ERIC Educational Resources Information Center
Li-Tsang, Cecilia W. P.; Wong, Agnes S. K.; Chan, Jackson Y.; Lee, Amos Y. T.; Lam, Miko C. Y.; Wong, C. W.; Lu, Zhonglin
2012-01-01
A previous study found a visual deficit in contour integration in English readers with dyslexia (Simmers & Bex, 2001). Visual contour integration may play an even more significant role in Chinese handwriting particularly due to its logographic presentation (Lam, Au, Leung, & Li-Tsang, 2011). The current study examined the relationship…
Collinear facilitation and contour integration in autism: evidence for atypical visual integration.
Jachim, Stephen; Warren, Paul A; McLoughlin, Niall; Gowen, Emma
2015-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger's Syndrome) using two psychophysical tasks thought to rely on integrative processing-collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.
The development of contour processing: evidence from physiology and psychophysics
Taylor, Gemma; Hipp, Daniel; Moser, Alecia; Dickerson, Kelly; Gerhardstein, Peter
2014-01-01
Object perception and pattern vision depend fundamentally upon the extraction of contours from the visual environment. In adulthood, contour or edge-level processing is supported by the Gestalt heuristics of proximity, collinearity, and closure. Less is known, however, about the developmental trajectory of contour detection and contour integration. Within the physiology of the visual system, long-range horizontal connections in V1 and V2 are the likely candidates for implementing these heuristics. While post-mortem anatomical studies of human infants suggest that horizontal interconnections reach maturity by the second year of life, psychophysical research with infants and children suggests a considerably more protracted development. In the present review, data from infancy to adulthood will be discussed in order to track the development of contour detection and integration. The goal of this review is thus to integrate the development of contour detection and integration with research regarding the development of underlying neural circuitry. We conclude that the ontogeny of this system is best characterized as a developmentally extended period of associative acquisition whereby horizontal connectivity becomes functional over longer and longer distances, thus becoming able to effectively integrate over greater spans of visual space. PMID:25071681
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Tan, J; Kavanaugh, J
Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-timemore » and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding unnecessary manual verification for physicians/dosimetrists. In addition, its nature as a compact and stand-alone tool allows for future extensibility to include additional functions for physicians’ clinical needs.« less
Learning to Link Visual Contours
Li, Wu; Piëch, Valentin; Gilbert, Charles D.
2008-01-01
SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036
SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Dolly, S; Cai, B
Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deepmore » modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification. Structured with MVVM pattern, it is highly maintainable and extensible, and support smooth connections with other clinical software tools.« less
Active contour-based visual tracking by integrating colors, shapes, and motions.
Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen
2013-05-01
In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.
Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri
2015-01-01
Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5–6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. PMID:24698161
Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri
2015-01-01
Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental stage of the adult visual system, can overcome such developmental impairments. Here, we visually trained LG, a developmental object and face agnosic individual. Prior to training, at the age of 20, LG's basic and mid-level visual functions such as visual acuity, crowding effects, and contour integration were underdeveloped relative to normal adult vision, corresponding to or poorer than those of 5-6 year olds (Gilaie-Dotan, Perry, Bonneh, Malach & Bentin, 2009). Intensive visual training, based on lateral interactions, was applied for a period of 9 months. LG's directly trained but also untrained visual functions such as visual acuity, crowding, binocular stereopsis and also mid-level contour integration improved significantly and reached near-age-level performance, with long-term (over 4 years) persistence. Moreover, mid-level functions that were tested post-training were found to be normal in LG. Some possible subtle improvement was observed in LG's higher-order visual functions such as object recognition and part integration, while LG's face perception skills have not improved thus far. These results suggest that corrective training at a post-developmental stage, even in the adult visual system, can prove effective, and its enduring effects are the basis for a revival of a developmental cascade that can lead to reduced perceptual impairments. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Contour integration impairment in schizophrenia and first episode psychosis: state or trait?
Feigenson, Keith A; Keane, Brian P; Roché, Matthew W; Silverstein, Steven M
2014-11-01
Contour integration is a fundamental visual process that recovers object structure by representing spatially separated edge elements as a continuous contour or shape boundary. Clinically stable persons with schizophrenia have repeatedly been shown to be impaired at contour integration but it is unclear whether this process varies with clinical state or whether it arises as early as the first episode of psychosis. To consider these issues, we administered a contour integration test to persons with chronic schizophrenia and to those with a first episode of psychosis. The test was administered twice-once at admission to short term psychiatric hospitalization and once again at discharge. A well-matched healthy control group was also tested across the same time points. We found that contour integration performance improved to the same degree in all groups over time, indicating that there were no recovery effects over and above normal practice effects. Moreover, the schizophrenia group demonstrated poorer contour integration than the control group and the first episode group exhibited intermediate performance that could not be distinguished from the other groups. These results suggest that contour integration ability does not vary as a function of short-term changes in clinical state, and that it may become further impaired with an increased number of psychotic episodes. Copyright © 2014 Elsevier B.V. All rights reserved.
Synchronous activity in cat visual cortex encodes collinear and cocircular contours.
Samonds, Jason M; Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2006-04-01
We explored how contour information in primary visual cortex might be embedded in the simultaneous activity of multiple cells recorded with a 100-electrode array. Synchronous activity in cat visual cortex was more selective and predictable in discriminating between drifting grating and concentric ring stimuli than changes in firing rate. Synchrony was found even between cells with wholly different orientation preferences when their receptive fields were circularly aligned, and membership in synchronous groups was orientation and curvature dependent. The existence of synchrony between cocircular cells reinforces its role as a general mechanism for contour integration and shape detection as predicted by association field concepts. Our data suggest that cortical synchrony results from common and synchronous input from earlier visual areas and that it could serve to shape extrastriate response selectivity.
Gestalten of today: early processing of visual contours and surfaces.
Kovács, I
1996-12-01
While much is known about the specialized, parallel processing streams of low-level vision that extract primary visual cues, there is only limited knowledge about the dynamic interactions between them. How are the fragments, caught by local analyzers, assembled together to provide us with a unified percept? How are local discontinuities in texture, motion or depth evaluated with respect to object boundaries and surface properties? These questions are presented within the framework of orientation-specific spatial interactions of early vision. Key observations of psychophysics, anatomy and neurophysiology on interactions of various spatial and temporal ranges are reviewed. Aspects of the functional architecture and possible neural substrates of local orientation-specific interactions are discussed, underlining their role in the integration of information across the visual field, and particularly in contour integration. Examples are provided demonstrating that global context, such as contour closure and figure-ground assignment, affects these local interactions. It is illustrated that figure-ground assignment is realized early in visual processing, and that the pattern of early interactions also brings about an effective and sparse coding of visual shape. Finally, it is concluded that the underlying functional architecture is not only dynamic and context dependent, but the pattern of connectivity depends as much on past experience as on actual stimulation.
Nakamura, Kohki; Naito, Shigeto; Kaseno, Kenichi; Nakatani, Yosuke; Sasaki, Takehito; Anjo, Naofumi; Yamashita, Eiji; Kumagai, Koji; Funabashi, Nobusada; Kobayashi, Yoshio; Oshima, Shigeru
2017-02-01
We aimed to optimize the acquisition of the left atrial (LA) and pulmonary vein (PV) ultrasound contours for more accurate integration of intracardiac echocardiography (ICE) and computed tomography (CT) using the CARTO ® 3 system during atrial fibrillation (AF) ablation. Eighty-five AF patients underwent integration of ICE and CT using (1) the LA roof and posterior wall contours acquired from the right atrium (RA), (2) all LA/PV contours from the RA (Whole-RA-integration), (3) the LA roof/posterior wall contours from the RA and right ventricular outflow tract (RVOT) (Posterior-RA/RV-integration), and (4) all LA/PV contours from the RA and RVOT (Whole-RA/RV-integration). The integration accuracy was compared using the (1) surface registration error, (2) distances between the three-dimensional CT and eight specific sites on the anterior, posterior, superior, and inferior aspects of the right and left circumferential PV isolation lines, and (3) registration score: a score of 0 or 1 was assigned for whether or not each specific site was visually aligned with the CT, and summed for each method (0 best, 8 worst). Posterior-RA/RV-integration revealed a significantly lower surface registration error (1.30±0.15mm) than Whole-RA- and Whole-RA/RV-integration (p<0.001). The mean distances of the eight specific sites and the registration score for Posterior-RA/RV-integration (median 1.26mm and 2, respectively) were significantly smaller than those for the other integration approaches (p<0.001). Image integration with the LA roof and posterior wall contours acquired from the RA and RVOT may provide greater accuracy for catheter navigation with three-dimensional CT during AF ablation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Learning-dependent plasticity with and without training in the human brain.
Zhang, Jiaxiang; Kourtzi, Zoe
2010-07-27
Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.
Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B
2008-04-02
Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.
Reading Acquisition Enhances an Early Visual Process of Contour Integration
ERIC Educational Resources Information Center
Szwed, Marcin; Ventura, Paulo; Querido, Luis; Cohen, Laurent; Dehaene, Stanislas
2012-01-01
The acquisition of reading has an extensive impact on the developing brain and leads to enhanced abilities in phonological processing and visual letter perception. Could this expertise also extend to early visual abilities outside the reading domain? Here we studied the performance of illiterate, ex-illiterate and literate adults closely matched…
Jingling, Li; Tseng, Chia-Huei; Zhaoping, Li
2013-09-10
Salient items usually capture attention and are beneficial to visual search. Jingling and Tseng (2013), nevertheless, have discovered that a salient collinear column can impair local visual search. The display used in that study had 21 rows and 27 columns of bars, all uniformly horizontal (or vertical) except for one column of bars orthogonally oriented to all other bars, making this unique column of collinear (or noncollinear) bars salient in the display. Observers discriminated an oblique target bar superimposed on one of the bars either in the salient column or in the background. Interestingly, responses were slower for a target in a salient collinear column than in the background. This opens a theoretical question of how contour integration interacts with salience computation, which is addressed here by an examination of how salience modulated the search impairment from the collinear column. We show that the collinear column needs to have a high orientation contrast with its neighbors to exert search interference. A collinear column of high contrast in color or luminance did not produce the same impairment. Our results show that orientation-defined salience interacted with collinear contour differently from other feature dimensions, which is consistent with the neuronal properties in V1.
Perceived Average Orientation Reflects Effective Gist of the Surface.
Cha, Oakyoon; Chong, Sang Chul
2018-03-01
The human ability to represent ensemble visual information, such as average orientation and size, has been suggested as the foundation of gist perception. To effectively summarize different groups of objects into the gist of a scene, observers should form ensembles separately for different groups, even when objects have similar visual features across groups. We hypothesized that the visual system utilizes perceptual groups characterized by spatial configuration and represents separate ensembles for different groups. Therefore, participants could not integrate ensembles of different perceptual groups on a task basis. We asked participants to determine the average orientation of visual elements comprising a surface with a contour situated inside. Although participants were asked to estimate the average orientation of all the elements, they ignored orientation signals embedded in the contour. This constraint may help the visual system to keep the visual features of occluding objects separate from those of the occluded objects.
Spatial integration and cortical dynamics.
Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G
1996-01-23
Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.
Network model of top-down influences on local gain and contextual interactions in visual cortex.
Piëch, Valentin; Li, Wu; Reeke, George N; Gilbert, Charles D
2013-10-22
The visual system uses continuity as a cue for grouping oriented line segments that define object boundaries in complex visual scenes. Many studies support the idea that long-range intrinsic horizontal connections in early visual cortex contribute to this grouping. Top-down influences in primary visual cortex (V1) play an important role in the processes of contour integration and perceptual saliency, with contour-related responses being task dependent. This suggests an interaction between recurrent inputs to V1 and intrinsic connections within V1 that enables V1 neurons to respond differently under different conditions. We created a network model that simulates parametrically the control of local gain by hypothetical top-down modification of local recurrence. These local gain changes, as a consequence of network dynamics in our model, enable modulation of contextual interactions in a task-dependent manner. Our model displays contour-related facilitation of neuronal responses and differential foreground vs. background responses over the neuronal ensemble, accounting for the perceptual pop-out of salient contours. It quantitatively reproduces the results of single-unit recording experiments in V1, highlighting salient contours and replicating the time course of contextual influences. We show by means of phase-plane analysis that the model operates stably even in the presence of large inputs. Our model shows how a simple form of top-down modulation of the effective connectivity of intrinsic cortical connections among biophysically realistic neurons can account for some of the response changes seen in perceptual learning and task switching.
ERIC Educational Resources Information Center
Lev, Maria; Gilaie-Dotan, Sharon; Gotthilf-Nezri, Dana; Yehezkel, Oren; Brooks, Joseph L.; Perry, Anat; Bentin, Shlomo; Bonneh, Yoram; Polat, Uri
2015-01-01
Long-term deprivation of normal visual inputs can cause perceptual impairments at various levels of visual function, from basic visual acuity deficits, through mid-level deficits such as contour integration and motion coherence, to high-level face and object agnosia. Yet it is unclear whether training during adulthood, at a post-developmental…
Character feature integration of Chinese calligraphy and font
NASA Astrophysics Data System (ADS)
Shi, Cao; Xiao, Jianguo; Jia, Wenhua; Xu, Canhui
2013-01-01
A framework is proposed in this paper to effectively generate a new hybrid character type by means of integrating local contour feature of Chinese calligraphy with structural feature of font in computer system. To explore traditional art manifestation of calligraphy, multi-directional spatial filter is applied for local contour feature extraction. Then the contour of character image is divided into sub-images. The sub-images in the identical position from various characters are estimated by Gaussian distribution. According to its probability distribution, the dilation operator and erosion operator are designed to adjust the boundary of font image. And then new Chinese character images are generated which possess both contour feature of artistical calligraphy and elaborate structural feature of font. Experimental results demonstrate the new characters are visually acceptable, and the proposed framework is an effective and efficient strategy to automatically generate the new hybrid character of calligraphy and font.
Eguchi, Akihiro; Mender, Bedeho M. W.; Evans, Benjamin D.; Humphreys, Glyn W.; Stringer, Simon M.
2015-01-01
Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognize the whole object. PMID:26300766
Domain Coloring and the Argument Principle
ERIC Educational Resources Information Center
Farris, Frank A.
2017-01-01
The "domain-coloring algorithm" allows us to visualize complex-valued functions on the plane in a single image--an alternative to before-and-after mapping diagrams. It helps us see when a function is analytic and aids in understanding contour integrals. The culmination of this article is a visual discovery and subsequent proof of the…
Late maturation of visual spatial integration in humans
Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György
1999-01-01
Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600
Fan, Zhao; Harris, John
2010-10-12
In a recent study (Fan, Z., & Harris, J. (2008). Perceived spatial displacement of motion-defined contours in peripheral vision. Vision Research, 48(28), 2793-2804), we demonstrated that virtual contours defined by two regions of dots moving in opposite directions were displaced perceptually in the direction of motion of the dots in the more eccentric region when the contours were viewed in the right visual field. Here, we show that the magnitude and/or direction of these displacements varies in different quadrants of the visual field. When contours were presented in the lower visual field, the direction of perceived contour displacement was consistent with that when both contours were presented in the right visual field. However, this illusory motion-induced spatial displacement disappeared when both contours were presented in the upper visual field. Also, perceived contour displacement in the direction of the more eccentric dots was larger in the right than in the left visual field, perhaps because of a hemispheric asymmetry in attentional allocation. Quadrant-based analyses suggest that the pattern of results arises from opposite directions of perceived contour displacement in the upper-left and lower-right visual quadrants, which depend on the relative strengths of two effects: a greater sensitivity to centripetal motion, and an asymmetry in the allocation of spatial attention. Copyright © 2010 Elsevier Ltd. All rights reserved.
Perceptual learning in Williams syndrome: looking beyond averages.
Gervan, Patricia; Gombos, Ferenc; Kovacs, Ilona
2012-01-01
Williams Syndrome is a genetically determined neurodevelopmental disorder characterized by an uneven cognitive profile and surprisingly large neurobehavioral differences among individuals. Previous studies have already shown different forms of memory deficiencies and learning difficulties in WS. Here we studied the capacity of WS subjects to improve their performance in a basic visual task. We employed a contour integration paradigm that addresses occipital visual function, and analyzed the initial (i.e. baseline) and after-learning performance of WS individuals. Instead of pooling the very inhomogeneous results of WS subjects together, we evaluated individual performance by expressing it in terms of the deviation from the average performance of the group of typically developing subjects of similar age. This approach helped us to reveal information about the possible origins of poor performance of WS subjects in contour integration. Although the majority of WS individuals showed both reduced baseline and reduced learning performance, individual analysis also revealed a dissociation between baseline and learning capacity in several WS subjects. In spite of impaired initial contour integration performance, some WS individuals presented learning capacity comparable to learning in the typically developing population, and vice versa, poor learning was also observed in subjects with high initial performance levels. These data indicate a dissociation between factors determining initial performance and perceptual learning.
A recurrent neural model for proto-object based contour integration and figure-ground segregation.
Hu, Brian; Niebur, Ernst
2017-12-01
Visual processing of objects makes use of both feedforward and feedback streams of information. However, the nature of feedback signals is largely unknown, as is the identity of the neuronal populations in lower visual areas that receive them. Here, we develop a recurrent neural model to address these questions in the context of contour integration and figure-ground segregation. A key feature of our model is the use of grouping neurons whose activity represents tentative objects ("proto-objects") based on the integration of local feature information. Grouping neurons receive input from an organized set of local feature neurons, and project modulatory feedback to those same neurons. Additionally, inhibition at both the local feature level and the object representation level biases the interpretation of the visual scene in agreement with principles from Gestalt psychology. Our model explains several sets of neurophysiological results (Zhou et al. Journal of Neuroscience, 20(17), 6594-6611 2000; Qiu et al. Nature Neuroscience, 10(11), 1492-1499 2007; Chen et al. Neuron, 82(3), 682-694 2014), and makes testable predictions about the influence of neuronal feedback and attentional selection on neural responses across different visual areas. Our model also provides a framework for understanding how object-based attention is able to select both objects and the features associated with them.
Wu, Xiang; He, Sheng; Bushara, Khalaf; Zeng, Feiyan; Liu, Ying; Zhang, Daren
2012-10-01
Object recognition occurs even when environmental information is incomplete. Illusory contours (ICs), in which a contour is perceived though the contour edges are incomplete, have been extensively studied as an example of such a visual completion phenomenon. Despite the neural activity in response to ICs in visual cortical areas from low (V1 and V2) to high (LOC: the lateral occipital cortex) levels, the details of the neural processing underlying IC perception are largely not clarified. For example, how do the visual areas function in IC perception and how do they interact to archive the coherent contour perception? IC perception involves the process of completing the local discrete contour edges (contour completion) and the process of representing the global completed contour information (contour representation). Here, functional magnetic resonance imaging was used to dissociate contour completion and contour representation by varying each in opposite directions. The results show that the neural activity was stronger to stimuli with more contour completion than to stimuli with more contour representation in V1 and V2, which was the reverse of that in the LOC. When inspecting the neural activity change across the visual pathway, the activation remained high for the stimuli with more contour completion and increased for the stimuli with more contour representation. These results suggest distinct neural correlates of contour completion and contour representation, and the possible collaboration between the two processes during IC perception, indicating a neural connection between the discrete retinal input and the coherent visual percept. Copyright © 2011 Wiley Periodicals, Inc.
Recurrent V1-V2 interaction in early visual boundary processing.
Neumann, H; Sepp, W
1999-11-01
A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours.
Adult Visual Cortical Plasticity
Gilbert, Charles D.; Li, Wu
2012-01-01
The visual cortex has the capacity for experience dependent change, or cortical plasticity, that is retained throughout life. Plasticity is invoked for encoding information during perceptual learning, by internally representing the regularities of the visual environment, which is useful for facilitating intermediate level vision - contour integration and surface segmentation. The same mechanisms have adaptive value for functional recovery after CNS damage, such as that associated with stroke or neurodegenerative disease. A common feature to plasticity in primary visual cortex (V1) is an association field that links contour elements across the visual field. The circuitry underlying the association field includes a plexus of long range horizontal connections formed by cortical pyramidal cells. These connections undergo rapid and exuberant sprouting and pruning in response to removal of sensory input, which can account for the topographic reorganization following retinal lesions. Similar alterations in cortical circuitry may be involved in perceptual learning, and the changes observed in V1 may be representative of how learned information is encoded throughout the cerebral cortex. PMID:22841310
Development of cortical orientation selectivity in the absence of visual experience with contour
Hussain, Shaista; Weliky, Michael
2011-01-01
Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result. PMID:21753023
Topological Cacti: Visualizing Contour-based Statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio
2011-05-26
Contours, the connected components of level sets, play an important role in understanding the global structure of a scalar field. In particular their nestingbehavior and topology-often represented in form of a contour tree-have been used extensively for visualization and analysis. However, traditional contour trees onlyencode structural properties like number of contours or the nesting of contours, but little quantitative information such as volume or other statistics. Here we use thesegmentation implied by a contour tree to compute a large number of per-contour (interval) based statistics of both the function defining the contour tree as well asother co-located functions. We introducemore » a new visual metaphor for contour trees, called topological cacti, that extends the traditional toporrery display of acontour tree to display additional quantitative information as width of the cactus trunk and length of its spikes. We apply the new technique to scalar fields ofvarying dimension and different measures to demonstrate the effectiveness of the approach.« less
The mechanisms of collinear integration.
Cass, John; Alais, David
2006-08-11
Low-contrast visual contour fragments are easier to detect when presented in the context of nearby collinear contour elements (U. Polat & D. Sagi, 1993). The spatial and temporal determinants of this collinear facilitation have been studied extensively (J. R. Cass & B. Spehar, 2005; Y. Tanaka & D. Sagi, 1998; C. B. Williams & R. F. Hess, 1998), although considerable debate surrounds the neural mechanisms underlying it. Our study examines this question using a novel stimulus, whereby the flanking "contour" elements are rotated around their own axis. By measuring contrast detection thresholds to a brief foveal target presented at various phases of flanker rotation, we find peak facilitation after flankers have rotated beyond their collinear phase. This optimal facilitative delay increases monotonically as a function of target-flanker separation, yielding estimates of cortical propagation of 0.1 m/s, a value highly consistent with the dynamics of long-range horizontal interactions observed within primary visual cortex (V1). A curious new finding is also observed: Facilitative peaks also occur when the target flash precedes flanker collinearity by 20-80 ms, a range consistent with contrast-dependent cortical onset latencies. Together, these data suggest that collinear facilitation involves two separate mechanisms, each possessing distinct dynamics: (i) slowly propagating horizontal interactions within V1 and (ii) a faster integrative mechanism, possibly driven by synchronous collinear cortical onset.
Gilaie-Dotan, Sharon; Doron, Ravid
2017-06-01
Visual categories are associated with eccentricity biases in high-order visual cortex: Faces and reading with foveally-biased regions, while common objects and space with mid- and peripherally-biased regions. As face perception and reading are among the most challenging human visual skills, and are often regarded as the peak achievements of a distributed neural network supporting common objects perception, it is unclear why objects, which also rely on foveal vision to be processed, are associated with mid-peripheral rather than with a foveal bias. Here, we studied BN, a 9 y.o. boy who has normal basic-level vision, abnormal (limited) oculomotor pursuit and saccades, and shows developmental object and contour integration deficits but with no indication of prosopagnosia. Although we cannot infer causation from the data presented here, we suggest that normal pursuit and saccades could be critical for the development of contour integration and object perception. While faces and perhaps reading, when fixated upon, take up a small portion of central visual field and require only small eye movements to be properly processed, common objects typically prevail in mid-peripheral visual field and rely on longer-distance voluntary eye movements as saccades to be brought to fixation. While retinal information feeds into early visual cortex in an eccentricity orderly manner, we hypothesize that propagation of non-foveal information to mid and high-order visual cortex critically relies on circuitry involving eye movements. Limited or atypical eye movements, as in the case of BN, may hinder normal information flow to mid-eccentricity biased high-order visual cortex, adversely affecting its development and consequently inducing visual perceptual deficits predominantly for categories associated with these regions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
NASA Technical Reports Server (NTRS)
Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu
1996-01-01
We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.
Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks
Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.
2015-01-01
The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies. PMID:26496502
Material properties from contours: New insights on object perception.
Pinna, Baingio; Deiana, Katia
2015-10-01
In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. Copyright © 2015. Published by Elsevier Ltd.
Yang, Kai-Fu; Li, Chao-Yi; Li, Yong-Jie
2015-01-01
Both the neurons with orientation-selective and with non-selective surround inhibition have been observed in the primary visual cortex (V1) of primates and cats. Though the inhibition coming from the surround region (named as non-classical receptive field, nCRF) has been considered playing critical role in visual perception, the specific role of orientation-selective and non-selective inhibition in the task of contour detection is less known. To clarify above question, we first carried out computational analysis of the contour detection performance of V1 neurons with different types of surround inhibition, on the basis of which we then proposed two integrated models to evaluate their role in this specific perceptual task by combining the two types of surround inhibition with two different ways. The two models were evaluated with synthetic images and a set of challenging natural images, and the results show that both of the integrated models outperform the typical models with orientation-selective or non-selective inhibition alone. The findings of this study suggest that V1 neurons with different types of center–surround interaction work in cooperative and adaptive ways at least when extracting organized structures from cluttered natural scenes. This work is expected to inspire efficient phenomenological models for engineering applications in field of computational machine-vision. PMID:26136664
Yang, Kai-Fu; Li, Chao-Yi; Li, Yong-Jie
2015-01-01
Both the neurons with orientation-selective and with non-selective surround inhibition have been observed in the primary visual cortex (V1) of primates and cats. Though the inhibition coming from the surround region (named as non-classical receptive field, nCRF) has been considered playing critical role in visual perception, the specific role of orientation-selective and non-selective inhibition in the task of contour detection is less known. To clarify above question, we first carried out computational analysis of the contour detection performance of V1 neurons with different types of surround inhibition, on the basis of which we then proposed two integrated models to evaluate their role in this specific perceptual task by combining the two types of surround inhibition with two different ways. The two models were evaluated with synthetic images and a set of challenging natural images, and the results show that both of the integrated models outperform the typical models with orientation-selective or non-selective inhibition alone. The findings of this study suggest that V1 neurons with different types of center-surround interaction work in cooperative and adaptive ways at least when extracting organized structures from cluttered natural scenes. This work is expected to inspire efficient phenomenological models for engineering applications in field of computational machine-vision.
Common Visual Preference for Curved Contours in Humans and Great Apes.
Munar, Enric; Gómez-Puerto, Gerardo; Call, Josep; Nadal, Marcos
2015-01-01
Among the visual preferences that guide many everyday activities and decisions, from consumer choices to social judgment, preference for curved over sharp-angled contours is commonly thought to have played an adaptive role throughout human evolution, favoring the avoidance of potentially harmful objects. However, because nonhuman primates also exhibit preferences for certain visual qualities, it is conceivable that humans' preference for curved contours is grounded on perceptual and cognitive mechanisms shared with extant nonhuman primate species. Here we aimed to determine whether nonhuman great apes and humans share a visual preference for curved over sharp-angled contours using a 2-alternative forced choice experimental paradigm under comparable conditions. Our results revealed that the human group and the great ape group indeed share a common preference for curved over sharp-angled contours, but that they differ in the manner and magnitude with which this preference is expressed behaviorally. These results suggest that humans' visual preference for curved objects evolved from earlier primate species' visual preferences, and that during this process it became stronger, but also more susceptible to the influence of higher cognitive processes and preference for other visual features.
Differential contribution of early visual areas to the perceptual process of contour processing.
Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A
2004-04-01
We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.
Isolating contour information from arbitrary images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1989-01-01
Aspects of natural vision (physiological and perceptual) serve as a basis for attempting the development of a general processing scheme for contour extraction. Contour information is assumed to be central to visual recognition skills. While the scheme must be regarded as highly preliminary, initial results do compare favorably with the visual perception of structure. The scheme pays special attention to the construction of a smallest scale circular difference-of-Gaussian (DOG) convolution, calibration of multiscale edge detection thresholds with the visual perception of grayscale boundaries, and contour/texture discrimination methods derived from fundamental assumptions of connectivity and the characteristics of printed text. Contour information is required to fall between a minimum connectivity limit and maximum regional spatial density limit at each scale. Results support the idea that contour information, in images possessing good image quality, is (centered at about 10 cyc/deg and 30 cyc/deg). Further, lower spatial frequency channels appear to play a major role only in contour extraction from images with serious global image defects.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Asking or Telling--Real-time Processing of Prosodically Distinguished Questions and Statements.
Heeren, Willemijn F L; Bibyk, Sarah A; Gunlogson, Christine; Tanenhaus, Michael K
2015-12-01
We introduce a targeted language game approach using the visual world, eye-movement paradigm to assess when and how certain intonational contours affect the interpretation of utterances. We created a computer-based card game in which elliptical utterances such as "Got a candy" occurred with a nuclear contour most consistent with a yes-no question (H* H-H%) or a statement (L* L-L%). In Experiment I we explored how such contours are integrated online. In Experiment 2 we studied the expectations listeners have for how intonational contours signal intentions: do these reflect linguistic categories or rapid adaptation to the paradigm? Prosody had an immediate effect on interpretation, as indexed by the pattern and timing of fixations. Moreover, the association between different contours and intentions was quite robust in the absence of clear syntactic cues to sentence type, and was not due to rapid adaptation. Prosody had immediate effects on interpretation even though there was a construction-based bias to interpret "got a" as a question. Taken together, we believe this paradigm will provide further insights into how intonational contours and their phonetic realization interact with other cues to sentence type in online comprehension.
The spatial range of contour integration deficits in schizophrenia
Silverstein, Steven M.; Barch, Deanna M.; Carter, Cameron S.; Gold, James M.; Kovács, Ilona; MacDonald, Angus W.; Ragland, J. Daniel; Strauss, Milton E.
2012-01-01
Contour integration (CI) refers to the process that represents spatially separated elements as a unified edge or closed shape. Schizophrenia is a psychiatric disorder characterized by symptoms such as hallucinations, delusions, disorganized thinking, inappropriate affect, and social withdrawal. Persons with schizophrenia are impaired at CI, but the specific mechanisms underlying the deficit are still not clear. Here, we explored the hypothesis that poor patient performance owes to reduced feedback or impaired longer-range lateral connectivity within early visual cortex—functionally similar to that found in 5- to 6-year old children. This hypothesis predicts that as target element spacing increases from .7 to 1.4° of visual angle, patient impairments will become more pronounced. As a test of the prediction, 25 healthy controls and 36 clinically stable, asymptomatic persons with schizophrenia completed a CI task that involved determining whether a subset of Gabor elements formed a leftward or rightward pointing shape. Adjacent shape elements were spaced at either .7 or 1.4° of visual angle. Difficulty in each spacing condition depended on the number of noise elements present. Patients performed worse than controls overall, both groups performed worse with the larger spacing, and the magnitude of the between-group difference was not amplified at the larger spacing. These results show that CI deficits in schizophrenia cannot be explained in terms of a reduced spatial range of integration, at least not when the shape elements are spaced within 1.5°. Later-developing, low-level integrative mechanisms of lateral connectivity and feedback appear not to be differentially impaired in the illness. PMID:22710617
Fast incorporation of optical flow into active polygons.
Unal, Gozde; Krim, Hamid; Yezzi, Anthony
2005-06-01
In this paper, we first reconsider, in a different light, the addition of a prediction step to active contour-based visual tracking using an optical flow and clarify the local computation of the latter along the boundaries of continuous active contours with appropriate regularizers. We subsequently detail our contribution of computing an optical flow-based prediction step directly from the parameters of an active polygon, and of exploiting it in object tracking. This is in contrast to an explicitly separate computation of the optical flow and its ad hoc application. It also provides an inherent regularization effect resulting from integrating measurements along polygon edges. As a result, we completely avoid the need of adding ad hoc regularizing terms to the optical flow computations, and the inevitably arbitrary associated weighting parameters. This direct integration of optical flow into the active polygon framework distinguishes this technique from most previous contour-based approaches, where regularization terms are theoretically, as well as practically, essential. The greater robustness and speed due to a reduced number of parameters of this technique are additional and appealing features.
The equivalent internal orientation and position noise for contour integration.
Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F
2017-10-12
Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).
Myers, Jeffrey D.
2012-01-01
Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity. PMID:22985196
Some distinguishing characteristics of contour and texture phenomena in images
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.
1992-01-01
The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.
ERIC Educational Resources Information Center
Rhile, Ian J.
2014-01-01
Atomic orbitals are a theme throughout the undergraduate chemistry curriculum, and visualizing them has been a theme in this journal. Contour plots as isosurfaces or contour lines in a plane are the most familiar representations of the hydrogen wave functions. In these representations, a surface of a fixed value of the wave function ? is plotted…
Collinear integration affects visual search at V1.
Chow, Hiu Mei; Jingling, Li; Tseng, Chia-huei
2013-08-29
Perceptual grouping plays an indispensable role in figure-ground segregation and attention distribution. For example, a column pops out if it contains element bars orthogonal to uniformly oriented element bars. Jingling and Tseng (2013) have reported that contextual grouping in a column matters to visual search behavior: When a column is grouped into a collinear (snakelike) structure, a target positioned on it became harder to detect than on other noncollinear (ladderlike) columns. How and where perceptual grouping interferes with selective attention is still largely unknown. This article contributes to this little-studied area by asking whether collinear contour integration interacts with visual search before or after binocular fusion. We first identified that the previously mentioned search impairment occurs with a distractor of five or nine elements but not one element in a 9 × 9 search display. To pinpoint the site of this effect, we presented the search display with a short collinear bar (one element) to one eye and the extending collinear bars to the other eye, such that when properly fused, the combined binocular collinear length (nine elements) exceeded the critical length. No collinear search impairment was observed, implying that collinear information before binocular fusion shaped participants' search behavior, although contour extension from the other eye after binocular fusion enhanced the effect of collinearity on attention. Our results suggest that attention interacts with perceptual grouping as early as V1.
Effects of face feature and contour crowding in facial expression adaptation.
Liu, Pan; Montaser-Kouhsari, Leila; Xu, Hong
2014-12-01
Prolonged exposure to a visual stimulus, such as a happy face, biases the perception of subsequently presented neutral face toward sad perception, the known face adaptation. Face adaptation is affected by visibility or awareness of the adapting face. However, whether it is affected by discriminability of the adapting face is largely unknown. In the current study, we used crowding to manipulate discriminability of the adapting face and test its effect on face adaptation. Instead of presenting flanking faces near the target face, we shortened the distance between facial features (internal feature crowding), and reduced the size of face contour (external contour crowding), to introduce crowding. We are interested in whether internal feature crowding or external contour crowding is more effective in inducing crowding effect in our first experiment. We found that combining internal feature and external contour crowding, but not either of them alone, induced significant crowding effect. In Experiment 2, we went on further to investigate its effect on adaptation. We found that both internal feature crowding and external contour crowding reduced its facial expression aftereffect (FEA) significantly. However, we did not find a significant correlation between discriminability of the adapting face and its FEA. Interestingly, we found a significant correlation between discriminabilities of the adapting and test faces. Experiment 3 found that the reduced adaptation aftereffect in combined crowding by the external face contour and the internal facial features cannot be decomposed into the effects from the face contour and facial features linearly. It thus suggested a nonlinear integration between facial features and face contour in face adaptation.
A visual model for object detection based on active contours and level-set method.
Satoh, Shunji
2006-09-01
A visual model for object detection is proposed. In order to make the detection ability comparable with existing technical methods for object detection, an evolution equation of neurons in the model is derived from the computational principle of active contours. The hierarchical structure of the model emerges naturally from the evolution equation. One drawback involved with initial values of active contours is alleviated by introducing and formulating convexity, which is a visual property. Numerical experiments show that the proposed model detects objects with complex topologies and that it is tolerant of noise. A visual attention model is introduced into the proposed model. Other simulations show that the visual properties of the model are consistent with the results of psychological experiments that disclose the relation between figure-ground reversal and visual attention. We also demonstrate that the model tends to perceive smaller regions as figures, which is a characteristic observed in human visual perception.
Effects of contour enhancement on low-vision preference and visual search.
Satgunam, Premnandhini; Woods, Russell L; Luo, Gang; Bronstad, P Matthew; Reynolds, Zachary; Ramachandra, Chaithanya; Mel, Bartlett W; Peli, Eli
2012-09-01
To determine whether image enhancement improves visual search performance and whether enhanced images were also preferred by subjects with vision impairment. Subjects (n = 24) with vision impairment (vision: 20/52 to 20/240) completed visual search and preference tasks for 150 static images that were enhanced to increase object contours' visual saliency. Subjects were divided into two groups and were shown three enhancement levels. Original and medium enhancements were shown to both groups. High enhancement was shown to group 1, and low enhancement was shown to group 2. For search, subjects pointed to an object that matched a search target displayed at the top left of the screen. An "integrated search performance" measure (area under the curve of cumulative correct response rate over search time) quantified performance. For preference, subjects indicated the preferred side when viewing the same image with different enhancement levels on side-by-side high-definition televisions. Contour enhancement did not improve performance in the visual search task. Group 1 subjects significantly (p < 0.001) rejected the High enhancement, and showed no preference for medium enhancement over the original images. Group 2 subjects significantly preferred (p < 0.001) both the medium and the low enhancement levels over original. Contrast sensitivity was correlated with both preference and performance; subjects with worse contrast sensitivity performed worse in the search task (ρ = 0.77, p < 0.001) and preferred more enhancement (ρ = -0.47, p = 0.02). No correlation between visual search performance and enhancement preference was found. However, a small group of subjects (n = 6) in a narrow range of mid-contrast sensitivity performed better with the enhancement, and most (n = 5) also preferred the enhancement. Preferences for image enhancement can be dissociated from search performance in people with vision impairment. Further investigations are needed to study the relationships between preference and performance for a narrow range of mid-contrast sensitivity where a beneficial effect of enhancement may exist.
Cortical dynamics of feature binding and reset: control of visual persistence.
Francis, G; Grossberg, S; Mingolla, E
1994-04-01
An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing of visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greater persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence due to adaptation with a stimulus of like orientation, an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.
Web-based visualization of gridded dataset usings OceanBrowser
NASA Astrophysics Data System (ADS)
Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie
2015-04-01
OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).
Direct imaging of isofrequency contours in photonic structures
Regan, E. C.; Igarashi, Y.; Zhen, B.; ...
2016-11-25
The isofrequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. We demonstrate a method to directly visualize the isofrequency contours of high-quality photonic crystal slabs that show quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals or even quasi-crystals. We also present an analytical model of the scattering process, which explains the observation of isofrequency contours in our technique.more » Furthermore, the isofrequency contours provide information about the characteristics of the disorder and therefore serve as a feedback tool to improve fabrication processes.« less
Khuu, Sieu K; Cham, Joey; Hayes, Anthony
2016-01-01
In the present study, we investigated the detection of contours defined by constant curvature and the statistics of curved contours in natural scenes. In Experiment 1, we examined the degree to which human sensitivity to contours is affected by changing the curvature angle and disrupting contour curvature continuity by varying the orientation of end elements. We find that (1) changing the angle of contour curvature decreased detection performance, while (2) end elements oriented in the direction (i.e., clockwise) of curvature facilitated contour detection regardless of the curvature angle of the contour. In Experiment 2 we further established that the relative effect of end-element orientation on contour detection was not only dependent on their orientation (collinear or cocircular), but also their spatial separation from the contour, and whether the contour shape was curved or not (i.e., C-shaped or S-shaped). Increasing the spatial separation of end-elements reduced contour detection performance regardless of their orientation or the contour shape. However, at small separations, cocircular end-elements facilitated the detection of C-shaped contours, but not S-shaped contours. The opposite result was observed for collinear end-elements, which improved the detection of S- shaped, but not C-shaped contours. These dissociative results confirmed that the visual system specifically codes contour curvature, but the association of contour elements occurs locally. Finally, we undertook an analysis of natural images that mapped contours with a constant angular change and determined the frequency of occurrence of end elements with different orientations. Analogous to our behavioral data, this image analysis revealed that the mapped end elements of constantly curved contours are likely to be oriented clockwise to the angle of curvature. Our findings indicate that the visual system is selectively sensitive to contours defined by constant curvature and that this might reflect the properties of curved contours in natural images.
Perception Measurement in Clinical Trials of Schizophrenia: Promising Paradigms From CNTRICS
Green, Michael F.; Butler, Pamela D.; Chen, Yue; Geyer, Mark A.; Silverstein, Steven; Wynn, Jonathan K.; Yoon, Jong H.; Zemon, Vance
2009-01-01
The third meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) focused on selecting promising measures for each of the cognitive constructs selected in the first CNTRICS meeting. In the domain of perception, the 2 constructs of interest were gain control and visual integration. CNTRICS received 5 task nominations for gain control and three task nominations for visual integration. The breakout group for perception evaluated the degree to which each of these tasks met prespecified criteria. For gain control, the breakout group for perception believed that 2 of the tasks (prepulse inhibition of startle and mismatch negativity) were already mature and in the process of being incorporated into multisite clinical trials. However, the breakout group recommended that steady-state visual-evoked potentials be combined with contrast sensitivity to magnocellular vs parvocellular biased stimuli and that this combined task and the contrast-contrast effect task be recommended for translation for use in clinical trial contexts in schizophrenia research. For visual integration, the breakout group recommended the Contour Integration and Coherent Motion tasks for translation for use in clinical trials. This manuscript describes the ways in which each of these tasks met the criteria used by the breakout group to evaluate and recommend tasks for further development. PMID:19023123
Differences in apparent straightness of dot and line stimuli.
NASA Technical Reports Server (NTRS)
Parlee, M. B.
1972-01-01
An investigation has been made of anisotropic responses to contoured and noncontoured stimuli to obtain an insight into the way these stimuli are processed. For this purpose, eight subjects judged the alignment of minimally contoured (3 dot) and contoured (line) stimuli. Stimuli, presented to each eye separately, vertically subtended either 8 or 32 deg visual angle and were located 10 deg left, center, or 10 deg right in the visual field. Location-dependent deviations from physical straightness were larger for dot stimuli than for lines. The results were the same for the two eyes. In a second experiment, subjects judged the alignment of stimuli composed of different densities of dots. Apparent straightness for these stimuli was the same as for lines. The results are discussed in terms of alternative mechanisms for analysis of contoured and minimally contoured stimuli.
Altschuler, Ted S.; Molholm, Sophie; Butler, John S.; Mercier, Manuel R.; Brandwein, Alice B.; Foxe, John J.
2014-01-01
The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N= 63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5 years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. PMID:24365674
Altered visual perception in long-term ecstasy (MDMA) users.
White, Claire; Brown, John; Edwards, Mark
2013-09-01
The present study investigated the long-term consequences of ecstasy use on visual processes thought to reflect serotonergic functions in the occipital lobe. Evidence indicates that the main psychoactive ingredient in ecstasy (methylendioxymethamphetamine) causes long-term changes to the serotonin system in human users. Previous research has found that amphetamine-abstinent ecstasy users have disrupted visual processing in the occipital lobe which relies on serotonin, with researchers concluding that ecstasy broadens orientation tuning bandwidths. However, other processes may have accounted for these results. The aim of the present research was to determine if amphetamine-abstinent ecstasy users have changes in occipital lobe functioning, as revealed by two studies: a masking study that directly measured the width of orientation tuning bandwidths and a contour integration task that measured the strength of long-range connections in the visual cortex of drug users compared to controls. Participants were compared on the width of orientation tuning bandwidths (26 controls, 12 ecstasy users, 10 ecstasy + amphetamine users) and the strength of long-range connections (38 controls, 15 ecstasy user, 12 ecstasy + amphetamine users) in the occipital lobe. Amphetamine-abstinent ecstasy users had significantly broader orientation tuning bandwidths than controls and significantly lower contour detection thresholds (CDTs), indicating worse performance on the task, than both controls and ecstasy + amphetamine users. These results extend on previous research, which is consistent with the proposal that ecstasy may damage the serotonin system, resulting in behavioral changes on tests of visual perception processes which are thought to reflect serotonergic functions in the occipital lobe.
Surface reconstruction, figure-ground modulation, and border-ownership.
Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R
2013-01-01
The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.
Rapid visual grouping and figure-ground processing using temporally structured displays.
Cheadle, Samuel; Usher, Marius; Müller, Hermann J
2010-08-23
We examine the time course of visual grouping and figure-ground processing. Figure (contour) and ground (random-texture) elements were flickered with different phases (i.e., contour and background are alternated), requiring the observer to group information within a pre-specified time window. It was found this grouping has a high temporal resolution: less than 20ms for smooth contours, and less than 50ms for line conjunctions with sharp angles. Furthermore, the grouping process takes place without an explicit knowledge of the phase of the elements, and it requires a cumulative build-up of information. The results are discussed in relation to the neural mechanism for visual grouping and figure-ground segregation. Copyright 2010 Elsevier Ltd. All rights reserved.
Visual processing deficits in 22q11.2 Deletion Syndrome.
Biria, Marjan; Tomescu, Miralena I; Custo, Anna; Cantonas, Lucia M; Song, Kun-Wei; Schneider, Maude; Murray, Micah M; Eliez, Stephan; Michel, Christoph M; Rihs, Tonia A
2018-01-01
Carriers of the rare 22q11.2 microdeletion present with a high percentage of positive and negative symptoms and a high genetic risk for schizophrenia. Visual processing impairments have been characterized in schizophrenia, but less so in 22q11.2 Deletion Syndrome (DS). Here, we focus on visual processing using high-density EEG and source imaging in 22q11.2DS participants (N = 25) and healthy controls (N = 26) with an illusory contour discrimination task. Significant differences between groups emerged at early and late stages of visual processing. In 22q11.2DS, we first observed reduced amplitudes over occipital channels and reduced source activations within dorsal and ventral visual stream areas during the P1 (100-125 ms) and within ventral visual cortex during the N1 (150-170 ms) visual evoked components. During a later window implicated in visual completion (240-285 ms), we observed an increase in global amplitudes in 22q11.2DS. The increased surface amplitudes for illusory contours at this window were inversely correlated with positive subscales of prodromal symptoms in 22q11.2DS. The reduced activity of ventral and dorsal visual areas during early stages points to an impairment in visual processing seen both in schizophrenia and 22q11.2DS. During intervals related to perceptual closure, the inverse correlation of high amplitudes with positive symptoms suggests that participants with 22q11.2DS who show an increased brain response to illusory contours during the relevant window for contour processing have less psychotic symptoms and might thus be at a reduced prodromal risk for schizophrenia.
ANOPP/VMS HSCT ground contour system
NASA Technical Reports Server (NTRS)
Rawls, John, Jr.; Glaab, Lou
1992-01-01
This viewgraph shows the integration of the Visual Motion Simulator with ANOPP. ANOPP is an acronym for the Aircraft NOise Prediction Program. It is a computer code consisting of dedicated noise prediction modules for jet, propeller, and rotor powered aircraft along with flight support and noise propagation modules, all executed under the control of an executive system. The Visual Motion Simulator (VMS) is a ground based motion simulator with six degrees of freedom. The transport-type cockpit is equipped with conventional flight and engine-thrust controls and with flight instrument displays. Control forces on the wheel, column, and rudder pedals are provided by a hydraulic system coupled with an analog computer. The simulator provides variable-feel characteristics of stiffness, damping, coulomb friction, breakout forces, and inertia. The VMS provides a wide range of realistic flight trajectories necessary for computing accurate ground contours. The NASA VMS will be discussed in detail later in this presentation. An equally important part of the system for both ANOPP and VMS is the engine performance. This will also be discussed in the presentation.
Residual effects of ecstasy (3,4-methylenedioxymethamphetamine) on low level visual processes.
Murray, Elizabeth; Bruno, Raimondo; Brown, John
2012-03-01
'Ecstasy' (3,4-methylenedioxymethamphetamine) induces impaired functioning in the serotonergic system, including the occipital lobe. This study employed the 'tilt aftereffect' paradigm to operationalise the function of orientation-selective neurons among ecstasy consumers and controls as a means of investigating the role of reduced serotonin on visual orientation processing. The magnitude of the tilt aftereffect reflects the extent of lateral inhibition between orientation-selective neurons and is elicited to both 'real' contours, processed in visual cortex area V1, and illusory contours, processed in V2. The magnitude of tilt aftereffect to both contour types was examined among 19 ecstasy users (6 ecstasy only; 13 ecstasy-plus-cannabis users) and 23 matched controls (9 cannabis-only users; 14 drug-naive). Ecstasy users had a significantly greater tilt magnitude than non-users for real contours (Hedge's g = 0.63) but not for illusory contours (g = 0.20). These findings provide support for literature suggesting that residual effects of ecstasy (and reduced serotonin) impairs lateral inhibition between orientation-selective neurons in V1, which however suggests that ecstasy may not substantially affect this process in V2. Multiple studies have now demonstrated ecstasy-related deficits on basic visual functions, including orientation and motion processing. Such low-level effects may contribute to the impact of ecstasy use on neuropsychological tests of visuospatial function. Copyright © 2012 John Wiley & Sons, Ltd.
Eye movements during object recognition in visual agnosia.
Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe
2012-07-01
This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.
Information Along Contours and Object Boundaries
ERIC Educational Resources Information Center
Feldman, Jacob; Singh, Manish
2005-01-01
F. Attneave (1954) famously suggested that information along visual contours is concentrated in regions of high magnitude of curvature, rather than being distributed uniformly along the contour. Here the authors give a formal derivation of this claim, yielding an exact expression for information, in C. Shannon's (1948) sense, as a function of…
Figure-ground segregation at contours: a neural mechanism in the visual cortex of the alert monkey.
Baumann, R; van der Zwan, R; Peterhans, E
1997-06-01
An important task of vision is the segregation of figure and ground in situations of spatial occlusion. Psychophysical evidence suggests that the depth order at contours is defined early in visual processing. We have analysed this process in the visual cortex of the alert monkey. The animals were trained on a visual fixation task which reinforced foveal viewing. During periods of active visual fixation, we recorded the responses of single neurons in striate and prestriate cortex (areas V1, V2, and V3/V3A). The stimuli mimicked situations of spatial occlusion, usually a uniform light (or dark) rectangle overlaying a grating texture of opposite contrast. The direction of figure and ground at the borders of these rectangles was defined by the direction of the terminating grating lines (occlusion cues). Neuronal responses were analysed with respect to figure-ground direction and contrast polarity at such contours. Striate neurons often failed to respond to such stimuli, or were selective for contrast polarity; others were non-selective. Some neurons preferred a certain combination of figure-ground direction and contrast polarity. These neurons were rare both in striate and prestriate cortex. The majority of neurons signalled figure-ground direction independent of contrast polarity. These neurons were only found in prestriate cortex. We explain these responses in terms of a model which also explains neuronal signals of illusory contours. These results suggest that occlusion cues are used at an early level of processing to segregate figure and ground at contours.
ERIC Educational Resources Information Center
Lim, Ik Soo; Leek, E. Charles
2012-01-01
Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately,…
Altschuler, Ted S; Molholm, Sophie; Butler, John S; Mercier, Manuel R; Brandwein, Alice B; Foxe, John J
2014-04-15
The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200 ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230 and 400 ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern-engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent. Copyright © 2013 Elsevier Inc. All rights reserved.
The Topography Tub Learning Activity
NASA Astrophysics Data System (ADS)
Glesener, G. B.
2014-12-01
Understanding the basic elements of a topographic map (i.e. contour lines and intervals) is just a small part of learning how to use this abstract representational system as a resource in geologic mapping. Interpretation of a topographic map and matching its features with real-world structures requires that the system is utilized for visualizing the shapes of these structures and their spatial orientation. To enrich students' skills in visualizing topography from topographic maps a spatial training activity has been developed that uses 3D objects of various shapes and sizes, a sighting tool, a plastic basin, water, and transparencies. In the first part of the activity, the student is asked to draw a topographic map of one of the 3D objects. Next, the student places the object into a plastic tub in which water is added to specified intervals of height. The shoreline at each interval is used to reference the location of the contour line the student draws on a plastic inkjet transparency directly above the object. A key part of this activity is the use of a sighting tool by the student to assist in keeping the pencil mark directly above the shoreline. It (1) ensures the accurate positioning of the contour line and (2) gives the learner experience with using a sight before going out into the field. Finally, after the student finishes drawing the contour lines onto the transparency, the student can compare and contrast the two maps in order to discover where improvements in their visualization of the contours can be made. The teacher and/or peers can also make suggestions on ways to improve. A number of objects with various shapes and sizes are used in this exercise to produce contour lines representing the different types of topography the student may encounter while field mapping. The intended outcome from using this visualization training activity is improvement in performance of visualizing topography as the student moves between the topographic representation and corresponding topography in the field.
Butler, Pamela D.; Chen, Yue; Ford, Judith M.; Geyer, Mark A.; Silverstein, Steven M.; Green, Michael F.
