa, Daniel D; Campos, Lúcio F; Barros, Allan K
2011-06-24
Female breast cancer is the major cause of death by cancer in western countries. Efforts in Computer Vision have been made in order to improve the diagnostic accuracy by radiologists. Some methods of lesion diagnosis in mammogram images were developed based in the technique of principal component analysis which has been used in efficient coding of signals and 2D Gabor wavelets used for computer vision applications and modeling biological vision. In this work, we present a methodology that uses efficient coding along with linear discriminant analysis to distinguish between mass and non-mass from 5090 region of interest from mammograms. The results show that the best rates of success reached with Gabor wavelets and principal component analysis were 85.28% and 87.28%, respectively. In comparison, the model of efficient coding presented here reached up to 90.07%. Altogether, the results presented demonstrate that independent component analysis performed successfully the efficient coding in order to discriminate mass from non-mass tissues. In addition, we have observed that LDA with ICA bases showed high predictive performance for some datasets and thus provide significant support for a more detailed clinical investigation.
Webber, C J
2001-05-01
This article shows analytically that single-cell learning rules that give rise to oriented and localized receptive fields, when their synaptic weights are randomly and independently initialized according to a plausible assumption of zero prior information, will generate visual codes that are invariant under two-dimensional translations, rotations, and scale magnifications, provided that the statistics of their training images are sufficiently invariant under these transformations. Such codes span different image locations, orientations, and size scales with equal economy. Thus, single-cell rules could account for the spatial scaling property of the cortical simple-cell code. This prediction is tested computationally by training with natural scenes; it is demonstrated that a single-cell learning rule can give rise to simple-cell receptive fields spanning the full range of orientations, image locations, and spatial frequencies (except at the extreme high and low frequencies at which the scale invariance of the statistics of digitally sampled images must ultimately break down, because of the image boundary and the finite pixel resolution). Thus, no constraint on completeness, or any other coupling between cells, is necessary to induce the visual code to span wide ranges of locations, orientations, and size scales. This prediction is made using the theory of spontaneous symmetry breaking, which we have previously shown can also explain the data-driven self-organization of a wide variety of transformation invariances in neurons' responses, such as the translation invariance of complex cell response.
High-efficiency reconciliation for continuous variable quantum key distribution
NASA Astrophysics Data System (ADS)
Bai, Zengliang; Yang, Shenshen; Li, Yongmin
2017-04-01
Quantum key distribution (QKD) is the most mature application of quantum information technology. Information reconciliation is a crucial step in QKD and significantly affects the final secret key rates shared between two legitimate parties. We analyze and compare various construction methods of low-density parity-check (LDPC) codes and design high-performance irregular LDPC codes with a block length of 106. Starting from these good codes and exploiting the slice reconciliation technique based on multilevel coding and multistage decoding, we realize high-efficiency Gaussian key reconciliation with efficiency higher than 95% for signal-to-noise ratios above 1. Our demonstrated method can be readily applied in continuous variable QKD.
Ink-constrained halftoning with application to QR codes
NASA Astrophysics Data System (ADS)
Bayeh, Marzieh; Compaan, Erin; Lindsey, Theodore; Orlow, Nathan; Melczer, Stephen; Voller, Zachary
2014-01-01
This paper examines adding visually significant, human recognizable data into QR codes without affecting their machine readability by utilizing known methods in image processing. Each module of a given QR code is broken down into pixels, which are halftoned in such a way as to keep the QR code structure while revealing aspects of the secondary image to the human eye. The loss of information associated to this procedure is discussed, and entropy values are calculated for examples given in the paper. Numerous examples of QR codes with embedded images are included.
Seemann, M D; Gebicke, K; Luboldt, W; Albes, J M; Vollmar, J; Schäfer, J F; Beinert, T; Englmeier, K H; Bitzer, M; Claussen, C D
2001-07-01
The aim of this study was to demonstrate the possibilities of a hybrid rendering method, the combination of a color-coded surface and volume rendering method, with the feasibility of performing surface-based virtual endoscopy with different representation models in the operative and interventional therapy control of the chest. In 6 consecutive patients with partial lung resection (n = 2) and lung transplantation (n = 4) a thin-section spiral computed tomography of the chest was performed. The tracheobronchial system and the introduced metallic stents were visualized using a color-coded surface rendering method. The remaining thoracic structures were visualized using a volume rendering method. For virtual bronchoscopy, the tracheobronchial system was visualized using a triangle surface model, a shaded-surface model and a transparent shaded-surface model. The hybrid 3D visualization uses the advantages of both the color-coded surface and volume rendering methods and facilitates a clear representation of the tracheobronchial system and the complex topographical relationship of morphological and pathological changes without loss of diagnostic information. Performing virtual bronchoscopy with the transparent shaded-surface model facilitates a reasonable to optimal, simultaneous visualization and assessment of the surface structure of the tracheobronchial system and the surrounding mediastinal structures and lesions. Hybrid rendering relieve the morphological assessment of anatomical and pathological changes without the need for time-consuming detailed analysis and presentation of source images. Performing virtual bronchoscopy with a transparent shaded-surface model offers a promising alternative to flexible fiberoptic bronchoscopy.
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
1991-01-01
Computations from two Navier-Stokes codes, NSS and F3D, are presented for a tangent-ogive-cylinder body at high angle of attack. Features of this steady flow include a pair of primary vortices on the leeward side of the body as well as secondary vortices. The topological and physical plausibility of this vortical structure is discussed. The accuracy of these codes are assessed by comparison of the numerical solutions with experimental data. The effects of turbulence model, numerical dissipation, and grid refinement are presented. The overall efficiency of these codes are also assessed by examining their convergence rates, computational time per time step, and maximum allowable time step for time-accurate computations. Overall, the numerical results from both codes compared equally well with experimental data, however, the NSS code was found to be significantly more efficient than the F3D code.
ERIC Educational Resources Information Center
Sauval, Karinne; Perre, Laetitia; Casalis, Séverine
2017-01-01
The present study aimed to investigate the development of automatic phonological processes involved in visual word recognition during reading acquisition in French. A visual masked priming lexical decision experiment was carried out with third, fifth graders and adult skilled readers. Three different types of partial overlap between the prime and…
Effects of Length of Retention Interval on Proactive Interference in Short-Term Visual Memory
ERIC Educational Resources Information Center
Meudell, Peter R.
1977-01-01
These experiments show two things: (a) In visual memory, long-term interference on a current item from items previously stored only seems to occur when the current item's retention interval is relatively long, and (b) the visual code appears to decay rapidly, reaching asymptote within 3 seconds of input in the presence of an interpolated task.…
The Armed Forces Casualty Assistance Readiness Enhancement System (CARES): Design for Flexibility
2006-06-01
Special Form SQL Structured Query Language SSA Social Security Administration U USMA United States Military Academy V VB Visual Basic VBA Visual Basic for...of Abbreviations ................................................................... 26 Appendix B: Key VBA Macros and MS Excel Coding...internet portal, CARES Version 1.0 is a MS Excel spreadsheet application that contains a considerable number of Visual Basic for Applications ( VBA
Information, entropy, and fidelity in visual communication
NASA Astrophysics Data System (ADS)
Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-ur
1992-10-01
This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering an display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.
Information, entropy and fidelity in visual communication
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur
1992-01-01
This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.
Evaluation of Persons of Varying Ages.
ERIC Educational Resources Information Center
Stolte, John F.
1996-01-01
Reviews two experiments that strongly support dual coding theory. Dual coding theory holds that communicating concretely (tactile, auditory, or visual stimuli) affects evaluative thinking stronger than communicating abstractly through words and numbers. The experiments applied this theory to the realm of age and evaluation. (MJP)
Static Verification for Code Contracts
NASA Astrophysics Data System (ADS)
Fähndrich, Manuel
The Code Contracts project [3] at Microsoft Research enables programmers on the .NET platform to author specifications in existing languages such as C# and VisualBasic. To take advantage of these specifications, we provide tools for documentation generation, runtime contract checking, and static contract verification.
Quality Scalability Aware Watermarking for Visual Content.
Bhowmik, Deepayan; Abhayaratne, Charith
2016-11-01
Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.
Perceptually tuned low-bit-rate video codec for ATM networks
NASA Astrophysics Data System (ADS)
Chou, Chun-Hsien
1996-02-01
In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EMAM, M; Eldib, A; Lin, M
2014-06-01
Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systemsmore » (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process.« less
Wang, Yuanye; Luo, Huan
2017-01-01
In order to deal with external world efficiently, the brain constantly generates predictions about incoming sensory inputs, a process known as "predictive coding." Our recent studies, by employing visual priming paradigms in combination with a time-resolved behavioral measurement, reveal that perceptual predictions about simple features (e.g., left or right orientation) return to low sensory areas not continuously but recurrently in a theta-band (3-4Hz) rhythm. However, it remains unknown whether high-level object processing is also mediated by the oscillatory mechanism and if yes at which rhythm the mechanism works. In the present study, we employed a morph-face priming paradigm and the time-resolved behavioral measurements to examine the fine temporal dynamics of face identity priming performance. First, we reveal classical priming effects and a rhythmic trend within the prime-to-probe SOA of 600ms (Experiment 1). Next, we densely sampled the face priming behavioral performances within this SOA range (Experiment 2). Our results demonstrate a significant ~5Hz oscillatory component in the face priming behavioral performances, suggesting that a rhythmic process also coordinates the object-level prediction (i.e., face identity here). In comparison to our previous studies, the results suggest that the rhythm for the high-level object is faster than that for simple features. We propose that the seemingly distinctive priming rhythms might be attributable to that the object-level and simple feature-level predictions return to different stages along the visual pathway (e.g., FFA area for face priming and V1 area for simple feature priming). In summary, the findings support a general theta-band (3-6Hz) temporal organization mechanism in predictive coding, and that such wax-and-waning pattern in predictive coding may aid the brain to be more readily updated for new inputs. © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Taber, J.; Bahavar, M.; Bravo, T. K.; Butler, R. F.; Kilb, D. L.; Trabant, C.; Woodward, R.; Ammon, C. J.