2012-01-01
The sixth meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) focused on selecting promising imaging paradigms for each of the cognitive constructs selected in the first CNTRICS meeting. In the domain of perception, the 2 constructs of interest were “gain control” and “visual integration.” CNTRICS received 6 task nominations for imaging paradigms for gain control and 3 task nominations for integration. The breakout group for perception evaluated the degree to which each of these tasks met prespecified criteria. For gain control, the breakout group believed that one task (mismatch negativity) was already mature and was being incorporated into multisite clinical trials. The breakout group recommended that 1 visual task (steady-state visual evoked potentials to magnocellular- vs parvocellular-biased stimuli) and 2 auditory measures (an event-related potential (ERP) measure of corollary discharge and a functional magnetic resonance imaging (fMRI) version of prepulse inhibition of startle) be adapted for use in clinical trials in schizophrenia research. For visual integration, the breakout group recommended that fMRI and ERP versions of a contour integration test and an fMRI version of a coherent motion test be adapted for use in clinical trials. This manuscript describes the ways in which each of these tasks met the criteria used in the breakout group to evaluate and recommend tasks for further development. PMID:21890745
Using perceptual rules in interactive visualization
NASA Astrophysics Data System (ADS)
Rogowitz, Bernice E.; Treinish, Lloyd A.
1994-05-01
In visualization, data are represented as variations in grayscale, hue, shape, and texture. They can be mapped to lines, surfaces, and glyphs, and can be represented statically or in animation. In modem visualization systems, the choices for representing data seem unlimited. This is both a blessing and a curse, however, since the visual impression created by the visualization depends critically on which dimensions are selected for representing the data (Bertin, 1967; Tufte, 1983; Cleveland, 1991). In modem visualization systems, the user can interactively select many different mapping and representation operations, and can interactively select processing operations (e.g., applying a color map), realization operations (e.g., generating geometric structures such as contours or streamlines), and rendering operations (e.g., shading or ray-tracing). The user can, for example, map data to a color map, then apply contour lines, then shift the viewing angle, then change the color map again, etc. In many systems, the user can vary the choices for each operation, selecting, for example, particular color maps, contour characteristics, and shading techniques. The hope is that this process will eventually converge on a visual representation which expresses the structure of the data and effectively communicates its message in a way that meets the user's goals. Sometimes, however, it results in visual representations which are confusing, misleading, and garish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Weber, Gunther H.
2014-03-31
Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.
Software Aids In Graphical Depiction Of Flow Data
NASA Technical Reports Server (NTRS)
Stegeman, J. D.
1995-01-01
Interactive Data Display System (IDDS) computer program is graphical-display program designed to assist in visualization of three-dimensional flow in turbomachinery. Grid and simulation data files in PLOT3D format required for input. Able to unwrap volumetric data cone associated with centrifugal compressor and display results in easy-to-understand two- or three-dimensional plots. IDDS provides majority of visualization and analysis capability for Integrated Computational Fluid Dynamics and Experiment (ICE) system. IDDS invoked from any subsystem, or used as stand-alone package of display software. Generates contour, vector, shaded, x-y, and carpet plots. Written in C language. Input file format used by IDDS is that of PLOT3D (COSMIC item ARC-12782).
Time-Hierarchical Clustering and Visualization of Weather Forecast Ensembles.
Ferstl, Florian; Kanzler, Mathias; Rautenhaus, Marc; Westermann, Rudiger
2017-01-01
We propose a new approach for analyzing the temporal growth of the uncertainty in ensembles of weather forecasts which are started from perturbed but similar initial conditions. As an alternative to traditional approaches in meteorology, which use juxtaposition and animation of spaghetti plots of iso-contours, we make use of contour clustering and provide means to encode forecast dynamics and spread in one single visualization. Based on a given ensemble clustering in a specified time window, we merge clusters in time-reversed order to indicate when and where forecast trajectories start to diverge. We present and compare different visualizations of the resulting time-hierarchical grouping, including space-time surfaces built by connecting cluster representatives over time, and stacked contour variability plots. We demonstrate the effectiveness of our visual encodings with forecast examples of the European Centre for Medium-Range Weather Forecasts, which convey the evolution of specific features in the data as well as the temporally increasing spatial variability.
An, Xu; Gong, Hongliang; Yin, Jiapeng; Wang, Xiaochun; Pan, Yanxia; Zhang, Xian; Lu, Yiliang; Yang, Yupeng; Toth, Zoltan; Schiessl, Ingo; McLoughlin, Niall; Wang, Wei
2014-01-01
Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is the orientation of second-order contours represented at the population level in macaque V1 and V2? Here we compared the population responses in macaque V1 and V2 to two types of second-order contour stimuli generated either by modulation of contrast or phase reversal with those to first-order contour stimuli. Using intrinsic signal optical imaging, we found that the orientation of second-order contour stimuli was represented invariantly in the orientation columns of both macaque V1 and V2. A physiologically constrained spatio-temporal energy model of V1 and V2 neuronal populations could reproduce all the recorded population responses. These findings suggest that, at the population level, the primate early visual system processes the orientation of second-order contours initially through a linear spatio-temporal filter mechanism. Our results of population responses to different second-order contour stimuli support the idea that the orientation maps in primate V1 and V2 can be described as a spatial-temporal energy map. PMID:25188576
Evidence Relating Subjective Contours and Interpretations Involving Occlusion.
1981-06-01
This article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretations and is unable to see subjective...article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretions and is unable to see subjective contours...Dr. Howard Gardner for providing access to the facilities at Boston Veterans Administration Hospital for examination of the agnosia patient J.R. Also
Specificity of V1-V2 Orientation Networks in the Primate Visual Cortex
Roe, Anna W.; Ts'o, Daniel Y.
2015-01-01
The computation of texture and shape involves integration of features of various orientations. Orientation networks within V1 tend to involve cells which share similar orientation selectivity. However, emergent properties in V2 require the integration of multiple orientations. We now show that, unlike interactions within V1, V1-V2 orientation interactions are much less synchronized and are not necessarily orientation dependent. We find V1-V2 orientation networks are of two types: a more tightly synchronized, orientation-preserving network and a less synchronized orientation-diverse network. We suggest that such diversity of V1-V2 interactions underlies the spatial and functional integration required for computation of higher order contour and shape in V2. PMID:26314798
[Development of a Software for Automatically Generated Contours in Eclipse TPS].
Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin
2015-03-01
The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.
User-assisted video segmentation system for visual communication
NASA Astrophysics Data System (ADS)
Wu, Zhengping; Chen, Chun
2002-01-01
Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.
NASA Astrophysics Data System (ADS)
Mailloux, B. J.; Kenna, T. C.
2008-12-01
The creation and accurate interpretation of graphs is becoming a lost art among students. The availability of numerous graphing software programs makes the act of graphing data easy but does not necessarily aide students in interpreting complex visual data. This is especially true for contour maps; which have become a critical skill in the earth sciences and everyday life. In multiple classes, we have incorporated a large-scale, hands-on, contouring exercise of temperature, salinity, and density data collected in the Hudson River Estuary. The exercise allows students to learn first-hand how to plot, analyze, and present three dimensional data. As part of a day-long sampling expedition aboard an 80' research vessel, students deploy a water profiling instrument (Seabird CTD). Data are collected along a transect between the Verrazano and George Washington Bridges. The data are then processed and binned at 0.5 meter intervals. The processed data is then used during a later laboratory period for the contouring exercise. In class, students work in groups of 2 to 4 people and are provided with the data, a set of contouring instructions, a piece of large (3' x 3') graph paper, a ruler, and a set of colored markers. We then let the groups work together to determine the details of the graphs. Important steps along the way are talking to the students about X and Y scales, interpolation, and choices of contour intervals and colors. Frustration and bottlenecks are common at the beginning when students are unsure how to even begin with the raw data. At some point during the exercise, students start to understand the contour concept and each group usually produces a finished contour map in an hour or so. Interestingly, the groups take pride in the coloring portion of the contouring as it indicates successful interpretation of the data. The exercise concludes with each group presenting and discussing their contour plot. In almost every case, the hands-on graphing has improved the "students" visualization skills. Contouring has been incorporated into the River Summer (www.riversumer.org, http://www.riversumer.org/) program and our Environmental Measurements laboratory course. This has resulted in the exercise being utilized with undergraduates, high-school teachers, graduate students, and college faculty. We are in the process of making this curricular module available online to educators.
MRI segmentation by active contours model, 3D reconstruction, and visualization
NASA Astrophysics Data System (ADS)
Lopez-Hernandez, Juan M.; Velasquez-Aguilar, J. Guadalupe
2005-02-01
The advances in 3D data modelling methods are becoming increasingly popular in the areas of biology, chemistry and medical applications. The Nuclear Magnetic Resonance Imaging (NMRI) technique has progressed at a spectacular rate over the past few years, its uses have been spread over many applications throughout the body in both anatomical and functional investigations. In this paper we present the application of Zernike polynomials for 3D mesh model of the head using the contour acquired of cross-sectional slices by active contour model extraction and we propose the visualization with OpenGL 3D Graphics of the 2D-3D (slice-surface) information for the diagnostic aid in medical applications.
Evaluating Alignment of Shapes by Ensemble Visualization
Raj, Mukund; Mirzargar, Mahsa; Preston, J. Samuel; Kirby, Robert M.; Whitaker, Ross T.
2016-01-01
The visualization of variability in surfaces embedded in 3D, which is a type of ensemble uncertainty visualization, provides a means of understanding the underlying distribution of a collection or ensemble of surfaces. Although ensemble visualization for isosurfaces has been described in the literature, we conduct an expert-based evaluation of various ensemble visualization techniques in a particular medical imaging application: the construction of atlases or templates from a population of images. In this work, we extend contour boxplot to 3D, allowing us to evaluate it against an enumeration-style visualization of the ensemble members and other conventional visualizations used by atlas builders, namely examining the atlas image and the corresponding images/data provided as part of the construction process. We present feedback from domain experts on the efficacy of contour boxplot compared to other modalities when used as part of the atlas construction and analysis stages of their work. PMID:26186768
Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows
NASA Technical Reports Server (NTRS)
Lane, David A.
1996-01-01
Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.
Keane, Brian P; Paterno, Danielle; Kastner, Sabine; Silverstein, Steven M
2016-05-01
Visual integration dysfunction characterizes schizophrenia, but prior studies have not yet established whether the problem arises by the first psychotic episode or worsens with illness duration. To investigate the issue, we compared chronic schizophrenia patients (SZs), first episode psychosis patients (FEs), and well-matched healthy controls on a brief but sensitive psychophysical task in which subjects attempted to locate an integrated shape embedded in noise. Task difficulty depended on the number of noise elements co-presented with the shape. For half of the experiment, the entire display was scaled down in size to produce a high spatial frequency (HSF) condition, which has been shown to worsen patient integration deficits. Catch trials-in which the circular target appeared without noise-were also added so as to confirm that subjects were paying adequate attention. We found that controls integrated contours under noisier conditions than FEs, who, in turn, integrated better than SZs. These differences, which were at times large in magnitude (d = 1.7), clearly emerged only for HSF displays. Catch trial accuracy was above 95% for each group and could not explain the foregoing differences. Prolonged illness duration predicted poorer HSF integration across patients, but age had little effect on controls, indicating that the former factor was driving the effect in patients. Taken together, a brief psychophysical task efficiently demonstrates large visual integration impairments in schizophrenia. The deficit arises by the first psychotic episode, worsens with illness duration, and may serve as a biomarker of illness progression. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Lehar, Steven
2003-01-01
Visual illusions and perceptual grouping phenomena offer an invaluable tool for probing the computational mechanism of low-level visual processing. Some illusions, like the Kanizsa figure, reveal illusory contours that form edges collinear with the inducing stimulus. This kind of illusory contour has been modeled by neural network models by way of cells equipped with elongated spatial receptive fields designed to detect and complete the collinear alignment. There are, however, other illusory groupings which are not so easy to account for in neural network terms. The Ehrenstein illusion exhibits an illusory contour that forms a contour orthogonal to the stimulus instead of collinear with it. Other perceptual grouping effects reveal illusory contours that exhibit a sharp corner or vertex, and still others take the form of vertices defined by the intersection of three, four, or more illusory contours that meet at a point. A direct extension of the collinear completion models to account for these phenomena tends towards a combinatorial explosion, because it would suggest cells with specialized receptive fields configured to perform each of those completion types, each of which would have to be replicated at every location and every orientation across the visual field. These phenomena therefore challenge the adequacy of the neural network approach to account for these diverse perceptual phenomena. I have proposed elsewhere an alternative paradigm of neurocomputation in the harmonic resonance theory (Lehar 1999, see website), whereby pattern recognition and completion are performed by spatial standing waves across the neural substrate. The standing waves perform a computational function analogous to that of the spatial receptive fields of the neural network approach, except that, unlike that paradigm, a single resonance mechanism performs a function equivalent to a whole array of spatial receptive fields of different spatial configurations and of different orientations, and thereby avoids the combinatorial explosion inherent in the older paradigm. The present paper presents the directional harmonic model, a more specific development of the harmonic resonance theory, designed to account for specific perceptual grouping phenomena. Computer simulations of the directional harmonic model show that it can account for collinear contours as observed in the Kanizsa figure, orthogonal contours as seen in the Ehrenstein illusion, and a number of illusory vertex percepts composed of two, three, or more illusory contours that meet in a variety of configurations.
Contour Curvature As an Invariant Code for Objects in Visual Area V4
Pasupathy, Anitha
2016-01-01
Size-invariant object recognition—the ability to recognize objects across transformations of scale—is a fundamental feature of biological and artificial vision. To investigate its basis in the primate cerebral cortex, we measured single neuron responses to stimuli of varying size in visual area V4, a cornerstone of the object-processing pathway, in rhesus monkeys (Macaca mulatta). Leveraging two competing models for how neuronal selectivity for the bounding contours of objects may depend on stimulus size, we show that most V4 neurons (∼70%) encode objects in a size-invariant manner, consistent with selectivity for a size-independent parameter of boundary form: for these neurons, “normalized” curvature, rather than “absolute” curvature, provided a better account of responses. Our results demonstrate the suitability of contour curvature as a basis for size-invariant object representation in the visual cortex, and posit V4 as a foundation for behaviorally relevant object codes. SIGNIFICANCE STATEMENT Size-invariant object recognition is a bedrock for many perceptual and cognitive functions. Despite growing neurophysiological evidence for invariant object representations in the primate cortex, we still lack a basic understanding of the encoding rules that govern them. Classic work in the field of visual shape theory has long postulated that a representation of objects based on information about their bounding contours is well suited to mediate such an invariant code. In this study, we provide the first empirical support for this hypothesis, and its instantiation in single neurons of visual area V4. PMID:27194333
Perception of Elasticity in the Kinetic Illusory Object with Phase Differences in Inducer Motion
Masuda, Tomohiro; Sato, Kazuki; Murakoshi, Takuma; Utsumi, Ken; Kimura, Atsushi; Shirai, Nobu; Kanazawa, So; Yamaguchi, Masami K.; Wada, Yuji
2013-01-01
Background It is known that subjective contours are perceived even when a figure involves motion. However, whether this includes the perception of rigidity or deformation of an illusory surface remains unknown. In particular, since most visual stimuli used in previous studies were generated in order to induce illusory rigid objects, the potential perception of material properties such as rigidity or elasticity in these illusory surfaces has not been examined. Here, we elucidate whether the magnitude of phase difference in oscillation influences the visual impressions of an object's elasticity (Experiment 1) and identify whether such elasticity perceptions are accompanied by the shape of the subjective contours, which can be assumed to be strongly correlated with the perception of rigidity (Experiment 2). Methodology/Principal Findings In Experiment 1, the phase differences in the oscillating motion of inducers were controlled to investigate whether they influenced the visual impression of an illusory object's elasticity. The results demonstrated that the impression of the elasticity of an illusory surface with subjective contours was systematically flipped with the degree of phase difference. In Experiment 2, we examined whether the subjective contours of a perceived object appeared linear or curved using multi-dimensional scaling analysis. The results indicated that the contours of a moving illusory object were perceived as more curved than linear in all phase-difference conditions. Conclusions/Significance These findings suggest that the phase difference in an object's motion is a significant factor in the material perception of motion-related elasticity. PMID:24205281
A unified account of tilt illusions, association fields, and contour detection based on elastica.
Keemink, Sander W; van Rossum, Mark C W
2016-09-01
As expressed in the Gestalt law of good continuation, human perception tends to associate stimuli that form smooth continuations. Contextual modulation in primary visual cortex, in the form of association fields, is believed to play an important role in this process. Yet a unified and principled account of the good continuation law on the neural level is lacking. In this study we introduce a population model of primary visual cortex. Its contextual interactions depend on the elastica curvature energy of the smoothest contour connecting oriented bars. As expected, this model leads to association fields consistent with data. However, in addition the model displays tilt-illusions for stimulus configurations with grating and single bars that closely match psychophysics. Furthermore, the model explains not only pop-out of contours amid a variety of backgrounds, but also pop-out of single targets amid a uniform background. We thus propose that elastica is a unifying principle of the visual cortical network. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vessel, Edward A; Biederman, Irving; Subramaniam, Suresh; Greene, Michelle R
2016-07-01
An L-vertex, the point at which two contours coterminate, provides highly reliable evidence that a surface terminates at that vertex, thus providing the strongest constraint on the extraction of shape from images (Guzman, 1968). Such vertices are pervasive in our visual world but the importance of a statistical regularity about them has been underappreciated: The contours defining the vertex are (almost) always of the same direction of contrast with respect to the background (i.e., both darker or both lighter). Here we show that when the two contours are of different directions of contrast, the capacity of the L-vertex to signal the termination of a surface, as reflected in object recognition, is markedly reduced. Although image statistics have been implicated in determining the connectivity in the earliest cortical visual stage (V1) and in grouping during visual search, this finding provides evidence that such statistics are involved in later stages where object representations are derived from two-dimensional images.
Lim, Ik Soo; Leek, E Charles
2012-07-01
Previous empirical studies have shown that information along visual contours is known to be concentrated in regions of high magnitude of curvature, and, for closed contours, segments of negative curvature (i.e., concave segments) carry greater perceptual relevance than corresponding regions of positive curvature (i.e., convex segments). Lately, Feldman and Singh (2005, Psychological Review, 112, 243-252) proposed a mathematical derivation to yield information content as a function of curvature along a contour. Here, we highlight several fundamental errors in their derivation and in its associated implementation, which are problematic in both mathematical and psychological senses. Instead, we propose an alternative mathematical formulation for information measure of contour curvature that addresses these issues. Additionally, unlike in previous work, we extend this approach to 3-dimensional (3D) shape by providing a formal measure of information content for surface curvature and outline a modified version of the minima rule relating to part segmentation using curvature in 3D shape. Copyright 2012 APA, all rights reserved.
Barnes-Burroughs, Kathryn; Anderson, Edward E; Hughes, Thomas; Lan, William Y; Dent, Karl; Arnold, Sue; Dolter, Gerald; McNeil, Kathy
2007-11-01
The purpose of this investigation was to ascertain the pedagogical viability of computer-generated melodic contour mapping systems in the classical singing studio, as perceived by their resulting effect (if any) on vocal timbre when a singer's head and neck remained in a normal singing posture. The evaluation of data gathered during the course of the study indicates that the development of consistent vocal timbre produced by the classical singing student may be enhanced through visual/kinesthetic response to melodic contour inversion mapping, as it balances the singer's perception of melodic intervals in standard musical notation. Unexpectedly, it was discovered that the system, in its natural melodic contour mode, may also be useful for teaching a student to sing a consistent legato line. The results of the study also suggest that the continued development of this new technology for the general teaching studio, designed to address standard musical notation and a singer's visual/kinesthetic response to it, may indeed be useful.
Data integrity systems for organ contours in radiation therapy planning.
Shah, Veeraj P; Lakshminarayanan, Pranav; Moore, Joseph; Tran, Phuoc T; Quon, Harry; Deville, Curtiland; McNutt, Todd R
2018-06-12
The purpose of this research is to develop effective data integrity models for contoured anatomy in a radiotherapy workflow for both real-time and retrospective analysis. Within this study, two classes of contour integrity models were developed: data driven models and contiguousness models. The data driven models aim to highlight contours which deviate from a gross set of contours from similar disease sites and encompass the following regions of interest (ROI): bladder, femoral heads, spinal cord, and rectum. The contiguousness models, which individually analyze the geometry of contours to detect possible errors, are applied across many different ROI's and are divided into two metrics: Extent and Region Growing over volume. After analysis, we found that 70% of detected bladder contours were verified as suspicious. The spinal cord and rectum models verified that 73% and 80% of contours were suspicious respectively. The contiguousness models were the most accurate models and the Region Growing model was the most accurate submodel. 100% of the detected noncontiguous contours were verified as suspicious, but in the cases of spinal cord, femoral heads, bladder, and rectum, the Region Growing model detected additional two to five suspicious contours that the Extent model failed to detect. When conducting a blind review to detect false negatives, it was found that all the data driven models failed to detect all suspicious contours. The Region Growing contiguousness model produced zero false negatives in all regions of interest other than prostate. With regards to runtime, the contiguousness via extent model took an average of 0.2 s per contour. On the other hand, the region growing method had a longer runtime which was dependent on the number of voxels in the contour. Both contiguousness models have potential for real-time use in clinical radiotherapy while the data driven models are better suited for retrospective use. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
From optics to attention: visual perception in barn owls.
Harmening, Wolf M; Wagner, Hermann
2011-11-01
Barn owls are nocturnal predators which have evolved specific sensory and morphological adaptations to a life in dim light. Here, some of the most fundamental properties of spatial vision in barn owls are reviewed. The eye with its tubular shape is rigidly integrated in the skull so that eye movements are very much restricted. The eyes are oriented frontally, allowing for a large binocular overlap. Accommodation, but not pupil dilation, is coupled between the two eyes. The retina is rod dominated and lacks a visible fovea. Retinal ganglion cells form a marked region of highest density that extends to a horizontally oriented visual streak. Behavioural visual acuity and contrast sensitivity are poor, although the optical quality of the ocular media is excellent. A low f-number allows high image quality at low light levels. Vernier acuity was found to be a hyperacute percept. Owls have global stereopsis with hyperacute stereo acuity thresholds. Neurons of the visual Wulst are sensitive to binocular disparities. Orientation based saliency was demonstrated in a visual-search experiment, and higher cognitive abilities were shown when the owl's were able to use illusory contours for object discrimination.
Visualization of Sources in the Universe
NASA Astrophysics Data System (ADS)
Kafatos, M.; Cebral, J. R.
1993-12-01
We have begun to develop a series of visualization tools of importance to the display of astronomical data and have applied these to the visualization of cosmological sources in the recently formed Institute for Computational Sciences and Informatics at GMU. One can use a three-dimensional perspective plot of the density surface for three dimensional data and in this case the iso-level contours are three- dimensional surfaces. Sophisticated rendering algorithms combined with multiple source lighting allow us to look carefully at such density contours and to see fine structure on the surface of the density contours. Stereoscopic and transparent rendering can give an even more sophisticated approach with multi-layered surfaces providing information at different levels. We have applied these methods to looking at density surfaces of 3-D data such as 100 clusters of galaxies and 2500 galaxies in the CfA redshift survey. Our plots presented are based on three variables, right ascension, declination and redshift. We have also obtained density structures in 2-D for the distribution of gamma-ray bursts (where distances are unknown) and the distribution of a variety of sources such as clusters of galaxies. Our techniques allow for correlations to be done visually.
NASA Technical Reports Server (NTRS)
Murphy, Douglas G.; Qu, Min; Salas, Andrea O.
2006-01-01
The NASA Integrated Modeling and Simulation (IM&S) project aims to develop a collaborative engineering system to include distributed analysis, integrated tools, and web-enabled graphics. Engineers on the IM&S team were tasked with applying IM&S capabilities to an orbital mechanics analysis for a lunar mission study. An interactive lunar globe was created to show 7 landing sites, contour lines depicting the energy required to reach a given site, and the optimal lunar orbit orientation to meet the mission constraints. Activation of the lunar globe rotation shows the change of the angle between the landing site latitude and the orbit plane. A heads-up-display was used to embed straightforward interface elements.
Surface filling-in and contour interpolation contribute independently to Kanizsa figure formation.
Chen, Siyi; Glasauer, Stefan; Müller, Hermann J; Conci, Markus
2018-04-30
To explore mechanisms of object integration, the present experiments examined how completion of illusory contours and surfaces modulates the sensitivity of localizing a target probe. Observers had to judge whether a briefly presented dot probe was located inside or outside the region demarcated by inducer elements that grouped to form variants of an illusory, Kanizsa-type figure. From the resulting psychometric functions, we determined observers' discrimination thresholds as a sensitivity measure. Experiment 1 showed that sensitivity was systematically modulated by the amount of surface and contour completion afforded by a given configuration. Experiments 2 and 3 presented stimulus variants that induced an (occluded) object without clearly defined bounding contours, which gave rise to a relative sensitivity increase for surface variations on their own. Experiments 4 and 5 were performed to rule out that these performance modulations were simply attributable to variable distances between critical local inducers or to costs in processing an interrupted contour. Collectively, the findings provide evidence for a dissociation between surface and contour processing, supporting a model of object integration in which completion is instantiated by feedforward processing that independently renders surface filling-in and contour interpolation and a feedback loop that integrates these outputs into a complete whole. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Multimodality image integration for radiotherapy treatment: an easy approach
NASA Astrophysics Data System (ADS)
Santos, Andres; Pascau, Javier; Desco, Manuel; Santos, Juan A.; Calvo, Felipe A.; Benito, Carlos; Garcia-Barreno, Rafael
2001-05-01
The interest of using combined MR and CT information for radiotherapy planning is well documented. However, many planning workstations do not allow to use MR images, nor import predefined contours. This paper presents a new simple approach for transferring segmentation results from MRI to a CT image that will be used for radiotherapy planning, using the same original CT format. CT and MRI images of the same anatomical area are registered using mutual information (MI) algorithm. Targets and organs at risk are segmented by the physician on the MR image, where their contours are easy to track. A locally developed software running on PC is used for this step, with several facilities for the segmentation process. The result is transferred onto the CT by slightly modifying up and down the original Hounsfield values of some points of the contour. This is enough to visualize the contour on the CT, but does not affect dose calculations. The CT is then stored using the original file format of the radiotherapy planning workstation, where the technician uses the segmented contour to design the correct beam positioning. The described method has been tested in five patients. Simulations and patient results show that the dose distribution is not affected by the small modification of pixels of the CT image, while the segmented structures can be tracked in the radiotherapy planning workstation-using adequate window/level settings. The presence of the physician is not requires at the planning workstation, and he/she can perform the segmentation process using his/her own PC. This new approach makes it possible to take advantage from the anatomical information present on the MRI and to transfer the segmentation to the CT used for planning, even when the planning workstation does not allow to import external contours. The physician can draw the limits of the target and areas at risk off-line, thus separating in time the segmentation and planning tasks and increasing the efficiency.
Saliency-aware food image segmentation for personal dietary assessment using a wearable computer
Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui
2015-01-01
Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods. PMID:26257473
Saliency-aware food image segmentation for personal dietary assessment using a wearable computer
NASA Astrophysics Data System (ADS)
Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui
2015-02-01
Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.
Gintautas, Vadas; Ham, Michael I.; Kunsberg, Benjamin; Barr, Shawn; Brumby, Steven P.; Rasmussen, Craig; George, John S.; Nemenman, Ilya; Bettencourt, Luís M. A.; Kenyon, Garret T.
2011-01-01
Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas. PMID:21998562
Pabon, Peter; Ternström, Sten; Lamarche, Anick
2011-06-01
To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the contour, is assessed and also is compared to density-based VRP averaging methods that use the overlap count. VRP contours can be usefully described and compared using FDs. The method also permits the visualization of the local covariation along the contour average. For example, the FD-based analysis shows that the population variance for ensembles of VRP contours is usually smallest at the upper left part of the VRP. To illustrate the method's advantages and possible further application, graphs are given that compare the averaged contours from different authors and recording devices--for normal, trained, and untrained male and female voices as well as for child voices. The proposed technique allows any VRP shape to be brought to the same uniform base. On this uniform base, VRP contours or contour elements coming from a variety of sources may be placed within the same graph for comparison and for statistical analysis.
Orientation Tuning in the Visual Cortex of 3-Month-old Human Infants
Baker, Thomas J.; Norcia, Anthony M.; Candy, T. Rowan
2016-01-01
Sensitivity to orientation is critical for making a whole and complete picture of the world. We measured the orientation tuning of mechanisms inthe visual cortex of typically developing 3-month-olds and adults using a nonlinear analysis of the two-input steady-state visually evoked potential (VEP). Two gratings, one a fixed test and the other a variable orientation masker were tagged with distinct temporal frequencies and the corresponding evoked responses were measured at the harmonics of the test and masker frequencies and at a frequency equal to the sum of the two stimulus frequencies. The magnitude of the sum frequency component depended strongly on the relative orientation of the test and masker in both infants and adults. The VEP tuning bandwidths of the 3-month-olds measured at the sum frequency were similar to those of adults, suggesting that behavioral immaturities in functions such as orientation discrimination and contour integration may result from other immaturities in long-range lateral projections or feedback mechanisms. PMID:21236289
NASA Technical Reports Server (NTRS)
Baxter, G. I.
1976-01-01
Contoured-stiffened 63 by 337 inch 2124 aluminum alloy panels are machined in-the-flat to make integral, tapered T-capped stringers, parallel with longitudinal centerline. Aging fixture, which includes net contour formers made from lofted contour templates, has eggcrate-like structure for use in forming and checking panels.
A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image
NASA Astrophysics Data System (ADS)
Barat, Christian; Phlypo, Ronald
2010-12-01
We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.
Image fusion for visualization of hepatic vasculature and tumors
NASA Astrophysics Data System (ADS)
Chou, Jin-Shin; Chen, Shiuh-Yung J.; Sudakoff, Gary S.; Hoffmann, Kenneth R.; Chen, Chin-Tu; Dachman, Abraham H.
1995-05-01
We have developed segmentation and simultaneous display techniques to facilitate the visualization of the three-dimensional spatial relationships between organ structures and organ vasculature. We concentrate on the visualization of the liver based on spiral computed tomography images. Surface-based 3-D rendering and maximal intensity projection algorithms are used for data visualization. To extract the liver in the serial of images accurately and efficiently, we have developed a user-friendly interactive program with a deformable-model segmentation. Surface rendering techniques are used to visualize the extracted structures, adjacent contours are aligned and fitted with a Bezier surface to yield a smooth surface. Visualization of the vascular structures, portal and hepatic veins, is achieved by applying a MIP technique to the extracted liver volume. To integrate the extracted structures they are surface-rendered and their MIP images are aligned and a color table is designed for simultaneous display of the combined liver/tumor and vasculature images. By combining the 3-D surface rendering and MIP techniques, portal veins, hepatic veins, and hepatic tumor can be inspected simultaneously and their spatial relationships can be more easily perceived. The proposed technique will be useful for visualization of both hepatic neoplasm and vasculature in surgical planning for tumor resection or living-donor liver transplantation.
ERIC Educational Resources Information Center
Rule, Audrey C.
2011-01-01
New tactile curriculum materials for teaching Earth and planetary science lessons on rotation=revolution, silhouettes of objects from different views, contour maps, impact craters, asteroids, and topographic features of Mars to 11 elementary and middle school students with sight impairments at a week-long residential summer camp are presented…
The Limits of Shape Recognition following Late Emergence from Blindness.
McKyton, Ayelet; Ben-Zion, Itay; Doron, Ravid; Zohary, Ehud
2015-09-21
Visual object recognition develops during the first years of life. But what if one is deprived of vision during early post-natal development? Shape information is extracted using both low-level cues (e.g., intensity- or color-based contours) and more complex algorithms that are largely based on inference assumptions (e.g., illumination is from above, objects are often partially occluded). Previous studies, testing visual acuity using a 2D shape-identification task (Lea symbols), indicate that contour-based shape recognition can improve with visual experience, even after years of visual deprivation from birth. We hypothesized that this may generalize to other low-level cues (shape, size, and color), but not to mid-level functions (e.g., 3D shape from shading) that might require prior visual knowledge. To that end, we studied a unique group of subjects in Ethiopia that suffered from an early manifestation of dense bilateral cataracts and were surgically treated only years later. Our results suggest that the newly sighted rapidly acquire the ability to recognize an odd element within an array, on the basis of color, size, or shape differences. However, they are generally unable to find the odd shape on the basis of illusory contours, shading, or occlusion relationships. Little recovery of these mid-level functions is seen within 1 year post-operation. We find that visual performance using low-level cues is relatively robust to prolonged deprivation from birth. However, the use of pictorial depth cues to infer 3D structure from the 2D retinal image is highly susceptible to early and prolonged visual deprivation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determination of Visual Figure and Ground in Dynamically Deforming Shapes
ERIC Educational Resources Information Center
Barenholtz, Elan; Feldman, Jacob
2006-01-01
Figure/ground assignment--determining which part of the visual image is foreground and which background--is a critical step in early visual analysis, upon which much later processing depends. Previous research on the assignment of figure and ground to opposing sides of a contour has almost exclusively involved static geometric factors--such as…
Creation of digital contours that approach the characteristics of cartographic contours
Tyler, Dean J.; Greenlee, Susan K.
2012-01-01
The capability to easily create digital contours using commercial off-the-shelf (COTS) software has existed for decades. Out-of-the-box raw contours are suitable for many scientific applications without pre- or post-processing; however, cartographic applications typically require additional improvements. For example, raw contours generally require smoothing before placement on a map. Cartographic contours must also conform to certain spatial/logical rules; for example, contours may not cross waterbodies. The objective was to create contours that match as closely as possible the cartographic contours produced by manual methods on the 1:24,000-scale, 7.5-minute Topographic Map series. This report outlines the basic approach, describes a variety of problems that were encountered, and discusses solutions. Many of the challenges described herein were the result of imperfect input raster elevation data and the requirement to have the contours integrated with hydrographic features from the National Hydrography Dataset (NHD).
ERIC Educational Resources Information Center
Marschalek, Douglas G.
1988-01-01
Describes study of children in grades one, three, and five that examined their active processing and short term memory (STM) of color, contour, and interior pattern of shapes found in computer digitized pictures. Age-related differences are examined, and the role of processing visual information in the learning process is discussed. (12…
Salient contour extraction from complex natural scene in night vision image
NASA Astrophysics Data System (ADS)
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lian-fa
2014-03-01
The theory of center-surround interaction in non-classical receptive field can be applied in night vision information processing. In this work, an optimized compound receptive field modulation method is proposed to extract salient contour from complex natural scene in low-light-level (LLL) and infrared images. The kernel idea is that multi-feature analysis can recognize the inhomogeneity in modulatory coverage more accurately and that center and surround with the grouping structure satisfying Gestalt rule deserves high connection-probability. Computationally, a multi-feature contrast weighted inhibition model is presented to suppress background and lower mutual inhibition among contour elements; a fuzzy connection facilitation model is proposed to achieve the enhancement of contour response, the connection of discontinuous contour and the further elimination of randomly distributed noise and texture; a multi-scale iterative attention method is designed to accomplish dynamic modulation process and extract contours of targets in multi-size. This work provides a series of biologically motivated computational visual models with high-performance for contour detection from cluttered scene in night vision images.
The Organization of Shape and Color in Vision and Art
Pinna, Baingio
2011-01-01
The aim of this work is to study the phenomenal organization of shape and color in vision and art in terms of microgenesis of the object perception and creation. The idea of “microgenesis” is that the object perception and creation takes time to develop. Our hypothesis is that the roles of shape and color are extracted in sequential order and in the same order these roles are also used by artists to paint objects. Boundary contours are coded before color contours. The microgenesis of the object formation was demonstrated (i) by introducing new conditions derived from the watercolor illusion, where the juxtaposed contours are displaced horizontally or vertically, and based on variations of Matisse’s Woman, (ii) by studying descriptions and replications of visual objects in adults and children of different ages, and (iii) by analyzing the linguistic sequence and organization in a free naming task of the attributes related to shape and color. The results supported the idea of the microgenesis of the object perception, namely the temporal order in the formation of the roles of the object properties (shape before color). Some general principles were extracted from the experimental results. They can be a starting point to explore a new domain focused on the microgenesis of shape and color within the more general problem of object organization, where integrated and multidisciplinary studies based on art and vision science can be very useful. PMID:22065954
Segmentation and Tracking of Cytoskeletal Filaments Using Open Active Contours
Smith, Matthew B.; Li, Hongsheng; Shen, Tian; Huang, Xiaolei; Yusuf, Eddy; Vavylonis, Dimitrios
2010-01-01
We use open active contours to quantify cytoskeletal structures imaged by fluorescence microscopy in two and three dimensions. We developed an interactive software tool for segmentation, tracking, and visualization of individual fibers. Open active contours are parametric curves that deform to minimize the sum of an external energy derived from the image and an internal bending and stretching energy. The external energy generates (i) forces that attract the contour toward the central bright line of a filament in the image, and (ii) forces that stretch the active contour toward the ends of bright ridges. Images of simulated semiflexible polymers with known bending and torsional rigidity are analyzed to validate the method. We apply our methods to quantify the conformations and dynamics of actin in two examples: actin filaments imaged by TIRF microscopy in vitro, and actin cables in fission yeast imaged by spinning disk confocal microscopy. PMID:20814909
Measuring the visual salience of alignments by their non-accidentalness.
Blusseau, S; Carboni, A; Maiche, A; Morel, J M; Grompone von Gioi, R
2016-09-01
Quantitative approaches are part of the understanding of contour integration and the Gestalt law of good continuation. The present study introduces a new quantitative approach based on the a contrario theory, which formalizes the non-accidentalness principle for good continuation. This model yields an ideal observer algorithm, able to detect non-accidental alignments in Gabor patterns. More precisely, this parameterless algorithm associates with each candidate percept a measure, the Number of False Alarms (NFA), quantifying its degree of masking. To evaluate the approach, we compared this ideal observer with the human attentive performance on three experiments of straight contours detection in arrays of Gabor patches. The experiments showed a strong correlation between the detectability of the target stimuli and their degree of non-accidentalness, as measured by our model. What is more, the algorithm's detection curves were very similar to the ones of human subjects. This fact seems to validate our proposed measurement method as a convenient way to predict the visibility of alignments. This framework could be generalized to other Gestalts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reproducibility of isopach data and estimates of dispersal and eruption volumes
NASA Astrophysics Data System (ADS)
Klawonn, M.; Houghton, B. F.; Swanson, D.; Fagents, S. A.; Wessel, P.; Wolfe, C. J.
2012-12-01
Total erupted volume and deposit thinning relationships are key parameters in characterizing explosive eruptions and evaluating the potential risk from a volcano as well as inputs to volcanic plume models. Volcanologists most commonly estimate these parameters by hand-contouring deposit data, then representing these contours in thickness versus square root area plots, fitting empirical laws to the thinning relationships and integrating over the square root area to arrive at volume estimates. In this study we analyze the extent to which variability in hand-contouring thickness data for pyroclastic fall deposits influences the resulting estimates and investigate the effects of different fitting laws. 96 volcanologists (3% MA students, 19% PhD students, 20% postdocs, 27% professors, and 30% professional geologists) from 11 countries (Australia, Ecuador, France, Germany, Iceland, Italy, Japan, New Zealand, Switzerland, UK, USA) participated in our study and produced hand-contours on identical maps using our unpublished thickness measurements of the Kilauea Iki 1959 fall deposit. We computed volume estimates by (A) integrating over a surface fitted through the contour lines, as well as using the established methods of integrating over the thinning relationships of (B) an exponential fit with one to three segments, (C) a power law fit, and (D) a Weibull function fit. To focus on the differences from the hand-contours of the well constrained deposit and eliminate the effects of extrapolations to great but unmeasured thicknesses near the vent, we removed the volume contribution of the near vent deposit (defined as the deposit above 3.5 m) from the volume estimates. The remaining volume approximates to 1.76 *106 m3 (geometric mean for all methods) with maximum and minimum estimates of 2.5 *106 m3 and 1.1 *106 m3. Different integration methods of identical isopach maps result in volume estimate differences of up to 50% and, on average, maximum variation between integration methods of 14%. Volume estimates with methods (A), (C) and (D) show strong correlation (r = 0.8 to r = 0.9), while correlation of (B) with the other methods is weaker (r = 0.2 to r = 0.6) and correlation between (B) and (C) is not statistically significant. We find that the choice of larger maximum contours leads to smaller volume estimates due to method (C), but larger estimates with the other methods. We do not find statistically significant correlation between volume estimations and participants experience level, number of chosen contour levels, nor smoothness of contours. Overall, application of the different methods to the same maps leads to similar mean volume estimates, but the different methods show different dependencies and varying spread of volume estimates. The results indicate that these key parameters are less critically dependent on the operator and their choices of contour values, intervals etc., and more sensitive to the selection of technique to integrate these data.
The physiology and psychophysics of the color-form relationship: a review
Moutoussis, Konstantinos
2015-01-01
The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies. PMID:26578989
The physiology and psychophysics of the color-form relationship: a review.
Moutoussis, Konstantinos
2015-01-01
The relationship between color and form has been a long standing issue in visual science. A picture of functional segregation and topographic clustering emerges from anatomical and electrophysiological studies in animals, as well as by brain imaging studies in human. However, one of the many roles of chromatic information is to support form perception, and in some cases it can do so in a way superior to achromatic (luminance) information. This occurs both at an early, contour-detection stage, as well as in late, higher stages involving spatial integration and the perception of global shapes. Pure chromatic contrast can also support several visual illusions related to form-perception. On the other hand, form seems a necessary prerequisite for the computation and assignment of color across space, and there are several respects in which the color of an object can be influenced by its form. Evidently, color and form are mutually dependent. Electrophysiological studies have revealed neurons in the visual brain able to signal contours determined by pure chromatic contrast, the spatial tuning of which is similar to that of neurons carrying luminance information. It seems that, especially at an early stage, form is processed by several, independent systems that interact with each other, each one having different tuning characteristics in color space. At later processing stages, mechanisms able to combine information coming from different sources emerge. A clear interaction between color and form is manifested by the fact that color-form contingencies can be observed in various perceptual phenomena such as adaptation aftereffects and illusions. Such an interaction suggests a possible early binding between these two attributes, something that has been verified by both electrophysiological and fMRI studies.
Zhao, Jing; Kwok, Rosa K. W.; Liu, Menglian; Liu, Hanlong; Huang, Chen
2017-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency. PMID:28119663
Zhao, Jing; Kwok, Rosa K W; Liu, Menglian; Liu, Hanlong; Huang, Chen
2016-01-01
Reading fluency is a critical skill to improve the quality of our daily life and working efficiency. The majority of previous studies focused on oral reading fluency rather than silent reading fluency, which is a much more dominant reading mode that is used in middle and high school and for leisure reading. It is still unclear whether the oral and silent reading fluency involved the same underlying skills. To address this issue, the present study examined the relationship between the visual rapid processing and Chinese reading fluency in different modes. Fifty-eight undergraduate students took part in the experiment. The phantom contour paradigm and the visual 1-back task were adopted to measure the visual rapid temporal and simultaneous processing respectively. These two tasks reflected the temporal and spatial dimensions of visual rapid processing separately. We recorded the temporal threshold in the phantom contour task, as well as reaction time and accuracy in the visual 1-back task. Reading fluency was measured in both single-character and sentence levels. Fluent reading of single characters was assessed with a paper-and-pencil lexical decision task, and a sentence verification task was developed to examine reading fluency on a sentence level. The reading fluency test in each level was conducted twice (i.e., oral reading and silent reading). Reading speed and accuracy were recorded. The correlation analysis showed that the temporal threshold in the phantom contour task did not correlate with the scores of the reading fluency tests. Although, the reaction time in visual 1-back task correlated with the reading speed of both oral and silent reading fluency, the comparison of the correlation coefficients revealed a closer relationship between the visual rapid simultaneous processing and silent reading. Furthermore, the visual rapid simultaneous processing exhibited a significant contribution to reading fluency in silent mode but not in oral reading mode. These findings suggest that the underlying mechanism between oral and silent reading fluency is different at the beginning of the basic visual coding. The current results also might reveal a potential modulation of the language characteristics of Chinese on the relationship between visual rapid processing and reading fluency.
Interactions between motion and form processing in the human visual system.
Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara
2013-01-01
The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by "motion-streaks" influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS.
Interactions between motion and form processing in the human visual system
Mather, George; Pavan, Andrea; Bellacosa Marotti, Rosilari; Campana, Gianluca; Casco, Clara
2013-01-01
The predominant view of motion and form processing in the human visual system assumes that these two attributes are handled by separate and independent modules. Motion processing involves filtering by direction-selective sensors, followed by integration to solve the aperture problem. Form processing involves filtering by orientation-selective and size-selective receptive fields, followed by integration to encode object shape. It has long been known that motion signals can influence form processing in the well-known Gestalt principle of common fate; texture elements which share a common motion property are grouped into a single contour or texture region. However, recent research in psychophysics and neuroscience indicates that the influence of form signals on motion processing is more extensive than previously thought. First, the salience and apparent direction of moving lines depends on how the local orientation and direction of motion combine to match the receptive field properties of motion-selective neurons. Second, orientation signals generated by “motion-streaks” influence motion processing; motion sensitivity, apparent direction and adaptation are affected by simultaneously present orientation signals. Third, form signals generated by human body shape influence biological motion processing, as revealed by studies using point-light motion stimuli. Thus, form-motion integration seems to occur at several different levels of cortical processing, from V1 to STS. PMID:23730286
ERIC Educational Resources Information Center
Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A.
2017-01-01
We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns, whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of…
The neurobiological basis of seeing words
Wandell, Brian A.
2011-01-01
This review summarizes recent ideas about the cortical circuits for seeing words, an important part of the brain system for reading. Historically, the link between the visual cortex and reading has been contentious. One influential position is that the visual cortex plays a minimal role, limited to identifying contours, and that information about these contours is delivered to cortical regions specialized for reading and language. An alternative position is that specializations for seeing words develop within the visual cortex itself. Modern neuroimaging measurements—including both functional magnetic resonance imaging (fMRI) and diffusion weighted imaging with tractography data—support the position that circuitry for seeing the statistical regularities of word forms develops within the ventral occipitotemporal cortex, which also contains important circuitry for seeing faces, colors, and forms. The review explains new findings about the visual pathways, including visual field maps, as well as new findings about how we see words. The measurements from the two fields are in close cortical proximity, and there are good opportunities for coordinating theoretical ideas about function in the ventral occipitotemporal cortex. PMID:21486296
The neurobiological basis of seeing words.
Wandell, Brian A
2011-04-01
This review summarizes recent ideas about the cortical circuits for seeing words, an important part of the brain system for reading. Historically, the link between the visual cortex and reading has been contentious. One influential position is that the visual cortex plays a minimal role, limited to identifying contours, and that information about these contours is delivered to cortical regions specialized for reading and language. An alternative position is that specializations for seeing words develop within the visual cortex itself. Modern neuroimaging measurements-including both functional magnetic resonance imaging (fMRI) and diffusion weighted imaging with tractography (DTI) data-support the position that circuitry for seeing the statistical regularities of word forms develops within the ventral occipitotemporal cortex, which also contains important circuitry for seeing faces, colors, and forms. This review explains new findings about the visual pathways, including visual field maps, as well as new findings about how we see words. The measurements from the two fields are in close cortical proximity, and there are good opportunities for coordinating theoretical ideas about function in the ventral occipitotemporal cortex. © 2011 New York Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsin-Chen; Tan, Jun; Dolly, Steven
2015-02-15
Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less
Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture
Vartanian, Oshin; Navarrete, Gorka; Chatterjee, Anjan; Fich, Lars Brorson; Leder, Helmut; Modroño, Cristián; Nadal, Marcos; Rostrup, Nicolai; Skov, Martin
2013-01-01
On average, we urban dwellers spend about 90% of our time indoors, and share the intuition that the physical features of the places we live and work in influence how we feel and act. However, there is surprisingly little research on how architecture impacts behavior, much less on how it influences brain function. To begin closing this gap, we conducted a functional magnetic resonance imaging study to examine how systematic variation in contour impacts aesthetic judgments and approach-avoidance decisions, outcome measures of interest to both architects and users of spaces alike. As predicted, participants were more likely to judge spaces as beautiful if they were curvilinear than rectilinear. Neuroanatomically, when contemplating beauty, curvilinear contour activated the anterior cingulate cortex exclusively, a region strongly responsive to the reward properties and emotional salience of objects. Complementing this finding, pleasantness—the valence dimension of the affect circumplex—accounted for nearly 60% of the variance in beauty ratings. Furthermore, activation in a distributed brain network known to underlie the aesthetic evaluation of different types of visual stimuli covaried with beauty ratings. In contrast, contour did not affect approach-avoidance decisions, although curvilinear spaces activated the visual cortex. The results suggest that the well-established effect of contour on aesthetic preference can be extended to architecture. Furthermore, the combination of our behavioral and neural evidence underscores the role of emotion in our preference for curvilinear objects in this domain. PMID:23754408
The role of convexity in perception of symmetry and in visual short-term memory.
Bertamini, Marco; Helmy, Mai Salah; Hulleman, Johan
2013-01-01
Visual perception of shape is affected by coding of local convexities and concavities. For instance, a recent study reported that deviations from symmetry carried by convexities were easier to detect than deviations carried by concavities. We removed some confounds and extended this work from a detection of reflection of a contour (i.e., bilateral symmetry), to a detection of repetition of a contour (i.e., translational symmetry). We tested whether any convexity advantage is specific to bilateral symmetry in a two-interval (Experiment 1) and a single-interval (Experiment 2) detection task. In both, we found a convexity advantage only for repetition. When we removed the need to choose which region of the contour to monitor (Experiment 3) the effect disappeared. In a second series of studies, we again used shapes with multiple convex or concave features. Participants performed a change detection task in which only one of the features could change. We did not find any evidence that convexities are special in visual short-term memory, when the to-be-remembered features only changed shape (Experiment 4), when they changed shape and changed from concave to convex and vice versa (Experiment 5), or when these conditions were mixed (Experiment 6). We did find a small advantage for coding convexity as well as concavity over an isolated (and thus ambiguous) contour. The latter is consistent with the known effect of closure on processing of shape. We conclude that convexity plays a role in many perceptual tasks but that it does not have a basic encoding advantage over concavity.
NASA Astrophysics Data System (ADS)
Alexander, A.; DeBlois, F.; Stroian, G.; Al-Yahya, K.; Heath, E.; Seuntjens, J.
2007-07-01
Radiotherapy research lacks a flexible computational research environment for Monte Carlo (MC) and patient-specific treatment planning. The purpose of this study was to develop a flexible software package on low-cost hardware with the aim of integrating new patient-specific treatment planning with MC dose calculations suitable for large-scale prospective and retrospective treatment planning studies. We designed the software package 'McGill Monte Carlo treatment planning' (MMCTP) for the research development of MC and patient-specific treatment planning. The MMCTP design consists of a graphical user interface (GUI), which runs on a simple workstation connected through standard secure-shell protocol to a cluster for lengthy MC calculations. Treatment planning information (e.g., images, structures, beam geometry properties and dose distributions) is converted into a convenient MMCTP local file storage format designated, the McGill RT format. MMCTP features include (a) DICOM_RT, RTOG and CADPlan CART format imports; (b) 2D and 3D visualization views for images, structure contours, and dose distributions; (c) contouring tools; (d) DVH analysis, and dose matrix comparison tools; (e) external beam editing; (f) MC transport calculation from beam source to patient geometry for photon and electron beams. The MC input files, which are prepared from the beam geometry properties and patient information (e.g., images and structure contours), are uploaded and run on a cluster using shell commands controlled from the MMCTP GUI. The visualization, dose matrix operation and DVH tools offer extensive options for plan analysis and comparison between MC plans and plans imported from commercial treatment planning systems. The MMCTP GUI provides a flexible research platform for the development of patient-specific MC treatment planning for photon and electron external beam radiation therapy. The impact of this tool lies in the fact that it allows for systematic, platform-independent, large-scale MC treatment planning for different treatment sites. Patient recalculations were performed to validate the software and ensure proper functionality.
A Review of the Positive Influence of Crown Contours on Soft-Tissue Esthetics.
Kinsel, Richard P; Pope, Bryan I; Capoferri, Daniele
2015-05-01
Successful crown restorations duplicate the natural tooth in hue, chroma, value, maverick colors, and surface texture. Equally important is the visual harmony of the facial and proximal soft-tissue contours, which requires the collaborative skills of the restorative dentist, periodontist, and dental technician. The treatment team must understand the biologic structures adjacent to natural dentition and dental implants. This report describes the potential for specifically designed restorative contours to dictate the optimal gingival profile for tooth-supported and implant-supported crowns. Showing several cases, the article explains how esthetic soft-tissue contours enhance the definitive crown restoration, highlights the importance of clinical evaluation of adjacent biologic structures, and discusses keys to predicting when the proximal papilla has the potential to return to a favorable height and shape.
A Review of Research Related to Unmanned Aircraft System Visual Observers
2014-10-01
accommodation. Poor Contrast Contrast refers to the difference in luminance between an object and its background. The larger the difference in luminance , the...to camouflage potential targets. Complex Backgrounds When the background behind an object contains a variety of luminance levels and contours it...itself contained a variety of luminance levels and contours. It is likely that this complex background effect would be seen more often between air
Dentalmaps: Automatic Dental Delineation for Radiotherapy Planning in Head-and-Neck Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thariat, Juliette, E-mail: jthariat@hotmail.com; Ramus, Liliane; INRIA
Purpose: To propose an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, and to assess its accuracy and relevance to guide dental care in the context of intensity-modulated radiotherapy. Methods and Materials: A multi-atlas-based segmentation, less sensitive to artifacts than previously published head-and-neck segmentation methods, was used. The manual segmentations of a 21-patient database were first deformed onto the query using nonlinear registrations with the training images and then fused to estimate the consensus segmentation of the query. Results: The framework was evaluated with a leave-one-out protocol. The maximum doses estimated using manual contours were considered as groundmore » truth and compared with the maximum doses estimated using automatic contours. The dose estimation error was within 2-Gy accuracy in 75% of cases (with a median of 0.9 Gy), whereas it was within 2-Gy accuracy in 30% of cases only with the visual estimation method without any contour, which is the routine practice procedure. Conclusions: Dose estimates using this framework were more accurate than visual estimates without dental contour. Dentalmaps represents a useful documentation and communication tool between radiation oncologists and dentists in routine practice. Prospective multicenter assessment is underway on patients extrinsic to the database.« less
PBEQ-Solver for online visualization of electrostatic potential of biomolecules.