2011-12-01
Data from dense seismic arrays can be used to visualize the propagation of seismic waves, resulting in animations effective for teaching both general and advanced audiences. One of the first visualizations of this type was developed using Objective C code and EarthScope/USArray data, which was then modified and ported to the Matlab platform and has now been standardized and automated as an IRIS Data Management System (IRIS-DMS) data product. These iterative code developments and improvements were completed by C. Ammon, R. Woodward and M. Bahavar, respectively. Currently, an automated script creates Ground Motion Visualizations (GMVs) for all global earthquakes over magnitude 6 recorded by EarthScope's USArray Transportable Array (USArray TA) network. The USArray TA network is a rolling array of 400 broadband stations deployed on a uniform 70-km grid. These near real-time GMV visualizations are typically available for download within 4 hours or less of their occurrence (see: www.iris.edu/dms/products/usarraygmv/). The IRIS-DMS group has recently added a feature that allows users to highlight key elements within the GMVs, by providing an online tool for creating customized GMVs. This new interface allows users to select the stations, channels, and time window of interest, adjust the mapped areal extent of the view, and specify high and low pass filters. An online tutorial available from the IRIS Education and Public Outreach (IRIS-EPO) website, listed below, steps through a teaching sequence that can be used to explain the basic features of the GMVs. For example, they can be used to demonstrate simple concepts such as relative P, S and surface wave velocities and corresponding wavelengths for middle-school students, or more advanced concepts such as the influence of focal mechanism on waveforms, or how seismic waves converge at an earthquake's antipode. For those who desire a greater level of customization, including the ability to use the GMV framework with data sets not stored within the IRIS-DMS, the Matlab GMV code is now also available from the IRIS-DMS website. These GMV codes have been applied to sac-formatted data from the Quake Catcher Network (QCN). Through a collaboration between NSF-funded programs and projects (e.g., IRIS and QCN) we are striving to make these codes user friendly enough to be routinely incorporated in undergraduate and graduate seismology classes. In this way, we will help provide a research tool for students to explore never-looked-at-before data, similar to actual seismology research. As technology is advancing quickly, we now have more data than seismologists can easily examine. Given this, we anticipate students using our codes can perform a 'citizen scientist' role in that they can help us identify key signals within the unexamined vast data streams we are acquiring.
Energy Efficiency Program Administrators and Building Energy Codes
Explore how energy efficiency program administrators have helped advance building energy codes at federal, state, and local levels—using technical, institutional, financial, and other resources—and discusses potential next steps.
Assessing the Formation of Experience-Based Gender Expectations in an Implicit Learning Scenario
Öttl, Anton; Behne, Dawn M.
2017-01-01
The present study investigates the formation of new word-referent associations in an implicit learning scenario, using a gender-coded artificial language with spoken words and visual referents. Previous research has shown that when participants are explicitly instructed about the gender-coding system underlying an artificial lexicon, they monitor the frequency of exposure to male vs. female referents within this lexicon, and subsequently use this probabilistic information to predict the gender of an upcoming referent. In an explicit learning scenario, the auditory and visual gender cues are necessarily highlighted prior to acqusition, and the effects previously observed may therefore depend on participants' overt awareness of these cues. To assess whether the formation of experience-based expectations is dependent on explicit awareness of the underlying coding system, we present data from an experiment in which gender-coding was acquired implicitly, thereby reducing the likelihood that visual and auditory gender cues are used strategically during acquisition. Results show that even if the gender coding system was not perfectly mastered (as reflected in the number of gender coding errors), participants develop frequency based expectations comparable to those previously observed in an explicit learning scenario. In line with previous findings, participants are quicker at recognizing a referent whose gender is consistent with an induced expectation than one whose gender is inconsistent with an induced expectation. At the same time however, eyetracking data suggest that these expectations may surface earlier in an implicit learning scenario. These findings suggest that experience-based expectations are robust against manner of acquisition, and contribute to understanding why similar expectations observed in the activation of stereotypes during the processing of natural language stimuli are difficult or impossible to suppress. PMID:28936186
Utilizing Spectrum Efficiently (USE)
2011-02-28
18 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and...numerical results. 4.8 Space-Time Coded Asynchronous DS - CDMA with Decentralized MAI Suppression: Performance and Spectral Efficiency In [60] multiple...supported at a given signal-to-interference ratio in asynchronous direct-sequence code-division multiple-access ( DS - CDMA ) sys- tems was examined. It was
Bar Coding and Tracking in Pathology.
Hanna, Matthew G; Pantanowitz, Liron
2016-03-01
Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Chanderkanta; Amphawan, Angela
2016-04-01
Excess 3 code is one of the most important codes used for efficient data storage and transmission. It is a non-weighted code and also known as self complimenting code. In this paper, a four bit optical Excess 3 to BCD code converter is proposed using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers (MZIs). The MZI structures have powerful capability to switching an optical input signal to a desired output port. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
Bar Coding and Tracking in Pathology.
Hanna, Matthew G; Pantanowitz, Liron
2015-06-01
Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology. Copyright © 2015 Elsevier Inc. All rights reserved.
Air Traffic Controller Working Memory: Considerations in Air Traffic Control Tactical Operations
1993-09-01
INFORMATION PROCESSING SYSTEM 3 2. AIR TRAFFIC CONTROLLER MEMORY 5 2.1 MEMORY CODES 6 21.1 Visual Codes 7 2.1.2 Phonetic Codes 7 2.1.3 Semantic Codes 8...raise an awareness of the memory re- quirements of ATC tactical operations by presenting information on working memory processes that are relevant to...working v memory permeates every aspect of the controller’s ability to process air traffic information and control live traffic. The
Poirot, Jordan; De Luna, Paolo; Rainer, Gregor
2016-04-01
We comprehensively characterize spiking and visual evoked potential (VEP) activity in tree shrew V1 and V2 using Cartesian, hyperbolic, and polar gratings. Neural selectivity to structure of Cartesian gratings was higher than other grating classes in both visual areas. From V1 to V2, structure selectivity of spiking activity increased, whereas corresponding VEP values tended to decrease, suggesting that single-neuron coding of Cartesian grating attributes improved while the cortical columnar organization of these neurons became less precise from V1 to V2. We observed that neurons in V2 generally exhibited similar selectivity for polar and Cartesian gratings, suggesting that structure of polar-like stimuli might be encoded as early as in V2. This hypothesis is supported by the preference shift from V1 to V2 toward polar gratings of higher spatial frequency, consistent with the notion that V2 neurons encode visual scene borders and contours. Neural sensitivity to modulations of polarity of hyperbolic gratings was highest among all grating classes and closely related to the visual receptive field (RF) organization of ON- and OFF-dominated subregions. We show that spatial RF reconstructions depend strongly on grating class, suggesting that intracortical contributions to RF structure are strongest for Cartesian and polar gratings. Hyperbolic gratings tend to recruit least cortical elaboration such that the RF maps are similar to those generated by sparse noise, which most closely approximate feedforward inputs. Our findings complement previous literature in primates, rodents, and carnivores and highlight novel aspects of shape representation and coding occurring in mammalian early visual cortex. Copyright © 2016 the American Physiological Society.
ERIC Educational Resources Information Center
Simpson, Timothy J.
Paivio's Dual Coding Theory has received widespread recognition for its connection between visual and aural channels of internal information processing. The use of only two channels, however, cannot satisfactorily explain the effects witnessed every day. This paper presents a study suggesting the presence a third, kinesthetic channel, currently…
NASA Technical Reports Server (NTRS)
Rice, R. F.
1974-01-01
End-to-end system considerations involving channel coding and data compression which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft are presented.
Computationally Efficient Clustering of Audio-Visual Meeting Data
NASA Astrophysics Data System (ADS)
Hung, Hayley; Friedland, Gerald; Yeo, Chuohao
This chapter presents novel computationally efficient algorithms to extract semantically meaningful acoustic and visual events related to each of the participants in a group discussion using the example of business meeting recordings. The recording setup involves relatively few audio-visual sensors, comprising a limited number of cameras and microphones. We first demonstrate computationally efficient algorithms that can identify who spoke and when, a problem in speech processing known as speaker diarization. We also extract visual activity features efficiently from MPEG4 video by taking advantage of the processing that was already done for video compression. Then, we present a method of associating the audio-visual data together so that the content of each participant can be managed individually. The methods presented in this article can be used as a principal component that enables many higher-level semantic analysis tasks needed in search, retrieval, and navigation.
NASA Astrophysics Data System (ADS)
Chen, Gang; Yang, Bing; Zhang, Xiaoyun; Gao, Zhiyong
2017-07-01
The latest high efficiency video coding (HEVC) standard significantly increases the encoding complexity for improving its coding efficiency. Due to the limited computational capability of handheld devices, complexity constrained video coding has drawn great attention in recent years. A complexity control algorithm based on adaptive mode selection is proposed for interframe coding in HEVC. Considering the direct proportionality between encoding time and computational complexity, the computational complexity is measured in terms of encoding time. First, complexity is mapped to a target in terms of prediction modes. Then, an adaptive mode selection algorithm is proposed for the mode decision process. Specifically, the optimal mode combination scheme that is chosen through offline statistics is developed at low complexity. If the complexity budget has not been used up, an adaptive mode sorting method is employed to further improve coding efficiency. The experimental results show that the proposed algorithm achieves a very large complexity control range (as low as 10%) for the HEVC encoder while maintaining good rate-distortion performance. For the lowdelayP condition, compared with the direct resource allocation method and the state-of-the-art method, an average gain of 0.63 and 0.17 dB in BDPSNR is observed for 18 sequences when the target complexity is around 40%.