Jo, Sunhwan; Vargyas, Miklos; Vasko-Szedlar, Judit; Roux, Benoît; Im, Wonpil
2008-07-01
PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calculations can be performed in both aqueous solvent and membrane environments (with a cylindrical pore in the case of membrane). PBEQ-Solver uses the PBEQ module in the biomolecular simulation program CHARMM to solve the finite-difference PB equation of molecules specified by users. Users can interactively inspect the calculated electrostatic potential on the solvent-accessible surface as well as iso-electrostatic potential contours using a novel online visualization tool based on MarvinSpace molecular visualization software, a Java applet integrated within CHARMM-GUI (http://www.charmm-gui.org). To reduce the computational time on the server, and to increase the efficiency in visualization, all the PB calculations are performed with coarse grid spacing (1.5 A before and 1 A after focusing). PBEQ-Solver suggests various physical parameters for PB calculations and users can modify them if necessary. PBEQ-Solver is available at http://www.charmm-gui.org/input/pbeqsolver.
Determining the orientation of depth-rotated familiar objects.
Niimi, Ryosuke; Yokosawa, Kazuhiko
2008-02-01
How does the human visual system determine the depth-orientation of familiar objects? We examined reaction times and errors in the detection of 15 degrees differences in the depth orientations of two simultaneously presented familiar objects, which were the same objects (Experiment 1) or different objects (Experiment 2). Detection of orientation differences was best for 0 degrees (front) and 180 degrees (back), while 45 degrees and 135 degrees yielded poorer results, and 90 degrees (side) showed intermediate results, suggesting that the visual system is tuned for front, side and back orientations. We further found that those advantages are due to orientation-specific features such as horizontal linear contours and symmetry, since the 90 degrees advantage was absent for objects with curvilinear contours, and asymmetric object diminished the 0 degrees and 180 degrees advantages. We conclude that the efficiency of visually determining object orientation is highly orientation-dependent, and object orientation may be perceived in favor of front-back axes.
Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi
2015-07-01
Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
Convexities move because they contain matter.
Barenholtz, Elan
2010-09-22
Figure-ground assignment to a contour is a fundamental stage in visual processing. The current paper introduces a novel, highly general dynamic cue to figure-ground assignment: "Convex Motion." Across six experiments, subjects showed a strong preference to assign figure and ground to a dynamically deforming contour such that the moving contour segment was convex rather than concave. Experiments 1 and 2 established the preference across two different kinds of deformational motion. Additional experiments determined that this preference was not due to fixation (Experiment 3) or attentional mechanisms (Experiment 4). Experiment 5 found a similar, but reduced bias for rigid-as opposed to deformational-motion, and Experiment 6 demonstrated that the phenomenon depends on the global motion of the effected contour. An explanation of this phenomenon is presented on the basis of typical natural deformational motion, which tends to involve convex contour projections that contain regions consisting of physical "matter," as opposed to concave contour indentations that contain empty space. These results highlight the fundamental relationship between figure and ground, perceived shape, and the inferred physical properties of an object.
Zhen, Xin; Zhou, Ling-hong; Lu, Wen-ting; Zhang, Shu-xu; Zhou, Lu
2010-12-01
To validate the efficiency and accuracy of an improved Demons deformable registration algorithm and evaluate its application in contour recontouring in 4D-CT. To increase the additional Demons force and reallocate the bilateral forces to accelerate convergent speed, we propose a novel energy function as the similarity measure, and utilize a BFGS method for optimization to avoid specifying the numbers of iteration. Mathematical transformed deformable CT images and home-made deformable phantom were used to validate the accuracy of the improved algorithm, and its effectiveness for contour recontouring was tested. The improved algorithm showed a relatively high registration accuracy and speed when compared with the classic Demons algorithm and optical flow based method. Visual inspection of the positions and shapes of the deformed contours agreed well with the physician-drawn contours. Deformable registration is a key technique in 4D-CT, and this improved Demons algorithm for contour recontouring can significantly reduce the workload of the physicians. The registration accuracy of this method proves to be sufficient for clinical needs.
Neurons with two sites of synaptic integration learn invariant representations.
Körding, K P; König, P
2001-12-01
Neurons in mammalian cerebral cortex combine specific responses with respect to some stimulus features with invariant responses to other stimulus features. For example, in primary visual cortex, complex cells code for orientation of a contour but ignore its position to a certain degree. In higher areas, such as the inferotemporal cortex, translation-invariant, rotation-invariant, and even view point-invariant responses can be observed. Such properties are of obvious interest to artificial systems performing tasks like pattern recognition. It remains to be resolved how such response properties develop in biological systems. Here we present an unsupervised learning rule that addresses this problem. It is based on a neuron model with two sites of synaptic integration, allowing qualitatively different effects of input to basal and apical dendritic trees, respectively. Without supervision, the system learns to extract invariance properties using temporal or spatial continuity of stimuli. Furthermore, top-down information can be smoothly integrated in the same framework. Thus, this model lends a physiological implementation to approaches of unsupervised learning of invariant-response properties.
Wagemans, Johan; Elder, James H; Kubovy, Michael; Palmer, Stephen E; Peterson, Mary A; Singh, Manish; von der Heydt, Rüdiger
2012-11-01
In 1912, Max Wertheimer published his paper on phi motion, widely recognized as the start of Gestalt psychology. Because of its continued relevance in modern psychology, this centennial anniversary is an excellent opportunity to take stock of what Gestalt psychology has offered and how it has changed since its inception. We first introduce the key findings and ideas in the Berlin school of Gestalt psychology, and then briefly sketch its development, rise, and fall. Next, we discuss its empirical and conceptual problems, and indicate how they are addressed in contemporary research on perceptual grouping and figure-ground organization. In particular, we review the principles of grouping, both classical (e.g., proximity, similarity, common fate, good continuation, closure, symmetry, parallelism) and new (e.g., synchrony, common region, element and uniform connectedness), and their role in contour integration and completion. We then review classic and new image-based principles of figure-ground organization, how it is influenced by past experience and attention, and how it relates to shape and depth perception. After an integrated review of the neural mechanisms involved in contour grouping, border ownership, and figure-ground perception, we conclude by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether we can speak of a Gestalt revival, and where the remaining limitations and challenges lie. A better integration of this research tradition with the rest of vision science requires further progress regarding the conceptual and theoretical foundations of the Gestalt approach, which is the focus of a second review article.
Wagemans, Johan; Elder, James H.; Kubovy, Michael; Palmer, Stephen E.; Peterson, Mary A.; Singh, Manish; von der Heydt, Rüdiger
2012-01-01
In 1912, Max Wertheimer published his paper on phi motion, widely recognized as the start of Gestalt psychology. Because of its continued relevance in modern psychology, this centennial anniversary is an excellent opportunity to take stock of what Gestalt psychology has offered and how it has changed since its inception. We first introduce the key findings and ideas in the Berlin school of Gestalt psychology, and then briefly sketch its development, rise, and fall. Next, we discuss its empirical and conceptual problems, and indicate how they are addressed in contemporary research on perceptual grouping and figure-ground organization. In particular, we review the principles of grouping, both classical (e.g., proximity, similarity, common fate, good continuation, closure, symmetry, parallelism) and new (e.g., synchrony, common region, element and uniform connectedness), and their role in contour integration and completion. We then review classic and new image-based principles of figure-ground organization, how it is influenced by past experience and attention, and how it relates to shape and depth perception. After an integrated review of the neural mechanisms involved in contour grouping, border-ownership, and figure-ground perception, we conclude by evaluating what modern vision science has offered compared to traditional Gestalt psychology, whether we can speak of a Gestalt revival, and where the remaining limitations and challenges lie. A better integration of this research tradition with the rest of vision science requires further progress regarding the conceptual and theoretical foundations of the Gestalt approach, which will be the focus of a second review paper. PMID:22845751
[Visual Texture Agnosia in Humans].
Suzuki, Kyoko
2015-06-01
Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.
Norman, J Farley; Phillips, Flip; Cheeseman, Jacob R; Thomason, Kelsey E; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B; Lamirande, Davora
2016-01-01
It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven") for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision.
Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora
2016-01-01
It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531
2017-05-19
Vijay Singh, Martin Tchernookov, Rebecca Butterfield, Ilya Nemenman, Rongrong Ji. Director Field Model of the Primary Visual Cortex for Contour...FTE Equivalent: Total Number: DISCIPLINE Vijay Singh 40 Physics 0.40 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Martin Tchernookov 0.20
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1983-01-01
The theoretical development of a simple and consistent method for removing the interference in adaptive-wall wind tunnels is reported. A Cauchy integral formulation of the velocities in an imaginary infinite extension of the real wind-tunnel flow is obtained and evaluated on a closed contour dividing the real and imaginary flow. The contour consists of the upper and lower effective wind-tunnel walls (wall plus boundary-layer displacement thickness) and upstream and downstream boundaries perpendicular to the axial tunnel flow. The resulting integral expressions for the streamwise and normal perturbation velocities on the contour are integrated by assuming a linear variation of the velocities between data-measurement stations along the contour. In an iterative process, the velocity components calculated on the upper and lower boundaries are then used to correct the shape of the wall to remove the interference. Convergence of the technique is shown numerically for the cases of a circular cylinder and a lifting and nonlifting NACA 0012 airfoil in incompressible flow. Experimental convergence at a transonic Mach number is demonstrated by using an NACA 0012 airfoil at zero lift.
Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults.
Lee, Ahreum; Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju
2018-04-11
Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standar Desviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition.
Zangwill, Linda M; Chan, Kwokleung; Bowd, Christopher; Hao, Jicuang; Lee, Te-Won; Weinreb, Robert N; Sejnowski, Terrence J; Goldbaum, Michael H
2004-09-01
To determine whether topographical measurements of the parapapillary region analyzed by machine learning classifiers can detect early to moderate glaucoma better than similarly processed measurements obtained within the disc margin and to improve methods for optimization of machine learning classifier feature selection. One eye of each of 95 patients with early to moderate glaucomatous visual field damage and of each of 135 normal subjects older than 40 years participating in the longitudinal Diagnostic Innovations in Glaucoma Study (DIGS) were included. Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Dossenheim, Germany) mean height contour was measured in 36 equal sectors, both along the disc margin and in the parapapillary region (at a mean contour line radius of 1.7 mm). Each sector was evaluated individually and in combination with other sectors. Gaussian support vector machine (SVM) learning classifiers were used to interpret HRT sector measurements along the disc margin and in the parapapillary region, to differentiate between eyes with normal and glaucomatous visual fields and to compare the results with global and regional HRT parameter measurements. The area under the receiver operating characteristic (ROC) curve was used to measure diagnostic performance of the HRT parameters and to evaluate the cross-validation strategies and forward selection and backward elimination optimization techniques that were used to generate the reduced feature sets. The area under the ROC curve for mean height contour of the 36 sectors along the disc margin was larger than that for the mean height contour in the parapapillary region (0.97 and 0.85, respectively). Of the 36 individual sectors along the disc margin, those in the inferior region between 240 degrees and 300 degrees, had the largest area under the ROC curve (0.85-0.91). With SVM Gaussian techniques, the regional parameters showed the best ability to discriminate between normal eyes and eyes with glaucomatous visual field damage, followed by the global parameters, mean height contour measures along the disc margin, and mean height contour measures in the parapapillary region. The area under the ROC curve was 0.98, 0.94, 0.93, and 0.85, respectively. Cross-validation and optimization techniques demonstrated that good discrimination (99% of peak area under the ROC curve) can be obtained with a reduced number of HRT parameters. Mean height contour measurements along the disc margin discriminated between normal and glaucomatous eyes better than measurements obtained in the parapapillary region. Copyright Association for Research in Vision and Ophthalmology
Zangwill, Linda M.; Chan, Kwokleung; Bowd, Christopher; Hao, Jicuang; Lee, Te-Won; Weinreb, Robert N.; Sejnowski, Terrence J.; Goldbaum, Michael H.
2010-01-01
Purpose To determine whether topographical measurements of the parapapillary region analyzed by machine learning classifiers can detect early to moderate glaucoma better than similarly processed measurements obtained within the disc margin and to improve methods for optimization of machine learning classifier feature selection. Methods One eye of each of 95 patients with early to moderate glaucomatous visual field damage and of each of 135 normal subjects older than 40 years participating in the longitudinal Diagnostic Innovations in Glaucoma Study (DIGS) were included. Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Dossenheim, Germany) mean height contour was measured in 36 equal sectors, both along the disc margin and in the parapapillary region (at a mean contour line radius of 1.7 mm). Each sector was evaluated individually and in combination with other sectors. Gaussian support vector machine (SVM) learning classifiers were used to interpret HRT sector measurements along the disc margin and in the parapapillary region, to differentiate between eyes with normal and glaucomatous visual fields and to compare the results with global and regional HRT parameter measurements. The area under the receiver operating characteristic (ROC) curve was used to measure diagnostic performance of the HRT parameters and to evaluate the cross-validation strategies and forward selection and backward elimination optimization techniques that were used to generate the reduced feature sets. Results The area under the ROC curve for mean height contour of the 36 sectors along the disc margin was larger than that for the mean height contour in the parapapillary region (0.97 and 0.85, respectively). Of the 36 individual sectors along the disc margin, those in the inferior region between 240° and 300°, had the largest area under the ROC curve (0.85–0.91). With SVM Gaussian techniques, the regional parameters showed the best ability to discriminate between normal eyes and eyes with glaucomatous visual field damage, followed by the global parameters, mean height contour measures along the disc margin, and mean height contour measures in the parapapillary region. The area under the ROC curve was 0.98, 0.94, 0.93, and 0.85, respectively. Cross-validation and optimization techniques demonstrated that good discrimination (99% of peak area under the ROC curve) can be obtained with a reduced number of HRT parameters. Conclusions Mean height contour measurements along the disc margin discriminated between normal and glaucomatous eyes better than measurements obtained in the parapapillary region. PMID:15326133
Grossberg, Stephen
2014-01-01
Neural models of perception clarify how visual illusions arise from adaptive neural processes. Illusions also provide important insights into how adaptive neural processes work. This article focuses on two illusions that illustrate a fundamental property of global brain organization; namely, that advanced brains are organized into parallel cortical processing streams with computationally complementary properties. That is, in order to process certain combinations of properties, each cortical stream cannot process complementary properties. Interactions between these streams, across multiple processing stages, overcome their complementary deficiencies to compute effective representations of the world, and to thereby achieve the property of complementary consistency. The two illusions concern how illusory depth can vary with brightness, and how apparent motion of illusory contours can occur. Illusory depth from brightness arises from the complementary properties of boundary and surface processes, notably boundary completion and surface-filling in, within the parvocellular form processing cortical stream. This illusion depends upon how surface contour signals from the V2 thin stripes to the V2 interstripes ensure complementary consistency of a unified boundary/surface percept. Apparent motion of illusory contours arises from the complementary properties of form and motion processes across the parvocellular and magnocellular cortical processing streams. This illusion depends upon how illusory contours help to complete boundary representations for object recognition, how apparent motion signals can help to form continuous trajectories for target tracking and prediction, and how formotion interactions from V2-to-MT enable completed object representations to be continuously tracked even when they move behind intermittently occluding objects through time. PMID:25389399
Musical expertise and foreign speech perception
Martínez-Montes, Eduardo; Hernández-Pérez, Heivet; Chobert, Julie; Morgado-Rodríguez, Lisbet; Suárez-Murias, Carlos; Valdés-Sosa, Pedro A.; Besson, Mireille
2013-01-01
The aim of this experiment was to investigate the influence of musical expertise on the automatic perception of foreign syllables and harmonic sounds. Participants were Cuban students with high level of expertise in music or in visual arts and with the same level of general education and socio-economic background. We used a multi-feature Mismatch Negativity (MMN) design with sequences of either syllables in Mandarin Chinese or harmonic sounds, both comprising deviants in pitch contour, duration and Voice Onset Time (VOT) or equivalent that were either far from (Large deviants) or close to (Small deviants) the standard. For both Mandarin syllables and harmonic sounds, results were clear-cut in showing larger MMNs to pitch contour deviants in musicians than in visual artists. Results were less clear for duration and VOT deviants, possibly because of the specific characteristics of the stimuli. Results are interpreted as reflecting similar processing of pitch contour in speech and non-speech sounds. The implications of these results for understanding the influence of intense musical training from childhood to adulthood and of genetic predispositions for music on foreign language perception are discussed. PMID:24294193
Musical expertise and foreign speech perception.
Martínez-Montes, Eduardo; Hernández-Pérez, Heivet; Chobert, Julie; Morgado-Rodríguez, Lisbet; Suárez-Murias, Carlos; Valdés-Sosa, Pedro A; Besson, Mireille
2013-01-01
The aim of this experiment was to investigate the influence of musical expertise on the automatic perception of foreign syllables and harmonic sounds. Participants were Cuban students with high level of expertise in music or in visual arts and with the same level of general education and socio-economic background. We used a multi-feature Mismatch Negativity (MMN) design with sequences of either syllables in Mandarin Chinese or harmonic sounds, both comprising deviants in pitch contour, duration and Voice Onset Time (VOT) or equivalent that were either far from (Large deviants) or close to (Small deviants) the standard. For both Mandarin syllables and harmonic sounds, results were clear-cut in showing larger MMNs to pitch contour deviants in musicians than in visual artists. Results were less clear for duration and VOT deviants, possibly because of the specific characteristics of the stimuli. Results are interpreted as reflecting similar processing of pitch contour in speech and non-speech sounds. The implications of these results for understanding the influence of intense musical training from childhood to adulthood and of genetic predispositions for music on foreign language perception are discussed.
Gillam, Barbara; Marlow, Phillip J
2014-01-01
One current view is that subjective contours may involve high-level detection of a salient shape with back propagation to early visual areas where small receptive fields allow for scrutiny of relevant details. This idea applies to Kanizsa-type figures. However, Gillam and Chan (2002 Psychological Science, 13, 279-282) using figures based on Gillam's graphic 'New York Titanic' (Gillam, 1997 Thresholds: Limits of perception. New York: Arts Magazine) showed that strong subjective contours can be seen along the linearly aligned edges of a set of shapes if occlusion cues of 'extrinsic edge' and 'entropy contrast' are strong. Here we compared ratings of the strength of subjective contours along linear alignments with those seen in Kanizsa figures. The strongest subjective contour for a single set of linearly aligned shapes was similar in strength to the edges of a Kanizsa square (controlling for support ratio) despite the lack of a salient region. The addition of a second set of linearly aligned inducers consistent with a common surface increased subjective-contour strength, as did having four rather than two 'pacmen' in the Kanizsa figure, indicating a role for surface support. We argue that linear subjective contours allow for the investigation of certain occlusion cues and the interactions between them that are not easily explored with Kanizsa figures.
Hybrid Parallel Contour Trees, Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher; Fasel, Patricia; Carr, Hamish
A common operation in scientific visualization is to compute and render a contour of a data set. Given a function of the form f : R^d -> R, a level set is defined as an inverse image f^-1(h) for an isovalue h, and a contour is a single connected component of a level set. The Reeb graph can then be defined to be the result of contracting each contour to a single point, and is well defined for Euclidean spaces or for general manifolds. For simple domains, the graph is guaranteed to be a tree, and is called the contourmore » tree. Analysis can then be performed on the contour tree in order to identify isovalues of particular interest, based on various metrics, and render the corresponding contours, without having to know such isovalues a priori. This code is intended to be the first data-parallel algorithm for computing contour trees. Our implementation will use the portable data-parallel primitives provided by Nvidia’s Thrust library, allowing us to compile our same code for both GPUs and multi-core CPUs. Native OpenMP and purely serial versions of the code will likely also be included. It will also be extended to provide a hybrid data-parallel / distributed algorithm, allowing scaling beyond a single GPU or CPU.« less
Edge-Assignment and Figure-Ground Segmentation in Short-Term Visual Matching.
ERIC Educational Resources Information Center
Driver, Jon; Baylis, Gordon
1996-01-01
Eight experiments involving 99 college students examined the role of edge-assignment in a contour matching task. Edge-matching performance was not based solely on a raw description of the edges themselves. Results suggest a pervasive tendency within the visual system to go beyond the edges toward figural shapes. (SLD)
Visualizing Three-Dimensional Calculus Concepts: The Study of a Manipulative's Effectiveness
ERIC Educational Resources Information Center
McGee, Daniel, Jr.; Moore-Russo, Deborah; Ebersole, Dennis; Lomen, David O.; Quintero, Maider Marin
2012-01-01
With the help of the National Science Foundation, the Department of Mathematics at the University of Puerto Rico in Mayaguez has developed a set of manipulatives to help students of science and engineering visualize concepts relating to points, surfaces, curves, contours, and vectors in three dimensions. This article will present the manipulatives…
Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.
ERIC Educational Resources Information Center
Biederman, Irving; Cooper, Eric E.
1991-01-01
Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…
Visual feature-tolerance in the reading network.
Rauschecker, Andreas M; Bowen, Reno F; Perry, Lee M; Kevan, Alison M; Dougherty, Robert F; Wandell, Brian A
2011-09-08
A century of neurology and neuroscience shows that seeing words depends on ventral occipital-temporal (VOT) circuitry. Typically, reading is learned using high-contrast line-contour words. We explored whether a specific VOT region, the visual word form area (VWFA), learns to see only these words or recognizes words independent of the specific shape-defining visual features. Word forms were created using atypical features (motion-dots, luminance-dots) whose statistical properties control word-visibility. We measured fMRI responses as word form visibility varied, and we used TMS to interfere with neural processing in specific cortical circuits, while subjects performed a lexical decision task. For all features, VWFA responses increased with word-visibility and correlated with performance. TMS applied to motion-specialized area hMT+ disrupted reading performance for motion-dots, but not line-contours or luminance-dots. A quantitative model describes feature-convergence in the VWFA and relates VWFA responses to behavioral performance. These findings suggest how visual feature-tolerance in the reading network arises through signal convergence from feature-specialized cortical areas. Copyright © 2011 Elsevier Inc. All rights reserved.
Multi-object segmentation framework using deformable models for medical imaging analysis.
Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel
2016-08-01
Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.
Use of an augmented-vision device for visual search by patients with tunnel vision.
Luo, Gang; Peli, Eli
2006-09-01
To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VFs) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF, 8 degrees -11 degrees wide) carried out the search over a 90 degrees x 74 degrees area, and nine subjects (VF, 7 degrees -16 degrees wide) carried out the search over a 66 degrees x 52 degrees area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in the larger and the smaller area searches. When using the device, a significant reduction in search time (28% approximately 74%) was demonstrated by all three subjects in the larger area search and by subjects with VFs wider than 10 degrees in the smaller area search (average, 22%). Directness and gaze speed accounted for 90% of the variability of search time. Although performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. Because improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks.
Mishra, Ajay; Aloimonos, Yiannis
2009-01-01
The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.
Synaptic Correlates of Low-Level Perception in V1.
Gerard-Mercier, Florian; Carelli, Pedro V; Pananceau, Marc; Troncoso, Xoana G; Frégnac, Yves
2016-04-06
The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed to require attention-related processes, such as top-down feedback from higher cortical areas. Using intracellular techniques in the anesthetized cat and novel analysis methods, we reveal unexpected structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. These structural-functional biases provide a substrate, within V1, for contour detection and, more unexpectedly, global motion flow sensitivity at saccadic speed, even in the absence of attentional processes. We argue for the concept of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy changes with retinal flow statistics, and more generally for a renewed focus on intracortical computation. Copyright © 2016 the authors 0270-6474/16/363925-18$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EMAM, M; Eldib, A; Lin, M
2014-06-01
Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systemsmore » (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang
2014-12-15
Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreementmore » of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions: Use of DIR-based contour propagation in the routine clinical setting is expected to increase the efficiency of H and N replanning, reducing the amount of time needed for manual target and organ delineations.« less
2006-06-01
allowing substantial see-around capability. Regions of visual suppression due to binocular rivalry ( luning ) are shown along the shaded flanks of...that the visual suppression of binocular rivalry, luning , (Velger, 1998, p.56-58) associated with the partial overlap conditions did not materially...tags were displayed. Thus, the frequency of conflicting binocular contours was reduced. In any case, luning does not seem to introduce major
Peterson, M A; Gibson, B S
1994-11-01
In previous research, replicated here, we found that some object recognition processes influence figure-ground organization. We have proposed that these object recognition processes operate on edges (or contours) detected early in visual processing, rather than on regions. Consistent with this proposal, influences from object recognition on figure-ground organization were previously observed in both pictures and stereograms depicting regions of different luminance, but not in random-dot stereograms, where edges arise late in processing (Peterson & Gibson, 1993). In the present experiments, we examined whether or not two other types of contours--outlines and subjective contours--enable object recognition influences on figure-ground organization. For both types of contours we observed a pattern of effects similar to that originally obtained with luminance edges. The results of these experiments are valuable for distinguishing between alternative views of the mechanisms mediating object recognition influences on figure-ground organization. In addition, in both Experiments 1 and 2, fixated regions were seen as figure longer than nonfixated regions, suggesting that fixation location must be included among the variables relevant to figure-ground organization.
Multisensory Integration Strategy for Modality-Specific Loss of Inhibition Control in Older Adults
Ryu, Hokyoung; Kim, Jae-Kwan; Jeong, Eunju
2018-01-01
Older adults are known to have lesser cognitive control capability and greater susceptibility to distraction than young adults. Previous studies have reported age-related problems in selective attention and inhibitory control, yielding mixed results depending on modality and context in which stimuli and tasks were presented. The purpose of the study was to empirically demonstrate a modality-specific loss of inhibitory control in processing audio-visual information with ageing. A group of 30 young adults (mean age = 25.23, Standard Deviation (SD) = 1.86) and 22 older adults (mean age = 55.91, SD = 4.92) performed the audio-visual contour identification task (AV-CIT). We compared performance of visual/auditory identification (Uni-V, Uni-A) with that of visual/auditory identification in the presence of distraction in counterpart modality (Multi-V, Multi-A). The findings showed a modality-specific effect on inhibitory control. Uni-V performance was significantly better than Multi-V, indicating that auditory distraction significantly hampered visual target identification. However, Multi-A performance was significantly enhanced compared to Uni-A, indicating that auditory target performance was significantly enhanced by visual distraction. Additional analysis showed an age-specific effect on enhancement between Uni-A and Multi-A depending on the level of visual inhibition. Together, our findings indicated that the loss of visual inhibitory control was beneficial for the auditory target identification presented in a multimodal context in older adults. A likely multisensory information processing strategy in the older adults was further discussed in relation to aged cognition. PMID:29641462
Photoacoustic and Colorimetric Visualization of Latent Fingerprints.
Song, Kai; Huang, Peng; Yi, Chenglin; Ning, Bo; Hu, Song; Nie, Liming; Chen, Xiaoyuan; Nie, Zhihong
2015-12-22
There is a high demand on a simple, rapid, accurate, user-friendly, cost-effective, and nondestructive universal method for latent fingerprint (LFP) detection. Herein, we describe a combination imaging strategy for LFP visualization with high resolution using poly(styrene-alt-maleic anhydride)-b-polystyrene (PSMA-b-PS) functionalized gold nanoparticles (GNPs). This general approach integrates the merits of both colorimetric imaging and photoacoustic imaging. In comparison with the previous methods, our strategy is single-step and does not require the signal amplification by silver staining. The PSMA-b-PS functionalized GNPs have good stability, tunable color, and high affinity for universal secretions (proteins/polypeptides/amino acids), which makes our approach general and flexible for visualizing LFPs on different substrates (presumably with different colors) and from different people. Moreover, the unique optical property of GNPs enables the photoacoustic imaging of GNPs-deposited LFPs with high resolution. This allows observation of level 3 hyperfine features of LFPs such as the pores and ridge contours by photoacoustic imaging. This technique can potentially be used to identify chemicals within LFP residues. We believe that this dual-modality imaging of LFPs will find widespread use in forensic investigations and medical diagnostics.
3D intrathoracic region definition and its application to PET-CT analysis
NASA Astrophysics Data System (ADS)
Cheirsilp, Ronnarit; Bascom, Rebecca; Allen, Thomas W.; Higgins, William E.
2014-03-01
Recently developed integrated PET-CT scanners give co-registered multimodal data sets that offer complementary three-dimensional (3D) digital images of the chest. PET (positron emission tomography) imaging gives highly specific functional information of suspect cancer sites, while CT (X-ray computed tomography) gives associated anatomical detail. Because the 3D CT and PET scans generally span the body from the eyes to the knees, accurate definition of the intrathoracic region is vital for focusing attention to the central-chest region. In this way, diagnostically important regions of interest (ROIs), such as central-chest lymph nodes and cancer nodules, can be more efficiently isolated. We propose a method for automatic segmentation of the intrathoracic region from a given co-registered 3D PET-CT study. Using the 3D CT scan as input, the method begins by finding an initial intrathoracic region boundary for a given 2D CT section. Next, active contour analysis, driven by a cost function depending on local image gradient, gradient-direction, and contour shape features, iteratively estimates the contours spanning the intrathoracic region on neighboring 2D CT sections. This process continues until the complete region is defined. We next present an interactive system that employs the segmentation method for focused 3D PET-CT chest image analysis. A validation study over a series of PET-CT studies reveals that the segmentation method gives a Dice index accuracy of less than 98%. In addition, further results demonstrate the utility of the method for focused 3D PET-CT chest image analysis, ROI definition, and visualization.
NASA Astrophysics Data System (ADS)
Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya
2016-07-01
The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.
Zeta functions on tori using contour integration
NASA Astrophysics Data System (ADS)
Elizalde, Emilio; Kirsten, Klaus; Robles, Nicolas; Williams, Floyd
2015-12-01
A new, seemingly useful presentation of zeta functions on complex tori is derived by using contour integration. It is shown to agree with the one obtained by using the Chowla-Selberg series formula, for which an alternative proof is thereby given. In addition, a new proof of the functional determinant on the torus results, which does not use the Kronecker first limit formula nor the functional equation of the non-holomorphic Eisenstein series. As a bonus, several identities involving the Dedekind eta function are obtained as well.
Denoising and 4D visualization of OCT images
Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.
2009-01-01
We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509
Use of an augmented-vision device for visual search by patients with tunnel vision
Luo, Gang; Peli, Eli
2006-01-01
Purpose To study the effect of an augmented-vision device that superimposes minified contour images over natural vision on visual search performance of patients with tunnel vision. Methods Twelve subjects with tunnel vision searched for targets presented outside their visual fields (VF) on a blank background under three cue conditions (with contour cues provided by the device, with auditory cues, and without cues). Three subjects (VF: 8º to 11º wide) carried out the search over a 90º×74º area, and nine subjects (VF: 7º to 16º wide) over a 66º×52º area. Eye and head movements were recorded for performance analyses that included directness of search path, search time, and gaze speed. Results Directness of the search path was greatly and significantly improved when the contour or auditory cues were provided in both the larger and smaller area search. When using the device, a significant reduction in search time (28%~74%) was demonstrated by all 3 subjects in the larger area search and by subjects with VF wider than 10º in the smaller area search (average 22%). Directness and the gaze speed accounted for 90% of the variability of search time. Conclusions While performance improvement with the device for the larger search area was obvious, whether it was helpful for the smaller search area depended on VF and gaze speed. As improvement in directness was demonstrated, increased gaze speed, which could result from further training and adaptation to the device, might enable patients with small VFs to benefit from the device for visual search tasks. PMID:16936136
Mass diffusion coefficient measurement for vitreous humor using FEM and MRI
NASA Astrophysics Data System (ADS)
Rattanakijsuntorn, Komsan; Penkova, Anita; Sadha, Satwindar S.
2018-01-01
In early studies, the ‘contour method’ for determining the diffusion coefficient of the vitreous humor was developed. This technique relied on careful injection of an MRI contrast agent (surrogate drug) into the vitreous humor of fresh bovine eyes, and tracking the contours of the contrast agent in time. In addition, an analytical solution was developed for the theoretical contours built on point source model for the injected surrogate drug. The match between theoretical and experimental contours as a least square fit, while floating the diffusion coefficient, led to the value of the diffusion coefficient. This method had its limitation that the initial injection of the surrogate had to be spherical or ellipsoidal because of the analytical result based on the point-source model. With a new finite element model for the analysis in this study, the technique is much less restrictive and handles irregular shapes of the initial bolus. The fresh bovine eyes were used for drug diffusion study in the vitreous and three contrast agents of different molecular masses: gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA, 938 Da), non-ionic gadoteridol (Prohance, 559 Da), and bovine albumin conjugated with gadolinium (Galbumin, 74 kDa) were used as drug surrogates to visualize the diffusion process by MRI. The 3D finite element model was developed to determine the diffusion coefficients of these surrogates with the images from MRI. This method can be used for other types of bioporous media provided the concentration profile can be visualized (by methods such as MRI or fluorescence).
GIS characterization of spatially distributed lifeline damage
Toprak, Selcuk; O'Rourke, Thomas; Tutuncu, Ilker
1999-01-01
This paper describes the visualization of spatially distributed water pipeline damage following an earthquake using geographical information systems (GIS). Pipeline damage is expressed as a repair rate (RR). Repair rate contours are developed with GIS by dividing the study area into grid cells (n ?? n), determining the number of particular pipeline repairs in each grid cell, and dividing the number of repairs by the length of that pipeline in each cell area. The resulting contour plot is a two-dimensional visualization of point source damage. High damage zones are defined herein as areas with an RR value greater than the mean RR for the entire study area of interest. A hyperbolic relationship between visual display of high pipeline damage zones and grid size, n, was developed. The relationship is expressed in terms of two dimensionless parameters, threshold area coverage (TAC) and dimensionless grid size (DGS). The relationship is valid over a wide range of different map scales spanning approximately 1,200 km2 for the largest portion of the Los Angeles water distribution system to 1 km2 for the Marina in San Francisco. This relationship can aid GIS users to get sufficiently refined, but easily visualized, maps of damage patterns.
Detection of Low-order Curves in Images using Biologically-plausible Hardware
2012-09-29
the intersections of iso-eccentricity and iso-polar contours were entered into the computer via a graphics tablet . In regions where there was...functional mri . Cerebral Cortex, 7:181 – 192, 1997. [25] Jacob Feldman. Bayesian contour integration. Perception and Psychophysics, 63:1171 – 1182, 2001. [26
Data-Parallel Algorithm for Contour Tree Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sewell, Christopher Meyer; Ahrens, James Paul; Carr, Hamish
2017-01-19
The goal of this project is to develop algorithms for additional visualization and analysis filters in order to expand the functionality of the VTK-m toolkit to support less critical but commonly used operators.
NASA Astrophysics Data System (ADS)
Speciale, A.; Kenney, M. A.; Gerst, M.; Baer, A. E.; DeWitt, D.; Gottschalk, J.; Handel, S.
2017-12-01
The uncertainty of future weather and climate conditions is important for many decisions made in communities and economic sectors. One tool that decision-makers use in gauging this uncertainty is forecasts, especially maps (or visualizations) of probabilistic forecast results. However, visualizing geospatial uncertainty is challenging because including probability introduces an extra variable to represent and probability is often poorly understood by users. Using focus group and survey methods, this study seeks to understand the barriers to using probabilistic temperature and precipitation visualizations for specific decisions in the agriculture, energy, emergency management, and water resource sectors. Preliminary results shown here focus on findings of emergency manager needs. Our experimental design uses National Oceanic and Atmospheric Administration (NOAA's) Climate Prediction Center (CPC) climate outlooks, which produce probabilistic temperature and precipitation forecast visualizations at the 6-10 day, 8-14 day, 3-4 week, and 1 and 3 month timeframes. Users were asked to complete questions related to how they use weather information, how uncertainty is represented, and design elements (e.g., color, contour lines) of the visualizations. Preliminary results from the emergency management sector indicate there is significant confusion on how "normal" weather is defined, boundaries between probability ranges, and meaning of the contour lines. After a complete understandability diagnosis is made using results from all sectors, we will collaborate with CPC to suggest modifications to the climate outlook visualizations. These modifications will then be retested in similar focus groups and web-based surveys to confirm they better meet the needs of users.
SU-D-BRF-04: Digital Tomosynthesis for Improved Daily Setup in Treatment of Liver Lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, H; Jones, B; Miften, M
Purpose: Daily localization of liver lesions with cone-beam CT (CBCT) is difficult due to poor image quality caused by scatter, respiratory motion, and the lack of radiographic contrast between the liver parenchyma and the lesion(s). Digital tomosynthesis (DTS) is investigated as a modality to improve liver visualization and lesion/parenchyma contrast for daily setup. Methods: An in-house tool was developed to generate DTS images using a point-by-point filtered back-projection method from on-board CBCT projection data. DTS image planes are generated in a user defined orientation to visualize the anatomy at various depths. Reference DTS images are obtained from forward projection ofmore » the planning CT dataset at each projection angle. The CBCT DTS image set can then be registered to the reference DTS image set as a means for localization. Contour data from the planning CT's associate RT Structure file and forward projected similarly to the planning CT data. DTS images are created for each contoured structure, which can then be overlaid onto the DTS images for organ volume visualization. Results: High resolution DTS images generated from CBCT projections show fine anatomical detail, including small blood vessels, within the patient. However, the reference DTS images generated from forward projection of the planning CT lacks this level of detail due to the low resolution of the CT voxels as compared to the pixel size in the projection images; typically 1mm-by-1mm-by-3mm (lat, vrt, lng) for the planning CT vs. 0.4mm-by-0.4mm for CBCT projections. Overlaying of the contours onto the DTS image allows for visualization of structures of interest. Conclusion: The ability to generate DTS images over a limited range of projection angles allows for reduction in the amount of respiratory motion within each acquisition. DTS may provide improved visualization of structures and lesions as compared to CBCT for highly mobile tumors.« less
Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.
Thomson, David; Boylan, Chris; Liptrot, Tom; Aitkenhead, Adam; Lee, Lip; Yap, Beng; Sykes, Andrew; Rowbottom, Carl; Slevin, Nicholas
2014-08-03
The accurate definition of organs at risk (OARs) is required to fully exploit the benefits of intensity-modulated radiotherapy (IMRT) for head and neck cancer. However, manual delineation is time-consuming and there is considerable inter-observer variability. This is pertinent as function-sparing and adaptive IMRT have increased the number and frequency of delineation of OARs. We evaluated accuracy and potential time-saving of Smart Probabilistic Image Contouring Engine (SPICE) automatic segmentation to define OARs for salivary-, swallowing- and cochlea-sparing IMRT. Five clinicians recorded the time to delineate five organs at risk (parotid glands, submandibular glands, larynx, pharyngeal constrictor muscles and cochleae) for each of 10 CT scans. SPICE was then used to define these structures. The acceptability of SPICE contours was initially determined by visual inspection and the total time to modify them recorded per scan. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm created a reference standard from all clinician contours. Clinician, SPICE and modified contours were compared against STAPLE by the Dice similarity coefficient (DSC) and mean/maximum distance to agreement (DTA). For all investigated structures, SPICE contours were less accurate than manual contours. However, for parotid/submandibular glands they were acceptable (median DSC: 0.79/0.80; mean, maximum DTA: 1.5 mm, 14.8 mm/0.6 mm, 5.7 mm). Modified SPICE contours were also less accurate than manual contours. The utilisation of SPICE did not result in time-saving/improve efficiency. Improvements in accuracy of automatic segmentation for head and neck OARs would be worthwhile and are required before its routine clinical implementation.
Murakami, Keiko; Rancilio, Nicholas J; Plantenga, Jeannie Poulson; Moore, George E; Heng, Hock Gan; Lim, Chee Kin
2018-05-01
In radiation therapy (RT) treatment planning for canine head and neck cancer, the tonsils may be included as part of the treated volume. Delineation of tonsils on computed tomography (CT) scans is difficult. Error or uncertainty in the volume and location of contoured structures may result in treatment failure. The purpose of this prospective, observer agreement study was to assess the interobserver agreement of tonsillar contouring by two groups of trained observers. Thirty dogs undergoing pre- and post-contrast CT studies of the head were included. After the pre- and postcontrast CT scans, the tonsils were identified via direct visualization, barium paste was applied bilaterally to the visible tonsils, and a third CT scan was acquired. Data from each of the three CT scans were registered in an RT treatment planning system. Two groups of observers (one veterinary radiologist and one veterinary radiation oncologist in each group) contoured bilateral tonsils by consensus, obtaining three sets of contours. Tonsil volume and location data were obtained from both groups. The contour volumes and locations were compared between groups using mixed (fixed and random effect) linear models. There was no significant difference between each group's contours in terms of three-dimensional coordinates. However there was a significant difference between each group's contours in terms of the tonsillar volume (P < 0.0001). Pre- and postcontrast CT can be used to identify the location of canine tonsils with reasonable agreement between trained observers. Discrepancy in tonsillar volume between groups of trained observers may affect RT treatment outcome. © 2017 American College of Veterinary Radiology.
The lemon illusion: seeing curvature where there is none.
Strother, Lars; Killebrew, Kyle W; Caplovitz, Gideon P
2015-01-01
Curvature is a highly informative visual cue for shape perception and object recognition. We introduce a novel illusion-the Lemon Illusion-in which subtle illusory curvature is perceived along contour regions that are devoid of physical curvature. We offer several perceptual demonstrations and observations that lead us to conclude that the Lemon Illusion is an instance of a more general illusory curvature phenomenon, one in which the presence of contour curvature discontinuities lead to the erroneous extension of perceived curvature. We propose that this erroneous extension of perceived curvature results from the interaction of neural mechanisms that operate on spatially local contour curvature signals with higher-tier mechanisms that serve to establish more global representations of object shape. Our observations suggest that the Lemon Illusion stems from discontinuous curvature transitions between rectilinear and curved contour segments. However, the presence of curvature discontinuities is not sufficient to produce the Lemon Illusion, and the minimal conditions necessary to elicit this subtle and insidious illusion are difficult to pin down.
Imaging isodensity contours of molecular states with STM
NASA Astrophysics Data System (ADS)
Reecht, Gaël; Heinrich, Benjamin W.; Bulou, Hervé; Scheurer, Fabrice; Limot, Laurent; Schull, Guillaume
2017-11-01
We present an improved way for imaging the density of states of a sample with a scanning tunneling microscope, which consists in mapping the surface topography while keeping the differential conductance (dI/dV) constant. When archetypical C60 molecules on Cu(111) are imaged with this method, these so-called iso-dI/dV maps are in excellent agreement with theoretical simulations of the isodensity contours of the molecular orbitals. A direct visualization and unambiguous identification of superatomic C60 orbitals and their hybridization is then possible.
The shape of a hole and that of the surface-with-hole cannot be analyzed separately.
Bertamini, Marco; Helmy, Mai Salah
2012-08-01
Figure-ground organization has a central role in visual perception, since it creates the regions to which properties, such as shape descriptions, are then assigned. However, there is disagreement on how much shape analysis is independent of figure-ground. The reversal of figure-ground of a single closed region is the purest form of figure-ground organization, and the two resulting percepts are that of an object and that of a hole. Both object and hole are nonaccidental regions and can share an identical outline. We devised a test of how figure-ground and contour ownership dramatically affect how shape is processed. Observers judged the shape of a contour that could be either the same as or different from an irrelevant surrounding contour. We report that different (incongruent) inside and outside contours produce a stronger interference effect when they form a single object-with-hole, as compared with a hierarchical set of surfaces or a single hole separating different surfaces (a trench). We conclude that (1) which surface owns the contour constrains the interference between shapes and that (2) despite some recent claims, holes do not display objectlike properties.
Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H
2017-01-01
The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898
Teaching tone and intonation with the Prosody Workstation using schematic versus veridical contours
NASA Astrophysics Data System (ADS)
Allen, George D.; Eulenberg, John B.
2004-05-01
Prosodic features of speech (e.g., intonation and rhythm) are often challenging for adults to learn. Most computerized teaching tools, developed to help learners mimic model prosodic patterns, display lines representing the veridical (actual) acoustic fundamental frequency and intensity of the model speech. However, a veridical display may not be optimal for this task. Instead, stereotypical representations (e.g., simplified level or slanting lines) may help by reducing the amount of potentially distracting information. The Prosody Workstation (PW) permits the prosodic contours of both models and users' responses to be displayed using either veridical or stereotypical contours. Users are informed by both visual displays and scores representing the degree of match of their utterance to the model. American English-speaking undergraduates are being studied learning the tone contours and rhythm of Chinese and Hausa utterances ranging in length from two to six syllables. Data include (a) accuracy of mimicking of the models' prosodic contours, measured by the PW; (b) quality of tonal and rhythmic production, judged by native speaker listeners; and (c) learners' perceptions of the ease of the task, measured by a questionnaire at the end of each session.
Ecological statistics of Gestalt laws for the perceptual organization of contours.
Elder, James H; Goldberg, Richard M
2002-01-01
Although numerous studies have measured the strength of visual grouping cues for controlled psychophysical stimuli, little is known about the statistical utility of these various cues for natural images. In this study, we conducted experiments in which human participants trace perceived contours in natural images. These contours are automatically mapped to sequences of discrete tangent elements detected in the image. By examining relational properties between pairs of successive tangents on these traced curves, and between randomly selected pairs of tangents, we are able to estimate the likelihood distributions required to construct an optimal Bayesian model for contour grouping. We employed this novel methodology to investigate the inferential power of three classical Gestalt cues for contour grouping: proximity, good continuation, and luminance similarity. The study yielded a number of important results: (1) these cues, when appropriately defined, are approximately uncorrelated, suggesting a simple factorial model for statistical inference; (2) moderate image-to-image variation of the statistics indicates the utility of general probabilistic models for perceptual organization; (3) these cues differ greatly in their inferential power, proximity being by far the most powerful; and (4) statistical modeling of the proximity cue indicates a scale-invariant power law in close agreement with prior psychophysics.
Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A
2017-03-01
We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns, whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of intonation contours: Previously encountered and novel exemplars are categorized together equally often, as long as distance from the prototype is controlled. However, age-related differences in categorization performance also exist. Given the same experience, adults form narrower categories than children. In addition, adults pay more attention to the end of the contour, while children appear to pay equal attention to the beginning and the end. The age range we examine appears to capture the tail-end of the developmental trajectory for learning intonation contour categories: There is a continuous effect of age on category breadth within the child group, but the oldest children (older than 10;3) are adult-like. Copyright © 2016 Cognitive Science Society, Inc.
Contour Tracking with a Spatio-Temporal Intensity Moment.
Demi, Marcello
2016-06-01
Standard edge detection operators such as the Laplacian of Gaussian and the gradient of Gaussian can be used to track contours in image sequences. When using edge operators, a contour, which is determined on a frame of the sequence, is simply used as a starting contour to locate the nearest contour on the subsequent frame. However, the strategy used to look for the nearest edge points may not work when tracking contours of non isolated gray level discontinuities. In these cases, strategies derived from the optical flow equation, which look for similar gray level distributions, appear to be more appropriate since these can work with a lower frame rate than that needed for strategies based on pure edge detection operators. However, an optical flow strategy tends to propagate the localization errors through the sequence and an additional edge detection procedure is essential to compensate for such a drawback. In this paper a spatio-temporal intensity moment is proposed which integrates the two basic functions of edge detection and tracking.
Kapatsinski, Vsevolod; Olejarczuk, Paul; Redford, Melissa A.
2015-01-01
We report on rapid perceptual learning of intonation contour categories in adults and 9- to 11-year-old children. Intonation contours are temporally extended patterns whose perception requires temporal integration and therefore poses significant working memory challenges. Both children and adults form relatively abstract representations of intonation contours: previously encountered and novel exemplars are categorized together equally often, as long as distance from the prototype is controlled. However, age-related differences in categorization performance also exist. Given the same experience, adults form narrower categories than children. In addition, adults pay more attention to the end of the contour while children appear to pay equal attention to the beginning and the end. The age range we examine appears to capture the tail-end of the developmental trajectory for learning intonation contour categories: there is a continuous effect of age on category breadth within the child group, but the oldest children (older than 10;3) are adult-like. PMID:26901251
Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta
2016-01-01
In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504
Saliency detection using mutual consistency-guided spatial cues combination
NASA Astrophysics Data System (ADS)
Wang, Xin; Ning, Chen; Xu, Lizhong
2015-09-01
Saliency detection has received extensive interests due to its remarkable contribution to wide computer vision and pattern recognition applications. However, most existing computational models are designed for detecting saliency in visible images or videos. When applied to infrared images, they may suffer from limitations in saliency detection accuracy and robustness. In this paper, we propose a novel algorithm to detect visual saliency in infrared images by mutual consistency-guided spatial cues combination. First, based on the luminance contrast and contour characteristics of infrared images, two effective saliency maps, i.e., the luminance contrast saliency map and contour saliency map are constructed, respectively. Afterwards, an adaptive combination scheme guided by mutual consistency is exploited to integrate these two maps to generate the spatial saliency map. This idea is motivated by the observation that different maps are actually related to each other and the fusion scheme should present a logically consistent view of these maps. Finally, an enhancement technique is adopted to incorporate spatial saliency maps at various scales into a unified multi-scale framework to improve the reliability of the final saliency map. Comprehensive evaluations on real-life infrared images and comparisons with many state-of-the-art saliency models demonstrate the effectiveness and superiority of the proposed method for saliency detection in infrared images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzibak, A; Loblaw, A; Morton, G
Purpose: To investigate the usefulness of metal artifact reduction in CT images of patients with bilateral hip prostheses (BHP) for contouring the prostate and determine if the inclusion of MR images provides additional benefits. Methods: Five patients with BHP were CT scanned using our clinical protocol (140kV, 300mAs, 3mm slices, 1.5mm increment, Philips Medical Systems, OH). Images were reconstructed with the orthopaedic metal artifact reduction (O-MAR) algorithm. MRI scanning was then performed (1.5T, GE Healthcare, WI) with a flat table-top (T{sub 2}-weighted, inherent body coil, FRFSE, 3mm slices with 0mm gap). All images were transferred to Pinnacle (Version 9.2, Philipsmore » Medical Systems). For each patient, two data sets were produced: one containing the O-MAR-corrected CT images and another containing fused MRI and O-MAR-corrected CT images. Four genito-urinary radiation oncologists contoured the prostate of each patient on the O-MAR-corrected CT data. Two weeks later, they contoured the prostate on the fused data set, blinded to all other contours. During each contouring session, the oncologists reported their confidence in the contours (1=very confident, 3=not confident) and the contouring difficulty that they experienced (1=really easy, 4=very challenging). Prostate volumes were computed from the contours and the conformity index was used to evaluate inter-observer variability. Results: Larger prostate volumes were found on the O-MAR-corrected CT set than on the fused set (p< 0.05, median=36.9cm{sup 3} vs. 26.63 cm{sup 3}). No significant differences were noted in the inter-observer variability between the two data sets (p=0.3). Contouring difficulty decreased with the addition of MRI (p<0.05) while the radiation oncologists reported more confidence in their contours when MRI was fused with the O-MAR-corrected CT data (p<0.05). Conclusion: This preliminary work demonstrated that, while O-MAR correction to CT images improves visualization of anatomy, the addition of MRI enhanced the oncologists’ confidence in contouring the prostate in patients with BHP.« less
Visualising Earth's Mantle based on Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Bozdag, E.; Pugmire, D.; Lefebvre, M. P.; Hill, J.; Komatitsch, D.; Peter, D. B.; Podhorszki, N.; Tromp, J.
2017-12-01
Recent advances in 3D wave propagation solvers and high-performance computing have enabled regional and global full-waveform inversions. Interpretation of tomographic models is often done on visually. Robust and efficient visualization tools are necessary to thoroughly investigate large model files, particularly at the global scale. In collaboration with Oak Ridge National Laboratory (ORNL), we have developed effective visualization tools and used for visualization of our first-generation global model, GLAD-M15 (Bozdag et al. 2016). VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/) is used for initial exploration of the models and for extraction of seismological features. The broad capability of VisIt, and its demonstrated scalability proved valuable for experimenting with different visualization techniques, and in the creation of timely results. Utilizing VisIt's plugin-architecture, a data reader plugin was developed, which reads the ADIOS (https://www.olcf.ornl.gov/center-projects/adios/) format of our model files. Blender (https://www.blender.org) is used for the setup of lighting, materials, camera paths and rendering of geometry. Python scripting was used to control the orchestration of different geometries, as well as camera animation for 3D movies. While we continue producing 3D contour plots and movies for various seismic parameters to better visualize plume- and slab-like features as well as anisotropy throughout the mantle, our aim is to make visualization an integral part of our global adjoint tomography workflow to routinely produce various 2D cross-sections to facilitate examination of our models after each iteration. This will ultimately form the basis for use of pattern recognition techniques in our investigations. Simulations for global adjoint tomography are performed on ORNL's Titan system and visualization is done in parallel on ORNL's post-processing cluster Rhea.
A link representation for gravity amplitudes
NASA Astrophysics Data System (ADS)
He, Song
2013-10-01
We derive a link representation for all tree amplitudes in supergravity, from a recent conjecture by Cachazo and Skinner. The new formula explicitly writes amplitudes as contour integrals over constrained link variables, with an integrand naturally expressed in terms of determinants, or equivalently tree diagrams. Important symmetries of the amplitude, such as supersymmetry, parity and (partial) permutation invariance, are kept manifest in the formulation. We also comment on rewriting the formula in a GL( k)-invariant manner, which may serve as a starting point for the generalization to possible Grassmannian contour integrals.
Robot Command Interface Using an Audio-Visual Speech Recognition System
NASA Astrophysics Data System (ADS)
Ceballos, Alexánder; Gómez, Juan; Prieto, Flavio; Redarce, Tanneguy
In recent years audio-visual speech recognition has emerged as an active field of research thanks to advances in pattern recognition, signal processing and machine vision. Its ultimate goal is to allow human-computer communication using voice, taking into account the visual information contained in the audio-visual speech signal. This document presents a command's automatic recognition system using audio-visual information. The system is expected to control the laparoscopic robot da Vinci. The audio signal is treated using the Mel Frequency Cepstral Coefficients parametrization method. Besides, features based on the points that define the mouth's outer contour according to the MPEG-4 standard are used in order to extract the visual speech information.
A systematic comparison between visual cues for boundary detection.
Mély, David A; Kim, Junkyung; McGill, Mason; Guo, Yuliang; Serre, Thomas
2016-03-01
The detection of object boundaries is a critical first step for many visual processing tasks. Multiple cues (we consider luminance, color, motion and binocular disparity) available in the early visual system may signal object boundaries but little is known about their relative diagnosticity and how to optimally combine them for boundary detection. This study thus aims at understanding how early visual processes inform boundary detection in natural scenes. We collected color binocular video sequences of natural scenes to construct a video database. Each scene was annotated with two full sets of ground-truth contours (one set limited to object boundaries and another set which included all edges). We implemented an integrated computational model of early vision that spans all considered cues, and then assessed their diagnosticity by training machine learning classifiers on individual channels. Color and luminance were found to be most diagnostic while stereo and motion were least. Combining all cues yielded a significant improvement in accuracy beyond that of any cue in isolation. Furthermore, the accuracy of individual cues was found to be a poor predictor of their unique contribution for the combination. This result suggested a complex interaction between cues, which we further quantified using regularization techniques. Our systematic assessment of the accuracy of early vision models for boundary detection together with the resulting annotated video dataset should provide a useful benchmark towards the development of higher-level models of visual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimenter's Laboratory for Visualized Interactive Science
NASA Technical Reports Server (NTRS)
Hansen, Elaine R.; Rodier, Daniel R.; Klemp, Marjorie K.
1994-01-01
ELVIS (Experimenter's Laboratory for Visualized Interactive Science) is an interactive visualization environment that enables scientists, students, and educators to visualize and analyze large, complex, and diverse sets of scientific data. It accomplishes this by presenting the data sets as 2-D, 3-D, color, stereo, and graphic images with movable and multiple light sources combined with displays of solid-surface, contours, wire-frame, and transparency. By simultaneously rendering diverse data sets acquired from multiple sources, formats, and resolutions and by interacting with the data through an intuitive, direct-manipulation interface, ELVIS provides an interactive and responsive environment for exploratory data analysis.
Real-time biscuit tile image segmentation method based on edge detection.
Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter
2018-05-01
In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Spatial Visualization in Introductory Geology Courses
NASA Astrophysics Data System (ADS)
Reynolds, S. J.
2004-12-01
Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct learning, but are largely undocumented. Many students, for example, cannot visualize that the landscape in which rock layers were deposited was different than the landscape in which the rocks are exposed today, even in the Grand Canyon.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Hussain, Aquila; Katiyar, Vivek
2010-01-01
A unified framework is presented that enables coupled multiscale analysis of composite structures and associated graphical pre- and postprocessing within the Abaqus/CAE environment. The recently developed, free, Finite Element Analysis--Micromechanics Analysis Code (FEAMAC) software couples NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with Abaqus/Standard and Abaqus/Explicit to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. The Graphical User Interfaces (FEAMAC-Pre and FEAMAC-Post), developed through collaboration between SIMULIA Erie and the NASA Glenn Research Center, enable users to employ a new FEAMAC module within Abaqus/CAE that provides access to the composite microscale. FEA IAC-Pre is used to define and store constituent material properties, set-up and store composite repeating unit cells, and assign composite materials as sections with all data being stored within the CAE database. Likewise FEAMAC-Post enables multiscale field quantity visualization (contour plots, X-Y plots), with point and click access to the microscale i.e., fiber and matrix fields).
The neural basis of suppression and amblyopia in strabismus.
Sengpiel, F; Blakemore, C
1996-01-01
The neurophysiological consequences of artificial strabismus in cats and monkeys have been studied for 30 years. However, until very recently no clear picture has emerged of neural deficits that might account for the powerful interocular suppression that strabismic humans experience, nor for the severe amblyopia that is often associated with convergent strabismus. Here we review the effects of squint on the integrative capacities of the primary visual cortex and propose a hypothesis about the relationship between suppression and amblyopia. Most neurons in the visual cortex of normal cats and monkeys can be excited through either eye and show strong facilitation during binocular stimulation with contours of similar orientation in the two eyes. But in strabismic animals, cortical neurons tend to fall into two populations of monocularly excitable cells and exhibit suppressive binocular interactions that share key properties with perceptual suppression in strabismic humans. Such interocular suppression, if prolonged and asymmetric (with input from the squinting eye habitually suppressed by that from the fixating eye), might lead to neural defects in the representation of the deviating eye and hence to amblyopia.
Drop shape visualization and contact angle measurement on curved surfaces.
Guilizzoni, Manfredo
2011-12-01
The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.
Functional Contour-following via Haptic Perception and Reinforcement Learning.
Hellman, Randall B; Tekin, Cem; van der Schaar, Mihaela; Santos, Veronica J
2018-01-01
Many tasks involve the fine manipulation of objects despite limited visual feedback. In such scenarios, tactile and proprioceptive feedback can be leveraged for task completion. We present an approach for real-time haptic perception and decision-making for a haptics-driven, functional contour-following task: the closure of a ziplock bag. This task is challenging for robots because the bag is deformable, transparent, and visually occluded by artificial fingertip sensors that are also compliant. A deep neural net classifier was trained to estimate the state of a zipper within a robot's pinch grasp. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards by balancing exploration versus exploitation of the state-action space. The C-MAB learner outperformed a benchmark Q-learner by more efficiently exploring the state-action space while learning a hard-to-code task. The learned C-MAB policy was tested with novel ziplock bag scenarios and contours (wire, rope). Importantly, this work contributes to the development of reinforcement learning approaches that account for limited resources such as hardware life and researcher time. As robots are used to perform complex, physically interactive tasks in unstructured or unmodeled environments, it becomes important to develop methods that enable efficient and effective learning with physical testbeds.
Psychophysical Studies of Visual Cortical Function
1992-01-12
principle of generic image samplin& a hypothesis which provides ageometric tool to understand visual surface learning. We also have investigated the...perception of depth from unpaired points ( DaVinci stereopsis), showing that such points lead to depth andsubjective contours. In color filling in, we have...outlined and systematized a number of important phenomenon which we label under the rubric of DaVinci stereopsis. We summarize these results in a number of
Visual recognition system of cherry picking robot based on Lab color model
NASA Astrophysics Data System (ADS)
Zhang, Qirong; Zuo, Jianjun; Yu, Tingzhong; Wang, Yan
2017-12-01
This paper designs a visual recognition system suitable for cherry picking. First, the system deals with the image using the vector median filter. And then it extracts a channel of Lab color model to divide the cherries and the background. The cherry contour was successfully fitted by the least square method, and the centroid and radius of the cherry were extracted. Finally, the cherry was successfully extracted.
ConTour: Data-Driven Exploration of Multi-Relational Datasets for Drug Discovery.
Partl, Christian; Lex, Alexander; Streit, Marc; Strobelt, Hendrik; Wassermann, Anne-Mai; Pfister, Hanspeter; Schmalstieg, Dieter
2014-12-01
Large scale data analysis is nowadays a crucial part of drug discovery. Biologists and chemists need to quickly explore and evaluate potentially effective yet safe compounds based on many datasets that are in relationship with each other. However, there is a lack of tools that support them in these processes. To remedy this, we developed ConTour, an interactive visual analytics technique that enables the exploration of these complex, multi-relational datasets. At its core ConTour lists all items of each dataset in a column. Relationships between the columns are revealed through interaction: selecting one or multiple items in one column highlights and re-sorts the items in other columns. Filters based on relationships enable drilling down into the large data space. To identify interesting items in the first place, ConTour employs advanced sorting strategies, including strategies based on connectivity strength and uniqueness, as well as sorting based on item attributes. ConTour also introduces interactive nesting of columns, a powerful method to show the related items of a child column for each item in the parent column. Within the columns, ConTour shows rich attribute data about the items as well as information about the connection strengths to other datasets. Finally, ConTour provides a number of detail views, which can show items from multiple datasets and their associated data at the same time. We demonstrate the utility of our system in case studies conducted with a team of chemical biologists, who investigate the effects of chemical compounds on cells and need to understand the underlying mechanisms.
Hosking, J
2017-08-01
Custom contouring techniques are effective for reducing pressure ulcer risk in wheelchair seating. These techniques may assist the management of pressure ulcer risk during sleep for night time postural management. To investigate the effectiveness of custom contoured night time postural management components against planar support surfaces for pressure ulcer risk measures over the heels. Supine posture was captured from five healthy participants using vacuum consolidation and 3-dimensional laser scanning. Custom contoured abduction wedges were carved from polyurethane and chipped foams. Pressure mapping and the visual analog scale were used to evaluate the effectiveness of the contoured foams in reducing pressure and discomfort under the posterior heel against standard planar support surfaces. Custom contoured shapes significantly reduced interface pressures (p < 0.05) and discomfort scores (p < 0.05) when compared to planar support surfaces. Polyurethane foam was the most effective material but it did not differ significantly from chipped foam. Linear regression revealed a significant relationship between the Peak Pressure Index and discomfort scores (r = 0.997, p = 0.003). The findings of this pilot study suggested that custom contoured shapes were more effective than planar surfaces at reducing pressure ulcer risk surrogate measures over the posterior heels with polyurethane foam being the most effective material investigated. It is recommended that Evazote foam should not be used as a support surface material for night time postural management. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Experimental vizualization of 2D photonic crystal equi-frequency contours
NASA Astrophysics Data System (ADS)
Senderakova, Dagmar; Drzik, Milan; Pisarcik, Matej
2017-12-01
Photonic crystals have been extensively studied for their unique optical properties that promise interesting novel devices. Our contribution is focused on a 2D photonic crystal structure formed by Al2O3 layer on silicon substrate, patterned with periodic hexagonal lattice of deep air holes. Azimuthal angle dependences of the specular light reflection were recorded photo-electrically at various angles of icidence and wavelengths. Data obtained were processed via mapping in reciprocal k-space. The method promises a possibility to visualize the equi-frequency contours and get more detailed information about the properties of the sample used.
Grassmannians for scattering amplitudes in 4d $$\\mathcal{N}=4 $$ SYM and 3d ABJM
Elvang, Henriette; Huang, Yu-tin; Keeler, Cynthia; ...
2014-12-31
Scattering amplitudes in 4d N=4 super Yang-Mills theory (SYM) can be described by Grassmannian contour integrals whose form depends on whether the external data is encoded in momentum space, twistor space, or momentum twistor space. Here, after a pedagogical review, we present a new, streamlined proof of the equivalence of the three integral formulations. A similar strategy allows us to derive a new Grassmannian integral for 3d N = 6 ABJM theory amplitudes in momentum twistor space: it is a contour integral in an orthogonal Grassmannian with the novel property that the internal metric depends on the external data. Themore » result can be viewed as a central step towards developing an amplituhedron formulation for ABJM amplitudes. Various properties of Grassmannian integrals are examined, including boundary properties, pole structure, and a homological interpretation of the global residue theorems for N = 4 SYM.« less
Propfan experimental data analysis
NASA Technical Reports Server (NTRS)
Vernon, David F.; Page, Gregory S.; Welge, H. Robert
1984-01-01
A data reduction method, which is consistent with the performance prediction methods used for analysis of new aircraft designs, is defined and compared to the method currently used by NASA using data obtained from an Ames Res. Center 11 foot transonic wind tunnel test. Pressure and flow visualization data from the Ames test for both the powered straight underwing nacelle, and an unpowered contoured overwing nacelle installation is used to determine the flow phenomena present for a wind mounted turboprop installation. The test data is compared to analytic methods, showing the analytic methods to be suitable for design and analysis of new configurations. The data analysis indicated that designs with zero interference drag levels are achieveable with proper wind and nacelle tailoring. A new overwing contoured nacelle design and a modification to the wing leading edge extension for the current wind tunnel model design are evaluated. Hardware constraints of the current model parts prevent obtaining any significant performance improvement due to a modified nacelle contouring. A new aspect ratio wing design for an up outboard rotation turboprop installation is defined, and an advanced contoured nacelle is provided.
A method for smoothing segmented lung boundary in chest CT images
NASA Astrophysics Data System (ADS)
Yim, Yeny; Hong, Helen
2007-03-01
To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.
NASA Technical Reports Server (NTRS)
Carvalho, Robert F.; Williams, James; Keller, Richard; Sturken, Ian; Panontin, Tina
2004-01-01
InvestigationOrganizer (IO) is a collaborative web-based system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, and allows investigators to make explicit, shared, and meaningful links between evidence, causal models, findings and recommendations. It integrates the functionality of a database, a common document repository, a semantic knowledge network, a rule-based inference engine, and causal modeling and visualization. Thus far, IO has been used to support four mishap investigations within NASA, ranging from a small property damage case to the loss of the Space Shuttle Columbia. This paper describes how the functionality of IO supports mishap investigations and the lessons learned from the experience of supporting two of the NASA mishap investigations: the Columbia Accident Investigation and the CONTOUR Loss Investigation.
Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt
2015-01-01
Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target’s contour on a screen. The subjects’ performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects’. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject’s discrimination performance was affected by the fixation position in much the same way as the model’s. PMID:26241462
Pitch contour identification with combined place and temporal cues using cochlear implants
Luo, Xin; Padilla, Monica; Landsberger, David M.
2012-01-01
This study investigated the integration of place- and temporal-pitch cues in pitch contour identification (PCI), in which cochlear implant (CI) users were asked to judge the overall pitch-change direction of stimuli. Falling and rising pitch contours were created either by continuously steering current between adjacent electrodes (place pitch), by continuously changing amplitude modulation (AM) frequency (temporal pitch), or both. The percentage of rising responses was recorded as a function of current steering or AM frequency change, with single or combined pitch cues. A significant correlation was found between subjects’ sensitivity to current steering and AM frequency change. The integration of place- and temporal-pitch cues was most effective when the two cues were similarly discriminable in isolation. Adding the other (place or temporal) pitch cues shifted the temporal- or place-pitch psychometric functions horizontally without changing the slopes. PCI was significantly better with consistent place- and temporal-pitch cues than with inconsistent cues. PCI with single cues and integration of pitch cues were similar on different electrodes. The results suggest that CI users effectively integrate place- and temporal-pitch cues in relative pitch perception tasks. Current steering and AM frequency change should be coordinated to better transmit dynamic pitch information to CI users. PMID:22352506
Spatial limitations of fast temporal segmentation are best modeled by V1 receptive fields.
Goodbourn, Patrick T; Forte, Jason D
2013-11-22
The fine temporal structure of events influences the spatial grouping and segmentation of visual-scene elements. Although adjacent regions flickering asynchronously at high temporal frequencies appear identical, the visual system signals a boundary between them. These "phantom contours" disappear when the gap between regions exceeds a critical value (g(max)). We used g(max) as an index of neuronal receptive-field size to compare with known receptive-field data from along the visual pathway and thus infer the location of the mechanism responsible for fast temporal segmentation. Observers viewed a circular stimulus reversing in luminance contrast at 20 Hz for 500 ms. A gap of constant retinal eccentricity segmented each stimulus quadrant; on each trial, participants identified a target quadrant containing counterphasing inner and outer segments. Through varying the gap width, g(max) was determined at a range of retinal eccentricities. We found that g(max) increased from 0.3° to 0.8° for eccentricities from 2° to 12°. These values correspond to receptive-field diameters of neurons in primary visual cortex that have been reported in single-cell and fMRI studies and are consistent with the spatial limitations of motion detection. In a further experiment, we found that modulation sensitivity depended critically on the length of the contour and could be predicted by a simple model of spatial summation in early cortical neurons. The results suggest that temporal segmentation is achieved by neurons at the earliest cortical stages of visual processing, most likely in primary visual cortex.
Assimilative and non-assimilative color spreading in the watercolor configuration.
Kimura, Eiji; Kuroki, Mikako
2014-01-01
A colored line flanking a darker contour will appear to spread its color onto an area enclosed by the line (watercolor effect). The watercolor effect has been characterized as an assimilative effect, but non-assimilative color spreading has also been demonstrated in the same spatial configuration; e.g., when a black inner contour (IC) is paired with a blue outer contour (OC), yellow color spreading can be observed. To elucidate visual mechanisms underlying these different color spreading effects, this study investigated the effects of luminance ratio between the double contours on the induced color by systematically manipulating the IC and the OC luminance (Experiment 1) as well as the background luminance (Experiment 2). The results showed that the luminance conditions suitable for assimilative and non-assimilative color spreading were nearly opposite. When the Weber contrast of the IC to the background luminance (IC contrast) was smaller in size than that of the OC (OC contrast), the induced color became similar to the IC color (assimilative spreading). In contrast, when the OC contrast was smaller than or equal to the IC contrast, the induced color became yellow (non-assimilative spreading). Extending these findings, Experiment 3 showed that bilateral color spreading, i.e., assimilative spreading on one side and non-assimilative spreading on the other side, can also be observed in the watercolor configuration. These results suggest that the assimilative and the non-assimilative spreading were mediated by different visual mechanisms. The properties of the assimilative spreading are consistent with the model proposed to account for neon color spreading (Grossberg and Mingolla, 1985) and extended for the watercolor effect (Pinna and Grossberg, 2005). However, the present results suggest that additional mechanisms are needed to account for the non-assimilative color spreading.
NASA Astrophysics Data System (ADS)
Reading, A. M.; Morse, P. E.; Staal, T.
2017-12-01
Geoscientific inversion outputs, such as seismic tomography contour images, are finding increasing use amongst scientific user communities that have limited knowledge of the impact of output parameter uncertainty on subsequent interpretations made from such images. We make use of a newly written computer application which enables seismic tomography images to be displayed in a performant 3D graphics environment. This facilitates the mapping of colour scales to the human visual sensorium for the interactive interpretation of contoured inversion results incorporating parameter uncertainty. Two case examples of seismic tomography inversions or contoured compilations are compared from the southern hemisphere continents of Australia and Antarctica. The Australian example is based on the AuSREM contoured seismic wavespeed model while the Antarctic example is a valuable but less well constrained result. Through adjusting the multiple colour gradients, layer separations, opacity, illumination, shadowing and background effects, we can optimise the insights obtained from the 3D structure in the inversion compilation or result. Importantly, we can also limit the display to show information in a way that is mapped to the uncertainty in the 3D result. Through this practical application, we demonstrate that the uncertainty in the result can be handled through a well-posed mapping of the parameter values to displayed colours in the knowledge of what is perceived visually by a typical human. We found that this approach maximises the chance of a useful tectonic interpretation by a diverse scientific user community. In general, we develop the idea that quantified inversion uncertainty can be used to tailor the way that the output is presented to the analyst for scientific interpretation.
Fuzzy and process modelling of contour ridge water dynamics
NASA Astrophysics Data System (ADS)
Mhizha, Alexander; Ndiritu, John
2018-05-01
Contour ridges are an in-situ rainwater harvesting technology developed initially for soil erosion control but are currently also widely promoted for rainwater harvesting. The effectiveness of contour ridges depends on geophysical, hydro-climatic and socio economic factors that are highly varied in time and space. Furthermore, field-scale data on these factors are often unavailable. This together with the complexity of hydrological processes at field scale limits the application of classical distributed process modelling to highly-instrumented experimental fields. This paper presents a framework that combines fuzzy logic and process-based approach for modelling contour ridges for rainwater harvesting where detailed field data are not available. Water balance for a representative contour-ridged field incorporating the water flow processes across the boundaries is integrated with fuzzy logic to incorporate the uncertainties in estimating runoff. The model is tested using data collected during the 2009/2010 and 2010/2011 rainfall seasons from two contour-ridged fields in Zhulube located in the semi-arid parts of Zimbabwe. The model is found to replicate soil moisture in the root zone reasonably well (NSE = 0.55 to 0.66 and PBIAS = -1.3 to 6.1 %). The results show that combining fuzzy logic and process based approaches can adequately model soil moisture in a contour ridged-field and could help to assess the water dynamics in contour ridged fields.
Bousie, Jaquelin A; Blanch, Peter; McPoil, Thomas G; Vicenzino, Bill
2013-01-01
To determine the effect of contouring of an in-shoe foot orthosis on plantar contact area and surface pressure, as well as perceived comfort and support at the foot-orthosis interface during stationary cycling. A randomised, repeated measures control study. Twelve cyclists performed steady-state seated cycling at a cadence of 90 rpm using a contoured orthosis and a flat insert of similar hardness. Contact area (CA) and plantar mean pressure (PP) were measured using the PEDAR® system, determined for seven discrete plantar regions and represented as the percentage of the total CA and PP respectively (CA% and PP%). Perceived comfort and support were rated using a visual analogue scale (VAS). The contoured orthosis produced a significantly greater CA% at the medial midfoot (p=0.001) and lateral midfoot (p=0.009) with a standardised mean difference (SMD) of 1.3 and 0.9 respectively. The contoured orthosis also produced a significantly greater PP% at the hallux (p=0.003) compared to the flat insert with a SMD of 1.1. There was a small non-significant effect (SMD<0.4) for the perceived comfort measures between conditions, but perceived support was significantly greater at the arch (p=0.000) and heel (p=0.013) with the contoured orthoses (SMD of 1.5 and 0.9, respectively). Contoured orthoses influenced the plantar surface of the foot by increasing contact area as well as a perception of greater support at the midfoot while increasing relative pressure through the hallux when compared to a flat insert during stationary cycling. No difference in perceived comfort was noted. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Miki, Kensaku; Takeshima, Yasuyuki; Watanabe, Shoko; Honda, Yukiko; Kakigi, Ryusuke
2011-04-06
We investigated the effects of inverting facial contour (hair and chin) and features (eyes, nose and mouth) on processing for static and dynamic face perception using magnetoencephalography (MEG). We used apparent motion, in which the first stimulus (S1) was replaced by a second stimulus (S2) with no interstimulus interval and subjects perceived visual motion, and presented three conditions as follows: (1) U&U: Upright contour and Upright features, (2) U&I: Upright contour and Inverted features, and (3) I&I: Inverted contour and Inverted features. In static face perception (S1 onset), the peak latency of the fusiform area's activity, which was related to static face perception, was significantly longer for U&I and I&I than for U&U in the right hemisphere and for U&I than for U&U and I&I in the left. In dynamic face perception (S2 onset), the strength (moment) of the occipitotemporal area's activity, which was related to dynamic face perception, was significantly larger for I&I than for U&U and U&I in the right hemisphere, but not the left. These results can be summarized as follows: (1) in static face perception, the activity of the right fusiform area was more affected by the inversion of features while that of the left fusiform area was more affected by the disruption of the spatial relation between the contour and features, and (2) in dynamic face perception, the activity of the right occipitotemporal area was affected by the inversion of the facial contour. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
2013-11-01
Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of ‘ground-truth’ registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Three pairs of CT/CBCT datasets were chosen for this institutional review board approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and three implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant contours. Seminal vesicle contours were found to have the lowest correlation amongst physicians (DICE = 0.5). After DIR, the organ surfaces between CBCT and planning CT were in good alignment with mean DICE indices of 0.9 for prostate, rectum, and bladder, and 0.8 for seminal vesicles. The Jacobian magnitudes |JAC| in the prostate, rectum, and seminal vesicles were in the range of 0.4-1.5, indicating mild compression/expansion. The bladder volume differences were larger between CBCT and CT images with mean |JAC| values of 2.2, 0.7, and 1.0 for three respective patients. Bone deformation was negligible (|JAC| = ˜ 1.0). The difference between corresponding landmark points between CBCT and CT was less than 1.0 mm after DIR. We have presented a novel method of establishing benchmark DIR accuracy between CT and CBCT images in the pelvic region. The method incorporates manually delineated organ surfaces and landmark points as well as pixel similarity in the optimization, while ensuring bone rigidity and avoiding excessive deformation in soft tissue organs. Redundant contouring is necessary to reduce the overall registration uncertainty.
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
2014-01-01
Purpose Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of “ground-truth” registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Materials/Methods Three pairs of CT/CBCT datasets were chosen for this IRB-approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and 3 implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Results Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant contours. Seminal vesicle contours were found to have the lowest correlation amongst physicians (DICE=0.5). After DIR, the organ surfaces between CBCT and planning CT were in good alignment with mean DICE indices of 0.9 for prostate, rectum, and bladder, and 0.8 for seminal vesicles. The Jacobian magnitudes |JAC| in the prostate, rectum, and seminal vesicles were in the range of 0.4–1.5, indicating mild compression/expansion. The bladder volume differences were larger between CBCT and CT images with mean |JAC| values of 2.2, 0.7, and 1.0 for three respective patients. Bone deformation was negligible (|JAC|=~1.0). The difference between corresponding landmark points between CBCT and CT was less than 1.0 mm after DIR. Conclusions We have presented a novel method of establishing benchmark deformable image registration accuracy between CT and CBCT images in the pelvic region. The method incorporates manually delineated organ surfaces and landmark points as well as pixel similarity in the optimization, while ensuring bone rigidity and avoiding excessive deformation in soft tissue organs. Redundant contouring is necessary to reduce the overall registration uncertainty. PMID:24171908
2014-01-01
The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined. Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production. PMID:25060583
Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin
2014-07-25
The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.
Exploring and accounting for publication bias in mental health: a brief overview of methods.
Mavridis, Dimitris; Salanti, Georgia
2014-02-01
OBJECTIVE Publication bias undermines the integrity of published research. The aim of this paper is to present a synopsis of methods for exploring and accounting for publication bias. METHODS We discussed the main features of the following methods to assess publication bias: funnel plot analysis; trim-and-fill methods; regression techniques and selection models. We applied these methods to a well-known example of antidepressants trials that compared trials submitted to the Food and Drug Administration (FDA) for regulatory approval. RESULTS The funnel plot-related methods (visual inspection, trim-and-fill, regression models) revealed an association between effect size and SE. Contours of statistical significance showed that asymmetry in the funnel plot is probably due to publication bias. Selection model found a significant correlation between effect size and propensity for publication. CONCLUSIONS Researchers should always consider the possible impact of publication bias. Funnel plot-related methods should be seen as a means of examining for small-study effects and not be directly equated with publication bias. Possible causes for funnel plot asymmetry should be explored. Contours of statistical significance may help disentangle whether asymmetry in a funnel plot is caused by publication bias or not. Selection models, although underused, could be useful resource when publication bias and heterogeneity are suspected because they address directly the problem of publication bias and not that of small-study effects.
Computational approach to compact Riemann surfaces
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg; Klein, Christian
2017-01-01
A purely numerical approach to compact Riemann surfaces starting from plane algebraic curves is presented. The critical points of the algebraic curve are computed via a two-dimensional Newton iteration. The starting values for this iteration are obtained from the resultants with respect to both coordinates of the algebraic curve and a suitable pairing of their zeros. A set of generators of the fundamental group for the complement of these critical points in the complex plane is constructed from circles around these points and connecting lines obtained from a minimal spanning tree. The monodromies are computed by solving the defining equation of the algebraic curve on collocation points along these contours and by analytically continuing the roots. The collocation points are chosen to correspond to Chebychev collocation points for an ensuing Clenshaw-Curtis integration of the holomorphic differentials which gives the periods of the Riemann surface with spectral accuracy. At the singularities of the algebraic curve, Puiseux expansions computed by contour integration on the circles around the singularities are used to identify the holomorphic differentials. The Abel map is also computed with the Clenshaw-Curtis algorithm and contour integrals. As an application of the code, solutions to the Kadomtsev-Petviashvili equation are computed on non-hyperelliptic Riemann surfaces.
SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, J; Zhang, L; Balter, P
2015-06-15
Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points.more » It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and research applications. This work was partially supported by Cancer Prevention & Research Institute of Texas (CPRIT) RP110562.« less
Light Water Reactor Sustainability Program Status Report on the Grizzly Code Enhancements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novascone, Stephen R.; Spencer, Benjamin W.; Hales, Jason D.
2013-09-01
This report summarizes work conducted during fiscal year 2013 to work toward developing a full capability to evaluate fracture contour J-integrals to the Grizzly code. This is a progress report on ongoing work. During the next fiscal year, this capability will be completed, and Grizzly will be capable of evaluating these contour integrals for 3D geometry, including the effects of thermal stress and large deformation. A usable, limited capability has been developed, which is capable of evaluating these integrals on 2D geometry, without considering the effects of material nonlinearity, thermal stress or large deformation. This report presents an overview ofmore » the approach used, along with a demonstration of the current capability in Grizzly, including a comparison with an analytical solution.« less
DEM generation from contours and a low-resolution DEM
NASA Astrophysics Data System (ADS)
Li, Xinghua; Shen, Huanfeng; Feng, Ruitao; Li, Jie; Zhang, Liangpei
2017-12-01
A digital elevation model (DEM) is a virtual representation of topography, where the terrain is established by the three-dimensional co-ordinates. In the framework of sparse representation, this paper investigates DEM generation from contours. Since contours are usually sparsely distributed and closely related in space, sparse spatial regularization (SSR) is enforced on them. In order to make up for the lack of spatial information, another lower spatial resolution DEM from the same geographical area is introduced. In this way, the sparse representation implements the spatial constraints in the contours and extracts the complementary information from the auxiliary DEM. Furthermore, the proposed method integrates the advantage of the unbiased estimation of kriging. For brevity, the proposed method is called the kriging and sparse spatial regularization (KSSR) method. The performance of the proposed KSSR method is demonstrated by experiments in Shuttle Radar Topography Mission (SRTM) 30 m DEM and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m global digital elevation model (GDEM) generation from the corresponding contours and a 90 m DEM. The experiments confirm that the proposed KSSR method outperforms the traditional kriging and SSR methods, and it can be successfully used for DEM generation from contours.
A spectral boundary integral equation method for the 2-D Helmholtz equation
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
1994-01-01
In this paper, we present a new numerical formulation of solving the boundary integral equations reformulated from the Helmholtz equation. The boundaries of the problems are assumed to be smooth closed contours. The solution on the boundary is treated as a periodic function, which is in turn approximated by a truncated Fourier series. A Fourier collocation method is followed in which the boundary integral equation is transformed into a system of algebraic equations. It is shown that in order to achieve spectral accuracy for the numerical formulation, the nonsmoothness of the integral kernels, associated with the Helmholtz equation, must be carefully removed. The emphasis of the paper is on investigating the essential elements of removing the nonsmoothness of the integral kernels in the spectral implementation. The present method is robust for a general boundary contour. Aspects of efficient implementation of the method using FFT are also discussed. A numerical example of wave scattering is given in which the exponential accuracy of the present numerical method is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, A; Xu, H; Chen, S
Purpose: To compare the contour propagation accuracy of two deformable image registration (DIR) algorithms in the Raystation treatment planning system – the “Hybrid” algorithm based on image intensities and anatomical information; and the “Biomechanical” algorithm based on linear anatomical elasticity and finite element modeling. Methods: Both DIR algorithms were used for CT-to-CT deformation for 20 lung radiation therapy patients that underwent treatment plan revisions. Deformation accuracy was evaluated using landmark tracking to measure the target registration error (TRE) and inverse consistency error (ICE). The deformed contours were also evaluated against physician drawn contours using Dice similarity coefficients (DSC). Contour propagationmore » was qualitatively assessed using a visual quality score assigned by physicians, and a refinement quality score (0 0.9 for lungs, > 0.85 for heart, > 0.8 for liver) and similar qualitative assessments (VQS < 0.35, RQS > 0.75 for lungs). When anatomical structures were used to control the deformation, the DSC improved more significantly for the biomechanical DIR compared to the hybrid DIR, while the VQS and RQS improved only for the controlling structures. However, while the inclusion of controlling structures improved the TRE for the hybrid DIR, it increased the TRE for the biomechanical DIR. Conclusion: The hybrid DIR was found to perform slightly better than the biomechanical DIR based on lower TRE while the DSC, VQS, and RQS studies yielded comparable results for both. The use of controlling structures showed considerable improvement in the hybrid DIR results and is recommended for clinical use in contour propagation.« less
Benefits of music training in mandarin-speaking pediatric cochlear implant users.
Fu, Qian-Jie; Galvin, John J; Wang, Xiaosong; Wu, Jiunn-Liang
2015-02-01
The aims of this study were to assess young (5- to 10-year-old) Mandarin-speaking cochlear implant (CI) users' musical pitch perception and to assess the benefits of computer-based home training on performance. Melodic contour identification (MCI) was used to assess musical pitch perception in 14 Mandarin-speaking pediatric CI users; the instrument timbre and the contour length were varied as experimental parameters. Six subjects received subsequent MCI training on their home computer in which auditory and visual feedback were provided. MCI performance was generally poor (grand mean=33.3% correct) and highly variable, with scores ranging from 9.3% to 98.1% correct; there was no significant effect of instrument timbre or contour length on performance (p>.05). After 4 weeks of training, performance sharply improved. Follow-up measures that were conducted 8 weeks after training was stopped showed no significant decline in MCI performance. For the 6 trained subjects, there was a significant effect of contour length for the training and follow-up measures. These preliminary data suggest that although baseline MCI performance initially may be poor, training may greatly improve Mandarin-speaking pediatric CI users' melodic pitch perception.
Conformation and stretching of end-tethered polymers in pressure-driven flow under confinement
NASA Astrophysics Data System (ADS)
Roy, Tamal; Hardt, Steffen; InstituteNano-; Microfludics, Technische Universität Darmstadt Team
2016-11-01
Understanding of the conformation and dynamics of polymers under confinement is important for both fundamental studies and applications. We experimentally study the conformation and stretching of surface-tethered polymer chains confined between parallel surfaces and exposed to a pressure-driven flow. λ-DNA molecules are tethered to the wall of a microchannel of height smaller than the contour lengths of the molecules. The DNA molecules, stained with a fluorescent dye, are visualized by epifluorescence and laser-scanning confocal microscopy (LSCM). The effects of the channel height, flow rate and contour length on the extension of the molecules are determined from epifluorescence images. From LSCM images the complete conformation and orientation of the DNA molecules is inferred. We find that the fractional extension of the molecules is uniquely determined by the fluid shear stress at the tethering surface and the chain contour length. There is no explicit influence of the channel height in the range of contour lengths we consider. We also derive analytical scaling relationships (in the weak and strong extension limits) that explain the experimentally observed stretching characteristics. This work is supported by Deutsche Forschungsgemeinschaft (Grant No. HA 2696/33-1).
Li, Zhongwei; Liu, Xingjian; Wen, Shifeng; He, Piyao; Zhong, Kai; Wei, Qingsong; Shi, Yusheng; Liu, Sheng
2018-01-01
Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures, the monitoring of the geometric signatures is of high importance. This paper presents the use of vision sensing methods as a non-destructive in situ 3D measurement technique to monitor two main categories of geometric signatures: 3D surface topography and 3D contour data of the fusion area. To increase the efficiency and accuracy, an enhanced phase measuring profilometry (EPMP) is proposed to monitor the 3D surface topography of the powder bed and the fusion area reliably and rapidly. A slice model assisted contour detection method is developed to extract the contours of fusion area. The performance of the techniques is demonstrated with some selected measurements. Experimental results indicate that the proposed method can reveal irregularities caused by various defects and inspect the contour accuracy and surface quality. It holds the potential to be a powerful in situ 3D monitoring tool for manufacturing process optimization, close-loop control, and data visualization. PMID:29649171
Local field potentials and border ownership: A conjecture about computation in visual cortex.
Zucker, Steven W
2012-01-01
Border ownership is an intermediate-level visual task: it must integrate (upward flowing) image information about edges with (downward flowing) shape information. This highlights the familiar local-to-global aspect of border formation (linking of edge elements to form contours) with the much less studied global-to-local aspect (which edge elements form part of the same shape). To address this task we show how to incorporate certain high-level notions of distance and geometric arrangement into a form that can influence image-based edge information. The center of the argument is a reaction-diffusion equation that reveals how (global) aspects of the distance map (that is, shape) can be "read out" locally, suggesting a solution to the border ownership problem. Since the reaction-diffusion equation defines a field, a possible information processing role for the local field potential can be defined. We argue that such fields also underlie the Gestalt notion of closure, especially when it is refined using modern experimental techniques. An important implication of this theoretical argument is that, if true, then network modeling must be extended to include the substrate surrounding spiking neurons, including glia. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Motion-Based Feature for Event-Based Pattern Recognition
Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.
2017-01-01
This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1–V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy. PMID:25157228
Tschechne, Stephan; Neumann, Heiko
2014-01-01
Visual structures in the environment are segmented into image regions and those combined to a representation of surfaces and prototypical objects. Such a perceptual organization is performed by complex neural mechanisms in the visual cortex of primates. Multiple mutually connected areas in the ventral cortical pathway receive visual input and extract local form features that are subsequently grouped into increasingly complex, more meaningful image elements. Such a distributed network of processing must be capable to make accessible highly articulated changes in shape boundary as well as very subtle curvature changes that contribute to the perception of an object. We propose a recurrent computational network architecture that utilizes hierarchical distributed representations of shape features to encode surface and object boundary over different scales of resolution. Our model makes use of neural mechanisms that model the processing capabilities of early and intermediate stages in visual cortex, namely areas V1-V4 and IT. We suggest that multiple specialized component representations interact by feedforward hierarchical processing that is combined with feedback signals driven by representations generated at higher stages. Based on this, global configurational as well as local information is made available to distinguish changes in the object's contour. Once the outline of a shape has been established, contextual contour configurations are used to assign border ownership directions and thus achieve segregation of figure and ground. The model, thus, proposes how separate mechanisms contribute to distributed hierarchical cortical shape representation and combine with processes of figure-ground segregation. Our model is probed with a selection of stimuli to illustrate processing results at different processing stages. We especially highlight how modulatory feedback connections contribute to the processing of visual input at various stages in the processing hierarchy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellon, M; Kumarasiri, A; Kim, J
Purpose: To compare the performance of two deformable image registration (DIR) algorithms for contour propagation and to evaluate the accuracy of DIR for use with high dose rate (HDR) brachytherapy planning for cervical cancer. Methods: Five patients undergoing HDR ring and tandem brachytherapy were included in this retrospective study. All patients underwent CT simulation and replanning prior to each fraction (3–5 fractions total). CT-to-CT DIR was performed using two commercially available software platforms: SmartAdapt, Varian Medical Systems (Demons) and Velocity AI, Velocity Medical Solutions (B-spline). Fraction 1 contours were deformed and propagated to each subsequent image set and compared tomore » contours manually drawn by an expert clinician. Dice similarity coefficients (DSC), defined as, DSC(A,B)=2(AandB)/(A+B) were calculated to quantify spatial overlap between manual (A) and deformed (B) contours. Additionally, clinician-assigned visual scores were used to describe and compare the performance of each DIR method and ultimately evaluate which was more clinically acceptable. Scoring was based on a 1–5 scale—with 1 meaning, “clinically acceptable with no contour changes” and 5 meaning, “clinically unacceptable”. Results: Statistically significant differences were not observed between the two DIR algorithms. The average DSC for the bladder, rectum and rectosigmoid were 0.82±0.08, 0.67±0.13 and 0.48±0.18, respectively. The poorest contour agreement was observed for the rectosigmoid due to limited soft tissue contrast and drastic anatomical changes, i.e., organ shape/filling. Two clinicians gave nearly equivalent average scores of 2.75±0.91 for SmartAdapt and 2.75±0.94 for Velocity AI—indicating that for a majority of the cases, more than one of the three contours evaluated required major modifications. Conclusion: Limitations of both DIR algorithms resulted in inaccuracies in contour propagation in the pelvic region, thus hampering the clinical utility of this technology. Further work is required to optimize these algorithms and take advantage of the potential of DIR for HDR brachytherapy planning.« less
Human visual performance model for crewstation design
NASA Technical Reports Server (NTRS)
Larimer, James; Prevost, Michael; Arditi, Aries; Azueta, Steven; Bergen, James; Lubin, Jeffrey
1991-01-01
An account is given of a Visibility Modeling Tool (VMT) which furnishes a crew-station designer with the means to assess configurational tradeoffs, with a view to the impact of various options on the unambiguous access of information to the pilot. The interactive interface of the VMT allows the manipulation of cockpit geometry, ambient lighting, pilot ergonomics, and the displayed symbology. Performance data can be displayed in the form of 3D contours into the crewstation graphic model, thereby yielding an indication of the operator's visual capabilities.
Cognitive Load Theory and the Effects of Transient Information on the Modality Effect
ERIC Educational Resources Information Center
Leahy, Wayne; Sweller, John
2016-01-01
Based on cognitive load theory and the "transient information effect," this paper investigated the "modality effect" while interpreting a contour map. The length and complexity of auditory and visual text instructions were manipulated. Experiment 1 indicated that longer audio text information within a presentation was inferior…
Using Matlab in a Multivariable Calculus Course.
ERIC Educational Resources Information Center
Schlatter, Mark D.
The benefits of high-level mathematics packages such as Matlab include both a computer algebra system and the ability to provide students with concrete visual examples. This paper discusses how both capabilities of Matlab were used in a multivariate calculus class. Graphical user interfaces which display three-dimensional surfaces, contour plots,…
JPRS Report, Science & Technology, USSR: Earth Sciences
1988-12-06
Vol 24 No 7, Jul 88] 14 Integral Characteristics of Light Scattering by Large Spherical Particles IE. P. Zege, A. A. Kokhanovskiy; IZVESTIYA AKADEMII...economical that the base not contain a grid model, but the initial contours, represented in vector format, in which case it is called a vector DRM. The...information make it possible to display both screen and vector DRM and from these, retrieve contours in the initial format. The automated forest mapping
A probabilistic verification score for contours demonstrated with idealized ice-edge forecasts
NASA Astrophysics Data System (ADS)
Goessling, Helge; Jung, Thomas
2017-04-01
We introduce a probabilistic verification score for ensemble-based forecasts of contours: the Spatial Probability Score (SPS). Defined as the spatial integral of local (Half) Brier Scores, the SPS can be considered the spatial analog of the Continuous Ranked Probability Score (CRPS). Applying the SPS to idealized seasonal ensemble forecasts of the Arctic sea-ice edge in a global coupled climate model, we demonstrate that the SPS responds properly to ensemble size, bias, and spread. When applied to individual forecasts or ensemble means (or quantiles), the SPS is reduced to the 'volume' of mismatch, in case of the ice edge corresponding to the Integrated Ice Edge Error (IIEE).
Breaking cover: neural responses to slow and fast camouflage-breaking motion.
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M; McLoughlin, Niall; Wang, Wei
2015-08-22
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. © 2015 The Authors.
Breaking cover: neural responses to slow and fast camouflage-breaking motion
Yin, Jiapeng; Gong, Hongliang; An, Xu; Chen, Zheyuan; Lu, Yiliang; Andolina, Ian M.; McLoughlin, Niall; Wang, Wei
2015-01-01
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals. PMID:26269500
Anatomical and Functional Results of Lamellar Macular Holes Surgery.
Papadopoulou, D; Donati, G; Mangioris, G; Pournaras, C J
2016-04-01
To determine the long-term surgical findings and outcomes after vitrectomy for symptomatic lamellar macular holes. We studied 28 patients with lamellar macular holes and central visual loss or distortion. All interventions were standard 25 G vitrectomy with membranectomy of the internal limiting membrane (ILM), peeling and gas tamponade with SF6 20 %. Operations were performed by a single experienced surgeon within the last 3 years. Best corrected visual acuity and optical coherence tomography appearance were determined preoperatively and postoperatively. Following the surgical procedure, all macular holes were closed; however, in 3 eyes, significant foveal thinning was associated with changes in the retinal pigment epithelium changes. The mean best-corrected visual acuity improved postoperatively in the majority of the patients (n: 21, mean 0.3 logMAR), stabilised in 4 patients and decreased in 3 patients (mean 0.4 logMAR). Spectral Domain-Optical coherence tomography (SD-OCT) showed resolution of the lamellar lesion and improved macular contour in all cases. We demonstrated improvement in postoperative vision and the anatomical reconstruction of the anatomical contour of the fovea in most eyes with symptomatic lamellar holes. These findings indicate that vitrectomy, membranectomy and ILM peeling with gas tamponade is a beneficial treatment of symptomatic lamellar macular holes. Georg Thieme Verlag KG Stuttgart · New York.
Automated recognition of microcalcification clusters in mammograms
NASA Astrophysics Data System (ADS)
Bankman, Isaac N.; Christens-Barry, William A.; Kim, Dong W.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.
1993-07-01
The widespread and increasing use of mammographic screening for early breast cancer detection is placing a significant strain on clinical radiologists. Large numbers of radiographic films have to be visually interpreted in fine detail to determine the subtle hallmarks of cancer that may be present. We developed an algorithm for detecting microcalcification clusters, the most common and useful signs of early, potentially curable breast cancer. We describe this algorithm, which utilizes contour map representations of digitized mammographic films, and discuss its benefits in overcoming difficulties often encountered in algorithmic approaches to radiographic image processing. We present experimental analyses of mammographic films employing this contour-based algorithm and discuss practical issues relevant to its use in an automated film interpretation instrument.
Metrics for comparison of crystallographic maps
Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; ...
2014-10-01
Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less
NASA Astrophysics Data System (ADS)
Clucas, T.; Wirth, G. S.; Broderson, D.
2014-12-01
Traditional geospatial education tools such as maps and computer screens don't convey the rich topography present on Earth. Translating lines on a contour lines on a topo map to relief in a landscape can be a challenging concept to convey.A partnership between Alaska EPSCoR and the Geographic Information Network of Alaska has successfully constructed an Interactive Virtual Reality Sandbox, an education tool that in real-time projects and updates topographic contours on the surface of a sandbox. The sandbox has been successfully deployed at public science events as well as professional geospatial and geodesy conferences. Landscape change, precipitation, and evaporation can all be modeled, much to the delight of our enthusiasts, who range in age from 3 to 90. Visually, as well as haptically, demonstrating the effects of events (such as dragging a hand through the sand) on a landscape, as well as the intuitive realization of meaning of topographic contour lines, has proven to be engaging.
The anatomy of object recognition--visual form agnosia caused by medial occipitotemporal stroke.
Karnath, Hans-Otto; Rüter, Johannes; Mandler, André; Himmelbach, Marc
2009-05-06
The influential model on visual information processing by Milner and Goodale (1995) has suggested a dissociation between action- and perception-related processing in a dorsal versus ventral stream projection. It was inspired substantially by the observation of a double dissociation of disturbed visual action versus perception in patients with optic ataxia on the one hand and patients with visual form agnosia (VFA) on the other. Unfortunately, almost all cases with VFA reported so far suffered from inhalational intoxication, the majority with carbon monoxide (CO). Since CO induces a diffuse and widespread pattern of neuronal and white matter damage throughout the whole brain, precise conclusions from these patients with VFA on the selective role of ventral stream structures for shape and orientation perception were difficult. Here, we report patient J.S., who demonstrated VFA after a well circumscribed brain lesion due to stroke etiology. Like the famous patient D.F. with VFA after CO intoxication studied by Milner, Goodale, and coworkers (Goodale et al., 1991, 1994; Milner et al., 1991; Servos et al., 1995; Mon-Williams et al., 2001a,b; Wann et al., 2001; Westwood et al., 2002; McIntosh et al., 2004; Schenk and Milner, 2006), J.S. showed an obvious dissociation between disturbed visual perception of shape and orientation information on the one side and preserved visuomotor abilities based on the same information on the other. In both hemispheres, damage primarily affected the fusiform and the lingual gyri as well as the adjacent posterior cingulate gyrus. We conclude that these medial structures of the ventral occipitotemporal cortex are integral for the normal flow of shape and of contour information into the ventral stream system allowing to recognize objects.
Remapping of border ownership in the visual cortex.
O'Herron, Philip; von der Heydt, Rüdiger
2013-01-30
We see objects as having continuity although the retinal image changes frequently. How such continuity is achieved is hard to understand, because neurons in the visual cortex have small receptive fields that are fixed on the retina, which means that a different set of neurons is activated every time the eyes move. Neurons in areas V1 and V2 of the visual cortex signal the local features that are currently in their receptive fields and do not show "remapping" when the image moves. However, subsets of neurons in these areas also carry information about global aspects, such as figure-ground organization. Here we performed experiments to find out whether figure-ground organization is remapped. We recorded single neurons in macaque V1 and V2 in which figure-ground organization is represented by assignment of contours to regions (border ownership). We found previously that border-ownership signals persist when a figure edge is switched to an ambiguous edge by removing the context. We now used this paradigm to see whether border ownership transfers when the ambiguous edge is moved across the retina. In the new position, the edge activated a different set of neurons at a different location in cortex. We found that border ownership was transferred to the newly activated neurons. The transfer occurred whether the edge was moved by a saccade or by moving the visual display. Thus, although the contours are coded in retinal coordinates, their assignment to objects is maintained across movements of the retinal image.
Ma, Kevin C; Fernandez, James R; Amezcua, Lilyana; Lerner, Alex; Shiroishi, Mark S; Liu, Brent J
2015-12-01
MRI has been used to identify multiple sclerosis (MS) lesions in brain and spinal cord visually. Integrating patient information into an electronic patient record system has become key for modern patient care in medicine in recent years. Clinically, it is also necessary to track patients' progress in longitudinal studies, in order to provide comprehensive understanding of disease progression and response to treatment. As the amount of required data increases, there exists a need for an efficient systematic solution to store and analyze MS patient data, disease profiles, and disease tracking for both clinical and research purposes. An imaging informatics based system, called MS eFolder, has been developed as an integrated patient record system for data storage and analysis of MS patients. The eFolder system, with a DICOM-based database, includes a module for lesion contouring by radiologists, a MS lesion quantification tool to quantify MS lesion volume in 3D, brain parenchyma fraction analysis, and provide quantitative analysis and tracking of volume changes in longitudinal studies. Patient data, including MR images, have been collected retrospectively at University of Southern California Medical Center (USC) and Los Angeles County Hospital (LAC). The MS eFolder utilizes web-based components, such as browser-based graphical user interface (GUI) and web-based database. The eFolder database stores patient clinical data (demographics, MS disease history, family history, etc.), MR imaging-related data found in DICOM headers, and lesion quantification results. Lesion quantification results are derived from radiologists' contours on brain MRI studies and quantified into 3-dimensional volumes and locations. Quantified results of white matter lesions are integrated into a structured report based on DICOM-SR protocol and templates. The user interface displays patient clinical information, original MR images, and viewing structured reports of quantified results. The GUI also includes a data mining tool to handle unique search queries for MS. System workflow and dataflow steps has been designed based on the IHE post-processing workflow profile, including workflow process tracking, MS lesion contouring and quantification of MR images at a post-processing workstation, and storage of quantitative results as DICOM-SR in DICOM-based storage system. The web-based GUI is designed to display zero-footprint DICOM web-accessible data objects (WADO) and the SR objects. The MS eFolder system has been designed and developed as an integrated data storage and mining solution in both clinical and research environments, while providing unique features, such as quantitative lesion analysis and disease tracking over a longitudinal study. A comprehensive image and clinical data integrated database provided by MS eFolder provides a platform for treatment assessment, outcomes analysis and decision-support. The proposed system serves as a platform for future quantitative analysis derived automatically from CAD algorithms that can also be integrated within the system for individual disease tracking and future MS-related research. Ultimately the eFolder provides a decision-support infrastructure that can eventually be used as add-on value to the overall electronic medical record. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ma, Kevin C.; Fernandez, James R.; Amezcua, Lilyana; Lerner, Alex; Shiroishi, Mark S.; Liu, Brent J.