Manzone, Joseph; Heath, Matthew
2018-04-01
Reaching to a veridical target permits an egocentric spatial code (i.e., absolute limb and target position) to effect fast and effective online trajectory corrections supported via the visuomotor networks of the dorsal visual pathway. In contrast, a response entailing decoupled spatial relations between stimulus and response is thought to be primarily mediated via an allocentric code (i.e., the position of a target relative to another external cue) laid down by the visuoperceptual networks of the ventral visual pathway. Because the ventral stream renders a temporally durable percept, it is thought that an allocentric code does not support a primarily online mode of control, but instead supports a mode wherein a response is evoked largely in advance of movement onset via central planning mechanisms (i.e., offline control). Here, we examined whether reaches defined via ego- and allocentric visual coordinates are supported via distinct control modes (i.e., online versus offline). Participants performed target-directed and allocentric reaches in limb visible and limb-occluded conditions. Notably, in the allocentric task, participants reached to a location that matched the position of a target stimulus relative to a reference stimulus, and to examine online trajectory amendments, we computed the proportion of variance explained (i.e., R 2 values) by the spatial position of the limb at 75% of movement time relative to a response's ultimate movement endpoint. Target-directed trials performed with limb vision showed more online corrections and greater endpoint precision than their limb-occluded counterparts, which in turn were associated with performance metrics comparable to allocentric trials performed with and without limb vision. Accordingly, we propose that the absence of ego-motion cues (i.e., limb vision) and/or the specification of a response via an allocentric code renders motor output served via the 'slow' visuoperceptual networks of the ventral visual pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naqvi, S
2014-06-15
Purpose: Most medical physics programs emphasize proficiency in routine clinical calculations and QA. The formulaic aspect of these calculations and prescriptive nature of measurement protocols obviate the need to frequently apply basic physical principles, which, therefore, gradually decay away from memory. E.g. few students appreciate the role of electron transport in photon dose, making it difficult to understand key concepts such as dose buildup, electronic disequilibrium effects and Bragg-Gray theory. These conceptual deficiencies manifest when the physicist encounters a new system, requiring knowledge beyond routine activities. Methods: Two interactive computer simulation tools are developed to facilitate deeper learning of physicalmore » principles. One is a Monte Carlo code written with a strong educational aspect. The code can “label” regions and interactions to highlight specific aspects of the physics, e.g., certain regions can be designated as “starters” or “crossers,” and any interaction type can be turned on and off. Full 3D tracks with specific portions highlighted further enhance the visualization of radiation transport problems. The second code calculates and displays trajectories of a collection electrons under arbitrary space/time dependent Lorentz force using relativistic kinematics. Results: Using the Monte Carlo code, the student can interactively study photon and electron transport through visualization of dose components, particle tracks, and interaction types. The code can, for instance, be used to study kerma-dose relationship, explore electronic disequilibrium near interfaces, or visualize kernels by using interaction forcing. The electromagnetic simulator enables the student to explore accelerating mechanisms and particle optics in devices such as cyclotrons and linacs. Conclusion: The proposed tools are designed to enhance understanding of abstract concepts by highlighting various aspects of the physics. The simulations serve as virtual experiments that give deeper and long lasting understanding of core principles. The student can then make sound judgements in novel situations encountered beyond routine clinical activities.« less
NASA Astrophysics Data System (ADS)
Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka
2004-04-01
We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.
GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.
Groß, Lynn; Herrmann, Carmen
2016-09-30
Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Residential Building Energy Code Field Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Bartlett, M. Halverson, V. Mendon, J. Hathaway, Y. Xie
This document presents a methodology for assessing baseline energy efficiency in new single-family residential buildings and quantifying related savings potential. The approach was developed by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) Building Energy Codes Program with the objective of assisting states as they assess energy efficiency in residential buildings and implementation of their building energy codes, as well as to target areas for improvement through energy codes and broader energy-efficiency programs. It is also intended to facilitate a consistent and replicable approach to research studies of this type and establish a transparent data setmore » to represent baseline construction practices across U.S. states.« less
Schnabel, M; Mann, D; Efe, T; Schrappe, M; V Garrel, T; Gotzen, L; Schaeg, M
2004-10-01
The introduction of the German Diagnostic Related Groups (D-DRG) system requires redesigning administrative patient management strategies. Wrong coding leads to inaccurate grouping and endangers the reimbursement of treatment costs. This situation emphasizes the roles of documentation and coding as factors of economical success. The aims of this study were to assess the quantity and quality of initial documentation and coding (ICD-10 and OPS-301) and find operative strategies to improve efficiency and strategic means to ensure optimal documentation and coding quality. In a prospective study, documentation and coding quality were evaluated in a standardized way by weekly assessment. Clinical data from 1385 inpatients were processed for initial correctness and quality of documentation and coding. Principal diagnoses were found to be accurate in 82.7% of cases, inexact in 7.1%, and wrong in 10.1%. Effects on financial returns occurred in 16%. Based on these findings, an optimized, interdisciplinary, and multiprofessional workflow on medical documentation, coding, and data control was developed. Workflow incorporating regular assessment of documentation and coding quality is required by the DRG system to ensure efficient accounting of hospital services. Interdisciplinary and multiprofessional cooperation is recognized to be an important factor in establishing an efficient workflow in medical documentation and coding.
NASA Technical Reports Server (NTRS)
Lin, Shu (Principal Investigator); Uehara, Gregory T.; Nakamura, Eric; Chu, Cecilia W. P.
1996-01-01
The (64, 40, 8) subcode of the third-order Reed-Muller (RM) code for high-speed satellite communications is proposed. The RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. The progress made toward achieving the goal of implementing a decoder system based upon this code is summarized. The development of the integrated circuit prototype sub-trellis IC, particularly focusing on the design methodology, is addressed.
Using NJOY to Create MCNP ACE Files and Visualize Nuclear Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahler, Albert Comstock
We provide lecture materials that describe the input requirements to create various MCNP ACE files (Fast, Thermal, Dosimetry, Photo-nuclear and Photo-atomic) with the NJOY Nuclear Data Processing code system. Input instructions to visualize nuclear data with NJOY are also provided.
Repetition priming of face recognition in a serial choice reaction-time task.
Roberts, T; Bruce, V
1989-05-01
Marshall & Walker (1987) found that pictorial stimuli yield visual priming that is disrupted by an unpredictable visual event in the response-stimulus interval. They argue that visual stimuli are represented in memory in the form of distinct visual and object codes. Bruce & Young (1986) propose similar pictorial, structural and semantic codes which mediate the recognition of faces, yet repetition priming results obtained with faces as stimuli (Bruce & Valentine, 1985), and with objects (Warren & Morton, 1982) are quite different from those of Marshall & Walker (1987), in the sense that recognition is facilitated by pictures presented 20 minutes earlier. The experiment reported here used different views of familiar and unfamiliar faces as stimuli in a serial choice reaction-time task and found that, with identical pictures, repetition priming survives and intervening item requiring a response, with both familiar and unfamiliar faces. Furthermore, with familiar faces such priming was present even when the view of the prime was different from the target. The theoretical implications of these results are discussed.
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
MILAMIN 2 - Fast MATLAB FEM solver
NASA Astrophysics Data System (ADS)
Dabrowski, Marcin; Krotkiewski, Marcin; Schmid, Daniel W.
2013-04-01
MILAMIN is a free and efficient MATLAB-based two-dimensional FEM solver utilizing unstructured meshes [Dabrowski et al., G-cubed (2008)]. The code consists of steady-state thermal diffusion and incompressible Stokes flow solvers implemented in approximately 200 lines of native MATLAB code. The brevity makes the code easily customizable. An important quality of MILAMIN is speed - it can handle millions of nodes within minutes on one CPU core of a standard desktop computer, and is faster than many commercial solutions. The new MILAMIN 2 allows three-dimensional modeling. It is designed as a set of functional modules that can be used as building blocks for efficient FEM simulations using MATLAB. The utilities are largely implemented as native MATLAB functions. For performance critical parts we use MUTILS - a suite of compiled MEX functions optimized for shared memory multi-core computers. The most important features of MILAMIN 2 are: 1. Modular approach to defining, tracking, and discretizing the geometry of the model 2. Interfaces to external mesh generators (e.g., Triangle, Fade2d, T3D) and mesh utilities (e.g., element type conversion, fast point location, boundary extraction) 3. Efficient computation of the stiffness matrix for a wide range of element types, anisotropic materials and three-dimensional problems 4. Fast global matrix assembly using a dedicated MEX function 5. Automatic integration rules 6. Flexible prescription (spatial, temporal, and field functions) and efficient application of Dirichlet, Neuman, and periodic boundary conditions 7. Treatment of transient and non-linear problems 8. Various iterative and multi-level solution strategies 9. Post-processing tools (e.g., numerical integration) 10. Visualization primitives using MATLAB, and VTK export functions We provide a large number of examples that show how to implement a custom FEM solver using the MILAMIN 2 framework. The examples are MATLAB scripts of increasing complexity that address a given technical topic (e.g., creating meshes, reordering nodes, applying boundary conditions), a given numerical topic (e.g., using various solution strategies, non-linear iterations), or that present a fully-developed solver designed to address a scientific topic (e.g., performing Stokes flow simulations in synthetic porous medium). References: Dabrowski, M., M. Krotkiewski, and D. W. Schmid MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, 2008
Applications of just-noticeable depth difference model in joint multiview video plus depth coding
NASA Astrophysics Data System (ADS)
Liu, Chao; An, Ping; Zuo, Yifan; Zhang, Zhaoyang
2014-10-01
A new multiview just-noticeable-depth-difference(MJNDD) Model is presented and applied to compress the joint multiview video plus depth. Many video coding algorithms remove spatial and temporal redundancies and statistical redundancies but they are not capable of removing the perceptual redundancies. Since the final receptor of video is the human eyes, we can remove the perception redundancy to gain higher compression efficiency according to the properties of human visual system (HVS). Traditional just-noticeable-distortion (JND) model in pixel domain contains luminance contrast and spatial-temporal masking effects, which describes the perception redundancy quantitatively. Whereas HVS is very sensitive to depth information, a new multiview-just-noticeable-depth-difference(MJNDD) model is proposed by combining traditional JND model with just-noticeable-depth-difference (JNDD) model. The texture video is divided into background and foreground areas using depth information. Then different JND threshold values are assigned to these two parts. Later the MJNDD model is utilized to encode the texture video on JMVC. When encoding the depth video, JNDD model is applied to remove the block artifacts and protect the edges. Then we use VSRS3.5 (View Synthesis Reference Software) to generate the intermediate views. Experimental results show that our model can endure more noise and the compression efficiency is improved by 25.29 percent at average and by 54.06 percent at most compared to JMVC while maintaining the subject quality. Hence it can gain high compress ratio and low bit rate.
Efficient visual coding and the predictability of eye movements on natural movies.
Vig, Eleonora; Dorr, Michael; Barth, Erhardt
2009-01-01
We deal with the analysis of eye movements made on natural movies in free-viewing conditions. Saccades are detected and used to label two classes of movie patches as attended and non-attended. Machine learning techniques are then used to determine how well the two classes can be separated, i.e., how predictable saccade targets are. Although very simple saliency measures are used and then averaged to obtain just one average value per scale, the two classes can be separated with an ROC score of around 0.7, which is higher than previously reported results. Moreover, predictability is analysed for different representations to obtain indirect evidence for the likelihood of a particular representation. It is shown that the predictability correlates with the local intrinsic dimension in a movie.
The GeoClaw software for depth-averaged flows with adaptive refinement
Berger, M.J.; George, D.L.; LeVeque, R.J.; Mandli, Kyle T.
2011-01-01
Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude-longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Documentation and download information is available at www.clawpack.org/geoclaw. ?? 2011.
NASA Astrophysics Data System (ADS)
da Silva, Thaísa Leal; Agostini, Luciano Volcan; da Silva Cruz, Luis A.