2016-01-01
Purpose MRI has been used to identify multiple sclerosis (MS) lesions in brain and spinal cord visually. Integrating patient information into an electronic patient record system has become key for modern patient care in medicine in recent years. Clinically, it is also necessary to track patients' progress in longitudinal studies, in order to provide comprehensive understanding of disease progression and response to treatment. As the amount of required data increases, there exists a need for an efficient systematic solution to store and analyze MS patient data, disease profiles, and disease tracking for both clinical and research purposes. Method An imaging informatics based system, called MS eFolder, has been developed as an integrated patient record system for data storage and analysis of MS patients. The eFolder system, with a DICOM-based database, includes a module for lesion contouring by radiologists, a MS lesion quantification tool to quantify MS lesion volume in 3D, brain parenchyma fraction analysis, and provide quantitative analysis and tracking of volume changes in longitudinal studies. Patient data, including MR images, have been collected retrospectively at University of Southern California Medical Center (USC) and Los Angeles County Hospital (LAC). The MS eFolder utilizes web-based components, such as browser-based graphical user interface (GUI) and web-based database. The eFolder database stores patient clinical data (demographics, MS disease history, family history, etc.), MR imaging-related data found in DICOM headers, and lesion quantification results. Lesion quantification results are derived from radiologists' contours on brain MRI studies and quantified into 3-dimensional volumes and locations. Quantified results of white matter lesions are integrated into a structured report based on DICOM-SR protocol and templates. The user interface displays patient clinical information, original MR images, and viewing structured reports of quantified results. The GUI also includes a data mining tool to handle unique search queries for MS. System workflow and dataflow steps has been designed based on the IHE post-processing workflow profile, including workflow process tracking, MS lesion contouring and quantification of MR images at a post-processing workstation, and storage of quantitative results as DICOM-SR in DICOM-based storage system. The web-based GUI is designed to display zero-footprint DICOM web-accessible data objects (WADO) and the SR objects. Summary The MS eFolder system has been designed and developed as an integrated data storage and mining solution in both clinical and research environments, while providing unique features, such as quantitative lesion analysis and disease tracking over a longitudinal study. A comprehensive image and clinical data integrated database provided by MS eFolder provides a platform for treatment assessment, outcomes analysis and decision-support. The proposed system serves as a platform for future quantitative analysis derived automatically from CAD algorithms that can also be integrated within the system for individual disease tracking and future MS-related research. Ultimately the eFolder provides a decision-support infrastructure that can eventually be used as add-on value to the overall electronic medical record. PMID:26564667
Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.
Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2010-11-01
Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.
Vinod, Shalini K; Lim, Karen; Bell, Lauren; Veera, Jacqueline; Ohanessian, Lucy; Juresic, Ewa; Borok, Nira; Chan, Phillip; Chee, Raphael; Do, Viet; Govindarajulu, Geetha; Sridharan, Swetha; Johnson, Carol; Moses, Daniel; Van Dyk, Sylvia; Holloway, Lois
2017-02-01
Image-based brachytherapy for cervical cancer using MRI has been implemented in Australia and New Zealand. The aims of this study were to measure variability in High-risk CTV (HR-CTV) delineation and evaluate dosimetric consequences of this. Nine radiation oncologists, one radiation therapist and two radiologists contoured HR-CTV on 3T MRI datasets from ten consecutive patients undergoing cervical brachytherapy at a single institution. Contour comparisons were performed using the Dice Similarity Coefficient (DSC) and Mean Absolute Surface Distance (MASD). Two reference contours were created for brachytherapy planning: a Simultaneous Truth and Performance Level Estimation (STAPLE) and a consensus contour (CONSENSUS). Optimized plans (8 Gy) for both these contours were applied to individual participant's contours to assess D90 and D100 coverage of HR CTV. To compare variability in dosimetry, relative standard deviation (rSD) was calculated. Good concordance (mean DSC≥0.7, MASD≤5 mm) was achieved in 8/10 cases when compared to the STAPLE reference and 6/10 cases when compared to the CONSENSUS reference. Greatest variation was visually seen in the cranio-caudal direction. The average mean rSD across all patients was 27% and 34% for the STAPLE HR-CTV D90 and D100, respectively, and 28% and 35% for the CONSENSUS HR-CTV D90 and D100. Delineation uncertainty resulted in an average dosimetric uncertainty of ±1.5-1.6 Gy per fraction based on an 8 Gy prescribed fraction. Delineation of HR-CTV for cervical cancer brachytherapy was consistent amongst observers, suggesting similar interpretation of GEC-ESTRO guidelines. Despite the good concordance, there was dosimetric variation noted, which could be clinically significant. © 2016 The Royal Australian and New Zealand College of Radiologists.
Techniques to derive geometries for image-based Eulerian computations
Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.
2014-01-01
Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID:25750470
Experimental Investigation of Convoluted Contouring for Aircraft Afterbody Drag Reduction
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Hunter, Craig A.
1999-01-01
An experimental investigation was performed in the NASA Langley 16-Foot Transonic Tunnel to determine the aerodynamic effects of external convolutions, placed on the boattail of a nonaxisymmetric nozzle for drag reduction. Boattail angles of 15 and 22 were tested with convolutions placed at a forward location upstream of the boattail curvature, at a mid location along the curvature and at a full location that spanned the entire boattail flap. Each of the baseline nozzle afterbodies (no convolutions) had a parabolic, converging contour with a parabolically decreasing corner radius. Data were obtained at several Mach numbers from static conditions to 1.2 for a range of nozzle pressure ratios and angles of attack. An oil paint flow visualization technique was used to qualitatively assess the effect of the convolutions. Results indicate that afterbody drag reduction by convoluted contouring is convolution location, Mach number, boattail angle, and NPR dependent. The forward convolution location was the most effective contouring geometry for drag reduction on the 22 afterbody, but was only effective for M < 0.95. At M = 0.8, drag was reduced 20 and 36 percent at NPRs of 5.4 and 7, respectively, but drag was increased 10 percent for M = 0.95 at NPR = 7. Convoluted contouring along the 15 boattail angle afterbody was not effective at reducing drag because the flow was minimally separated from the baseline afterbody, unlike the massive separation along the 22 boattail angle baseline afterbody.
Krishnan, Ananthanarayan; Gandour, Jackson T.; Xu, Yi; Suresh, Chandan H.
2016-01-01
There remains a gap in our knowledge base about neural representation of pitch attributes that occur between onset and offset of dynamic, curvilinear pitch contours. The aim is to evaluate how language experience shapes processing of pitch contours as reflected in the amplitude of cortical pitch-specific response components. Responses were elicited from three nonspeech, bidirectional (falling-rising) pitch contours representative of Mandarin Tone 2 varying in location of the turning point with fixed onset and offset. At the frontocentral Fz electrode site, Na–Pb and Pb–Nb amplitude of the Chinese group was larger than the English group for pitch contours exhibiting later location of the turning point relative to the one with the earliest location. Chinese listeners’ amplitude was also greater than that of English in response to those same pitch contours with later turning points. At lateral temporal sites (T7/T8), Na–Pb amplitude was larger in Chinese listeners relative to English over the right temporal site. In addition, Pb–Nb amplitude of the Chinese group showed a rightward asymmetry. The pitch contour with its turning point located about halfway of total duration evoked a rightward asymmetry regardless of group. These findings suggest that neural mechanisms processing pitch in the right auditory cortex reflect experience-dependent modulation of sensitivity to weighted integration of changes in acceleration rates of rising and falling sections and the location of the turning point. PMID:28713201
Interobject grouping facilitates visual awareness.
Stein, Timo; Kaiser, Daniel; Peelen, Marius V
2015-01-01
In organizing perception, the human visual system takes advantage of regularities in the visual input to perceptually group related image elements. Simple stimuli that can be perceptually grouped based on physical regularities, for example by forming an illusory contour, have a competitive advantage in entering visual awareness. Here, we show that regularities that arise from the relative positioning of complex, meaningful objects in the visual environment also modulate visual awareness. Using continuous flash suppression, we found that pairs of objects that were positioned according to real-world spatial regularities (e.g., a lamp above a table) accessed awareness more quickly than the same object pairs shown in irregular configurations (e.g., a table above a lamp). This advantage was specific to upright stimuli and abolished by stimulus inversion, meaning that it did not reflect physical stimulus confounds or the grouping of simple image elements. Thus, knowledge of the spatial configuration of objects in the environment shapes the contents of conscious perception.
A Double-Dissociation in Infants' Representations of Object Arrays
ERIC Educational Resources Information Center
Feigenson, L.
2005-01-01
Previous studies show that infants can compute either the total continuous extent (e.g. Clearfield, M.W., & Mix, K.S. (1999). Number versus contour length in infants' discrimination of small visual sets. Psychological Science, 10(5), 408-411; Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: evidence from infants' manual…
Developing a Value of Information (VoI) Enabled System from Collection to Analysis
2016-11-01
Information, Android, smartphone , information dissemination, visual analytic 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...List of Figures Fig. 1 Spot report main screen .........................................................................2 Fig. 2 Smartphone app...included the creation of 2 Android smartphone applications (apps) and the enhancement of an existing tool (Contour). Prior work with Android
Identifying Overlapping Language Communities: The Case of Chiriquí and Panamanian Signed Languages
ERIC Educational Resources Information Center
Parks, Elizabeth S.
2016-01-01
In this paper, I use a holographic metaphor to explain the identification of overlapping sign language communities in Panama. By visualizing Panama's complex signing communities as emitting community "hotspots" through social drama on multiple stages, I employ ethnographic methods to explore overlapping contours of Panama's sign language…
Flyby Error Analysis Based on Contour Plots for the Cassini Tour
NASA Technical Reports Server (NTRS)
Stumpf, P. W.; Gist, E. M.; Goodson, T. D.; Hahn, Y.; Wagner, S. V.; Williams, P. N.
2008-01-01
The maneuver cancellation analysis consists of cost contour plots employed by the Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-dimensional solution to a multi-maneuver, multi-encounter mission at Saturn. By using contours plotted with the dot product of vectors B and R and the dot product of vectors B and T components, it is possible to view the effects delta V on for various encounter positions in the B-plane. The plot is used in operations to help determine if the Approach Maneuver (ensuing encounter minus three days) and/or the Cleanup Maneuver (ensuing encounter plus three days) can be cancelled and also is a linear check of an integrated solution.
Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules
Qiu, Fangtu T.; von der Heydt, Rüdiger
2006-01-01
Figure-ground organization is a process by which the visual system identifies some image regions as foreground and others as background, inferring three-dimensional (3D) layout from 2D displays. A recent study reported that edge responses of neurons in area V2 are selective for side-of-figure, suggesting that figure-ground organization is encoded in the contour signals (border-ownership coding). Here we show that area V2 combines two strategies of computation, one that exploits binocular stereoscopic information for the definition of local depth order, and another that exploits the global configuration of contours (gestalt factors). These are combined in single neurons so that the ‘near’ side of the preferred 3D edge generally coincides with the preferred side-of-figure in 2D displays. Thus, area V2 represents the borders of 2D figures as edges of surfaces, as if the figures were objects in 3D space. Even in 3D displays gestalt factors influence the responses and can enhance or null the stereoscopic depth information. PMID:15996555
Aging and visual 3-D shape recognition from motion.
Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Hoyng, Stevie C; Shain, Lindsey M; Pedersen, Lauren E; Kinnard, Jonathan D; Higginbotham, Alexia J; Gilliam, Ashley N
2017-11-01
Two experiments were conducted to evaluate the ability of younger and older adults to recognize 3-D object shape from patterns of optical motion. In Experiment 1, participants were required to identify dotted surfaces that rotated in depth (i.e., surface structure portrayed using the kinetic depth effect). The task difficulty was manipulated by limiting the surface point lifetimes within the stimulus apparent motion sequences. In Experiment 2, the participants identified solid, naturally shaped objects (replicas of bell peppers, Capsicum annuum) that were defined by occlusion boundary contours, patterns of specular highlights, or combined optical patterns containing both boundary contours and specular highlights. Significant and adverse effects of increased age were found in both experiments. Despite the fact that previous research has found that increases in age do not reduce solid shape discrimination, our current results indicated that the same conclusion does not hold for shape identification. We demonstrated that aging results in a reduction in the ability to visually recognize 3-D shape independent of how the 3-D structure is defined (motions of isolated points, deformations of smooth optical fields containing specular highlights, etc.).
Acoustic differences between humorous and sincere communicative intentions.
Hoicka, Elena; Gattis, Merideth
2012-11-01
Previous studies indicate that the acoustic features of speech discriminate between positive and negative communicative intentions, such as approval and prohibition. Two studies investigated whether acoustic features of speech can discriminate between two positive communicative intentions: humour and sweet-sincerity, where sweet-sincerity involved being sincere in a positive, warm-hearted way. In Study 1, 22 mothers read a book containing humorous, sweet-sincere, and neutral-sincere images to their 19- to 24-month-olds. In Study 2, 41 mothers read a book containing humorous or sweet-sincere sentences and images to their 18- to 24-month-olds. Mothers used a higher mean F0 to communicate visual humour as compared to visual sincerity. Mothers used greater F0 mean, range, and standard deviation; greater intensity mean, range, and standard deviation; and a slower speech rate to communicate verbal humour as compared to verbal sweet-sincerity. Mothers used a rising linear contour to communicate verbal humour, but used no specific contour to express verbal sweet-sincerity. We conclude that speakers provide acoustic cues enabling listeners to distinguish between positive communicative intentions. ©2011 The British Psychological Society.
Figure and ground in the visual cortex: v2 combines stereoscopic cues with gestalt rules.
Qiu, Fangtu T; von der Heydt, Rüdiger
2005-07-07
Figure-ground organization is a process by which the visual system identifies some image regions as foreground and others as background, inferring 3D layout from 2D displays. A recent study reported that edge responses of neurons in area V2 are selective for side-of-figure, suggesting that figure-ground organization is encoded in the contour signals (border ownership coding). Here, we show that area V2 combines two strategies of computation, one that exploits binocular stereoscopic information for the definition of local depth order, and another that exploits the global configuration of contours (Gestalt factors). These are combined in single neurons so that the "near" side of the preferred 3D edge generally coincides with the preferred side-of-figure in 2D displays. Thus, area V2 represents the borders of 2D figures as edges of surfaces, as if the figures were objects in 3D space. Even in 3D displays, Gestalt factors influence the responses and can enhance or null the stereoscopic depth information.
High performance geospatial and climate data visualization using GeoJS
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Beezley, J. D.
2015-12-01
GeoJS (https://github.com/OpenGeoscience/geojs) is an open-source library developed to support interactive scientific and geospatial visualization of climate and earth science datasets in a web environment. GeoJS has a convenient application programming interface (API) that enables users to harness the fast performance of WebGL and Canvas 2D APIs with sophisticated Scalable Vector Graphics (SVG) features in a consistent and convenient manner. We started the project in response to the need for an open-source JavaScript library that can combine traditional geographic information systems (GIS) and scientific visualization on the web. Many libraries, some of which are open source, support mapping or other GIS capabilities, but lack the features required to visualize scientific and other geospatial datasets. For instance, such libraries are not be capable of rendering climate plots from NetCDF files, and some libraries are limited in regards to geoinformatics (infovis in a geospatial environment). While libraries such as d3.js are extremely powerful for these kinds of plots, in order to integrate them into other GIS libraries, the construction of geoinformatics visualizations must be completed manually and separately, or the code must somehow be mixed in an unintuitive way.We developed GeoJS with the following motivations:• To create an open-source geovisualization and GIS library that combines scientific visualization with GIS and informatics• To develop an extensible library that can combine data from multiple sources and render them using multiple backends• To build a library that works well with existing scientific visualizations tools such as VTKWe have successfully deployed GeoJS-based applications for multiple domains across various projects. The ClimatePipes project funded by the Department of Energy, for example, used GeoJS to visualize NetCDF datasets from climate data archives. Other projects built visualizations using GeoJS for interactively exploring data and analysis regarding 1) the human trafficking domain, 2) New York City taxi drop-offs and pick-ups, and 3) the Ebola outbreak. GeoJS supports advanced visualization features such as picking and selecting, as well as clustering. It also supports 2D contour plots, vector plots, heat maps, and geospatial graphs.
Revision of civil aircraft noise data for the Integrated Noise Model (INM)
DOT National Transportation Integrated Search
1986-09-30
This report provides noise data for the Integrated Noise Model (INM) and is referred to as data base number nine. Air-to-ground sound level versus distance data for civil (and some military) aircraft in a form useful for airport noise contour computa...
Doshi, T; Wilson, C; Paterson, C; Lamb, C; James, A; MacKenzie, K; Soraghan, J; Petropoulakis, L; Di Caterina, G; Grose, D
2017-01-01
To carry out statistical validation of a newly developed magnetic resonance imaging (MRI) auto-contouring software tool for gross tumour volume (GTV) delineation in head and neck tumours to assist in radiotherapy planning. Axial MRI baseline scans were obtained for 10 oropharyngeal and laryngeal cancer patients. GTV was present on 102 axial slices and auto-contoured using the modified fuzzy c-means clustering integrated with the level set method (FCLSM). Peer-reviewed (C-gold) manual contours were used as the reference standard to validate auto-contoured GTVs (C-auto) and mean manual contours (C-manual) from two expert clinicians (C1 and C2). Multiple geometric metrics, including the Dice similarity coefficient (DSC), were used for quantitative validation. A DSC≥0.7 was deemed acceptable. Inter- and intra-variabilities among the manual contours were also validated. The two-dimensional contours were then reconstructed in three dimensions for GTV volume calculation, comparison and three-dimensional visualisation. The mean DSC between C-gold and C-auto was 0.79. The mean DSC between C-gold and C-manual was 0.79 and that between C1 and C2 was 0.80. The average time for GTV auto-contouring per patient was 8 min (range 6-13 min; mean 45 s per axial slice) compared with 15 min (range 6-23 min; mean 88 s per axial slice) for C1. The average volume concordance between C-gold and C-auto volumes was 86.51% compared with 74.16% between C-gold and C-manual. The average volume concordance between C1 and C2 volumes was 86.82%. This newly designed MRI-based auto-contouring software tool shows initial acceptable results in GTV delineation of oropharyngeal and laryngeal tumours using FCLSM. This auto-contouring software tool may help reduce inter- and intra-variability and can assist clinical oncologists with time-consuming, complex radiotherapy planning. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
2014-01-01
Background Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Methods Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Results Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants’ pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. Conclusions MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies. PMID:24969509
D'Souza, Leah; Jaswal, Jasbir; Chan, Francis; Johnson, Marjorie; Tay, Keng Yeow; Fung, Kevin; Palma, David
2014-06-26
Modern radiation oncology demands a thorough understanding of gross and cross-sectional anatomy for diagnostic and therapeutic applications. Complex anatomic sites present challenges for learners and are not well-addressed in traditional postgraduate curricula. A multidisciplinary team (MDT) based head-and-neck gross and radiologic anatomy program for radiation oncology trainees was developed, piloted, and empirically assessed for efficacy and learning outcomes. Four site-specific MDT head-and-neck seminars were implemented, each involving a MDT delivering didactic and case-based instruction, supplemented by cadaveric presentations. There was no dedicated contouring instruction. Pre- and post-testing were performed to assess knowledge, and ability to apply knowledge to the clinical setting as defined by accuracy of contouring. Paired analyses of knowledge pretests and posttests were performed by Wilcoxon matched-pair signed-rank test. Fifteen post-graduate trainees participated. A statistically significant (p < 0.001) mean absolute improvement of 4.6 points (17.03%) was observed between knowledge pretest and posttest scores. Contouring accuracy was analyzed quantitatively by comparing spatial overlap of participants' pretest and posttest contours with a gold standard through the dice similarity coefficient. A statistically significant improvement in contouring accuracy was observed for 3 out of 20 anatomical structures. Qualitative and quantitative feedback revealed that participants were more confident at contouring and were enthusiastic towards the seminars. MDT seminars were associated with improved knowledge scores and resident satisfaction; however, increased gross and cross-sectional anatomic knowledge did not translate into improvements in contouring accuracy. Further research should evaluate the impact of hands-on contouring sessions in addition to dedicated instructional sessions to develop competencies.
Computer vision, camouflage breaking and countershading
Tankus, Ariel; Yeshurun, Yehezkel
2008-01-01
Camouflage is frequently used in the animal kingdom in order to conceal oneself from visual detection or surveillance. Many camouflage techniques are based on masking the familiar contours and texture of the subject by superposition of multiple edges on top of it. This work presents an operator, Darg, for the detection of three-dimensional smooth convex (or, equivalently, concave) objects. It can be used to detect curved objects on a relatively flat background, regardless of image edges, contours and texture. We show that a typical camouflage found in some animal species seems to be a ‘countermeasure’ taken against detection that might be based on our method. Detection by Darg is shown to be very robust, from both theoretical considerations and practical examples of real-life images. PMID:18990669
Parallel computation of level set method for 500 Hz visual servo control
NASA Astrophysics Data System (ADS)
Fei, Xianfeng; Igarashi, Yasunobu; Hashimoto, Koichi
2008-11-01
We propose a 2D microorganism tracking system using a parallel level set method and a column parallel vision system (CPV). This system keeps a single microorganism in the middle of the visual field under a microscope by visual servoing an automated stage. We propose a new energy function for the level set method. This function constrains an amount of light intensity inside the detected object contour to control the number of the detected objects. This algorithm is implemented in CPV system and computational time for each frame is 2 [ms], approximately. A tracking experiment for about 25 s is demonstrated. Also we demonstrate a single paramecium can be kept tracking even if other paramecia appear in the visual field and contact with the tracked paramecium.
Calculation of the Displacement Current Using the Integral Form of Ampere's Law.
ERIC Educational Resources Information Center
Dahm, A. J.
1978-01-01
Derives the magnetic field as a function of position between two capacitor plates during discharge with the use of the integral form of Ampere's law and real currents only. The displacement current must be included to obtain the same result for arbitrary choices of contours. (Author/GA)
ERIC Educational Resources Information Center
Anderson, Barton L.
2007-01-01
There has been a growing interest in understanding the computations involved in the processes underlying visual segmentation and interpolation in conditions of occlusion. P. J. Kellman, P. Garrigan, T. F. Shipley, and B. P. Keane and M. K. Albert defended the view that identical contour interpolation mechanisms underlie modal and amodal…
ERIC Educational Resources Information Center
Lowery, Sarah E.; Kurpius, Sharon E. Robinson; Befort, Christie; Blanks, Elva Hull; Sollenberger, Sonja; Nicpon, Megan Foley; Huser, Laura
2005-01-01
This study examined the relationships among self-esteem, body image, and health-related behaviors of 267 female and 156 male first-year college students. Data were collected in 23 classrooms. Instruments included a demographic sheet, the Objectified Body Consciousness Scale, the Weight and Appearance Visual Analogue Scales, the Contour Drawing…
The apparent size of three-dimensional objects and their silhouettes: a solid-superiority effect.
Walker, J T; Walker, M J
1988-01-01
A solid object looks larger than its outline or silhouette under many viewing conditions. This solid-superiority effect may result from the assimilation or confusion of visual contours within the projection of a three-dimensional object on the picture plane. An aspect of the Müller-Lyer illusion may also play a role.
Bai, Jianying; Dong, Xue; He, Sheng; Bao, Min
2017-06-03
Ocular dominance has been extensively studied, often with the goal to understand neuroplasticity, which is a key characteristic within the critical period. Recent work on monocular deprivation, however, demonstrates residual neuroplasticity in the adult visual cortex. After deprivation of patterned inputs by monocular patching, the patched eye becomes more dominant. Since patching blocks both the Fourier amplitude and phase information of the input image, it remains unclear whether deprivation of the Fourier phase information alone is able to reshape eye dominance. Here, for the first time, we show that removing of the phase regularity without changing the amplitude spectra of the input image induced a shift of eye dominance toward the deprived eye, but only if the eye dominance was measured with a binocular rivalry task rather than an interocular phase combination task. These different results indicate that the two measurements are supported by different mechanisms. Phase integration requires the fusion of monocular images. The fused percept highly relies on the weights of the phase-sensitive monocular neurons that respond to the two monocular images. However, binocular rivalry reflects the result of direct interocular competition that strongly weights the contour information transmitted along each monocular pathway. Monocular phase deprivation may not change the weights in the integration (fusion) mechanism much, but alters the balance in the rivalry (competition) mechanism. Our work suggests that ocular dominance plasticity may occur at different stages of visual processing, and that homeostatic compensation also occurs for the lack of phase regularity in natural scenes. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Figure-ground processing during fixational saccades in V1: indication for higher-order stability.
Gilad, Ariel; Pesoa, Yair; Ayzenshtat, Inbal; Slovin, Hamutal
2014-02-26
In a typical visual scene we continuously perceive a "figure" that is segregated from the surrounding "background" despite ongoing microsaccades and small saccades that are performed when attempting fixation (fixational saccades [FSs]). Previously reported neuronal correlates of figure-ground (FG) segregation in the primary visual cortex (V1) showed enhanced activity in the "figure" along with suppressed activity in the noisy "background." However, it is unknown how this FG modulation in V1 is affected by FSs. To investigate this question, we trained two monkeys to detect a contour embedded in a noisy background while simultaneously imaging V1 using voltage-sensitive dyes. During stimulus presentation, the monkeys typically performed 1-3 FSs, which displaced the contour over the retina. Using eye position and a 2D analytical model to map the stimulus onto V1, we were able to compute FG modulation before and after each FS. On the spatial cortical scale, we found that, after each FS, FG modulation follows the stimulus retinal displacement and "hops" within the V1 retinotopic map, suggesting visual instability. On the temporal scale, FG modulation is initiated in the new retinotopic position before it disappeared from the old retinotopic position. Moreover, the FG modulation developed faster after an FS, compared with after stimulus onset, which may contribute to visual stability of FG segregation, along the timeline of stimulus presentation. Therefore, despite spatial discontinuity of FG modulation in V1, the higher-order stability of FG modulation along time may enable our stable and continuous perception.
A volumetric pulmonary CT segmentation method with applications in emphysema assessment
NASA Astrophysics Data System (ADS)
Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.
2006-03-01
A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.
SU-E-T-41: Analysis of GI Dose Variability Due to Intrafraction Setup Variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J; Wolfgang, J
2014-06-01
Purpose: Proton SBRT (stereotactic body radiation therapy) can be an effective modality for treatment of gastrointestinal tumors, but limited in practice due to sensitivity with respect to variation in the RPL (radiological path length). Small, intrafractional shifts in patient anatomy can lead to significant changes in the dose distribution. This study describes a tool designed to visualize uncertainties in radiological depth in patient CT's and aid in treatment plan design. Methods: This project utilizes the Shadie toolkit, a GPU-based framework that allows for real-time interactive calculations for volume visualization. Current SBRT simulation practice consists of a serial CT acquisition formore » the assessment of inter- and intra-fractional motion utilizing patient specific immobilization systems. Shadie was used to visualize potential uncertainties, including RPL variance and changes in gastric content. Input for this procedure consisted of two patient CT sets, contours of the desired organ, and a pre-calculated dose. In this study, we performed rigid registrations between sets of 4DCT's obtained from a patient with varying setup conditions. Custom visualizations are written by the user in Shadie, permitting one to create color-coded displays derived from a calculation along each ray. Results: Serial CT data acquired on subsequent days was analyzed for variation in RPB and gastric content. Specific shaders were created to visualize clinically relevant features, including RPL (radiological path length) integrated up to organs of interest. Using pre-calculated dose distributions and utilizing segmentation masks as additional input allowed us to further refine the display output from Shadie and create tools suitable for clinical usage. Conclusion: We have demonstrated a method to visualize potential uncertainty for intrafractional proton radiotherapy. We believe this software could prove a useful tool to guide those looking to design treatment plans least insensitive to motion for patients undergoing proton SBRT in the GI tract.« less
Mechanisms underlying the perceived angular velocity of a rigidly rotating object.
Caplovitz, G P; Hsieh, P-J; Tse, P U
2006-09-01
The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.
NASA Astrophysics Data System (ADS)
Zheng, Chang-Jun; Gao, Hai-Feng; Du, Lei; Chen, Hai-Bo; Zhang, Chuanzeng
2016-01-01
An accurate numerical solver is developed in this paper for eigenproblems governed by the Helmholtz equation and formulated through the boundary element method. A contour integral method is used to convert the nonlinear eigenproblem into an ordinary eigenproblem, so that eigenvalues can be extracted accurately by solving a set of standard boundary element systems of equations. In order to accelerate the solution procedure, the parameters affecting the accuracy and efficiency of the method are studied and two contour paths are compared. Moreover, a wideband fast multipole method is implemented with a block IDR (s) solver to reduce the overall solution cost of the boundary element systems of equations with multiple right-hand sides. The Burton-Miller formulation is employed to identify the fictitious eigenfrequencies of the interior acoustic problems with multiply connected domains. The actual effect of the Burton-Miller formulation on tackling the fictitious eigenfrequency problem is investigated and the optimal choice of the coupling parameter as α = i / k is confirmed through exterior sphere examples. Furthermore, the numerical eigenvalues obtained by the developed method are compared with the results obtained by the finite element method to show the accuracy and efficiency of the developed method.
Perturbative description of the fermionic projector: Normalization, causality, and Furry's theorem
NASA Astrophysics Data System (ADS)
Finster, Felix; Tolksdorf, Jürgen
2014-05-01
The causal perturbation expansion of the fermionic projector is performed with a contour integral method. Different normalization conditions are analyzed. It is shown that the corresponding light-cone expansions are causal in the sense that they only involve bounded line integrals. For the resulting loop diagrams we prove a generalized Furry theorem.
An object-based visual attention model for robotic applications.
Yu, Yuanlong; Mann, George K I; Gosine, Raymond G
2010-10-01
By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.
Erlikhman, Gennady; Kellman, Philip J.
2016-01-01
Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved by the visual system. PMID:27445886
NASA Astrophysics Data System (ADS)
Navon, I. M.; Yu, Jian
A FORTRAN computer program is presented and documented applying the Turkel-Zwas explicit large time-step scheme to a hemispheric barotropic model with constraint restoration of integral invariants of the shallow-water equations. We then proceed to detail the algorithms embodied in the code EXSHALL in this paper, particularly algorithms related to the efficiency and stability of T-Z scheme and the quadratic constraint restoration method which is based on a variational approach. In particular we provide details about the high-latitude filtering, Shapiro filtering, and Robert filtering algorithms used in the code. We explain in detail the various subroutines in the EXSHALL code with emphasis on algorithms implemented in the code and present the flowcharts of some major subroutines. Finally, we provide a visual example illustrating a 4-day run using real initial data, along with a sample printout and graphic isoline contours of the height field and velocity fields.
Neurons compute internal models of the physical laws of motion.
Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David
2004-07-29
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.
Rapid Diagnosis of an Ulnar Fracture with Portable Hand-Held Ultrasound
NASA Technical Reports Server (NTRS)
Kirkpatrick, Andrew W.; Brown, Ross; Diebel, Lawrence N.; Nicolaou, Savvas; Marshburn, Tom; Dulchavsky, Scott A.
2002-01-01
Orthopedic fractures are a common injury in operational activities, injuries that often occur in isolated or hostile environments. Clinical ultrasound devices have become more user friendly and lighter allowing them to be easily transported with forward medical teams. The bone-soft tissue interface has a very large acoustic impedance, with a high reflectance that can be used to visualize breaks in contour including fractures. Herein reported is a case of an ulnar fracture that was quickly visualized in the early phase of a multi-system trauma resuscitation with a hand-held ultrasound device. The implications for operational medicine are discussed.
Contour Tracking in Echocardiographic Sequences via Sparse Representation and Dictionary Learning
Huang, Xiaojie; Dione, Donald P.; Compas, Colin B.; Papademetris, Xenophon; Lin, Ben A.; Bregasi, Alda; Sinusas, Albert J.; Staib, Lawrence H.; Duncan, James S.
2013-01-01
This paper presents a dynamical appearance model based on sparse representation and dictionary learning for tracking both endocardial and epicardial contours of the left ventricle in echocardiographic sequences. Instead of learning offline spatiotemporal priors from databases, we exploit the inherent spatiotemporal coherence of individual data to constraint cardiac contour estimation. The contour tracker is initialized with a manual tracing of the first frame. It employs multiscale sparse representation of local image appearance and learns online multiscale appearance dictionaries in a boosting framework as the image sequence is segmented frame-by-frame sequentially. The weights of multiscale appearance dictionaries are optimized automatically. Our region-based level set segmentation integrates a spectrum of complementary multilevel information including intensity, multiscale local appearance, and dynamical shape prediction. The approach is validated on twenty-six 4D canine echocardiographic images acquired from both healthy and post-infarct canines. The segmentation results agree well with expert manual tracings. The ejection fraction estimates also show good agreement with manual results. Advantages of our approach are demonstrated by comparisons with a conventional pure intensity model, a registration-based contour tracker, and a state-of-the-art database-dependent offline dynamical shape model. We also demonstrate the feasibility of clinical application by applying the method to four 4D human data sets. PMID:24292554
Breast boundary detection with active contours
NASA Astrophysics Data System (ADS)
Balic, I.; Goyal, P.; Roy, O.; Duric, N.
2014-03-01
Ultrasound tomography is a modality that can be used to image various characteristics of the breast, such as sound speed, attenuation, and reflectivity. In the considered setup, the breast is immersed in water and scanned along the coronal axis from the chest wall to the nipple region. To improve image visualization, it is desirable to remove the water background. To this end, the 3D boundary of the breast must be accurately estimated. We present an iterative algorithm based on active contours that automatically detects the boundary of a breast using a 3D stack of attenuation images obtained from an ultrasound tomography scanner. We build upon an existing method to design an algorithm that is fast, fully automated, and reliable. We demonstrate the effectiveness of the proposed technique using clinical data sets.
Yamagishi, N; Melara, R D
2001-07-01
Three experiments were conducted to examine the distinct contributions of two visual dimensions to figure-ground segregation. In each experiment, pattern identification was assessed by asking observers to judge whether a near-threshold test pattern was the same or different in shape to a high-contrast comparison pattern. A test pattern could differ from its background along one dimension, either luminance (luminance tasks) or chromaticity (chromaticity tasks). In each task, performance in a baseline condition, in which the test pattern was intact, was compared with performance in each of several degradation conditions, in which either the contour or the surface of the figure was degraded, using either partial occlusion (Experiment 1) or ramping (Experiments 2 and 3) of figure-ground differences. In each experiment, performance in luminance tasks was worst when the contour was degraded, whereas performance in chromaticity tasks was worst when the surface was degraded. This interaction was found even when spatial frequencies were fixed across test patterns by low-pass filtering. The results are consistent with a late (postfiltering) dual-mechanism system that processes luminance information to extract boundary representations and chromaticity information to extract surface representations.
Highway traffic noise prediction based on GIS
NASA Astrophysics Data System (ADS)
Zhao, Jianghua; Qin, Qiming
2014-05-01
Before building a new road, we need to predict the traffic noise generated by vehicles. Traditional traffic noise prediction methods are based on certain locations and they are not only time-consuming, high cost, but also cannot be visualized. Geographical Information System (GIS) can not only solve the problem of manual data processing, but also can get noise values at any point. The paper selected a road segment from Wenxi to Heyang. According to the geographical overview of the study area and the comparison between several models, we combine the JTG B03-2006 model and the HJ2.4-2009 model to predict the traffic noise depending on the circumstances. Finally, we interpolate the noise values at each prediction point and then generate contours of noise. By overlaying the village data on the noise contour layer, we can get the thematic maps. The use of GIS for road traffic noise prediction greatly facilitates the decision-makers because of GIS spatial analysis function and visualization capabilities. We can clearly see the districts where noise are excessive, and thus it becomes convenient to optimize the road line and take noise reduction measures such as installing sound barriers and relocating villages and so on.
Diagnostic radiograph based 3D bone reconstruction framework: application to the femur.
Gamage, P; Xie, S Q; Delmas, P; Xu, W L
2011-09-01
Three dimensional (3D) visualization of anatomy plays an important role in image guided orthopedic surgery and ultimately motivates minimally invasive procedures. However, direct 3D imaging modalities such as Computed Tomography (CT) are restricted to a minority of complex orthopedic procedures. Thus the diagnostics and planning of many interventions still rely on two dimensional (2D) radiographic images, where the surgeon has to mentally visualize the anatomy of interest. The purpose of this paper is to apply and validate a bi-planar 3D reconstruction methodology driven by prominent bony anatomy edges and contours identified on orthogonal radiographs. The results obtained through the proposed methodology are benchmarked against 3D CT scan data to assess the accuracy of reconstruction. The human femur has been used as the anatomy of interest throughout the paper. The novelty of this methodology is that it not only involves the outer contours of the bony anatomy in the reconstruction but also several key interior edges identifiable on radiographic images. Hence, this framework is not simply limited to long bones, but is generally applicable to a multitude of other bony anatomies as illustrated in the results section. Copyright © 2010 Elsevier Ltd. All rights reserved.
A new idea for visualization of lesions distribution in mammogram based on CPD registration method.
Pan, Xiaoguang; Qi, Buer; Yu, Hongfei; Wei, Haiping; Kang, Yan
2017-07-20
Mammography is currently the most effective technique for breast cancer. Lesions distribution can provide support for clinical diagnosis and epidemiological studies. We presented a new idea to help radiologists study breast lesions distribution conveniently. We also developed an automatic tool based on this idea which could show visualization of lesions distribution in a standard mammogram. Firstly, establishing a lesion database to study; then, extracting breast contours and match different women's mammograms to a standard mammogram; finally, showing the lesion distribution in the standard mammogram, and providing the distribution statistics. The crucial process of developing this tool was matching different women's mammograms correctly. We used a hybrid breast contour extraction method combined with coherent point drift method to match different women's mammograms. We tested our automatic tool by four mass datasets of 641 images. The distribution results shown by the tool were consistent with the results counted according to their reports and mammograms by manual. We also discussed the registration error that was less than 3.3 mm in average distance. The new idea is effective and the automatic tool can provide lesions distribution results which are consistent with radiologists simply and conveniently.
An adaptive multi-feature segmentation model for infrared image
NASA Astrophysics Data System (ADS)
Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa
2016-04-01
Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.
Anatomy structure creation and editing using 3D implicit surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hibbard, Lyndon S.
2012-05-15
Purpose: To accurately reconstruct, and interactively reshape 3D anatomy structures' surfaces using small numbers of 2D contours drawn in the most visually informative views of 3D imagery. The innovation of this program is that the number of 2D contours can be very much smaller than the number of transverse sections, even for anatomy structures spanning many sections. This program can edit 3D structures from prior segmentations, including those from autosegmentation programs. The reconstruction and surface editing works with any image modality. Methods: Structures are represented by variational implicit surfaces defined by weighted sums of radial basis functions (RBFs). Such surfacesmore » are smooth, continuous, and closed and can be reconstructed with RBFs optimally located to efficiently capture shape in any combination of transverse (T), sagittal (S), and coronal (C) views. The accuracy of implicit surface reconstructions was measured by comparisons with the corresponding expert-contoured surfaces in 103 prostate cancer radiotherapy plans. Editing a pre-existing surface is done by overdrawing its profiles in image views spanning the affected part of the structure, deleting an appropriate set of prior RBFs, and merging the remainder with the new edit contour RBFs. Two methods were devised to identify RBFs to be deleted based only on the geometry of the initial surface and the locations of the new RBFs. Results: Expert-contoured surfaces were compared with implicit surfaces reconstructed from them over varying numbers and combinations of T/S/C planes. Studies revealed that surface-surface agreement increases monotonically with increasing RBF-sample density, and that the rate of increase declines over the same range. These trends were observed for all surface agreement metrics and for all the organs studied--prostate, bladder, and rectum. In addition, S and C contours may convey more shape information than T views for CT studies in which the axial slice thickness is greater than the pixel size. Surface editing accuracy likewise improves with larger sampling densities, and the rate of improvement similarly declines over the same conditions. Conclusions: Implicit surfaces based on RBFs are accurate representations of anatomic structures and can be interactively generated or modified to correct segmentation errors. The number of input contours is typically smaller than the number of T contours spanned by the structure.« less
Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid
NASA Astrophysics Data System (ADS)
Vollmer, Frederick W.
2018-06-01
Fabric and finite strain analysis, an integral part of studies of geologic structures and orogenic belts, is commonly done by the analysis of particles whose shapes can be approximated as ellipses. Given a sample of such particles, the mean and confidence intervals of particular parameters can be calculated, however, taking the extra step of plotting and contouring the density distribution can identify asymmetries or modes related to sedimentary fabrics or other factors. A common graphical strain analysis technique is to plot final ellipse ratios, Rf , versus orientations, ϕf on polar Elliott or Rf / ϕ plots to examine the density distribution. The plot may be contoured, however, it is desirable to have a contouring method that is rapid, reproducible, and based on the underlying geometry of the data. The unit hyperboloid, H2 , gives a natural parameter space for two-dimensional strain, and various projections, including equal-area and stereographic, have useful properties for examining density distributions for anisotropy. An index, Ia , is given to quantify the magnitude and direction of anisotropy. Elliott and Rf / ϕ plots can be understood by applying hyperbolic geometry and recognizing them as projections of H2 . These both distort area, however, so the equal-area projection is preferred for examining density distributions. The algorithm presented here gives fast, accurate, and reproducible contours of density distributions calculated directly on H2 . The algorithm back-projects the data onto H2 , where the density calculation is done at regular nodes using a weighting value based on the hyperboloid distribution, which is then contoured. It is implemented as an Octave compatible MATLAB function that plots ellipse data using a variety of projections, and calculates and displays contours of their density distribution on H2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gros, S; Roeske, J; Surucu, M
Purpose: To develop a novel method to monitor external anatomical changes in head and neck cancer patients in order to help guide adaptive radiotherapy decisions. Methods: The method, developed in MATLAB, reveals internal anatomical changes based on variations observed in external anatomy. Weekly kV-CBCT scans from 11 Head and neck patients were retrospectively analyzed. The pre-processing step first corrects each CBCT for artifacts and removes pixels from the immobilization mask to produce an accurate external contour of the patient’s skin. After registering the CBCTs to the initial planning CT, the external contours from each CBCT (CBCTn) are transferred to themore » first week — reference — CBCT{sub 1}. Contour radii, defined as the distances between an external contour and the central pixel of each CBCT slice, are calculated for each scan at angular increments of 1 degree. The changes in external anatomy are then quantified by the difference in radial distance between the external contours of CBCT1 and CBCTn. The radial difference is finally displayed on a 2D intensity map (angle vs radial distance difference) in order to highlight regions of interests with significant changes. Results: The 2D radial difference maps provided qualitative and quantitative information, such as the location and the magnitude of external contour divergences and the rate at which these deviations occur. With this method, anatomical changes due to tumor volume shrinkage and patient weight loss were clearly identified and could be correlated with the under-dosage of targets or over-dosage of OARs. Conclusion: This novel method provides an efficient tool to visualize 3D external anatomical modification on a single 2D map. It quickly pinpoints the location of differences in anatomy during the course of radiotherapy, which can help determine if a treatment plan needs to be adapted.« less
Learning Compositional Shape Models of Multiple Distance Metrics by Information Projection.
Luo, Ping; Lin, Liang; Liu, Xiaobai
2016-07-01
This paper presents a novel compositional contour-based shape model by incorporating multiple distance metrics to account for varying shape distortions or deformations. Our approach contains two key steps: 1) contour feature generation and 2) generative model pursuit. For each category, we first densely sample an ensemble of local prototype contour segments from a few positive shape examples and describe each segment using three different types of distance metrics. These metrics are diverse and complementary with each other to capture various shape deformations. We regard the parameterized contour segment plus an additive residual ϵ as a basic subspace, namely, ϵ -ball, in the sense that it represents local shape variance under the certain distance metric. Using these ϵ -balls as features, we then propose a generative learning algorithm to pursue the compositional shape model, which greedily selects the most representative features under the information projection principle. In experiments, we evaluate our model on several public challenging data sets, and demonstrate that the integration of multiple shape distance metrics is capable of dealing various shape deformations, articulations, and background clutter, hence boosting system performance.
NASA Astrophysics Data System (ADS)
Meertens, C. M.; Murray, D.; McWhirter, J.
2004-12-01
Over the last five years, UNIDATA has developed an extensible and flexible software framework for analyzing and visualizing geoscience data and models. The Integrated Data Viewer (IDV), initially developed for visualization and analysis of atmospheric data, has broad interdisciplinary application across the geosciences including atmospheric, ocean, and most recently, earth sciences. As part of the NSF-funded GEON Information Technology Research project, UNAVCO has enhanced the IDV to display earthquakes, GPS velocity vectors, and plate boundary strain rates. These and other geophysical parameters can be viewed simultaneously with three-dimensional seismic tomography and mantle geodynamic model results. Disparate data sets of different formats, variables, geographical projections and scales can automatically be displayed in a common projection. The IDV is efficient and fully interactive allowing the user to create and vary 2D and 3D displays with contour plots, vertical and horizontal cross-sections, plan views, 3D isosurfaces, vector plots and streamlines, as well as point data symbols or numeric values. Data probes (values and graphs) can be used to explore the details of the data and models. The IDV is a freely available Java application using Java3D and VisAD and runs on most computers. UNIDATA provides easy-to-follow instructions for download, installation and operation of the IDV. The IDV primarily uses netCDF, a self-describing binary file format, to store multi-dimensional data, related metadata, and source information. The IDV is designed to work with OPeNDAP-equipped data servers that provide real-time observations and numerical models from distributed locations. Users can capture and share screens and animations, or exchange XML "bundles" that contain the state of the visualization and embedded links to remote data files. A real-time collaborative feature allows groups of users to remotely link IDV sessions via the Internet and simultaneously view and control the visualization. A Jython-based formulation facility allows computations on disparate data sets using simple formulas. Although the IDV is an advanced tool for research, its flexible architecture has also been exploited for educational purposes with the Virtual Geophysical Exploration Environment (VGEE) development. The VGEE demonstration added physical concept models to the IDV and curricula for atmospheric science education intended for the high school to graduate student levels.
Closed-form summations of Dowker's and related trigonometric sums
NASA Astrophysics Data System (ADS)
Cvijović, Djurdje; Srivastava, H. M.
2012-09-01
Through a unified and relatively simple approach which uses complex contour integrals, particularly convenient integration contours and calculus of residues, closed-form summation formulas for 12 very general families of trigonometric sums are deduced. One of them is a family of cosecant sums which was first summed in closed form in a series of papers by Dowker (1987 Phys. Rev. D 36 3095-101 1989 J. Math. Phys. 30 770-3 1992 J. Phys. A: Math. Gen. 25 2641-8), whose method has inspired our work in this area. All of the formulas derived here involve the higher-order Bernoulli polynomials. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker's 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
NASA Astrophysics Data System (ADS)
Schmitt, R.; Niggemann, C.; Mersmann, C.
2008-04-01
Fibre-reinforced plastics (FRP) are particularly suitable for components where light-weight structures with advanced mechanical properties are required, e.g. for aerospace parts. Nevertheless, many manufacturing processes for FRP include manual production steps without an integrated quality control. A vital step in the process chain is the lay-up of the textile preform, as it greatly affects the geometry and the mechanical performance of the final part. In order to automate the FRP production, an inline machine vision system is needed for a closed-loop control of the preform lay-up. This work describes the development of a novel laser light-section sensor for optical inspection of textile preforms and its integration and validation in a machine vision prototype. The proposed method aims at the determination of the contour position of each textile layer through edge scanning. The scanning route is automatically derived by using texture analysis algorithms in a preliminary step. As sensor output a distinct stage profile is computed from the acquired greyscale image. The contour position is determined with sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a sigmoid function. The whole contour position is generated through data fusion of the measured edge points. The proposed method provides robust process automation for the FRP production improving the process quality and reducing the scrap quota. Hence, the range of economically feasible FRP products can be increased and new market segments with cost sensitive products can be addressed.
An improved active contour model for glacial lake extraction
NASA Astrophysics Data System (ADS)
Zhao, H.; Chen, F.; Zhang, M.
2017-12-01
Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be; Department of Radiotherapy, Ghent University, Ghent; Audenaert, Emmanuel
Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validatedmore » the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection.« less
NASA Astrophysics Data System (ADS)
Mohammad, Fatimah; Ansari, Rashid; Shahidi, Mahnaz
2013-03-01
The visibility and continuity of the inner segment outer segment (ISOS) junction layer of the photoreceptors on spectral domain optical coherence tomography images is known to be related to visual acuity in patients with age-related macular degeneration (AMD). Automatic detection and segmentation of lesions and pathologies in retinal images is crucial for the screening, diagnosis, and follow-up of patients with retinal diseases. One of the challenges of using the classical level-set algorithms for segmentation involves the placement of the initial contour. Manually defining the contour or randomly placing it in the image may lead to segmentation of erroneous structures. It is important to be able to automatically define the contour by using information provided by image features. We explored a level-set method which is based on the classical Chan-Vese model and which utilizes image feature information for automatic contour placement for the segmentation of pathologies in fluorescein angiograms and en face retinal images of the ISOS layer. This was accomplished by exploiting a priori knowledge of the shape and intensity distribution allowing the use of projection profiles to detect the presence of pathologies that are characterized by intensity differences with surrounding areas in retinal images. We first tested our method by applying it to fluorescein angiograms. We then applied our method to en face retinal images of patients with AMD. The experimental results included demonstrate that the proposed method provided a quick and improved outcome as compared to the classical Chan-Vese method in which the initial contour is randomly placed, thus indicating the potential to provide a more accurate and detailed view of changes in pathologies due to disease progression and treatment.
Hesse, Janis K; Tsao, Doris Y
2016-11-02
Segmentation and recognition of objects in a visual scene are two problems that are hard to solve separately from each other. When segmenting an ambiguous scene, it is helpful to already know the present objects and their shapes. However, for recognizing an object in clutter, one would like to consider its isolated segment alone to avoid confounds from features of other objects. Border-ownership cells (Zhou et al., 2000) appear to play an important role in segmentation, as they signal the side-of-figure of artificial stimuli. The present work explores the role of border-ownership cells in dorsal macaque visual areas V2 and V3 in the segmentation of natural object stimuli and locally ambiguous stimuli. We report two major results. First, compared with previous estimates, we found a smaller percentage of cells that were consistent across artificial stimuli used previously. Second, we found that the average response of those neurons that did respond consistently to the side-of-figure of artificial stimuli also consistently signaled, as a population, the side-of-figure for borders of single faces, occluding faces and, with higher latencies, even stimuli with illusory contours, such as Mooney faces and natural faces completely missing local edge information. In contrast, the local edge or the outlines of the face alone could not always evoke a significant border-ownership signal. Our results underscore that border ownership is coded by a population of cells, and indicate that these cells integrate a variety of cues, including low-level features and global object context, to compute the segmentation of the scene. To distinguish different objects in a natural scene, the brain must segment the image into regions corresponding to objects. The so-called "border-ownership" cells appear to be dedicated to this task, as they signal for a given edge on which side the object is that owns it. Here, we report that individual border-ownership cells are unreliable when tested across a battery of artificial stimuli used previously but can signal border-ownership consistently as a population. We show that these border-ownership population signals are also suited for signaling border-ownership for natural objects and at longer latency, even for stimuli without local edge information. Our results suggest that border-ownership cells integrate both local, low-level and global, high-level cues to segment the scene. Copyright © 2016 the authors 0270-6474/16/3611338-12$15.00/0.
Chan, Joachim; Carver, Antony; Brunt, John N H; Vinjamuri, Sobhan; Syndikus, Isabel
2017-03-01
Prostate dose painting radiotherapy requires the accurate identification of dominant intraprostatic lesions (DILs) to be used as boost volumes; these can be identified on multiparametric MRI (mpMRI) or choline positron emission tomography (PET)/CT. Planning scans are usually performed after 2-3 months of androgen deprivation therapy (ADT). We examine the effect of ADT on choline tracer uptake and boost volumes identified on choline PET/CT. Fluoroethylcholine ( 18 F choline) PET/CT was performed for dose painting radiotherapy planning in patients with intermediate- to high-risk prostate cancer. Initially, they were performed at planning. Owing to low visual tracer uptake, PET/CT for subsequent patients was performed at staging. We compared these two approaches on intraprostatic lesions obtained on PET using both visual and automatic threshold methods [prostate maximum standardized uptake value (SUV max ) 60%] when compared with mpMRI. PET/CT was performed during ADT in 11 patients (median duration of 85 days) and before ADT in 29 patients. ADT significantly reduced overall prostate volume by 17%. During ADT, prostate SUV max was lower although it did not reach statistical significance (4.2 vs 6.6, p = 0.06); three patients had no visually identifiable PET DIL; and visually defined PET DILs were significantly smaller than corresponding mpMRI DILs (p = 0.03). However, all patients scanned before ADT had at least one visually identifiable PET DIL, with no significant size difference between MRI and visually defined PET DILs. In both groups, threshold PET produced larger DILs than visual PET. Both PET methods have moderate sensitivity (0.50-0.68) and high specificity (0.85-0.98) for identifying MRI-defined disease. For visual contouring of boost volumes in prostate dose painting radiotherapy, 18 F choline PET/CT should be performed before ADT. For threshold contouring of boost volumes using our PET/CT scanning protocol, threshold levels of above 60% prostate SUV max may be more suitable. Additional use of PET with MRI for radiotherapy planning can significantly change the overall boost volumes compared with using MRI alone. Advances in knowledge: For prostate dose painting radiotherapy, the additional use of 18 F choline PET with MRI can significantly change the overall boost volumes, and PET should be performed before hormone therapy, especially if boost volumes are visually identified.
Chernyshev, Boris V; Pronko, Platon K; Stroganova, Tatiana A
2016-01-01
Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.
Patient-specific model-based segmentation of brain tumors in 3D intraoperative ultrasound images.
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Lindner, Dirk; Arlt, Felix; Ituna-Yudonago, Jean Fulbert; Chalopin, Claire
2018-03-01
Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR-iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS. A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented. Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods. The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.