2014-05-01
Intra prediction is a very important tool in current video coding standards. High-efficiency video coding (HEVC) intra prediction presents relevant gains in encoding efficiency when compared to previous standards, but with a very important increase in the computational complexity since 33 directional angular modes must be evaluated. Motivated by this high complexity, this article presents a complexity reduction algorithm developed to reduce the HEVC intra mode decision complexity targeting multiview videos. The proposed algorithm presents an efficient fast intra prediction compliant with singleview and multiview video encoding. This fast solution defines a reduced subset of intra directions according to the video texture and it exploits the relationship between prediction units (PUs) of neighbor depth levels of the coding tree. This fast intra coding procedure is used to develop an inter-view prediction method, which exploits the relationship between the intra mode directions of adjacent views to further accelerate the intra prediction process in multiview video encoding applications. When compared to HEVC simulcast, our method achieves a complexity reduction of up to 47.77%, at the cost of an average BD-PSNR loss of 0.08 dB.
Evaluation of the efficiency and fault density of software generated by code generators
NASA Technical Reports Server (NTRS)
Schreur, Barbara
1993-01-01
Flight computers and flight software are used for GN&C (guidance, navigation, and control), engine controllers, and avionics during missions. The software development requires the generation of a considerable amount of code. The engineers who generate the code make mistakes and the generation of a large body of code with high reliability requires considerable time. Computer-aided software engineering (CASE) tools are available which generates code automatically with inputs through graphical interfaces. These tools are referred to as code generators. In theory, code generators could write highly reliable code quickly and inexpensively. The various code generators offer different levels of reliability checking. Some check only the finished product while some allow checking of individual modules and combined sets of modules as well. Considering NASA's requirement for reliability, an in house manually generated code is needed. Furthermore, automatically generated code is reputed to be as efficient as the best manually generated code when executed. In house verification is warranted.
2015-01-01
class within Microsoft Visual Studio . 2 It has been tested on and is compatible with Microsoft Vista, 7, and 8 and Visual Studio Express 2008...the ScreenRecorder utility assumes a basic understanding of compiling and running C++ code within Microsoft Visual Studio . This report does not...of Microsoft Visual Studio , the ScreenRecorder utility was developed as a C++ class that can be compiled as a library (static or dynamic) to be
Securing information display by use of visual cryptography.
Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo
2003-09-01
We propose a secure display technique based on visual cryptography. The proposed technique ensures the security of visual information. The display employs a decoding mask based on visual cryptography. Without the decoding mask, the displayed information cannot be viewed. The viewing zone is limited by the decoding mask so that only one person can view the information. We have developed a set of encryption codes to maintain the designed viewing zone and have demonstrated a display that provides a limited viewing zone.
Tensoral for post-processing users and simulation authors
NASA Technical Reports Server (NTRS)
Dresselhaus, Eliot
1993-01-01
The CTR post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, which provides the foundation for this effort, is introduced here in the form of a user's guide. The Tensoral user's guide is presented in two main sections. Section one acts as a general introduction and guides database users who wish to post-process simulation databases. Section two gives a brief description of how database authors and other advanced users can make simulation codes and/or the databases they generate available to the user community via Tensoral database back ends. The two-part structure of this document conforms to the two-level design structure of the Tensoral language. Tensoral has been designed to be a general computer language for performing tensor calculus and statistics on numerical data. Tensoral's generality allows it to be used for stand-alone native coding of high-level post-processing tasks (as described in section one of this guide). At the same time, Tensoral's specialization to a minute task (namely, to numerical tensor calculus and statistics) allows it to be easily embedded into applications written partly in Tensoral and partly in other computer languages (here, C and Vectoral). Embedded Tensoral, aimed at advanced users for more general coding (e.g. of efficient simulations, for interfacing with pre-existing software, for visualization, etc.), is described in section two of this guide.
ogs6 - a new concept for porous-fractured media simulations
NASA Astrophysics Data System (ADS)
Naumov, Dmitri; Bilke, Lars; Fischer, Thomas; Rink, Karsten; Wang, Wenqing; Watanabe, Norihiro; Kolditz, Olaf
2015-04-01
OpenGeoSys (OGS) is a scientific open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THMC) processes in porous and fractured media, continuously developed since the mid-eighties. The basic concept is to provide a flexible numerical framework for solving coupled multi-field problems. OGS is targeting mainly on applications in environmental geoscience, e.g. in the fields of contaminant hydrology, water resources management, waste deposits, or geothermal energy systems, but it has also been successfully applied to new topics in energy storage recently. OGS is actively participating several international benchmarking initiatives, e.g. DECOVALEX (waste management), CO2BENCH (CO2 storage and sequestration), SeSBENCH (reactive transport processes) and HM-Intercomp (coupled hydrosystems). Despite the broad applicability of OGS in geo-, hydro- and energy-sciences, several shortcomings became obvious concerning the computational efficiency as well as the code structure became too sophisticated for further efficient development. OGS-5 was designed for object-oriented FEM applications. However, in many multi-field problems a certain flexibility of tailored numerical schemes is essential. Therefore, a new concept was designed to overcome existing bottlenecks. The paradigms for ogs6 are: - Flexibility of numerical schemes (FEM#FVM#FDM), - Computational efficiency (PetaScale ready), - Developer- and user-friendly. ogs6 has a module-oriented architecture based on thematic libraries (e.g. MeshLib, NumLib) on the large scale and uses object-oriented approach for the small scale interfaces. Usage of a linear algebra library (Eigen3) for the mathematical operations together with the ISO C++11 standard increases the expressiveness of the code and makes it more developer-friendly. The new C++ standard also makes the template meta-programming technique code used for compile-time optimizations more compact. We have transitioned the main code development to the GitHub code hosting system (https://github.com/ufz/ogs). The very flexible revision control system Git in combination with issue tracking, developer feedback and the code review options improve the code quality and the development process in general. The continuous testing procedure of the benchmarks as it was established for OGS-5 is maintained. Additionally unit testing, which is automatically triggered by any code changes, is executed by two continuous integration frameworks (Jenkins CI, Travis CI) which build and test the code on different operating systems (Windows, Linux, Mac OS), in multiple configurations and with different compilers (GCC, Clang, Visual Studio). To improve the testing possibilities further, XML based file input formats are introduced helping with automatic validation of the user contributed benchmarks. The first ogs6 prototype version 6.0.1 has been implemented for solving generic elliptic problems. Next steps are envisaged to transient, non-linear and coupled problems. Literature: [1] Kolditz O, Shao H, Wang W, Bauer S (eds) (2014): Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking - Closed Form Solutions. In: Terrestrial Environmental Sciences, Vol. 1, Springer, Heidelberg, ISBN 978-3-319-11893-2, 315pp. http://www.springer.com/earth+sciences+and+geography/geology/book/978-3-319-11893-2 [2] Naumov D (2015): Computational Fluid Dynamics in Unconsolidated Sediments: Model Generation and Discrete Flow Simulations, PhD thesis, Technische Universität Dresden.
Constructing graph models for software system development and analysis
NASA Astrophysics Data System (ADS)
Pogrebnoy, Andrey V.
2017-01-01
We propose a concept for creating the instrumentation for functional and structural decisions rationale during the software system (SS) development. We propose to develop SS simultaneously on two models - functional (FM) and structural (SM). FM is a source code of the SS. Adequate representation of the FM in the form of a graph model (GM) is made automatically and called SM. The problem of creating and visualizing GM is considered from the point of applying it as a uniform platform for the adequate representation of the SS source code. We propose three levels of GM detailing: GM1 - for visual analysis of the source code and for SS version control, GM2 - for resources optimization and analysis of connections between SS components, GM3 - for analysis of the SS functioning in dynamics. The paper includes examples of constructing all levels of GM.
New procedures to evaluate visually lossless compression for display systems
NASA Astrophysics Data System (ADS)
Stolitzka, Dale F.; Schelkens, Peter; Bruylants, Tim
2017-09-01
Visually lossless image coding in isochronous display streaming or plesiochronous networks reduces link complexity and power consumption and increases available link bandwidth. A new set of codecs developed within the last four years promise a new level of coding quality, but require new techniques that are sufficiently sensitive to the small artifacts or color variations induced by this new breed of codecs. This paper begins with a summary of the new ISO/IEC 29170-2, a procedure for evaluation of lossless coding and reports the new work by JPEG to extend the procedure in two important ways, for HDR content and for evaluating the differences between still images, panning images and image sequences. ISO/IEC 29170-2 relies on processing test images through a well-defined process chain for subjective, forced-choice psychophysical experiments. The procedure sets an acceptable quality level equal to one just noticeable difference. Traditional image and video coding evaluation techniques, such as, those used for television evaluation have not proven sufficiently sensitive to the small artifacts that may be induced by this breed of codecs. In 2015, JPEG received new requirements to expand evaluation of visually lossless coding for high dynamic range images, slowly moving images, i.e., panning, and image sequences. These requirements are the basis for new amendments of the ISO/IEC 29170-2 procedures described in this paper. These amendments promise to be highly useful for the new content in television and cinema mezzanine networks. The amendments passed the final ballot in April 2017 and are on track to be published in 2018.
Efficient Prediction Structures for H.264 Multi View Coding Using Temporal Scalability
NASA Astrophysics Data System (ADS)
Guruvareddiar, Palanivel; Joseph, Biju K.
2014-03-01
Prediction structures with "disposable view components based" hierarchical coding have been proven to be efficient for H.264 multi view coding. Though these prediction structures along with the QP cascading schemes provide superior compression efficiency when compared to the traditional IBBP coding scheme, the temporal scalability requirements of the bit stream could not be met to the fullest. On the other hand, a fully scalable bit stream, obtained by "temporal identifier based" hierarchical coding, provides a number of advantages including bit rate adaptations and improved error resilience, but lacks in compression efficiency when compared to the former scheme. In this paper it is proposed to combine the two approaches such that a fully scalable bit stream could be realized with minimal reduction in compression efficiency when compared to state-of-the-art "disposable view components based" hierarchical coding. Simulation results shows that the proposed method enables full temporal scalability with maximum BDPSNR reduction of only 0.34 dB. A novel method also has been proposed for the identification of temporal identifier for the legacy H.264/AVC base layer packets. Simulation results also show that this enables the scenario where the enhancement views could be extracted at a lower frame rate (1/2nd or 1/4th of base view) with average extraction time for a view component of only 0.38 ms.
NASA Astrophysics Data System (ADS)
Chen, Zhenzhong; Han, Junwei; Ngan, King Ngi
2005-10-01
MPEG-4 treats a scene as a composition of several objects or so-called video object planes (VOPs) that are separately encoded and decoded. Such a flexible video coding framework makes it possible to code different video object with different distortion scale. It is necessary to analyze the priority of the video objects according to its semantic importance, intrinsic properties and psycho-visual characteristics such that the bit budget can be distributed properly to video objects to improve the perceptual quality of the compressed video. This paper aims to provide an automatic video object priority definition method based on object-level visual attention model and further propose an optimization framework for video object bit allocation. One significant contribution of this work is that the human visual system characteristics are incorporated into the video coding optimization process. Another advantage is that the priority of the video object can be obtained automatically instead of fixing weighting factors before encoding or relying on the user interactivity. To evaluate the performance of the proposed approach, we compare it with traditional verification model bit allocation and the optimal multiple video object bit allocation algorithms. Comparing with traditional bit allocation algorithms, the objective quality of the object with higher priority is significantly improved under this framework. These results demonstrate the usefulness of this unsupervised subjective quality lifting framework.
Morikawa, Naoki; Tanaka, Toshihisa; Islam, Md Rabiul
2018-07-01
Mixed frequency and phase coding (FPC) can achieve the significant increase of the number of commands in steady-state visual evoked potential-based brain-computer interface (SSVEP-BCI). However, the inconsistent phases of the SSVEP over channels in a trial and the existence of non-contributing channels due to noise effects can decrease accurate detection of stimulus frequency. We propose a novel command detection method based on a complex sparse spatial filter (CSSF) by solving ℓ 1 - and ℓ 2,1 -regularization problems for a mixed-coded SSVEP-BCI. In particular, ℓ 2,1 -regularization (aka group sparsification) can lead to the rejection of electrodes that are not contributing to the SSVEP detection. A calibration data based canonical correlation analysis (CCA) and CSSF with ℓ 1 - and ℓ 2,1 -regularization cases were demonstrated for a 16-target stimuli with eleven subjects. The results of statistical test suggest that the proposed method with ℓ 1 - and ℓ 2,1 -regularization significantly achieved the highest ITR. The proposed approaches do not need any reference signals, automatically select prominent channels, and reduce the computational cost compared to the other mixed frequency-phase coding (FPC)-based BCIs. The experimental results suggested that the proposed method can be usable implementing BCI effectively with reduce visual fatigue. Copyright © 2018 Elsevier B.V. All rights reserved.
Symbol processing in the left angular gyrus: evidence from passive perception of digits.
Price, Gavin R; Ansari, Daniel
2011-08-01
Arabic digits are one of the most ubiquitous symbol sets in the world. While there have been many investigations into the neural processing of the semantic information digits represent (e.g. through numerical comparison tasks), little is known about the neural mechanisms which support the processing of digits as visual symbols. To characterise the component neurocognitive mechanisms which underlie numerical cognition, it is essential to understand the processing of digits as a visual category, independent of numerical magnitude processing. The 'Triple Code Model' (Dehaene, 1992; Dehaene and Cohen, 1995) posits an asemantic visual code for processing Arabic digits in the ventral visual stream, yet there is currently little empirical evidence in support of this code. This outstanding question was addressed in the current functional Magnetic Resonance (fMRI) study by contrasting brain responses during the passive viewing of digits versus letters and novel symbols at short (50 ms) and long (500 ms) presentation times. The results of this study reveal increased activation for familiar symbols (digits and letters) relative to unfamiliar symbols (scrambled digits and letters) at long presentation durations in the left dorsal Angular gyrus (dAG). Furthermore, increased activation for Arabic digits was observed in the left ventral Angular gyrus (vAG) in comparison to letters, scrambled digits and scrambled letters at long presentation durations, but no digit specific activation in any region at short presentation durations. These results suggest an absence of a digit specific 'Visual Number Form Area' (VNFA) in the ventral visual cortex, and provide evidence for the role of the left ventral AG during the processing of digits in the absence of any explicit processing demands. We conclude that Arabic digit processing depends specifically on the left AG rather than a ventral visual stream VNFA. Copyright © 2011 Elsevier Inc. All rights reserved.
Levels of Syntactic Realization in Oral Reading.
ERIC Educational Resources Information Center
Brown, Eric
Two contrasting theories of reading are reviewed in light of recent research in psycholinguistics. A strictly "visual" model of fluent reading is contrasted with several mediational theories where auditory or articulatory coding is deemed necessary for comprehension. Surveying the research in visual information processing, oral reading,…
Exploring the Engagement Effects of Visual Programming Language for Data Structure Courses
ERIC Educational Resources Information Center
Chang, Chih-Kai; Yang, Ya-Fei; Tsai, Yu-Tzu
2017-01-01
Previous research indicates that understanding the state of learning motivation enables researchers to deeply understand students' learning processes. Studies have shown that visual programming languages use graphical code, enabling learners to learn effectively, improve learning effectiveness, increase learning fun, and offering various other…
Spatiotopic coding during dynamic head tilt
Turi, Marco; Burr, David C.
2016-01-01
Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636
An object-based visual attention model for robotic applications.
Yu, Yuanlong; Mann, George K I; Gosine, Raymond G
2010-10-01
By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.
Young children's coding and storage of visual and verbal material.
Perlmutter, M; Myers, N A
1975-03-01
36 preschool children (mean age 4.2 years) were each tested on 3 recognition memory lists differing in test mode (visual only, verbal only, combined visual-verbal). For one-third of the children, original list presentation was visual only, for another third, presentation was verbal only, and the final third received combined visual-verbal presentation. The subjects generally performed at a high level of correct responding. Verbal-only presentation resulted in less correct recognition than did either visual-only or combined visual-verbal presentation. However, because performances under both visual-only and combined visual-verbal presentation were statistically comparable, and a high level of spontaneous labeling was observed when items were presented only visually, a dual-processing conceptualization of memory in 4-year-olds was suggested.
Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream
Egner, Tobias; Monti, Jim M.; Summerfield, Christopher
2014-01-01
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999
Contour Curvature As an Invariant Code for Objects in Visual Area V4
Pasupathy, Anitha
2016-01-01
Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biological and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons (∼70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demonstrate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a foundation for behaviorally relevant object codes. SIGNIFICANCE STATEMENT Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first empirical support for this hypothesis, and its instantiation in single neurons of visual area V4. PMID:27194333
Virtual Engineering and Science Team - Reusable Autonomy for Spacecraft Subsystems
NASA Technical Reports Server (NTRS)
Bailin, Sidney C.; Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Thompson, Bryan; Day, John H. (Technical Monitor)
2002-01-01
In this paper we address the design, development, and evaluation of the Virtual Engineering and Science Team (VEST) tool - a revolutionary way to achieve onboard subsystem/instrument autonomy. VEST directly addresses the technology needed for advanced autonomy enablers for spacecraft subsystems. It will significantly support the efficient and cost effective realization of on-board autonomy and contribute directly to realizing the concept of an intelligent autonomous spacecraft. VEST will support the evolution of a subsystem/instrument model that is probably correct and from that model the automatic generation of the code needed to support the autonomous operation of what was modeled. VEST will directly support the integration of the efforts of engineers, scientists, and software technologists. This integration of efforts will be a significant advancement over the way things are currently accomplished. The model, developed through the use of VEST, will be the basis for the physical construction of the subsystem/instrument and the generated code will support its autonomous operation once in space. The close coupling between the model and the code, in the same tool environment, will help ensure that correct and reliable operational control of the subsystem/instrument is achieved.VEST will provide a thoroughly modern interface that will allow users to easily and intuitively input subsystem/instrument requirements and visually get back the system's reaction to the correctness and compatibility of the inputs as the model evolves. User interface/interaction, logic, theorem proving, rule-based and model-based reasoning, and automatic code generation are some of the basic technologies that will be brought into play in realizing VEST.
SIGNUM: A Matlab, TIN-based landscape evolution model
NASA Astrophysics Data System (ADS)
Refice, A.; Giachetta, E.; Capolongo, D.
2012-08-01
Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.
Simple Simulation Algorithms and Sample Applications
NASA Astrophysics Data System (ADS)
Kröger, Martin
This section offers basic recipes and sample applications which allow the reader to immediately start his/her own simulation project on topics we dealt with in this book. Concerning molecular dynamics and Monte Carlo simulation there are, of course, several useful books already available which describe the ‘art of simulation‘ [141, 156, 256] in an exhaustive way. The reason we print some simple codes is that we skipped algorithmic details in the foregoing chapters. Simulations are always performed using dimensionless numbers, and all dimensional quantities can be expressed in terms of reduced units, cf. Sect. 4.3 for conventional Lennard Jones units. In this chapter, we concentrate on the necessary, and skip anything more sophisticated. Codes have been used in classrooms, they are obviously open for modifications and extensions, and offer not only an executable, but all necessary formulas for doing simulations in the correct (which is often essential) order. The overall spirit is as follows: codes are short, run without changes, demonstrate the main principle in a modular fashion, and are thus in particular open regarding efficiency issues and extensions. Algorithms are presented in the MatlabTM language, which is mostly directly portable to programming languages like fortran, c, or MathematicaTM. For an introduction we refer to [423]. Additional commands needed to visualize the results are given in the figure title for each application. Simulation codes, in a less modular fashion, are also available online at www.complexfluids.ethz.ch. Functions are shared over sections, for that reason we begin with an alphabetic list of all (nonbuiltin) functions in this chapter.
Project MANTIS: A MANTle Induction Simulator for coupling geodynamic and electromagnetic modeling
NASA Astrophysics Data System (ADS)
Weiss, C. J.
2009-12-01
A key component to testing geodynamic hypotheses resulting from the 3D mantle convection simulations is the ability to easily translate the predicted physiochemical state to the model space relevant for an independent geophysical observation, such as earth's seismic, geodetic or electromagnetic response. In this contribution a new parallel code for simulating low-frequency, global-scale electromagnetic induction phenomena is introduced that has the same Earth discretization as the popular CitcomS mantle convection code. Hence, projection of the CitcomS model into the model space of electrical conductivity is greatly simplified, and focuses solely on the node-to-node, physics-based relationship between these Earth parameters without the need for "upscaling", "downscaling", averaging or harmonizing with some other model basis such as spherical harmonics. Preliminary performance tests of the MANTIS code on shared and distributed memory parallel compute platforms shows favorable scaling (>70% efficiency) for up to 500 processors. As with CitcomS, an OpenDX visualization widget (VISMAN) is also provided for 3D rendering and interactive interrogation of model results. Details of the MANTIS code will be briefly discussed here, focusing on compatibility with CitcomS modeling, as will be preliminary results in which the electromagnetic response of a CitcomS model is evaluated. VISMAN rendering of electrical tomography-derived electrical conductivity model overlain by an a 1x1 deg crustal conductivity map. Grey scale represents the log_10 magnitude of conductivity [S/m]. Arrows are horiztonal components of a hypothetical magnetospheric source field used to electromagnetically excite the conductivity model.