Böer, Almut
2009-02-01
Visual perception has been the object of research in psychology for almost a century. Little has been written, however, about the effects of perceptive phenomena on methods in medicine that utilize interpretation of two-dimensional images for diagnosis. Starting from the work by Edgar Rubin in the beginning of the last century, this article gives a summary of observations of psychologists who investigated the mechanisms of so-called "figure-ground segregation." These unconscious mechanisms follow rules that explain why certain structures are perceived consciously as a figure, whereas other structures surrounding such a figure are neglected and not perceived consciously in detail. Perception of a structure as a figure can be due to, for example, a convex shape of its contour, proximity of lines around it, closed contours, a simple shape, and attribution of meaning to a structure. In examples from the practice of dermatopathology, those unconscious mechanisms of figure-ground segregation will be shown to be relevant to diagnosis of sections of tissue. The mechanisms help to explain why, for example, ill-defined and concave-shaped structures, stromal differences of neoplasms, interstitial infiltrates and deposits, and simulators of common diseases are often difficult to recognize at first sight. Teachers of dermatopathology need to be aware of these unconscious mechanisms of visual perception because they explain why novices struggle with certain diagnoses and differential diagnoses. Proper instruction about these phenomena, early in the process of training, will prevent a student from being frustrated with misperceptions.
Kamoi, Shun; Pretty, Christopher; Balmer, Joel; Davidson, Shaun; Pironet, Antoine; Desaive, Thomas; Shaw, Geoffrey M; Chase, J Geoffrey
2017-04-24
Pressure contour analysis is commonly used to estimate cardiac performance for patients suffering from cardiovascular dysfunction in the intensive care unit. However, the existing techniques for continuous estimation of stroke volume (SV) from pressure measurement can be unreliable during hemodynamic instability, which is inevitable for patients requiring significant treatment. For this reason, pressure contour methods must be improved to capture changes in vascular properties and thus provide accurate conversion from pressure to flow. This paper presents a novel pressure contour method utilizing pulse wave velocity (PWV) measurement to capture vascular properties. A three-element Windkessel model combined with the reservoir-wave concept are used to decompose the pressure contour into components related to storage and flow. The model parameters are identified beat-to-beat from the water-hammer equation using measured PWV, wave component of the pressure, and an estimate of subject-specific aortic dimension. SV is then calculated by converting pressure to flow using identified model parameters. The accuracy of this novel method is investigated using data from porcine experiments (N = 4 Pietrain pigs, 20-24.5 kg), where hemodynamic properties were significantly altered using dobutamine, fluid administration, and mechanical ventilation. In the experiment, left ventricular volume was measured using admittance catheter, and aortic pressure waveforms were measured at two locations, the aortic arch and abdominal aorta. Bland-Altman analysis comparing gold-standard SV measured by the admittance catheter and estimated SV from the novel method showed average limits of agreement of ±26% across significant hemodynamic alterations. This result shows the method is capable of estimating clinically acceptable absolute SV values according to Critchely and Critchely. The novel pressure contour method presented can accurately estimate and track SV even when hemodynamic properties are significantly altered. Integrating PWV measurements into pressure contour analysis improves identification of beat-to-beat changes in Windkessel model parameters, and thus, provides accurate estimate of blood flow from measured pressure contour. The method has great potential for overcoming weaknesses associated with current pressure contour methods for estimating SV.
Coding the presence of visual objects in a recurrent neural network of visual cortex.
Zwickel, Timm; Wachtler, Thomas; Eckhorn, Reinhard
2007-01-01
Before we can recognize a visual object, our visual system has to segregate it from its background. This requires a fast mechanism for establishing the presence and location of objects independently of their identity. Recently, border-ownership neurons were recorded in monkey visual cortex which might be involved in this task [Zhou, H., Friedmann, H., von der Heydt, R., 2000. Coding of border ownership in monkey visual cortex. J. Neurosci. 20 (17), 6594-6611]. In order to explain the basic mechanisms required for fast coding of object presence, we have developed a neural network model of visual cortex consisting of three stages. Feed-forward and lateral connections support coding of Gestalt properties, including similarity, good continuation, and convexity. Neurons of the highest area respond to the presence of an object and encode its position, invariant of its form. Feedback connections to the lowest area facilitate orientation detectors activated by contours belonging to potential objects, and thus generate the experimentally observed border-ownership property. This feedback control acts fast and significantly improves the figure-ground segregation required for the consecutive task of object recognition.
What can fish brains tell us about visual perception?
Rosa Salva, Orsola; Sovrano, Valeria Anna; Vallortigara, Giorgio
2014-01-01
Fish are a complex taxonomic group, whose diversity and distance from other vertebrates well suits the comparative investigation of brain and behavior: in fish species we observe substantial differences with respect to the telencephalic organization of other vertebrates and an astonishing variety in the development and complexity of pallial structures. We will concentrate on the contribution of research on fish behavioral biology for the understanding of the evolution of the visual system. We shall review evidence concerning perceptual effects that reflect fundamental principles of the visual system functioning, highlighting the similarities and differences between distant fish groups and with other vertebrates. We will focus on perceptual effects reflecting some of the main tasks that the visual system must attain. In particular, we will deal with subjective contours and optical illusions, invariance effects, second order motion and biological motion and, finally, perceptual binding of object properties in a unified higher level representation. PMID:25324728
Natural images dominate in binocular rivalry
Baker, Daniel H.; Graf, Erich W.
2009-01-01
Ecological approaches to perception have demonstrated that information encoding by the visual system is informed by the natural environment, both in terms of simple image attributes like luminance and contrast, and more complex relationships corresponding to Gestalt principles of perceptual organization. Here, we ask if this optimization biases perception of visual inputs that are perceptually bistable. Using the binocular rivalry paradigm, we designed stimuli that varied in either their spatiotemporal amplitude spectra or their phase spectra. We found that noise stimuli with “natural” amplitude spectra (i.e., amplitude content proportional to 1/f, where f is spatial or temporal frequency) dominate over those with any other systematic spectral slope, along both spatial and temporal dimensions. This could not be explained by perceived contrast measurements, and occurred even though all stimuli had equal energy. Calculating the effective contrast following attenuation by a model contrast sensitivity function suggested that the strong contrast dependency of rivalry provides the mechanism by which binocular vision is optimized for viewing natural images. We also compared rivalry between natural and phase-scrambled images and found a strong preference for natural phase spectra that could not be accounted for by observer biases in a control task. We propose that this phase specificity relates to contour information, and arises either from the activity of V1 complex cells, or from later visual areas, consistent with recent neuroimaging and single-cell work. Our findings demonstrate that human vision integrates information across space, time, and phase to select the input most likely to hold behavioral relevance. PMID:19289828
ERIC Educational Resources Information Center
Paney, Andrew S.; Kay, Ann C.
2015-01-01
The purpose of this study was to measure the effect of concurrent visual feedback on pitch-matching skill development in third-grade students. Participants played a computer game, "SingingCoach," which scored the accuracy of their singing of the song "America." They followed the contour of the melody on the screen as the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei, E-mail: wlu@umm.edu; Neuner, Geoffrey A.; George, Rohini
2014-01-01
Purpose: To investigate whether coaching patients' breathing would improve the match between ITV{sub MIP} (internal target volume generated by contouring in the maximum intensity projection scan) and ITV{sub 10} (generated by combining the gross tumor volumes contoured in 10 phases of a 4-dimensional CT [4DCT] scan). Methods and Materials: Eight patients with a thoracic tumor and 5 patients with an abdominal tumor were included in an institutional review board-approved prospective study. Patients underwent 3 4DCT scans with: (1) free breathing (FB); (2) coaching using audio-visual (AV) biofeedback via the Real-Time Position Management system; and (3) coaching via a spirometer systemmore » (Active Breathing Coordinator or ABC). One physician contoured all scans to generate the ITV{sub 10} and ITV{sub MIP}. The match between ITV{sub MIP} and ITV{sub 10} was quantitatively assessed with volume ratio, centroid distance, root mean squared distance, and overlap/Dice coefficient. We investigated whether coaching (AV or ABC) or uniform expansions (1, 2, 3, or 5 mm) of ITV{sub MIP} improved the match. Results: Although both AV and ABC coaching techniques improved frequency reproducibility and ABC improved displacement regularity, neither improved the match between ITV{sub MIP} and ITV{sub 10} over FB. On average, ITV{sub MIP} underestimated ITV{sub 10} by 19%, 19%, and 21%, with centroid distance of 1.9, 2.3, and 1.7 mm and Dice coefficient of 0.87, 0.86, and 0.88 for FB, AV, and ABC, respectively. Separate analyses indicated a better match for lung cancers or tumors not adjacent to high-intensity tissues. Uniform expansions of ITV{sub MIP} did not correct for the mismatch between ITV{sub MIP} and ITV{sub 10}. Conclusions: In this pilot study, audio-visual biofeedback did not improve the match between ITV{sub MIP} and ITV{sub 10}. In general, ITV{sub MIP} should be limited to lung cancers, and modification of ITV{sub MIP} in each phase of the 4DCT data set is recommended.« less
End-to-end distance and contour length distribution functions of DNA helices
NASA Astrophysics Data System (ADS)
Zoli, Marco
2018-06-01
I present a computational method to evaluate the end-to-end and the contour length distribution functions of short DNA molecules described by a mesoscopic Hamiltonian. The method generates a large statistical ensemble of possible configurations for each dimer in the sequence, selects the global equilibrium twist conformation for the molecule, and determines the average base pair distances along the molecule backbone. Integrating over the base pair radial and angular fluctuations, I derive the room temperature distribution functions as a function of the sequence length. The obtained values for the most probable end-to-end distance and contour length distance, providing a measure of the global molecule size, are used to examine the DNA flexibility at short length scales. It is found that, also in molecules with less than ˜60 base pairs, coiled configurations maintain a large statistical weight and, consistently, the persistence lengths may be much smaller than in kilo-base DNA.
NASA Technical Reports Server (NTRS)
Porro, A. R.; Hingst, W. R.; Davis, D. O.; Blair, A. B., Jr.
1991-01-01
The feasibility of using a contoured honeycomb model to generate a thick boundary layer in high-speed, compressible flow was investigated. The contour of the honeycomb was tailored to selectively remove momentum in a minimum of streamwise distance to create an artificially thickened turbulent boundary layer. Three wind tunnel experiments were conducted to verify the concept. Results indicate that this technique is a viable concept, especially for high-speed inlet testing applications. In addition, the compactness of the honeycomb boundary layer simulator allows relatively easy integration into existing wind tunnel model hardware.
Yu, Jian-Hong; Lo, Lun-Jou; Hsu, Pin-Hsin
2017-01-01
This study integrates cone-beam computed tomography (CBCT)/laser scan image superposition, computer-aided design (CAD), and 3D printing (3DP) to develop a technology for producing customized dental (orthodontic) miniscrew surgical templates using polymer material. Maxillary bone solid models with the bone and teeth reconstructed using CBCT images and teeth and mucosa outer profile acquired using laser scanning were superimposed to allow miniscrew visual insertion planning and permit surgical template fabrication. The customized surgical template CAD model was fabricated offset based on the teeth/mucosa/bracket contour profiles in the superimposition model and exported to duplicate the plastic template using the 3DP technique and polymer material. An anterior retraction and intrusion clinical test for the maxillary canines/incisors showed that two miniscrews were placed safely and did not produce inflammation or other discomfort symptoms one week after surgery. The fitness between the mucosa and template indicated that the average gap sizes were found smaller than 0.5 mm and confirmed that the surgical template presented good holding power and well-fitting adaption. This study addressed integrating CBCT and laser scan image superposition; CAD and 3DP techniques can be applied to fabricate an accurate customized surgical template for dental orthodontic miniscrews. PMID:28280726
Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing
2013-01-01
The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.
NASA Astrophysics Data System (ADS)
Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.
2016-03-01
In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).
Eleven Colors That Are Almost Never Confused
NASA Astrophysics Data System (ADS)
Boynton, Robert M.
1989-08-01
1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.
Aerial images visual localization on a vector map using color-texture segmentation
NASA Astrophysics Data System (ADS)
Kunina, I. A.; Teplyakov, L. M.; Gladkov, A. P.; Khanipov, T. M.; Nikolaev, D. P.
2018-04-01
In this paper we study the problem of combining UAV obtained optical data and a coastal vector map in absence of satellite navigation data. The method is based on presenting the territory as a set of segments produced by color-texture image segmentation. We then find such geometric transform which gives the best match between these segments and land and water areas of the georeferenced vector map. We calculate transform consisting of an arbitrary shift relatively to the vector map and bound rotation and scaling. These parameters are estimated using the RANSAC algorithm which matches the segments contours and the contours of land and water areas of the vector map. To implement this matching we suggest computing shape descriptors robust to rotation and scaling. We performed numerical experiments demonstrating the practical applicability of the proposed method.
NASA Astrophysics Data System (ADS)
Spencer, Domina E.
2001-11-01
Traditionally reflector design has been confined to the use of surfaces defined in terms of conic sections, assuming that all light sources can be considered to be point sources. In the middle of the twentieth century, it was recognized that major improvements could be made if the shape of the reflector was designed to produce a desired distribution of light form an actual light source. Cylindrical reflectors were created which illuminated airport runways using fluorescent lamps in such a way that pilots could make visual landings safely even in fog. These reflector contours were called macrofocal parabolic cylinders. Other new reflector contours introduced were macrofocal elliptic cylinders which confined the light to long rectangles. Surfaces of revolution the fourth degree were also developed which made possible uniform floodlighting of a circular region. These were called horned and peaked quartics. The optimum solution of the automotive head lighting problem has not yet been found. The paper concludes with a discussion of the possibility of developing reflectors which are neither cylindrical nor rotational but will produce the optimum field of view for the automobile driver both in clear weather and in fog.
Fuss, Theodora; Bleckmann, Horst; Schluessel, Vera
2014-01-01
Bamboo sharks (Chiloscyllium griseum) were tested for their ability to perceive subjective and illusionary contours as well as line length illusions. Individuals were first trained to differentiate between squares, triangles, and rhomboids in a series of two alternative forced-choice experiments. Transfer tests then elucidated whether Kanizsa squares and triangles, grating gaps and phase shifted abutting gratings were also perceived and distinguished. The visual systems of most vertebrates and even invertebrates perceive illusionary contours despite the absence of physical luminance, color or textural differences. Sharks are no exception to the rule; all tasks were successfully mastered within 3–24 training sessions, with sharks discriminating between various sets of Kanizsa figures and alternative stimuli, as well as between subjective contours in >75% of all tests. However, in contrast to Kanizsa figures and subjective contours, sharks were not deceived by Müller-Lyer (ML) illusions. Here, two center lines of equal length are comparatively set between two arrowheads or –tails, in which case the line featuring the two arrow tails appears to be longer to most humans, primates and birds. In preparation for this experiment, lines of varying length, and lines of unequal length randomly featuring either two arrowheads or -tails on their ends, were presented first. Both sets of lines were successfully distinguished by most sharks. However, during presentation of the ML illusions sharks failed to succeed and succumbed either to side preferences or chose according to chance. PMID:24688458
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
Fuss, Theodora; Bleckmann, Horst; Schluessel, Vera
2014-01-01
Bamboo sharks (Chiloscyllium griseum) were tested for their ability to perceive subjective and illusionary contours as well as line length illusions. Individuals were first trained to differentiate between squares, triangles, and rhomboids in a series of two alternative forced-choice experiments. Transfer tests then elucidated whether Kanizsa squares and triangles, grating gaps and phase shifted abutting gratings were also perceived and distinguished. The visual systems of most vertebrates and even invertebrates perceive illusionary contours despite the absence of physical luminance, color or textural differences. Sharks are no exception to the rule; all tasks were successfully mastered within 3-24 training sessions, with sharks discriminating between various sets of Kanizsa figures and alternative stimuli, as well as between subjective contours in >75% of all tests. However, in contrast to Kanizsa figures and subjective contours, sharks were not deceived by Müller-Lyer (ML) illusions. Here, two center lines of equal length are comparatively set between two arrowheads or -tails, in which case the line featuring the two arrow tails appears to be longer to most humans, primates and birds. In preparation for this experiment, lines of varying length, and lines of unequal length randomly featuring either two arrowheads or -tails on their ends, were presented first. Both sets of lines were successfully distinguished by most sharks. However, during presentation of the ML illusions sharks failed to succeed and succumbed either to side preferences or chose according to chance.
Method of surface error visualization using laser 3D projection technology
NASA Astrophysics Data System (ADS)
Guo, Lili; Li, Lijuan; Lin, Xuezhu
2017-10-01
In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.
Wavelength-division multiplexed optical integrated circuit with vertical diffraction grating
NASA Technical Reports Server (NTRS)
Lang, Robert J. (Inventor); Forouhar, Siamak (Inventor)
1994-01-01
A semiconductor optical integrated circuit for wave division multiplexing has a semiconductor waveguide layer, a succession of diffraction grating points in the waveguide layer along a predetermined diffraction grating contour, a semiconductor diode array in the waveguide layer having plural optical ports facing the succession of diffraction grating points along a first direction, respective semiconductor diodes in the array corresponding to respective ones of a predetermined succession of wavelengths, an optical fiber having one end thereof terminated at the waveguide layer, the one end of the optical fiber facing the succession of diffraction grating points along a second direction, wherein the diffraction grating points are spatially distributed along the predetermined contour in such a manner that the succession of diffraction grating points diffracts light of respective ones of the succession of wavelengths between the one end of the optical fiber and corresponding ones of the optical ports.
NASA Astrophysics Data System (ADS)
Iwase, Shigeru; Futamura, Yasunori; Imakura, Akira; Sakurai, Tetsuya; Tsukamoto, Shigeru; Ono, Tomoya
2018-05-01
We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve an exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite-difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the freestanding silicene with the line defect originating from the reversed buckled phases.
Analytic integration of real-virtual counterterms in NNLO jet cross sections II
NASA Astrophysics Data System (ADS)
Bolzoni, Paolo; Moch, Sven-Olaf; Somogyi, Gábor; Trócsányi, Zoltán
2009-08-01
We present analytic expressions of all integrals required to complete the explicit evaluation of the real-virtual integrated counterterms needed to define a recently proposed subtraction scheme for jet cross sections at next-to-next-to-leading order in QCD. We use the Mellin-Barnes representation of these integrals in 4 - 2epsilon dimensions to obtain the coefficients of their Laurent expansions around epsilon = 0. These coefficients are given by linear combinations of multidimensional Mellin-Barnes integrals. We compute the coefficients of such expansions in epsilon both numerically and analytically by complex integration over the Mellin-Barnes contours.
A Unified Air-Sea Visualization System: Survey on Gridding Structures
NASA Technical Reports Server (NTRS)
Anand, Harsh; Moorhead, Robert
1995-01-01
The goal is to develop a Unified Air-Sea Visualization System (UASVS) to enable the rapid fusion of observational, archival, and model data for verification and analysis. To design and develop UASVS, modelers were polled to determine the gridding structures and visualization systems used, and their needs with respect to visual analysis. A basic UASVS requirement is to allow a modeler to explore multiple data sets within a single environment, or to interpolate multiple datasets onto one unified grid. From this survey, the UASVS should be able to visualize 3D scalar/vector fields; render isosurfaces; visualize arbitrary slices of the 3D data; visualize data defined on spectral element grids with the minimum number of interpolation stages; render contours; produce 3D vector plots and streamlines; provide unified visualization of satellite images, observations and model output overlays; display the visualization on a projection of the users choice; implement functions so the user can derive diagnostic values; animate the data to see the time-evolution; animate ocean and atmosphere at different rates; store the record of cursor movement, smooth the path, and animate a window around the moving path; repeatedly start and stop the visual time-stepping; generate VHS tape animations; work on a variety of workstations; and allow visualization across clusters of workstations and scalable high performance computer systems.
Seriès, Peggy; Georges, Sébastien; Lorenceau, Jean; Frégnac, Yves
2002-11-01
Psychophysical and physiological studies suggest that long-range horizontal connections in primary visual cortex participate in spatial integration and contour processing. Until recently, little attention has been paid to their intrinsic temporal properties. Recent physiological studies indicate, however, that the propagation of activity through long-range horizontal connections is slow, with time scales comparable to the perceptual scales involved in motion processing. Using a simple model of V1 connectivity, we explore some of the implications of this slow dynamics. The model predicts that V1 responses to a stimulus in the receptive field can be modulated by a previous stimulation, a few milliseconds to a few tens of milliseconds before, in the surround. We analyze this phenomenon and its possible consequences on speed perception, as a function of the spatio-temporal configuration of the visual inputs (relative orientation, spatial separation, temporal interval between the elements, sequence speed). We show that the dynamical interactions between feed-forward and horizontal signals in V1 can explain why the perceived speed of fast apparent motion sequences strongly depends on the orientation of their elements relative to the motion axis and can account for the range of speed for which this perceptual effect occurs (Georges, Seriès, Frégnac and Lorenceau, this issue).
Contour matching for a fish recognition and migration-monitoring system
NASA Astrophysics Data System (ADS)
Lee, Dah-Jye; Schoenberger, Robert B.; Shiozawa, Dennis; Xu, Xiaoqian; Zhan, Pengcheng
2004-12-01
Fish migration is being monitored year round to provide valuable information for the study of behavioral responses of fish to environmental variations. However, currently all monitoring is done by human observers. An automatic fish recognition and migration monitoring system is more efficient and can provide more accurate data. Such a system includes automatic fish image acquisition, contour extraction, fish categorization, and data storage. Shape is a very important characteristic and shape analysis and shape matching are studied for fish recognition. Previous work focused on finding critical landmark points on fish shape using curvature function analysis. Fish recognition based on landmark points has shown satisfying results. However, the main difficulty of this approach is that landmark points sometimes cannot be located very accurately. Whole shape matching is used for fish recognition in this paper. Several shape descriptors, such as Fourier descriptors, polygon approximation and line segments, are tested. A power cepstrum technique has been developed in order to improve the categorization speed using contours represented in tangent space with normalized length. Design and integration including image acquisition, contour extraction and fish categorization are discussed in this paper. Fish categorization results based on shape analysis and shape matching are also included.
A conditioned visual orientation requires the ellipsoid body in Drosophila
Guo, Chao; Du, Yifei; Yuan, Deliang; Li, Meixia; Gong, Haiyun; Gong, Zhefeng
2015-01-01
Orientation, the spatial organization of animal behavior, is an essential faculty of animals. Bacteria and lower animals such as insects exhibit taxis, innate orientation behavior, directly toward or away from a directional cue. Organisms can also orient themselves at a specific angle relative to the cues. In this study, using Drosophila as a model system, we established a visual orientation conditioning paradigm based on a flight simulator in which a stationary flying fly could control the rotation of a visual object. By coupling aversive heat shocks to a fly's orientation toward one side of the visual object, we found that the fly could be conditioned to orientate toward the left or right side of the frontal visual object and retain this conditioned visual orientation. The lower and upper visual fields have different roles in conditioned visual orientation. Transfer experiments showed that conditioned visual orientation could generalize between visual targets of different sizes, compactness, or vertical positions, but not of contour orientation. Rut—Type I adenylyl cyclase and Dnc—phosphodiesterase were dispensable for visual orientation conditioning. Normal activity and scb signaling in R3/R4d neurons of the ellipsoid body were required for visual orientation conditioning. Our studies established a visual orientation conditioning paradigm and examined the behavioral properties and neural circuitry of visual orientation, an important component of the insect's spatial navigation. PMID:25512578
Geometric Analysis, Visualization, and Conceptualization of 3D Image Data
collection of geometric primitives (points, lines, polygons, etc.) that accurately represent the shape of the different color. The masks mentioned above are human supplied hints as to where to draw these contour lines ) Acquire information about the inside of an object, and generate a 3D image data set (2) Define the regions
Visual Tracking Using 3D Data and Region-Based Active Contours
2016-09-28
adaptive control strategies which explicitly take uncertainty into account. Filtering methods ranging from the classical Kalman filters valid for...linear systems to the much more general particle filters also fit into this framework in a very natural manner. In particular, the particle filtering ...the number of samples required for accurate filtering increases with the dimension of the system noise. In our approach, we approximate curve
Mihaylova, Milena; Manahilov, Velitchko
2010-11-24
Research has shown that the processing time for discriminating illusory contours is longer than for real contours. We know, however, little whether the visual processes, associated with detecting regions of illusory surfaces, are also slower as those responsible for detecting luminance-defined images. Using a speed-accuracy trade-off (SAT) procedure, we measured accuracy as a function of processing time for detecting illusory Kanizsa-type and luminance-defined squares embedded in 2D static luminance noise. The data revealed that the illusory images were detected at slower processing speed than the real images, while the points in time, when accuracy departed from chance, were not significantly different for both stimuli. The classification images for detecting illusory and real squares showed that observers employed similar detection strategies using surface regions of the real and illusory squares. The lack of significant differences between the x-intercepts of the SAT functions for illusory and luminance-modulated stimuli suggests that the detection of surface regions of both images could be based on activation of a single mechanism (the dorsal magnocellular visual pathway). The slower speed for detecting illusory images as compared to luminance-defined images could be attributed to slower processes of filling-in of regions of illusory images within the dorsal pathway.
Spatial Gravity Analysis of the Cascadia Subduction Zone using Satellite Data
NASA Astrophysics Data System (ADS)
Hanatan, A.; Hartantyo, E.; Niasari, S. W.
2018-04-01
Cascadia Subduction Zone is a subduction zone elongated about 1000 km length. The remnants of Farallon plate subduct the North American plate and form this subduction area. One of Farallon plate remnants, i.e. Juan de Fuca plate, subducts dominantly the North American plate. We focused on the observation of three states, i.e. Oregon, Idaho, and Wyoming. This research aims to determine the direction, the shape, and the initial coordinates of subduction in our study area. We obtained free air corrected gravity data from TOPEX. Then we visualized data to get contour map and found that Cascadia Subduction Zone has direction from west to east that can be proofed by increasing of gravity anomaly. The gravity anomaly ranges from -140 mGals until 320 mGals. We applied upward continuation and got the result that the subduction is elongated from north to south. Initial coordinate detail of subduction shown by SVD result. The subduction starts from coordinate 46.811° Northern Hemisphere and Longitude of 123.436° into 41.260° Northern Hemisphere and longitude of -123.204°. This coordinate appropriate with the result of magnetotelluric research that shows a high resistivity. We can conclude that from gravity satellite data, we can visualize the contour map then take several steps to get details information of subduction.
THEORY AND MEASUREMENT OF VISUAL MECHANISMS
Crozier, W. J.; Wolf, Ernst
1944-01-01
Flicker contours for a square image of 3° visual angle, centered 6° on the temporal side of the fovea, the light sectored at a focus, are strikingly modified if the same illuminated area is arranged in four squares separated by a narrow opaque cross. The "cone" curves are made much steeper, and their abscissae of inflection (τ' are at higher intensities; Fmax. is not greatly changed, but alters less with change of light-time fraction in the flash cycle (tL). This modification is accompanied by a great enlargement of the scotopic segment of the duplex curves, consistent with the theory of the integrative relations of neural effects in the two groups of units involved. The changes are not consistent with the view that flicker end-points are determined by the activation of retinal cells with a fixed spatial distribution of invariable thresholds. At tL = 0.50 the 3° subdivided area gives very nearly the same contour as does a square 6° x 6°, with the same total perimeter of light-dark separation; the "edge effect" thus suggested is complicated by differences in the dependence of Fmax. and τ' upon tL. When an image pattern is produced by a grid of light bars separated by equally broad opaque spaces (10° x 10° over-all, centered at the fovea), the photopic flicker contours are made very steep and their midpoints are situated at quite low intensities, while the "rod" contribution tends to be more completely fused with the "cone" than is found for fields not subdivided. However, instead of a progressive increase of τ' with tL the curves for tL = 0.75 and 0.90 lie respectively below that for tL = 0.25 and 0.50 for a field of four broader stripes (1.43°) and both are below tL = 0.25 for a field of seven narrower stripes (0.77°). These latter changes are discussed in terms of the participation of subsidiary phenomena involving so called "γ movement." It is pointed out that since in these data σ1/Im is for each set of conditions a statistically constant quantity with a characteristic breadth of scatter σσ, it is possible to calculate a "coefficient of internal correlation" r which is a function of the conditions (as: image area, location, wave length of light, structure of image, light-time fraction) and which describes a property of any entire contour. The changes in r, as a function of the conditions of flicker excitation, reflect changes in the neural organization responsible for the liminal discrimination of flicker. It is shown that as consequence of simple changes in the image field, three parameters, as of the probability summation, are required for the description of a simplex flicker contour—since each of these is independently modifiable as to its magnitude and in its dependence on the light-time fraction. Subdivision of the image, with light sectored at a focus, produces in part only the changes in the flicker contour which we have earlier labelled the "pecten effect." In the latter, with light not sectored at a focus but with bar images moving across a field with inclined fixed opaque bars, the "cone" slope (dF/d log I) is sharply increased for tL > 0.50, but not below tL = 0.50, and the value of τ' is much less than it "should be." Consequently, the change in contrast brought about by the moving contact of light/dark borders is the significant factor in the "pecten effect," not simply pulsatile interruption of the light. PMID:19873392
Study of complex molecular systems by probe vibrational spectroscopy method
NASA Astrophysics Data System (ADS)
Boldeskul, A. E.; Zatsepin, V. M.; Atakhodjaev, A. K.; Shermatov, A. N.; Ashburiev, R.
1984-03-01
Experimental study of benzonitril as a probe in aqueous solution of sodium lauril sulphate /SDS/ by Raman spectroscopy technique showed integral moments of √ /C X N/ line to be extremely sensitive to the structural transitions in micellar systems. The central part of the experimental contour was used to determine integral moments with the help of line shape approximant received by Mori method
Detection of flow limitation in obstructive sleep apnea with an artificial neural network.
Norman, Robert G; Rapoport, David M; Ayappa, Indu
2007-09-01
During sleep, the development of a plateau on the inspiratory airflow/time contour provides a non-invasive indicator of airway collapsibility. Humans recognize this abnormal contour easily, and this study replicates this with an artificial neural network (ANN) using a normalized shape. Five 10 min segments were selected from each of 18 sleep records (respiratory airflow measured with a nasal cannula) with varying degrees of sleep disordered breathing. Each breath was visually scored for shape, and breaths split randomly into a training and test set. Equally spaced, peak amplitude normalized flow values (representing breath shape) formed the only input to a back propagation ANN. Following training, breath-by-breath agreement of the ANN with the manual classification was tabulated for the training and test sets separately. Agreement of the ANN was 89% in the training set and 70.6% in the test set. When the categories of 'probably normal' and 'normal', and 'probably flow limited' and 'flow limited' were combined, the agreement increased to 92.7% and 89.4% respectively, similar to the intra- and inter-rater agreements obtained by a visual classification of these breaths. On a naive dataset, the agreement of the ANN to visual classification was 57.7% overall and 82.4% when the categories were collapsed. A neural network based only on the shape of inspiratory airflow succeeded in classifying breaths as to the presence/absence of flow limitation. This approach could be used to provide a standardized, reproducible and automated means of detecting elevated upper airway resistance.
Iğdem, S; Alço, G; Ercan, T; Unalan, B; Kara, B; Geceer, G; Akman, C; Zengin, F O; Atilla, S; Okkan, S
2010-04-01
To analyse the effect of the use of molecular imaging on gross target volume (GTV) definition and treatment management. Fifty patients with various solid tumours who underwent positron emission tomography (PET)/computed tomography (CT) simulation for radiotherapy planning from 2006 to 2008 were enrolled in this study. First, F-18 fluorodeoxyglucose (FDG)-PET and CT scans of the treatment site in the treatment position and then a whole body scan were carried out with a dedicated PET/CT scanner and fused thereafter. FDG-avid primary tumour and lymph nodes were included into the GTV. A multidisciplinary team defined the target volume, and contouring was carried out by a radiation oncologist using visual methods. To compare the PET/CT-based volumes with CT-based volumes, contours were drawn on CT-only data with the help of site-specific radiologists who were blind to the PET/CT results after a median time of 7 months. In general, our PET/CT volumes were larger than our CT-based volumes. This difference was significant in patients with head and neck cancers. Major changes (> or =25%) in GTV delineation were observed in 44% of patients. In 16% of cases, PET/CT detected incidental second primaries and metastatic disease, changing the treatment strategy from curative to palliative. Integrating functional imaging with FDG-PET/CT into the radiotherapy planning process resulted in major changes in a significant proportion of our patients. An interdisciplinary approach between imaging and radiation oncology departments is essential in defining the target volumes. Copyright 2010 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Attention capture by contour onsets and offsets: no special role for onsets.
Watson, D G; Humphreys, G W
1995-07-01
In five experiments, we investigated the power of targets defined by the onset or offset of one of an object's parts (contour onsets and offsets) either to guide or to capture visual attention. In Experiment 1, search for a single contour onset target was compared with search for a single contour offset target against a static background of distractors; no difference was found between the efficiency with which each could be detected. In Experiment 2, onsets and offsets were compared for automatic attention capture, when both occurred simultaneously. Unlike in previous studies, the effects of overall luminance change, new-object creation, and number of onset and offset items were controlled. It was found that contour onset and offset items captured attention equally well. However, display size effects on both target types were also apparent. Such effects may have been due to competition for selection between multiple onset and offset stimuli. In Experiments 3 and 4, single onset and offset stimuli were presented simultaneously and pitted directly against one another among a background of static distractors. In Experiment 3, we examined "guided search," for a target that was formed either from an onset or from an offset among static items. In Experiment 4, the onsets and offsets were uncorrelated with the target location. Similar results occurred in both experiments: target onsets and offsets were detected more efficiently than static stimuli which needed serial search; there remained effects of display size on performance; but there was still no advantage for onsets. In Experiment 5, we examined automatic attention capture by single onset and offset stimuli presented individually among static distractors. Again, there was no advantage for onset over offset targets and a display size effect was also present. These results suggest that, both in isolation and in competition, onsets that do not form new objects neither guide nor gain automatic attention more efficiently than offsets. In addition, in contrast to previous studies in which onsets formed new objects, contour onsets and offsets did not reliably capture attention automatically.
NASA Technical Reports Server (NTRS)
Vahl, W. A.; Weidner, J. P.
1980-01-01
A theoretical study of full length and shortened, two dimensional, isentropic, exhaust nozzles integrated with top mounted ramjet propulsion nacelles were conducted. Both symmetric and asymmetric contoured nozzles with a range of angular orientations were considered. Performance comparisons to determine optimum installations for a representative hypersonic vehicle at Mach 5 cruise conditions are presented on the basis of cruise range, propulsive specific impulse, inlet area requirements, and overall lift drag ratio. The effect of approximating the nozzle internal contours with planar surfaces and the determination of viscous and frozen flow effects are also presented.
Identifying Resistivity Anomalies of Sungai Batu Ancient River using 3D Contour Map
NASA Astrophysics Data System (ADS)
Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.; Ismail, M. A. M.; Hazreek, Z. A. M.
2018-04-01
Electrical resistivity method was undertaken at archeological site at Sungai Batu in Lembah Bujang, located at Sungai Merbok in northwestern of Malaysia. The survey was implemented near the excavation site. This paper shows the results of 5 ground resistivity survey line was carry out using SAS4000 equipment. The wenner-schlumberger array was applied for measurement. Resistivity data are used to obtain valuable information to identify the remain buried archeology. The ground resistivity data were presented in contour map for various depth by using Surfer 13 software visualized clearly the anomalies evidenced for every single depth section. The results from the survey has found the appearance of sedimentation formation that believe happen long time ago after ancient river was buried by sediment from weathering process due to increasing sea level. Otherwise, another anomaly was found in the middle of the survey area which shows high resistivity value about 1000 – 2000 ohm.m
Efficient graph-cut tattoo segmentation
NASA Astrophysics Data System (ADS)
Kim, Joonsoo; Parra, Albert; Li, He; Delp, Edward J.
2015-03-01
Law enforcement is interested in exploiting tattoos as an information source to identify, track and prevent gang-related crimes. Many tattoo image retrieval systems have been described. In a retrieval system tattoo segmentation is an important step for retrieval accuracy since segmentation removes background information in a tattoo image. Existing segmentation methods do not extract the tattoo very well when the background includes textures and color similar to skin tones. In this paper we describe a tattoo segmentation approach by determining skin pixels in regions near the tattoo. In these regions graph-cut segmentation using a skin color model and a visual saliency map is used to find skin pixels. After segmentation we determine which set of skin pixels are connected with each other that form a closed contour including a tattoo. The regions surrounded by the closed contours are considered tattoo regions. Our method segments tattoos well when the background includes textures and color similar to skin.
Perceptual organization of shape, color, shade, and lighting in visual and pictorial objects
Pinna, Baingio
2012-01-01
The main questions we asked in this work are the following: Where are representations of shape, color, depth, and lighting mostly located? Does their formation take time to develop? How do they contribute to determining and defining a visual object, and how do they differ? How do visual artists use them to create objects and scenes? Is the way artists use them related to the way we perceive them? To answer these questions, we studied the microgenetic development of the object perception and formation. Our hypothesis is that the main object properties are extracted in sequential order and in the same order that these roles are also used by artists and children of different age to paint objects. The results supported the microgenesis of object formation according to the following sequence: contours, color, shading, and lighting. PMID:23145283
Predictors of visual-motor integration in children with intellectual disability.
Memisevic, Haris; Sinanovic, Osman
2012-12-01
The aim of this study was to assess the influence of sex, age, level and etiology of intellectual disability on visual-motor integration in children with intellectual disability. The sample consisted of 90 children with intellectual disability between 7 and15 years of age. Visual-motor integration was measured using the Acadia test of visual-motor integration. A multiple regression analysis was used for data analysis. The results of this study showed that sex, level of intellectual disability, and age were significant predictors of visual-motor integration. The etiology of intellectual disability did not play a significant role in predicting visual-motor integration. Visual-motor integration skills are very important for a child's overall level of functioning. Individualized programs for the remediation of visual-motor integration skills should be a part of the curriculum for children with intellectual disability.
Three-dimensional analysis of scoliosis surgery using stereophotogrammetry
NASA Astrophysics Data System (ADS)
Jang, Stanley B.; Booth, Kellogg S.; Reilly, Chris W.; Sawatzky, Bonita J.; Tredwell, Stephen J.
1994-04-01
A new stereophotogrammetric analysis and 3D visualization allow accurate assessment of the scoliotic spine during instrumentation. Stereophoto pairs taken at each stage of the operation and robust statistical techniques are used to compute 3D transformations of the vertebrae between stages. These determine rotation, translation, goodness of fit, and overall spinal contour. A polygonal model of the spine using commercial 3D modeling package is used to produce an animation sequence of the transformation. The visualization have provided some important observation. Correction of the scoliosis is achieved largely through vertebral translation and coronal plane rotation, contrary to claims that large axial rotations are required. The animations provide valuable qualitative information for surgeons assessing the results of scoliotic correction.
Li, Datao; Zhang, Ruhong; Zhang, Qun; Xu, Zhicheng; Xu, Feng; Li, Yiyuan; Sun, Nan; Wang, Cheng
2014-05-01
Prior reports of ear reconstruction have cited favorable results. Although greater attention has been devoted to fabricating a more refined cartilaginous framework, many patients still complain that the contours are unnatural. The authors' aim was to offer a new technique that resolves some lingering issues. To fabricate the antihelix complex optimally, the authors modified an existing method. Rather than chiseling a sharp, Y-shaped graft of cartilage for structural prominence, the superior crus is broadened, and a gentle slope is sculpted on both aspects. Simultaneously, a groove in the base frame is carved for smooth attachment. The width of the inferior crus is limited to roughly one-third that of the superior crus, and the inferior crus is maintained in high relief. A gentle slope is shaped on the antihelix, and a groove for placement of the antihelix is carved into the base frame. Between 2011 and 2013, a total of 162 patients underwent reconstruction using this modified technique. Three such subjects have been selected to highlight the favorable results achieved. Given modifications confer natural contours to superior and inferior crura, antihelix, and surrounding structures, providing a cohesive framework for the integrity of a reconstructed ear. The antihelix complex is critical for creating a natural auricle. Harmonious integration of superior and inferior crura and antihelix enhances the overall aesthetics, increasing procedural satisfaction for patient and surgeon alike. Therapeutic, IV.
Wagatsuma, Nobuhiko; Sakai, Ko
2017-01-01
Border ownership (BO) indicates which side of a contour owns a border, and it plays a fundamental role in figure-ground segregation. The majority of neurons in V2 and V4 areas of monkeys exhibit BO selectivity. A physiological work reported that the responses of BO-selective cells show a rapid transition when a presented square is flipped along its classical receptive field (CRF) so that the opposite BO is presented, whereas the transition is significantly slower when a square with a clear BO is replaced by an ambiguous edge, e.g., when the square is enlarged greatly. The rapid transition seemed to reflect the influence of feedforward processing on BO selectivity. Herein, we investigated the role of feedforward signals and cortical interactions for time-courses in BO-selective cells by modeling a visual cortical network comprising V1, V2, and posterior parietal (PP) modules. In our computational model, the recurrent pathways among these modules gradually established the visual progress and the BO assignments. Feedforward inputs mainly determined the activities of these modules. Surrounding suppression/facilitation of early-level areas modulates the activities of V2 cells to provide BO signals. Weak feedback signals from the PP module enhanced the contrast gain extracted in V1, which underlies the attentional modulation of BO signals. Model simulations exhibited time-courses depending on the BO ambiguity, which were caused by the integration delay of V1 and V2 cells and the local inhibition therein given the difference in input stimulus. However, our model did not fully explain the characteristics of crucially slow transition: the responses of BO-selective physiological cells indicated the persistent activation several times longer than that of our model after the replacement with the ambiguous edge. Furthermore, the time-course of BO-selective model cells replicated the attentional modulation of response time in human psychophysical experiments. These attentional modulations for time-courses were induced by selective enhancement of early-level features due to interactions between V1 and PP. Our proposed model suggests fundamental roles of surrounding suppression/facilitation based on feedforward inputs as well as the interactions between early and parietal visual areas with respect to the ambiguity dependence of the neural dynamics in intermediate-level vision. PMID:28163688
Wagatsuma, Nobuhiko; Sakai, Ko
2016-01-01
Border ownership (BO) indicates which side of a contour owns a border, and it plays a fundamental role in figure-ground segregation. The majority of neurons in V2 and V4 areas of monkeys exhibit BO selectivity. A physiological work reported that the responses of BO-selective cells show a rapid transition when a presented square is flipped along its classical receptive field (CRF) so that the opposite BO is presented, whereas the transition is significantly slower when a square with a clear BO is replaced by an ambiguous edge, e.g., when the square is enlarged greatly. The rapid transition seemed to reflect the influence of feedforward processing on BO selectivity. Herein, we investigated the role of feedforward signals and cortical interactions for time-courses in BO-selective cells by modeling a visual cortical network comprising V1, V2, and posterior parietal (PP) modules. In our computational model, the recurrent pathways among these modules gradually established the visual progress and the BO assignments. Feedforward inputs mainly determined the activities of these modules. Surrounding suppression/facilitation of early-level areas modulates the activities of V2 cells to provide BO signals. Weak feedback signals from the PP module enhanced the contrast gain extracted in V1, which underlies the attentional modulation of BO signals. Model simulations exhibited time-courses depending on the BO ambiguity, which were caused by the integration delay of V1 and V2 cells and the local inhibition therein given the difference in input stimulus. However, our model did not fully explain the characteristics of crucially slow transition: the responses of BO-selective physiological cells indicated the persistent activation several times longer than that of our model after the replacement with the ambiguous edge. Furthermore, the time-course of BO-selective model cells replicated the attentional modulation of response time in human psychophysical experiments. These attentional modulations for time-courses were induced by selective enhancement of early-level features due to interactions between V1 and PP. Our proposed model suggests fundamental roles of surrounding suppression/facilitation based on feedforward inputs as well as the interactions between early and parietal visual areas with respect to the ambiguity dependence of the neural dynamics in intermediate-level vision.
Information Processing in Mammalian Visual Cortex.
1986-02-26
cortex (VI). We used contours from the same hemisphere that had previously been mapped by LeVay et al. (1985) using our standard manual procedure...hardware being constructed by engineer Herb Adams and the software developed by Dave Bilitch. The major system components include: 1) a rat head-holding...Edelman et al.), Neurosci. Res. Found., pp. 585-612. Kirkpatrick et al. (1983) Science 200: 671-680. LeVay , S., M. Connolly, J. Houde, and D. C. Van
Visual Equivalence and Amodal Completion in Cuttlefish
Lin, I-Rong; Chiao, Chuan-Chin
2017-01-01
Modern cephalopods are notably the most intelligent invertebrates and this is accompanied by keen vision. Despite extensive studies investigating the visual systems of cephalopods, little is known about their visual perception and object recognition. In the present study, we investigated the visual processing of the cuttlefish Sepia pharaonis, including visual equivalence and amodal completion. Cuttlefish were trained to discriminate images of shrimp and fish using the operant conditioning paradigm. After cuttlefish reached the learning criteria, a series of discrimination tasks were conducted. In the visual equivalence experiment, several transformed versions of the training images, such as images reduced in size, images reduced in contrast, sketches of the images, the contours of the images, and silhouettes of the images, were used. In the amodal completion experiment, partially occluded views of the original images were used. The results showed that cuttlefish were able to treat the training images of reduced size and sketches as the visual equivalence. Cuttlefish were also capable of recognizing partially occluded versions of the training image. Furthermore, individual differences in performance suggest that some cuttlefish may be able to recognize objects when visual information was partly removed. These findings support the hypothesis that the visual perception of cuttlefish involves both visual equivalence and amodal completion. The results from this research also provide insights into the visual processing mechanisms used by cephalopods. PMID:28220075
Visualization of Coastal Data Through KML
NASA Astrophysics Data System (ADS)
Damsma, T.; Baart, F.; de Boer, G.; van Koningsveld, M.; Bruens, A.
2009-12-01
As a country that lies mostly below sea level, the Netherlands has a history of coastal engineering, and is world renowned for its leading role in Integrated Coastal Zone Management (ICZM). Within the framework of Building with Nature (a Dutch ICZM research program) an OPeNDAP server is used to host several datasets of the Dutch coast. Among these sets are bathymetric data, cross-shore profiles, water level time series of which some date back to the eighteenth century. The challenge with hosting this amount of data is more in dissemination and accessibility rather than a technical one (tracing, accessing, gathering, unifying and storing). With so many data in different sets, how can one easily know when and where data is available, and of what quality it is? Recent work using Google Earth as a visual front-end for this database has proven very encouraging. Taking full advantage of the four dimensional (3D+time) visualization capabilities allows researchers, consultants and the general public to view, access and interact with the data. Within MATLAB a set of generic tools are developed for easy creation of among others:
NASA Astrophysics Data System (ADS)
Mitasova, H.; Hardin, E. J.; Kratochvilova, A.; Landa, M.
2012-12-01
Multitemporal data acquired by modern mapping technologies provide unique insights into processes driving land surface dynamics. These high resolution data also offer an opportunity to improve the theoretical foundations and accuracy of process-based simulations of evolving landforms. We discuss development of new generation of visualization and analytics tools for GRASS GIS designed for 3D multitemporal data from repeated lidar surveys and from landscape process simulations. We focus on data and simulation methods that are based on point sampling of continuous fields and lead to representation of evolving surfaces as series of raster map layers or voxel models. For multitemporal lidar data we present workflows that combine open source point cloud processing tools with GRASS GIS and custom python scripts to model and analyze dynamics of coastal topography (Figure 1) and we outline development of coastal analysis toolbox. The simulations focus on particle sampling method for solving continuity equations and its application for geospatial modeling of landscape processes. In addition to water and sediment transport models, already implemented in GIS, the new capabilities under development combine OpenFOAM for wind shear stress simulation with a new module for aeolian sand transport and dune evolution simulations. Comparison of observed dynamics with the results of simulations is supported by a new, integrated 2D and 3D visualization interface that provides highly interactive and intuitive access to the redesigned and enhanced visualization tools. Several case studies will be used to illustrate the presented methods and tools and demonstrate the power of workflows built with FOSS and highlight their interoperability.Figure 1. Isosurfaces representing evolution of shoreline and a z=4.5m contour between the years 1997-2011at Cape Hatteras, NC extracted from a voxel model derived from series of lidar-based DEMs.
Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset
Solomon, Selina S; Tailby, Chris; Gharaei, Saba; Camp, Aaron J; Bourne, James A; Solomon, Samuel G
2011-01-01
Abstract The middle temporal area (MT/V5) is an anatomically distinct region of primate visual cortex that is specialized for the processing of image motion. It is generally thought that some neurons in area MT are capable of signalling the motion of complex patterns, but this has only been established in the macaque monkey. We made extracellular recordings from single units in area MT of anaesthetized marmosets, a New World monkey. We show through quantitative analyses that some neurons (35 of 185; 19%) are capable of signalling pattern motion (‘pattern cells’). Across several dimensions, the visual response of pattern cells in marmosets is indistinguishable from that of pattern cells in macaques. Other neurons respond to the motion of oriented contours in a pattern (‘component cells’) or show intermediate properties. In addition, we encountered a subset of neurons (22 of 185; 12%) insensitive to sinusoidal gratings but very responsive to plaids and other two-dimensional patterns and otherwise indistinguishable from pattern cells. We compared the response of each cell class to drifting gratings and dot fields. In pattern cells, directional selectivity was similar for gratings and dot fields; in component cells, directional selectivity was weaker for dot fields than gratings. Pattern cells were more likely to have stronger suppressive surrounds, prefer lower spatial frequencies and prefer higher speeds than component cells. We conclude that pattern motion sensitivity is a feature of some neurons in area MT of both New and Old World monkeys, suggesting that this functional property is an important stage in motion analysis and is likely to be conserved in humans. PMID:21946851
Lunar Contour Crafting: A Novel Technique for ISRU-Based Habitat Development
NASA Technical Reports Server (NTRS)
Khoshnevis, Behrokh; Bodiford, Melanie P.; Burks, Kevin H.; Ethridge, Ed; Tucker, Dennis; Kim, Won; Toutanji, Houssam; Fiske, Michael R.
2004-01-01
As the nation prepares to return to the Moon, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of Lunar structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. Contour Crafting is a USC-patented technique for automated development of terrestrial concrete-based structures. The process is relatively fast, completely automated, and supports the incorporation of various infrastructure elements such as plumbing and electrical wiring. This paper will present a conceptual design of a Lunar Contour Crafting system designed to autonomously fabricate integrated structures on the Lunar surface using high-strength concrete based on Lunar regolith, including glass reinforcement rods or fibers fabricated from melted regolith. Design concepts will be presented, as well as results of initial tests aimed at concrete and glass production using Lunar regolith simulant. Key issues and concerns will be presented, along with design concepts for an LCC testbed to be developed at MSFC's Prototype Development Laboratory (PDL).
NASA Astrophysics Data System (ADS)
Kefauver, W. Neill; Carpenter, Bernie F.
1994-09-01
Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.
NASA Technical Reports Server (NTRS)
Kefauver, W. Neill; Carpenter, Bernie F.
1994-01-01
Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.
NASA Technical Reports Server (NTRS)
Long, M. J.; Irick, S. C.; Van Ausdal, R. K.
1977-01-01
Single integral unit includes motor, gearbox, and clutch. Device has two-speed capability, fits within aerodynamic contours of aircraft, operates with onboard power source, does not interfere with normal landing gear functions, reduces use of regular brakes in congested areas, and provides locomotion and supplementary braking capability.
Trace for Differential Pencils on a Star-Type Graph
NASA Astrophysics Data System (ADS)
Yang, Chuan-Fu
2013-07-01
In this work, we consider the spectral problem for differential pencils on a star-type graph with a Kirchhoff-type condition in the internal vertex. The regularized trace formula of this operator is established with the contour integration method in complex analysis.
Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire
2017-12-01
Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK.
Würz, Julia M; Güntert, Peter
2017-01-01
The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.
Bogale, Bezawork Afework; Aoyama, Masato; Sugita, Shoei
2011-01-01
We trained jungle crows to discriminate among photographs of human face according to their sex in a simultaneous two-alternative task to study their categorical learning ability. Once the crows reached a discrimination criterion (greater than or equal to 80% correct choices in two consecutive sessions; binomial probability test, p<.05), they next received generalization and transfer tests (i.e., greyscale, contour, and 'full' occlusion) in Experiment 1 followed by a 'partial' occlusion test in Experiment 2 and random stimuli pair test in Experiment 3. Jungle crows learned the discrimination task in a few trials and successfully generalized to novel stimuli sets. However, all crows failed the greyscale test and half of them the contour test. Neither occlusion of internal features of the face, nor randomly pairing of exemplars affected discrimination performance of most, if not all crows. We suggest that jungle crows categorize human face photographs based on perceptual similarities as other non-human animals do, and colour appears to be the most salient feature controlling discriminative behaviour. However, the variability in the use of facial contours among individuals suggests an exploitation of multiple features and individual differences in visual information processing among jungle crows. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki
A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.
Contextual modulation and stimulus selectivity in extrastriate cortex.
Krause, Matthew R; Pack, Christopher C
2014-11-01
Contextual modulation is observed throughout the visual system, using techniques ranging from single-neuron recordings to behavioral experiments. Its role in generating feature selectivity within the retina and primary visual cortex has been extensively described in the literature. Here, we describe how similar computations can also elaborate feature selectivity in the extrastriate areas of both the dorsal and ventral streams of the primate visual system. We discuss recent work that makes use of normalization models to test specific roles for contextual modulation in visual cortex function. We suggest that contextual modulation renders neuronal populations more selective for naturalistic stimuli. Specifically, we discuss contextual modulation's role in processing optic flow in areas MT and MST and for representing naturally occurring curvature and contours in areas V4 and IT. We also describe how the circuitry that supports contextual modulation is robust to variations in overall input levels. Finally, we describe how this theory relates to other hypothesized roles for contextual modulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of CT technical factors on quantification of lung fissure integrity
NASA Astrophysics Data System (ADS)
Chong, D.; Brown, M. S.; Ochs, R.; Abtin, F.; Brown, M.; Ordookhani, A.; Shaw, G.; Kim, H. J.; Gjertson, D.; Goldin, J. G.