Coding efficiency of AVS 2.0 for CBAC and CABAC engines
NASA Astrophysics Data System (ADS)
Cui, Jing; Choi, Youngkyu; Chae, Soo-Ik
2015-12-01
In this paper we compare the coding efficiency of AVS 2.0[1] for engines of the Context-based Binary Arithmetic Coding (CBAC)[2] in the AVS 2.0 and the Context-Adaptive Binary Arithmetic Coder (CABAC)[3] in the HEVC[4]. For fair comparison, the CABAC is embedded in the reference code RD10.1 because the CBAC is in the HEVC in our previous work[5]. The rate estimation table is employed only for RDOQ in the RD code. To reduce the computation complexity of the video encoder, therefore we modified the RD code so that the rate estimation table is employed for all RDO decision. Furthermore, we also simplify the complexity of rate estimation table by reducing the bit depth of its fractional part to 2 from 8. The simulation result shows that the CABAC has the BD-rate loss of about 0.7% compared to the CBAC. It seems that the CBAC is a little more efficient than that the CABAC in the AVS 2.0.
Efficient Network Coding-Based Loss Recovery for Reliable Multicast in Wireless Networks
NASA Astrophysics Data System (ADS)
Chi, Kaikai; Jiang, Xiaohong; Ye, Baoliu; Horiguchi, Susumu
Recently, network coding has been applied to the loss recovery of reliable multicast in wireless networks [19], where multiple lost packets are XOR-ed together as one packet and forwarded via single retransmission, resulting in a significant reduction of bandwidth consumption. In this paper, we first prove that maximizing the number of lost packets for XOR-ing, which is the key part of the available network coding-based reliable multicast schemes, is actually a complex NP-complete problem. To address this limitation, we then propose an efficient heuristic algorithm for finding an approximately optimal solution of this optimization problem. Furthermore, we show that the packet coding principle of maximizing the number of lost packets for XOR-ing sometimes cannot fully exploit the potential coding opportunities, and we then further propose new heuristic-based schemes with a new coding principle. Simulation results demonstrate that the heuristic-based schemes have very low computational complexity and can achieve almost the same transmission efficiency as the current coding-based high-complexity schemes. Furthermore, the heuristic-based schemes with the new coding principle not only have very low complexity, but also slightly outperform the current high-complexity ones.
Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2016-01-01
The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T-G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T-G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T-G delay codes to a "pure" G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory-memory-motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation.
Huang, Liqiang
2015-05-01
Basic visual features (e.g., color, orientation) are assumed to be processed in the same general way across different visual tasks. Here, a significant deviation from this assumption was predicted on the basis of the analysis of stimulus spatial structure, as characterized by the Boolean-map notion. If a task requires memorizing the orientations of a set of bars, then the map consisting of those bars can be readily used to hold the overall structure in memory and will thus be especially useful. If the task requires visual search for a target, then the map, which contains only an overall structure, will be of little use. Supporting these predictions, the present study demonstrated that in comparison to stimulus colors, bar orientations were processed more efficiently in change-detection tasks but less efficiently in visual search tasks (Cohen's d = 4.24). In addition to offering support for the role of the Boolean map in conscious access, the present work also throws doubts on the generality of processing visual features. © The Author(s) 2015.
Coded excitation ultrasonic needle tracking: An in vivo study.
Xia, Wenfeng; Ginsberg, Yuval; West, Simeon J; Nikitichev, Daniil I; Ourselin, Sebastien; David, Anna L; Desjardins, Adrien E
2016-07-01
Accurate and efficient guidance of medical devices to procedural targets lies at the heart of interventional procedures. Ultrasound imaging is commonly used for device guidance, but determining the location of the device tip can be challenging. Various methods have been proposed to track medical devices during ultrasound-guided procedures, but widespread clinical adoption has remained elusive. With ultrasonic tracking, the location of a medical device is determined by ultrasonic communication between the ultrasound imaging probe and a transducer integrated into the medical device. The signal-to-noise ratio (SNR) of the transducer data is an important determinant of the depth in tissue at which tracking can be performed. In this paper, the authors present a new generation of ultrasonic tracking in which coded excitation is used to improve the SNR without spatial averaging. A fiber optic hydrophone was integrated into the cannula of a 20 gauge insertion needle. This transducer received transmissions from the ultrasound imaging probe, and the data were processed to obtain a tracking image of the needle tip. Excitation using Barker or Golay codes was performed to improve the SNR, and conventional bipolar excitation was performed for comparison. The performance of the coded excitation ultrasonic tracking system was evaluated in an in vivo ovine model with insertions to the brachial plexus and the uterine cavity. Coded excitation significantly increased the SNRs of the tracking images, as compared with bipolar excitation. During an insertion to the brachial plexus, the SNR was increased by factors of 3.5 for Barker coding and 7.1 for Golay coding. During insertions into the uterine cavity, these factors ranged from 2.9 to 4.2 for Barker coding and 5.4 to 8.5 for Golay coding. The maximum SNR was 670, which was obtained with Golay coding during needle withdrawal from the brachial plexus. Range sidelobe artifacts were observed in tracking images obtained with Barker coded excitation, and they were visually absent with Golay coded excitation. The spatial tracking accuracy was unaffected by coded excitation. Coded excitation is a viable method for improving the SNR in ultrasonic tracking without compromising spatial accuracy. This method provided SNR increases that are consistent with theoretical expectations, even in the presence of physiological motion. With the ultrasonic tracking system in this study, the SNR increases will have direct clinical implications in a broad range of interventional procedures by improving visibility of medical devices at large depths.
Bola, Łukasz; Radziun, Dominika; Siuda-Krzywicka, Katarzyna; Sowa, Joanna E.; Paplińska, Małgorzata; Sumera, Ewa; Szwed, Marcin
2017-01-01
It has been hypothesized that efficient reading is possible because all reading scripts have been matched, through cultural evolution, to the natural capabilities of the visual cortex. This matching has resulted in all scripts being made of line-junctions, such as T, X, or L. Our aim was to test a critical prediction of this hypothesis: visual reading in an atypical script that is devoid of line-junctions (such as the Braille alphabet read visually) should be much less efficient than reading in a “normal” script (e.g., Cyrillic). Using a lexical decision task, we examined Visual Braille reading speed and efficiency in sighted Braille teachers. As a control, we tested learners of a natural visual script, Cyrillic. Both groups participated in a two semester course of either visual Braille or Russian while their reading speed and accuracy was tested at regular intervals. The results show that visual Braille reading is slow, prone to errors and highly serial, even in Braille readers with years of prior reading experience. Although subjects showed some improvements in their visual Braille reading accuracy and speed following the course, the effect of word length on reading speed (typically observed in beginning readers) was remained very sizeable through all testing sessions. These results are in stark contrast to Cyrillic, a natural script, where only 3 months of learning were sufficient to achieve relative proficiency. Taken together, these results suggest that visual features such as line junctions and their combinations might be necessary for efficient reading. PMID:28421027
Bola, Łukasz; Radziun, Dominika; Siuda-Krzywicka, Katarzyna; Sowa, Joanna E; Paplińska, Małgorzata; Sumera, Ewa; Szwed, Marcin
2017-01-01
It has been hypothesized that efficient reading is possible because all reading scripts have been matched, through cultural evolution, to the natural capabilities of the visual cortex. This matching has resulted in all scripts being made of line-junctions, such as T, X, or L. Our aim was to test a critical prediction of this hypothesis: visual reading in an atypical script that is devoid of line-junctions (such as the Braille alphabet read visually) should be much less efficient than reading in a "normal" script (e.g., Cyrillic). Using a lexical decision task, we examined Visual Braille reading speed and efficiency in sighted Braille teachers. As a control, we tested learners of a natural visual script, Cyrillic. Both groups participated in a two semester course of either visual Braille or Russian while their reading speed and accuracy was tested at regular intervals. The results show that visual Braille reading is slow, prone to errors and highly serial, even in Braille readers with years of prior reading experience. Although subjects showed some improvements in their visual Braille reading accuracy and speed following the course, the effect of word length on reading speed (typically observed in beginning readers) was remained very sizeable through all testing sessions. These results are in stark contrast to Cyrillic, a natural script, where only 3 months of learning were sufficient to achieve relative proficiency. Taken together, these results suggest that visual features such as line junctions and their combinations might be necessary for efficient reading.
Applications of CFD and visualization techniques
NASA Technical Reports Server (NTRS)
Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.
1992-01-01
In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.
Denman, Daniel J; Contreras, Diego
2014-10-01
Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Visualization Co-Processing of a CFD Simulation
NASA Technical Reports Server (NTRS)
Vaziri, Arsi
1999-01-01
OVERFLOW, a widely used CFD simulation code, is combined with a visualization system, pV3, to experiment with an environment for simulation/visualization co-processing on a SGI Origin 2000 computer(O2K) system. The shared memory version of the solver is used with the O2K 'pfa' preprocessor invoked to automatically discover parallelism in the source code. No other explicit parallelism is enabled. In order to study the scaling and performance of the visualization co-processing system, sample runs are made with different processor groups in the range of 1 to 254 processors. The data exchange between the visualization system and the simulation system is rapid enough for user interactivity when the problem size is small. This shared memory version of OVERFLOW, with minimal parallelization, does not scale well to an increasing number of available processors. The visualization task takes about 18 to 30% of the total processing time and does not appear to be a major contributor to the poor scaling. Improper load balancing and inter-processor communication overhead are contributors to this poor performance. Work is in progress which is aimed at obtaining improved parallel performance of the solver and removing the limitations of serial data transfer to pV3 by examining various parallelization/communication strategies, including the use of the explicit message passing.
Illusory motion reversal is caused by rivalry, not by perceptual snapshots of the visual field.
Kline, Keith; Holcombe, Alex O; Eagleman, David M
2004-10-01
In stroboscopic conditions--such as motion pictures--rotating objects may appear to rotate in the reverse direction due to under-sampling (aliasing). A seemingly similar phenomenon occurs in constant sunlight, which has been taken as evidence that the visual system processes discrete "snapshots" of the outside world. But if snapshots are indeed taken of the visual field, then when a rotating drum appears to transiently reverse direction, its mirror image should always appeared to reverse direction simultaneously. Contrary to this hypothesis, we found that when observers watched a rotating drum and its mirror image, almost all illusory motion reversals occurred for only one image at a time. This result indicates that the motion reversal illusion cannot be explained by snapshots of the visual field. The same result is found when the two images are presented within one visual hemifield, further ruling out the possibility that discrete sampling of the visual field occurs separately in each hemisphere. The frequency distribution of illusory reversal durations approximates a gamma distribution, suggesting perceptual rivalry as a better explanation for illusory motion reversal. After adaptation of motion detectors coding for the correct direction, the activity of motion-sensitive neurons coding for motion in the reverse direction may intermittently become dominant and drive the perception of motion.
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Papadakis, Michael
2005-01-01
Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.
Sparse/DCT (S/DCT) two-layered representation of prediction residuals for video coding.
Kang, Je-Won; Gabbouj, Moncef; Kuo, C-C Jay
2013-07-01
In this paper, we propose a cascaded sparse/DCT (S/DCT) two-layer representation of prediction residuals, and implement this idea on top of the state-of-the-art high efficiency video coding (HEVC) standard. First, a dictionary is adaptively trained to contain featured patterns of residual signals so that a high portion of energy in a structured residual can be efficiently coded via sparse coding. It is observed that the sparse representation alone is less effective in the R-D performance due to the side information overhead at higher bit rates. To overcome this problem, the DCT representation is cascaded at the second stage. It is applied to the remaining signal to improve coding efficiency. The two representations successfully complement each other. It is demonstrated by experimental results that the proposed algorithm outperforms the HEVC reference codec HM5.0 in the Common Test Condition.
An efficient HZETRN (a galactic cosmic ray transport code)
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.
1992-01-01
An accurate and efficient engineering code for analyzing the shielding requirements against the high-energy galactic heavy ions is needed. The HZETRN is a deterministic code developed at Langley Research Center that is constantly under improvement both in physics and numerical computation and is targeted for such use. One problem area connected with the space-marching technique used in this code is the propagation of the local truncation error. By improving the numerical algorithms for interpolation, integration, and grid distribution formula, the efficiency of the code is increased by a factor of eight as the number of energy grid points is reduced. The numerical accuracy of better than 2 percent for a shield thickness of 150 g/cm(exp 2) is found when a 45 point energy grid is used. The propagating step size, which is related to the perturbation theory, is also reevaluated.
A concatenated coding scheme for error control
NASA Technical Reports Server (NTRS)
Kasami, T.; Fujiwara, T.; Lin, S.
1986-01-01
In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.
Visual and Auditory Memory: Relationships to Reading Achievement.
ERIC Educational Resources Information Center
Bruning, Roger H.; And Others
1978-01-01
Good and poor readers' visual and auditory memory were tested. No group differences existed for single mode presentation in recognition frequency or latency. With multimodal presentation, good readers had faster latencies. Dual coding and self-terminating memory search hypotheses were supported. Implications for the reading process and reading…
Educating "The Simpsons": Teaching Queer Representations in Contemporary Visual Media
ERIC Educational Resources Information Center
Padva, Gilad
2008-01-01
This article analyzes queer representation in contemporary visual media and examines how the episode "Homer's Phobia" from Matt Groening's animation series "The Simpsons" can be used to deconstruct hetero- and homo-sexual codes of behavior, socialization, articulation, representation and visibility. The analysis is contextualized in the…
A String Search Marketing Application Using Visual Programming
ERIC Educational Resources Information Center
Chin, Jerry M.; Chin, Mary H.; Van Landuyt, Cathryn
2013-01-01
This paper demonstrates the use of programing software that provides the student programmer visual cues to construct the code to a student programming assignment. This method does not disregard or minimize the syntax or required logical constructs. The student can concentrate more on the logic and less on the language itself.
Object-processing neural efficiency differentiates object from spatial visualizers.
Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria
2008-11-19
The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.
Fast ITTBC using pattern code on subband segmentation
NASA Astrophysics Data System (ADS)
Koh, Sung S.; Kim, Hanchil; Lee, Kooyoung; Kim, Hongbin; Jeong, Hun; Cho, Gangseok; Kim, Chunghwa
2000-06-01
Iterated Transformation Theory-Based Coding suffers from very high computational complexity in encoding phase. This is due to its exhaustive search. In this paper, our proposed image coding algorithm preprocess an original image to subband segmentation image by wavelet transform before image coding to reduce encoding complexity. A similar block is searched by using the 24 block pattern codes which are coded by the edge information in the image block on the domain pool of the subband segmentation. As a result, numerical data shows that the encoding time of the proposed coding method can be reduced to 98.82% of that of Joaquin's method, while the loss in quality relative to the Jacquin's is about 0.28 dB in PSNR, which is visually negligible.
Stekelenburg, Jeroen J; Vroomen, Jean
2012-01-01
In many natural audiovisual events (e.g., a clap of the two hands), the visual signal precedes the sound and thus allows observers to predict when, where, and which sound will occur. Previous studies have reported that there are distinct neural correlates of temporal (when) versus phonetic/semantic (which) content on audiovisual integration. Here we examined the effect of visual prediction of auditory location (where) in audiovisual biological motion stimuli by varying the spatial congruency between the auditory and visual parts. Visual stimuli were presented centrally, whereas auditory stimuli were presented either centrally or at 90° azimuth. Typical sub-additive amplitude reductions (AV - V < A) were found for the auditory N1 and P2 for spatially congruent and incongruent conditions. The new finding is that this N1 suppression was greater for the spatially congruent stimuli. A very early audiovisual interaction was also found at 40-60 ms (P50) in the spatially congruent condition, while no effect of congruency was found on the suppression of the P2. This indicates that visual prediction of auditory location can be coded very early in auditory processing.
NASA Technical Reports Server (NTRS)
Bonhaus, Daryl L.; Wornom, Stephen F.
1991-01-01
Two codes which solve the 3-D Thin Layer Navier-Stokes (TLNS) equations are used to compute the steady state flow for two test cases representing typical finite wings at transonic conditions. Several grids of C-O topology and varying point densities are used to determine the effects of grid refinement. After a description of each code and test case, standards for determining code efficiency and accuracy are defined and applied to determine the relative performance of the two codes in predicting turbulent transonic wing flows. Comparisons of computed surface pressure distributions with experimental data are made.
Advanced technology development for image gathering, coding, and processing
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.
1990-01-01
Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.
Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data
NASA Technical Reports Server (NTRS)
Baxes, Gregory; Mixon, Brian; Linger, TIm
2013-01-01
Web-based geospatial client applications such as Google Earth and NASA World Wind must listen to data requests, access appropriate stored data, and compile a data response to the requesting client application. This process occurs repeatedly to support multiple client requests and application instances. Newer Web-based geospatial clients also provide user-interactive functionality that is dependent on fast and efficient server responses. With massively large datasets, server-client interaction can become severely impeded because the server must determine the best way to assemble data to meet the client applications request. In client applications such as Google Earth, the user interactively wanders through the data using visually guided panning and zooming actions. With these actions, the client application is continually issuing data requests to the server without knowledge of the server s data structure or extraction/assembly paradigm. A method for efficiently controlling the networked access of a Web-based geospatial browser to server-based datasets in particular, massively sized datasets has been developed. The method specifically uses the Keyhole Markup Language (KML), an Open Geospatial Consortium (OGS) standard used by Google Earth and other KML-compliant geospatial client applications. The innovation is based on establishing a dynamic cascading KML strategy that is initiated by a KML launch file provided by a data server host to a Google Earth or similar KMLcompliant geospatial client application user. Upon execution, the launch KML code issues a request for image data covering an initial geographic region. The server responds with the requested data along with subsequent dynamically generated KML code that directs the client application to make follow-on requests for higher level of detail (LOD) imagery to replace the initial imagery as the user navigates into the dataset. The approach provides an efficient data traversal path and mechanism that can be flexibly established for any dataset regardless of size or other characteristics. The method yields significant improvements in userinteractive geospatial client and data server interaction and associated network bandwidth requirements. The innovation uses a C- or PHP-code-like grammar that provides a high degree of processing flexibility. A set of language lexer and parser elements is provided that offers a complete language grammar for writing and executing language directives. A script is wrapped and passed to the geospatial data server by a client application as a component of a standard KML-compliant statement. The approach provides an efficient means for a geospatial client application to request server preprocessing of data prior to client delivery. Data is structured in a quadtree format. As the user zooms into the dataset, geographic regions are subdivided into four child regions. Conversely, as the user zooms out, four child regions collapse into a single, lower-LOD region. The approach provides an efficient data traversal path and mechanism that can be flexibly established for any dataset regardless of size or other characteristics.
Visual Information Processing for Television and Telerobotics
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Park, Stephen K. (Editor)
1989-01-01
This publication is a compilation of the papers presented at the NASA conference on Visual Information Processing for Television and Telerobotics. The conference was held at the Williamsburg Hilton, Williamsburg, Virginia on May 10 to 12, 1989. The conference was sponsored jointly by NASA Offices of Aeronautics and Space Technology (OAST) and Space Science and Applications (OSSA) and the NASA Langley Research Center. The presentations were grouped into three sessions: Image Gathering, Coding, and Advanced Concepts; Systems; and Technologies. The program was organized to provide a forum in which researchers from industry, universities, and government could be brought together to discuss the state of knowledge in image gathering, coding, and processing methods.
Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human
Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba
2014-01-01
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777
Comprehensive reconstruction and visualization of non-coding regulatory networks in human.
Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba
2014-01-01
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.
Lundqvist, Daniel; Bruce, Neil; Öhman, Arne
2015-01-01
In this article, we examine how emotional and perceptual stimulus factors influence visual search efficiency. In an initial task, we run a visual search task, using a large number of target/distractor emotion combinations. In two subsequent tasks, we then assess measures of perceptual (rated and computational distances) and emotional (rated valence, arousal and potency) stimulus properties. In a series of regression analyses, we then explore the degree to which target salience (the size of target/distractor dissimilarities) on these emotional and perceptual measures predict the outcome on search efficiency measures (response times and accuracy) from the visual search task. The results show that both emotional and perceptual stimulus salience contribute to visual search efficiency. The results show that among the emotional measures, salience on arousal measures was more influential than valence salience. The importance of the arousal factor may be a contributing factor to contradictory history of results within this field.
NASA Astrophysics Data System (ADS)
Jones, A. A.; Holt, R. M.
2017-12-01
Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).
Synaptic E-I Balance Underlies Efficient Neural Coding.
Zhou, Shanglin; Yu, Yuguo
2018-01-01
Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding.
Synaptic E-I Balance Underlies Efficient Neural Coding
Zhou, Shanglin; Yu, Yuguo
2018-01-01
Both theoretical and experimental evidence indicate that synaptic excitation and inhibition in the cerebral cortex are well-balanced during the resting state and sensory processing. Here, we briefly summarize the evidence for how neural circuits are adjusted to achieve this balance. Then, we discuss how such excitatory and inhibitory balance shapes stimulus representation and information propagation, two basic functions of neural coding. We also point out the benefit of adopting such a balance during neural coding. We conclude that excitatory and inhibitory balance may be a fundamental mechanism underlying efficient coding. PMID:29456491
Terascale direct numerical simulations of turbulent combustion using S3D
NASA Astrophysics Data System (ADS)
Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.