2009-02-01
A new emphysema treatment uses endobronchial valves to perform lobar volume reduction. The degree of fissure completeness may predict treatment efficacy. This study investigated the behavior of a semiautomated algorithm for quantifying lung fissure integrity in CT with respect to reconstruction kernel and dose. Raw CT data was obtained for six asymptomatic patients from a high-risk population for lung cancer. The patients were scanned on either a Siemens Sensation 16 or 64, using a low-dose protocol of 120 kVp, 25 mAs. Images were reconstructed using kernels ranging from smooth to sharp (B10f, B30f, B50f, B70f). Research software was used to simulate an even lower-dose acquisition of 15 mAs, and images were generated at the same kernels resulting in 8 series per patient. The left major fissure was manually contoured axially at regular intervals, yielding 37 contours across all patients. These contours were read into an image analysis and pattern classification system which computed a Fissure Integrity Score (FIS) for each kernel and dose. FIS values were analyzed using a mixed-effects model with kernel and dose as fixed effects and patient as random effect to test for difference due to kernel and dose. Analysis revealed no difference in FIS between the smooth kernels (B10f, B30f) nor between sharp kernels (B50f, B70f), but there was a significant difference between the sharp and smooth groups (p = 0.020). There was no significant difference in FIS between the two low-dose reconstructions (p = 0.882). Using a cutoff of 90%, the number of incomplete fissures increased from 5 to 10 when the imaging protocol changed from B50f to B30f. Reconstruction kernel has a significant effect on quantification of fissure integrity in CT. This has potential implications when selecting patients for endobronchial valve therapy.
Pitch contour matching and interactional alignment across turns: an acoustic investigation.
Gorisch, Jan; Wells, Bill; Brown, Guy J
2012-03-01
In order to explore the influence of context on the phonetic design of talk-in-interaction, we investigated the pitch characteristics of short turns (insertions) that are produced by one speaker between turns from another speaker. We investigated the hypothesis that the speaker of the insertion designs her turn as a pitch match to the prior turn in order to align with the previous speaker's agenda, whereas non-matching displays that the speaker of the insertion is non-aligning, for example to initiate a new action. Data were taken from the AMI meeting corpus, focusing on the spontaneous talk of first-language English participants. Using sequential analysis, 177 insertions were classified as either aligning or non-aligning in accordance with definitions of these terms in the Conversation Analysis literature. The degree of similarity between the pitch contour of the insertion and that of the prior speaker's turn was measured, using a new technique that integrates normalized F0 and intensity information. The results showed that aligning insertions were significantly more similar to the immediately preceding turn, in terms of pitch contour, than were non-aligning insertions. This supports the view that choice of pitch contour is managed locally, rather than by reference to an intonational lexicon.
NASA Astrophysics Data System (ADS)
Reed, S. E.; Kreylos, O.; Hsi, S.; Kellogg, L. H.; Schladow, G.; Yikilmaz, M. B.; Segale, H.; Silverman, J.; Yalowitz, S.; Sato, E.
2014-12-01
One of the challenges involved in learning earth science is the visualization of processes which occur over large spatial and temporal scales. Shaping Watersheds is an interactive 3D exhibit developed with support from the National Science Foundation by a team of scientists, science educators, exhibit designers, and evaluation professionals, in an effort to improve public understanding and stewardship of freshwater ecosystems. The hands-on augmented reality sandbox allows users to create topographic models by shaping real "kinetic" sand. The exhibit is augmented in real time by the projection of a color elevation map and contour lines which exactly match the sand topography, using a closed loop of a Microsoft Kinect 3D camera, simulation and visualization software, and a data projector. When an object (such as a hand) is sensed at a particular height above the sand surface, virtual rain appears as a blue visualization on the surface and a flow simulation (based on a depth-integrated version of the Navier-Stokes equations) moves the water across the landscape. The blueprints and software to build the sandbox are freely available online (http://3dh2o.org/71/) under the GNU General Public License, together with a facilitator's guide and a public forum (with how-to documents and FAQs). Using these resources, many institutions (20 and counting) have built their own exhibits to teach a wide variety of topics (ranging from watershed stewardship, hydrology, geology, topographic map reading, and planetary science) in a variety of venues (such as traveling science exhibits, K-12 schools, university earth science departments, and museums). Additional exhibit extensions and learning modules are planned such as tsunami modeling and prediction. Moreover, a study is underway at the Lawrence Hall of Science to assess how various aspects of the sandbox (such as visualization color scheme and level of interactivity) affect understanding of earth science concepts.
Zhou, Bin; Zhang, Zhendong; Wang, Ji; Yu, Y Eric; Liu, Xiaowei Sherry; Nishiyama, Kyle K; Rubin, Mishaela R; Shane, Elizabeth; Bilezikian, John P; Guo, X Edward
2016-06-01
Trabecular plate and rod microstructure plays a dominant role in the apparent mechanical properties of trabecular bone. With high-resolution computed tomography (CT) images, digital topological analysis (DTA) including skeletonization and topological classification was applied to transform the trabecular three-dimensional (3D) network into surface and curve skeletons. Using the DTA-based topological analysis and a new reconstruction/recovery scheme, individual trabecula segmentation (ITS) was developed to segment individual trabecular plates and rods and quantify the trabecular plate- and rod-related morphological parameters. High-resolution peripheral quantitative computed tomography (HR-pQCT) is an emerging in vivo imaging technique to visualize 3D bone microstructure. Based on HR-pQCT images, ITS was applied to various HR-pQCT datasets to examine trabecular plate- and rod-related microstructure and has demonstrated great potential in cross-sectional and longitudinal clinical applications. However, the reproducibility of ITS has not been fully determined. The aim of the current study is to quantify the precision errors of ITS plate-rod microstructural parameters. In addition, we utilized three different frequently used contour techniques to separate trabecular and cortical bone and to evaluate their effect on ITS measurements. Overall, good reproducibility was found for the standard HR-pQCT parameters with precision errors for volumetric BMD and bone size between 0.2%-2.0%, and trabecular bone microstructure between 4.9%-6.7% at the radius and tibia. High reproducibility was also achieved for ITS measurements using all three different contour techniques. For example, using automatic contour technology, low precision errors were found for plate and rod trabecular number (pTb.N, rTb.N, 0.9% and 3.6%), plate and rod trabecular thickness (pTb.Th, rTb.Th, 0.6% and 1.7%), plate trabecular surface (pTb.S, 3.4%), rod trabecular length (rTb.ℓ, 0.8%), and plate-plate junction density (P-P Junc.D, 2.3%) at the tibia. The precision errors at the radius were similar to those at the tibia. In addition, precision errors were affected by the contour technique. At the tibia, precision error by the manual contour method was significantly different from automatic and standard contour methods for pTb.N, rTb.N and rTb.Th. Precision error using the manual contour method was also significantly different from the standard contour method for rod trabecular number (rTb.N), rod trabecular thickness (rTb.Th), rod-rod and plate-rod junction densities (R-R Junc.D and P-R Junc.D) at the tibia. At the radius, the precision error was similar between the three different contour methods. Image quality was also found to significantly affect the ITS reproducibility. We concluded that ITS parameters are highly reproducible, giving assurance that future cross-sectional and longitudinal clinical HR-pQCT studies are feasible in the context of limited sample sizes.
NASA Astrophysics Data System (ADS)
Patel, Utkarsh R.; Triverio, Piero
2016-09-01
An accurate modeling of skin effect inside conductors is of capital importance to solve transmission line and scattering problems. This paper presents a surface-based formulation to model skin effect in conductors of arbitrary cross section, and compute the per-unit-length impedance of a multiconductor transmission line. The proposed formulation is based on the Dirichlet-Neumann operator that relates the longitudinal electric field to the tangential magnetic field on the boundary of a conductor. We demonstrate how the surface operator can be obtained through the contour integral method for conductors of arbitrary shape. The proposed algorithm is simple to implement, efficient, and can handle arbitrary cross-sections, which is a main advantage over the existing approach based on eigenfunctions, which is available only for canonical conductor's shapes. The versatility of the method is illustrated through a diverse set of examples, which includes transmission lines with trapezoidal, curved, and V-shaped conductors. Numerical results demonstrate the accuracy, versatility, and efficiency of the proposed technique.
Factors Influencing Perception of Facial Attractiveness: Gender and Dental Education.
Jung, Ga-Hee; Jung, Seunggon; Park, Hong-Ju; Oh, Hee-Kyun; Kook, Min-Suk
2018-03-01
This study was conducted to investigate the gender- and dental education-specific differences in perception of facial attractiveness for varying ratio of lower face contour. Two hundred eleven students (110 male respondents and 110 female respondents; aged between 20-38 years old) were requested to rate facial figures with alterations to the bigonial width and the vertical length of the lower face. We produced a standard figure which is based on the "golden ratio" and 4 additional series of figures with either horizontal or vertical alterations to the contour of lower face. The preference for each figure was evaluated using a Visual Analog Scale. The Kruskal Wallis test was used for differences in the preferences for each figure and the Mann-Whitney U test was used to evaluate gender-specific differences and differences by dental education. In general, the highest preference score was indicated for the standard figure, whereas facial figure with large bigonial width and chin length had the lowest score.Male respondents showed significantly higher preference score for facial contour that had a 0.1 proportional increase in the facial height-bigonial width ratio over that of the standard figure.For horizontal alterations to the facial profiles, there were no significant differences in the preferences by the level of dental education. For vertically altered images, the average Visual Analog Scale was significantly lower among the dentally-educated for facial image that had a proportional 0.22 and 0.42 increase in the ratio between the vertical length of the chin and the lip. Generally, the standard image based on the golden ratio was the most. Slender face was appealed more to males than to females, and facial image with an increased lower facial height were perceived to be much less attractive to the dentally-educated respondents, which suggests that the dental education might have some influence in sensitivity to vertical changes in lower face.
Bellocchi, Stéphanie; Muneaux, Mathilde; Huau, Andréa; Lévêque, Yohana; Jover, Marianne; Ducrot, Stéphanie
2017-08-01
Reading is known to be primarily a linguistic task. However, to successfully decode written words, children also need to develop good visual-perception skills. Furthermore, motor skills are implicated in letter recognition and reading acquisition. Three studies have been designed to determine the link between reading, visual perception, and visual-motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). Study 1 tests how visual perception and visual-motor integration in kindergarten predict reading outcomes in Grade 1, in typical developing children. Study 2 is aimed at finding out if these skills can be seen as clinical markers in dyslexic children (DD). Study 3 determines if visual-motor integration and motor-reduced visual perception can distinguish DD children according to whether they exhibit or not developmental coordination disorder (DCD). Results showed that phonological awareness and visual-motor integration predicted reading outcomes one year later. DTVP-2 demonstrated similarities and differences in visual-motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits. DTVP-2 is a suitable tool to investigate links between visual perception, visual-motor integration and reading, and to differentiate cognitive profiles of children with developmental disabilities (i.e. DD, DCD, and comorbid children). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
De Martin, Elena; Duran, Dunja; Ghielmetti, Francesco; Visani, Elisa; Aquino, Domenico; Marchetti, Marcello; Sebastiano, Davide Rossi; Cusumano, Davide; Bruzzone, Maria Grazia; Panzica, Ferruccio; Fariselli, Laura
2017-12-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) provide noninvasive localization of eloquent brain areas for presurgical planning. The aim of this study is the integration of MEG and fMRI maps into a CyberKnife (CK) system to optimize dose planning. Four patients with brain metastases in the motor area underwent functional imaging study of the hand motor cortex before radiosurgery. MEG data were acquired during a visually cued hand motor task. Motor activations were identified also using an fMRI block-designed paradigm. MEG and fMRI maps were then integrated into a CK system and contoured as organs at risk for treatment planning optimization. The integration of fMRI data into the CK system was achieved for all patients by means of a standardized protocol. We also implemented an ad hoc pipeline to convert the MEG signal into a DICOM standard, to make sure that it was readable by our CK treatment planning system. Inclusion of the activation areas into the optimization plan allowed the creation of treatment plans that reduced the irradiation of the motor cortex yet not affecting the brain peripheral dose. The availability of advanced neuroimaging techniques is playing an increasingly important role in radiosurgical planning strategy. We successfully imported MEG and fMRI activations into a CK system. This additional information can improve dose sparing of eloquent areas, allowing a more comprehensive investigation of the related dose-volume constraints that in theory could translate into a gain in tumor local control, and a reduction of neurological complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhao, Jisong
2018-05-17
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow.
Functional implications of orientation maps in primary visual cortex
NASA Astrophysics Data System (ADS)
Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim
2016-11-01
Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.
Scientific visualization of volumetric radar cross section data
NASA Astrophysics Data System (ADS)
Wojszynski, Thomas G.
1992-12-01
For aircraft design and mission planning, designers, threat analysts, mission planners, and pilots require a Radar Cross Section (RCS) central tendency with its associated distribution about a specified aspect and its relation to a known threat, Historically, RCS data sets have been statically analyzed to evaluate a d profile. However, Scientific Visualization, the application of computer graphics techniques to produce pictures of complex physical phenomena appears to be a more promising tool to interpret this data. This work describes data reduction techniques and a surface rendering algorithm to construct and display a complex polyhedron from adjacent contours of RCS data. Data reduction is accomplished by sectorizing the data and characterizing the statistical properties of the data. Color, lighting, and orientation cues are added to complete the visualization system. The tool may be useful for synthesis, design, and analysis of complex, low observable air vehicles.
Effective 3-D shape discrimination survives retinal blur.
Norman, J Farley; Beers, Amanda M; Holmin, Jessica S; Boswell, Alexandria M
2010-08-01
A single experiment evaluated observers' ability to visually discriminate 3-D object shape, where the 3-D structure was defined by motion, texture, Lambertian shading, and occluding contours. The observers' vision was degraded to varying degrees by blurring the experimental stimuli, using 2.0-, 2.5-, and 3.0-diopter convex lenses. The lenses reduced the observers' acuity from -0.091 LogMAR (in the no-blur conditions) to 0.924 LogMAR (in the conditions with the most blur; 3.0-diopter lenses). This visual degradation, although producing severe reductions in visual acuity, had only small (but significant) effects on the observers' ability to discriminate 3-D shape. The observers' shape discrimination performance was facilitated by the objects' rotation in depth, regardless of the presence or absence of blur. Our results indicate that accurate global shape discrimination survives a considerable amount of retinal blur.
Measurement of Wall Shear Stress in High Speed Air Flow Using Shear-Sensitive Liquid Crystal Coating
Zhao, Jisong
2018-01-01
Wall shear stress is an important quantity in fluid mechanics, but its measurement is a challenging task. An approach to measure wall shear stress vector distribution using shear-sensitive liquid crystal coating (SSLCC) is described. The wall shear stress distribution on the test surface beneath high speed jet flow is measured while using the proposed technique. The flow structures inside the jet flow are captured and the results agree well with the streakline pattern that was visualized using the oil-flow technique. In addition, the shock diamonds inside the supersonic jet flow are visualized clearly using SSLCC and the results are compared with the velocity contour that was measured using the particle image velocimetry (PIV) technique. The work of this paper demonstrates the application of SSLCC in the measurement/visualization of wall shear stress in high speed flow. PMID:29772822
Visual Place Learning in Drosophila melanogaster
Ofstad, Tyler A.; Zuker, Charles S.; Reiser, Michael B.
2011-01-01
The ability of insects to learn and navigate to specific locations in the environment has fascinated naturalists for decades. While the impressive navigation abilities of ants, bees, wasps, and other insects clearly demonstrate that insects are capable of visual place learning1–4, little is known about the underlying neural circuits that mediate these behaviors. Drosophila melanogaster is a powerful model organism for dissecting the neural circuitry underlying complex behaviors, from sensory perception to learning and memory. Flies can identify and remember visual features such as size, color, and contour orientation5, 6. However, the extent to which they use vision to recall specific locations remains unclear. Here we describe a visual place-learning platform and demonstrate that Drosophila are capable of forming and retaining visual place memories to guide selective navigation. By targeted genetic silencing of small subsets of cells in the Drosophila brain we show that neurons in the ellipsoid body, but not in the mushroom bodies, are necessary for visual place learning. Together, these studies reveal distinct neuroanatomical substrates for spatial versus non-spatial learning, and substantiate Drosophila as a powerful model for the study of spatial memories. PMID:21654803
End-Stopping Predicts Curvature Tuning along the Ventral Stream
Hartmann, Till S.; Livingstone, Margaret S.
2017-01-01
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. SIGNIFICANCE STATEMENT The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or “domains”) acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias whereas place- and rectilinear-preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called end-stopping. PMID:28100746
End-Stopping Predicts Curvature Tuning along the Ventral Stream.
Ponce, Carlos R; Hartmann, Till S; Livingstone, Margaret S
2017-01-18
Neurons in primate inferotemporal cortex (IT) are clustered into patches of shared image preferences. Functional imaging has shown that these patches are activated by natural categories (e.g., faces, body parts, and places), artificial categories (numerals, words) and geometric features (curvature and real-world size). These domains develop in the same cortical locations across monkeys and humans, which raises the possibility of common innate mechanisms. Although these commonalities could be high-level template-based categories, it is alternatively possible that the domain locations are constrained by low-level properties such as end-stopping, eccentricity, and the shape of the preferred images. To explore this, we looked for correlations among curvature preference, receptive field (RF) end-stopping, and RF eccentricity in the ventral stream. We recorded from sites in V1, V4, and posterior IT (PIT) from six monkeys using microelectrode arrays. Across all visual areas, we found a tendency for end-stopped sites to prefer curved over straight contours. Further, we found a progression in population curvature preferences along the visual hierarchy, where, on average, V1 sites preferred straight Gabors, V4 sites preferred curved stimuli, and many PIT sites showed a preference for curvature that was concave relative to fixation. Our results provide evidence that high-level functional domains may be mapped according to early rudimentary properties of the visual system. The macaque occipitotemporal cortex contains clusters of neurons with preferences for categories such as faces, body parts, and places. One common question is how these clusters (or "domains") acquire their cortical position along the ventral stream. We and other investigators previously established an fMRI-level correlation among these category domains, retinotopy, and curvature preferences: for example, in inferotemporal cortex, face- and curvature-preferring domains show a central visual field bias whereas place- and rectilinear-preferring domains show a more peripheral visual field bias. Here, we have found an electrophysiological-level explanation for the correlation among domain preference, curvature, and retinotopy based on neuronal preference for short over long contours, also called end-stopping. Copyright © 2017 the authors 0270-6474/17/370648-12$15.00/0.
NASA Astrophysics Data System (ADS)
Chaudhary, A.
2017-12-01
Current simulation models and sensors are producing high-resolution, high-velocity data in geosciences domain. Knowledge discovery from these complex and large size datasets require tools that are capable of handling very large data and providing interactive data analytics features to researchers. To this end, Kitware and its collaborators are producing open-source tools GeoNotebook, GeoJS, Gaia, and Minerva for geosciences that are using hardware accelerated graphics and advancements in parallel and distributed processing (Celery and Apache Spark) and can be loosely coupled to solve real-world use-cases. GeoNotebook (https://github.com/OpenGeoscience/geonotebook) is co-developed by Kitware and NASA-Ames and is an extension to the Jupyter Notebook. It provides interactive visualization and python-based analysis of geospatial data and depending the backend (KTile or GeoPySpark) can handle data sizes of Hundreds of Gigabytes to Terabytes. GeoNotebook uses GeoJS (https://github.com/OpenGeoscience/geojs) to render very large geospatial data on the map using WebGL and Canvas2D API. GeoJS is more than just a GIS library as users can create scientific plots such as vector and contour and can embed InfoVis plots using D3.js. GeoJS aims for high-performance visualization and interactive data exploration of scientific and geospatial location aware datasets and supports features such as Point, Line, Polygon, and advanced features such as Pixelmap, Contour, Heatmap, and Choropleth. Our another open-source tool Minerva ((https://github.com/kitware/minerva) is a geospatial application that is built on top of open-source web-based data management system Girder (https://github.com/girder/girder) which provides an ability to access data from HDFS or Amazon S3 buckets and provides capabilities to perform visualization and analyses on geosciences data in a web environment using GDAL and GeoPandas wrapped in a unified API provided by Gaia (https://github.com/OpenDataAnalytics/gaia). In this presentation, we will discuss core features of each of these tools and will present lessons learned on handling large data in the context of data management, analyses and visualization.
Optimizing body contour in massive weight loss patients: the modified vertical abdominoplasty.
Costa, Luiz Fernando da; Landecker, Alan; Manta, Anísio Marinho
2004-12-01
In morbid obesity, contour deformities of the abdomen are common after bariatric surgery and radical weight loss. Traditional abdominoplasty techniques often fail to maximally improve body contour in these cases because adjacent sites such as the hip rolls and flanks are not treated, leaving the patient with large lateral tissue redundancies and dog-ears. In an attempt to solve these challenging problems, the authors present the modified vertical abdominoplasty technique, a single-stage procedure that involves a combined vertical and transverse approach in which an "en bloc" resection of the redundant tissues is performed without undermining, drainage, or reinforcement of the abdominal wall. The latter is only carried out when diastasis and/or hernias are present, and Marlex mesh may be utilized when indicated. In patients with simultaneous large umbilical hernias and/or excessively long stalks, neoumbilicoplasty is recommended. A significant improvement of abdominal contour was obtained in the vast majority of patients because the resection design offers simultaneous treatment of both vertical and transverse tissue redundancies in the abdomen and neighboring regions, with more harmonic results when compared with purely vertical or transverse approaches. The modified vertical abdominoplasty technique is an easy, fast, and reliable alternative for treating these patients, with less intraoperative bleeding, reduced overall cost, and low morbidity rates. In selected cases, the technique is capable of offering excellent results in terms of contouring and maximizes the overall outcome of treatment protocols for these patients, who can then be integrated into normal life with heightened self-esteem, happiness, and productivity.
Biazzo, Alessio; Cardile, Carlo; Brunelli, Luca; Ragni, Paolo; Clementi, Daniele
2017-04-28
The management of displaced 2- and 3-part fractures of the proximal humerus is controversial, both in younger and in elderly patients. The purpose of this paper is to evaluate the functional results of the Contours Proximal Humerus Plate (OrthofixR, Bussolengo,Verona, Italy), for the treatment of displaced 2- and 3-part fractures of the proximal humerus. We retrospectively reviewed 55 patients with proximal humerus fractures, who underwent osteosynthesis with Contours Proximal Humerus Plate from December 2011 to March 2015. We had 21 patients with 2-part fractures and with an average age of 67.1 years and 34 patients with 3-part fractures, with average age of 63.6 years. The average union time was 3 months. The mean Constant score was 67 for 2-part fracture group and 64.9 for 3-part fracture group. The difference was not statistically significant (p = 0.18). The overall complication rate was 14.5 %. Six patients underwent additional surgery (10.9%). The most frequent major complication was secondary loss of reduction following varus collapse of the fracture (2 cases). In these patients, there was loss of medial hinge integrity due to impaction and osteoporosis. The placement of the main locking screw in the calcar area to provide inferomedial support is the rational of the Contours Proximal Humerus Plate. Osteosynthesis with Contours Proximal Humerus Plate is a safe system for treating displaced 2- and 3-part fractures of the proximal humerus, with good functional results and complication rates comparable to those reported in the literature.
Thinking graphically: Connecting vision and cognition during graph comprehension.
Ratwani, Raj M; Trafton, J Gregory; Boehm-Davis, Deborah A
2008-03-01
Task analytic theories of graph comprehension account for the perceptual and conceptual processes required to extract specific information from graphs. Comparatively, the processes underlying information integration have received less attention. We propose a new framework for information integration that highlights visual integration and cognitive integration. During visual integration, pattern recognition processes are used to form visual clusters of information; these visual clusters are then used to reason about the graph during cognitive integration. In 3 experiments, the processes required to extract specific information and to integrate information were examined by collecting verbal protocol and eye movement data. Results supported the task analytic theories for specific information extraction and the processes of visual and cognitive integration for integrative questions. Further, the integrative processes scaled up as graph complexity increased, highlighting the importance of these processes for integration in more complex graphs. Finally, based on this framework, design principles to improve both visual and cognitive integration are described. PsycINFO Database Record (c) 2008 APA, all rights reserved
NASA Astrophysics Data System (ADS)
Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting
2018-02-01
Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rautman, Christopher Arthur; Stein, Joshua S.
2003-01-01
Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. Thismore » algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.« less
Post-bariatric surgery body contouring in the NHS: a survey of UK bariatric surgeons.
Highton, Lyndsey; Ekwobi, Chidi; Rose, Victoria
2012-04-01
Following massive weight loss, patients are left with folds of redundant skin that may cause physical and psychological problems. These problems can be addressed through body contouring procedures such as abdominoplasty and the thigh lift. Despite an exponential rise in the number of bariatric surgery procedures performed in the United Kingdom, there are no national guidelines on the provision of body contouring procedures after massive weight loss. We conducted a survey of UK Bariatric Surgeons to determine the pre-operative counselling that patients receive on this issue, their opinions towards post-bariatric surgery body contouring and current referral patterns to Plastic Surgery. By exploring the relationship between Bariatric and Plastic Surgery, we aimed to identify how the comprehensive treatment of patients undergoing bariatric surgery could be improved. A questionnaire was sent to 86 surgeon members of the British Obesity and Metabolic Surgery Society. Questionnaires were analysed from the 61/86 respondents (71% response rate). 92% of the responding surgeons feel that patients face functional problems relating to skin redundancy after massive weight loss, and a high percentage of patients complain about this problem. However, only 66% of surgeons routinely counsel patients about these problems before they undergo bariatric surgery. 96% of respondents feel that body contouring for these patients should be funded on the NHS in selected cases. However, it is difficult for patients to access consultation with a Plastic Surgeon and there are no explicit guidelines on the criteria that patients must fulfil to undergo body contouring surgery on the NHS. At present, these criteria are locally determined and represent a postcode lottery. The NICE guidelines on obesity recommend that patients undergoing bariatric surgery should have information on, or access to plastic surgery where appropriate, but this standard is not being achieved. National guidelines on post-bariatric body contouring surgery are needed to improve the comprehensive treatment of these patients. The clinical and cost effectiveness of bariatric surgery has been well established. Further studies focussing on the outcome of body contouring after massive weight loss could support this becoming and integral part of the bariatric surgery pathway. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brouwer, Harm; Crocker, Matthew W.
2016-03-01
The Mirror System Hypothesis (MSH) on the evolution of the language-ready brain draws upon the parallel dorsal-ventral stream architecture for vision [1]. The dorsal ;how; stream provides a mapping of parietally-mediated affordances onto the motor system (supporting preshape), whereas the ventral ;what; stream engages in object recognition and visual scene analysis (supporting pantomime and verbal description). Arbib attempts to integrate this MSH perspective with a recent conceptual dorsal-ventral stream model of auditory language comprehension [5] (henceforth, the B&S model). In the B&S model, the dorsal stream engages in time-dependent combinatorial processing, which subserves syntactic structuring and linkage to action, whereas the ventral stream performs time-independent unification of conceptual schemata. These streams are integrated in the left Inferior Frontal Gyrus (lIFG), which is assumed to subserve cognitive control, and no linguistic processing functions. Arbib criticizes the B&S model on two grounds: (i) the time-independence of the semantic processing in the ventral stream (by arguing that semantic processing is just as time-dependent as syntactic processing), and (ii) the absence of linguistic processing in the lIFG (reconciling syntactic and semantic representations is very much linguistic processing proper). Here, we provide further support for these two points of criticism on the basis of insights from the electrophysiology of language. In the course of our argument, we also sketch the contours of an alternative model that may prove better suited for integration with the MSH.
Path similarity skeleton graph matching.
Bai, Xiang; Latecki, Longin Jan
2008-07-01
This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliwal, B; Asprey, W; Yan, Y
Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less
Influence of contouring and hardness of foot orthoses on ratings of perceived comfort.
Mills, Kathryn; Blanch, Peter; Vicenzino, Bill
2011-08-01
Comfort is a vital component of orthosis therapy. The purpose of this study was to examine what features of orthoses (design or hardness) influence the perception of comfort by using previously established footwear comfort measures: 100-mm visual analog scale (VAS) and ranking scale. Twenty subjects were consecutively allocated to two experiments consisting of five sessions of repeated measures. Comfort measures were taken from four prefabricated orthosis in each session using the VAS (experiment 1) and ranking scale (experiment 2). Subjects in experiment 1 were also asked to rate each orthosis relative to their shoe using a criterion scale. Measures were taken in both walking and jogging. A soft-flat orthosis was found to be significantly more comfortable than all contoured orthoses, including one of the same hardness using both the VAS and ranking scale. Using the VAS, differences between the soft-flat and contoured orthoses were also found to be clinically meaningful for dimensions of overall comfort and arch cushioning (>10.2 mm). Perceived comfort of orthoses significantly differed between walking and jogging on the VAS but was not clinically meaningful. Comparisons between the VAS and criterion scale detected a VAS difference of 11.34 mm between orthoses judged as comfortable as my shoe and slightly more comfortable than my shoe. There was a VAS difference of 17.49 mm between orthoses judged as comfortable as my shoe and slightly less comfortable than my shoe. Healthy subjects prioritize contouring over hardness when judging the comfort of orthoses. Clinically meaningful changes were required to change or enhance the comfort of orthoses standardized in material type and fabrication.
Nestle, Ursula; Schaefer-Schuler, Andrea; Kremp, Stephanie; Groeschel, Andreas; Hellwig, Dirk; Rübe, Christian; Kirsch, Carl-Martin
2007-04-01
FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN(PET)). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN(PET)). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV(vis); 40% SUVmax: GTV40; SUV=2.5: GTV2.5; target/background (T/B) algorithm: GTV(bg)). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUVmax = 2.5; p = 0.0001 for technical delineability by GTV2.5; p = 0.003 by GTV40), favouring the GTV(bg) method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring.
Computing retinal contour from optical biometry.
Faria-Ribeiro, Miguel; López-Gil, Norberto; Navarro, Rafael; Lopes-Ferreira, Daniela; Jorge, Jorge; González-Méijome, Jose Manuel
2014-04-01
To describe a new methodology that derives horizontal posterior retinal contours from partial coherence interferometry (PCI) and ray tracing using the corneal topography. Corneal topography and PCI for seven horizontal visual field eccentricities correspondent to the central 60 degrees of the posterior pole were obtained in 55 myopic eyes. A semicustomized eye model based on the subject's corneal topography and the Navarro eye model was generated using Zemax-EE software. The model was used to compute the optical path length in the seven directions where PCI measurements were obtained. Vitreous chamber depth was computed using the PCI values obtained at each of those directions. Matlab software was developed to fit the best conic curve to the set of points previously obtained. We tested the limit in the accuracy of the methodology when the actual cornea of the subject is not used and for two different lens geometries. A standard eye model can induce an error in the retina sagitta estimation of the order of hundreds of micrometers in comparison with the semicustomized eye model. However, the use of a different lens model leads to an error of the order of tens of micrometers. The apical radius and conic constant of the average fit were -11.91 mm and -0.15, respectively. In general, a nasal-temporal asymmetry in the retina contour was found, showing mean larger values of vitreous chamber depth in the nasal side of the eye. The use of a semicustomized eye model, together with optical path length measured by PCI for different angles, can be used to predict the retinal contour within tenths of micrometers. This methodology can be useful in studies trying to understand the effect of peripheral retinal location on myopia progression as well as modeling the optics of the human eye for a wide field.
INDIAM--an e-learning system for the interpretation of mammograms.
Guliato, Denise; Bôaventura, Ricardo S; Maia, Marcelo A; Rangayyan, Rangaraj M; Simedo, Mariângela S; Macedo, Túlio A A
2009-08-01
We propose the design of a teaching system named Interpretation and Diagnosis of Mammograms (INDIAM) for training students in the interpretation of mammograms and diagnosis of breast cancer. The proposed system integrates an illustrated tutorial on radiology of the breast, that is, mammography, which uses education techniques to guide the user (doctors, students, or researchers) through various concepts related to the diagnosis of breast cancer. The user can obtain informative text about specific subjects, access a library of bibliographic references, and retrieve cases from a mammographic database that are similar to a query case on hand. The information of each case stored in the mammographic database includes the radiological findings, the clinical history, the lifestyle of the patient, and complementary exams. The breast cancer tutorial is linked to a module that simulates the analysis and diagnosis of a mammogram. The tutorial incorporates tools for helping the user to evaluate his or her knowledge about a specific subject by using the education system or by simulating a diagnosis with appropriate feedback in case of error. The system also makes available digital image processing tools that allow the user to draw the contour of a lesion, the contour of the breast, or identify a cluster of calcifications in a given mammogram. The contours provided by the user are submitted to the system for evaluation. The teaching system is integrated with AMDI-An Indexed Atlas of Digital Mammograms-that includes case studies, e-learning, and research systems. All the resources are accessible via the Web.
Williams, Cathy; Gilchrist, Iain D; Fraser, Sue; McCarthy, H M; Parker, Julie; Warnes, Penny; Young, Jill; Hyvarinen, Lea
2015-06-01
There is an increasing recognition that visuocognitive difficulties occur in children with neurodevelopmental problems. We obtained normative data for the performance of primary school children using three tests of visuocognitive function that are practicable in a clinical setting. We tested 214 children aged between 4 and 11 years without known developmental problems, using tests to assess (1) orientation recognition and adaptive movement (postbox task), (2) object recognition (rectangles task) and (3) spatial integration (contours task). 96% could do the postbox task with ease-only 4% (all aged <9 years) exhibited minor difficulties. Errors in the rectangles task decreased with age: 33% of children aged 4-5 years had major difficulties but >99% of children aged ≥6 years had no, or minor, difficulties. Median scores for the contours task improved with age, and after age 8 years, 99% could see the contour using long-range spatial integration rather than density. These different aspects of children's visuocognitive performance were testable in a field setting. The data provide a benchmark by which to judge performance of children with neurodevelopmental problems and may be useful in assessment with a view to providing effective supportive strategies for children whose visuocognitive skills are lower than the expectation for their age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Contours of Neoliberalism in US Empirical Educational Research
ERIC Educational Resources Information Center
Schmeichel, Mardi; Sharma, Ajay; Pittard, Elizabeth
2017-01-01
Neoliberalism has an enormous influence on P-12 education in most industrial societies. In this integrative, theoretical literature review, we surveyed the journal articles on neoliberalism in US-based educational research to better understand how neoliberalism has been conceptualized in this body of work and to offer implications for future…
Evaluation of using digital gravity field models for zoning map creation
NASA Astrophysics Data System (ADS)
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
2012-07-01
Beaches + Anastasia cu y d/ yr Table 1. Measured Ebb-delta Volume of St. Augustine Inlet, Florida at the 30ft contour (Legault et al. 2012...along Anastasia State Park). The permeability of the terminal groins (between 0% and 100%) were estimated based on visual inspection of sand...lft) Percent volume change for the three reaches and the ebb-tidal delta are shown in Figure 15 for all modeled alternatives. Anastasia State
A contour-based shape descriptor for biomedical image classification and retrieval
NASA Astrophysics Data System (ADS)
You, Daekeun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-12-01
Contours, object blobs, and specific feature points are utilized to represent object shapes and extract shape descriptors that can then be used for object detection or image classification. In this research we develop a shape descriptor for biomedical image type (or, modality) classification. We adapt a feature extraction method used in optical character recognition (OCR) for character shape representation, and apply various image preprocessing methods to successfully adapt the method to our application. The proposed shape descriptor is applied to radiology images (e.g., MRI, CT, ultrasound, X-ray, etc.) to assess its usefulness for modality classification. In our experiment we compare our method with other visual descriptors such as CEDD, CLD, Tamura, and PHOG that extract color, texture, or shape information from images. The proposed method achieved the highest classification accuracy of 74.1% among all other individual descriptors in the test, and when combined with CSD (color structure descriptor) showed better performance (78.9%) than using the shape descriptor alone.
Computational analysis of unmanned aerial vehicle (UAV)
NASA Astrophysics Data System (ADS)
Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran
2017-01-01
A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.
Local figure-ground cues are valid for natural images.
Fowlkes, Charless C; Martin, David R; Malik, Jitendra
2007-06-08
Figure-ground organization refers to the visual perception that a contour separating two regions belongs to one of the regions. Recent studies have found neural correlates of figure-ground assignment in V2 as early as 10-25 ms after response onset, providing strong support for the role of local bottom-up processing. How much information about figure-ground assignment is available from locally computed cues? Using a large collection of natural images, in which neighboring regions were assigned a figure-ground relation by human observers, we quantified the extent to which figural regions locally tend to be smaller, more convex, and lie below ground regions. Our results suggest that these Gestalt cues are ecologically valid, and we quantify their relative power. We have also developed a simple bottom-up computational model of figure-ground assignment that takes image contours as input. Using parameters fit to natural image statistics, the model is capable of matching human-level performance when scene context limited.
Universal fiber-optic C.I.E. colorimeter
Kronberg, James W.
1992-01-01
Apparatus for color measurements according to the C.I.E. system comprises a first fiber optic cable for receiving and linearizing light from a light source, a lens system for spectrally displaying the linearized light and focusing the light on one end of a trifurcated fiber optic assembly that integrates and separates the light according to the three C.I.E. tristimulus functions. The separated light is received by three photodiodes and electronically evaluated to determine the magnitude of the light corresponding to the tristimulus functions. The fiber optic assembly is made by forming, at one end, a bundle of optic fibers to match the contours of one of the tristimulus functions, encapsulating that bundle, adding a second bundle that, together with the first bundle, will match the contours of the first plus one other tristimulus function, encapsulating that second bundle, then adding a third bundle which together with the first and second bundles, has contours matching the sum of all three tristimulus functions. At the other end of the assembly the three bundles are separated and aligned with their respective photodiodes.
NASA Astrophysics Data System (ADS)
Lu, J.; Egger, J.; Wimmer, A.; Großkopf, S.; Freisleben, B.
2008-03-01
In this paper we present an efficient algorithm for the segmentation of the inner and outer boundary of thoratic and abdominal aortic aneurysms (TAA & AAA) in computed tomography angiography (CTA) acquisitions. The aneurysm segmentation includes two steps: first, the inner boundary is segmented based on a grey level model with two thresholds; then, an adapted active contour model approach is applied to the more complicated outer boundary segmentation, with its initialization based on the available inner boundary segmentation. An opacity image, which aims at enhancing important features while reducing spurious structures, is calculated from the CTA images and employed to guide the deformation of the model. In addition, the active contour model is extended by a constraint force that prevents intersections of the inner and outer boundary and keeps the outer boundary at a distance, given by the thrombus thickness, to the inner boundary. Based upon the segmentation results, we can measure the aneurysm size at each centerline point on the centerline orthogonal multiplanar reformatting (MPR) plane. Furthermore, a 3D TAA or AAA model is reconstructed from the set of segmented contours, and the presence of endoleaks is detected and highlighted. The implemented method has been evaluated on nine clinical CTA data sets with variations in anatomy and location of the pathology and has shown promising results.
Attention to emotion modulates fMRI activity in human right superior temporal sulcus.
Narumoto, J; Okada, T; Sadato, N; Fukui, K; Yonekura, Y
2001-10-01
A parallel neural network has been proposed for processing various types of information conveyed by faces including emotion. Using functional magnetic resonance imaging (fMRI), we tested the effect of the explicit attention to the emotional expression of the faces on the neuronal activity of the face-responsive regions. Delayed match to sample procedure was adopted. Subjects were required to match the visually presented pictures with regard to the contour of the face pictures, facial identity, and emotional expressions by valence (happy and fearful expressions) and arousal (fearful and sad expressions). Contour matching of the non-face scrambled pictures was used as a control condition. The face-responsive regions that responded more to faces than to non-face stimuli were the bilateral lateral fusiform gyrus (LFG), the right superior temporal sulcus (STS), and the bilateral intraparietal sulcus (IPS). In these regions, general attention to the face enhanced the activities of the bilateral LFG, the right STS, and the left IPS compared with attention to the contour of the facial image. Selective attention to facial emotion specifically enhanced the activity of the right STS compared with attention to the face per se. The results suggest that the right STS region plays a special role in facial emotion recognition within distributed face-processing systems. This finding may support the notion that the STS is involved in social perception.
Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh
2007-11-01
This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc
Method for contour extraction for object representation
Skourikhine, Alexei N.; Prasad, Lakshman
2005-08-30
Contours are extracted for representing a pixelated object in a background pixel field. An object pixel is located that is the start of a new contour for the object and identifying that pixel as the first pixel of the new contour. A first contour point is then located on the mid-point of a transition edge of the first pixel. A tracing direction from the first contour point is determined for tracing the new contour. Contour points on mid-points of pixel transition edges are sequentially located along the tracing direction until the first contour point is again encountered to complete tracing the new contour. The new contour is then added to a list of extracted contours that represent the object. The contour extraction process associates regions and contours by labeling all the contours belonging to the same object with the same label.
Image and emotion: from outcomes to brain behavior.
Nanda, Upali; Zhu, Xi; Jansen, Ben H
2012-01-01
A systematic review of neuroscience articles on the emotional states of fear, anxiety, and pain to understand how emotional response is linked to the visual characteristics of an image at the level of brain behavior. A number of outcome studies link exposure to visual images (with nature content) to improvements in stress, anxiety, and pain perception. However, an understanding of the underlying perceptual mechanisms has been lacking. In this article, neuroscience studies that use visual images to induce fear, anxiety, or pain are reviewed to gain an understanding of how the brain processes visual images in this context and to explore whether this processing can be linked to specific visual characteristics. The amygdala was identified as one of the key regions of the brain involved in the processing of fear, anxiety, and pain (induced by visual images). Other key areas included the thalamus, insula, and hippocampus. Characteristics of visual images such as the emotional dimension (valence/arousal), subject matter (familiarity, ambiguity, novelty, realism, and facial expressions), and form (sharp and curved contours) were identified as key factors influencing emotional processing. The broad structural properties of an image and overall content were found to have a more pivotal role in the emotional response than the specific details of an image. Insights on specific visual properties were translated to recommendations for what should be incorporated-and avoided-in healthcare environments.
Audio-visual integration through the parallel visual pathways.
Kaposvári, Péter; Csete, Gergő; Bognár, Anna; Csibri, Péter; Tóth, Eszter; Szabó, Nikoletta; Vécsei, László; Sáry, Gyula; Tamás Kincses, Zsigmond
2015-10-22
Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction. Copyright © 2015. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Michael, E-mail: mng@radoncvic.com.au; Leong, Trevor; University of Melbourne
2012-08-01
Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steeringmore » committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.« less
Spectral Signatures of Feedforward and Recurrent Circuitry in Monkey Area MT.
Solomon, Selina S; Morley, John W; Solomon, Samuel G
2017-05-01
Recordings of local field potential (LFP) in the visual cortex can show rhythmic activity at gamma frequencies (30-100 Hz). While the gamma rhythms in the primary visual cortex have been well studied, the structural and functional characteristics of gamma rhythms in extrastriate visual cortex are less clear. Here, we studied the spatial distribution and functional specificity of gamma rhythms in extrastriate middle temporal (MT) area of visual cortex in marmoset monkeys. We found that moving gratings induced narrowband gamma rhythms across cortical layers that were coherent across much of area MT. Moving dot fields instead induced a broadband increase in LFP in middle and upper layers, with weaker narrowband gamma rhythms in deeper layers. The stimulus dependence of LFP response in middle and upper layers of area MT appears to reflect the presence (gratings) or absence (dot fields and other textures) of strongly oriented contours. Our results suggest that gamma rhythms in these layers are propagated from earlier visual cortex, while those in the deeper layers may emerge in area MT. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochiai, Yoshihiro
Heat-conduction analysis under steady state without heat generation can easily be treated by the boundary element method. However, in the case with heat conduction with heat generation can approximately be solved without a domain integral by an improved multiple-reciprocity boundary element method. The convention multiple-reciprocity boundary element method is not suitable for complicated heat generation. In the improved multiple-reciprocity boundary element method, on the other hand, the domain integral in each step is divided into point, line, and area integrals. In order to solve the problem, the contour lines of heat generation, which approximate the actual heat generation, are used.
Effects of aging on audio-visual speech integration.
Huyse, Aurélie; Leybaert, Jacqueline; Berthommier, Frédéric
2014-10-01
This study investigated the impact of aging on audio-visual speech integration. A syllable identification task was presented in auditory-only, visual-only, and audio-visual congruent and incongruent conditions. Visual cues were either degraded or unmodified. Stimuli were embedded in stationary noise alternating with modulated noise. Fifteen young adults and 15 older adults participated in this study. Results showed that older adults had preserved lipreading abilities when the visual input was clear but not when it was degraded. The impact of aging on audio-visual integration also depended on the quality of the visual cues. In the visual clear condition, the audio-visual gain was similar in both groups and analyses in the framework of the fuzzy-logical model of perception confirmed that older adults did not differ from younger adults in their audio-visual integration abilities. In the visual reduction condition, the audio-visual gain was reduced in the older group, but only when the noise was stationary, suggesting that older participants could compensate for the loss of lipreading abilities by using the auditory information available in the valleys of the noise. The fuzzy-logical model of perception confirmed the significant impact of aging on audio-visual integration by showing an increased weight of audition in the older group.
Dissociation between perceptual processing and priming in long-term lorazepam users.
Giersch, Anne; Vidailhet, Pierre
2006-12-01
Acute effects of lorazepam on visual information processing, perceptual priming and explicit memory are well established. However, visual processing and perceptual priming have rarely been explored in long-term lorazepam users. By exploring these functions it was possible to test the hypothesis that difficulty in processing visual information may lead to deficiencies in perceptual priming. Using a simple blind procedure, we tested explicit memory, perceptual priming and visual perception in 15 long-term lorazepam users and 15 control subjects individually matched according to sex, age and education level. Explicit memory, perceptual priming, and the identification of fragmented pictures were found to be preserved in long-term lorazepam users, contrary to what is usually observed after an acute drug intake. The processing of visual contour, on the other hand, was still significantly impaired. These results suggest that the effects observed on low-level visual perception are independent of the acute deleterious effects of lorazepam on perceptual priming. A comparison of perceptual priming in subjects with low- vs. high-level identification of new fragmented pictures further suggests that the ability to identify fragmented pictures has no influence on priming. Despite the fact that they were treated with relatively low doses and far from peak plasma concentration, it is noteworthy that in long-term users memory was preserved.
Viswanathan, Sivaram; Jayakumar, Jaikishan; Vidyasagar, Trichur R
2011-01-01
Abstract Neurones of the mammalian primary visual cortex have the remarkable property of being selective for the orientation of visual contours. It has been controversial whether the selectivity arises from intracortical mechanisms, from the pattern of afferent connectivity from lateral geniculate nucleus (LGN) to cortical cells or from the sharpening of a bias that is already present in the responses of many geniculate cells. To investigate this, we employed a variation of an electrical stimulation protocol in the LGN that has been claimed to suppress intracortical inputs and isolate the raw geniculocortical input to a striate cortical cell. Such stimulation led to a sharpening of the orientation sensitivity of geniculate cells themselves and some broadening of cortical orientation selectivity. These findings are consistent with the idea that non-specific inhibition of the signals from LGN cells which exhibit an orientation bias can generate the sharp orientation selectivity of primary visual cortical cells. This obviates the need for an excitatory convergence from geniculate cells whose receptive fields are arranged along a row in visual space as in the classical model and provides a framework for orientation sensitivity originating in the retina and getting sharpened through inhibition at higher levels of the visual pathway. PMID:21486788
A review: aluminum nitride MEMS contour-mode resonator
NASA Astrophysics Data System (ADS)
Yunhong, Hou; Meng, Zhang; Guowei, Han; Chaowei, Si; Yongmei, Zhao; Jin, Ning
2016-10-01
Over the past several decades, the technology of micro-electromechanical system (MEMS) has advanced. A clear need of miniaturization and integration of electronics components has had new solutions for the next generation of wireless communications. The aluminum nitride (AlN) MEMS contour-mode resonator (CMR) has emerged and become promising and competitive due to the advantages of the small size, high quality factor and frequency, low resistance, compatibility with integrated circuit (IC) technology, and the ability of integrating multi-frequency devices on a single chip. In this article, a comprehensive review of AlN MEMS CMR technology will be presented, including its basic working principle, main structures, fabrication processes, and methods of performance optimization. Among these, the deposition and etching process of the AlN film will be specially emphasized and recent advances in various performance optimization methods of the CMR will be given through specific examples which are mainly focused on temperature compensation and reducing anchor losses. This review will conclude with an assessment of the challenges and future trends of the CMR. Project supported by National Natural Science Foundation (Nos. 61274001, 61234007, 61504130), the Nurturing and Development Special Projects of Beijing Science and Technology Innovation Base's Financial Support (No. Z131103002813070), and the National Defense Science and Technology Innovation Fund of CAS (No. CXJJ-14-M32).
Learning the Cardiac Cycle: Simultaneous Observations of Electrical and Mechanical Events.
ERIC Educational Resources Information Center
Kenney, Richard Alec; Frey, Mary Anne Bassett
1980-01-01
Described is a method for integrating electrical and mechanical events of the cardiac cycle by measuring systolic time intervals, which involves simultaneous recording of the ECG, a phonocardiogram, and the contour of the carotid pulse. Both resting and stress change data are provided as bases for class discussion. (CS)
Buttock augmentation: case studies of fat injection monitored by magnetic resonance imaging.
Murillo, William L
2004-11-01
This article examines the injection of megavolumes of autologous fat cells as a means of buttock augmentation in 162 patients over a 7-year period. The author documents the use of magnetic resonance imaging in six patients to visualize the intramuscular location, integration, and duration of the injected fat. With the patient under epidural or general anesthesia, fat cells were harvested with a 5-mm blunt cannula and then stored in an empty sterile intravenous bag or bottle trap. Decantation was the only process used to separate the fat cells from the saline and serosanguineous components. Up to 1260 cc of fat cells were been injected into each buttock, the largest amount of fat grafting ever reported. Clinical assessment estimated a 20 percent loss of augmentation effect during the first 4 months. Patients were generally pleased with the final shape and volume of the buttock contour. In follow-up evaluation, magnetic resonance imaging supported the clinical indicators that the injection of large quantities of fat cells appears to be a safe and effective method for buttock enhancement. This process has inherent advantages; nevertheless, further research is required to clarify our understanding of the predictability and longevity of this technique.
Supervised interpretation of echocardiograms with a psychological model of expert supervision
NASA Astrophysics Data System (ADS)
Revankar, Shriram V.; Sher, David B.; Shalin, Valerie L.; Ramamurthy, Maya
1993-07-01
We have developed a collaborative scheme that facilitates active human supervision of the binary segmentation of an echocardiogram. The scheme complements the reliability of a human expert with the precision of segmentation algorithms. In the developed system, an expert user compares the computer generated segmentation with the original image in a user friendly graphics environment, and interactively indicates the incorrectly classified regions either by pointing or by circling. The precise boundaries of the indicated regions are computed by studying original image properties at that region, and a human visual attention distribution map obtained from the published psychological and psychophysical research. We use the developed system to extract contours of heart chambers from a sequence of two dimensional echocardiograms. We are currently extending this method to incorporate a richer set of inputs from the human supervisor, to facilitate multi-classification of image regions depending on their functionality. We are integrating into our system the knowledge related constraints that cardiologists use, to improve the capabilities of our existing system. This extension involves developing a psychological model of expert reasoning, functional and relational models of typical views in echocardiograms, and corresponding interface modifications to map the suggested actions to image processing algorithms.
What is in a contour map? A region-based logical formalization of contour semantics
Usery, E. Lynn; Hahmann, Torsten
2015-01-01
This paper analyses and formalizes contour semantics in a first-order logic ontology that forms the basis for enabling computational common sense reasoning about contour information. The elicited contour semantics comprises four key concepts – contour regions, contour lines, contour values, and contour sets – and their subclasses and associated relations, which are grounded in an existing qualitative spatial ontology. All concepts and relations are illustrated and motivated by physical-geographic features identifiable on topographic contour maps. The encoding of the semantics of contour concepts in first-order logic and a derived conceptual model as basis for an OWL ontology lay the foundation for fully automated, semantically-aware qualitative and quantitative reasoning about contours.
Fast automatic delineation of cardiac volume of interest in MSCT images
NASA Astrophysics Data System (ADS)
Lorenz, Cristian; Lessick, Jonathan; Lavi, Guy; Bulow, Thomas; Renisch, Steffen
2004-05-01
Computed Tomography Angiography (CTA) is an emerging modality for assessing cardiac anatomy. The delineation of the cardiac volume of interest (VOI) is a pre-processing step for subsequent visualization or image processing. It serves the suppression of anatomic structures being not in the primary focus of the cardiac application, such as sternum, ribs, spinal column, descending aorta and pulmonary vasculature. These structures obliterate standard visualizations such as direct volume renderings or maximum intensity projections. In addition, outcome and performance of post-processing steps such as ventricle suppression, coronary artery segmentation or the detection of short and long axes of the heart can be improved. The structures being part of the cardiac VOI (coronary arteries and veins, myocardium, ventricles and atria) differ tremendously in appearance. In addition, there is no clear image feature associated with the contour (or better cut-surface) distinguishing between cardiac VOI and surrounding tissue making the automatic delineation of the cardiac VOI a difficult task. The presented approach locates in a first step chest wall and descending aorta in all image slices giving a rough estimate of the location of the heart. In a second step, a Fourier based active contour approach delineates slice-wise the border of the cardiac VOI. The algorithm has been evaluated on 41 multi-slice CT data-sets including cases with coronary stents and venous and arterial bypasses. The typical processing time amounts to 5-10s on a 1GHz P3 PC.