2009-01-01
Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory intensive loops in the code. Through the careful application of loop transformations, data reuse in cache is exploited thereby reducing memory bandwidth needs, and hence, improving S3D's nodal performance. To enhance collective parallel I/O in S3D, an MPI-I/O caching design is used to construct a two-stage write-behind method for improving the performance of write-only operations. The simulations generate tens of terabytes of data requiring analysis. Interactive exploration of the simulation data is enabled by multivariate time-varying volume visualization. The visualization highlights spatial and temporal correlations between multiple reactive scalar fields using an intuitive user interface based on parallel coordinates and time histogram. Finally, an automated combustion workflow is designed using Kepler to manage large-scale data movement, data morphing, and archival and to provide a graphical display of run-time diagnostics.
High rate concatenated coding systems using bandwidth efficient trellis inner codes
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1989-01-01
High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.
Processing of visually presented clock times.
Goolkasian, P; Park, D C
1980-11-01
The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.
Scalable and expressive medical terminologies.
Mays, E; Weida, R; Dionne, R; Laker, M; White, B; Liang, C; Oles, F J
1996-01-01
The K-Rep system, based on description logic, is used to represent and reason with large and expressive controlled medical terminologies. Expressive concept descriptions incorporate semantically precise definitions composed using logical operators, together with important non-semantic information such as synonyms and codes. Examples are drawn from our experience with K-Rep in modeling the InterMed laboratory terminology and also developing a large clinical terminology now in production use at Kaiser-Permanente. System-level scalability of performance is achieved through an object-oriented database system which efficiently maps persistent memory to virtual memory. Equally important is conceptual scalability-the ability to support collaborative development, organization, and visualization of a substantial terminology as it evolves over time. K-Rep addresses this need by logically completing concept definitions and automatically classifying concepts in a taxonomy via subsumption inferences. The K-Rep system includes a general-purpose GUI environment for terminology development and browsing, a custom interface for formulary term maintenance, a C+2 application program interface, and a distributed client-server mode which provides lightweight clients with efficient run-time access to K-Rep by means of a scripting language.
Numerical Analysis of the Trailblazer Inlet Flowfield for Hypersonic Mach Numbers
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; DeBonis, J. R.
1999-01-01
A study of the Trailblazer vehicle inlet was conducted using the Global Air Sampling Program (GASP) code for flight Mach numbers ranging from 4-12. Both perfect gas and finite rate chemical analysis were performed with the intention of making detailed comparisons between the two results. Inlet performance was assessed using total pressure recovery and kinetic energy efficiency. These assessments were based upon a one-dimensional stream-thrust-average of the axisymmetric flowfield. Flow visualization utilized to examine the detailed shock structures internal to this mixed-compression inlet. Kinetic energy efficiency appeared to be the least sensitive to differences between the perfect gas and finite rate chemistry results. Total pressure recovery appeared to be the most sensitive discriminator between the perfect gas and finite rate chemistry results for flight Mach numbers above Mach 6. Adiabatic wall temperature was consistently overpredicted by the perfect gas model for flight Mach numbers above Mach 4. The predicted shock structures were noticeably different for Mach numbers from 6-12. At Mach 4, the perfect gas and finite rate chemistry models collapse to the same result.
A new user-assisted segmentation and tracking technique for an object-based video editing system
NASA Astrophysics Data System (ADS)
Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark
2004-03-01
This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.
JEnsembl: a version-aware Java API to Ensembl data systems.
Paterson, Trevor; Law, Andy
2012-11-01
The Ensembl Project provides release-specific Perl APIs for efficient high-level programmatic access to data stored in various Ensembl database schema. Although Perl scripts are perfectly suited for processing large volumes of text-based data, Perl is not ideal for developing large-scale software applications nor embedding in graphical interfaces. The provision of a novel Java API would facilitate type-safe, modular, object-orientated development of new Bioinformatics tools with which to access, analyse and visualize Ensembl data. The JEnsembl API implementation provides basic data retrieval and manipulation functionality from the Core, Compara and Variation databases for all species in Ensembl and EnsemblGenomes and is a platform for the development of a richer API to Ensembl datasources. The JEnsembl architecture uses a text-based configuration module to provide evolving, versioned mappings from database schema to code objects. A single installation of the JEnsembl API can therefore simultaneously and transparently connect to current and previous database instances (such as those in the public archive) thus facilitating better analysis repeatability and allowing 'through time' comparative analyses to be performed. Project development, released code libraries, Maven repository and documentation are hosted at SourceForge (http://jensembl.sourceforge.net).
Developing Chemistry and Kinetic Modeling Tools for Low-Temperature Plasma Simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Beckwith, Kris; Davidson, Bradley; Kruger, Scott; Pankin, Alexei; Roark, Christine; Stoltz, Peter
2015-09-01
We discuss the use of proper orthogonal decomposition (POD) methods in VSim, a FDTD plasma simulation code capable of both PIC/MCC and fluid modeling. POD methods efficiently generate smooth representations of noisy self-consistent or test-particle PIC data, and are thus advantageous in computing macroscopic fluid quantities from large PIC datasets (e.g. for particle-based closure computations) and in constructing optimal visual representations of the underlying physics. They may also confer performance advantages for massively parallel simulations, due to the significant reduction in dataset sizes conferred by truncated singular-value decompositions of the PIC data. We also demonstrate how complex LTP chemistry scenarios can be modeled in VSim via an interface with MUNCHKIN, a developing standalone python/C++/SQL code that identifies reaction paths for given input species, solves 1D rate equations for the time-dependent chemical evolution of the system, and generates corresponding VSim input blocks with appropriate cross-sections/reaction rates. MUNCHKIN also computes reaction rates from user-specified distribution functions, and conducts principal path analyses to reduce the number of simulated chemical reactions. Supported by U.S. Department of Energy SBIR program, Award DE-SC0009501.
Coding of navigational affordances in the human visual system
Epstein, Russell A.
2017-01-01
A central component of spatial navigation is determining where one can and cannot go in the immediate environment. We used fMRI to test the hypothesis that the human visual system solves this problem by automatically identifying the navigational affordances of the local scene. Multivoxel pattern analyses showed that a scene-selective region of dorsal occipitoparietal cortex, known as the occipital place area, represents pathways for movement in scenes in a manner that is tolerant to variability in other visual features. These effects were found in two experiments: One using tightly controlled artificial environments as stimuli, the other using a diverse set of complex, natural scenes. A reconstruction analysis demonstrated that the population codes of the occipital place area could be used to predict the affordances of novel scenes. Taken together, these results reveal a previously unknown mechanism for perceiving the affordance structure of navigable space. PMID:28416669
van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W
2010-01-22
An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.
Conjunctive Coding of Complex Object Features
Erez, Jonathan; Cusack, Rhodri; Kendall, William; Barense, Morgan D.
2016-01-01
Critical to perceiving an object is the ability to bind its constituent features into a cohesive representation, yet the manner by which the visual system integrates object features to yield a unified percept remains unknown. Here, we present a novel application of multivoxel pattern analysis of neuroimaging data that allows a direct investigation of whether neural representations integrate object features into a whole that is different from the sum of its parts. We found that patterns of activity throughout the ventral visual stream (VVS), extending anteriorly into the perirhinal cortex (PRC), discriminated between the same features combined into different objects. Despite this sensitivity to the unique conjunctions of features comprising objects, activity in regions of the VVS, again extending into the PRC, was invariant to the viewpoints from which the conjunctions were presented. These results suggest that the manner in which our visual system processes complex objects depends on the explicit coding of the conjunctions of features comprising them. PMID:25921583
On the role of selective attention in visual perception
Luck, Steven J.; Ford, Michelle A.
1998-01-01
What is the role of selective attention in visual perception? Before answering this question, it is necessary to differentiate between attentional mechanisms that influence the identification of a stimulus from those that operate after perception is complete. Cognitive neuroscience techniques are particularly well suited to making this distinction because they allow different attentional mechanisms to be isolated in terms of timing and/or neuroanatomy. The present article describes the use of these techniques in differentiating between perceptual and postperceptual attentional mechanisms and then proposes a specific role of attention in visual perception. Specifically, attention is proposed to resolve ambiguities in neural coding that arise when multiple objects are processed simultaneously. Evidence for this hypothesis is provided by two experiments showing that attention—as measured electrophysiologically—is allocated to visual search targets only under conditions that would be expected to lead to ambiguous neural coding. PMID:9448247
ERIC Educational Resources Information Center
Ben-Peshat, Malka; Sitton, Shoshana
2011-01-01
We present here the findings of an ethno-visual research study involving the creation of a mental map of images, artifacts and practices in Tel Aviv's New Central Bus Station. This huge and complex building, part bus station, part shopping mall, has become a stage for multicultural encounters and interactions among diverse communities of users.…
ERIC Educational Resources Information Center
Hill, Anita; And Others
1985-01-01
To test ways of predicting how efficiently visually impaired children learn travel skills, a criteria checklist of spatial skills was developed for close-body space, local space, and geographical/travel space. Comparison was made between predictors of efficient learning including subjective ratings of teachers, personal qualities and factors of…
What Do Letter Migration Errors Reveal About Letter Position Coding in Visual Word Recognition?
ERIC Educational Resources Information Center
Davis, Colin J.; Bowers, Jeffrey S.
2004-01-01
Dividing attention across multiple words occasionally results in misidentifications whereby letters apparently migrate between words. Previous studies have found that letter migrations preserve within-word letter position, which has been interpreted as support for position-specific letter coding. To investigate this issue, the authors used word…
Teaching Reading to the Disadvantaged Adult.
ERIC Educational Resources Information Center
Dinnan, James A.; Ulmer, Curtis, Ed.
This manual is designed to assess the background of the individual and to bring him to the stage of unlocking the symbolic codes called Reading and Mathematics. The manual begins with Introduction to a Symbolic Code (The Thinking Process and The Key to Learning Basis), and continues with Basic Reading Skills (Readiness, Visual Discrimination,…
Animations Need Narrations: An Experimental Test of a Dual-Coding Hypothesis.
ERIC Educational Resources Information Center
Mayer, Richard E.; Anderson, Richard B.
1991-01-01
In two experiments, 102 mechanically naive college students viewed an animation on bicycle tire pump operation with a verbal description before or during the animation or without description. Improved performance of those receiving description during the animation supports a dual-coding hypothesis of connections between visual and verbal stimuli.…