A perceptual space of local image statistics.
Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M
2015-12-01
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. Copyright © 2015 Elsevier Ltd. All rights reserved.
A perceptual space of local image statistics
Victor, Jonathan D.; Thengone, Daniel J.; Rizvi, Syed M.; Conte, Mary M.
2015-01-01
Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice – a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14 min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4 min. In sum, local image statistics forms a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. PMID:26130606
Cognitive and Developmental Influences in Visual-Motor Integration Skills in Young Children
ERIC Educational Resources Information Center
Decker, Scott L.; Englund, Julia A.; Carboni, Jessica A.; Brooks, Janell H.
2011-01-01
Measures of visual-motor integration skills continue to be widely used in psychological assessments with children. However, the construct validity of many visual-motor integration measures remains unclear. In this study, we investigated the relative contributions of maturation and cognitive skills to the development of visual-motor integration…
NASA Astrophysics Data System (ADS)
Gardner, Stephen J.; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard, II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J.; Elshaikh, Mohamed A.
2015-06-01
This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2-CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring on CBCT, we conclude that contours generated with B-Spline DIR require physician review and editing if they are to be used in the clinic.
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
Memisevic, Haris; Sinanovic, Osman
2013-12-01
The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.
Propulsion-airframe integration for commercial and military aircraft
NASA Technical Reports Server (NTRS)
Henderson, William P.
1988-01-01
A significant level of research is ongoing at NASA's Langley Research Center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle location studies for turbofan transports, nacelle and wing contouring and propeller location effects for turboprop transports, and nozzle shaping and empennage effects for high performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20. Some higher Mach number data obtained at NASA's Lewis Research Center is also included.
Various background pattern-effect on saccadic suppression.
Mitrani, L; Radil-Weiss, T; Yakimoff, N; Mateeff, S; Bozkov, V
1975-09-01
It has been proved that the saccadic suppression is a phenomenon closely related to the presence of contours and structures in the visual field. Experiments were performed to clarify whether the structured background influences the pattern of attention distribution (making the stimulus detection more difficult) or whether the elevation of visual threshold is due to the "masking' effect of the moving background image over the retina. Two types of backgrounds were used therefore: those with symbolic meaning in the processing of which "psychological' mechanisms are presumably involved like picture reproductions of famous painters and photographs of nudes, and those lacking semantic significance like computer figures composed of randomly distributed black and white squares with different grain expressed as the entropy of the pattern. The results show that saccadic suppression is primarily a consequence of peripheral mechanisms, probably of lateral inhibition in the visual field occurring in the presence of moving edges over the retina. Psychological factors have to be excluded as being fundamental for saccadic suppression.
Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D.
2013-01-01
The use of acoustic Doppler current profilers (ADCP) for discharge measurements and three-dimensional flow mapping has increased rapidly in recent years and has been primarily driven by advances in acoustic technology and signal processing. Recent research has developed a variety of methods for processing data obtained from a range of ADCP deployments and this paper builds on this progress by describing new software for processing and visualizing ADCP data collected along transects in rivers or other bodies of water. The new utility, the Velocity Mapping Toolbox (VMT), allows rapid processing (vector rotation, projection, averaging and smoothing), visualization (planform and cross-section vector and contouring), and analysis of a range of ADCP-derived datasets. The paper documents the data processing routines in the toolbox and presents a set of diverse examples that demonstrate its capabilities. The toolbox is applicable to the analysis of ADCP data collected in a wide range of aquatic environments and is made available as open-source code along with this publication.
Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M
2015-09-01
To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL) . A prospective, repeated-measures design . Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment . Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety . Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms . Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.
NASA Astrophysics Data System (ADS)
A novel production technology in aircraft construction was developed for manufacturing parts of shapes and dimensions that involve only small quantities for one machine. The process, called computerized integrated and automated manufacturing (CIAM), makes it possible to make ready-to-install sheet-metal parts for all types of aircraft. All of the system's job sequences, which include milling the flat sheet-metal parts in stacks, deburring, heat treatment, and forming under the high-pressure rubber-pad press, are automated. The CIAM production center, called SIAM Forming, fulfills the prerequisites for the cost-effective production of sheet-metal parts made of aluminum alloys, titanium, or steel. The SIAM procedure results in negligible material loss through computerizing both component-contour nesting of the sheet-metal parts and contour milling.
Entropy reduction via simplified image contourization
NASA Technical Reports Server (NTRS)
Turner, Martin J.
1993-01-01
The process of contourization is presented which converts a raster image into a set of plateaux or contours. These contours can be grouped into a hierarchical structure, defining total spatial inclusion, called a contour tree. A contour coder has been developed which fully describes these contours in a compact and efficient manner and is the basis for an image compression method. Simplification of the contour tree has been undertaken by merging contour tree nodes thus lowering the contour tree's entropy. This can be exploited by the contour coder to increase the image compression ratio. By applying general and simple rules derived from physiological experiments on the human vision system, lossy image compression can be achieved which minimizes noticeable artifacts in the simplified image.
WAVDRAG- ZERO-LIFT WAVE DRAG OF COMPLEX AIRCRAFT CONFIGURATIONS
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1994-01-01
WAVDRAG calculates the supersonic zero-lift wave drag of complex aircraft configurations. The numerical model of an aircraft is used throughout the design process from concept to manufacturing. WAVDRAG incorporates extended geometric input capabilities to permit use of a more accurate mathematical model. With WAVDRAG, the engineer can define aircraft components as fusiform or nonfusiform in terms of non-intersecting contours in any direction or more traditional parallel contours. In addition, laterally asymmetric configurations can be simulated. The calculations in WAVDRAG are based on Whitcomb's area-rule computation of equivalent-bodies, with modifications for supersonic speed. Instead of using a single equivalent-body, WAVDRAG calculates a series of equivalent-bodies, one for each roll angle. The total aircraft configuration wave drag is the integrated average of the equivalent-body wave drags through the full roll range of 360 degrees. WAVDRAG currently accepts up to 30 user-defined components containing a maximum of 50 contours as geometric input. Each contour contains a maximum of 50 points. The Mach number, angle-of-attack, and coordinates of angle-of-attack rotation are also input. The program warns of any fusiform-body line segments having a slope larger than the Mach angle. WAVDRAG calculates total drag and the wave-drag coefficient of the specified aircraft configuration. WAVDRAG is written in FORTRAN 77 for batch execution and has been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 63K (octal) of 60 bit words. This program was developed in 1983.
3-D vision and figure-ground separation by visual cortex.
Grossberg, S
1994-01-01
A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)
Buchs, Galit; Maidenbaum, Shachar; Levy-Tzedek, Shelly; Amedi, Amir
2015-01-01
Purpose: To visually perceive our surroundings we constantly move our eyes and focus on particular details, and then integrate them into a combined whole. Current visual rehabilitation methods, both invasive, like bionic-eyes and non-invasive, like Sensory Substitution Devices (SSDs), down-sample visual stimuli into low-resolution images. Zooming-in to sub-parts of the scene could potentially improve detail perception. Can congenitally blind individuals integrate a ‘visual’ scene when offered this information via different sensory modalities, such as audition? Can they integrate visual information –perceived in parts - into larger percepts despite never having had any visual experience? Methods: We explored these questions using a zooming-in functionality embedded in the EyeMusic visual-to-auditory SSD. Eight blind participants were tasked with identifying cartoon faces by integrating their individual components recognized via the EyeMusic’s zooming mechanism. Results: After specialized training of just 6–10 hours, blind participants successfully and actively integrated facial features into cartooned identities in 79±18% of the trials in a highly significant manner, (chance level 10% ; rank-sum P < 1.55E-04). Conclusions: These findings show that even users who lacked any previous visual experience whatsoever can indeed integrate this visual information with increased resolution. This potentially has important practical visual rehabilitation implications for both invasive and non-invasive methods. PMID:26518671
Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Napolillo, Zachary G.
The desire and demand to fly farther and faster has progressively integrated the concept of optimization with airfoil design, resulting in increasingly complex numerical tools pursuing efficiency often at diminishing returns; while the costs and difficulty associated with fabrication increases with design complexity. Such efficiencies may often be necessary due to the power density limitations of certain aircraft such as small unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs). This research, however, focuses on reducing the complexity of airfoils for applications where aerodynamic performance is less important than the efficiency of manufacturing; in this case a Hybrid Projectile. By employing faceted sections to approximate traditional contoured wing sections it may be possible to expedite manufacturing and reduce costs. We applied this method to the development of a low Reynolds number, disposable Hybrid Projectile requiring a 4.5:1 glide ratio, resulting in a series of airfoils which are geometric approximations to highly contoured cross-sections called ShopFoils. This series of airfoils both numerically and experimentally perform within a 10% margin of the SD6060 airfoil at low Re. Additionally, flow visualization has been conducted to qualitatively determine what mechanisms, if any, are responsible for the similarity in performance between the faceted ShopFoil sections and the SD6060. The data obtained by these experiments did not conclusively reveal how the faceted surfaces may influence low Re flow but did indicate that the ShopFoil s did not maintain flow attachment at higher angles of attack than the SD6060. Two reasons are provided for the unexpected performance of the ShopFoil: one is related to downwash effects, which are suspected of placing the outer portion of the span at an effective angle of attack where the ShopFoils outperform the SD6060; the other is the influence of the tip vortex on separation near the wing tips, which possibly provides a 'comparative advantage' to the ShopFoil because it has more to gain from a reduction in its pressure drag component.
Acuity-independent effects of visual deprivation on human visual cortex
Hou, Chuan; Pettet, Mark W.; Norcia, Anthony M.
2014-01-01
Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion. PMID:25024230
Measuring Contours of Coal-Seam Cuts
NASA Technical Reports Server (NTRS)
1983-01-01
Angle transducers measure angle between track sections as longwall shearer proceeds along coal face. Distance transducer functions in conjunction with angle transducers to obtain relative angles at known positions. When cut is complete, accumulated data are stored on cassette tape, and track profile is computed and displayed. Micro-processor-based instrument integrates small changes in angle and distance.
Assessment of 3D Models Used in Contours Studies
ERIC Educational Resources Information Center
Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes
2015-01-01
This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soultan, D; Murphy, J; James, C
2015-06-15
Purpose: To assess the accuracy of internal target volume (ITV) segmentation of lung tumors for treatment planning of simultaneous integrated boost (SIB) radiotherapy as seen in 4D PET/CT images, using a novel 3D-printed phantom. Methods: The insert mimics high PET tracer uptake in the core and 50% uptake in the periphery, by using a porous design at the periphery. A lung phantom with the insert was placed on a programmable moving platform. Seven breathing waveforms of ideal and patient-specific respiratory motion patterns were fed to the platform, and 4D PET/CT scans were acquired of each of them. CT images weremore » binned into 10 phases, and PET images were binned into 5 phases following the clinical protocol. Two scenarios were investigated for segmentation: a gate 30–70 window, and no gating. The radiation oncologist contoured the outer ITV of the porous insert with on CT images, while the internal void volume with 100% uptake was contoured on PET images for being indistinguishable from the outer volume in CT images. Segmented ITVs were compared to the expected volumes based on known target size and motion. Results: 3 ideal breathing patterns, 2 regular-breathing patient waveforms, and 2 irregular-breathing patient waveforms were used for this study. 18F-FDG was used as the PET tracer. The segmented ITVs from CT closely matched the expected motion for both no gating and gate 30–70 window, with disagreement of contoured ITV with respect to the expected volume not exceeding 13%. PET contours were seen to overestimate volumes in all the cases, up to more than 40%. Conclusion: 4DPET images of a novel 3D printed phantom designed to mimic different uptake values were obtained. 4DPET contours overestimated ITV volumes in all cases, while 4DCT contours matched expected ITV volume values. Investigation of the cause and effects of the discrepancies is undergoing.« less
NASA Technical Reports Server (NTRS)
Lowry, Stephen C.; Weissman, Paul R.; Sykes, Mark V.; Reach, William T.
2003-01-01
We are conducting an observational program designed to determine the overall distributions of size, shape, rotation period, and surface characteristics of cometary nuclei. Here, we present results from a study of the Jupiter- family comet 2P/Encke based on observations from Steward Observatory's 2.3m Bok Telescope at Kitt Peak. This comet has been observed extensively in the past and was one of the primary flyby targets of the recently failed CONTOUR mission.
Evaluating a robust contour tracker on echocardiographic sequences.
Jacob, G; Noble, J A; Mulet-Parada, M; Blake, A
1999-03-01
In this paper we present an evaluation of a robust visual image tracker on echocardiographic image sequences. We show how the tracking framework can be customized to define an appropriate shape space that describes heart shape deformations that can be learnt from a training data set. We also investigate energy-based temporal boundary enhancement methods to improve image feature measurement. Results are presented demonstrating real-time tracking on real normal heart motion data sequences and abnormal synthesized and real heart motion data sequences. We conclude by discussing some of our current research efforts.
Shape and texture fused recognition of flying targets
NASA Astrophysics Data System (ADS)
Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás
2011-06-01
This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).
Mandelbaum, Tal; Lee, Joon; Scott, Daniel J; Mark, Roger G; Malhotra, Atul; Howell, Michael D; Talmor, Daniel
2013-03-01
The observation periods and thresholds of serum creatinine and urine output defined in the Acute Kidney Injury Network (AKIN) criteria were not empirically derived. By continuously varying creatinine/urine output thresholds as well as the observation period, we sought to investigate the empirical relationships among creatinine, oliguria, in-hospital mortality, and receipt of renal replacement therapy (RRT). Using a high-resolution database (Multiparameter Intelligent Monitoring in Intensive Care II), we extracted data from 17,227 critically ill patients with an in-hospital mortality rate of 10.9 %. The 14,526 patients had urine output measurements. Various combinations of creatinine/urine output thresholds and observation periods were investigated by building multivariate logistic regression models for in-hospital mortality and RRT predictions. For creatinine, both absolute and percentage increases were analyzed. To visualize the dependence of adjusted mortality and RRT rate on creatinine, the urine output, and the observation period, we generated contour plots. Mortality risk was high when absolute creatinine increase was high regardless of the observation period, when percentage creatinine increase was high and the observation period was long, and when oliguria was sustained for a long period of time. Similar contour patterns emerged for RRT. The variability in predictive accuracy was small across different combinations of thresholds and observation periods. The contour plots presented in this article complement the AKIN definition. A multi-center study should confirm the universal validity of the results presented in this article.
Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.
Lustberg, Tim; van Soest, Johan; Gooding, Mark; Peressutti, Devis; Aljabar, Paul; van der Stoep, Judith; van Elmpt, Wouter; Dekker, Andre
2018-02-01
Contouring of organs at risk (OARs) is an important but time consuming part of radiotherapy treatment planning. The aim of this study was to investigate whether using institutional created software-generated contouring will save time if used as a starting point for manual OAR contouring for lung cancer patients. Twenty CT scans of stage I-III NSCLC patients were used to compare user adjusted contours after an atlas-based and deep learning contour, against manual delineation. The lungs, esophagus, spinal cord, heart and mediastinum were contoured for this study. The time to perform the manual tasks was recorded. With a median time of 20 min for manual contouring, the total median time saved was 7.8 min when using atlas-based contouring and 10 min for deep learning contouring. Both atlas based and deep learning adjustment times were significantly lower than manual contouring time for all OARs except for the left lung and esophagus of the atlas based contouring. User adjustment of software generated contours is a viable strategy to reduce contouring time of OARs for lung radiotherapy while conforming to local clinical standards. In addition, deep learning contouring shows promising results compared to existing solutions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong
2018-04-01
Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.
Contour-Based Corner Detection and Classification by Using Mean Projection Transform
Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein
2014-01-01
Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images. PMID:24590354
Contour-based corner detection and classification by using mean projection transform.
Kahaki, Seyed Mostafa Mousavi; Nordin, Md Jan; Ashtari, Amir Hossein
2014-02-28
Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT) as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP) and false-negative (FN) points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS) methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR), is introduced. AR combines repeatability and the localization error (Le) for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.
Li, Weilin; Wen, Jian; Xiao, Zhongliang; Xu, Shengxia
2018-02-22
To assess the health conditions of tree trunks, it is necessary to estimate the layers and anomalies of their internal structure. The main objective of this paper is to investigate the internal part of tree trunks considering their irregular contour. In this respect, we used ground penetrating radar (GPR) for non-invasive detection of defects and deteriorations in living trees trunks. The Hilbert transform algorithm and the reflection amplitudes were used to estimate the relative dielectric constant. The point cloud data technique was applied as well to extract the irregular contours of trunks. The feasibility and accuracy of the methods were examined through numerical simulations, laboratory and field measurements. The results demonstrated that the applied methodology allowed for accurate characterizations of the internal inhomogeneity. Furthermore, the point cloud technique resolved the trunk well by providing high-precision coordinate information. This study also demonstrated that cross-section tomography provided images with high resolution and accuracy. These integrated techniques thus proved to be promising for observing tree trunks and other cylindrical objects. The applied approaches offer a great promise for future 3D reconstruction of tomographic images with radar wave.
Method of fabricating a flow device
Hale, Robert L.
1978-01-01
This invention is a novel method for fabricating leak-tight tubular articles which have an interior flow channel whose contour must conform very closely with design specifications but which are composed of metal which tends to warp if welded. The method comprises designing two longitudinal half-sections of the article, the half-sections being contoured internally to cooperatively form the desired flow passageway. Each half-section is designed with a pair of opposed side flanges extending between the end flanges and integral therewith. The half-sections are positioned with their various flanges in confronting relation and with elongated metal gaskets extending between the confronting flanges for the length of the array. The gaskets are a deformable metal which is fusion-weldable to the end flanges. The mating side flanges are joined mechanically to deform the gaskets and provide a longitudinally sealed assembly. The portions of the end flanges contiguous with the ends of the gaskets then are welded to provide localized end welds which incorporate ends of the gaskets, thus transversely sealing the assembly. This method of fabrication provides leak-tight articles having the desired precisely contoured flow channels, whereas various conventional methods have been found unsatisfactory.
Secondary Wing System for Use on an Aircraft
NASA Technical Reports Server (NTRS)
Smith, Brian E. (Inventor)
1999-01-01
A secondary wing system for use on an aircraft augments the lift, stability, and control of the aircraft at subsonic speeds. The secondary wing system includes a mechanism that allows the canard to be retracted within the contour of the aircraft fuselage from an operational position to a stowed position. The top surface of the canard is exposed to air flow in the stowed position, and is contoured to integrate aerodynamically and smoothly within the contour of the fuselage when the canard is retracted for high speed flight. The bottom portion of the canard is substantially flat for rotation into a storage recess within the fuselage. The single canard rotates about a vertical axis at its spanwise midpoint. The canard can be positioned between a range of sweep angles during flight and a stowed position in which its span is substantially parallel to the aircraft fuselage. The canard can be deployed and retracted during flight. The deployment mechanism includes a circular mounting ring and drive mechanism that connects the canard with the fuselage and permits it to rotate and to change incidence. The deployment mechanism further includes retractable fairings which serve to streamline the wing when it is retracted into the top of the fuselage.
GeoMapApp, Virtual Ocean, and other Free Data Resources for the 21st Century Classroom
NASA Astrophysics Data System (ADS)
Goodwillie, A. M.; Ryan, W.; Carbotte, S.; Melkonian, A.; Coplan, J.; Arko, R.; Ferrini, V.; O'Hara, S.; Leung, A.; Bonckzowski, J.
2008-12-01
With funding from the U.S. National Science Foundation, the Marine Geoscience Data System (MGDS) (http://www.marine-geo.org/) is developing GeoMapApp (http://www.geomapapp.org) - a computer application that provides wide-ranging map-based visualization and manipulation options for interdisciplinary geosciences research and education. The novelty comes from the use of this visual tool to discover and explore data, with seamless links to further discovery using traditional text-based approaches. Users can generate custom maps and grids and import their own data sets. Built-in functionality allows users to readily explore a broad suite of interactive data sets and interfaces. Examples include multi-resolution global digital models of topography, gravity, sediment thickness, and crustal ages; rock, fluid, biology and sediment sample information; research cruise underway geophysical and multibeam data; earthquake events; submersible dive photos of hydrothermal vents; geochemical analyses; DSDP/ODP core logs; seismic reflection profiles; contouring, shading, profiling of grids; and many more. On-line audio-visual tutorials lead users step-by-step through GeoMapApp functionality (http://www.geomapapp.org/tutorials/). Virtual Ocean (http://www.virtualocean.org/) integrates GeoMapApp with a 3-D earth browser based upon NASA WorldWind, providing yet more powerful capabilities. The searchable MGDS Media Bank (http://media.marine-geo.org/) supports viewing of remarkable images and video from the NSF Ridge 2000 and MARGINS programs. For users familiar with Google Earth (tm), KML files are available for viewing several MGDS data sets (http://www.marine-geo.org/education/kmls.php). Examples of accessing and manipulating a range of geoscience data sets from various NSF-funded programs will be shown. GeoMapApp, Virtual Ocean, the MGDS Media Bank and KML files are free MGDS data resources and work on any type of computer. They are currently used by educators, researchers, school teachers and the general public.
Visual White Matter Integrity in Schizophrenia
Butler, Pamela D.; Hoptman, Matthew J.; Nierenberg, Jay; Foxe, John J.; Javitt, Daniel C.; Lim, Kelvin O.
2007-01-01
Objective Patients with schizophrenia have visual-processing deficits. This study examines visual white matter integrity as a potential mechanism for these deficits. Method Diffusion tensor imaging was used to examine white matter integrity at four levels of the visual system in 17 patients with schizophrenia and 21 comparison subjects. The levels examined were the optic radiations, the striate cortex, the inferior parietal lobule, and the fusiform gyrus. Results Schizophrenia patients showed a significant decrease in fractional anisotropy in the optic radiations but not in any other region. Conclusions This finding indicates that white matter integrity is more impaired at initial input, rather than at higher levels of the visual system, and supports the hypothesis that visual-processing deficits occur at the early stages of processing. PMID:17074957
An exploratory study of temporal integration in the peripheral retina of myopes
NASA Astrophysics Data System (ADS)
Macedo, Antonio F.; Encarnação, Tito J.; Vilarinho, Daniel; Baptista, António M. G.
2017-08-01
The visual system takes time to respond to visual stimuli, neurons need to accumulate information over a time span in order to fire. Visual information perceived by the peripheral retina might be impaired by imperfect peripheral optics leading to myopia development. This study explored the effect of eccentricity, moderate myopia and peripheral refraction in temporal visual integration. Myopes and emmetropes showed similar performance at detecting briefly flashed stimuli in different retinal locations. Our results show evidence that moderate myopes have normal visual integration when refractive errors are corrected with contact lens; however, the tendency to increased temporal integration thresholds observed in myopes deserves further investigation.
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Panton, Kirsten R.; Badcock, David R.; Badcock, Johanna C.
2016-01-01
Current research on perceptual organization in schizophrenia frequently employs shapes with regularly sampled contours (fragmented stimuli), in noise fields composed of similar elements, to elicit visual abnormalities. However, perceptual organization is multi-factorial and, in earlier studies, continuous contours have also been employed in tasks assessing the ability to extract shapes from a background. We conducted a systematic review and meta-analysis of studies using closed-contour stimuli, including the Embedded Figures Test (EFT) and related tasks, both in people with schizophrenia and in healthy schizotypes and relatives, considered at increased risk for psychosis. Eleven studies met the selection criteria for inclusion in the meta-analysis, including six that used a between-groups study design (i.e., perceptual organization abilities of schizophrenia/high-risk groups were compared to healthy or clinical controls), and five that treated schizophrenia symptoms or schizotypy traits and indices of perceptual organization as continuous variables. Effect sizes and heterogeneity statistics were calculated, and the risk of publication bias was explored. A significant, moderate effect for EFT performance was found with studies that compared performance of schizophrenia/high-risk groups to a healthy or patient comparison group (d = −0.523, p < 0.001). However, significant heterogeneity was also found amongst the schizotypy, but not schizophrenia studies, as well as studies using accuracy, but not reaction time as a measure of performance. A non-significant correlation was found for the studies that examined schizophrenia symptoms or schizotypy traits as continuous variables (r = 0.012, p = 0.825). These results suggest that deficits in perceptual organization of non-fragmented stimuli are found when differences between schizophrenia/high-risk groups and comparison groups are maximized. These findings should motivate further investigation of perceptual organization abilities with closed-contour stimuli both in schizophrenia and high-risk groups, which is pertinent to current initiatives to improve the assessment and treatment of cognition in schizophrenia. PMID:26941688
Panton, Kirsten R; Badcock, David R; Badcock, Johanna C
2016-01-01
Current research on perceptual organization in schizophrenia frequently employs shapes with regularly sampled contours (fragmented stimuli), in noise fields composed of similar elements, to elicit visual abnormalities. However, perceptual organization is multi-factorial and, in earlier studies, continuous contours have also been employed in tasks assessing the ability to extract shapes from a background. We conducted a systematic review and meta-analysis of studies using closed-contour stimuli, including the Embedded Figures Test (EFT) and related tasks, both in people with schizophrenia and in healthy schizotypes and relatives, considered at increased risk for psychosis. Eleven studies met the selection criteria for inclusion in the meta-analysis, including six that used a between-groups study design (i.e., perceptual organization abilities of schizophrenia/high-risk groups were compared to healthy or clinical controls), and five that treated schizophrenia symptoms or schizotypy traits and indices of perceptual organization as continuous variables. Effect sizes and heterogeneity statistics were calculated, and the risk of publication bias was explored. A significant, moderate effect for EFT performance was found with studies that compared performance of schizophrenia/high-risk groups to a healthy or patient comparison group (d = -0.523, p < 0.001). However, significant heterogeneity was also found amongst the schizotypy, but not schizophrenia studies, as well as studies using accuracy, but not reaction time as a measure of performance. A non-significant correlation was found for the studies that examined schizophrenia symptoms or schizotypy traits as continuous variables (r = 0.012, p = 0.825). These results suggest that deficits in perceptual organization of non-fragmented stimuli are found when differences between schizophrenia/high-risk groups and comparison groups are maximized. These findings should motivate further investigation of perceptual organization abilities with closed-contour stimuli both in schizophrenia and high-risk groups, which is pertinent to current initiatives to improve the assessment and treatment of cognition in schizophrenia.
Automated skin segmentation in ultrasonic evaluation of skin toxicity in breast cancer radiotherapy.
Gao, Yi; Tannenbaum, Allen; Chen, Hao; Torres, Mylin; Yoshida, Emi; Yang, Xiaofeng; Wang, Yuefeng; Curran, Walter; Liu, Tian
2013-11-01
Skin toxicity is the most common side effect of breast cancer radiotherapy and impairs the quality of life of many breast cancer survivors. We, along with other researchers, have recently found quantitative ultrasound to be effective as a skin toxicity assessment tool. Although more reliable than standard clinical evaluations (visual observation and palpation), the current procedure for ultrasound-based skin toxicity measurements requires manual delineation of the skin layers (i.e., epidermis-dermis and dermis-hypodermis interfaces) on each ultrasound B-mode image. Manual skin segmentation is time consuming and subjective. Moreover, radiation-induced skin injury may decrease image contrast between the dermis and hypodermis, which increases the difficulty of delineation. Therefore, we have developed an automatic skin segmentation tool (ASST) based on the active contour model with two significant modifications: (i) The proposed algorithm introduces a novel dual-curve scheme for the double skin layer extraction, as opposed to the original single active contour method. (ii) The proposed algorithm is based on a geometric contour framework as opposed to the previous parametric algorithm. This ASST algorithm was tested on a breast cancer image database of 730 ultrasound breast images (73 ultrasound studies of 23 patients). We compared skin segmentation results obtained with the ASST with manual contours performed by two physicians. The average percentage differences in skin thickness between the ASST measurement and that of each physician were less than 5% (4.8 ± 17.8% and -3.8 ± 21.1%, respectively). In summary, we have developed an automatic skin segmentation method that ensures objective assessment of radiation-induced changes in skin thickness. Our ultrasound technology offers a unique opportunity to quantify tissue injury in a more meaningful and reproducible manner than the subjective assessments currently employed in the clinic. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel
2007-03-01
Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.
NASA Astrophysics Data System (ADS)
Primo, Amedeo; Tancredi, Lorenzo
2017-08-01
We consider the calculation of the master integrals of the three-loop massive banana graph. In the case of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system of three coupled linear differential equations. The solution of the system requires finding a 3 × 3 matrix of homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent solutions are found by performing the integration which defines the maximal cut on different contours. Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler's variation of constants.
3D image display of fetal ultrasonic images by thin shell
NASA Astrophysics Data System (ADS)
Wang, Shyh-Roei; Sun, Yung-Nien; Chang, Fong-Ming; Jiang, Ching-Fen
1999-05-01
Due to the properties of convenience and non-invasion, ultrasound has become an essential tool for diagnosis of fetal abnormality during women pregnancy in obstetrics. However, the 'noisy and blurry' nature of ultrasound data makes the rendering of the data a challenge in comparison with MRI and CT images. In spite of the speckle noise, the unwanted objects usually occlude the target to be observed. In this paper, we proposed a new system that can effectively depress the speckle noise, extract the target object, and clearly render the 3D fetal image in almost real-time from 3D ultrasound image data. The system is based on a deformable model that detects contours of the object according to the local image feature of ultrasound. Besides, in order to accelerate rendering speed, a thin shell is defined to separate the observed organ from unrelated structures depending on those detected contours. In this way, we can support quick 3D display of ultrasound, and the efficient visualization of 3D fetal ultrasound thus becomes possible.
High compression image and image sequence coding
NASA Technical Reports Server (NTRS)
Kunt, Murat
1989-01-01
The digital representation of an image requires a very large number of bits. This number is even larger for an image sequence. The goal of image coding is to reduce this number, as much as possible, and reconstruct a faithful duplicate of the original picture or image sequence. Early efforts in image coding, solely guided by information theory, led to a plethora of methods. The compression ratio reached a plateau around 10:1 a couple of years ago. Recent progress in the study of the brain mechanism of vision and scene analysis has opened new vistas in picture coding. Directional sensitivity of the neurones in the visual pathway combined with the separate processing of contours and textures has led to a new class of coding methods capable of achieving compression ratios as high as 100:1 for images and around 300:1 for image sequences. Recent progress on some of the main avenues of object-based methods is presented. These second generation techniques make use of contour-texture modeling, new results in neurophysiology and psychophysics and scene analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Kevin S., E-mail: kscollin@siu.edu
2012-10-01
Prostate cancer is one of the most common diseases treated in a radiation oncology department. One of the major predictors of the treatment outcome and patient side effects is the accuracy of the anatomical contours for the treatment plan. Therefore, the purpose of this study was to determine which anatomical structures are most often contoured correctly and incorrectly by medical dosimetry students. The author also wanted to discover whether a review of the contouring rules would increase contouring accuracy. To achieve this, a male computed tomography dataset consisting of 72 transverse slices was sent to students for contouring. The studentsmore » were instructed to import this dataset into their treatment planning system and contour the following structures: skin, bladder, rectum, prostate, penile bulb, seminal vesicles, left femoral head, and right femoral head. Upon completion of the contours, the contour file was evaluated against a 'gold standard' contour set using StructSure software (Standard Imaging, Inc). A review of the initial contour results was conducted and then students were instructed to contour the dataset a second time. The results of this study showed significant differences between contouring sessions. These results and the standardization of contouring rules should benefit all individuals who participate in the treatment planning of cancer patients.« less
Anatomical contouring variability in thoracic organs at risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCall, Ross, E-mail: rmccall86@gmail.com; MacLennan, Grayden; Taylor, Matthew
2016-01-01
The purpose of this study was to determine whether contouring thoracic organs at risk was consistent among medical dosimetrists and to identify how trends in dosimetrist's education and experience affected contouring accuracy. Qualitative and quantitative methods were used to contextualize the raw data that were obtained. A total of 3 different computed tomography (CT) data sets were provided to medical dosimetrists (N = 13) across 5 different institutions. The medical dosimetrists were directed to contour the lungs, heart, spinal cord, and esophagus. The medical dosimetrists were instructed to contour in line with their institutional standards and were allowed to usemore » any contouring tool or technique that they would traditionally use. The contours from each medical dosimetrist were evaluated against “gold standard” contours drawn and validated by 2 radiation oncology physicians. The dosimetrist-derived contours were evaluated against the gold standard using both a Dice coefficient method and a penalty-based metric scoring system. A short survey was also completed by each medical dosimetrist to evaluate their individual contouring experience. There was no significant variation in the contouring consistency of the lungs and spinal cord. Intradosimetrist contouring was consistent for those who contoured the esophagus and heart correctly; however, medical dosimetrists with a poor metric score showed erratic and inconsistent methods of contouring.« less
Perceptual representation and effectiveness of local figure–ground cues in natural contours
Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro
2015-01-01
A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure–ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure–ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure–ground perception with natural contours when the other cues coexist with equal probability including contradictory cases. PMID:26579057
Perceptual representation and effectiveness of local figure-ground cues in natural contours.
Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro
2015-01-01
A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.
Implicit integration in a case of integrative visual agnosia.
Aviezer, Hillel; Landau, Ayelet N; Robertson, Lynn C; Peterson, Mary A; Soroker, Nachum; Sacher, Yaron; Bonneh, Yoram; Bentin, Shlomo
2007-05-15
We present a case (SE) with integrative visual agnosia following ischemic stroke affecting the right dorsal and the left ventral pathways of the visual system. Despite his inability to identify global hierarchical letters [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383], and his dense object agnosia, SE showed normal global-to-local interference when responding to local letters in Navon hierarchical stimuli and significant picture-word identity priming in a semantic decision task for words. Since priming was absent if these features were scrambled, it stands to reason that these effects were not due to priming by distinctive features. The contrast between priming effects induced by coherent and scrambled stimuli is consistent with implicit but not explicit integration of features into a unified whole. We went on to show that possible/impossible object decisions were facilitated by words in a word-picture priming task, suggesting that prompts could activate perceptually integrated images in a backward fashion. We conclude that the absence of SE's ability to identify visual objects except through tedious serial construction reflects a deficit in accessing an integrated visual representation through bottom-up visual processing alone. However, top-down generated images can help activate these visual representations through semantic links.
A ganglion-cell-based primary image representation method and its contribution to object recognition
NASA Astrophysics Data System (ADS)
Wei, Hui; Dai, Zhi-Long; Zuo, Qing-Song
2016-10-01
A visual stimulus is represented by the biological visual system at several levels: in the order from low to high levels, they are: photoreceptor cells, ganglion cells (GCs), lateral geniculate nucleus cells and visual cortical neurons. Retinal GCs at the early level need to represent raw data only once, but meet a wide number of diverse requests from different vision-based tasks. This means the information representation at this level is general and not task-specific. Neurobiological findings have attributed this universal adaptation to GCs' receptive field (RF) mechanisms. For the purposes of developing a highly efficient image representation method that can facilitate information processing and interpretation at later stages, here we design a computational model to simulate the GC's non-classical RF. This new image presentation method can extract major structural features from raw data, and is consistent with other statistical measures of the image. Based on the new representation, the performances of other state-of-the-art algorithms in contour detection and segmentation can be upgraded remarkably. This work concludes that applying sophisticated representation schema at early state is an efficient and promising strategy in visual information processing.
NASA Astrophysics Data System (ADS)
Alfeld, Matthias; Siddons, D. Peter; Janssens, Koen; Dik, Joris; Woll, Arthur; Kirkham, Robin; van de Wetering, Ernst
2013-04-01
In 17th century Old Master Paintings, the underpainting generally refers to the first sketch of a composition. The underpainting is applied to a prepared ground using a monochrome, brown oil paint to roughly indicate light, shade and contours. So far, methods to visualize the underpainting—other than in localized cross-sections—have been very limited. Neither infrared reflectography nor neutron induced autoradiography have proven to be practical, adequate visualization tools. Thus, although of fundamental interest in the understanding of a painting's genesis, the underpainting has virtually escaped all imaging efforts. In this contribution we will show that 17th century underpainting may consist of a highly heterogeneous mixture of pigments, including copper pigments. We suggest that this brown pigment mixture is actually the recycled left-over of a palette scraping. With copper as the heaviest exclusive elemental component, we will hence show in a case study on a Portrait of an Old Man attributed to Rembrandt van Rijn how scanning macro-XRF can be used to efficiently visualize the underpainting below the surface painting and how this information can contribute to the discussion of the painting's authenticity.
An interactive toolbox for atlas-based segmentation and coding of volumetric images
NASA Astrophysics Data System (ADS)
Menegaz, G.; Luti, S.; Duay, V.; Thiran, J.-Ph.
2007-03-01
Medical imaging poses the great challenge of having compression algorithms that are lossless for diagnostic and legal reasons and yet provide high compression rates for reduced storage and transmission time. The images usually consist of a region of interest representing the part of the body under investigation surrounded by a "background", which is often noisy and not of diagnostic interest. In this paper, we propose a ROI-based 3D coding system integrating both the segmentation and the compression tools. The ROI is extracted by an atlas based 3D segmentation method combining active contours with information theoretic principles, and the resulting segmentation map is exploited for ROI based coding. The system is equipped with a GUI allowing the medical doctors to supervise the segmentation process and eventually reshape the detected contours at any point. The process is initiated by the user through the selection of either one pre-de.ned reference image or one image of the volume to be used as the 2D "atlas". The object contour is successively propagated from one frame to the next where it is used as the initial border estimation. In this way, the entire volume is segmented based on a unique 2D atlas. The resulting 3D segmentation map is exploited for adaptive coding of the different image regions. Two coding systems were considered: the JPEG3D standard and the 3D-SPITH. The evaluation of the performance with respect to both segmentation and coding proved the high potential of the proposed system in providing an integrated, low-cost and computationally effective solution for CAD and PAC systems.
Residual interference assessment in adaptive wall wind tunnels
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1989-01-01
A two-variable method is presented which is suitable for on-line calculation of residual interference in airfoil testing in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-M TCT). The method applies the Cauchy's integral formula to the closed contour formed by the contoured top and bottom walls, and the upstream and downstream ends. The measured top and bottom wall pressures and position are used to calculate the correction to the test Mach number and the airfoil angle of attack. Application to specific data obtained in the 0.3-M TCT adaptive wall test section demonstrates the need to assess residual interference to ensure that the desired level of wall streamlining is achieved. A FORTRAN computer program was developed for on-line calculation of the residual corrections during airfoil tests in the 0.3-M TCT.
Automated consensus contour building for prostate MRI.
Khalvati, Farzad
2014-01-01
Inter-observer variability is the lack of agreement among clinicians in contouring a given organ or tumour in a medical image. The variability in medical image contouring is a source of uncertainty in radiation treatment planning. Consensus contour of a given case, which was proposed to reduce the variability, is generated by combining the manually generated contours of several clinicians. However, having access to several clinicians (e.g., radiation oncologists) to generate a consensus contour for one patient is costly. This paper presents an algorithm that automatically generates a consensus contour for a given case using the atlases of different clinicians. The algorithm was applied to prostate MR images of 15 patients manually contoured by 5 clinicians. The automatic consensus contours were compared to manual consensus contours where a median Dice similarity coefficient (DSC) of 88% was achieved.
Visual-auditory integration during speech imitation in autism.
Williams, Justin H G; Massaro, Dominic W; Peel, Natalie J; Bosseler, Alexis; Suddendorf, Thomas
2004-01-01
Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional 'mirror neuron' systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a 'virtual' head (Baldi), delivered speech stimuli for identification in auditory, visual or bimodal conditions. Children with ASD were poorer than controls at recognizing stimuli in the unimodal conditions, but once performance on this measure was controlled for, no group difference was found in the bimodal condition. A group of participants with ASD were also trained to develop their speech-reading ability. Training improved visual accuracy and this also improved the children's ability to utilize visual information in their processing of speech. Overall results were compared to predictions from mathematical models based on integration and non-integration, and were most consistent with the integration model. We conclude that, whilst they are less accurate in recognizing stimuli in the unimodal condition, children with ASD show normal integration of visual and auditory speech stimuli. Given that training in recognition of visual speech was effective, children with ASD may benefit from multi-modal approaches in imitative therapy and language training.
SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, R; Yang, J; Pan, T
Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fusedmore » using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need for auto-segmented contours of indistinguishable small structures.« less
Electrophysiological evidence for Audio-visuo-lingual speech integration.
Treille, Avril; Vilain, Coriandre; Schwartz, Jean-Luc; Hueber, Thomas; Sato, Marc
2018-01-31
Recent neurophysiological studies demonstrate that audio-visual speech integration partly operates through temporal expectations and speech-specific predictions. From these results, one common view is that the binding of auditory and visual, lipread, speech cues relies on their joint probability and prior associative audio-visual experience. The present EEG study examined whether visual tongue movements integrate with relevant speech sounds, despite little associative audio-visual experience between the two modalities. A second objective was to determine possible similarities and differences of audio-visual speech integration between unusual audio-visuo-lingual and classical audio-visuo-labial modalities. To this aim, participants were presented with auditory, visual, and audio-visual isolated syllables, with the visual presentation related to either a sagittal view of the tongue movements or a facial view of the lip movements of a speaker, with lingual and facial movements previously recorded by an ultrasound imaging system and a video camera. In line with previous EEG studies, our results revealed an amplitude decrease and a latency facilitation of P2 auditory evoked potentials in both audio-visual-lingual and audio-visuo-labial conditions compared to the sum of unimodal conditions. These results argue against the view that auditory and visual speech cues solely integrate based on prior associative audio-visual perceptual experience. Rather, they suggest that dynamic and phonetic informational cues are sharable across sensory modalities, possibly through a cross-modal transfer of implicit articulatory motor knowledge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Exogenous attention enhances 2nd-order contrast sensitivity
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2011-01-01
Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228
NASA Astrophysics Data System (ADS)
Sharma, Archie; Corona, Enrique; Mitra, Sunanda; Nutter, Brian S.
2006-03-01
Early detection of structural damage to the optic nerve head (ONH) is critical in diagnosis of glaucoma, because such glaucomatous damage precedes clinically identifiable visual loss. Early detection of glaucoma can prevent progression of the disease and consequent loss of vision. Traditional early detection techniques involve observing changes in the ONH through an ophthalmoscope. Stereo fundus photography is also routinely used to detect subtle changes in the ONH. However, clinical evaluation of stereo fundus photographs suffers from inter- and intra-subject variability. Even the Heidelberg Retina Tomograph (HRT) has not been found to be sufficiently sensitive for early detection. A semi-automated algorithm for quantitative representation of the optic disc and cup contours by computing accumulated disparities in the disc and cup regions from stereo fundus image pairs has already been developed using advanced digital image analysis methodologies. A 3-D visualization of the disc and cup is achieved assuming camera geometry. High correlation among computer-generated and manually segmented cup to disc ratios in a longitudinal study involving 159 stereo fundus image pairs has already been demonstrated. However, clinical usefulness of the proposed technique can only be tested by a fully automated algorithm. In this paper, we present a fully automated algorithm for segmentation of optic cup and disc contours from corresponding stereo disparity information. Because this technique does not involve human intervention, it eliminates subjective variability encountered in currently used clinical methods and provides ophthalmologists with a cost-effective and quantitative method for detection of ONH structural damage for early detection of glaucoma.
NASA Astrophysics Data System (ADS)
Renner, A.; Furtado, H.; Seppenwoolde, Y.; Birkfellner, W.; Georg, D.
2016-03-01
A radiotherapy (RT) treatment can last for several weeks. In that time organ motion and shape changes introduce uncertainty in dose application. Monitoring and quantifying the change can yield a more precise irradiation margin definition and thereby reduce dose delivery to healthy tissue and adjust tumor targeting. Deformable image registration (DIR) has the potential to fulfill this task by calculating a deformation field (DF) between a planning CT and a repeated CT of the altered anatomy. Application of the DF on the original contours yields new contours that can be used for an adapted treatment plan. DIR is a challenging method and therefore needs careful user interaction. Without a proper graphical user interface (GUI) a misregistration cannot be easily detected by visual inspection and the results cannot be fine-tuned by changing registration parameters. To provide a DIR algorithm with such a GUI available for everyone, we created the extension Featurelet-Registration for the open source software platform 3D Slicer. The registration logic is an upgrade of an in-house-developed DIR method, which is a featurelet-based piecewise rigid registration. The so called "featurelets" are equally sized rectangular subvolumes of the moving image which are rigidly registered to rectangular search regions on the fixed image. The output is a deformed image and a deformation field. Both can be visualized directly in 3D Slicer facilitating the interpretation and quantification of the results. For validation of the registration accuracy two deformable phantoms were used. The performance was benchmarked against a demons algorithm with comparable results.
Online monitoring of oil film using electrical capacitance tomography and level set method.
Xue, Q; Sun, B Y; Cui, Z Q; Ma, M; Wang, H X
2015-08-01
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2012-01-01
The visual system can use a rich variety of contours to segment visual scenes into distinct perceptually coherent regions. However, successfully segmenting an image is a computationally expensive process. Previously we have shown that exogenous attention—the more automatic, stimulus-driven component of spatial attention—helps extract contours by enhancing contrast sensitivity for second-order, texture-defined patterns at the attended location, while reducing sensitivity at unattended locations, relative to a neutral condition. Interestingly, the effects of exogenous attention depended on the second-order spatial frequency of the stimulus. At parafoveal locations, attention enhanced second-order contrast sensitivity to relatively high, but not to low second-order spatial frequencies. In the present study we investigated whether endogenous attention—the more voluntary, conceptually-driven component of spatial attention—affects second-order contrast sensitivity, and if so, whether its effects are similar to those of exogenous attention. To that end, we compared the effects of exogenous and endogenous attention on the sensitivity to second-order, orientation-defined, texture patterns of either high or low second-order spatial frequencies. The results show that, like exogenous attention, endogenous attention enhances second-order contrast sensitivity at the attended location and reduces it at unattended locations. However, whereas the effects of exogenous attention are a function of the second-order spatial frequency content, endogenous attention affected second-order contrast sensitivity independent of the second-order spatial frequency content. This finding supports the notion that both exogenous and endogenous attention can affect second-order contrast sensitivity, but that endogenous attention is more flexible, benefitting performance under different conditions. PMID:22895879
Online monitoring of oil film using electrical capacitance tomography and level set method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Q., E-mail: xueqian@tju.edu.cn; Ma, M.; Sun, B. Y.
2015-08-15
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for onlinemore » monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.« less
The role of vision on hand preshaping during reach to grasp.
Winges, Sara A; Weber, Douglas J; Santello, Marco
2003-10-01
During reaching to grasp objects with different shapes hand posture is molded gradually to the object's contours. The present study examined the extent to which the temporal evolution of hand posture depends on continuous visual feedback. We asked subjects to reach and grasp objects with different shapes under five vision conditions (VCs). Subjects wore liquid crystal spectacles that occluded vision at four different latencies from onset of the reach. As a control, full-vision trials (VC5) were interspersed among the blocked vision trials. Object shapes and all VCs were presented to the subjects in random order. Hand posture was measured by 15 sensors embedded in a glove. Linear regression analysis, discriminant analysis, and information theory were used to assess the effect of removing vision on the temporal evolution of hand shape. We found that reach duration increased when vision was occluded early in the reach. This was caused primarily by a slower approach of the hand toward the object near the end of the reach. However, vision condition did not have a significant effect on the covariation patterns of joint rotations, indicating that the gradual evolution of hand posture occurs in a similar fashion regardless of vision. Discriminant analysis further supported this interpretation, as the extent to which hand posture resembled object shape and the rate at which hand posture discrimination occurred throughout the movement were similar across vision conditions. These results extend previous observations on memory-guided reaches by showing that continuous visual feedback of the hand and/or object is not necessary to allow the hand to gradually conform to object contours.
Identification of everyday objects on the basis of Gaborized outline versions
Sassi, Michaël; Vancleef, Kathleen; Machilsen, Bart; Panis, Sven; Wagemans, Johan
2010-01-01
Using outlines derived from a widely used set of line drawings, we created stimuli geared towards the investigation of contour integration and texture segmentation using shapes of everyday objects. Each stimulus consisted of Gabor elements positioned and oriented curvilinearly along the outline of an object, embedded within a larger Gabor array of homogeneous density. We created six versions of the resulting Gaborized outline stimuli by varying the orientations of elements inside and outside the outline. Data from two experiments, in which participants attempted to identify the objects in the stimuli, provide norms for identifiability and name agreement, and show differences in identifiability between stimulus versions. While there was substantial variability between the individual objects in our stimulus set, further analyses suggest a number of stimulus properties which are generally predictive of identification performance. The stimuli and the accompanying normative data, both available on our website (http://www.gestaltrevision.be/sources/gaboroutlines), provide a useful tool to further investigate contour integration and texture segmentation in both normal and clinical populations, especially when top-down influences on these processes, such as the role of prior knowledge of familiar objects, are of main interest. PMID:23145218
Identification of everyday objects on the basis of Gaborized outline versions.
Sassi, Michaël; Vancleef, Kathleen; Machilsen, Bart; Panis, Sven; Wagemans, Johan
2010-01-01
Using outlines derived from a widely used set of line drawings, we created stimuli geared towards the investigation of contour integration and texture segmentation using shapes of everyday objects. Each stimulus consisted of Gabor elements positioned and oriented curvilinearly along the outline of an object, embedded within a larger Gabor array of homogeneous density. We created six versions of the resulting Gaborized outline stimuli by varying the orientations of elements inside and outside the outline. Data from two experiments, in which participants attempted to identify the objects in the stimuli, provide norms for identifiability and name agreement, and show differences in identifiability between stimulus versions. While there was substantial variability between the individual objects in our stimulus set, further analyses suggest a number of stimulus properties which are generally predictive of identification performance. The stimuli and the accompanying normative data, both available on our website (http://www.gestaltrevision.be/sources/gaboroutlines), provide a useful tool to further investigate contour integration and texture segmentation in both normal and clinical populations, especially when top-down influences on these processes, such as the role of prior knowledge of familiar objects, are of main interest.
Neural correlates of audiovisual integration in music reading.
Nichols, Emily S; Grahn, Jessica A
2016-10-01
Integration of auditory and visual information is important to both language and music. In the linguistic domain, audiovisual integration alters event-related potentials (ERPs) at early stages of processing (the mismatch negativity (MMN)) as well as later stages (P300(Andres et al., 2011)). However, the role of experience in audiovisual integration is unclear, as reading experience is generally confounded with developmental stage. Here we tested whether audiovisual integration of music appears similar to reading, and how musical experience altered integration. We compared brain responses in musicians and non-musicians on an auditory pitch-interval oddball task that evoked the MMN and P300, while manipulating whether visual pitch-interval information was congruent or incongruent with the auditory information. We predicted that the MMN and P300 would be largest when both auditory and visual stimuli deviated, because audiovisual integration would increase the neural response when the deviants were congruent. The results indicated that scalp topography differed between musicians and non-musicians for both the MMN and P300 response to deviants. Interestingly, musicians' musical training modulated integration of congruent deviants at both early and late stages of processing. We propose that early in the processing stream, visual information may guide interpretation of auditory information, leading to a larger MMN when auditory and visual information mismatch. At later attentional stages, integration of the auditory and visual stimuli leads to a larger P300 amplitude. Thus, experience with musical visual notation shapes the way the brain integrates abstract sound-symbol pairings, suggesting that musicians can indeed inform us about the role of experience in audiovisual integration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Bruynooghe, Michel M.
1998-04-01
In this paper, we present a robust method for automatic object detection and delineation in noisy complex images. The proposed procedure is a three stage process that integrates image segmentation by multidimensional pixel clustering and geometrically constrained optimization of deformable contours. The first step is to enhance the original image by nonlinear unsharp masking. The second step is to segment the enhanced image by multidimensional pixel clustering, using our reducible neighborhoods clustering algorithm that has a very interesting theoretical maximal complexity. Then, candidate objects are extracted and initially delineated by an optimized region merging algorithm, that is based on ascendant hierarchical clustering with contiguity constraints and on the maximization of average contour gradients. The third step is to optimize the delineation of previously extracted and initially delineated objects. Deformable object contours have been modeled by cubic splines. An affine invariant has been used to control the undesired formation of cusps and loops. Non linear constrained optimization has been used to maximize the external energy. This avoids the difficult and non reproducible choice of regularization parameters, that are required by classical snake models. The proposed method has been applied successfully to the detection of fine and subtle microcalcifications in X-ray mammographic images, to defect detection by moire image analysis, and to the analysis of microrugosities of thin metallic films. The later implementation of the proposed method on a digital signal processor associated to a vector coprocessor would allow the design of a real-time object detection and delineation system for applications in medical imaging and in industrial computer vision.
DOT National Transportation Integrated Search
2009-12-01
The goals of integration should be: Supporting domain oriented data analysis through the use of : knowledge augmented visual analytics system. In this project, we focus on: : Providing interactive data exploration for bridge managements. : ...